US20060035899A1 - Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein - Google Patents
Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein Download PDFInfo
- Publication number
- US20060035899A1 US20060035899A1 US11/222,601 US22260105A US2006035899A1 US 20060035899 A1 US20060035899 A1 US 20060035899A1 US 22260105 A US22260105 A US 22260105A US 2006035899 A1 US2006035899 A1 US 2006035899A1
- Authority
- US
- United States
- Prior art keywords
- lower alkyl
- oxo
- amino
- pyrazine
- thiopropyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000015572 biosynthetic process Effects 0.000 title abstract description 17
- 239000003814 drug Substances 0.000 title abstract description 14
- 102000034345 heterotrimeric G proteins Human genes 0.000 title abstract description 8
- 108091006093 heterotrimeric G proteins Proteins 0.000 title abstract description 8
- 150000001944 cysteine derivatives Chemical class 0.000 title abstract description 5
- 230000007170 pathology Effects 0.000 title description 7
- 238000002360 preparation method Methods 0.000 title description 6
- GXWNSJYVSIJRLS-UHFFFAOYSA-N 6-bromo-8-methylimidazo[1,2-a]pyrazine Chemical compound CC1=NC(Br)=CN2C=CN=C12 GXWNSJYVSIJRLS-UHFFFAOYSA-N 0.000 claims abstract description 57
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 23
- 201000010099 disease Diseases 0.000 claims abstract description 14
- 230000002062 proliferating effect Effects 0.000 claims abstract description 6
- 208000005623 Carcinogenesis Diseases 0.000 claims abstract description 5
- 230000036952 cancer formation Effects 0.000 claims abstract description 5
- 231100000504 carcinogenesis Toxicity 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 73
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- 125000000623 heterocyclic group Chemical group 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000004414 alkyl thio group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000002431 hydrogen Chemical group 0.000 claims 4
- 231100000252 nontoxic Toxicity 0.000 claims 3
- 230000003000 nontoxic effect Effects 0.000 claims 3
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims 2
- 229910052736 halogen Inorganic materials 0.000 claims 2
- 150000002367 halogens Chemical class 0.000 claims 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 150000001721 carbon Chemical group 0.000 claims 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims 1
- 230000004663 cell proliferation Effects 0.000 abstract description 6
- 208000008589 Obesity Diseases 0.000 abstract description 5
- 208000036142 Viral infection Diseases 0.000 abstract description 5
- 230000003305 autocrine Effects 0.000 abstract description 5
- 230000008827 biological function Effects 0.000 abstract description 5
- 230000033228 biological regulation Effects 0.000 abstract description 5
- 206010012601 diabetes mellitus Diseases 0.000 abstract description 5
- 230000013020 embryo development Effects 0.000 abstract description 5
- 230000002124 endocrine Effects 0.000 abstract description 5
- 210000003372 endocrine gland Anatomy 0.000 abstract description 5
- 210000003499 exocrine gland Anatomy 0.000 abstract description 5
- 230000006870 function Effects 0.000 abstract description 5
- 230000036737 immune function Effects 0.000 abstract description 5
- 230000004770 neurodegeneration Effects 0.000 abstract description 5
- 235000020824 obesity Nutrition 0.000 abstract description 5
- 230000003076 paracrine Effects 0.000 abstract description 5
- 230000005062 synaptic transmission Effects 0.000 abstract description 5
- 230000009385 viral infection Effects 0.000 abstract description 5
- 230000008447 perception Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 36
- 210000004027 cell Anatomy 0.000 description 31
- -1 alkylthio radical Chemical class 0.000 description 27
- 239000000047 product Substances 0.000 description 24
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 20
- 229940095074 cyclic amp Drugs 0.000 description 20
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 19
- 238000001819 mass spectrum Methods 0.000 description 19
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 16
- 150000003254 radicals Chemical class 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 13
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 11
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 11
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 11
- 102000030621 adenylate cyclase Human genes 0.000 description 10
- 108060000200 adenylate cyclase Proteins 0.000 description 10
- 108091006027 G proteins Proteins 0.000 description 9
- 102000030782 GTP binding Human genes 0.000 description 9
- 108091000058 GTP-Binding Proteins 0.000 description 9
- 108091054455 MAP kinase family Proteins 0.000 description 9
- 102000043136 MAP kinase family Human genes 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 9
- 0 [1*]SC[C@@H](C(=[4*])N([Y])[C@@H]([5*])C1=NC([6*])=C([7*])C1)N([2*])[3*] Chemical compound [1*]SC[C@@H](C(=[4*])N([Y])[C@@H]([5*])C1=NC([6*])=C([7*])C1)N([2*])[3*] 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000012043 crude product Substances 0.000 description 8
- 239000012047 saturated solution Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- 239000007832 Na2SO4 Substances 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000539 dimer Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052938 sodium sulfate Inorganic materials 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 description 6
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N Glutamine Chemical compound OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000005840 aryl radicals Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 125000003710 aryl alkyl group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000003818 flash chromatography Methods 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- GNDLFUUEHZTVAZ-QTEQDKRBSA-N [H]N1C(=O)[C@@H](N)CSSC[C@H]1CN1CCN(C(=O)C2=C3C=CC=CC3=CC=C2)C[C@@H]1CCCC Chemical compound [H]N1C(=O)[C@@H](N)CSSC[C@H]1CN1CCN(C(=O)C2=C3C=CC=CC3=CC=C2)C[C@@H]1CCCC GNDLFUUEHZTVAZ-QTEQDKRBSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 4
- 230000023077 detection of light stimulus Effects 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Substances C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 108700012359 toxins Proteins 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- QFWCYNPOPKQOKV-UHFFFAOYSA-N 2-(2-amino-3-methoxyphenyl)chromen-4-one Chemical compound COC1=CC=CC(C=2OC3=CC=CC=C3C(=O)C=2)=C1N QFWCYNPOPKQOKV-UHFFFAOYSA-N 0.000 description 3
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- IENQPUVVSDIXCT-DYESRHJHSA-N [H][C@](N)(CS)CNC1=CC=C(C(=O)N[C@]([H])(CC(C)C)C(=O)OC)C(C2=CC=CC=C2)=C1 Chemical compound [H][C@](N)(CS)CNC1=CC=C(C(=O)N[C@]([H])(CC(C)C)C(=O)OC)C(C2=CC=CC=C2)=C1 IENQPUVVSDIXCT-DYESRHJHSA-N 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 244000309466 calf Species 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- JDTOWOURWBDELG-QHCPKHFHSA-N (2r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-tritylsulfanylpropanoic acid Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(SC[C@H](NC(=O)OC(C)(C)C)C(O)=O)C1=CC=CC=C1 JDTOWOURWBDELG-QHCPKHFHSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- XMGAXELQRATLJP-UHFFFAOYSA-N 2-bromo-1-(2-methylphenyl)ethanone Chemical compound CC1=CC=CC=C1C(=O)CBr XMGAXELQRATLJP-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- YHYHYUQJVTXTKN-UHFFFAOYSA-N 8-(cyclohexylmethyl)-2-(2-methylphenyl)-3,5,6,7-tetrahydroimidazo[1,2-a]pyrazine Chemical compound CC1=CC=CC=C1C(CN1CCN2)=NC1=C2CC1CCCCC1 YHYHYUQJVTXTKN-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010008631 Cholera Diseases 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 2
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- BICXECMCJCNEDG-MOPGFXCFSA-N [(3s)-4-[(2r)-2-amino-3-sulfanylpropyl]-3-butylpiperazin-1-yl]-naphthalen-1-ylmethanone Chemical compound C1CN(C[C@@H](N)CS)[C@@H](CCCC)CN1C(=O)C1=CC=CC2=CC=CC=C12 BICXECMCJCNEDG-MOPGFXCFSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229960004050 aminobenzoic acid Drugs 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 2
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 208000006155 precocious puberty Diseases 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- HTSGKJQDMSTCGS-UHFFFAOYSA-N 1,4-bis(4-chlorophenyl)-2-(4-methylphenyl)sulfonylbutane-1,4-dione Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C(=O)C=1C=CC(Cl)=CC=1)CC(=O)C1=CC=C(Cl)C=C1 HTSGKJQDMSTCGS-UHFFFAOYSA-N 0.000 description 1
- MMTZBRWWGJFKDB-UHFFFAOYSA-N 2-[2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin-8-yl]ethanol Chemical compound COC1=CC=CC=C1C1=CN(CCNC2CCO)C2=N1 MMTZBRWWGJFKDB-UHFFFAOYSA-N 0.000 description 1
- CCTLFULSZSTXLX-UHFFFAOYSA-N 2-[2-(2-methoxyphenyl)-6-oxo-7,8-dihydro-5h-imidazo[1,2-a]pyrazin-8-yl]acetic acid Chemical compound COC1=CC=CC=C1C1=CN(CC(=O)NC2CC(O)=O)C2=N1 CCTLFULSZSTXLX-UHFFFAOYSA-N 0.000 description 1
- GKNCPTLOPRDYMH-UHFFFAOYSA-N 2-bromo-1-(2-methoxyphenyl)ethanone Chemical compound COC1=CC=CC=C1C(=O)CBr GKNCPTLOPRDYMH-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- UAUSBZPLCCNNPT-UHFFFAOYSA-N 8-(cyclohexylmethyl)-2-(2-methylphenyl)-5h-imidazo[1,2-a]pyrazin-6-one Chemical compound CC1=CC=CC=C1C1=CN(CC(=O)N=C2CC3CCCCC3)C2=N1 UAUSBZPLCCNNPT-UHFFFAOYSA-N 0.000 description 1
- PWJFNRJRHXWEPT-UHFFFAOYSA-N ADP ribose Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)C=O)C(O)C1O PWJFNRJRHXWEPT-UHFFFAOYSA-N 0.000 description 1
- SRNWOUGRCWSEMX-KEOHHSTQSA-N ADP-beta-D-ribose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-KEOHHSTQSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FKLJPTJMIBLJAV-UHFFFAOYSA-N Compound IV Chemical compound O1N=C(C)C=C1CCCCCCCOC1=CC=C(C=2OCCN=2)C=C1 FKLJPTJMIBLJAV-UHFFFAOYSA-N 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- GUUVPOWQJOLRAS-UHFFFAOYSA-N Diphenyl disulfide Chemical compound C=1C=CC=CC=1SSC1=CC=CC=C1 GUUVPOWQJOLRAS-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101001022129 Homo sapiens Tyrosine-protein kinase Fyn Proteins 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 229910019020 PtO2 Inorganic materials 0.000 description 1
- 102000001332 SRC Human genes 0.000 description 1
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 102100035221 Tyrosine-protein kinase Fyn Human genes 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N [H]C[H] Chemical compound [H]C[H] VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- CXVYBMFPCVMSPA-FUHWJXTLSA-N [H]N(C)[C@@H](CSC)CN1CCN(C(=O)C2=C3C=CC=CC3=CC=C2)C[C@@H]1C Chemical compound [H]N(C)[C@@H](CSC)CN1CCN(C(=O)C2=C3C=CC=CC3=CC=C2)C[C@@H]1C CXVYBMFPCVMSPA-FUHWJXTLSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- MJSHDCCLFGOEIK-UHFFFAOYSA-N benzyl (2,5-dioxopyrrolidin-1-yl) carbonate Chemical compound O=C1CCC(=O)N1OC(=O)OCC1=CC=CC=C1 MJSHDCCLFGOEIK-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 1
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940039009 isoproterenol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- MASXKPLGZRMBJF-MVSGICTGSA-N mastoparan Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(N)=O MASXKPLGZRMBJF-MVSGICTGSA-N 0.000 description 1
- 108010019084 mastoparan Proteins 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- LIGACIXOYTUXAW-UHFFFAOYSA-N phenacyl bromide Chemical compound BrCC(=O)C1=CC=CC=C1 LIGACIXOYTUXAW-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- FIAFUQMPZJWCLV-UHFFFAOYSA-N suramin Chemical compound OS(=O)(=O)C1=CC(S(O)(=O)=O)=C2C(NC(=O)C3=CC=C(C(=C3)NC(=O)C=3C=C(NC(=O)NC=4C=C(C=CC=4)C(=O)NC=4C(=CC=C(C=4)C(=O)NC=4C5=C(C=C(C=C5C(=CC=4)S(O)(=O)=O)S(O)(=O)=O)S(O)(=O)=O)C)C=CC=3)C)=CC=C(S(O)(=O)=O)C2=C1 FIAFUQMPZJWCLV-UHFFFAOYSA-N 0.000 description 1
- 229960005314 suramin Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 1
- VHCVUWLMBKRIOD-UHFFFAOYSA-N tert-butyl 2-(2-methoxyphenyl)-8-(2-phenoxyethyl)-6,8-dihydro-5h-imidazo[1,2-a]pyrazine-7-carboxylate Chemical compound COC1=CC=CC=C1C1=CN(CCN(C2CCOC=3C=CC=CC=3)C(=O)OC(C)(C)C)C2=N1 VHCVUWLMBKRIOD-UHFFFAOYSA-N 0.000 description 1
- GBXLMUNCSKPOBS-UHFFFAOYSA-N tert-butyl 2-(2-methoxyphenyl)-8-(2-phenylsulfanylethyl)-6,8-dihydro-5h-imidazo[1,2-a]pyrazine-7-carboxylate Chemical compound COC1=CC=CC=C1C1=CN(CCN(C2CCSC=3C=CC=CC=3)C(=O)OC(C)(C)C)C2=N1 GBXLMUNCSKPOBS-UHFFFAOYSA-N 0.000 description 1
- DHDRPWOBOCZHKR-UHFFFAOYSA-N tert-butyl 8-[2-(benzenesulfonyl)ethyl]-2-(2-methoxyphenyl)-6,8-dihydro-5h-imidazo[1,2-a]pyrazine-7-carboxylate Chemical compound COC1=CC=CC=C1C1=CN(CCN(C2CCS(=O)(=O)C=3C=CC=CC=3)C(=O)OC(C)(C)C)C2=N1 DHDRPWOBOCZHKR-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- ORQXBVXKBGUSBA-QMMMGPOBSA-N β-cyclohexyl-alanine Chemical compound OC(=O)[C@@H](N)CC1CCCCC1 ORQXBVXKBGUSBA-QMMMGPOBSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/223—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of alpha-aminoacids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/498—Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates in particular to the use of derivatives of cysteine for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein.
- diseases include in particular diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection, immunological functions, diabetes, obesity, and benign and malign proliferative diseases.
- the G proteins are in fact the structural association of three distinct sub-units called ⁇ , ⁇ , and ⁇ , but operate as dissociable entities constituted by ⁇ sub-units on the one hand and ⁇ / ⁇ dimers on the other hand.
- the G proteins participate in the transmission of signals outside the cell thanks to its interaction with receptors with seven transmembrane domains inside using different effectors including adenylate cyclase, phospholipase C or also the ionic channels.
- the adenylate cyclase enzyme generates cyclic AMP (cAMP) (cf. Gilman, A. G. Biosci. Rep. 15, 65-97 (1995)).
- cAMP cyclic AMP
- bacterial toxins such as Vibrio cholera and Bortella pertussis
- peptides such as mastoparan and suramin
- G proteins cf. Freissmuth, M., Boehm, S., Beindl, W., et al. Mol. Pharmacol. 49, 602-611 (1996); Boehm, S., Huck, S., Motejlek, A., et al. Journal of Neurochemistry 66, 1019-1026 (1996); Cachero, T. G., Rigual, R., Rocher, A. & Gonzalez, C. Eur. J. Neurosci.
- the choleric toxin modifies the as sub-unit of the G protein by adding an ADP-ribose originating from the NAD to an arginine-specific acceptor site. This completely blocks the activity of the GTPase, provoking persistent stimulation of its next effector, adenylate cyclase and leading to overproduction of cAMP.
- the harmful effects of an abnormal cAMP level are also known and occur in particular at the level of the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection and immunological functions, diabetes and obesity.
- X represents R 12 and Y represents R 8 , or X and Y complete a ring with 6 members, the X-Y set representing the —CH(R 8 )—CH(R 9 )-radical;
- R 1 represents H, a lower alkyl or alkylthio radical
- R 2 and R 3 represent independently H or a lower alkyl radical
- R 4 represents H 2 or O
- R 5 represents H, or one of the lower alkyl, lower alkenyl, lower alkynyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising a lower alkyl radical, —O—R 10 , —S(O) m R 10 (m representing 0, 1, or 2), —N(R 10 )(R 11 ), —N—C(O)—R 10 , —NH—(SO 2 )—R 10 , —CO 2 —R 10 , C(O)—N(R 10 )(R 11 ), and —(SO 2 )—N(R 10 )(R 11 );
- R 6 and R 7 represent independently H, a —C(O)—NH—CHR 13 —CO 2 R 14 radical, or one of the lower alkyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising the OH, alkyl or lower alkoxy, N(R 10 )(R 11 ), COOH, CON(R 10 )(R 11 ), and halo radicals,
- R 6 and R 7 form together an aryl radical or a heterocycle
- R 8 and R 9 represent independently, H, or one of the lower alkyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising the OH, alkyl or lower alkoxy, N(R 10 )(R 11 ), COOH, CON(R 10 )(R 11 ) and halo radicals,
- R 8 and R 9 together form an aryl radical or a heterocycle
- R 10 and R 11 represent independently H, an aryl radical or a heterocycle, or an alkyl, arylalkyl or lower alkyl heterocycle radical;
- R 12 represents NR 9 , S, or O
- R 13 represents a lower alkyl radical optionally substituted by a radical chosen from the lower alkyl, —OR 10 , S(O) m R 10 (m representing 0, 1, or 2) and —N(R 10 )(R 11 ) radicals;
- R 14 represents H or a lower alkyl radical
- W 1 represents a remainder originating from a cysteine in reduced or non reduced form
- Ar represents a radical derived from an aminobenzoic acid, the aromatic ring of which is optionally substituted;
- W 2 represents an amino acid, preferably an aliphatic amino acid; or also the compounds of general formula (C): in which:
- Z 1 represents a lower alkyl radical
- Z 2 and Z 3 both represent H or Z 2 and Z 3 together form a chain having 2 to 4 elements chosen from the —C(O)—, —CH 2 —, —CH(NH 2 )— and —S-radicals, it being understood that two successive elements are not both —C(O)—;
- lower alkyl radical is understood a linear or branched alkyl radical containing 1 to 6 carbon atoms, and in particular the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, neopentyl, isopentyl, hexyl, isohexyl radicals.
- heterocycle radical is understood a radical constituted by one or more rings and including at least one heteroatom.
- arylalkyl, alkyl heterocycle, alkylthio or lower alkoxy radical is understood the radicals of which the alkyl radical has the meaning indicated previously.
- the Ar radical included in formula (B) is optionally substituted by an alkyl radical comprising 1 to 6 carbon atoms or an aryl radical, these alkyl or aryl radicals themselves being optionally substituted preferentially by an alkoxy radical having 1 to 4 carbon atoms, fluoro, chloro, bromo.
- the aryl radical preferably a phenyl can itself be substituted by an alkyl radical.
- the compounds of general formula (B) are such that Ar represents a radical derived from an aminobenzoic acid the aromatic ring of which is substituted by a phenyl radical and W 2 represents an aliphatic amino acid.
- the following compounds can be used to prepare medicaments intended to treat pathologies which result from the formation of the heterotrimeric G protein:
- One of the following compounds is preferably used for the invention:
- the invention therefore relates firstly to the use of the compounds of general formula (A), (B) or (C) as described previously for preparing a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein.
- it relates to the use of said inhibitors for preparing medicaments intended to treat diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, viral infection, immunological functions, diabetes and obesity.
- the invention relates to the use of compounds of general formula (A), (B) or (C) for preparing a medicament intended to treat cholera, Acquired Immune Deficiency Syndrome (AIDS), travel diarrhea and familial masculine precocious puberty.
- a subject of the invention is also new products of general formula (A) numbered 1 to 7 and described hereafter in the examples, namely:
- a subject of the invention is also said new products or their pharmaceutically acceptable salts as medicaments, as well as their use for preparing a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein.
- it relates to the use of said products for preparing medicaments intended to treat diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection, immunological functions, diabetes, obesity, and benign and malign proliferative diseases.
- the invention relates more particularly to the use of the compounds previously mentioned for preparing a medicament intended to treat cholera, Acquired Immune Deficiency Syndrome (AIDS), travel diarrhea and familial masculine precocious puberty.
- AIDS Acquired Immune Deficiency Syndrome
- compositions comprising a compound of the invention can be in the form of solids, for example powders, granules, tablets, gelatin capsules, liposomes or suppositories.
- the appropriate solid supports can be, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine and wax.
- compositions comprising a compound of the invention can also be presented in liquid form, for example, solutions, emulsions, suspensions or syrups.
- suitable liquid supports can be, for example, water, organic solvents such as glycerol or glycols, as well as their mixtures, in varying proportions, in water.
- the administration of a medicament according to the invention can be carried out by topical, oral, parenteral route, by injection (intramuscular, sub-cutaneous, intravenous, etc.), etc.
- the administration route will of course depend on the type of disease to be treated.
- the administration dose envisaged for a medicament according to the invention is comprised between 0.1 mg and 10 g depending on the type of pathology to be treated.
- L-phenylalanine (10.0 g; 60.6 mmol) is combined with PtO2 (430 mg) in acetic acid (60 ml) and the mixture is hydrogenated overnight under 20-50 psi H 2 .
- a 5% aqueous solution of HCl is added to the mixture in order to obtain a limpid solution and hydrogenation is continued until the consumption of hydrogen ceases.
- the catalyst is eliminated by filtration and the filtrate is concentrated under reduced pressure.
- the residue is taken up in methanol and water and the pH is adjusted to 4.4 by the addition of a 10% solution of NaOH.
- the product obtained is recovered by filtration and used without further purification.
- the keto-ester obtained is solubilized in xylenes (100 ml) and ammonium acetate (19.5 g; 0.25 mol) is added. The mixture is heated to reflux for approximately 3 hours with elimination of the excess AcONH 4 supernatant and of the water released by means of a Dean-Stark trap. The reaction mixture is concentrated under reduced pressure, taken up in AcOEt and washed with a saturated solution of NaHCO 3 (100 ml) and with a saturated solution of NaCl (100 ml). The AcOEt phase is dried over Na 2 SO 4 , filtered and concentrated under vacuum.
- the crude product obtained is purified by flash chromatography on silica gel with a CHCl 3 /MeOH mixture 98/2 as eluant.
- the fractions containing the pure product are combined and concentrated in order to produce the product (2.52 g; 40%) in the form of a slightly brown foam which is used in the following stage without additional purification.
- the crude intermediate of Stage 1.c is solubilized in acetic acid (50 ml) containing a 10% Pd on carbon catalyst (152 mg), then hydrogenated under a pressure of 50 psi of H 2 for 18 hours at ambient temperature.
- the catalyst is eliminated by filtration and the filtrate is heated at 70° C. for 2 hours.
- the mixture obtained is concentrated under reduced pressure, dissolved in CH 2 Cl 2 (100 ml) and washed with a saturated solution of NaHCO 3 (100 ml).
- the CH 2 Cl 2 layer is dried over Na 2 SO 4 , filtered and concentrated in order to produce a viscous oil which is used in the following stage without additional purification.
- the intermediate of Stage 1.f (3.54 g; 4.69 mmol) is solubilized in trifluoroacetic acid (TFA, 80 ml) containing triisopropylsilane (1.92 ml; 9.38 mmol) and the reaction mixture is agitated at ambient temperature under nitrogen for one hour.
- the reaction mixture is filtered and the filtrate is concentrated under reduced pressure.
- the residue is extracted by trituration with an aqueous solution of TFA at 0.1% (6 ⁇ 65 ml) and filtered.
- the crude product is purified by preparative HPLC on a C18 column using a gradient of 0 to 20% of CH 3 CN in an aqueous solution of TFA at 0.1% for 30 minutes.
- the pure fractions of the product are collected and lyophilized.
- the initial product is lyophilized twice from a dilute solution of HCl in order to produce the product in the form of its hydrochloride (740 mg; 32%).
- Compound 2 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 1, 2-bromoacetophenone replacing 2-bromo-2′-methylacetophenone in Stage b.
- Compound 3 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 1, Boc-(L)-Ser(Bzl)-OH replacing Cbz-(L)-cyclohexylalanine in Stage b and Stage d being replaced by a deprotection using TFA and iPr 3 SiH according to a method similar to reaction 1.g.
- the product is obtained in the form of a pair of diastereoisomers in a proportion of 2:3.
- Compound 4 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 3, Boc-(L)-Thr(Bzl)-OH replacing Boc-(L)-Ser(Bzl)-OH in Stage b.
- the keto-ester obtained is triturated with a 1:1 mixture of Et 2 O:hexanes (2 ⁇ 40 ml) then suspended in xylenes (100 ml).
- Ammonium acetate (17.5 g; 0.23 mol) is added and the mixture is heated at reflux for approximately one hour and 30 minutes with elimination of the excess AcONH 4 and of the water released by means of a Dean-Stark trap.
- the reaction medium is washed with a saturated solution of NaHCO 3 (50 ml), dried over Na 2 SO 4 , filtered and concentrated under vacuum in order to produce 6.66 g (98%) of desired product.
- Intermediate 5.k is prepared according to a method similar to that of Stage 1.e, except for the fact that a molar proportion of 6/9 of BH 3 relative to the substrate is used.
- diethylazodicarboxylate (166 ⁇ l; 1.05 mmol) is added dropwise over 10 minutes then the mixture is agitated again for 1 hour at ambient temperature.
- the solvents are eliminated under reduced pressure and the crude product is purified by flash chromatography on silica gel with an AcOEt:hexanes mixture 3:2 as eluant.
- the fractions containing the product are combined and concentrated under vacuum. After recrystallization from AcOEt and hexanes, the desired product is obtained in the form of a white solid (863 mg; 96%).
- Product 5 is prepared starting from intermediate 5.n according to a method similar to that of Stage 1.g.
- Stage 7.n is carried out according to a method similar to Stage 5.n.
- the crude product is used without further purification in the following stage.
- the stage 7.o is carried out according to a method similar to Stage 5.o.
- the MCF-7 cell lines (human pleural cells, breast cancer) were acquired from the American Tissue Culture Collection (Rockville, Md., USA).
- MCF-7 cells (2.10 4 cells/well) seeded in 24-well plates are cultured for 5 days in Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heating (Gibco-Brl, Cergy-Pontoise, France), 50000 units/l of penicillin and 50 mg/l streptomycin (Gibco-Brl, Cergy-Pontoise, France), and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France).
- Dulbecco's modified Eagle medium Gibco-Brl, Cergy-Pontoise, France
- the culture medium is replaced after two washes with a medium without a serum completed or uncompleted with the specified agents for a time indicated in the different figures.
- Agents activating the production of cyclic AMP are then added at 37° C.
- the reaction is stopped after 30 minutes by suppressing the medium and rapidly adding 100 ⁇ l of a 0.1N solution of HCl. These extracts are frozen at ⁇ 80° C. until they are used.
- the concentration of cAMP is measured using a commercial measurement kit (reference NEK033 from NEN, Les Ulis, France), following the manufacturer's instructions.
- the radioactivity is determined by a Gamma counter (Gamma Master-1277, LKB, Turku, Finland).
- the MCF-7 cells (3000 cells/well) are cultured in 96-well plates in 80 ⁇ l of Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heating (Gibco-Brl, Cergy-Pontoise, France), 50000 units/l of penicillin and 50 mg/l streptomycin (Gibco-Brl, Cergy-Pontoise, France), and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France) were seeded on a 96-well plate on day 0.
- Dulbecco's modified Eagle medium Gibco-Brl, Cergy-Pontoise, France
- the cells were treated on day 1 for 96 hours with increasing concentrations of up to 50 ⁇ M of each of the compounds to be tested. After this period, quantification of cell proliferation is determined by a colorimetric test, based on the cleavage of the WST1 tetrazolum salt by the mitochondrial dehydrogenases in the viable cells, leading to the formation of formazan (Boehringer Mannheim, Meylan, France). These tests are carried out in duplicate with 8 determinations per concentration tested. For each compound to be tested, the values included in the linear part of the sigmoid were retained for linear regression analysis and used to estimate the inhibitory concentration (IC 50 ).
- MCF7 cells (5.105 cells/well) are cultured in 6 wells in Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heat (Gibco-Brl, Cergy-Pontoise, France), a mixture of antibiotics: 50000 units/l of penicillin and 50 mg/l of streptomycin (Gibco-Brl, Cergy-Pontoise, France) and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France).
- the cells are incubated for 48 hours in medium containing no serum in order to return the cells to a state of rest.
- the cells are then treated for 1 hour either with compound I or with PD98059 (Calbiochem, France Biochem, Meudon, France), a specific inhibitor of MAP kinase activation.
- the cells are then stimulated (or not) for 5 minutes with 12.5 ng/ml of epidermal growth factor (EGF).
- EGF epidermal growth factor
- the reaction is stopped by two washes with PBS (Gibco-Brl, Cergy-Pontoise, France), at 4° C. containing neither calcium nor magnesium and by adding 150 ⁇ l of lysis buffer at 4° C.
- composition of which is the following: 10 mM of tris, 150 mM of NaCl, 2 mM of EGTA, 2 mM of dithiothreitol, 1 mM of PMSF, 2 mM of orthovanadate, 10 ⁇ g/ml of leupeptin and 10 ⁇ g/ml of aprotinin.
- Measurement of the proteins contained in the extracts is carried out by Bradford's method (Biorad reagents, Ivry-Sur-Seine, France). These extracts are frozen at ⁇ 80° C. until they are used.
- the activity of the MAP kinase is measured using a commercial measurement kit (reference RPN 84, Amersham Life Science, Les Ujis, France) following the manufacturer's instructions.
- the radioactivity is determined using a Packard scintillation counter (Tricarb 5000CA).
- vasoactive intestinal peptide was acquired from Bachem (Voisins le Bretonneux, France).
- the choleric toxin, forskolin, isoproterenol, prostaglandin E2 and PD 98059 were acquired from Calbiochem (France Biochem, Meudon, France).
- the compounds of formulae (I), (II), (III), (IV), (V), (VI) and (VII) were supplied by Biomeasure Inc. (Milford, Mass., USA). All these compounds were used following their manufacturers' recommendations.
- FIG. 1 shows that activation of the adenylate cyclase by the choleric toxin (200 ng/ml) or by forskolin (10 ⁇ M) leads to a very significant increase in the cyclic AMP level.
- Pretreatment of the cells for 30 minutes with 30 ⁇ M of comound (I) does not modify the production of cyclic AMP induced by the direct activator of the adenylate cyclase, forskolin.
- the production of cyclic AMP stimulated by the direct activator of the sub-unit, the choleric toxin is greatly inhibited by compound (I). This shows that the adenylate cyclase itself is not modified by compound (I) and that the latter prevents the formation of the heterotrimeric complex.
- FIG. 2 shows that treatment with VIP of MCF-7 human breast cancer cells increases the intracellular quantity of cyclic AMP in a concentration-dependent manner.
- a VIP concentration of 10 nM which offers a quasi-optimum production of cyclic AMP is used for the following tests. This concentration agrees with the data already published relating to the T47D human breast cancer cell line.
- FIG. 3 shows that a 30-minute pretreatment of the MCF-7 cells resulting from the in vitro cultures with the compound of formula (I) is sufficient to inhibit the accumulation of cyclic AMP cyclic stimulated by VIP in a concentration-dependent manner. An almost complete inhibition was obtained at a concentration of 100 ⁇ M of the compound of formula (I).
- FIG. 4 shows that a treatment for an hour with the compound of formula (I) is sufficient to modify the response to VIP. Treatments of a longer duration (8 hours and 24 hours) continue to inhibit the production of cyclic AMP but the main effect is obtained very rapidly.
- Compound (I) is also capable of inhibiting the formation of cyclic AMP induced by other agents which stimulate the receptors with seven transmembrane domains.
- the activity of the adenylate cyclase greatly increased by the prostaglandin E 2 is inhibited by a treatment for 30 minutes with compound (I). This suggests that treatment of the cells with compound (I) modifies the heterotrimeric form of the G proteins by disassociating the sub-unit of the ⁇ / ⁇ dimer.
- Inhibition of stimulation by VIP is not restricted to compounds of a structure analogous to that of the compound of formula (I). As shown in Table I, compounds (II), (III), (IV), (V), (VI) and (VII) tested in the same model are also capable of reducing the quantity of cyclic AMP induced by VIP.
- FIG. 6 shows that treatment of the cells for 1 hour with compound (I) doubles the basal activity of the MAP kinase. This suggests that by preventing the formation of the heterotrimeric complex, compound (I) releases the heterodimer—which itself remains linked to the membrane and activates the ras route.
- FIG. 7 shows that after stimulation of the MAP kinase by the growth factor EGF for 5 minutes, the activity of the enzyme is increased by approximately 7 times.
- Pretreatment of the cells for 1 hour either with compound (I) or with PD98059, a specific inhibitor of MAP kinase activation, halves the activity of the MAP kinase.
- Table II in fact shows that compounds (I), (II), (III) and (IV) are capable of inhibiting the in vitro proliferation of MCF7 human tumour cells. TABLE I Compound Inhibition at 30 ⁇ M (I) 86% (II) 71% (III) 59% (IV) 52% (V) 68% (VI) 52% (VII) 65% Effects of Compounds I, II, III and IV Incubated for 30 Minutes on the Production of Cyclic AMP Stimulated by VIP in MCF7 Cells.
- the results of the IC 50 are expressed in ⁇ M and represent the average of 2 experiments.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Zoology (AREA)
- Emergency Medicine (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Molecular Biology (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biotechnology (AREA)
- Reproductive Health (AREA)
- Child & Adolescent Psychology (AREA)
- Oncology (AREA)
- Psychiatry (AREA)
- Communicable Diseases (AREA)
Abstract
Description
- The present invention relates in particular to the use of derivatives of cysteine for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein. These diseases include in particular diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection, immunological functions, diabetes, obesity, and benign and malign proliferative diseases.
- The G proteins are in fact the structural association of three distinct sub-units called α, β, and γ, but operate as dissociable entities constituted by α sub-units on the one hand and β/γ dimers on the other hand.
- The G proteins participate in the transmission of signals outside the cell thanks to its interaction with receptors with seven transmembrane domains inside using different effectors including adenylate cyclase, phospholipase C or also the ionic channels. The adenylate cyclase enzyme generates cyclic AMP (cAMP) (cf. Gilman, A. G. Biosci. Rep. 15, 65-97 (1995)). Thus, it is known that, in order to activate the adenylate cyclase, it is necessary for the G proteins to be transitionally in a heterotrimeric form, in which form the monomer constituted by an α sub-unit is associated with the dimer constituted by the β and γ sub-units. It is only in this situation that the signal outside the cell can activate the α sub-unit of a G protein, which can, after disassociation, modulate the adenylate cyclase and modulate the production of cAMP.
- It is also known that the β/γ dimers can directly activate the effectors leading to the activation of kinases regulated by extracellular signals (ERKs) or MAP kinases. A direct link between the β/γ sub-units and the src or src like kinases has been demonstrated (cf. Gutkind, J. S. J. Biol. Chem. 273, 1839-1842 (1998)).
- Moreover, bacterial toxins such as Vibrio cholera and Bortella pertussis, peptides such as mastoparan and suramin have been presented as directly modulating the activity of the G proteins (cf. Freissmuth, M., Boehm, S., Beindl, W., et al. Mol. Pharmacol. 49, 602-611 (1996); Boehm, S., Huck, S., Motejlek, A., et al. Journal of Neurochemistry 66, 1019-1026 (1996); Cachero, T. G., Rigual, R., Rocher, A. & Gonzalez, C. Eur. J. Neurosci. 8, 2320-2327 (1996); Danilenko, M., Worland, P., Carlson, B., Sausville, E. A. & Sharoni, Y. Biochem. Biophys. Res. Commun. 196, 1296-1302 (1993); Beindl, W., Mitterauer, T., Hohenegger, M., Ijzerman, A. P., Nanoff, C. & Freissmuth, M. Mol. Pharmacol. 50, 415-423 (1996)).
- For example, the choleric toxin modifies the as sub-unit of the G protein by adding an ADP-ribose originating from the NAD to an arginine-specific acceptor site. This completely blocks the activity of the GTPase, provoking persistent stimulation of its next effector, adenylate cyclase and leading to overproduction of cAMP.
- The harmful effects of an abnormal cAMP level are also known and occur in particular at the level of the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection and immunological functions, diabetes and obesity.
-
- X represents R12 and Y represents R8, or X and Y complete a ring with 6 members, the X-Y set representing the —CH(R8)—CH(R9)-radical;
- R1 represents H, a lower alkyl or alkylthio radical;
- R2 and R3 represent independently H or a lower alkyl radical;
- R4 represents H2 or O;
- R5 represents H, or one of the lower alkyl, lower alkenyl, lower alkynyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising a lower alkyl radical, —O—R10, —S(O)mR10 (m representing 0, 1, or 2), —N(R10)(R11), —N—C(O)—R10, —NH—(SO2)—R10, —CO2—R10, C(O)—N(R10)(R11), and —(SO2)—N(R10)(R11);
- R6 and R7 represent independently H, a —C(O)—NH—CHR13—CO2R14 radical, or one of the lower alkyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising the OH, alkyl or lower alkoxy, N(R10)(R11), COOH, CON(R10)(R11), and halo radicals,
- or R6 and R7 form together an aryl radical or a heterocycle;
- R8 and R9 represent independently, H, or one of the lower alkyl, aryl, lower arylalkyl, heterocycle or lower alkyl heterocycle radicals, these radicals being optionally substituted by radicals chosen from the group comprising the OH, alkyl or lower alkoxy, N(R10)(R11), COOH, CON(R10)(R11) and halo radicals,
- or R8 and R9 together form an aryl radical or a heterocycle;
- R10 and R11 represent independently H, an aryl radical or a heterocycle, or an alkyl, arylalkyl or lower alkyl heterocycle radical;
- R12 represents NR9, S, or O;
- R13 represents a lower alkyl radical optionally substituted by a radical chosen from the lower alkyl, —OR10, S(O)mR10 (m representing 0, 1, or 2) and —N(R10)(R11) radicals;
- R14 represents H or a lower alkyl radical;
- or the compounds of general formula (B):
W1—Ar—W2 (B)
in which: - W1 represents a remainder originating from a cysteine in reduced or non reduced form;
- Ar represents a radical derived from an aminobenzoic acid, the aromatic ring of which is optionally substituted;
-
- Z1 represents a lower alkyl radical;
- Z2 and Z3 both represent H or Z2 and Z3 together form a chain having 2 to 4 elements chosen from the —C(O)—, —CH2—, —CH(NH2)— and —S-radicals, it being understood that two successive elements are not both —C(O)—;
- it being understood that the compounds of general formula (C) can also be presented in the form of dimers, when the Z2 radical represents a hydrogen atom which can be eliminated by oxidization;
- or also a pharmaceutically acceptable salt of a compound of general formula (A), (B) or (C);
- can be used to prepare medicaments intended to treat pathologies which result from the formation of the heterotrimeric G protein.
- By lower alkyl radical, is understood a linear or branched alkyl radical containing 1 to 6 carbon atoms, and in particular the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, neopentyl, isopentyl, hexyl, isohexyl radicals. By heterocycle radical is understood a radical constituted by one or more rings and including at least one heteroatom. By arylalkyl, alkyl heterocycle, alkylthio or lower alkoxy radical, is understood the radicals of which the alkyl radical has the meaning indicated previously.
- Preferably, the Ar radical included in formula (B) is optionally substituted by an alkyl radical comprising 1 to 6 carbon atoms or an aryl radical, these alkyl or aryl radicals themselves being optionally substituted preferentially by an alkoxy radical having 1 to 4 carbon atoms, fluoro, chloro, bromo. The aryl radical preferably a phenyl can itself be substituted by an alkyl radical.
- Preferably also, the compounds of general formula (B) are such that Ar represents a radical derived from an aminobenzoic acid the aromatic ring of which is substituted by a phenyl radical and W2 represents an aliphatic amino acid.
- In particular, the following compounds can be used to prepare medicaments intended to treat pathologies which result from the formation of the heterotrimeric G protein:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-8-butyl-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(1-methylpropyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 1-[2(R)-amino-3-mercaptopropyl]-2(S)-n-butyl-4-(1-naphthoyl)piperazine;
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-2-(methoxyphenyl)-8-(1-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine]disulphide;
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide;
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl) disulphide;
- the compound of formula:
- the compound of formula:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-phenyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylmethoxy)methyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(1-phenylmethoxy)ethyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methyoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydro-imidazo[1.2a]pyrazine, or its dimeric form;
- and 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylsulphonylethyl)-5,6,7,8-tetrahydro-imidazo[1.2a]pyrazine;
or also a pharmaceutically acceptable salt of one of these compounds. - One of the following compounds is preferably used for the invention:
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide (I);
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl) disulphide (II);
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine (III);
- the compound of formula:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-butyl-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine (V);
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-2-(methoxyphenyl)-8-(1-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine] disulphide (VI);
- the compound of formula:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-phenyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(1-methylpropyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 1-[2(R)-amino-3-mercaptopropyl]-2(S)-n-butyl-4-(1-naphthoyl)piperazine.
or a pharmaceutically acceptable salt of one of the latter. - More preferentially, one of the following compounds is used for the invention:
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide (I);
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl) disulphide (II);
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine (III);
- 7-(2-amino-1-oxo-3-thiopropyl)-8-butyl-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo(1.2a]pyrazine (V);
- the compound of formula:
or a pharmaceutically acceptable salt of one of the latter. - Finally, the following compounds are more particularly preferred:
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide (I);
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl) disulphide (II);
or a pharmaceutically acceptable salt of one of the latter. - The invention therefore relates firstly to the use of the compounds of general formula (A), (B) or (C) as described previously for preparing a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein. In particular, it relates to the use of said inhibitors for preparing medicaments intended to treat diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, viral infection, immunological functions, diabetes and obesity.
- More particularly, the invention relates to the use of compounds of general formula (A), (B) or (C) for preparing a medicament intended to treat cholera, Acquired Immune Deficiency Syndrome (AIDS), travel diarrhea and familial masculine precocious puberty.
- A subject of the invention is also new products of general formula (A) numbered 1 to 7 and described hereafter in the examples, namely:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-phenyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylmethoxy)methyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(1-phenylmethoxy)ethyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methyoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydro-imidazo[1.2a]pyrazine, or its dimeric form;
- and 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylsulphonylethyl)-5,6,7,8-tetrahydro-imidazo[1.2a]pyrazine.
- A subject of the invention is also said new products or their pharmaceutically acceptable salts as medicaments, as well as their use for preparing a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein. In particular, it relates to the use of said products for preparing medicaments intended to treat diseases linked to the following biological functions or disorders: smell, taste, perception of light, neurotransmission, neurodegeneration, endocrine and exocrine gland functions, autocrine and paracrine regulation, arterial tension, embryogenesis, benign cell proliferation, oncogenesis, viral infection, immunological functions, diabetes, obesity, and benign and malign proliferative diseases.
- The products particularly preferred for use according to the invention are therefore the following:
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide;
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl) disulphide;
- the compound of formula:
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-phenyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylmethoxy)methyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(1-phenylmethoxy)ethyl-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
- 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methyoxyphenyl)-8-(phenoxyethyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine, or its dimeric form;
- and 7-(2-amino-1-oxo-3-thiopropyl)-2-(2-methoxyphenyl)-8-(phenylsulphonylethyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine;
or a pharmaceutically acceptable salt of one of the latter. - Similarly, the invention relates more particularly to the use of the compounds previously mentioned for preparing a medicament intended to treat cholera, Acquired Immune Deficiency Syndrome (AIDS), travel diarrhea and familial masculine precocious puberty.
- The compounds of general formula (A) and their preparation are described in the Patent Application WO 97/30053 or in the examples hereafter. The compounds of general formula (B) and their preparation are described in the Patent Application WO 96/21456. Finally, the preparation of the compounds of general formula (C) is described in the Patent Application PCT WO 95/00497, except for the compound of formula (VII) for which the synthesis is described in the experimental part of this Application.
- The pharmaceutical compositions comprising a compound of the invention can be in the form of solids, for example powders, granules, tablets, gelatin capsules, liposomes or suppositories. The appropriate solid supports can be, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine and wax.
- The pharmaceutical compositions comprising a compound of the invention can also be presented in liquid form, for example, solutions, emulsions, suspensions or syrups. The appropriate liquid supports can be, for example, water, organic solvents such as glycerol or glycols, as well as their mixtures, in varying proportions, in water.
- The administration of a medicament according to the invention can be carried out by topical, oral, parenteral route, by injection (intramuscular, sub-cutaneous, intravenous, etc.), etc. The administration route will of course depend on the type of disease to be treated.
- The administration dose envisaged for a medicament according to the invention is comprised between 0.1 mg and 10 g depending on the type of pathology to be treated.
- Unless they are defined in another manner, all the technical and scientific terms used here have the same meaning as that usually understood by an ordinary specialist in the field to which this invention belongs. Similarly, all the publications, patent applications, all the patents and all other references mentioned here are incorporated by way of reference.
-
- L-phenylalanine (10.0 g; 60.6 mmol) is combined with PtO2 (430 mg) in acetic acid (60 ml) and the mixture is hydrogenated overnight under 20-50 psi H2. A 5% aqueous solution of HCl is added to the mixture in order to obtain a limpid solution and hydrogenation is continued until the consumption of hydrogen ceases. The catalyst is eliminated by filtration and the filtrate is concentrated under reduced pressure. The residue is taken up in methanol and water and the pH is adjusted to 4.4 by the addition of a 10% solution of NaOH. The product obtained is recovered by filtration and used without further purification.
- L-cyclohexylalanine (60.6 mmol) is suspended in water (100 ml), K2CO3 (8.36 g; 60.6 mmol) is added, then a solution of N-(benzyloxycarbonyloxy)succinimide (15.1 g; 60.6 mmol) in CH3CN (150 ml) and the mixture obtained is agitated vigorously for 45 minutes. The mixture is concentrated in order to produce a volume of approximately 100 ml and washed with Et2O (100 ml), then acidified with concentrated HCl and extracted with AcOEt (2×50 ml). The combined AcOEt phases are dried over Na2SO4, filtered and concentrated in order to produce a clear oil (17.27 g; 93%). NMR 1H (DMSO-d6): 7.5-7.6 (1H, d); 7.2-7.5 (5H, m); 5.0-5.1 (2H, s); 3.9-4.1 (1H, m); 0.7-1.8 (13H, m).
- Cbz-(L)-cyclohexylalanine (4.58 g; 15.0 mmol) and Cs2CO3 (2.44 g; 7.50 mmol) are placed in a 2:1 mixture of DMF:H2O (75 ml). The mixture obtained is agitated until it becomes homogeneous. The solvents are eliminated under reduced pressure, the residue is dissolved in DMF (60 ml) and 2-bromo-2′-methylacetophenone (3.20 g; 15.0 mmol) in DMF (30 ml) is added. The mixture is agitated overnight at ambient temperature then filtered and concentrated under reduced pressure. The keto-ester obtained is solubilized in xylenes (100 ml) and ammonium acetate (19.5 g; 0.25 mol) is added. The mixture is heated to reflux for approximately 3 hours with elimination of the excess AcONH4 supernatant and of the water released by means of a Dean-Stark trap. The reaction mixture is concentrated under reduced pressure, taken up in AcOEt and washed with a saturated solution of NaHCO3 (100 ml) and with a saturated solution of NaCl (100 ml). The AcOEt phase is dried over Na2SO4, filtered and concentrated under vacuum. The crude product obtained is purified by flash chromatography on silica gel with a CHCl3/MeOH mixture 98/2 as eluant. The fractions containing the pure product are combined and concentrated in order to produce the product (2.52 g; 40%) in the form of a slightly brown foam which is used in the following stage without additional purification.
- Intermediate 1.b (2.52 g; 6.0 mmol) is solubilized in DMF (20 ml) and treated with K2CO3 (1.67 g, 12.1 mmol) and ethyl bromoacetate (1.34 ml; 12.5 mmol) is added. The mixture obtained is heated at 45° C. for one and a half hours. The mixture is diluted with ether (50 ml) and washed with a saturated solution of NaHCO3 solution (50 ml) then with a saturated solution of NaCl (50 ml). The ethereal layer is dried over Na2SO4, filtered and concentrated in order to produce an oil which is used in the following stage without additional purification.
- Mass spectrum: 504.3 MH+.
- The crude intermediate of Stage 1.c is solubilized in acetic acid (50 ml) containing a 10% Pd on carbon catalyst (152 mg), then hydrogenated under a pressure of 50 psi of H2 for 18 hours at ambient temperature. The catalyst is eliminated by filtration and the filtrate is heated at 70° C. for 2 hours. The mixture obtained is concentrated under reduced pressure, dissolved in CH2Cl2 (100 ml) and washed with a saturated solution of NaHCO3 (100 ml). The CH2Cl2 layer is dried over Na2SO4, filtered and concentrated in order to produce a viscous oil which is used in the following stage without additional purification.
- Mass spectrum: 324.3 MH+.
- The crude intermediate of Stage 1.c is solubilized in THF (25 ml) and treated at ambient temperature with a 1M solution of BH3 in THF (25 ml) for half an hour then taken to reflux for 1 hour. The mixture is cooled down using an ice bath and 4N HCl (40 ml) is added dropwise at 0° C. The mixture is taken to ambient temperature then taken to reflux for 1 hour. The reaction medium is then cooled down, filtered and concentrated under reduced pressure. The residue is treated with a saturated solution of NaHCO3 (50 ml) and extracted with CH2Cl2 (3×50 ml). The CH2Cl2 phases are dried over Na2SO4, filtered and concentrated in order to produce a slightly brown oil (1.63 g; yield of 87% relative to Stages 1.c, 1.d and 1.e).
- Mass-spectrum: 310.3 MH+.
- Diisopropylcarbodiimide (908 μl; 5.80 mmol) and BocCys(trt)-OH (5.37 g; 11.6 mmol) are solubilized in CH2Cl2 (25 ml), the mixture obtained being agitated for 45 minutes. 8-(cyclohexylmethyl)-2-(2-methylphenyl)-4,5,6,7-tetrahydro-imidazo[1,2-a]pyrazine (1.63 g; 5.27 mmol) is then added. The reaction mixture is agitated overnight at ambient temperature. The solvent is eliminated under reduced pressure and the product obtained is purified by flash chromatography on silica gel with a CH2Cl2/MeOH mixture 98/2 as eluant. The pure fractions are concentrated in order to produce a viscous oil which is which is used in the following stage without additional purification.
- Mass spectrum: 755.6 MH+.
- The intermediate of Stage 1.f (3.54 g; 4.69 mmol) is solubilized in trifluoroacetic acid (TFA, 80 ml) containing triisopropylsilane (1.92 ml; 9.38 mmol) and the reaction mixture is agitated at ambient temperature under nitrogen for one hour. The reaction mixture is filtered and the filtrate is concentrated under reduced pressure. The residue is extracted by trituration with an aqueous solution of TFA at 0.1% (6×65 ml) and filtered. The crude product is purified by preparative HPLC on a C18 column using a gradient of 0 to 20% of CH3CN in an aqueous solution of TFA at 0.1% for 30 minutes. The pure fractions of the product are collected and lyophilized. The initial product is lyophilized twice from a dilute solution of HCl in order to produce the product in the form of its hydrochloride (740 mg; 32%).
- Mass spectrum: 413.2 MH+. NMR 1H (DMSO-d6): 8.5-9.0 (3H, d, broad); 7.8-8.0 (1H, s); 7.5-7.7 (1H, d); 7.2-7.5 (3H, m); 5.8-6.1 (1H, m); 4.65-4.8 (1H, s); 4.5-4.7 (1H, d); 4.1-4.4 (2H, m); 3.8-4.0 (1H, m); 3.2-3.7 (H2O); 2.8-3.1 (2H, m); 2.35-2.5 (3H, s); 2.0-2.2 (1H, m); 1.8-2.05 (2H, m); 1.25-1.4 (4H, broad s); 1.3-0.9 (6H, m).
- Compound 2 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 1, 2-bromoacetophenone replacing 2-bromo-2′-methylacetophenone in Stage b.
- Mass spectrum: 399.2 MH+. NMR 1H (DMSO-d6): 8.5-8.9 (3H, broad d); 8.0-8.2 (1H, s); 7.8-8.0 (2H, d); 7.45-7.56 (2H, t); 7.35-7.5 (1H, t); 5.9-6.05 (1H, broad s); 4.65-4.8 (1H, s); 4.5-4.65 (1H, d); 4.1-4.35 (2H, m); 3.8-4.0 (1H, m); 3.2-3.8 (H2O); 3.25-3.4 (1H, t); 2.8-3.05 (2H, m); 2.05-2.2 (1H, d); 1.85-2.05 (2H, t); 1.55-1.75 (4H, broad s); 1.15-1.3 (1H, broad s); 1.2-0.9 (5H, m).
-
Compound 3 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 1, Boc-(L)-Ser(Bzl)-OH replacing Cbz-(L)-cyclohexylalanine in Stage b and Stage d being replaced by a deprotection using TFA and iPr3SiH according to a method similar to reaction 1.g. The product is obtained in the form of a pair of diastereoisomers in a proportion of 2:3. - Mass spectrum: 453.2 MH+.
- The retention times for the diastereoisomers are 6.58 and 7.07 minutes respectively in the following HPLC system:
Eluant: 30-50% CH3CN/0.1% TFA Duration of elution: 24 minutes Detection: 254 nm Column: Vydac protein and C18 peptide - Compound 4 is prepared according to diagram 1, Stages b to g, according to a method similar to that of Example 3, Boc-(L)-Thr(Bzl)-OH replacing Boc-(L)-Ser(Bzl)-OH in Stage b.
- Mass spectrum: 467.3 MH+. NMR 1H (DMSO-d6): 8.5-8.9 (3H, d, broad); 8.0-8.1 (1H, s); 7.95-8.1 (2H, d); 7.4-7.5 (1H, t); 7.15-7.3 (1H, d); 7.0-7.2 (3H, m); 6.9-7.05 (2H, m); 5.85-5.95 (1H, d); 4.75-4.85 (1H, broad s); 4.65-4.8 (1H, broad s); 4.35-4.65 (3H, m); 4.1-4.25 (2H, q); 3.9-4.0 (3H, s); 2.8-3.1 (2H, m); 1.2-1.4 (3H, d).
-
- Cbz-(L)-Asp(Obzl)-OH (5.00 g; 14.0 mmol) and Cs2CO3 (2.28 g; 7.00 mmol) are mixed in a 1:1 mixture of DMF:H2O (75 ml). The mixture obtained is agitated until it becomes homogenous. The solvents are eliminated under reduced pressure, the residue is dissolved in DMF (60 ml) and 2-bromo-2′-methoxyacetophenone (3.21 g; 14.0 mmol) in DMF (30 ml) is added. The mixture obtained is agitated for half an hour at ambient temperature then filtered and concentrated under reduced pressure. The keto-ester obtained is triturated with a 1:1 mixture of Et2O:hexanes (2×40 ml) then suspended in xylenes (100 ml). Ammonium acetate (17.5 g; 0.23 mol) is added and the mixture is heated at reflux for approximately one hour and 30 minutes with elimination of the excess AcONH4 and of the water released by means of a Dean-Stark trap. The reaction medium is washed with a saturated solution of NaHCO3 (50 ml), dried over Na2SO4, filtered and concentrated under vacuum in order to produce 6.66 g (98%) of desired product.
- Mass spectrum: 486.3 (MH+).
- Intermediate 5.i is prepared according to a method similar to that of Stage 1.c.
- Mass spectrum: 572.3 MH+.
- Intermediate 5.j is prepared according to a method similar to that of Stage 1.d.
- Mass spectrum: 302.2 MH+. NMR 1H (DMSO-d6): 8.35-8.5 (1H, d, broad); 8.0-8.1 (1H, dd); 7.45-7.55 (1H, s); 7.15-7.25 (1H, m); 7.0-7.1 (1H, m); 6.9-7.0 (1H, m); 4.85-5.0 (1H, broad s); 4.55-4.75 (2H, q); 3.85-3.95 (3H, s); 2.8-2.95 (2H, d).
- Intermediate 5.k is prepared according to a method similar to that of Stage 1.e, except for the fact that a molar proportion of 6/9 of BH3 relative to the substrate is used.
- Mass spectrum: 274.3 MH+.
- Intermediate 5.k (1.36 g; 5.0 mmol) is suspended in H2O (5 ml) and a mixture of di-t-butyldicarbonate (1.20 g; 5.5 mmol) in p-dioxane (10 ml) is added. The reaction medium is agitated vigorously and maintained at pH 8.0-8.4 by the dropwise addition of a 2.5N solution of NaOH until the reaction finishes (monitoring of the reaction by TLC on silica gel, eluant AcOEt:hexanes 3:2). The crude product is purified by flash chromatography on silica gel with an AcOEt:hexanes mixture 3:2 as eluant (Biotage system, pre-filled columns 4×15 cm). The fractions containing the product are combined and concentrated under vacuum in order to produce a white foam (1.60 g; 86%).
- Mass spectrum: 374.3 MH+. NMR 1H (DMSO-d6): 7.95-8.05 (1H, d,d); 7.45-7.55 (1H, s); 7.10-7.25 (1H, m); 7.0-7.1 (1H, m); 6.9-7.05 (1H, m); 5.05-5.15 (1H, t); 4.25-4.35 (1H, t); 4.05-4.2 (1H, broad s); 4.0-4.1 (1H m); 3.9-4.0 (3H, s); 3.9-4.0 (1H, m); 3.25-3.35 (2H, m); 1.9-2.1 (2H, m); 1.15-1.25 (9H, s).
- Intermediate 5.1 (746 mg; 2.00 mmol) is dissolved in THF (10 ml) containing triphenylphosphine (550 mg; 2.1 mmol) and phenol (198 mg; 2.1 mmol). The mixture is cooled down to 0° C. under nitrogen and diethylazodicarboxylate (330 μl; 2.1 mmol) is added dropwise over 10 minutes. The reaction mixture is then agitated for 2 hours at ambient temperature. The reaction medium is then cooled down again to 0° C. and triphenylphosphine (275 mg; 1.05 mmol) and phenol (99 mg; 1.05 mmol) are added. Then diethylazodicarboxylate (166 μl; 1.05 mmol) is added dropwise over 10 minutes then the mixture is agitated again for 1 hour at ambient temperature. The solvents are eliminated under reduced pressure and the crude product is purified by flash chromatography on silica gel with an AcOEt:hexanes mixture 3:2 as eluant. The fractions containing the product are combined and concentrated under vacuum. After recrystallization from AcOEt and hexanes, the desired product is obtained in the form of a white solid (863 mg; 96%).
- Mass spectrum: 450.4 MH+.
- Intermediate 5.m (850 mg; 1.89 mmol) is treated with a mixture of TFA (10 ml) containing iPr3SiH (387 μl, 1.89 mmol) at ambient temperature for 20 min. The solvents are eliminated under reduced pressure and the crude product is divided between AcOEt (15 ml) and a saturated solution of NaHCO3 (15 ml). The AcOEt phase is dried over Na2SO4, filtered and concentrated under reduced pressure. The deprotected product is coupled to Boc-(L)-Cys(Trt)-OH according to a method similar to that of Stage 1.f (1.26 g; 84%).
-
Product 5 is prepared starting from intermediate 5.n according to a method similar to that of Stage 1.g. - Mass spectrum: 274.3 MH+. NMR 1H (DMSO-d6 at 90° C.): 8.5-9.2 (3H, s, broad); 7.95-8.1 (1H, d); 7.85-8.0 (1H, s); 7.35-7.5 (1H, m); 7.15-7.35 (3H, m); 7.0-7.15 (1H, t); 6.85-7.0 (3H, m); 5.9-6.1 (1H, s, broad); 4.5-4.8 (2H, m, broad); 4.15-4.45 (3H, m, broad); 3.9-4.0 (3H, s); 3.75-4.0 (1H, m, broad); 2.8-3.05 (2H, m, broad); 2.55-2.75 (2H, m, broad).
- Compound 5.o (467 mg; 0.687 mmol) is solubilized in H2O (25 ml) and the pH of the solution is adjusted to 7.2 by adding a dilute aqueous solution of NH4OH. Acetonitrile is added in order to produce a limpid solution and the mixture is agitated at ambient temperature overnight. The crude product is purified by preparative HPLC on a C18 column using a gradient of 15 to 40% CH3CN in TFA at 0.1% over a period of 50 minutes. The pure fractions of product are collected and lyophilized. The initial product is lyophilized twice from a dilute solution of HCl in order to produce the product in the form of its hydrochloride (161 mg; 45%).
- Mass spectrum: 903.5 MH+. NMR 1H (DMSO-d6 at 90° C.): 8.7-9.3 (3H, broad s); 7.95-8.1 (1H, d); 7.85-8.0 (1H, s); 7.3-7.5 (1H, t); 7.1-7.3 (3H, m); 7.0-7.15 (1H, t); 6.8-7.0 (3H, m); 5.85-6.1 (1H, broad s); 4.7-4.9 (1H, broad s); 4.45-4.7 (1H, broad m); 4.1-4.5 (4H, broad m); 3.85-4.0 (4H, s); 3.3-3.5 (2H, broad m); 2.5-2.8 (2H, broad m).
-
- Intermediate 5.1 (1.23 g; 3.30 mmol), tri-n-butylphosphine (1.64 ml; 6.60 mmol) and phenyldisulphide (1.44 g; 6.60 mmol) are mixed in THF (10 ml). The mixture is agitated at ambient temperature under argon for 4 hours. The solvents are eliminated under reduced pressure and the crude product is purified by flash chromatography on silica gel with an AcOEt:hexanes mixture 1:1 as eluant. The fractions containing the product are combined and concentrated under vacuum in order to produce the product in the form of a white foam (1.43 g; 93%).
- Mass spectrum: 466.3 MH+.
- Intermediate 7.p (650 mg; 1.40 mmol) is dissolved in CH2Cl2 (10 ml) and 3-chloroperoxybenzoic acid (483 mg; 2.80 mmol) is added in several portions over a period of 10 minutes. The mixture is poured onto a silica column and eluted with a hexanes:AcOEt mixture 7:3, then a hexanes:AcOEt mixture 1:1 in order to produce the pure product (220 mg; 32%).
- Mass spectrum: 498.3 MH+. NMR 1H (DMSO-d6 at 30° C.): 7.9-8.0 (3H, m); 7.7-7.85 (1H, m); 7.6-7.75 (2H, m); 7.45-7.55 (1H,s); 7.15-7.25 (1H, m); 6.9-7.1 (2H, m); 5.1-5.25 (1H, t); 4.1-4.3 (1H, broad d); 4.0-4.15 (1H, m); 3.8-4.0 (1H, m); 3.85-3.95 (3H, s); 3.6-3.8 (1H, m); 3.4-3.6 (1H, m); 3.2-3.4 (H2O plus a blurred signal); 1.9-2.3 (2H,
- Stage 7.n is carried out according to a method similar to Stage 5.n. The crude product is used without further purification in the following stage.
- The stage 7.o is carried out according to a method similar to Stage 5.o.
- Mass spectrum: 501.3 MH+.
-
- In order to illustrate the usefulness of the invention, there follows a study on the effect of the treatment of a human MCF-7 cell line with the following compounds:
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine disulphide, designated in this part as compound (I);
- bis-1,1′-7-(2-amino-1-oxo-3-thiopropyl-(2-(1-naphthyl)-8-(2-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazin-7-yl), designated in this part as compound (II);
- 7-(2-amino-1-oxo-3-thiopropyl)-8-(cyclohexylmethyl)-2-(2-methylphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine, designated in this part as compound (III);
- the compound of formula:
designated in this part as compound (IV); - 7-(2-amino-1-oxo-3-thiopropyl)-8-butyl-2-(2-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine, designated in this part as compound (V);
- bis-1,1′-[7-(2-amino-1-oxo-3-thiopropyl)-2-(methoxyphenyl)-8-(1-methylpropyl)-5,6,7,8-tetrahydroimidazo[1.2a]pyrazine], designated in this part as compound (VI);
- the compound of formula:
designated in this part as compound (VII);
Procedures - Cell Line
- The MCF-7 cell lines (human pleural cells, breast cancer) were acquired from the American Tissue Culture Collection (Rockville, Md., USA).
- Measurement of the intracellular quantity of cyclic AMP for the MCF-7 cells
- MCF-7 cells (2.104 cells/well) seeded in 24-well plates are cultured for 5 days in Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heating (Gibco-Brl, Cergy-Pontoise, France), 50000 units/l of penicillin and 50 mg/l streptomycin (Gibco-Brl, Cergy-Pontoise, France), and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France). The culture medium is replaced after two washes with a medium without a serum completed or uncompleted with the specified agents for a time indicated in the different figures. Agents activating the production of cyclic AMP are then added at 37° C. The reaction is stopped after 30 minutes by suppressing the medium and rapidly adding 100 μl of a 0.1N solution of HCl. These extracts are frozen at −80° C. until they are used. The concentration of cAMP is measured using a commercial measurement kit (reference NEK033 from NEN, Les Ulis, France), following the manufacturer's instructions. The radioactivity is determined by a Gamma counter (Gamma Master-1277, LKB, Turku, Finland).
- Measurement of in Vitro Cell Proliferation
- The MCF-7 cells (3000 cells/well) are cultured in 96-well plates in 80 μl of Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heating (Gibco-Brl, Cergy-Pontoise, France), 50000 units/l of penicillin and 50 mg/l streptomycin (Gibco-Brl, Cergy-Pontoise, France), and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France) were seeded on a 96-well plate on
day 0. The cells were treated onday 1 for 96 hours with increasing concentrations of up to 50 μM of each of the compounds to be tested. After this period, quantification of cell proliferation is determined by a colorimetric test, based on the cleavage of the WST1 tetrazolum salt by the mitochondrial dehydrogenases in the viable cells, leading to the formation of formazan (Boehringer Mannheim, Meylan, France). These tests are carried out in duplicate with 8 determinations per concentration tested. For each compound to be tested, the values included in the linear part of the sigmoid were retained for linear regression analysis and used to estimate the inhibitory concentration (IC50). - Measurement of the MAP Kinase Activity
- MCF7 cells (5.105 cells/well) are cultured in 6 wells in Dulbecco's modified Eagle medium (Gibco-Brl, Cergy-Pontoise, France) completed with 10% of foetal calf serum inactivated by heat (Gibco-Brl, Cergy-Pontoise, France), a mixture of antibiotics: 50000 units/l of penicillin and 50 mg/l of streptomycin (Gibco-Brl, Cergy-Pontoise, France) and 2 mM of glutamin (Gibco-Brl, Cergy-Pontoise, France). After 24 hours of culture, the cells are incubated for 48 hours in medium containing no serum in order to return the cells to a state of rest. The cells are then treated for 1 hour either with compound I or with PD98059 (Calbiochem, France Biochem, Meudon, France), a specific inhibitor of MAP kinase activation. The cells are then stimulated (or not) for 5 minutes with 12.5 ng/ml of epidermal growth factor (EGF). The reaction is stopped by two washes with PBS (Gibco-Brl, Cergy-Pontoise, France), at 4° C. containing neither calcium nor magnesium and by adding 150 μl of lysis buffer at 4° C. the composition of which is the following: 10 mM of tris, 150 mM of NaCl, 2 mM of EGTA, 2 mM of dithiothreitol, 1 mM of PMSF, 2 mM of orthovanadate, 10 μg/ml of leupeptin and 10 μg/ml of aprotinin. Measurement of the proteins contained in the extracts is carried out by Bradford's method (Biorad reagents, Ivry-Sur-Seine, France). These extracts are frozen at −80° C. until they are used. The activity of the MAP kinase is measured using a commercial measurement kit (reference RPN 84, Amersham Life Science, Les Ujis, France) following the manufacturer's instructions. The radioactivity is determined using a Packard scintillation counter (Tricarb 5000CA).
- Equipment
- The vasoactive intestinal peptide (VIP) was acquired from Bachem (Voisins le Bretonneux, France). The choleric toxin, forskolin, isoproterenol, prostaglandin E2 and
PD 98059 were acquired from Calbiochem (France Biochem, Meudon, France). The compounds of formulae (I), (II), (III), (IV), (V), (VI) and (VII) were supplied by Biomeasure Inc. (Milford, Mass., USA). All these compounds were used following their manufacturers' recommendations. - Results
-
FIG. 1 shows that activation of the adenylate cyclase by the choleric toxin (200 ng/ml) or by forskolin (10 μM) leads to a very significant increase in the cyclic AMP level. Pretreatment of the cells for 30 minutes with 30 μM of comound (I) does not modify the production of cyclic AMP induced by the direct activator of the adenylate cyclase, forskolin. On the other hand, the production of cyclic AMP stimulated by the direct activator of the sub-unit, the choleric toxin, is greatly inhibited by compound (I). This shows that the adenylate cyclase itself is not modified by compound (I) and that the latter prevents the formation of the heterotrimeric complex. - VIP has been presented as an extra-cellular ligand of a receptor coupled with the G protein which stimulates the synthesis of cyclic AMP in human breast cancer cells.
FIG. 2 shows that treatment with VIP of MCF-7 human breast cancer cells increases the intracellular quantity of cyclic AMP in a concentration-dependent manner. A VIP concentration of 10 nM which offers a quasi-optimum production of cyclic AMP is used for the following tests. This concentration agrees with the data already published relating to the T47D human breast cancer cell line. -
FIG. 3 shows that a 30-minute pretreatment of the MCF-7 cells resulting from the in vitro cultures with the compound of formula (I) is sufficient to inhibit the accumulation of cyclic AMP cyclic stimulated by VIP in a concentration-dependent manner. An almost complete inhibition was obtained at a concentration of 100 μM of the compound of formula (I). These results show that a treatment with compound (I) is sufficient to block the transduction of the signal the route of which uses the heterotrimeric G proteins as mediators. -
FIG. 4 shows that a treatment for an hour with the compound of formula (I) is sufficient to modify the response to VIP. Treatments of a longer duration (8 hours and 24 hours) continue to inhibit the production of cyclic AMP but the main effect is obtained very rapidly. - Compound (I) is also capable of inhibiting the formation of cyclic AMP induced by other agents which stimulate the receptors with seven transmembrane domains. In MCF7 cells, for example, the activity of the adenylate cyclase greatly increased by the prostaglandin E2 is inhibited by a treatment for 30 minutes with compound (I). This suggests that treatment of the cells with compound (I) modifies the heterotrimeric form of the G proteins by disassociating the sub-unit of the β/γ dimer.
- Inhibition of stimulation by VIP is not restricted to compounds of a structure analogous to that of the compound of formula (I). As shown in Table I, compounds (II), (III), (IV), (V), (VI) and (VII) tested in the same model are also capable of reducing the quantity of cyclic AMP induced by VIP.
- All these results suggest that the compounds tested modulate the activity of the adenylate cyclase by modifying the heterotrimeric form of the G proteins. Now, it is known that the β/γ dimers can directly activate effectors leading to the activation of kinases regulated by extracellular signals (ERK's) or MAP kinases.
-
FIG. 6 shows that treatment of the cells for 1 hour with compound (I) doubles the basal activity of the MAP kinase. This suggests that by preventing the formation of the heterotrimeric complex, compound (I) releases the heterodimer—which itself remains linked to the membrane and activates the ras route. On the other hand,FIG. 7 shows that after stimulation of the MAP kinase by the growth factor EGF for 5 minutes, the activity of the enzyme is increased by approximately 7 times. Pretreatment of the cells for 1 hour either with compound (I) or with PD98059, a specific inhibitor of MAP kinase activation, halves the activity of the MAP kinase. These results suggest that compound (I) stimulates the basal state of the ras route and inhibits this same route if it is stimulated, thus explainining its anti-proliferative effect. - Table II in fact shows that compounds (I), (II), (III) and (IV) are capable of inhibiting the in vitro proliferation of MCF7 human tumour cells.
TABLE I Compound Inhibition at 30 μM (I) 86% (II) 71% (III) 59% (IV) 52% (V) 68% (VI) 52% (VII) 65%
Effects of Compounds I, II, III and IV Incubated for 30 Minutes on the Production of Cyclic AMP Stimulated by VIP in MCF7 Cells. - The cells are incubated for 30 minutes in the presence or not of compounds I, II, III and IV (30 μM) which are then stimulated by 10−8 M of VIP. The quantification of cyclic AMP is determined by radioimmunoassay. The data represents the average ±MSD (n=5 for the control and n=1 for the different compounds ).
TABLE II Compound tested IC50 (μM) compound I 9.4 compound II 15.0 compound III 16.1 compound IV 34.6
Inhibition of the in Vitro Growth of MCF7 Cells by Compounds I, II, III and IV. - The results of the IC50 are expressed in μM and represent the average of 2 experiments.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/222,601 US20060035899A1 (en) | 1998-07-08 | 2005-09-09 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9808731A FR2780974B1 (en) | 1998-07-08 | 1998-07-08 | USE OF IMIDAZOPYRAZINE DERIVATIVES FOR THE PREPARATION OF A MEDICAMENT FOR TREATING CONDITIONS RESULTING FROM THE FORMATION OF HETEROTRIMETER G PROTEIN |
FR98/08731 | 1998-07-08 | ||
PCT/FR1999/001609 WO2000002881A2 (en) | 1998-07-08 | 1999-07-05 | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric g protein |
US09/743,208 US6544995B1 (en) | 1998-07-08 | 1999-07-05 | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric G protein |
US10/356,862 US7034025B2 (en) | 1998-07-08 | 2003-02-03 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
US11/222,601 US20060035899A1 (en) | 1998-07-08 | 2005-09-09 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/356,862 Division US7034025B2 (en) | 1998-07-08 | 2003-02-03 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060035899A1 true US20060035899A1 (en) | 2006-02-16 |
Family
ID=9528405
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/743,208 Expired - Fee Related US6544995B1 (en) | 1998-07-08 | 1999-07-05 | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric G protein |
US10/356,862 Expired - Fee Related US7034025B2 (en) | 1998-07-08 | 2003-02-03 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
US11/222,601 Abandoned US20060035899A1 (en) | 1998-07-08 | 2005-09-09 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/743,208 Expired - Fee Related US6544995B1 (en) | 1998-07-08 | 1999-07-05 | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric G protein |
US10/356,862 Expired - Fee Related US7034025B2 (en) | 1998-07-08 | 2003-02-03 | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein |
Country Status (17)
Country | Link |
---|---|
US (3) | US6544995B1 (en) |
EP (1) | EP1100801B1 (en) |
JP (1) | JP2002520327A (en) |
AR (1) | AR019908A1 (en) |
AT (1) | ATE459625T1 (en) |
AU (1) | AU756268B2 (en) |
CA (1) | CA2336846C (en) |
DE (1) | DE69942095D1 (en) |
ES (1) | ES2341404T3 (en) |
FR (1) | FR2780974B1 (en) |
MY (1) | MY122419A (en) |
NO (1) | NO319633B1 (en) |
NZ (1) | NZ509789A (en) |
RU (1) | RU2268889C2 (en) |
TW (1) | TW561156B (en) |
WO (1) | WO2000002881A2 (en) |
ZA (1) | ZA200101061B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2780974B1 (en) * | 1998-07-08 | 2001-09-28 | Sod Conseils Rech Applic | USE OF IMIDAZOPYRAZINE DERIVATIVES FOR THE PREPARATION OF A MEDICAMENT FOR TREATING CONDITIONS RESULTING FROM THE FORMATION OF HETEROTRIMETER G PROTEIN |
US7084135B1 (en) | 1998-12-31 | 2006-08-01 | Societe De Conseils De Recherches Et D'applications Scientifiques, Sas | Prenyl transferase inhibitors |
HUP0104708A3 (en) * | 1998-12-31 | 2004-05-28 | Sod Conseils Rech Applic | Prenyl transferase inhibitors and medicaments containing them |
DE10112926B4 (en) * | 2001-03-13 | 2005-11-10 | Schebo Biotech Ag | Use of aminooxyacetate for tumor treatment |
DE10112925A1 (en) * | 2001-03-13 | 2002-10-02 | Erich Eigenbrodt | Use of sugar phosphates, sugar phosphate analogs, amino acids, amino acid analogs for modulating transaminases and / or the association p36 / malate dehydrogenase |
UA74912C2 (en) | 2001-07-06 | 2006-02-15 | Merck & Co Inc | Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes |
US20060052382A1 (en) * | 2002-12-20 | 2006-03-09 | Duffy Joseph L | 3-Amino-4-phenylbutanoic acid derivatives as dipeptidyl peptidase inhibitors for the treatment or prevention of diabetes |
FR2879460B1 (en) * | 2004-12-17 | 2007-02-23 | Sod Conseils Rech Applic | ANTI-PAIN ASSOCIATIONS COMPRISING A DIHYDROIMIDAZOPYRAZINE DERIVATIVE |
FR2921658A1 (en) * | 2007-09-27 | 2009-04-03 | Sod Conseils Rech Applic | New pyrazolo-pyrazine derivatives are G protein inhibitors useful for preparing a medicament to treat or prevent disease or disorder e.g. cancer, non-tumor proliferative diseases, neurodegenerative diseases and parasitic diseases |
CN101824036A (en) * | 2009-03-05 | 2010-09-08 | 上海恒瑞医药有限公司 | Salt of tetrahydroimidazo [1,5-a] pyrazine derivative, preparation method and pharmaceutical application thereof |
AR077463A1 (en) | 2009-07-09 | 2011-08-31 | Irm Llc | IMIDAZO DERIVATIVES [1, 2 - A] PIRAZINA AND ITS USE IN MEDICINES FOR THE TREATMENT OF PARASITARY DISEASES |
MX2019012758A (en) | 2017-04-24 | 2019-12-16 | Novartis Ag | Therapeutic regimen of 2-amino-l-(2-(4-fluorophenyl)-3-(4-fluorop henylamino)-8,8-dimethyl-5,6-dihydroimidazo[1,2-a]pyrazin-7(8h)- yl)ethanone and combinations thereof. |
CN112480122B (en) * | 2020-11-24 | 2022-03-22 | 中山大学 | A kind of tetrahydroimidazo[1,2-a]pyrazine compound, composition and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544995B1 (en) * | 1998-07-08 | 2003-04-08 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric G protein |
US6673927B2 (en) * | 1996-02-16 | 2004-01-06 | Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. | Farnesyl transferase inhibitors |
US7022704B2 (en) * | 1996-02-16 | 2006-04-04 | Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. | Farnesyl transferase inhibitors |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2097378C1 (en) * | 1991-03-26 | 1997-11-27 | Ф.Хоффманн-Ля Рош Аг | DERIVATIVES OF N-ACYL-α-AMINO ACID OR THEIR PHYSIOLOGICALLY ACCEPTABLE SALTS, SIMPLE ETHERS OR ESTERS, AMIDES OR HYDRATES AND COMPOSITION INHIBITING ADHESIVE PROTEINS BINDING WITH PLATELETS AND PLATELET AGGREGATION |
DE69204007T2 (en) * | 1991-10-11 | 1996-03-21 | Squibb & Sons Inc | Use of farnesyl-protein transferase inhibitors for the manufacture of a medicament for blocking neoplastic transformations of cells caused by Ras oncogenes. |
GB9226065D0 (en) * | 1992-12-14 | 1993-02-10 | Ici Plc | Peptides |
US5705686A (en) * | 1993-05-18 | 1998-01-06 | University Of Pittsburgh | Inhibition of farnesyl transferase |
EP0703905A1 (en) * | 1993-06-18 | 1996-04-03 | Merck & Co. Inc. | Inhibitors of farnesyl-protein transferase |
AU702075B2 (en) * | 1994-04-26 | 1999-02-11 | Cadus Pharmaceutical Corporation | Functional expression of mammalian adenylyl cyclase in yeast |
CA2159850A1 (en) * | 1994-11-03 | 1996-05-04 | Yadagiri Pendri | Phosphonosulfonate squalene synthetase inhibitor salts and method |
AU4915796A (en) * | 1995-01-12 | 1996-07-31 | University Of Pittsburgh | Inhibitors of prenyl transferases |
FR2736638B1 (en) * | 1995-07-12 | 1997-08-22 | Rhone Poulenc Rorer Sa | NOVEL FARNESYL TRANSFERASE INHIBITORS, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
EP0910385A4 (en) * | 1996-04-15 | 1999-12-22 | Univ Pennsylvania | SENSITIZATION OF CELLS TO RADIATION THERAPY AND CHEMOTHERAPY |
US5935812A (en) * | 1996-09-18 | 1999-08-10 | Incyte Pharmaceuticals, Inc. | Human GTP binding protein gamma-3 |
-
1998
- 1998-07-08 FR FR9808731A patent/FR2780974B1/en not_active Expired - Fee Related
-
1999
- 1999-07-05 JP JP2000559111A patent/JP2002520327A/en active Pending
- 1999-07-05 EP EP99929394A patent/EP1100801B1/en not_active Expired - Lifetime
- 1999-07-05 US US09/743,208 patent/US6544995B1/en not_active Expired - Fee Related
- 1999-07-05 AU AU46222/99A patent/AU756268B2/en not_active Ceased
- 1999-07-05 RU RU2001103647/15A patent/RU2268889C2/en not_active IP Right Cessation
- 1999-07-05 DE DE69942095T patent/DE69942095D1/en not_active Expired - Lifetime
- 1999-07-05 ES ES99929394T patent/ES2341404T3/en not_active Expired - Lifetime
- 1999-07-05 AT AT99929394T patent/ATE459625T1/en not_active IP Right Cessation
- 1999-07-05 WO PCT/FR1999/001609 patent/WO2000002881A2/en active IP Right Grant
- 1999-07-05 NZ NZ509789A patent/NZ509789A/en not_active IP Right Cessation
- 1999-07-05 CA CA2336846A patent/CA2336846C/en not_active Expired - Fee Related
- 1999-07-07 MY MYPI99002848A patent/MY122419A/en unknown
- 1999-07-08 AR ARP990103337A patent/AR019908A1/en not_active Application Discontinuation
- 1999-07-17 TW TW088111517A patent/TW561156B/en not_active IP Right Cessation
-
2001
- 2001-01-03 NO NO20010029A patent/NO319633B1/en not_active IP Right Cessation
- 2001-02-07 ZA ZA200101061A patent/ZA200101061B/en unknown
-
2003
- 2003-02-03 US US10/356,862 patent/US7034025B2/en not_active Expired - Fee Related
-
2005
- 2005-09-09 US US11/222,601 patent/US20060035899A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6673927B2 (en) * | 1996-02-16 | 2004-01-06 | Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. | Farnesyl transferase inhibitors |
US7022704B2 (en) * | 1996-02-16 | 2006-04-04 | Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. | Farnesyl transferase inhibitors |
US6544995B1 (en) * | 1998-07-08 | 2003-04-08 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Use of cysteine derivatives for preparing a medicine for treating pathologies resulting from the formation of heterotrimeric G protein |
Also Published As
Publication number | Publication date |
---|---|
EP1100801B1 (en) | 2010-03-03 |
CA2336846A1 (en) | 2000-01-20 |
RU2268889C2 (en) | 2006-01-27 |
NO20010029D0 (en) | 2001-01-03 |
DE69942095D1 (en) | 2010-04-15 |
EP1100801A2 (en) | 2001-05-23 |
JP2002520327A (en) | 2002-07-09 |
ES2341404T3 (en) | 2010-06-18 |
WO2000002881A3 (en) | 2000-03-16 |
NZ509789A (en) | 2004-01-30 |
MY122419A (en) | 2006-04-29 |
AU4622299A (en) | 2000-02-01 |
FR2780974A1 (en) | 2000-01-14 |
ATE459625T1 (en) | 2010-03-15 |
WO2000002881A2 (en) | 2000-01-20 |
NO319633B1 (en) | 2005-09-05 |
US20030162786A1 (en) | 2003-08-28 |
ZA200101061B (en) | 2002-10-02 |
TW561156B (en) | 2003-11-11 |
CA2336846C (en) | 2010-03-16 |
AU756268B2 (en) | 2003-01-09 |
US7034025B2 (en) | 2006-04-25 |
FR2780974B1 (en) | 2001-09-28 |
US6544995B1 (en) | 2003-04-08 |
AR019908A1 (en) | 2002-03-20 |
NO20010029L (en) | 2001-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7034025B2 (en) | Use of cysteine derivatives for the preparation of a medicament intended to treat pathologies which result from the formation of the heterotrimeric G protein | |
HU228369B1 (en) | Use of cgmp-phosphodiesterase inhibitors to treat impotence | |
AU688972B2 (en) | Pyrimido{5,4-d}pyrimidines, drugs containing these compounds, their use, and process for preparing them | |
EP0699204A1 (en) | Use of indolocarbazole derivatives to treat a pathological condition of the prostate | |
US20060167080A1 (en) | Wortmannin analogs and methods of using same | |
US6136798A (en) | Compounds inhibiting the association of the PDGF receptor and phosphatidylinositol 3-kinase and their use | |
WO2002072101A1 (en) | A corticotropin releasing factor receptor ligand, its enantiomer and pharmaceutically acceptable salts | |
US20220218715A1 (en) | Novel use of pyrrolo-pyridine derivative compound for prevention and/or treatment of cancer | |
US8586626B2 (en) | Metabolites of wortmannin analogs and methods of using the same | |
EP3475286B1 (en) | Substituted pyrrolo [2, 3-d]pyridazin-4-ones and pyrazolo [3, 4-d]pyridazin-4-ones as protein kinase inhibitors | |
EP3955929B1 (en) | New pyrimidine derivatives for prevention and treatment of gram-negative bacterial infection, contamination and fouling | |
HU228067B1 (en) | Memnopeptides, a process for their preparation and their use | |
JPH029819A (en) | Antivasospasmodic agent and vasohypotonic agent | |
Shimazaki et al. | Studies on inhibition of adenosine deaminase by isocoformycin in vitro and in vivo | |
EP1070067B1 (en) | Cytotoxic alkaloid derivatives including asmarine a and b isolated from a sponge | |
KR20210135187A (en) | ASK1 Inhibitor and Uses Thereof | |
Dimaline et al. | A novel family of VIP-like peptides from the dogfish scyliorhinus canicula. | |
AIVAREZ et al. | Inhibition of Parasite Protein Kinase C by | |
Álvarez Rueda et al. | Inhibition of Parasite Protein Kinase C by New Antileishmanial Imidazolidin-2-one Compounds | |
Nelson et al. | Cytotoxic effects of native epidermal growth factor (EGF) and a synthetic agonist on a human breast cancer cell line (MDA-MB-436). |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IPSEN PHARMA S.A.S., FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:SOCIETE DE CONSEILS DE RECHERCHES ET D`APPLICATIONS SCIENTIFIQUES (S.C.R.A.S.);REEL/FRAME:022466/0793 Effective date: 20081128 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: IPSEN PHARMA S.A.S., FRANCE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE CONVEYING PARTY NAME PREVIOUSLY RECORDED AT REEL: 022466 FRAME: 0793. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SOCIETE DE CONSEILS DE RECHERCHES ET D'APPLICATIONS SCIENTIFIQUES, S.A.S.;REEL/FRAME:038628/0931 Effective date: 20081128 |