US20060035869A1 - Inhibitors of epoxide hydrolases for the treatment of hypertension - Google Patents
Inhibitors of epoxide hydrolases for the treatment of hypertension Download PDFInfo
- Publication number
- US20060035869A1 US20060035869A1 US11/240,444 US24044405A US2006035869A1 US 20060035869 A1 US20060035869 A1 US 20060035869A1 US 24044405 A US24044405 A US 24044405A US 2006035869 A1 US2006035869 A1 US 2006035869A1
- Authority
- US
- United States
- Prior art keywords
- epoxide hydrolase
- sulfur
- compound
- oxygen
- inflammatory disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108020002908 Epoxide hydrolase Proteins 0.000 title claims abstract description 152
- 102000005486 Epoxide hydrolase Human genes 0.000 title claims abstract description 121
- 239000003112 inhibitor Substances 0.000 title claims abstract description 58
- 206010020772 Hypertension Diseases 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 68
- 102100025357 Lipid-phosphate phosphatase Human genes 0.000 claims abstract description 33
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 30
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000011593 sulfur Substances 0.000 claims abstract description 26
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 24
- 239000001257 hydrogen Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 13
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 206010061218 Inflammation Diseases 0.000 claims abstract description 8
- 230000004054 inflammatory process Effects 0.000 claims abstract description 8
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 7
- 125000002252 acyl group Chemical group 0.000 claims abstract description 6
- 125000003118 aryl group Chemical group 0.000 claims abstract description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 6
- 150000002431 hydrogen Chemical group 0.000 claims abstract description 6
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 38
- 230000005764 inhibitory process Effects 0.000 claims description 29
- 230000000694 effects Effects 0.000 claims description 26
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 17
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 17
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 claims description 16
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 claims description 16
- 208000027866 inflammatory disease Diseases 0.000 claims description 15
- 230000003197 catalytic effect Effects 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 9
- 230000002401 inhibitory effect Effects 0.000 claims description 7
- 210000004072 lung Anatomy 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 5
- 206010040047 Sepsis Diseases 0.000 claims description 4
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 4
- 210000004556 brain Anatomy 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 208000032456 Hemorrhagic Shock Diseases 0.000 claims description 2
- 208000004221 Multiple Trauma Diseases 0.000 claims description 2
- 206010033645 Pancreatitis Diseases 0.000 claims description 2
- 206010049771 Shock haemorrhagic Diseases 0.000 claims description 2
- 230000037396 body weight Effects 0.000 claims description 2
- 238000011275 oncology therapy Methods 0.000 claims description 2
- 238000001356 surgical procedure Methods 0.000 claims description 2
- 125000002843 carboxylic acid group Chemical group 0.000 claims 1
- 238000009795 derivation Methods 0.000 claims 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 7
- 239000002207 metabolite Substances 0.000 abstract description 5
- 108030006933 Soluble epoxide hydrolases Proteins 0.000 abstract description 4
- 239000007857 degradation product Substances 0.000 abstract description 4
- 125000001188 haloalkyl group Chemical group 0.000 abstract description 2
- 102000004190 Enzymes Human genes 0.000 description 47
- 108090000790 Enzymes Proteins 0.000 description 47
- 229940088598 enzyme Drugs 0.000 description 47
- 241000196324 Embryophyta Species 0.000 description 33
- 150000002924 oxiranes Chemical class 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 241000238631 Hexapoda Species 0.000 description 16
- 238000003556 assay Methods 0.000 description 16
- 235000013877 carbamide Nutrition 0.000 description 14
- -1 ureas Chemical class 0.000 description 14
- 210000004027 cell Anatomy 0.000 description 12
- 230000003228 microsomal effect Effects 0.000 description 12
- 150000003672 ureas Chemical class 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 150000002009 diols Chemical class 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000003053 toxin Substances 0.000 description 10
- 231100000765 toxin Toxicity 0.000 description 10
- 108700012359 toxins Proteins 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 229940125782 compound 2 Drugs 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 229940127514 Epoxide Hydrolase Inhibitors Drugs 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 8
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 229920002684 Sepharose Polymers 0.000 description 7
- 0 [1*]C([2*])C(=O)[Y]([3*])[4*] Chemical compound [1*]C([2*])C(=O)[Y]([3*])[4*] 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- CCPPLLJZDQAOHD-UHFFFAOYSA-N vernolic acid Natural products CCCCCC1OC1CC=CCCCCCCCC(O)=O CCPPLLJZDQAOHD-UHFFFAOYSA-N 0.000 description 7
- 239000000341 volatile oil Substances 0.000 description 7
- CCPPLLJZDQAOHD-GJGKEFFFSA-N (+)-vernolic acid Chemical compound CCCCC[C@H]1O[C@H]1C\C=C/CCCCCCCC(O)=O CCPPLLJZDQAOHD-GJGKEFFFSA-N 0.000 description 6
- FBUKMFOXMZRGRB-UHFFFAOYSA-N Coronaric acid Chemical class CCCCCC=CCC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-UHFFFAOYSA-N 0.000 description 6
- 101710170970 Leukotoxin Chemical class 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 6
- 150000001718 carbodiimides Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 239000004009 herbicide Substances 0.000 description 6
- 208000014674 injury Diseases 0.000 description 6
- 229930014550 juvenile hormone Natural products 0.000 description 6
- 239000002949 juvenile hormone Substances 0.000 description 6
- 150000003633 juvenile hormone derivatives Chemical class 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- ADFXKUOMJKEIND-UHFFFAOYSA-N 1,3-dicyclohexylurea Chemical compound C1CCCCC1NC(=O)NC1CCCCC1 ADFXKUOMJKEIND-UHFFFAOYSA-N 0.000 description 5
- LITYOAMZVKPAFJ-UHFFFAOYSA-N 1-cyclohexyl-3-cyclooctylurea Chemical compound C1CCCCCCC1NC(=O)NC1CCCCC1 LITYOAMZVKPAFJ-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 241000607479 Yersinia pestis Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 230000001086 cytosolic effect Effects 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 230000028709 inflammatory response Effects 0.000 description 5
- 239000002917 insecticide Substances 0.000 description 5
- 230000004060 metabolic process Effects 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 150000003573 thiols Chemical class 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 108010024636 Glutathione Proteins 0.000 description 4
- 229940124639 Selective inhibitor Drugs 0.000 description 4
- 244000061456 Solanum tuberosum Species 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 238000001261 affinity purification Methods 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 235000005513 chalcones Nutrition 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229960003180 glutathione Drugs 0.000 description 4
- 230000002363 herbicidal effect Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229940002612 prodrug Drugs 0.000 description 4
- 239000000651 prodrug Substances 0.000 description 4
- 231100000027 toxicology Toxicity 0.000 description 4
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 4
- IUHJHNFBCGVCKG-UHFFFAOYSA-N 1-octyl-3-pentylurea Chemical compound CCCCCCCCNC(=O)NCCCCC IUHJHNFBCGVCKG-UHFFFAOYSA-N 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 3
- 229920000832 Cutin Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 101001077840 Homo sapiens Lipid-phosphate phosphatase Proteins 0.000 description 3
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 3
- 208000019693 Lung disease Diseases 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- 101001077841 Mus musculus Lipid-phosphate phosphatase Proteins 0.000 description 3
- 231100000678 Mycotoxin Toxicity 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 description 3
- QAPYEUPQFSRARS-UHFFFAOYSA-N [H]N(CC)C(=O)N([H])CCCCCCCCCC Chemical compound [H]N(CC)C(=O)N([H])CCCCCCCCCC QAPYEUPQFSRARS-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000001851 biosynthetic effect Effects 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- ARCJQKUWGAZPFX-OKILXGFUSA-N cis-stilbene oxide Chemical compound C1([C@H]2[C@H](O2)C=2C=CC=CC=2)=CC=CC=C1 ARCJQKUWGAZPFX-OKILXGFUSA-N 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 102000045920 human EPHX2 Human genes 0.000 description 3
- 235000020778 linoleic acid Nutrition 0.000 description 3
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 239000002636 mycotoxin Substances 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 210000002824 peroxisome Anatomy 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 208000037816 tissue injury Diseases 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000009261 transgenic effect Effects 0.000 description 3
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- NPRYCHLHHVWLQZ-TURQNECASA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynylpurin-8-one Chemical compound NC1=NC=C2N(C(N(C2=N1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C NPRYCHLHHVWLQZ-TURQNECASA-N 0.000 description 2
- XEBKSQSGNGRGDW-YFHOEESVSA-N 9,10-DiHOME Chemical compound CCCCC\C=C/CC(O)C(O)CCCCCCCC(O)=O XEBKSQSGNGRGDW-YFHOEESVSA-N 0.000 description 2
- 241000238421 Arthropoda Species 0.000 description 2
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 2
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 229940122183 Epoxide hydrolase inhibitor Drugs 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102000004157 Hydrolases Human genes 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- 244000211187 Lepidium sativum Species 0.000 description 2
- 235000007849 Lepidium sativum Nutrition 0.000 description 2
- 241000255908 Manduca sexta Species 0.000 description 2
- 241000244206 Nematoda Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 206010053159 Organ failure Diseases 0.000 description 2
- 241000208181 Pelargonium Species 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 206010037423 Pulmonary oedema Diseases 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- IDQHRQQSSQDLTR-UHFFFAOYSA-N [H]N(C)C(=O)N([H])C1=CC=C(Cl)C(Cl)=C1 Chemical compound [H]N(C)C(=O)N([H])C1=CC=C(Cl)C(Cl)=C1 IDQHRQQSSQDLTR-UHFFFAOYSA-N 0.000 description 2
- GUHCTVRICLSZNZ-UHFFFAOYSA-N [H]N(CCF)C(=O)N([H])CCCCCCCCCCCC Chemical compound [H]N(CCF)C(=O)N([H])CCCCCCCCCCCC GUHCTVRICLSZNZ-UHFFFAOYSA-N 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 208000038016 acute inflammation Diseases 0.000 description 2
- 230000006022 acute inflammation Effects 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 239000003627 allelochemical Substances 0.000 description 2
- 108060000307 allene oxide cyclase Proteins 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical class CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 description 2
- 239000003560 cancer drug Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 231100000357 carcinogen Toxicity 0.000 description 2
- 239000003183 carcinogenic agent Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- KQWGXHWJMSMDJJ-UHFFFAOYSA-N cyclohexyl isocyanate Chemical compound O=C=NC1CCCCC1 KQWGXHWJMSMDJJ-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000003008 fumonisin Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- DPBLXKKOBLCELK-UHFFFAOYSA-N pentan-1-amine Chemical compound CCCCCN DPBLXKKOBLCELK-UHFFFAOYSA-N 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 230000000858 peroxisomal effect Effects 0.000 description 2
- 239000005648 plant growth regulator Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- MMLUCGIQBBTOTM-UHFFFAOYSA-N s-cyclohexyl n-cyclohexylcarbamothioate Chemical compound C1CCCCC1SC(=O)NC1CCCCC1 MMLUCGIQBBTOTM-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000003319 supportive effect Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- IMYZYCNQZDBZBQ-UHFFFAOYSA-N (+-)-8-(cis-3-octyl-oxiranyl)-octanoic acid Natural products CCCCCCCCC1OC1CCCCCCCC(O)=O IMYZYCNQZDBZBQ-UHFFFAOYSA-N 0.000 description 1
- BQPPJGMMIYJVBR-UHFFFAOYSA-N (10S)-3c-Acetoxy-4.4.10r.13c.14t-pentamethyl-17c-((R)-1.5-dimethyl-hexen-(4)-yl)-(5tH)-Delta8-tetradecahydro-1H-cyclopenta[a]phenanthren Natural products CC12CCC(OC(C)=O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C BQPPJGMMIYJVBR-UHFFFAOYSA-N 0.000 description 1
- UAOUIVVJBYDFKD-XKCDOFEDSA-N (1R,9R,10S,11R,12R,15S,18S,21R)-10,11,21-trihydroxy-8,8-dimethyl-14-methylidene-4-(prop-2-enylamino)-20-oxa-5-thia-3-azahexacyclo[9.7.2.112,15.01,9.02,6.012,18]henicosa-2(6),3-dien-13-one Chemical compound C([C@@H]1[C@@H](O)[C@@]23C(C1=C)=O)C[C@H]2[C@]12C(N=C(NCC=C)S4)=C4CC(C)(C)[C@H]1[C@H](O)[C@]3(O)OC2 UAOUIVVJBYDFKD-XKCDOFEDSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- CHGIKSSZNBCNDW-UHFFFAOYSA-N (3beta,5alpha)-4,4-Dimethylcholesta-8,24-dien-3-ol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21 CHGIKSSZNBCNDW-UHFFFAOYSA-N 0.000 description 1
- YBADLXQNJCMBKR-UHFFFAOYSA-M (4-nitrophenyl)acetate Chemical compound [O-]C(=O)CC1=CC=C([N+]([O-])=O)C=C1 YBADLXQNJCMBKR-UHFFFAOYSA-M 0.000 description 1
- SGTUOBURCVMACZ-LMIMMGIZSA-N (5e,9e)-8-hydroxy-10-[3-[(e)-oct-2-enyl]oxiran-2-yl]deca-5,9-dienoic acid Chemical compound CCCCC\C=C\CC1OC1\C=C\C(O)C\C=C\CCCC(O)=O SGTUOBURCVMACZ-LMIMMGIZSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- DYQFCTCUULUMTQ-UHFFFAOYSA-N 1-isocyanatooctane Chemical compound CCCCCCCCN=C=O DYQFCTCUULUMTQ-UHFFFAOYSA-N 0.000 description 1
- XYTLYKGXLMKYMV-UHFFFAOYSA-N 14alpha-methylzymosterol Natural products CC12CCC(O)CC1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C XYTLYKGXLMKYMV-UHFFFAOYSA-N 0.000 description 1
- FCXKDQLNTRBDQS-UHFFFAOYSA-N 2,3-dihydroperoxyicosa-2,4-dienoic acid Chemical class CCCCCCCCCCCCCCCC=CC(OO)=C(OO)C(O)=O FCXKDQLNTRBDQS-UHFFFAOYSA-N 0.000 description 1
- 108050003820 2,3-oxidosqualene cyclases Proteins 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- YHDXOFFTMOZZPE-UHFFFAOYSA-N 2-ethyl-3-[3-ethyl-5-(4-ethylphenoxy)pentyl]-2-methyloxirane Chemical compound O1C(CC)(C)C1CCC(CC)CCOC1=CC=C(CC)C=C1 YHDXOFFTMOZZPE-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- VBRBNWWNRIMAII-WYMLVPIESA-N 3-[(e)-5-(4-ethylphenoxy)-3-methylpent-3-enyl]-2,2-dimethyloxirane Chemical compound C1=CC(CC)=CC=C1OC\C=C(/C)CCC1C(C)(C)O1 VBRBNWWNRIMAII-WYMLVPIESA-N 0.000 description 1
- FPTJELQXIUUCEY-UHFFFAOYSA-N 3beta-Hydroxy-lanostan Natural products C1CC2C(C)(C)C(O)CCC2(C)C2C1C1(C)CCC(C(C)CCCC(C)C)C1(C)CC2 FPTJELQXIUUCEY-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-M 4-nitrophenolate Chemical compound [O-]C1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-M 0.000 description 1
- NJIAKNWTIVDSDA-FQEVSTJZSA-N 7-[4-(1-methylsulfonylpiperidin-4-yl)phenyl]-n-[[(2s)-morpholin-2-yl]methyl]pyrido[3,4-b]pyrazin-5-amine Chemical compound C1CN(S(=O)(=O)C)CCC1C1=CC=C(C=2N=C(NC[C@H]3OCCNC3)C3=NC=CN=C3C=2)C=C1 NJIAKNWTIVDSDA-FQEVSTJZSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- FBUKMFOXMZRGRB-JXMROGBWSA-N 9,10-epoxy-12-octadecenoic acid Chemical compound CCCCC\C=C\CC1OC1CCCCCCCC(O)=O FBUKMFOXMZRGRB-JXMROGBWSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 241000223600 Alternaria Species 0.000 description 1
- 241001441180 Alternaria alternata f. sp. lycopersici Species 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- UUJNMRIUJJYUCI-UHFFFAOYSA-N C1CCCCC1.C1CCCCC1.CN=NC Chemical compound C1CCCCC1.C1CCCCC1.CN=NC UUJNMRIUJJYUCI-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- 102100024308 Ceramide synthase Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 101001077839 Corynebacterium sp. (strain C12) Soluble epoxide hydrolase Proteins 0.000 description 1
- 240000001689 Cyanthillium cinereum Species 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 108700021993 Cytochrome P-450 CYP2J2 Proteins 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- VYZAHLCBVHPDDF-UHFFFAOYSA-N Dinitrochlorobenzene Chemical compound [O-][N+](=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 VYZAHLCBVHPDDF-UHFFFAOYSA-N 0.000 description 1
- 239000005510 Diuron Substances 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- BKLIAINBCQPSOV-UHFFFAOYSA-N Gluanol Natural products CC(C)CC=CC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(O)C(C)(C)C4CC3 BKLIAINBCQPSOV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000793880 Homo sapiens Caspase-3 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100035792 Kininogen-1 Human genes 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- LOPKHWOTGJIQLC-UHFFFAOYSA-N Lanosterol Natural products CC(CCC=C(C)C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 LOPKHWOTGJIQLC-UHFFFAOYSA-N 0.000 description 1
- UFPQIRYSPUYQHK-VRKJBCFNSA-N Leukotriene A4 Natural products CCCCCC=C/CC=C/C=C/C=C/[C@@H]1O[C@H]1CCCC(=O)O UFPQIRYSPUYQHK-VRKJBCFNSA-N 0.000 description 1
- 208000004852 Lung Injury Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 206010048723 Multiple-drug resistance Diseases 0.000 description 1
- CAHGCLMLTWQZNJ-UHFFFAOYSA-N Nerifoliol Natural products CC12CCC(O)C(C)(C)C1CCC1=C2CCC2(C)C(C(CCC=C(C)C)C)CCC21C CAHGCLMLTWQZNJ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RFONAXXDMGITIV-UHFFFAOYSA-N O=C(NC1CCCCC1)NC1C2CC(C3)CC1CC3C2 Chemical compound O=C(NC1CCCCC1)NC1C2CC(C3)CC1CC3C2 RFONAXXDMGITIV-UHFFFAOYSA-N 0.000 description 1
- HTMQZWFSTJVJEQ-UHFFFAOYSA-N O=S(CC1=CC=CC=C1)CC1=CC=CC=C1 Chemical compound O=S(CC1=CC=CC=C1)CC1=CC=CC=C1 HTMQZWFSTJVJEQ-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 241000756012 Pelargonium sidoides Species 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 101001077836 Rattus norvegicus Epoxide hydrolase 1 Proteins 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930183415 Suberin Natural products 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 229940123468 Transferase inhibitor Drugs 0.000 description 1
- 206010069363 Traumatic lung injury Diseases 0.000 description 1
- IBZHOAONZVJLOB-UHFFFAOYSA-N Tridiphane Chemical compound ClC1=CC(Cl)=CC(C2(CC(Cl)(Cl)Cl)OC2)=C1 IBZHOAONZVJLOB-UHFFFAOYSA-N 0.000 description 1
- 108010090932 Vitellogenins Proteins 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N [H]/N=C(\N([H])CCCCCCN([H])/C(=N\[H])N([H])/C(=N/[H])N([H])C1=CC=C(Cl)C=C1)N([H])/C(=N/[H])N([H])C1=CC=C(Cl)C=C1 Chemical compound [H]/N=C(\N([H])CCCCCCN([H])/C(=N\[H])N([H])/C(=N/[H])N([H])C1=CC=C(Cl)C=C1)N([H])/C(=N/[H])N([H])C1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- VCFNWIXOBCGNDE-UHFFFAOYSA-N [H]N(C(=O)CC1CCCCC1)C1CCCCC1 Chemical compound [H]N(C(=O)CC1CCCCC1)C1CCCCC1 VCFNWIXOBCGNDE-UHFFFAOYSA-N 0.000 description 1
- CJZROPWLDOISLK-UHFFFAOYSA-N [H]N(C(=O)N([H])C1(N([H])C(=O)N([H])C2CCCCC2)C2CC3CC(C2)CC1C3)C1CCCCC1 Chemical compound [H]N(C(=O)N([H])C1(N([H])C(=O)N([H])C2CCCCC2)C2CC3CC(C2)CC1C3)C1CCCCC1 CJZROPWLDOISLK-UHFFFAOYSA-N 0.000 description 1
- AHIZJLVRHIRLEY-UHFFFAOYSA-N [H]N(C(=O)N([H])C1CCCCC1)C1=CC=C(OC2=CC=CC=C2)C=C1 Chemical compound [H]N(C(=O)N([H])C1CCCCC1)C1=CC=C(OC2=CC=CC=C2)C=C1 AHIZJLVRHIRLEY-UHFFFAOYSA-N 0.000 description 1
- CQSQWHFDVZITNP-UHFFFAOYSA-N [H]N(C(=O)N([H])C1CCCCC1)C1=CC=NC=C1 Chemical compound [H]N(C(=O)N([H])C1CCCCC1)C1=CC=NC=C1 CQSQWHFDVZITNP-UHFFFAOYSA-N 0.000 description 1
- PDDIETGPTXAEPC-UHFFFAOYSA-N [H]N(C(=O)OC1CC(C)CCC1C(C)C)C1CCCCC1 Chemical compound [H]N(C(=O)OC1CC(C)CCC1C(C)C)C1CCCCC1 PDDIETGPTXAEPC-UHFFFAOYSA-N 0.000 description 1
- JEAXEFPTKIJYRO-UHFFFAOYSA-N [H]N(C(=O)OC1CCCCC1)C1CCCCC1 Chemical compound [H]N(C(=O)OC1CCCCC1)C1CCCCC1 JEAXEFPTKIJYRO-UHFFFAOYSA-N 0.000 description 1
- KAJICSGLHKRDLN-UHFFFAOYSA-N [H]N(C(=S)N([H])C1CCCCC1)C1CCCCC1 Chemical compound [H]N(C(=S)N([H])C1CCCCC1)C1CCCCC1 KAJICSGLHKRDLN-UHFFFAOYSA-N 0.000 description 1
- QTTCKKMSHRRSFH-UHFFFAOYSA-N [H]N(C)C(=O)N([H])CCCCCCCCCC Chemical compound [H]N(C)C(=O)N([H])CCCCCCCCCC QTTCKKMSHRRSFH-UHFFFAOYSA-N 0.000 description 1
- NKEIXEGQSHWQRR-UHFFFAOYSA-N [H]N(C)C(=O)N([H])CCCCCCCCCC.[H]N(CC)C(=O)N([H])CCCCCCCCCC Chemical compound [H]N(C)C(=O)N([H])CCCCCCCCCC.[H]N(CC)C(=O)N([H])CCCCCCCCCC NKEIXEGQSHWQRR-UHFFFAOYSA-N 0.000 description 1
- OHNBMBOLKCWBAP-UHFFFAOYSA-N [H]N(CC)C(=O)N([H])C1CCCCC1.[H]N(CCCC1=CC=CC=C1)C(=O)N([H])C1CCCCC1 Chemical compound [H]N(CC)C(=O)N([H])C1CCCCC1.[H]N(CCCC1=CC=CC=C1)C(=O)N([H])C1CCCCC1 OHNBMBOLKCWBAP-UHFFFAOYSA-N 0.000 description 1
- ANYHNJDRLQECDD-UHFFFAOYSA-N [H]N(CC1=CC=C(Cl)C=C1)C(=O)N([H])C1CCCCC1 Chemical compound [H]N(CC1=CC=C(Cl)C=C1)C(=O)N([H])C1CCCCC1 ANYHNJDRLQECDD-UHFFFAOYSA-N 0.000 description 1
- ROAHOLTZCQNNSF-UHFFFAOYSA-N [H]N(CC1CCCCC1)C(=O)N([H])C1=CC2=C(C=CC=C2)C=C1 Chemical compound [H]N(CC1CCCCC1)C(=O)N([H])C1=CC2=C(C=CC=C2)C=C1 ROAHOLTZCQNNSF-UHFFFAOYSA-N 0.000 description 1
- RHBKJXDUKBSXIU-UHFFFAOYSA-N [H]N(CC1CCCCC1)C(=O)N([H])C1=CC=C(C(C)C)C=C1 Chemical compound [H]N(CC1CCCCC1)C(=O)N([H])C1=CC=C(C(C)C)C=C1 RHBKJXDUKBSXIU-UHFFFAOYSA-N 0.000 description 1
- VVQOIWWCICBJCG-UHFFFAOYSA-N [H]N(CC1CCCCC1)C(=O)N([H])C1=CC=CC(Cl)=C1 Chemical compound [H]N(CC1CCCCC1)C(=O)N([H])C1=CC=CC(Cl)=C1 VVQOIWWCICBJCG-UHFFFAOYSA-N 0.000 description 1
- PMBPKSGAGUUSQE-UHFFFAOYSA-N [H]N(CC1CCCCC1)C(=O)N([H])C1CCCCC1 Chemical compound [H]N(CC1CCCCC1)C(=O)N([H])C1CCCCC1 PMBPKSGAGUUSQE-UHFFFAOYSA-N 0.000 description 1
- QPMLSLZWAIBWSE-UHFFFAOYSA-N [H]N(CCCC(OCC)OCC)C(=O)N([H])C1=CC(Cl)=CC=C1 Chemical compound [H]N(CCCC(OCC)OCC)C(=O)N([H])C1=CC(Cl)=CC=C1 QPMLSLZWAIBWSE-UHFFFAOYSA-N 0.000 description 1
- JAYMEMQJPHBWIT-UHFFFAOYSA-N [H]N(CCCCCCCC)C(=O)N([H])C1CCCCC1 Chemical compound [H]N(CCCCCCCC)C(=O)N([H])C1CCCCC1 JAYMEMQJPHBWIT-UHFFFAOYSA-N 0.000 description 1
- NQPNCFYEKUYDPJ-UHFFFAOYSA-N [H]N(CCCCCCCCCC)C(=O)N([H])C1=CC=CC(Cl)=C1 Chemical compound [H]N(CCCCCCCCCC)C(=O)N([H])C1=CC=CC(Cl)=C1 NQPNCFYEKUYDPJ-UHFFFAOYSA-N 0.000 description 1
- UBBIDOUCHSVOFY-UHFFFAOYSA-N [H]N([H])C(=O)N([H])CCCCCCCC Chemical compound [H]N([H])C(=O)N([H])CCCCCCCC UBBIDOUCHSVOFY-UHFFFAOYSA-N 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N [H]N([H])CCCCCCCCCC Chemical compound [H]N([H])CCCCCCCCCC MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000007801 affinity label Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 210000001601 blood-air barrier Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 108010021637 cholesterol-5 alpha,6 alpha-epoxide hydrase Proteins 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 1
- 229960001214 clofibrate Drugs 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- CMKBCTPCXZNQKX-UHFFFAOYSA-N cyclohexanethiol Chemical compound SC1CCCCC1 CMKBCTPCXZNQKX-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- HSOHBWMXECKEKV-UHFFFAOYSA-N cyclooctanamine Chemical compound NC1CCCCCCC1 HSOHBWMXECKEKV-UHFFFAOYSA-N 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 108010061814 dihydroceramide desaturase Proteins 0.000 description 1
- QBSJHOGDIUQWTH-UHFFFAOYSA-N dihydrolanosterol Natural products CC(C)CCCC(C)C1CCC2(C)C3=C(CCC12C)C4(C)CCC(C)(O)C(C)(C)C4CC3 QBSJHOGDIUQWTH-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 244000053095 fungal pathogen Species 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 108010036302 hemoglobin AS Proteins 0.000 description 1
- QVZLFPOSNZQZIZ-GNCAWYMNSA-N heom Chemical compound C([C@H]12)[C@H]3O[C@H]3C[C@@H]1[C@]1(Cl)C(Cl)=C(Cl)[C@@]2(Cl)C1(Cl)Cl QVZLFPOSNZQZIZ-GNCAWYMNSA-N 0.000 description 1
- 230000010224 hepatic metabolism Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QVJMXSGZTCGLHZ-HONBPKQLSA-N juvenile hormone III Chemical compound COC(=O)\C=C(/C)CC\C=C(/C)CC[C@H]1OC1(C)C QVJMXSGZTCGLHZ-HONBPKQLSA-N 0.000 description 1
- 108010004855 juvenile hormone epoxide hydrolase Proteins 0.000 description 1
- 229930191400 juvenile hormones Natural products 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 229940058690 lanosterol Drugs 0.000 description 1
- CAHGCLMLTWQZNJ-RGEKOYMOSA-N lanosterol Chemical compound C([C@]12C)C[C@@H](O)C(C)(C)[C@H]1CCC1=C2CC[C@]2(C)[C@H]([C@H](CCC=C(C)C)C)CC[C@@]21C CAHGCLMLTWQZNJ-RGEKOYMOSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- UFPQIRYSPUYQHK-WAQVJNLQSA-N leukotriene A4 Chemical compound CCCCC\C=C/C\C=C/C=C/C=C/[C@@H]1O[C@H]1CCCC(O)=O UFPQIRYSPUYQHK-WAQVJNLQSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 231100000515 lung injury Toxicity 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- WRNAVSFSJOTEKM-UHFFFAOYSA-N methyl 16-(oxiren-2-yl)hexadecanoate Chemical compound COC(CCCCCCCCCCCCCCCC1=CO1)=O WRNAVSFSJOTEKM-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- UFEJKYYYVXYMMS-UHFFFAOYSA-N methylcarbamic acid Chemical class CNC(O)=O UFEJKYYYVXYMMS-UHFFFAOYSA-N 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000002464 muscle smooth vascular Anatomy 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- NDSQNITXICYOLX-UHFFFAOYSA-N o-cyclohexyl n-cyclohexylcarbamothioate Chemical compound C1CCCCC1OC(=S)NC1CCCCC1 NDSQNITXICYOLX-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000037050 permeability transition Effects 0.000 description 1
- 230000000361 pesticidal effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000011808 rodent model Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- OTKJDMGTUTTYMP-ZWKOTPCHSA-N sphinganine Chemical class CCCCCCCCCCCCCCC[C@@H](O)[C@@H](N)CO OTKJDMGTUTTYMP-ZWKOTPCHSA-N 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940124788 therapeutic inhibitor Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000002723 toxicity assay Methods 0.000 description 1
- 239000003558 transferase inhibitor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003519 ventilatory effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 230000002034 xenobiotic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/325—Carbamic acids; Thiocarbamic acids; Anhydrides or salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/336—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having three-membered rings, e.g. oxirane, fumagillin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
Definitions
- the present invention generally relates to methods of treating epoxide hydrolases so as to form complexes therewith, and more particularly relates to compounds, such as ureas, which complex with epoxide hydrolases and can be used to purify, isolate, or inhibit the epoxide hydrolases so complexed.
- compounds such as ureas are immobilized to water insoluble supports, they can be used in affinity separations of epoxide hydrolases.
- compounds such as ureas are administered therapeutically, they are useful in treating inflammatory diseases such as adult respiratory distress syndrome or synergizing anti-neoplastic agents. When applied agriculturally, they will selectively inhibit epoxide hydrolase in pest and crop species.
- Epoxide hydrolases are enzymes which catalyze the hydrolysis of epoxides including arene oxides to their corresponding diols by the addition of water. EHs play an important role in the metabolism of a variety of compounds including hormones, fatty acid derivatives, chemotherapeutic drugs, carcinogens, environmental pollutants, mycotoxins, and other harmful foreign compounds.
- Mammalian EHs include cholesterol epoxide hydrolase, leukotriene A4, hydrolase, hepoxilin hydrolase, microsomal epoxide hydrolase (mEH), and soluble epoxide hydrolase (sEH).
- the latter two enzymes have been extensively studied and found to have broad and complementary substrate selectivity.
- the microsomal and soluble forms are known to detoxify mutagenic, toxic, and carcinogenic xenobiotic epoxides, are involved in physiological homeostasis, and both are members of the ⁇ / ⁇ -hydrolase fold family.
- the mouse enzyme provides a rodent model to evaluate for therapeutic development of human soluble epoxide hydrolase inhibitors.
- EH enzymes have been reported to be present in a wide variety of species including bacteria, yeast, fungi, plants, nematodes, insects, birds, fish, and mammals. Indeed, they appear to be present in most, if not all, organisms, and have multiple roles.
- Plant epoxide hydrolases are also known. For example, fatty acid epoxide hydrolases from apple fruit skin, soybean seedlings, and rice plants have been described. The cDNAs encoding epoxide hydrolase from potato, cress, and tobacco have been isolated and cloned. Stapleton et al., Plant J., 6, pp. 251-258 (1994); Kiyosue et al., Plant J., 6, pp.
- Epoxide hydrolases in insects and other arthropods function in the metabolism of endogenous chemical mediators like juvenile hormone and degradation of plant allelochemicals which defend the plant against insects. These enzymes in plants catalyze the hydration of epoxystearic acid to the corresponding ⁇ , ⁇ -diols which are important intermediates in the cutin biosynthesis and which have some anti-fungal activity.
- Epoxides and diols are key synthetic intermediates in the production of both bulk and speciality organic chemicals. Thus, biosynthetic mechanisms to convert epoxides to diols under gentle, regio and stereospecific conditions are very important.
- the ability to test if a biosynthetic pathway involves an epoxide by the use of a selective inhibitor can be important in the search for new biosynthetic enzymes and the use of high affinity binding agents in the rapid affinity purification of epoxide hydrolases has proven very important in the study of the mammalian soluble epoxide hydrolases.
- the presently known high affinity binding agents for affinity purification of the mammalian soluble epoxide hydrolases include thiols such as benzylthiol, alkyl or terpenoid thiols reacted with epoxy activated SEPHAROSE separation media (SEPHAROSE is available from Pharmacia). These affinity chromatography columns bind a variety of proteins, many of which have a lipophilic catalytic site.
- the soluble epoxide hydrolase can be selectively eluted from these columns with chalcone oxides, generally as described by Prestwich, Proc. Natl. Acad. Sci. USA, 82, pp. 1663-1667 (1985) and Wixtrom et al., Analyt.
- a method of treating an epoxide hydrolase is provided that is useful to purify, isolate, or inhibit the target epoxide hydrolase by complexing with a free form or immobilized compound so that the activity of the complexed epoxide hydrolase is modified with respect to enzymatically active, uncomplexed epoxide hydrolase.
- Compounds useful for forming complexes with epoxide hydrolases in practicing this invention include epoxide hydrolase transition state mimics. For example, ureas, amides, and carbamates can mimic the enzyme transition state or other transient intermediates along the reaction coordinate when these compounds stably interact with the enzyme catalytic site.
- a preferred class of compounds with this complexing ability for practice in accordance with the invention has the structure shown by Formula 1. wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R 1 -R 4 is hydrogen, R 2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R 4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R 1 and R 3 are each independently a substituted or unsubstituted alkyl, haloalkyl, cycloalkyl, aryl, acyl, or heterocyclic.
- IC 50 inhibitor potency or, by definition, the concentration of inhibitor which reduces enzyme activity by 50%
- IC 50 for mouse soluble epoxide hydrolase of less than about 0.1 ⁇ M and less than about 0.8 ⁇ M for human soluble epoxide hydrolase.
- the compound 187 is an amide and illustrates that the pharmacophore can be more general than ureas or carbamates.
- the enzymes of interest for this invention typically are able to distinguish enantiomers.
- the pharmacophores described here can be used to deliver a reactive functionality to the catalytic site. These could include alkylating agents such as halogens or epoxides or Michael acceptors which will react with thiols and amines. These reactive functionalities also can be used to deliver fluorescent or affinity labels to the enzyme active site for enzyme detection.
- Inhibition of soluble epoxide hydrolase can be therapeutically effective to treat an inflammatory disease, such as adult respiratory distress syndrome.
- suitable epoxide hydrolase inhibitors retard or prevent an inflammatory response in a patient via an inhibition of formation of one or more polyunsaturated lipid metabolites, such as to inhibit the formation of dihydroxy-oxy-eicosadienoates, or DiHOxyEDEs in the arachidonic acid series of oxylipins.
- Arachidonic acid epoxides (EETs) and in some cases the corresponding diols (DHETs) are widely known to be biologically active as well.
- inhibitors of the invention act to reduce the conversion of lipid epoxides to the corresponding diols, as in conversion of EEP's to DHET's.
- an epoxide hydrolase complex is useful to purify or to isolate the targeted epoxide hydrolase.
- the Formula 1 compound may be derivatized so as to be immobilized to a water insoluble support.
- the complex formation causes a selective separation of the epoxide hydrolase.
- Inhibitors such as certain analogues and active derivatives of the Formula 1 compound, can also be used to elute epoxide hydrolases from these and other supports.
- useful compounds to complex with epoxide hydrolases in practicing this invention include epoxide hydrolase transition state dicyclohexyl mimics, such as ureas and carbamates which can mimic the enzyme transition state when they stably interact with the enzyme catalytic site.
- analogs of the Formula 1 compound which can also function as selective inhibitors of soluble epoxide hydrolase, include compounds with the Formula 2 structure (where X, Y, R 1 , R 2 , R 3 , and R 4 may be as described for Formula 1) but wherein Z is oxygen or sulfur and W is carbon, phosphorous, or sulfur.
- An illustrative several such inhibitor compounds of the Formula 2 structure are shown in Table 2.
- Compound 12 may be converted to the corresponding carbodiimide (compound 1) and then to the corresponding urea (compound 2).
- a thiourea can be converted to a carbodiimide and the carbodiimide will hydrolyze to the urea. If the N and N′ substituents are cyclohexyl then the compound is dicyclohexylcarbodiimide (compound 1).
- inhibitors described herein are the first biologically stable inhibitors of any epoxide hydrolase.
- the inhibitors have applications on epoxide hydrolases in mammals, plants, insects, and likely on any organism with an epoxide hydrolase.
- FIGS. 1A and 1B graphically illustrate the effect of time on the inhibition of mouse soluble EH and human soluble EH, respectively, by compounds 1 and 2;
- FIG. 2 graphically illustrates the effect of compound 2 on the potato soluble EH (22.5 nM) and cress soluble EH (35 nM).
- One aspect of this invention pertains to inhibition of epoxide hydrolase, preferably selective inhibition. This means that an inhibitor has a greater inhibitory effect on one EH enzyme than it does on other EH enzymes, and has greater selectivity for EH than for non-EH enzymes.
- Example 5 demonstrates the assay used to determine selective inhibition of soluble EH for a number of compounds in accordance with this invention, whose inhibitory data are set out by Table 4. Selectivity is illustrated by Table 3, where the inhibitor used was compound 2.
- TABLE 3 Enzymes % Inhibition by 100 ⁇ M of 2 cytosolic EH 99.3 ⁇ 0.8 peroxisome EH 99.6 ⁇ 0.6 microsomal EH 0.5 ⁇ 0.8 cytosolic GST 0.8 ⁇ 1.1 microsomal P-450 1.7 ⁇ 2.3 microsomal carboxyl-esterase 3.5 ⁇ 4.7 pepsin 0.1 ⁇ 0.1
- a method of treating an epoxide hydrolase is provided that is useful to purify, isolate, or inhibit the target epoxide hydrolase by complexing with a free form or immobilized compound so that the activity of the epoxide hydrolase so complexed is modified with respect to enzymatically active, uncomplexed epoxide hydrolase.
- a preferred class of compounds with this complexing ability for practice in accordance with the invention has the structure shown by Formula 1. wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R 1 -R 4 is hydrogen, R 2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R 4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R 1 and R 3 is each independently H, C 1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic.
- the active structures such as those in the Tables or Formula 1 can direct the inhibitor to the enzyme where a reactive functionality in the enzyme catalytic site can form a covalent bond with the inhibitor.
- a reactive functionality in the enzyme catalytic site can form a covalent bond with the inhibitor.
- One group of molecules which could interact like this would have a leaving group such as a halogen or tosylate which could be attacked in an S N 2 manner with a lysine or histidine.
- the reactive functionality could be an epoxide or Michael acceptor such as a ⁇ / ⁇ -unsaturated ester, aldehyde, ketone, ester, or nitrile.
- active derivatives can be designed for practicing the invention.
- dicyclohexyl thiol urea can be oxidized to dicyclohexylcarbodiimide which, with enzyme or aqueous acid (physiological saline), will form an active dicyclohexylurea.
- the acidic protons on carbamates or ureas can be replaced with a variety of substituents which, upon oxidation, hydrolysis or attack by a nucleophile such as glutathione, will yield the corresponding parent structure.
- prodrugs are known as prodrugs or protoxins (Gilman et al., 1985 , The Phamacological Basis of Therapeutics, 7 th Edition, MacMillan Publishing Company, New York, p. 16)
- Esters for example, are common prodrugs which are released to give the corresponding alcohols and acids enzymatically (Yoshigae et al., Chirality, 9, pp. 661-666 1997).
- the prodrugs can be chiral for greater specificity.
- These derivatives have been extensively used in medicinal and agricultural chemistry to alter the pharmacological properties of the compounds such as enhancing water solubility, improving formulation chemistry, altering tissue targeting, altering volume of distribution, and altering penetration. They also have been used to alter toxicology profiles.
- Such active proinhibitor derivatives are within the scope of the present invention, and the just-cited references are incorporated herein by reference. Without being bound by theory, we believe that suitable inhibitors of the invention mimic the enzyme transition state so that there is a stable interaction with the enzyme catalytic site. The inhibitors appear to form hydrogen bonds with the nucleophilic carboxylic acid and a polarizing tyrosine of the catalytic site.
- particularly preferred compound embodiments have an IC 50 (inhibition potency or, by definition, the concentration of inhibitor which reduces enzyme activity by 50%) of less than about 500 ⁇ M.
- Metabolites or degradation products of the foregoing Formula 1 compounds or the compounds discussed below with reference to Formula 2 can also be used as inhibitors and form complexes with EH.
- An aspect of this invention is to provide affinity purification systems for enzymes having an oxyanion hole and a nucleophilic acid in the catalytic site, particularly where the enzyme is an epoxide hydrolase.
- the inhibitors shown herein to inhibit soluble EH will also inhibit a broad range of enzymes in the ⁇ / ⁇ -hydrolase fold family that have a nucleophilic acid in the catalytic site.
- a purification method for an epoxide hydrolase is provided by immobilizing a compound having the Formula 2 structure to a water-insoluble support.
- Z is oxygen, nitrogen, or sulfur
- W is carbon, phosphorous, or sulfur
- X and Y is each independently nitrogen, oxygen, or sulfur
- X can further be carbon
- R 1 -R 4 is hydrogen
- R 2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen
- R 4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen
- R 1 and R 3 is each independently H, C 1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic.
- Suitable water insoluble supports to which the Formula 2 compound are usefully immobilized include epoxy activated SEPHAROSE®, amino propyl or hexyl SEPHAROSE®, or carboxyl SEPHAROSE®.
- a variety of solid matrices including glass beads, polyvinyl beads, or agarose can be used.
- the so-immobilized compounds constitute a suitable packing material for affinity separations, with the immobilized compounds being capable of forming a complex with epoxide hydrolase when an aqueous solution is eluted through a column packed with the separation packing material or in a batch procedure.
- Immobilization of the compound will typically be by derivatizing through one of R 1 or R 3 by well-known methods.
- Pharmacia Fine Chemicals sells amino propyl or other amino terminal affinity materials (typically under the trademark “SEPHAROSE®”) and BioRad Laboratories sells agarose gels and beads for various affinity chromatography needs (typically under the trademark “AFFI-GEL®”).
- SEPHAROSE® amino propyl or other amino terminal affinity materials
- BioRad Laboratories sells agarose gels and beads for various affinity chromatography needs (typically under the trademark “AFFI-GEL®”).
- AFFI-GEL® agarose gels and beads for various affinity chromatography needs
- the Formula 1 compounds can be used to elute epoxide hydrolases from more general affinity columns, such as where a thiol (e.g.
- the inflammatory response is one of the most important physiological mechanisms for the maintenance of human health. However, disorders of inflammation or an inappropriate inflammatory response can result in tissue injury, morbidity, or mortality.
- ARDS Adult respiratory distress syndrome
- ARDS is a pulmonary disease that has a mortality rate of 50% and results from lung lesions that are caused by a variety of conditions found in trauma patients and in severe burn victims.
- glucocorticoids there have not been therapeutic agents known to be effective in preventing or ameliorating the tissue injury, such as microvascular damage, associated with acute inflammation that occurs during the early development of ARDS.
- ARDS which is defined in part by the development of alveolar edema, represents a clinical manifestation of pulmonary disease resulting from both direct and indirect lung injury. While previous studies have detailed a seemingly unrelated variety of causative agents, the initial events underlying the pathophysiology of ARDS are not well understood. ARDS was originally viewed as a single organ failure, but is now considered a component of the multisystem organ failure syndrome (MOFS). Pharmacologic intervention or prevention of the inflammatory response is presently viewed as a more promising method of controlling the disease process than improved ventilatory support techniques. See, for example, Demling, Annu. Rev. Med., 46, pp. 193-203, 1995.
- MOFS multisystem organ failure syndrome
- SIRS systematic inflammatory response syndrome
- the lung with its extensive surface area exposed directly to the environment, is particularly susceptible to oxidant injury and products of inflammation. Since the entire cardiac output passes through the pulmonary artery, the lungs can also be injured by blood-borne agents. The cellular heterogeneity of mammalian lung complicates direct study of these pulmonary cells most susceptible to injury. Furthermore, the complex pulmonary anatomy renders it difficult to distinguish precisely where biological agents are metabolized in lung tissues.
- ARDS The ARDS ailments are seen in a variety of patients with severe burns or sepsis. Sepsis in turn is one of the SIRS symptoms. In ARDS there is an acute inflammatory reaction with high numbers of neutrophils that migrate into the interstitium and alveoli. If this progresses there is increased inflammation, edema, cell proliferation, and the end result is impaired ability to extract oxygen. ARDS is thus a common complication in a wide variety of diseases and trauma. The only treatment is supportive. There are an estimated 150,000 cases per year and mortality ranges from 10% to 90%.
- ARDS The exact cause of ARDS is not known. However it has been hypothesized that over-activation of neutrophils leads to the release of linoleic acid in high levels via phospholipase A 2 activity. Linoleic acid in turn is converted to 9,10-epoxy-12-octadecenoate enzymatically by neutrophil cytochrome P-450 epoxygenase and/or a burst of active oxygen. This lipid epoxide, or leukotoxin, is found in high levels in burned skin and in the serum and bronchial lavage of burn patients. Furthermore, when injected into rats, mice, dogs, and other mammals it causes ARDS. The mechanism of action is not known.
- the leukotoxin diol produced by the action of the soluble epoxide hydrolase appears to be a specific inducer of the mitochondrial inner membrane permeability transition (MPT).
- MPT mitochondrial inner membrane permeability transition
- Therapeutic or pharmaceutical compositions of the invention that contain the inhibitors may be prepared by any of the various methods well known.
- the inhibitor is formulated so as to be suitable for oral or parenteral administration and is typically dissolved or dispersed in a physiologically tolerable carrier or diluent.
- an inhibitor can be dissolved or dispersed in a liquid composition such as sterile suspension or solution or as an isotonic preparation.
- injectable medium formulated with buffered or unbuffered isotonic and sterile saline or glucose solution.
- the amount of therapeutic inhibitor administered can be by a single administration or a submultiple of the total amount. In addition, multiple administrations over a period of several days, weeks, or months are contemplated.
- the active agent can also be used in compositions such as tablets or pills, preferably containing a unit dose, and may be mixed with conventional tableting ingredients.
- Actual dosage levels of the epoxide hydrolase inhibitor can be varied to obtain the desired therapeutic response for a particular composition and method of administration.
- the total daily dose administered is contemplated to be from about 0.001 to about 100 mg per kg body weight.
- a drug like clofibrate which is known to induce the soluble epoxide hydrolase and cytochrome P-450, and a drug like acetaminophen, which depletes glutathione, should be avoided. This is because we have experimental data suggesting that when glutathione levels are depleted, then leukotoxin becomes more toxic.
- parallel therapies designed to enhance alternate pathways of leukotoxin metabolism such as administration of N-acetylcysteine and glutathione and their ethyl esters should be encouraged.
- Example 1 illustrates an in vivo use of the inhibitor embodiment 2 to block animal death induced by leukotoxins/isoleukotoxins or to lengthen lives of mice.
- mice Male Swiss Webster mice (25-28 g) were purchased from Simonsen, Gilroy, Calif. The animals had free access to water and food. The mice (three in each group) were pretreated i.p. with dicyclohexylurea (compound 2) suspended in corn oil (400 mg/kg, 7 ml/kg) or corn oil as positive controls. After 30 minutes of the pretreatment, the mice were treated intravenously through the tail vein with a 1:1 mixture of leukotoxin/isoleukotoxin methyl esters in ethanol (700 mg/kg, 1.0 ml/kg).
- dicyclohexylurea compound 2
- corn oil 400 mg/kg, 7 ml/kg
- corn oil corn oil
- mice died of respiratory distress after exposure to leukotoxin/isoleukotoxin.
- the lethal reactions took place sequentially with accelerated breathing, opening of the mouth to assist breathing, and bloody fluid running from the nose.
- pretreatment with N,N′-dicyclohexylurea 2 either blocked the animal death induced by leukotoxin/isoleukotoxin or lengthened the lives of the mice.
- Epoxide hydrolase inhibition can be valuable for research purposes, such as to inhibit the microsomal epoxide hydrolase in the Ames' and other toxicity assays where one can increase the sensitivity of the assay for epoxide containing mutagenes and carcinogens and test the hypothesis that the epoxide is involved in toxin action.
- Table 4 illustrates a variety of inhibitors together with inhibition data.
- TABLE 4 Mouse Human Rat sEH sEH mEH IC 50 IC 50 IC 50 Inhibitor Structure No. ( ⁇ M)* ( ⁇ M)* ( ⁇ M)* 2 0.09 ⁇ 0.01 0.16 ⁇ 0.01 >500 19 5.8 ⁇ .04 48 ⁇ 3 8.3 ⁇ 0.4 57 0.06 ⁇ 0.01 0.16 ⁇ 0.01 >500 58 0.05 ⁇ 0.01 0.09 ⁇ 0.01 >500 101 1.04 ⁇ 0.02 5.5 ⁇ 0.1 73 ⁇ 1 104 0.04 ⁇ 0.01 0.29 ⁇ 0.01 >500 140 0.05 ⁇ 0.01 0.10 ⁇ 0.01 >500 161 156 ⁇ 3 289 ⁇ 7 >500 167 0.39 ⁇ 0.02 3.77 ⁇ 0.03 >500 168 0.06 ⁇ 0.01 0.12 ⁇ 0.01 >500 169 0.06 ⁇ 0.01 0.13 ⁇ 0.01 >500 172 0.12 ⁇ 0.01 0.30 ⁇ 0.01 >
- compound 2 illustrates a very potent inhibitor (preferred embodiment) of the EHs.
- Compounds 19, 101, 204 and 238 illustrate potent selective inhibitors of the microsomal EH.
- Compound 225 illustrates that chiral compounds can be used to increase potency and selectivity.
- metabolites or degradation products of the Formula 1 or Formula 2 inhibitors can also form inhibitory complexes with EH and be useful in practicing the invention.
- compound 32 of Table 4 is a known metabolite of the herbicide Diuron, and compound 32 inhibits mouse and human soluble epoxide hydrolase.
- Compound 303 (a degradation product of compound 28) is a better inhibitor of rat microsomal epoxide hydrolase.
- epoxide hydrolase inhibition in accordance with the invention may also be useful in conjunction with a cancer therapy. This is because the epoxide hydrolase expression in malignant tumors is one possible mechanism that has been suggested for anti-cancer drug resistance.
- Murray et al. “The Expression of Cytochrome P-450, Epoxide Hydrolase, and Glutathione S-Transferase in Hepatocellular Carcinoma,” Cancer, 71, pp. 36-43, 1993; Theyer et al., “Role of the MDR-1-Encoded Multiple Drug Resistance Phenotype in Prostate Cancer Cell Line,” J. of Urology, 150, pp. 1544-1547, 1993; Murray et al., “The Immunohistochemical Localization of Drug-Metabolizing Enzymes in Prostate Cancer,” J. of Pathology, 177, pp. 147-152, 1995.
- Table 5 illustrates mEH activity for cis-stilbene oxide (Wixtrom and Hammock, 1985, Biochemical Pharmacology and Toxicology, Vol. 1: Methodological Aspect of Drug Metabolizing Enzymes (Zakin and Versey, Eds.), John Wiley & Sons, Inc., New York, pp. 1-93) with various cancer cell lines that express microsomal EH.
- This enzyme is well known to participate in the hepatic metabolism of drug.
- the inhibition of this enzyme by Formula 1 or 2 compounds should decrease the metabolism of epoxide containing cancer drugs and thus increase their efficiency.
- microsomal EH activity is significantly expressed in several cancer lines and could participate in the metabolism of cancer drugs such as cyclohexene diepoxide, in malignant tumors.
- cancer drugs such as cyclohexene diepoxide
- a variety of anti-neoplastic drugs have been developed whose action is based on the alkylating properties of epoxides and diepoxides. Inhibitors of epoxide hydrolase could stabilize these compounds and increase their anti-neoplastic activity.
- Mullin, J. of Chem. Ecol., 14, pp. 1867-1888 (1988) reviewed a variety of epoxide hydrolases then known to metabolize plant allelo chemicals, antifeedents, and essential hormones or precursors for herbivorous arthropods.
- the administration of inhibitors so as to cause inhibition of juvenile hormone epoxide hydrolase, for example, in accordance with this invention can disrupt various crucial insect processes.
- the tomato hornworm, Manduca sexta is a pest of tobacco, tomato, and related crops. It also is an insect commonly used as a model in insect biology. As seen by data of Table 6, compounds 17, 19, and 58 displayed low IC 50 for the recombinant microsomal EH thereof, indicating a very good inhibition of this insect EH by the compounds of the invention.
- This enzyme is involved in the development of this insect by degrading the epoxide of insect juvenile hormone to the inactive diol. Inhibitors of the enzyme will disrupt the development of the insect. Some juvenile hormone mimics or juvenoids such as epofenonane contain the epoxide moiety.
- Vernolic acid is an industrial oil useful in manufacturing plastics, paints, and nylon precursors.
- Inhibiting the soluble epoxide hydrolase of plants can block degradation of epoxides formed biosynthetically, such as to block conversion of the desired vemolic acid in plants to its diol.
- Blee and Schuber Biochemical & Biophys. Res. Comm., 187, pp. 171-177 (1992), showed that soybean epoxide hydrolase catalyzes linoleic acid monoepoxides into their corresponding vic-diols.
- the inhibitors could be sprayed as plant growth regulators on field and row crops, delivered hydroponically, or added to tissue culture fluid in hairy root, cell, or callous culture.
- inhibiting the soluble epoxide hydrolase of plants can interfere with formation of plant cutin and thus can accelerate penetration of herbicides and other plant growth regulators.
- epoxide hydrolase inhibitors to accelerate or enhance herbicide action or to reduce herbicide resistance
- Formulations with the epoxide hydrolase inhibitor and herbicides can be prepared for foliage or root uptake.
- mycotoxins produced by fungi can be used to increase pathogenesis by destroying cells and to protect the fungal food source. These materials can be highly toxic to humans, domestic animals, and crop plants.
- Alternaria alternata f. sp. lycopersici is a fungal pathogen that causes the Alternaria stem canker disease of tomato.
- AAL toxins host-specific toxins
- the ability of the pathogen to infect leaves, stems, and green fruit of tomato is limited to genotypes that are homozygous for the recessive allele (asc/asc) of the Asc gene.
- the Asc gene also regulates toxin sensitivity; thus the toxins function as chemical determinants of the stem canker disease.
- AAL toxins which are members of the same class of sphinganine analog or mycotoxins as fumonisins, inhibit ceramide synthase in rat hepatocytes and induce apoptosis in monkey kidney cells.
- AAL toxins Unlike the case with fumonisins, the effects of chronic exposure of AAL toxins to animal health are still unresolved.
- the first of the AAL toxins (TA) was characterized in 1981 and more recently new isomeric toxins were purified and characterized.
- the presence of one pair of vicinal diols free or esterified, in the structure of all the AAL toxins suggests the possible involvement of an epoxide hydrolase (EH) in their synthesis. This hypothetical mechanism is supported by the fact that one of the oxygen atoms of the diol, came from direct incorporation of atmospheric oxygen and the other came from water.
- EH epoxide hydrolase
- practice of the invention is also useful to inhibit a fungal epoxide hydrolase, particularly when used in combination with a fungicide.
- an application rate from about 0.01 to 100 kg/hectare will be suitable for most purposes.
- epoxide hydrolase activity is widespread in plants in general and in their seeds. These levels could be profitably altered by inhibitors, antisense, or over expression of activity to alter relative levels of epoxides and diols. Epoxy lipids and their resulting diols are also thought involved in cross-linking waxes, cutins, and suberins in plant. Thus the compounds influence water retention, susceptibility to disease, and to agricultural chemicals by varying surface layers of plants.
- oxylipins may be chemical mediators.
- epoxides through an allene oxide synthase increase levels of jasmonic acid (Harms et al., “Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes,” The Plant Cell, 7:1645-1654 (1995)).
- Inhibiting epoxide hydrolases should result in more endogenous JA in plants with expected changes in plant secondary chemical constituents which will alter susceptibility to pest organisms.
- the essential oils of plants can be altered by altering the levels of chemical mediators (where epoxide hydrolases can alter levels of essential epoxides) as described above.
- essential oils (terpenes) in plants also can be altered directly by changing the relative levels of enzymes which form epoxides and epoxide hydrolases.
- Many essential oils are epoxides. These materials are known plant defensive chemicals, but many are also important chemical intermediates and constituents of perfume and cosmetic formulations, such as essential oils of Pelargonium sp.
- Epoxide hydrolase inhibitors could be used to increase the yield of high value essential oils.
- epoxides are not only involved in terpenes and essential oils in plants, but also in the biosynthesis of squalene, lanosterol, phytosteroids, and cholesterol (Taton et al., “Inhibition of Higher Plant 2,3-oxidosqualene Cyclases by Nitrogen-Containing Oxidosqualene Analogs,” Phytochemistry, 43:75-81 (1996)).
- MsEH mouse sEH
- HsEH human sEH
- the expressed proteins were purified from cell lysate by affinity chromatography. Wixtrom et al., Anal. Biochem., 169:71-80 (1988). Protein concentration was quantified using the Pierce BCA assay using bovine serum albumin as the calibrating standard. The preparations were at least 97% pure as judged by SDS-PAGE and scanning densitometry. They contained no detectable esterase or glutathione transferase activity which can interfere with the assay. The assay was also evaluated with similar results in crude cell lysates or homogenate of tissues.
- IC 50 s for each inhibitor were determined by the spectrophotometric assay of Dietze et al. (Dietze et al., “Spectrophotometric Substrates for Cytosolic Epoxide Hydrolase,” Anal. Biochem., 216:176-187 (1994)) using cloned epoxide hydrolase genes expressed in the baculovirus system using racemic 4-nitrophenyl-trans-2,3-epoxy-3-phenylpropyl carbonate (NEP2C) as substrate.
- the IC 50 is the concentration of inhibitor which reduces enzyme activity by 50%.
- IC 50 s were determined by regression of at least five datum points with a minimum of two points in the linear region of the curve on either side of the IC 50 .
- the curve was generated from at least four separate runs to obtain the standard deviation.
- compounds of similar potency were included to insure rank order.
- a further rank order among very good compounds was determined with the 3 H trans-stilbene oxide assay as described in Wixtrom and Hammock (below) or a related assay based on Borhan et al., “Improved Radiolabeled Substrates for Soluble Epoxide Hydrolase,” Anal. Biochem., 231:188-200 (1995).
- Mammalian microsomal EH was assayed using 3 H-cis-stilbene oxide, insect microsomal EH was assayed with 3H-juvenile hormone III, and 3 H-trans-diphenyl-propene oxide, mammalian and plant cytosolic, and peroxisomal EHs were assayed using 3 H-trans-diphenyl-propene oxide, P-450 was assayed using 3 H-testosterone, carboxylic esterase assay used para-nitrophenylacetate, and gluthatione-S-transferase assay used chlorodinitrobenzene. Pepsin was assayed using hemoglobin as substrate.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Biologically stable inhibitors of soluble epoxide hydrolases are provided. The inhibitors can be used, for example, to selectively inhibit epoxide hydrolase in therapeutic applications such as treating inflammation, for use in affinity separations of the epoxide hydrolases, and in agricultural applications. A preferred class of compounds for practicing the invention have the structure shown by Formula 1
wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 are each independently a substituted or unsubstituted alkyl, haloalkyl, cycloalkyl, aryl, acyl, or heterocyclic, or being a metabolite or degradation product thereof.
wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 are each independently a substituted or unsubstituted alkyl, haloalkyl, cycloalkyl, aryl, acyl, or heterocyclic, or being a metabolite or degradation product thereof.
Description
- This application is a continuation of U.S. application Ser. No. 10/694,641, filed Oct. 27, 2003, which is a continuation of U.S. application Ser. No. 10/328,495, filed Dec. 23, 2002, now U.S. Pat. No. 6,693,130, which is a continuation of U.S. application Ser. No. 09/721,261, filed Nov. 21, 2000, now U.S. Pat. No. 6,531,506, which is a continuation-in-part of U.S. application Ser. No. 09/252,148, filed Feb. 18, 1999, now U.S. Pat. No. 6,150,415. The contents of each of these applications are incorporated herein by reference.
- This invention was made with U.S. Government support under Grant Nos. HL53994, ES04699 and ES02710, awarded by the National Institutes of Health. The Government has certain rights in this invention.
- 1. Field of the Invention
- The present invention generally relates to methods of treating epoxide hydrolases so as to form complexes therewith, and more particularly relates to compounds, such as ureas, which complex with epoxide hydrolases and can be used to purify, isolate, or inhibit the epoxide hydrolases so complexed. Where compounds such as ureas are immobilized to water insoluble supports, they can be used in affinity separations of epoxide hydrolases. When compounds such as ureas are administered therapeutically, they are useful in treating inflammatory diseases such as adult respiratory distress syndrome or synergizing anti-neoplastic agents. When applied agriculturally, they will selectively inhibit epoxide hydrolase in pest and crop species.
- 2. Background of the Invention
- Epoxide hydrolases (EH, E.C.3.3.2.3) are enzymes which catalyze the hydrolysis of epoxides including arene oxides to their corresponding diols by the addition of water. EHs play an important role in the metabolism of a variety of compounds including hormones, fatty acid derivatives, chemotherapeutic drugs, carcinogens, environmental pollutants, mycotoxins, and other harmful foreign compounds.
- Several members of this ubiquitous enzyme sub-family have been described based on substrate specificity and subcellular localization. Mammalian EHs include cholesterol epoxide hydrolase, leukotriene A4, hydrolase, hepoxilin hydrolase, microsomal epoxide hydrolase (mEH), and soluble epoxide hydrolase (sEH). The latter two enzymes have been extensively studied and found to have broad and complementary substrate selectivity. The microsomal and soluble forms are known to detoxify mutagenic, toxic, and carcinogenic xenobiotic epoxides, are involved in physiological homeostasis, and both are members of the α/β-hydrolase fold family.
- U.S. Pat. No. 5,445,956, issued Aug. 29, 1995, inventors Hammock et al., discloses recombinant human and mouse soluble epoxide hydrolase. The mouse enzyme provides a rodent model to evaluate for therapeutic development of human soluble epoxide hydrolase inhibitors.
- The search for good sEH inhibitors has been actively pursued for the last about twenty years as reviewed by Hammock et al., Comprehensive Toxicology, (Guengerich, F. P., ed.), Pergamon, Oxford, Vol. 3, Chapter 18, pp. 283-305 (1997). Numerous reagents which selectively modify thiols, imidazoles, and carboxyls irreversibly inhibit sEH. Mullin and Hammock, Arch. Biochem. Biophys., 216, pp. 423-429 (1982) disclosed that chalcone oxides were potent inhibitors of sEH, and Dietze et al., Comp. Biochem. Physiolo., 104B, No. 2, pp. 309-314 (1993) disclosed that trans-3-phenylglycidols were potent chiral inhibitors of sEH.
- Copending U.S. Ser. No. 08/909,523, filed Aug. 12, 1997, Hammock et al., suggests the treatment of pulmonary diseases with epoxide hydrolase inhibitors such as chalcone oxides, and describes assays for epoxide hydrolase inhibitors. Among the epoxide hydrolase inhibitors taught are alternative enzyme substrates, such as the epoxide of methyl oleate and other fatty acids and esters or methyl epoxyoctadecenoate and phenyl glycidiols, as well as chalcone oxides.
- EH enzymes have been reported to be present in a wide variety of species including bacteria, yeast, fungi, plants, nematodes, insects, birds, fish, and mammals. Indeed, they appear to be present in most, if not all, organisms, and have multiple roles. Plant epoxide hydrolases are also known. For example, fatty acid epoxide hydrolases from apple fruit skin, soybean seedlings, and rice plants have been described. The cDNAs encoding epoxide hydrolase from potato, cress, and tobacco have been isolated and cloned. Stapleton et al., Plant J., 6, pp. 251-258 (1994); Kiyosue et al., Plant J., 6, pp. 259-269 (1994); Guo et al., Plant J., 15, pp. 647-656 (1998). These plant epoxide hydrolases show a high homology with mammalian soluble epoxide hydrolase, but they are 30% shorter on the N-terminus.
- Epoxide hydrolases in insects and other arthropods function in the metabolism of endogenous chemical mediators like juvenile hormone and degradation of plant allelochemicals which defend the plant against insects. These enzymes in plants catalyze the hydration of epoxystearic acid to the corresponding α,β-diols which are important intermediates in the cutin biosynthesis and which have some anti-fungal activity.
- Epoxides and diols are key synthetic intermediates in the production of both bulk and speciality organic chemicals. Thus, biosynthetic mechanisms to convert epoxides to diols under gentle, regio and stereospecific conditions are very important. The ability to test if a biosynthetic pathway involves an epoxide by the use of a selective inhibitor can be important in the search for new biosynthetic enzymes and the use of high affinity binding agents in the rapid affinity purification of epoxide hydrolases has proven very important in the study of the mammalian soluble epoxide hydrolases.
- The presently known high affinity binding agents for affinity purification of the mammalian soluble epoxide hydrolases include thiols such as benzylthiol, alkyl or terpenoid thiols reacted with epoxy activated SEPHAROSE separation media (SEPHAROSE is available from Pharmacia). These affinity chromatography columns bind a variety of proteins, many of which have a lipophilic catalytic site. The soluble epoxide hydrolase can be selectively eluted from these columns with chalcone oxides, generally as described by Prestwich, Proc. Natl. Acad. Sci. USA, 82, pp. 1663-1667 (1985) and Wixtrom et al., Analyt. Biochem, 169, pp. 71-80 (1988). However, to date there are no affinity purification systems for other epoxide hydrolases which could be used for the initial isolation and cloning of the enzymes, as well as for the isolation of epoxide hydrolases for industrial purposes. New high affinity binding agents for various epoxide hydrolases, particularly for mammalian soluble epoxide hydrolases, remain a useful goal. Also, eluting agents which are competitive, rather then irreversible inhibitors, could be valuable.
- In one aspect of the present invention, a method of treating an epoxide hydrolase is provided that is useful to purify, isolate, or inhibit the target epoxide hydrolase by complexing with a free form or immobilized compound so that the activity of the complexed epoxide hydrolase is modified with respect to enzymatically active, uncomplexed epoxide hydrolase. Compounds useful for forming complexes with epoxide hydrolases in practicing this invention include epoxide hydrolase transition state mimics. For example, ureas, amides, and carbamates can mimic the enzyme transition state or other transient intermediates along the reaction coordinate when these compounds stably interact with the enzyme catalytic site.
- A preferred class of compounds with this complexing ability for practice in accordance with the invention has the structure shown by Formula 1.
wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 are each independently a substituted or unsubstituted alkyl, haloalkyl, cycloalkyl, aryl, acyl, or heterocyclic. - Where the modified activity of the complexed epoxide hydrolase is enzyme inhibition, then particularly preferred compound embodiments have an IC50 (inhibition potency or, by definition, the concentration of inhibitor which reduces enzyme activity by 50%) of less than about 500 μM. For example, we have discovered that the five compounds listed in Table 1 have an IC50 for mouse soluble epoxide hydrolase of less than about 0.1 μM and less than about 0.8 μM for human soluble epoxide hydrolase.
TABLE 1 Mouse sEH Human sEH Inhibitor Structure No. IC50 (μM) IC50 (μM) 2 0.09 ± 0.01 0.16 ± 0.01 4 0.06 ± 0.01 0.13 ± 0.02 15 0.09 ± 0.01 0.72 ± 0.01 18 0.07 ± 0.01 0.15 ± 0.01 187 0.05 ± 0.01 0.42 ± 0.03 - In Table 1, the compound 187 is an amide and illustrates that the pharmacophore can be more general than ureas or carbamates.
- The enzymes of interest for this invention typically are able to distinguish enantiomers. Thus, in choosing an inhibitor for use for an application in accordance with the invention it is preferred to screen different optical isomers of the inhibitor with the selected enzyme by routine assays so as to choose a better optical isomer, if appropriate, for the particular application. The pharmacophores described here can be used to deliver a reactive functionality to the catalytic site. These could include alkylating agents such as halogens or epoxides or Michael acceptors which will react with thiols and amines. These reactive functionalities also can be used to deliver fluorescent or affinity labels to the enzyme active site for enzyme detection.
- Inhibition of soluble epoxide hydrolase can be therapeutically effective to treat an inflammatory disease, such as adult respiratory distress syndrome. This is because suitable epoxide hydrolase inhibitors retard or prevent an inflammatory response in a patient via an inhibition of formation of one or more polyunsaturated lipid metabolites, such as to inhibit the formation of dihydroxy-oxy-eicosadienoates, or DiHOxyEDEs in the arachidonic acid series of oxylipins. Arachidonic acid epoxides (EETs) and in some cases the corresponding diols (DHETs) are widely known to be biologically active as well. They are thought to be involved in the onset and severity of fever (Kozak, 1998), they inhibit prostaglandin E2 production in vascular smooth muscle (Fang, 1998), mediate bradykinin induced vasodilation of heart (Fulton, 1998), induce vasodilation (Oltman, 1998; Imaoka, 1998), and have other physiological effects. The soluble epoxide hydrolase appears to bioactivate an inflammatory-derived mediator, which suggests the need for effective and site-specific inhibitors of epoxide hydrolase, such as are provided as one aspect of the present invention. The inhibitor of epoxide hydrolase can also be used therapeutically to treat fever, inflammatory disease, and hypertension. Thus, inhibitors of the invention act to reduce the conversion of lipid epoxides to the corresponding diols, as in conversion of EEP's to DHET's.
- In another aspect of this invention, formation of an epoxide hydrolase complex is useful to purify or to isolate the targeted epoxide hydrolase. For example, the Formula 1 compound may be derivatized so as to be immobilized to a water insoluble support. When one contacts the support with enzymatically active epoxide hydrolase, such as to elute an aqueous solution having epoxide hydrolase through the support, then the complex formation causes a selective separation of the epoxide hydrolase.
- Inhibitors, such as certain analogues and active derivatives of the Formula 1 compound, can also be used to elute epoxide hydrolases from these and other supports. As earlier noted, useful compounds to complex with epoxide hydrolases in practicing this invention include epoxide hydrolase transition state dicyclohexyl mimics, such as ureas and carbamates which can mimic the enzyme transition state when they stably interact with the enzyme catalytic site. We have found that analogs of the Formula 1 compound, which can also function as selective inhibitors of soluble epoxide hydrolase, include compounds with the Formula 2 structure (where X, Y, R1, R2, R3, and R4 may be as described for Formula 1) but wherein Z is oxygen or sulfur and W is carbon, phosphorous, or sulfur. An illustrative several such inhibitor compounds of the Formula 2 structure are shown in Table 2. Compound 12 may be converted to the corresponding carbodiimide (compound 1) and then to the corresponding urea (compound 2).
TABLE 2 Mouse sEH Human sEH Inhibitor Structure No. IC50 (μM) IC50 (μM) 1 0.25 ± 0.02 0.47 ± 0.01 11 3.8 ± .01 7.5 ± 0.4 12 99 ± 5 20 ± 1 - Chemically and biochemically a thiourea can be converted to a carbodiimide and the carbodiimide will hydrolyze to the urea. If the N and N′ substituents are cyclohexyl then the compound is dicyclohexylcarbodiimide (compound 1).
- We believe that the inhibitors described herein are the first biologically stable inhibitors of any epoxide hydrolase. The inhibitors have applications on epoxide hydrolases in mammals, plants, insects, and likely on any organism with an epoxide hydrolase.
- Other aspects, advantages, and applications of this invention will become apparent upon reading the specification and the appended claims.
-
FIGS. 1A and 1B graphically illustrate the effect of time on the inhibition of mouse soluble EH and human soluble EH, respectively, by compounds 1 and 2; and -
FIG. 2 graphically illustrates the effect of compound 2 on the potato soluble EH (22.5 nM) and cress soluble EH (35 nM). - One aspect of this invention pertains to inhibition of epoxide hydrolase, preferably selective inhibition. This means that an inhibitor has a greater inhibitory effect on one EH enzyme than it does on other EH enzymes, and has greater selectivity for EH than for non-EH enzymes.
- Particularly preferred practice of this invention is to selectively inhibit soluble EH. Example 5 demonstrates the assay used to determine selective inhibition of soluble EH for a number of compounds in accordance with this invention, whose inhibitory data are set out by Table 4. Selectivity is illustrated by Table 3, where the inhibitor used was compound 2.
TABLE 3 Enzymes % Inhibition by 100 μM of 2 cytosolic EH 99.3 ± 0.8 peroxisome EH 99.6 ± 0.6 microsomal EH 0.5 ± 0.8 cytosolic GST 0.8 ± 1.1 microsomal P-450 1.7 ± 2.3 microsomal carboxyl-esterase 3.5 ± 4.7 pepsin 0.1 ± 0.1 - As shown by the Table 3 data, compound 2 at a concentration of 100 μM inhibited totally the cytosolic and peroxisome EH activities while no significant inhibition was observed for the other enzyme activities tested. These results illustrate the selective inhibition of soluble EH, present in the cytosol and peroxisome enzymes, by the compounds of the invention. A conclusion from these data is that compound 2 is a potent inhibitor of the cytosolic and peroxisomal EH but not of the other enzymes tested. The Ki calculated for compound 2 with mouse sEH was 22±3 nM.
- Suitable Inhibitor Embodiments
- In one aspect of the present invention a method of treating an epoxide hydrolase is provided that is useful to purify, isolate, or inhibit the target epoxide hydrolase by complexing with a free form or immobilized compound so that the activity of the epoxide hydrolase so complexed is modified with respect to enzymatically active, uncomplexed epoxide hydrolase.
- A preferred class of compounds with this complexing ability for practice in accordance with the invention has the structure shown by Formula 1.
wherein X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, at least one of R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 is each independently H, C1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic. - In addition to the compounds in Formula 1 which interact with the enzyme in a reversible fashion based on the inhibitor mimicking an enzyme-substrate transition state or reaction intermediate, one can have compounds that are irreversible inhibitors of the enzyme. The active structures such as those in the Tables or Formula 1 can direct the inhibitor to the enzyme where a reactive functionality in the enzyme catalytic site can form a covalent bond with the inhibitor. One group of molecules which could interact like this would have a leaving group such as a halogen or tosylate which could be attacked in an SN2 manner with a lysine or histidine. Alternatively, the reactive functionality could be an epoxide or Michael acceptor such as a α/β-unsaturated ester, aldehyde, ketone, ester, or nitrile.
- As shown in
FIG. 1 , the inhibition of the Mouse sEH by compound 1 increased with the time, while compound 2 inhibition is stable over time. This observation could be explained by the fact that carbodiimide 1 is slowly hydrolyzed to the urea 2 in water solution. These results support the hypothesis that the ureas, carbamates, amides, and related compounds discussed in this invention are acting directly. These results also illustrate the possibility to use carbodiimides as precursor forms of the urea compounds of the invention. Thioureas have in turn been used commercially as precursor forms of carbodiimides. - Further, in addition to the Formula 1 compounds, active derivatives can be designed for practicing the invention. For example, dicyclohexyl thiol urea can be oxidized to dicyclohexylcarbodiimide which, with enzyme or aqueous acid (physiological saline), will form an active dicyclohexylurea. Alternatively, the acidic protons on carbamates or ureas can be replaced with a variety of substituents which, upon oxidation, hydrolysis or attack by a nucleophile such as glutathione, will yield the corresponding parent structure. These materials are known as prodrugs or protoxins (Gilman et al., 1985, The Phamacological Basis of Therapeutics, 7th Edition, MacMillan Publishing Company, New York, p. 16) Esters, for example, are common prodrugs which are released to give the corresponding alcohols and acids enzymatically (Yoshigae et al., Chirality, 9, pp. 661-666 1997). The prodrugs can be chiral for greater specificity. These derivatives have been extensively used in medicinal and agricultural chemistry to alter the pharmacological properties of the compounds such as enhancing water solubility, improving formulation chemistry, altering tissue targeting, altering volume of distribution, and altering penetration. They also have been used to alter toxicology profiles.
- There are many prodrugs possible, but replacement of one or both of the two active hydrogens in the ureas described here or the single active hydrogen present in carbamates is particularly attractive. Such derivatives have been extensively described by Fukuto and associates. These derivatives have been extensively described and are commonly used in agricultural and medicinal chemistry to alter the pharmacological properties of the compounds. (Black et al., “Selective Toxicity of N-Sulfenylated Derivatives of Insecticidal Methylcarbomate Ester,” Journal of Agricultural and Food Chemistry, 21(5), pp. 747-751, 1973; Fahmy et al, Selective Toxicity of N,N′-thiodicarbamates,” Journal of Agricultural and Food Chemistry, 26(3), pp. 550-556, 1978; Jojima et al., “Sugar, Glycerol, and (Pyridylalkoxy)Sulfinyl Derivatives of Methylcarbamates Insecticides,” Journal of Agricultural and Food Chemistry, 31(3), pp. 613-620, 1983; and Fahmy et al., “N-Sulfinylated Derivative of Methylcarbamate Esters,” Journal of Agricultural and Food Chemistry, 29(3), pp. 567-572, May-June 1981.)
- Such active proinhibitor derivatives are within the scope of the present invention, and the just-cited references are incorporated herein by reference. Without being bound by theory, we believe that suitable inhibitors of the invention mimic the enzyme transition state so that there is a stable interaction with the enzyme catalytic site. The inhibitors appear to form hydrogen bonds with the nucleophilic carboxylic acid and a polarizing tyrosine of the catalytic site.
- Where the modified activity of the complexed epoxide hydrolase is enzyme inhibition, then particularly preferred compound embodiments have an IC50 (inhibition potency or, by definition, the concentration of inhibitor which reduces enzyme activity by 50%) of less than about 500 μM.
- Metabolites or degradation products of the foregoing Formula 1 compounds or the compounds discussed below with reference to Formula 2 can also be used as inhibitors and form complexes with EH.
- Isolation or Purification of Epoxide Hydrolases by Affinity Separation
- An aspect of this invention is to provide affinity purification systems for enzymes having an oxyanion hole and a nucleophilic acid in the catalytic site, particularly where the enzyme is an epoxide hydrolase. We believe it likely that the inhibitors shown herein to inhibit soluble EH will also inhibit a broad range of enzymes in the α/β-hydrolase fold family that have a nucleophilic acid in the catalytic site. Thus, a purification method for an epoxide hydrolase is provided by immobilizing a compound having the Formula 2 structure to a water-insoluble support.
wherein Z is oxygen, nitrogen, or sulfur, W is carbon, phosphorous, or sulfur, X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 is each independently H, C1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic. - Suitable water insoluble supports to which the Formula 2 compound are usefully immobilized include epoxy activated SEPHAROSE®, amino propyl or hexyl SEPHAROSE®, or carboxyl SEPHAROSE®. A variety of solid matrices including glass beads, polyvinyl beads, or agarose can be used.
- The so-immobilized compounds constitute a suitable packing material for affinity separations, with the immobilized compounds being capable of forming a complex with epoxide hydrolase when an aqueous solution is eluted through a column packed with the separation packing material or in a batch procedure.
- Immobilization of the compound will typically be by derivatizing through one of R1 or R3 by well-known methods. For example, Pharmacia Fine Chemicals sells amino propyl or other amino terminal affinity materials (typically under the trademark “SEPHAROSE®”) and BioRad Laboratories sells agarose gels and beads for various affinity chromatography needs (typically under the trademark “AFFI-GEL®”). These materials can be treated with isocyanates, for example, to give stable immobilized urea derivatives in accordance with the invention that will complex with epoxide hydrolases. Alternatively, the Formula 1 compounds can be used to elute epoxide hydrolases from more general affinity columns, such as where a thiol (e.g. benzylthiol) is reacted with epoxy activated “SEPHAROSE®” (either gel or beads) prepared by reaction of butane glycol diglycidyl ether. Epoxide hydrolases in an aqueous solution can then be selectively eluted with the Formula 1 derivatized ureas or Formula 2 derivatized compounds in accordance with this invention.
- Epoxide Hydrolase Inhibition to Treat Inflammatory Disease
- The inflammatory response is one of the most important physiological mechanisms for the maintenance of human health. However, disorders of inflammation or an inappropriate inflammatory response can result in tissue injury, morbidity, or mortality.
- Adult respiratory distress syndrome (ARDS) is a pulmonary disease that has a mortality rate of 50% and results from lung lesions that are caused by a variety of conditions found in trauma patients and in severe burn victims. Ingram, R. H. Jr., “Adult Respiratory Distress Syndrome,” Harrison's Principals of Internal Medicine, 13, p. 1240, 1995. With the possible exception of glucocorticoids, there have not been therapeutic agents known to be effective in preventing or ameliorating the tissue injury, such as microvascular damage, associated with acute inflammation that occurs during the early development of ARDS.
- ARDS, which is defined in part by the development of alveolar edema, represents a clinical manifestation of pulmonary disease resulting from both direct and indirect lung injury. While previous studies have detailed a seemingly unrelated variety of causative agents, the initial events underlying the pathophysiology of ARDS are not well understood. ARDS was originally viewed as a single organ failure, but is now considered a component of the multisystem organ failure syndrome (MOFS). Pharmacologic intervention or prevention of the inflammatory response is presently viewed as a more promising method of controlling the disease process than improved ventilatory support techniques. See, for example, Demling, Annu. Rev. Med., 46, pp. 193-203, 1995.
- Another disease (or group of diseases) involving acute inflammation is the systematic inflammatory response syndrome, or SIRS, which is the designation recently established by a group of researchers to describe related conditions resulting from, for example, sepsis, pancreatitis, multiple trauma such as injury to the brain, and tissue injury, such as laceration of the musculature, brain surgery, hemorrhagic shock, and immune-mediated organ injuries. Bone, JAMA, 268(24):3452-3455 (1992).
- We view an important therapeutic application for an aspect of this invention to be in treating diseases of the lung. The lung, with its extensive surface area exposed directly to the environment, is particularly susceptible to oxidant injury and products of inflammation. Since the entire cardiac output passes through the pulmonary artery, the lungs can also be injured by blood-borne agents. The cellular heterogeneity of mammalian lung complicates direct study of these pulmonary cells most susceptible to injury. Furthermore, the complex pulmonary anatomy renders it difficult to distinguish precisely where biological agents are metabolized in lung tissues. The target tissue and sequence of events underlying alveolar edema are not conclusively established; consequently, the interrelationships and relative contributions of endothelial versus epithelial versus inflammatory compartments in mitigating damage to the air-blood barrier remain equivocal.
- The ARDS ailments are seen in a variety of patients with severe burns or sepsis. Sepsis in turn is one of the SIRS symptoms. In ARDS there is an acute inflammatory reaction with high numbers of neutrophils that migrate into the interstitium and alveoli. If this progresses there is increased inflammation, edema, cell proliferation, and the end result is impaired ability to extract oxygen. ARDS is thus a common complication in a wide variety of diseases and trauma. The only treatment is supportive. There are an estimated 150,000 cases per year and mortality ranges from 10% to 90%.
- The exact cause of ARDS is not known. However it has been hypothesized that over-activation of neutrophils leads to the release of linoleic acid in high levels via phospholipase A2 activity. Linoleic acid in turn is converted to 9,10-epoxy-12-octadecenoate enzymatically by neutrophil cytochrome P-450 epoxygenase and/or a burst of active oxygen. This lipid epoxide, or leukotoxin, is found in high levels in burned skin and in the serum and bronchial lavage of burn patients. Furthermore, when injected into rats, mice, dogs, and other mammals it causes ARDS. The mechanism of action is not known. However, the leukotoxin diol produced by the action of the soluble epoxide hydrolase appears to be a specific inducer of the mitochondrial inner membrane permeability transition (MPT). This induction by leukotoxin diol, the diagnostic release of cytochrome c, nuclear condensation, DNA laddering, and CPP32 activation leading to cell death were all inhibited by cyclosporin A which is diagnostic for MPT induced cell death. Actions at the mitochondrial and cell level were consistent with this mechanism of action suggesting that the inhibitors of this invention could be used therapeutically with compounds which block MPT.
- Therapeutic or pharmaceutical compositions of the invention that contain the inhibitors may be prepared by any of the various methods well known. Typically, the inhibitor is formulated so as to be suitable for oral or parenteral administration and is typically dissolved or dispersed in a physiologically tolerable carrier or diluent. As one example, an inhibitor can be dissolved or dispersed in a liquid composition such as sterile suspension or solution or as an isotonic preparation. Particularly well suited are injectable medium formulated with buffered or unbuffered isotonic and sterile saline or glucose solution. For in vitro use was in which inhibition of the activity of the target epoxide hydrolase may be monitored by the lessening of the degree of inflammation are well known. The amount of therapeutic inhibitor administered can be by a single administration or a submultiple of the total amount. In addition, multiple administrations over a period of several days, weeks, or months are contemplated.
- The active agent can also be used in compositions such as tablets or pills, preferably containing a unit dose, and may be mixed with conventional tableting ingredients. Actual dosage levels of the epoxide hydrolase inhibitor can be varied to obtain the desired therapeutic response for a particular composition and method of administration. The total daily dose administered is contemplated to be from about 0.001 to about 100 mg per kg body weight. However, when practicing the invention a drug like clofibrate, which is known to induce the soluble epoxide hydrolase and cytochrome P-450, and a drug like acetaminophen, which depletes glutathione, should be avoided. This is because we have experimental data suggesting that when glutathione levels are depleted, then leukotoxin becomes more toxic. By contrast, parallel therapies designed to enhance alternate pathways of leukotoxin metabolism such as administration of N-acetylcysteine and glutathione and their ethyl esters should be encouraged.
- Example 1 illustrates an in vivo use of the inhibitor embodiment 2 to block animal death induced by leukotoxins/isoleukotoxins or to lengthen lives of mice.
- Male Swiss Webster mice (25-28 g) were purchased from Simonsen, Gilroy, Calif. The animals had free access to water and food. The mice (three in each group) were pretreated i.p. with dicyclohexylurea (compound 2) suspended in corn oil (400 mg/kg, 7 ml/kg) or corn oil as positive controls. After 30 minutes of the pretreatment, the mice were treated intravenously through the tail vein with a 1:1 mixture of leukotoxin/isoleukotoxin methyl esters in ethanol (700 mg/kg, 1.0 ml/kg).
- The mice died of respiratory distress after exposure to leukotoxin/isoleukotoxin. The lethal reactions took place sequentially with accelerated breathing, opening of the mouth to assist breathing, and bloody fluid running from the nose. However, pretreatment with N,N′-dicyclohexylurea 2 either blocked the animal death induced by leukotoxin/isoleukotoxin or lengthened the lives of the mice.
- Other Applications for Epoxide Hydrolase Inhibition
- Epoxide hydrolase inhibition can be valuable for research purposes, such as to inhibit the microsomal epoxide hydrolase in the Ames' and other toxicity assays where one can increase the sensitivity of the assay for epoxide containing mutagenes and carcinogens and test the hypothesis that the epoxide is involved in toxin action.
- Table 4 illustrates a variety of inhibitors together with inhibition data.
TABLE 4 Mouse Human Rat sEH sEH mEH IC50 IC50 IC50 Inhibitor Structure No. (μM)* (μM)* (μM)* 2 0.09 ±0.01 0.16 ±0.01 >500 19 5.8 ±.04 48 ± 3 8.3 ±0.4 57 0.06 ±0.01 0.16 ±0.01 >500 58 0.05 ±0.01 0.09 ±0.01 >500 101 1.04 ±0.02 5.5 ±0.1 73 ± 1 104 0.04 ±0.01 0.29 ±0.01 >500 140 0.05 ±0.01 0.10 ±0.01 >500 161 156 ± 3 289 ± 7 >500 167 0.39 ±0.02 3.77 ±0.03 >500 168 0.06 ±0.01 0.12 ±0.01 >500 169 0.06 ±0.01 0.13 ±0.01 >500 172 0.12 ±0.01 0.30 ±0.01 >500 179 0.06 ±0.01 0.10 ±0.01 >500 180 0.06 ±0.01 0.10 ±0.01 >500 192 0.05 ±0.01 0.10 ±0.01 >500 193 0.05 ±0.01 0.19 ±0.1 >500 204 >250 49 ± 7 9.9 ±0.2 225 0.84 ±0.10 1.05 ±0.03 >500 238 50 ± 5 57 ± 1 9.9 ±0.2 32 108 ±4 47 ± 2 >500 28 5.8 ±0.4 48 ± 3 8.3 ±0.4 303 >500 >500 2.67 ±0.07 - The Table 4 data illustrates that soluble EH can be inhibited selectively, and compounds 19 and 101 illustrate that microsomal EH can also be inhibited. We believe that these compounds will inhibit a broad range of enzymes in the α/β-hydrolase fold family that have a nucleophilic acid in the catalytic site. The compounds should allow computational chemistry to predict additional active materials.
- Further, compound 2 illustrates a very potent inhibitor (preferred embodiment) of the EHs. Compounds 19, 101, 204 and 238 illustrate potent selective inhibitors of the microsomal EH. Compound 225 illustrates that chiral compounds can be used to increase potency and selectivity.
- As earlier noted, metabolites or degradation products of the Formula 1 or Formula 2 inhibitors can also form inhibitory complexes with EH and be useful in practicing the invention. Thus, for example, compound 32 of Table 4 is a known metabolite of the herbicide Diuron, and compound 32 inhibits mouse and human soluble epoxide hydrolase. Compound 303 (a degradation product of compound 28) is a better inhibitor of rat microsomal epoxide hydrolase.
- Therapeutic uses of epoxide hydrolase inhibition in accordance with the invention may also be useful in conjunction with a cancer therapy. This is because the epoxide hydrolase expression in malignant tumors is one possible mechanism that has been suggested for anti-cancer drug resistance. Murray et al., “The Expression of Cytochrome P-450, Epoxide Hydrolase, and Glutathione S-Transferase in Hepatocellular Carcinoma,” Cancer, 71, pp. 36-43, 1993; Theyer et al., “Role of the MDR-1-Encoded Multiple Drug Resistance Phenotype in Prostate Cancer Cell Line,” J. of Urology, 150, pp. 1544-1547, 1993; Murray et al., “The Immunohistochemical Localization of Drug-Metabolizing Enzymes in Prostate Cancer,” J. of Pathology, 177, pp. 147-152, 1995.
- For example, Table 5 illustrates mEH activity for cis-stilbene oxide (Wixtrom and Hammock, 1985, Biochemical Pharmacology and Toxicology, Vol. 1: Methodological Aspect of Drug Metabolizing Enzymes (Zakin and Versey, Eds.), John Wiley & Sons, Inc., New York, pp. 1-93) with various cancer cell lines that express microsomal EH. This enzyme is well known to participate in the hepatic metabolism of drug. Thus, the inhibition of this enzyme by Formula 1 or 2 compounds should decrease the metabolism of epoxide containing cancer drugs and thus increase their efficiency.
TABLE 5 mEH activity Cell Line (nmol · min−1 · mg−1) Prostate cancer cells PC-3 0.67 DU 145 1.80 LNCaP 1.37 Lung cancer cells CaLu-1 1.53 A-549 0.66 Head and neck cancer cells SQ-20B 0.37 Ovarian cancer cells ES-2 0.10 SK-OV3 1.11 - As seen by the data of Table 5, microsomal EH activity is significantly expressed in several cancer lines and could participate in the metabolism of cancer drugs such as cyclohexene diepoxide, in malignant tumors. A variety of anti-neoplastic drugs have been developed whose action is based on the alkylating properties of epoxides and diepoxides. Inhibitors of epoxide hydrolase could stabilize these compounds and increase their anti-neoplastic activity.
- Uses in Insect Control
- Juvenile hormone regulates development of immature insects, the vitellogenin production and uptake into oocytes in reproductive female insects, and dipause in adult insects. Mullin, J. of Chem. Ecol., 14, pp. 1867-1888 (1988) reviewed a variety of epoxide hydrolases then known to metabolize plant allelo chemicals, antifeedents, and essential hormones or precursors for herbivorous arthropods. We contemplate application of the inhibitors herein described together with insecticides that would otherwise be degraded by insectan epoxide hydrolases. The administration of inhibitors so as to cause inhibition of juvenile hormone epoxide hydrolase, for example, in accordance with this invention can disrupt various crucial insect processes. Yet more broadly, action of insecticides degraded by general insectan epoxide hydrolases would benefit if these hydrolases were inhibited so as to enhance the efficacy of the insecticides. One example of such an epoxide containing insecticide is the cyclodiene HEOM. Another agricultural chemical is the epoxide glutathione transferase inhibitor tridiphane. Epoxide hydrolase inhibitors will improve the stability of antifeedents in pest organisms. Table 6 illustrates inhibition data for several inhibitors of this invention. Analogous applications can be made with nematodes and other agricultural, medical, and veterinary pests.
TABLE 6 M secta mEH Inhibitor Structure No. IC50 (μM) 17 28 ± 2 19 4.8 ± 0.4 58 3.9 ± 0.4 - The tomato hornworm, Manduca sexta, is a pest of tobacco, tomato, and related crops. It also is an insect commonly used as a model in insect biology. As seen by data of Table 6, compounds 17, 19, and 58 displayed low IC50 for the recombinant microsomal EH thereof, indicating a very good inhibition of this insect EH by the compounds of the invention. This enzyme is involved in the development of this insect by degrading the epoxide of insect juvenile hormone to the inactive diol. Inhibitors of the enzyme will disrupt the development of the insect. Some juvenile hormone mimics or juvenoids such as epofenonane contain the epoxide moiety. Related compounds include R-20458 and Ro 8-4374 in addition to the natural epoxides and diepoxides of the juvenile hormones. (Mumby and Hammock, “Stability of Epoxide Containing Juvenoids to Dilute Aqueous Acid,” J. Agric. Food Chem., 27, pp. 1223-1228,1979.) Selective inhibitors of the microsomal EH acting on juvenile hormone will synergize these pesticidal juvenoids.
- Uses with Plants
- Recent breakthroughs in work with transgenic plants have suggested that large amounts of unusual plant fatty acids could be produced from such plants, such as vernolic acid. Vernolic acid is an industrial oil useful in manufacturing plastics, paints, and nylon precursors. Inhibiting the soluble epoxide hydrolase of plants can block degradation of epoxides formed biosynthetically, such as to block conversion of the desired vemolic acid in plants to its diol. For example, Blee and Schuber, Biochemical & Biophys. Res. Comm., 187, pp. 171-177 (1992), showed that soybean epoxide hydrolase catalyzes linoleic acid monoepoxides into their corresponding vic-diols.
- In carrying out this aspect of the invention, the inhibitors could be sprayed as plant growth regulators on field and row crops, delivered hydroponically, or added to tissue culture fluid in hairy root, cell, or callous culture.
- Additionally, inhibiting the soluble epoxide hydrolase of plants can interfere with formation of plant cutin and thus can accelerate penetration of herbicides and other plant growth regulators. When using epoxide hydrolase inhibitors to accelerate or enhance herbicide action or to reduce herbicide resistance, we contemplate application along with an herbicide. Formulations with the epoxide hydrolase inhibitor and herbicides can be prepared for foliage or root uptake. Further, mycotoxins produced by fungi can be used to increase pathogenesis by destroying cells and to protect the fungal food source. These materials can be highly toxic to humans, domestic animals, and crop plants. For example, Alternaria alternata f. sp. lycopersici is a fungal pathogen that causes the Alternaria stem canker disease of tomato. During disease development and in liquid culture, the pathogen secretes host-specific toxins (AAL toxins) which, in purified form, elicit cell death patterns characteristic of the stem canker. The ability of the pathogen to infect leaves, stems, and green fruit of tomato is limited to genotypes that are homozygous for the recessive allele (asc/asc) of the Asc gene. The Asc gene also regulates toxin sensitivity; thus the toxins function as chemical determinants of the stem canker disease. Moreover, AAL toxins, which are members of the same class of sphinganine analog or mycotoxins as fumonisins, inhibit ceramide synthase in rat hepatocytes and induce apoptosis in monkey kidney cells. Unlike the case with fumonisins, the effects of chronic exposure of AAL toxins to animal health are still unresolved. The first of the AAL toxins (TA) was characterized in 1981 and more recently new isomeric toxins were purified and characterized. The presence of one pair of vicinal diols free or esterified, in the structure of all the AAL toxins suggests the possible involvement of an epoxide hydrolase (EH) in their synthesis. This hypothetical mechanism is supported by the fact that one of the oxygen atoms of the diol, came from direct incorporation of atmospheric oxygen and the other came from water.
- Accordingly, practice of the invention is also useful to inhibit a fungal epoxide hydrolase, particularly when used in combination with a fungicide. In general, an application rate from about 0.01 to 100 kg/hectare will be suitable for most purposes.
- Among the uses contemplated with plants is increasing the yield of vernolic acid, which is used in plastics and the wood industry. Alternatively, the EHs purified by affinity chromatography using the compounds described here, can be used to carry out steps critical to forming important biosynthetic chemicals in both chiral and racemic form. Work is underway in several laboratories to clone into plants both heme and nonheme proteins which will increase the level of epoxylipids in plants. (Lee et al., “Identification of Non-Heme Diiron Proteins that Catalyze Triple Bond and Epoxy Group Formation,” Science, 280, pp. 915-918, 1998; Hitz et al, “Expression of δ-6-oleate Desaturase-relateed Enzyme from Vernonia galmenensis Results in Vernolic Acid Accumulation in Transgenic Soybean,” 13th International Symposium of Plant Lipids, Sevella, Spain, Jul. 5-10, 1998; and Kinney et al., “Re-engineering Oilseed Crops to Produce Industrial Useful Fatty Acids,” Ibid.). Work on the enzyme activity in seed (Stark et al., “Comparison of Fatty Acid Epoxide Hydrolaser Activity in Seeds from Different Plant Species,” Phytochemistry, 38, pp.:31-33, 1995) and the isolation and expression of the corresponding cDNA (Stapleton et al., “Cloning and Expression of Soluble Epoxide Hydrolase from Potato,” Plant J., 6(2), pp. 251-258, 1994); and Kiyosue et al., “Characterization of an Arabidopsis cDNA for a Soluble Epoxide Hydrolase Gene that is Inducible by Auxin and Water Stress,” Plant J., 6(2), pp. 259-269, 1994) indicates that epoxide hydrolase activity is widespread in plants in general and in their seeds. These levels could be profitably altered by inhibitors, antisense, or over expression of activity to alter relative levels of epoxides and diols. Epoxy lipids and their resulting diols are also thought involved in cross-linking waxes, cutins, and suberins in plant. Thus the compounds influence water retention, susceptibility to disease, and to agricultural chemicals by varying surface layers of plants.
- As in mammals oxylipins may be chemical mediators. However, clearly epoxides through an allene oxide synthase increase levels of jasmonic acid (Harms et al., “Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased Endogenous Jasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activation of JA-Responding Genes,” The Plant Cell, 7:1645-1654 (1995)). Inhibiting epoxide hydrolases should result in more endogenous JA in plants with expected changes in plant secondary chemical constituents which will alter susceptibility to pest organisms. The essential oils of plants can be altered by altering the levels of chemical mediators (where epoxide hydrolases can alter levels of essential epoxides) as described above. However, essential oils (terpenes) in plants also can be altered directly by changing the relative levels of enzymes which form epoxides and epoxide hydrolases. Many essential oils are epoxides. These materials are known plant defensive chemicals, but many are also important chemical intermediates and constituents of perfume and cosmetic formulations, such as essential oils of Pelargonium sp. (Kayser et al., “Composition of the essential oils of Pelargonium sidoides DC and Pelargonium reniform Curt.,” Flavour and Fragrance Journal, 13:209-212 (1998)). Epoxide hydrolase inhibitors could be used to increase the yield of high value essential oils. As in mammals epoxides are not only involved in terpenes and essential oils in plants, but also in the biosynthesis of squalene, lanosterol, phytosteroids, and cholesterol (Taton et al., “Inhibition of Higher Plant 2,3-oxidosqualene Cyclases by Nitrogen-Containing Oxidosqualene Analogs,” Phytochemistry, 43:75-81 (1996)).
- Preparation of illustrative inhibitors and an assay useful for determining inhibition will now be more specifically described by Examples 2-5, which are to illustrate but not to limit this invention.
- Synthesis of 1-Octyl-3-pentylurea
- To 0.262 g (3.00 mmol) of pentylamine in 20 mL of hexane is added 0.53 mL (0.47 g, 3.0 mmol) of octylisocyanate with stirring to eventually produce a white crystalline solid. After standing overnight the mixture is cooled, the solid product collected, and washed with cold hexane. On air drying there is obtained 0.705 g (2.91 mmol, 97%) of 1-octyl-3-pentylurea as very fine white needles, mp 65.0-65.5° C. The material displays a 13C-NMR and a mass spectrum consistent with the assigned structure. 13C-NMR (CDCl3): δ 159.0 (C═O), 40.47 and 40.45 (C-1 and C-1′), 31.8 (C-6 and C-3′), 30.4 (C-2), 30.1 (C-2′), 29.3 (C-4), 29.2 (C-5), 27.0 (C-3), 22.5 (C-7), 22.4 (C-4′), 13.9 (C-8 and C-5′); important infrared absorption bands (KBr disc) are present at 3334 (s, N—H), 1617 (vs, C═O), and 1579 (vs, amide II) cm−1.
- Synthesis of 1-Cyclohexyl-3-cyclooctylurea
- Cyclooctylamine, 0.382 g (3.00 mmol), 0.40 mL (0.39 g, 3.1 mmol) of cyclohexylisocyanate in 20 mL of hexane, on standing for one day provides 0.664 g (88%) of 1-cyclohexyl-3-cyclooctylurea as white needles, mp 194.0-194.5° C. An infrared spectrum [3334 (s, NH), 1624 (vs, C═O), 1564 (vs. amide II) cm−1] and mass spectrum [FAB-MS m/z calcd. for C15H28N2O: 252, obsd: 253 (M+H+)] confirms the identity of this material.
- Cyclohexylcarbamothioic Acid 5-Cyclohexyl Ester
- To a solution of 0.61 mL (0.58 g, 5.0 mmol) of cyclohexylthiol in 25 mL of hexane is slowly added a solution of 0.626 g (5.00 mmol) of cyclohexylisocyanate in 5 mL of hexane. Adding one drop of 1,8-diazabicyclo[5.4.0]undec-7-ene initiates the formation of a white crystalline product. After several days at ambient temperature, the mixture is cooled, the cyclohexylcarbamothioic acid S-cyclohexyl ester is collected, washed with ice-cold hexane and dried to provide a 1.15 g (4.76 mmol, 95%) of product melting at 117.0-118.0° C. A confirmatory 13C-NMR (CDCl3) is observed for this material: δ 165.9 (C═O), 50.3 (C-1), 42.4 (C-1′), 33.8 (C-2′, 6′), 33.1 (C-2, 6), 26.0 (C-3′, 5′), 25.5 (C-41), 25.4 (C-4), 24.7 (C-3, 5). Supportive infrared bands (KBr) are observed at 3343 (s, N—H), 1649 (vs, C═O), and 1206 (m, C—N) cm−1.
- Assay to Determine Inhibition of Soluble EH
- Recombinant mouse sEH (MsEH) and human sEH (HsEH) were produced in a baculovirus expression system as previously reported. Grant et al., J. Biol. Chem., 268:17628-17633 (1993); Beetham et al., Arch. Biochem. Biophys., 305:197-201 (1993). The expressed proteins were purified from cell lysate by affinity chromatography. Wixtrom et al., Anal. Biochem., 169:71-80 (1988). Protein concentration was quantified using the Pierce BCA assay using bovine serum albumin as the calibrating standard. The preparations were at least 97% pure as judged by SDS-PAGE and scanning densitometry. They contained no detectable esterase or glutathione transferase activity which can interfere with the assay. The assay was also evaluated with similar results in crude cell lysates or homogenate of tissues.
- The IC50s for each inhibitor were determined by the spectrophotometric assay of Dietze et al. (Dietze et al., “Spectrophotometric Substrates for Cytosolic Epoxide Hydrolase,” Anal. Biochem., 216:176-187 (1994)) using cloned epoxide hydrolase genes expressed in the baculovirus system using racemic 4-nitrophenyl-trans-2,3-epoxy-3-phenylpropyl carbonate (NEP2C) as substrate. In a styrene 96-well microplate, 20 μl of enzyme preparation and 2 μl of the inhibitor solution in DMF ([I]final: 0.05 to 500 μM) were added to 180 μl of sodium phosphate (0.1 M, pH 7.4) containing 0.1 mg/ml of BSA. The mixture was incubated at 30° C. for 5 minutes. A substrate concentration of 40 μM was then obtained by adding 4 μl of a 2 mM solution. Activity was assessed by measuring the appearance of the 4-nitrophenolate at 405 nm at 30° C. for 1 minute (Spectramax 200; Molecular Device Inc., USA). Assays were performed in quadruplicate. By definition, the IC50 is the concentration of inhibitor which reduces enzyme activity by 50%. IC50s were determined by regression of at least five datum points with a minimum of two points in the linear region of the curve on either side of the IC50. The curve was generated from at least four separate runs to obtain the standard deviation. In at least one run compounds of similar potency were included to insure rank order. A further rank order among very good compounds was determined with the 3H trans-stilbene oxide assay as described in Wixtrom and Hammock (below) or a related assay based on Borhan et al., “Improved Radiolabeled Substrates for Soluble Epoxide Hydrolase,” Anal. Biochem., 231:188-200 (1995). A similar partition assay based on 3H cis-stilbene oxide is described in Wixtrom et al., “Membrane-Bound and Soluble-Fraction Epoxide Hydrolases: Methodological Aspects,” Biochemical Pharmacology and Toxicology (Zakim and Vessey, eds.), John Wiley & Sons, Inc., New York, 1:1-93 (1985).
- Effect on Other Enzymes
- Mammalian microsomal EH was assayed using 3H-cis-stilbene oxide, insect microsomal EH was assayed with 3H-juvenile hormone III, and 3H-trans-diphenyl-propene oxide, mammalian and plant cytosolic, and peroxisomal EHs were assayed using 3H-trans-diphenyl-propene oxide, P-450 was assayed using 3H-testosterone, carboxylic esterase assay used para-nitrophenylacetate, and gluthatione-S-transferase assay used chlorodinitrobenzene. Pepsin was assayed using hemoglobin as substrate.
- It is to be understood that while the invention has been described above in conjunction with preferred specific embodiments, the description and examples are intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims.
Claims (26)
1. A method of treating inflammatory disease in a patient, comprising administering to the patient an effective amount of an inhibitor of soluble epoxide hydrolase (“sEH”).
2. A method of claim 1 , wherein said inflammatory disease is adult respiratory distress syndrome (“ARDS”).
3. A method of claim 1 , wherein said inflammatory disease is systemic inflammatory response syndrome (“SIRS”).
4. A method of claim 1 , wherein said inflammatory disease is sepsis.
5. A method of claim 1 , wherein said inflammatory disease is pancreatitis.
6. A method of claim 1 , wherein said inflammatory disease is multiple trauma.
7. A method of claim 1 , wherein said inflammatory disease is brain surgery.
8. A method of claim 1 , wherein said inflammatory disease is hemorrhagic shock.
9. A method of claim 1 , wherein said inflammatory disease is a severe bum.
10. A method of claim 1 , wherein said inflammatory disease is an inflammatory disease of the lung.
11. A method of claim 1 , wherein said sEH inhibitor is an inhibitor of Formula 2:
wherein Z is oxygen, nitrogen, or sulfur, W is carbon, phosphorous, or sulfur, X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 is each independently H, C1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic.
12. A method of treating an epoxide hydrolase, useful to purify, isolate, or inhibit the epoxide hydrolase, comprising:
providing a compound having the structure
wherein Z is oxygen, nitrogen, or sulfur, W is carbon, phosphorous, or sulfur, X and Y is each independently nitrogen, oxygen, or sulfur, and X can further be carbon, R1-R4 is hydrogen, R2 is hydrogen when X is nitrogen but is not present when X is sulfur or oxygen, R4 is hydrogen when Y is nitrogen but is not present when Y is sulfur or oxygen, R1 and R3 is each independently H, C1-20 substituted or unsubstituted alkyl, cycloalkyl, aryl, acyl, or heterocyclic,
the compound provided being in free form or being derivatized so as to be immobilized to a water soluble support; and,
contacting the free form or immobilized compound with an epoxide hydrolase under conditions in which the epoxide hydrolase is enzymatically active, the contacting effective to form a complex between the compound and the epoxide hydrolase, wherein the activity of the epoxide hydrolase so complexed is modified with respect to enzymatically active, uncomplexed epoxide hydrolase.
13. The method as in claim 12 , wherein the providing step includes converting a precursor form of the compound before forming the complex.
14. The method as in claim 13 , wherein the precursor form of the compound is a carbodiimine or thiourea.
15. The method as in claim 12 , where the compound is capable of establishing anionic bond with a carboxylic acid residue of a protein, to stabilize one or more hydrogen bonds or to have a group able to establish a hydrogen bond with a tyrosine residue over the catalytic site.
16. The method as in claim 12 , wherein the modified activity of the epoxide hydrolase when in the complex is epoxide hydrolase inhibition.
17. The method as in claim 12 , wherein the epoxide hydrolase of the complex is selectively formed with a soluble epoxide hydrolase.
18. The method as in claim 12 , wherein the treating is useful for purification or isolation of a microsomal epoxide hydrolase, and the compound is derivatized so as to be immobilized to a water insoluble support.
19. The method as in claim 18 , wherein the compound is immobilized through derivation at one of R1 or R3.
20. The method as in claim 18 , wherein the contacting includes eluting an aqueous solution through the water insoluble support.
21. The method as in claim 12 , wherein the treating is useful for inhibiting a mammalian soluble or microsomal epoxide hydrolase.
22. The method as in claim 21 , wherein the compound has an IC50 of less than about 500 μM.
23. The method as in claim 21 , wherein the treating is therapeutically effective to treat an inflammation.
24. The method as in claim 23 , wherein the inflammation treated is adult respiratory distress syndrome.
25. The method as in claim 21 , wherein the treating is in conjunction with a cancer therapy.
26. The method as in claim 21 wherein an effective therapeutic amount of the compound provided is a total daily dose from about 0.001 μM/kg to about 100 mg/kg body weight of the mammal.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/240,444 US20060035869A1 (en) | 1999-02-18 | 2005-09-29 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/566,171 US8815951B2 (en) | 1996-08-13 | 2006-12-01 | Inhibitors of epoxide hydrolases for the treatment of inflammation |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/252,148 US6150415A (en) | 1996-08-13 | 1999-02-18 | Epoxide hydrolase complexes and methods therewith |
US09/721,261 US6531506B1 (en) | 1996-08-13 | 2000-11-21 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US10/328,495 US6693130B2 (en) | 1999-02-18 | 2002-12-23 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US10/694,641 US20040092487A1 (en) | 1999-02-18 | 2003-10-27 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/240,444 US20060035869A1 (en) | 1999-02-18 | 2005-09-29 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/694,641 Continuation US20040092487A1 (en) | 1996-08-13 | 2003-10-27 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/189,964 Continuation US20050282767A1 (en) | 1996-08-13 | 2005-07-25 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/566,171 Continuation US8815951B2 (en) | 1996-08-13 | 2006-12-01 | Inhibitors of epoxide hydrolases for the treatment of inflammation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060035869A1 true US20060035869A1 (en) | 2006-02-16 |
Family
ID=26942082
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/328,495 Expired - Fee Related US6693130B2 (en) | 1996-08-13 | 2002-12-23 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US10/694,641 Abandoned US20040092487A1 (en) | 1996-08-13 | 2003-10-27 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/189,964 Abandoned US20050282767A1 (en) | 1996-08-13 | 2005-07-25 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/240,444 Abandoned US20060035869A1 (en) | 1996-08-13 | 2005-09-29 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US13/113,028 Abandoned US20110245331A1 (en) | 1999-02-18 | 2011-05-20 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/328,495 Expired - Fee Related US6693130B2 (en) | 1996-08-13 | 2002-12-23 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US10/694,641 Abandoned US20040092487A1 (en) | 1996-08-13 | 2003-10-27 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US11/189,964 Abandoned US20050282767A1 (en) | 1996-08-13 | 2005-07-25 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/113,028 Abandoned US20110245331A1 (en) | 1999-02-18 | 2011-05-20 | Inhibitors of epoxide hydrolases for the treatment of hypertension |
Country Status (1)
Country | Link |
---|---|
US (5) | US6693130B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110065756A1 (en) * | 2009-09-17 | 2011-03-17 | De Taeye Bart M | Methods and compositions for treatment of obesity-related diseases |
US10813894B2 (en) | 2015-02-20 | 2020-10-27 | The Regents Of The University Of California | Methods of inhibiting pain |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6693130B2 (en) * | 1999-02-18 | 2004-02-17 | Regents Of The University Of California | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US8815951B2 (en) * | 1996-08-13 | 2014-08-26 | The Regents Of The University Of California | Inhibitors of epoxide hydrolases for the treatment of inflammation |
EP1226254A2 (en) * | 1999-11-05 | 2002-07-31 | L'Unité de Recherche en Biologie Moléculaire (URBM) des Facultés Universitaires Notre Dame de la Paix (FUNDP) | Virulence genes, proteins, and their use |
US20030139469A1 (en) * | 2002-01-23 | 2003-07-24 | The Regents Of The University Of California | Use of inhibitors of soluble epoxide hydrolase to inhibit vascular smooth muscle cell proliferation |
JP4943837B2 (en) * | 2003-04-03 | 2012-05-30 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Improved inhibitors of soluble epoxide hydrolase |
US20090018092A1 (en) | 2004-03-16 | 2009-01-15 | The Regents Of The University Of California | Reducing Nephropathy with Inhibitors of Soluble Epoxide Hydrolase and Epoxyeicosanoids |
AU2005295167B2 (en) | 2004-10-20 | 2012-05-10 | The Regents Of The University Of California | Improved inhibitors for the soluble epoxide hydrolase |
WO2006052542A2 (en) * | 2004-11-04 | 2006-05-18 | Neurogen Corporation | Arylalkyl ureas as cb1 antagonists |
US7695927B2 (en) * | 2005-03-18 | 2010-04-13 | Detroit R & D | Detection of hypertension using glucuronidated metabolic products |
TW200808723A (en) | 2006-03-13 | 2008-02-16 | Univ California | Conformationally restricted urea inhibitors of soluble epoxide hydrolase |
EP2091542A1 (en) * | 2006-12-18 | 2009-08-26 | F. Hoffmann-Roche AG | Novel use of inhibitors of soluble epoxide hydrolase |
PL2225253T3 (en) | 2007-11-29 | 2012-11-30 | Idorsia Pharmaceuticals Ltd | Phosphonic acid derivates and their use as p2y12 receptor antagonists |
EP2259680A4 (en) * | 2008-03-04 | 2012-01-25 | Merck Sharp & Dohme | SOLUBLE EPOXY HYDROLASE INHIBITORS, COMPOSITIONS CONTAINING THESE COMPOUNDS, AND METHODS OF TREATMENT |
WO2012054093A2 (en) | 2010-01-29 | 2012-04-26 | The Regents Of The University Of California | Acyl piperidine inhibitors of soluble epoxide hydrolase |
JP5838499B2 (en) * | 2010-05-25 | 2016-01-06 | シムライズ アーゲー | Menthyl carbamate compounds as skin and / or hair lightening actives |
US9012497B2 (en) | 2010-05-25 | 2015-04-21 | Symrise Ag | Cyclohexyl carbamate compounds as active anti-cellulite ingredients |
KR101783374B1 (en) * | 2010-05-25 | 2017-10-23 | 시므라이즈 아게 | Cyclohexyl carbamate compounds as skin and/or hair lightening actives |
WO2013155047A2 (en) * | 2012-04-10 | 2013-10-17 | Trustees Of Dartmouth College | Compounds and methods for inhibiting cif virulence factor |
US10322118B2 (en) | 2012-04-10 | 2019-06-18 | Trustees Of Dartmouth College | Compounds and methods for inhibiting Cif virulence factor |
AU2013350311B2 (en) * | 2012-11-21 | 2018-03-22 | The University Of Sydney | Omega-3 analogues |
JP6999417B2 (en) | 2015-01-29 | 2022-02-04 | オックスフォード ユニヴァーシティ イノヴェーション リミテッド | Therapeutic targets and biomarkers in IBD |
WO2017202957A1 (en) | 2016-05-25 | 2017-11-30 | Johann Wolfgang Goethe-Universität Frankfurt am Main | Treatment and diagnosis of non-proliferative diabetic retinopathy |
PL3431105T3 (en) | 2017-03-29 | 2020-11-02 | Shionogi & Co., Ltd. | Medicinal composition for treating cancer |
US11766419B2 (en) | 2021-01-08 | 2023-09-26 | Banasthali Vidyapith | Mebeverine as soluble epoxide hydrolase inhibitor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4024258A (en) * | 1974-05-31 | 1977-05-17 | American Hoechst Corporation | Composition of and method for reducing hypertension with a 1-[1-(indol-3-ylethyl)-piperazin-4-yl]-3-substituted urea |
US5447941A (en) * | 1993-12-21 | 1995-09-05 | Eli Lilly And Company | Methods of inhibiting pulmonary hypertensive diseases with raloxifene and related benzothiophenes |
US5834293A (en) * | 1994-09-28 | 1998-11-10 | Vanderbilt University | Cytochrome P450 arachidonic acid epoxygenase genetic mutation associated with hypertension |
GB9602029D0 (en) * | 1996-02-01 | 1996-04-03 | Fujisawa Pharmaceutical Co | New heterocyclic compounds |
JP2000515150A (en) * | 1996-07-23 | 2000-11-14 | ニューロジェン・コーポレーション | Substituted benzylamine derivatives: a new class of neuropeptide Y1-specific ligands |
US6693130B2 (en) * | 1999-02-18 | 2004-02-17 | Regents Of The University Of California | Inhibitors of epoxide hydrolases for the treatment of hypertension |
US5955496A (en) * | 1996-08-13 | 1999-09-21 | The Regents Of The University Of California | Dihydroxy-oxy-eicosadienoates |
US6440682B1 (en) * | 1999-05-28 | 2002-08-27 | Detroit R&D Inc. | Detection of hypertension using immunoreactive metabolic products |
IL142707A0 (en) * | 2000-04-27 | 2002-03-10 | Pfizer Prod Inc | Methods of treating obesity using a neurotensin receptor ligand |
-
2002
- 2002-12-23 US US10/328,495 patent/US6693130B2/en not_active Expired - Fee Related
-
2003
- 2003-10-27 US US10/694,641 patent/US20040092487A1/en not_active Abandoned
-
2005
- 2005-07-25 US US11/189,964 patent/US20050282767A1/en not_active Abandoned
- 2005-09-29 US US11/240,444 patent/US20060035869A1/en not_active Abandoned
-
2011
- 2011-05-20 US US13/113,028 patent/US20110245331A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110065756A1 (en) * | 2009-09-17 | 2011-03-17 | De Taeye Bart M | Methods and compositions for treatment of obesity-related diseases |
US10813894B2 (en) | 2015-02-20 | 2020-10-27 | The Regents Of The University Of California | Methods of inhibiting pain |
Also Published As
Publication number | Publication date |
---|---|
US20030119900A1 (en) | 2003-06-26 |
US20040092487A1 (en) | 2004-05-13 |
US6693130B2 (en) | 2004-02-17 |
US20110245331A1 (en) | 2011-10-06 |
US20050282767A1 (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6150415A (en) | Epoxide hydrolase complexes and methods therewith | |
US20060035869A1 (en) | Inhibitors of epoxide hydrolases for the treatment of hypertension | |
Biswas et al. | Environmental toxicity, redox signaling and lung inflammation: the role of glutathione | |
Baxter et al. | Elevation of γ-aminobutyric acid in brain: selective inhibition of γ-aminobutyric-α-ketoglutaric acid transaminase | |
US6174695B1 (en) | Epoxide hydrolase inhibitor methods | |
CA2262525C (en) | Methods of treating pulmonary diseases mediated by polyunsaturated lipid metabolites and assays for epoxide hydrolase inhibitors | |
Martin et al. | Discovery and characterization of endogenous cannabinoids | |
Bunting et al. | Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. | |
Hillard | Biochemistry and pharmacology of the endocannabinoids arachidonylethanolamide and 2-arachidonylglycerol | |
Sun et al. | Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages | |
US6231894B1 (en) | Treatments based on discovery that nitric oxide synthase is a paraquat diaphorase | |
Yamada et al. | Brain dysfunction associated with an induction of nitric oxide synthase following an intracerebral injection of lipopolysaccharide in rats | |
US7897598B2 (en) | Inhibitors of the anandamide transporter | |
US20120028921A1 (en) | Methods and compositions using oxidized phospholipids | |
McMillan | Leukotrienes in respiratory disease | |
US20130108709A1 (en) | Treatment of mitochondria-related diseases and improvement of age-related metabolic deficits | |
RU2125448C1 (en) | Pharmaceutical composition and a method of its preparing, method of treatment of disorders caused by neurodegenerative processes | |
Welsh et al. | For Debate Nitric Oxide and Pancreatic P-Cell Destruction in Insulin Dependent Diabetes Mellitus: Don't Take no for an Answer | |
Hospattankar et al. | Changes in liver lipids after administration of 2-decanoylamino-3-morpholinopropiophenone and chlorpromazine | |
JP4477301B2 (en) | Medicinal association of biguanine and carrier, eg metformin and arginine | |
Garg et al. | Effect of nitric oxide on mitogenesis and proliferation of cerebellar glial cells | |
DuBois et al. | Quantitative measurement of inhibition of aliesterases, acylamidase, and cholinesterase by EPN and Delnav® | |
US8815951B2 (en) | Inhibitors of epoxide hydrolases for the treatment of inflammation | |
Dayal et al. | Induction of rat brain and liver cytochrome P450 1A1/1A2 and 2B1/2B2 isoenzymes by deltamethrin | |
Hwang et al. | Isodihydrocapsiate stimulates plasma glucose uptake by activation of AMP-activated protein kinase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF CALIFORNIA;REEL/FRAME:024047/0839 Effective date: 20080724 |