US20060034724A1 - High-nitrogen austenitic stainless steel - Google Patents
High-nitrogen austenitic stainless steel Download PDFInfo
- Publication number
- US20060034724A1 US20060034724A1 US11/201,314 US20131405A US2006034724A1 US 20060034724 A1 US20060034724 A1 US 20060034724A1 US 20131405 A US20131405 A US 20131405A US 2006034724 A1 US2006034724 A1 US 2006034724A1
- Authority
- US
- United States
- Prior art keywords
- mass
- content
- less
- stainless steel
- austenitic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 49
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 30
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 11
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 22
- 150000004767 nitrides Chemical class 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 abstract description 59
- 230000007797 corrosion Effects 0.000 abstract description 57
- 230000000052 comparative effect Effects 0.000 description 44
- 229910000831 Steel Inorganic materials 0.000 description 32
- 239000010959 steel Substances 0.000 description 32
- 239000000243 solution Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 19
- 230000006872 improvement Effects 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 231100001261 hazardous Toxicity 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000005242 forging Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 241000628997 Flos Species 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- -1 transition metal nitrides Chemical class 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
Definitions
- This invention relates to a high-nitrogen austenitic stainless steel.
- Austenitic stainless steel represented by SUS304, SUS316 and so forth are widely used as a steel excellent in corrosion resistance and workability.
- SUS316 as an austenitic stainless steel, and SUS329 as a dual-phase stainless steel are generally used.
- SUS836L also referred to as “super-austenitic stainless steel” having Ni and Mo contents increased therein to a considerable degree.
- the high-nitrogen austenitic stainless steel is used for versatile applications including air shaft, ball bearing, shaft bush and mold for plastic products, and is also expectant as a biological material as disclosed in Japanese Laid-Open Patent Publication “Tokkaihei” No. 10-183303.
- the general austenitic stainless steels contain a considerable amount of Ni, which is possibly causative of Ni allergy problem in the field of biological materials, and is understood as one of an undesirable element to human body, whereas the high-nitrogen austenitic stainless steel, using nitrogen as a major austenitic phase stabilizing element, is successful in getting rid of most part of Ni, and is advantageous in keeping the hardness and corrosion resistance at an equivalent or higher level.
- the austenitic stainless steel disclosed in Japanese Laid-Open Patent Publication “Tokkaihei” No. 10-183303 is, however, added with a relatively large amount of Mn in order to raise the amount of solubilization of nitrogen (the patent claims a range of Mn content as relatively wide as 2 to 26% by mass, but discloses Mn contents of as relatively high as 11% by mass and 12% by mass in the embodiments). Adoption of such high Mn composition may result in a degraded corrosion resistance, and also in an insufficient strength.
- a high-nitrogen austenitic stainless steel of this invention has a Fe content of 50% by mass or more, and contains:
- the high-nitrogen austenitic stainless steel of this invention makes it possible to attain a good balance between the strength and corrosion resistance, by allowing a large amount of N (nitrogen) to solubilize while limiting Ni content, and by optimizing contents of the essential elements which comprise Cr, Mo, N and Mn within ranges specific to this invention.
- N nitrogen
- This consequently makes it possible to realize a high-nitrogen austenitic stainless steel superior to conventional one both in the corrosion resistance and strength, despite a low Ni content.
- Cr functions to distinctively increase N solubility in the molten metal, largely contributes to the corrosion resistance and strength, and also effectively suppresses generation of nitrogen blow holes.
- a Cr content of less than 15.0% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure satisfactory levels of corrosion resistance and strength, and makes the nitrogen blow holes more likely to occur.
- the Cr content exceeding 35.0% by mass may destabilize the austenitic phase and may fail in keeping non-magnetism of the material due to ferrite-forming nature of Cr. It is also anticipated that a phase causative of degradation in the toughness and ductility becomes more likely to precipitate. It is therefore preferable to adjust the Cr content within a range from 24.0% by mass to 32.0% by mass, and more preferably from 25.0% by mass to 30.0% by mass.
- Mo distinctively increases N solubility in the molten metal, but can exhibit a larger effect of improving the corrosion resistance than Cr can only with a smaller amount, and is successful in obtaining an effect of improving the strength through solid solution strengthening.
- An amount of Mo addition of less than 0.05% by mass results in only a poor effect, whereas the amount of addition exceeding 8.0% by mass induces nitrogen blow holes and destabilizes the austenitic phase, and thereby makes it difficult to keep the non-magnetism. Formation of an embrittled phase degrades the toughness and ductility, and it becomes hazardous during the hot working. This also raises a problem of increasing insoluble Cr nitride during the solution heat treatment, and of considerably degrading the corrosion resistance.
- the amount of Mo addition is therefore more preferably adjusted to 0.05% or more and less than 5.0% by mass, and still more preferably to 0.10% by mass or more and less than 2.5% by mass.
- Mn is an austenite forming element, and contributes to stabilization of the austenitic phase and to lowering of the solid solution temperature of the Cr nitride described later. Also, Mn distinctively increases N solubility in the molten metal, it is effective in improving the strength and suppressing generation of the nitrogen blow holes. It is also effective as a deoxidation element or desulfurizing element.
- a Mn content of less than 0.2% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure a satisfactory level of strength, and tends to cause nitrogen blow holes.
- the Mn content exceeding 10.0% by mass degrades the corrosion resistance.
- the Mn content is therefore more preferably adjusted within a range from 0.2% by mass to 6.0% by mass, and still more preferably from 0.2% by mass to 2.0% by mass, both ends inclusive.
- Cu is an austenite forming element, and contributes to stabilization of the austenitic phase and to improvement in the corrosion resistance.
- An amount of Cu addition of less than 0.01% by mass results in only a poor effect, and the addition exceeding 2.0% by mass raises a problem of lowering in the hot workability. This also increases residual amount of insoluble Cr nitride after the solution heat treatment, and undesirably degrades the corrosion resistance.
- the amount of Cu addition is therefore more preferably adjusted within a range from 0.02% by mass to 1.8% by mass, and still more preferably from 0.05% by mass to 1.5% by mass, both ends inclusive.
- N is an interstitial solid solution element into the austenitic phase, and is a basic additive element contributes all of improvement in the strength, stabilization of the austenitic phase, and improvement in the corrosion resistance.
- the amount of N addition exceeding 1.5% by mass makes the nitrogen blow holes more likely to generate, allows a large amount of insoluble Cr nitride or other transition metal nitrides (e.g., nitrides of Ti, Nb, V and so forth, described later) to remain in the steel after the solution heat treatment, to thereby raise a problem of a considerable degradation in the corrosion resistance.
- the amount of N addition is therefore more preferably adjusted within a range from 0.8% by mass to 1.4% by mass, both ends inclusive.
- Fe is a major component (i.e., 50% by mass or more) of the steel, and basically composes the residual portion of the steel other than five above-described essential additive elements, optional elements described below, and inevitable impurities. It is to be understood that this invention is not precluded from containing any side components not specifically mentioned in the specification, so far as the above-described effects of this invention will not be ruined.
- ⁇ is a compositional parameter expressed by: ⁇ (W Cr +3.3W Mo +16W N )/W Mn where W Cr is Cr content (% by mass), W Mo is Mo content (% by mass), W N is N content (% by mass) and W Mn is Mn content (% by mass).
- W Cr Cr content
- W Mo Mo content
- W N N content
- W Mn Mn content (% by mass).
- the numerator of ⁇ is obtained by quantifying effects of improving the corrosion resistance by Mo and N converted on the basis of Cr equivalent. All of N, Cr and Mo contribute to improvement in the corrosion resistance, wherein the effect of improving the corrosion resistance by N measures surprisingly 16 times as large as that of Cr.
- the ⁇ value having a numerator as a result of positive contribution by N, Cr and Mo to the corrosion resistance, and having a denominator as a result of negative contribution by Mn to the corrosion resistance, can be an effective parameter for generally predicting the corrosion resistance of the finally-obtained steel.
- the present inventors found out, after extensive investigations, that the effect of improving the corrosion resistance could distinctively be optimized, and that it was even possible to ensure a level of corrosion resistance equivalent to, or superior to that of super-austenitic stainless steel SUS836L, by balancing the amounts of addition of N, Cr, Mo and Mn so as to adjust ⁇ to 5 or above.
- C is an interstitial solid solution element, contributes to improvement in the strength, and is effectively functions, as an austenite forming element, to suppress formation of nitrogen blow holes.
- the amount of addition thereof exceeding 0.20% by mass lowers the N solubility, decreases Cr content in the austenite phase through formation of Cr carbide, and thereby results in degradation in the corrosion resistance.
- C is preferably added in an amount of 0.005% by mass or more in view of making the effect of intentional addition thereof distinct.
- the C content is preferably adjusted within a range from 0.005% by mass to 0.15% by mass, and more preferably from 0.01% by mass to 0.10% by mass, both ends inclusive.
- Si is an effective deoxidizing element.
- Al is known as a deoxidizing element stronger than Si in the general steels, but in the high-nitrogen steel, it is causative of formation of AlN which considerably degrades the high-temperature strength, toughness and ductility. It is therefore preferable to use Si, together with the essential element Mn, as the major deoxidizing element.
- the deoxidizing effect of Si becomes distinct when it is added in an amount of 0.01% by mass or more.
- the amount of Si addition exceeding 2.0% by mass makes the steel more likely to cause undesirable as crack or something during the hot working, and also degrades the toughness and ductility.
- the amount of Si addition is therefore more preferably adjusted within a range from 0.01% by mass to 1.0% by mass, and still more preferably from 0.01% by mass to 0.5% by mass, both ends inclusive.
- P is one of hazardous impurities, and the content exceeding 0.03% by mass results in degradation of the hot workability, and also in degradation of the toughness and ductility due to lowered strength at the grain boundary. It is therefore preferable that P is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account.
- S is one of hazardous impurities, and the content exceeding 0.05% by mass results in degradation of the hot workability, and also tends to degrade the corrosion resistance due to formation of MnS. It is therefore preferable that S is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account. It is preferably adjusted to 0.01% by mass or less.
- Ni is intentionally suppressed in this invention in order to reduce the cost and to avoid adverse influences such as Ni allergy when applied to human body. It is therefore preferable that Ni is not contained as possible, but a content to as much as 0.5% by mass is allowable, because an unnecessarily high level of reduction undesirably increases the cost.
- the Ni content is preferably limited to 0.3% by mass or less, and more preferably to 0.1% by mass or less.
- Al is effective as a deoxidizing element, but considerably lowers the corrosion resistance through formation of AlN in the high-nitrogen steel, even under a slight excess of the Al content.
- the Al content is limited to 0.03% by mass or less, in view of avoiding the nonconformity and of raising the amount of N solubilization into the austenite phase as possible.
- the Al content is preferably limited to 0.025% by mass or less, and more preferably to 0.020% by mass or less.
- the O content is limited to 0.020% by mass or less, because an excess content lowers the cleanliness of the steel, and thereby degrades the corrosion resistance.
- the O content is preferably limited to 0.015% by mass or less, and more preferably 0.010% by mass or less.
- W not only contributes to improvement in the corrosion resistance, but also to improvement in the strength as a solid solution strengthening element.
- An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 1.0% by mass degrades the toughness and ductility due to formation of an embrittled phase, and thereby induces a nonconformity which is hazardous for the hot working. This also increases insoluble Cr nitride during the solution treatment, and thereby considerably lowers the corrosion resistance.
- the W content is preferably adjusted within a range from 0.05% by mass to 0.9% by mass, and more preferably from 0.1% by mass to 0.8% by mass, both ends inclusive.
- Co contributes to improvement in the corrosion resistance and strength.
- An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 5.0% by mass increases the cost, and undesirably increases insoluble Cr nitride during the solution heat treatment, and thereby considerably lowers the corrosion resistance.
- the Co content is preferably adjusted within a range from 0.05% by mass to 4.5% by mass, and more preferably from 0.1% by mass to 4.0% by mass, both ends inclusive.
- either one of, or both of W and Co can be added within the above-specified ranges.
- All of Ti, Nb, V and Ta can bind with C and N, allow carbides or carbonitrides to precipitate, and thereby contribute to improvement in the strength.
- the precipitation can suppress growth of the austenitic grain by the pinning effect, and consequently contribute to improvement in the strength and toughness through refinement of the grain.
- Amounts of addition of these elements of less than 0.01% by mass result only in poor effects, whereas the amounts of addition exceeding the respective upper limits considerably degrade the corrosion resistance through formation of hazardous oxides or nitrides in the steel, and also undesirably make the strength more likely to degrade through lowering of an effective amount of N solubility.
- the Ti content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
- the Nb content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
- the V content is preferably adjusted within a range from 0.02% by mass to 0.9% by mass, and more preferably from 0.03% by mass to 0.8% by mass, both ends inclusive.
- the Ta content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
- B is an element effective for improving the strength and hot workability. An amount of addition of less than 0.001% by mass results in only a poor effect, whereas the content exceeding 0.01% by mass adversely affects the hot workability and also degrades the corrosion resistance.
- the B content is preferably adjusted within a range from 0.001% by mass to 0.008% by mass, and more preferably from 0.001% by mass to 0.005% by mass, both ends inclusive.
- Zr is an additive element effective for improving the strength. An amount of addition of less than 0.01% by mass results in only a limited effect, whereas the amount of addition exceeding 0.50% by mass degrades the toughness and ductility.
- the Zr content is preferably adjusted within a range from 0.03% by mass to 0.40% by mass, and more preferably from 0.05% by mass to 0.30% by mass, both ends inclusive.
- Both of Ca and Mg are additive elements effective for improving the hot workability. Excessive addition of the both degrades the corrosion resistance, toughness, ductility and hot workability. They are also effective in view of improving the machinability. Amounts of addition of the both less than 0.001% results in only poor effects, whereas the amounts of addition exceeding 0.01% by mass undesirably degrade the hot workability.
- Each of the Ca and Mg contents is preferably adjusted within a range from 0.001% by mass to 0.008% by mass, and more preferably from 0.001% by mass to 0.005% by mass, both ends inclusive.
- Te and Se are additive elements effective for improving the machinability. Amounts of addition of the both less than the lower limits result in only poor effects, and the amounts of addition exceeding the upper limits undesirably degrade the corrosion resistance, toughness, ductility and hot workability.
- the Te content is preferably adjusted within a range from 0.01% by mass to 0.04% by mass, both ends inclusive.
- the Se content is preferably adjusted within a range from 0.02% by mass to 0.18% by mass, and more preferably from 0.05% by mass to 0.15% by mass, both ends inclusive.
- the high-nitrogen austenitic stainless steel of this invention is preferably subjected to solution treatment at 1,100° C. to 1,250° C., both ends inclusive (typically for 0.1 hours to 2 hours, both ends inclusive).
- solution treatment typically for 0.1 hours to 2 hours, both ends inclusive.
- the Cr nitride particularly having a diameter (expressed in this patent specification by a diameter of a circle having an area same as that of the projected area of the nitride grain (referred to as circle-converted diameter, hereinafter)) of 2 ⁇ m or larger remaining in the steel was found to largely affect the corrosion resistance.
- circle-converted diameter hereinafter
- no Cr-base nitride having a diameter of 2 ⁇ m or larger is observed in the sectional structure of the steel. It is to be noted herein that the solution heat treatment carried out within a temperature range from 1,100° C. to 1,250° C.
- the steel of this invention can realize a strength of as large as 1,000 MPa on the tensile strength basis, after being subjected to the solution treatment carried out to an extent not causative of observable Cr-base nitride having a diameter of 2 ⁇ m or larger.
- the high-nitrogen austenitic stainless steel of this invention can be worked so as to produce wire product or sheet product.
- a more distinct level of strengthening is available by carrying out the area-reducing process at the final stage of the wire making or sheet making by cold wire drawing or cold rolling.
- Cr-base nitride having a diameter of 2 ⁇ m or larger is observed neither in the section of a wire product 100, shown in FIG. 1 , normal to the axis thereof, nor in the section of a sheet product 150, shown in FIG. 2 , normal to the drawing direction thereof, and it is made possible to obtain the wire product or sheet product as having a mean grain size (in circle-converted diameter) of the austenitic matrix phase of 100 ⁇ m or smaller.
- a specific attainable level of strength may be 1,500 MPa or more, or may be even 2,000 MPa or more (strengthening up to 2,500 MPa or around, for example, is attainable, with the upper limit value not specifically limited).
- the finally-obtained grain size of the austenitic matrix phase of the wire product or sheet product is adjustable by working ratio (reduction of area for the wire product, and draft for the sheet product) in cold working which precedes the solution heat treatment.
- the mean grain size exceeding 100 ⁇ m results in only a limited effect of improvement in the strength, whereas reduction in the mean grain size to as small as 2 ⁇ m or smaller is technically difficult, considering that re-crystallization can proceed to a certain degree during the solution heat treatment within the above-described temperature range.
- Refinement of the structure may be more distinctive when any one or more of Ti, Nb, V and Ta, all of which being known to be effective in suppressing growth of the grain, are added within the above-described compositional ranges.
- the high-nitrogen austenitic stainless steel of this invention is successful in achieving both of high corrosion resistance equivalent to that of SUS836L which is a super-austenitic stainless steel, and strength higher than that of SUS329J4L which is a dual-phase stainless steel, after being subjected to solution heat treatment.
- the steel can realize a strength of as high as 1,500 MPa or more (or even as high as 2,000 MPa or more), when cold-worked in a form of wire product or sheet product after the solution heat treatment.
- the high-nitrogen austenitic stainless steel of this invention can be processed into various forms of wire product, rod steel, sheet steel, plate product, pipe, forged product and shape steel. Specific applications will be listed below.
- accessories such as necklace, pierce and ring; watch components such as back lid of wrist watch and band of wrist watch; spectacle components such as frame of a pair of spectacles; metal components for furniture or building interior such as door knob; cutlery and kitchen tools such as spoon, folk and ladle; metal components for home appliances; dental materials such as dental floss, artificial root and orthodontic wire; biological implant materials such as plate, bolt, nut, spring, screw, wire, electrode, artificial bone and artificial joint; and medical tools such as syringe needle, surgical knife, scalpel, saw, forceps and surgical drill.
- the steel is applicable to general high-strength, high-corrosion-resistant materials, and preferable examples of the applications include bolt, nut, cylinder liner, shaft, hub, connecter, bearing, lathe, rail, gear, pin, screw, roll, turbine blade, mold, die, drill, valve, valve sheet, cutting edge, nozzle, gasket, ring, spring, ocean beach environmental components, industrial furnace components, chemical plant components, oil drilling components, oil refining plant components, waste incinerator components, steam turbine components, gas turbine components, nuclear reactor components (e.g., secondary cooling water piping components for pressurized water reactor), aircraft components, structural components for construction and civil engineering (e.g., bridge components such as bridge pier and suspension bridge components, electric pole and steel tower for power cable), and decorative components.
- industrial furnace components chemical plant components, oil drilling components, oil refining plant components, waste incinerator components, steam turbine components, gas turbine components, nuclear reactor components (e.g., secondary cooling water piping components for pressurized water reactor), aircraft components, structural components for
- the steel is also effectively applicable to high-strength, high-corrosion-resistant components which are necessarily non-magnetic, and examples of which include spring, shaft, bearing, lathe, pin, die and rail for precision electronic components; wire used for components for printed board production; mesh; biological implant electrode: MRI component; drug production components; hanger components; linear motor car components; components for semiconductor production apparatus; forceps, bearing; saw; and cutting edge.
- high-strength, high-corrosion-resistant components which are necessarily non-magnetic, and examples of which include spring, shaft, bearing, lathe, pin, die and rail for precision electronic components; wire used for components for printed board production; mesh; biological implant electrode: MRI component; drug production components; hanger components; linear motor car components; components for semiconductor production apparatus; forceps, bearing; saw; and cutting edge.
- FIG. 1 is a drawing for explaining a definition of grain size of a wire product.
- FIG. 2 is a drawing for explaining a definition of grain size of a sheet product.
- Example 1 0.04 0.15 0.2 0.01 0.01 0.16 0.21 30.0 1.00 0.15 0.20 0.008 0.01 0.002 1.38
- Example 2 0.03 0.20 1.5 0.02 0.01 0.05 0.20 24.0 6.02 1.52 0.46 0.007 0.05 0.003 1.20
- Example 3 0.10 0.31 1.0 0.02 0.01 0.20 0.01 27.0 1.87 0.006 0.002 1.05
- Example 4 0.03 0.50 7.0 0.01 0.01 0.51 0.10 18.0 4.03 0.26 0.10 0.21 0.006 0.09 0.04 0.002 1.07
- Example 5 0.02 0.11 9.0 0.02 0.01 0.32 0.30 26.0 2.50 0.98 0.48 0.005 0.06 0.002 1.33
- Example 6 0.03 0.19 2.0 0.02 0.01 0.16 0.20 25.0 1.50 0.34 0.14 0.01 0.006 0.001 1.20
- Example 7 0.05 0.16 3.0 0.01 0.01 1.50 0.08 26.0 2.01 0.13 0.004 0.003 0.84
- Example 8 0.03 0.22
- Each of steels having chemical compositions listed in Table 1 and Table 2 was melted under a pressurized atmosphere having a nitrogen partial pressure of 50 atm or less during melting in a pressurizable high-frequency induction furnace, and then cast to produce a 50-kg steel ingot.
- a test piece was cut out from the bottom portion of the steel ingot, and visually observed for a presence or absence of nitrogen blow holes.
- the steel ingot was then homogenized under heating, and hot-forged to thereby produce a 24-mm-diameter round rod.
- a rod was heated at a varied temperature from 1,100° C. to 1,300° C. for one hour, and water-cooled so as to accomplish the solution heat treatment.
- Example 5 the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 12.5-mm-diameter wire product, subjected to solution heat treatment under the condition determined in the above, and cold-drawn with reductions of area of 50% and 70% so as to obtain wire products of 8.8 mm in diameter and 6.8 mm in diameter, respectively.
- These wire products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above.
- the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 5-mm-thick sheet product, subjected to solution heat treatment under the condition determined in the above, and cold-rolling with drafts of 50% and 70% so as to obtain sheet products of 2.5 mm thick and 1.5 mm thick, respectively.
- These sheet products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above. Results are shown in Table 3 and Table 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
This invention provides a high-nitrogen austenitic stainless steel superior to the conventional one both in the corrosion resistance and strength, despite a low Ni content, characterized in having a Fe content of 50% by mass or more; containing Cr: 15.0% by mass to 35.0% by mass, Mo: 0.05% by mass to 8.0% by mass %, Mn: 0.2% by mass to 10.0% by mass, Cu: 0.01% by mass to 4.0% by mass and N: 0.8% by mass to 1.5% by mass, both ends inclusive, having a C content of 0.20% by mass or less, a Si content of 2.0% by mass or less, a P content of 0.03% by mass or less, a S content of 0.05% by mass or less, a Ni content of 0.5% by mass or less, an Al content of 0.03% by mass or less, and an 0 content of 0.020% by mass or less; wherein the contents of Cr, Mo, N and Mn are adjusted so that a compositional parameter η expressed by the equation:
η≡(WCr+3.3WMo+16WN)/WMn
η≡(WCr+3.3WMo+16WN)/WMn
-
- where WCr is Cr content (% by mass), WMo is Mo content (% by mass) WN is N content (% by mass) and WMn is Mn content (% by mass) has a value of 5 or above. and optionally further containing either one of, or both of: W: 0.01% by mass to 1.0% by mass; and Co: 0.01% by mass to 5.0% by mass, both ends inclusive; and optionally further containing at least one of: Ti: 0.01% by mass to 0.5% by mass; Nb: 0.01% by mass to 0.5% by mass; V: 0.01% by mass to 1.0% by mass; and Ta: 0.01% by mass to 0.5% by mass, both ends inclusive; and optionally further containing at least one of: B: 0.001% by mass to 0.01% by mass; Zr: 0.01% by mass to 0.50% by mass; Ca: 0.001% by mass to 0.01% by mass; and Mg: 0.001% by mass to 0.01% by mass, both ends inclusive; and optionally further containing either one of, or both of: Te: 0.005% by mass to 0.05% by mass; and Se: 0.01% by mass to 0.20% by mass, both ends inclusive.
Description
- 1. Field of the Invention
- This invention relates to a high-nitrogen austenitic stainless steel.
- 2. Description of Related Art
- Austenitic stainless steel represented by SUS304, SUS316 and so forth are widely used as a steel excellent in corrosion resistance and workability. For purposes demanding particularly excellent corrosion resistance and strength at the same time, SUS316 as an austenitic stainless steel, and SUS329 as a dual-phase stainless steel are generally used. For applications demanding still more excellent corrosion resistance, there is also used SUS836L (also referred to as “super-austenitic stainless steel”) having Ni and Mo contents increased therein to a considerable degree.
- The above-described austenitic stainless steels, generally believed as highly corrosion resistant, can however show only a limited resistance against local corrosion, and this raises a further demand on still higher strength. Large amounts of use of expensive Ni and Mo also raises another demand on more inexpensive material. In these years, a high-nitrogen austenitic stainless steel is attracting a good deal of attention as a stainless steel further superior to general austenitic stainless steels in strength and corrosion resistance, having a concentration of nitrogen as an interstitial solid solubilized element raised therein to a large extent as compared with that in the general stainless steel, and consequently having a stabilized austenitic phase by virtue of such high concentration of nitrogen. The high-nitrogen austenitic stainless steel is used for versatile applications including air shaft, ball bearing, shaft bush and mold for plastic products, and is also expectant as a biological material as disclosed in Japanese Laid-Open Patent Publication “Tokkaihei” No. 10-183303. The general austenitic stainless steels contain a considerable amount of Ni, which is possibly causative of Ni allergy problem in the field of biological materials, and is understood as one of an undesirable element to human body, whereas the high-nitrogen austenitic stainless steel, using nitrogen as a major austenitic phase stabilizing element, is successful in getting rid of most part of Ni, and is advantageous in keeping the hardness and corrosion resistance at an equivalent or higher level.
- The austenitic stainless steel disclosed in Japanese Laid-Open Patent Publication “Tokkaihei” No. 10-183303 is, however, added with a relatively large amount of Mn in order to raise the amount of solubilization of nitrogen (the patent claims a range of Mn content as relatively wide as 2 to 26% by mass, but discloses Mn contents of as relatively high as 11% by mass and 12% by mass in the embodiments). Adoption of such high Mn composition may result in a degraded corrosion resistance, and also in an insufficient strength.
- It is therefore an object of the present invention to provide a high-nitrogen austenitic stainless steel superior to the conventional one both in the corrosion resistance and strength, despite a low Ni content.
- Aiming at solving the aforementioned problems, a high-nitrogen austenitic stainless steel of this invention has a Fe content of 50% by mass or more, and contains:
-
- Cr: 15.0% by mass to 35.0% by mass;
- Mo: 0.05% by mass to 8.0% by mass;
- Mn: 0.2% by mass to 10.0% by mass;
- Cu: 0.01% by mass to 4.0% by mass; and
- N: 0.8% by mass to 1.5% by mass,
- both ends inclusive,
- having a C content of 0.20% by mass or less, a Si content of 2.0% by mass or less, a P content of 0.03% by mass or less, a S content of 0.05% by mass or less, a Ni content of 0.5% by mass or less, an Al content of 0.03% by mass or less, and an 0 content of 0.020% by mass or less;
- wherein the contents of Cr, Mo, N and Mn are adjusted so that a compositional parameter η expressed by the equation:
η≡(WCr+3.3WMo+16WN)/WMn
where WCr is Cr content (% by mass), WMo is Mo content (% by mass), WN is N content (% by mass) and WMn is Mn content (% by mass) has a value of 5 or above. - and optionally further containing either one of, or both of:
- W: 0.01% by mass to 1.0% by mass; and
- Co: 0.01% by mass to 5.0% by mass,
- both ends inclusive
- and optionally further containing at least one of:
- Ti: 0.01% by mass to 0.5% by mass;
- Nb: 0.01% by mass to 0.5% by mass;
- V: 0.01% by mass to 1.0% by mass; and
- Ta: 0.01% by mass to 0.5% by mass,
- both ends inclusive;
- and optionally further containing at least one of:
- B: 0.001% by mass to 0.01% by mass;
- Zr: 0.01% by mass to 0.50% by mass;
- Ca: 0.001% by mass to 0.01% by mass; and
- Mg: 0.001% by mass to 0.01% by mass,
- both ends inclusive;
- and optionally further containing either one of, or both of:
- Te: 0.005% by mass to 0.05% by mass; and
- Se: 0.01% by mass to 0.20% by mass,
- both ends inclusive.
- The high-nitrogen austenitic stainless steel of this invention makes it possible to attain a good balance between the strength and corrosion resistance, by allowing a large amount of N (nitrogen) to solubilize while limiting Ni content, and by optimizing contents of the essential elements which comprise Cr, Mo, N and Mn within ranges specific to this invention. This consequently makes it possible to realize a high-nitrogen austenitic stainless steel superior to conventional one both in the corrosion resistance and strength, despite a low Ni content. For example, it is no more impossible to achieve both of high corrosion resistance equivalent to that of SUS836L which is a super-austenitic stainless steel, and strength higher than that of SUS329J4L which is a dual-phase stainless steel, after being subjected to solution heat treatment.
- The following paragraphs will describe reasons for the compositional limitations of the individual elements in the high-nitrogen austenitic stainless steel of this invention.
- (1) Cr: 15.0% by Mass to 35.0% by Mass
- Cr functions to distinctively increase N solubility in the molten metal, largely contributes to the corrosion resistance and strength, and also effectively suppresses generation of nitrogen blow holes. A Cr content of less than 15.0% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure satisfactory levels of corrosion resistance and strength, and makes the nitrogen blow holes more likely to occur. On the other hand, the Cr content exceeding 35.0% by mass may destabilize the austenitic phase and may fail in keeping non-magnetism of the material due to ferrite-forming nature of Cr. It is also anticipated that a phase causative of degradation in the toughness and ductility becomes more likely to precipitate. It is therefore preferable to adjust the Cr content within a range from 24.0% by mass to 32.0% by mass, and more preferably from 25.0% by mass to 30.0% by mass.
- (2) Mo: 0.05% by Mass to 8.0% by Mass
- Similarly to Cr, also Mo distinctively increases N solubility in the molten metal, but can exhibit a larger effect of improving the corrosion resistance than Cr can only with a smaller amount, and is successful in obtaining an effect of improving the strength through solid solution strengthening. An amount of Mo addition of less than 0.05% by mass results in only a poor effect, whereas the amount of addition exceeding 8.0% by mass induces nitrogen blow holes and destabilizes the austenitic phase, and thereby makes it difficult to keep the non-magnetism. Formation of an embrittled phase degrades the toughness and ductility, and it becomes hazardous during the hot working. This also raises a problem of increasing insoluble Cr nitride during the solution heat treatment, and of considerably degrading the corrosion resistance. The amount of Mo addition is therefore more preferably adjusted to 0.05% or more and less than 5.0% by mass, and still more preferably to 0.10% by mass or more and less than 2.5% by mass.
- (3) Mn: 0.2% by Mass to 10.0% by Mass
- Mn is an austenite forming element, and contributes to stabilization of the austenitic phase and to lowering of the solid solution temperature of the Cr nitride described later. Also, Mn distinctively increases N solubility in the molten metal, it is effective in improving the strength and suppressing generation of the nitrogen blow holes. It is also effective as a deoxidation element or desulfurizing element. A Mn content of less than 0.2% by mass results in only an insufficient N solubility in the molten metal, and this makes it difficult to ensure a satisfactory level of strength, and tends to cause nitrogen blow holes. On the other hand, the Mn content exceeding 10.0% by mass degrades the corrosion resistance. The Mn content is therefore more preferably adjusted within a range from 0.2% by mass to 6.0% by mass, and still more preferably from 0.2% by mass to 2.0% by mass, both ends inclusive.
- (4) Cu: 0.01% by Mass to 2.0% by Mass
- Cu is an austenite forming element, and contributes to stabilization of the austenitic phase and to improvement in the corrosion resistance. An amount of Cu addition of less than 0.01% by mass results in only a poor effect, and the addition exceeding 2.0% by mass raises a problem of lowering in the hot workability. This also increases residual amount of insoluble Cr nitride after the solution heat treatment, and undesirably degrades the corrosion resistance. The amount of Cu addition is therefore more preferably adjusted within a range from 0.02% by mass to 1.8% by mass, and still more preferably from 0.05% by mass to 1.5% by mass, both ends inclusive.
- (5) N: 0.8% by Mass to 1.5% by Mass
- N is an interstitial solid solution element into the austenitic phase, and is a basic additive element contributes all of improvement in the strength, stabilization of the austenitic phase, and improvement in the corrosion resistance. The amount of N addition exceeding 1.5% by mass makes the nitrogen blow holes more likely to generate, allows a large amount of insoluble Cr nitride or other transition metal nitrides (e.g., nitrides of Ti, Nb, V and so forth, described later) to remain in the steel after the solution heat treatment, to thereby raise a problem of a considerable degradation in the corrosion resistance. The amount of N addition is therefore more preferably adjusted within a range from 0.8% by mass to 1.4% by mass, both ends inclusive.
- (6) Fe: 50% by Mass or More
- Fe is a major component (i.e., 50% by mass or more) of the steel, and basically composes the residual portion of the steel other than five above-described essential additive elements, optional elements described below, and inevitable impurities. It is to be understood that this invention is not precluded from containing any side components not specifically mentioned in the specification, so far as the above-described effects of this invention will not be ruined.
- (7) η: 5 or Above
- η is a compositional parameter expressed by:
η≡(WCr+3.3WMo+16WN)/WMn
where WCr is Cr content (% by mass), WMo is Mo content (% by mass), WN is N content (% by mass) and WMn is Mn content (% by mass). Of additive elements relevant to Ti, N, Cr and Mo function to improve the corrosion resistance, but Mn tends to degrade the corrosion resistance although it is an essential element for increasing the amount of N solubility. The numerator of η is obtained by quantifying effects of improving the corrosion resistance by Mo and N converted on the basis of Cr equivalent. All of N, Cr and Mo contribute to improvement in the corrosion resistance, wherein the effect of improving the corrosion resistance by N measures surprisingly 16 times as large as that of Cr. It is finally indispensable to add Mn in order to dramatically increase the amount of N solubility in the austenitic phase, but excessive addition of Mn seems to partially cancel the net improvement in the corrosion resistance ascribable to thus-increased N, because Mn functions to degrade the corrosion resistance. The η value, having a numerator as a result of positive contribution by N, Cr and Mo to the corrosion resistance, and having a denominator as a result of negative contribution by Mn to the corrosion resistance, can be an effective parameter for generally predicting the corrosion resistance of the finally-obtained steel. - The present inventors found out, after extensive investigations, that the effect of improving the corrosion resistance could distinctively be optimized, and that it was even possible to ensure a level of corrosion resistance equivalent to, or superior to that of super-austenitic stainless steel SUS836L, by balancing the amounts of addition of N, Cr, Mo and Mn so as to adjust η to 5 or above.
- The following paragraphs will describe reasons for the compositional limitations of minor elements (intentionally added elements and inevitable impurities).
- (8) C: 0.20% by Mass or Less
- C is an interstitial solid solution element, contributes to improvement in the strength, and is effectively functions, as an austenite forming element, to suppress formation of nitrogen blow holes. The amount of addition thereof exceeding 0.20% by mass lowers the N solubility, decreases Cr content in the austenite phase through formation of Cr carbide, and thereby results in degradation in the corrosion resistance. Although being an optional element, C is preferably added in an amount of 0.005% by mass or more in view of making the effect of intentional addition thereof distinct. The C content is preferably adjusted within a range from 0.005% by mass to 0.15% by mass, and more preferably from 0.01% by mass to 0.10% by mass, both ends inclusive.
- (9) Si: 2.0% by Mass or Less
- Si is an effective deoxidizing element. Al is known as a deoxidizing element stronger than Si in the general steels, but in the high-nitrogen steel, it is causative of formation of AlN which considerably degrades the high-temperature strength, toughness and ductility. It is therefore preferable to use Si, together with the essential element Mn, as the major deoxidizing element. The deoxidizing effect of Si becomes distinct when it is added in an amount of 0.01% by mass or more. The amount of Si addition exceeding 2.0% by mass makes the steel more likely to cause undesirable as crack or something during the hot working, and also degrades the toughness and ductility. The amount of Si addition is therefore more preferably adjusted within a range from 0.01% by mass to 1.0% by mass, and still more preferably from 0.01% by mass to 0.5% by mass, both ends inclusive.
- (10) P: 0.03% by Mass or Less
- P is one of hazardous impurities, and the content exceeding 0.03% by mass results in degradation of the hot workability, and also in degradation of the toughness and ductility due to lowered strength at the grain boundary. It is therefore preferable that P is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account.
- (11) S: 0.05% by Mass or Less
- S is one of hazardous impurities, and the content exceeding 0.05% by mass results in degradation of the hot workability, and also tends to degrade the corrosion resistance due to formation of MnS. It is therefore preferable that S is not contained as possible, and the lower limit thereof is appropriately determined taking the cost balance into account. It is preferably adjusted to 0.01% by mass or less.
- (12) Ni: 0.5% by Mass or Less
- Ni is intentionally suppressed in this invention in order to reduce the cost and to avoid adverse influences such as Ni allergy when applied to human body. It is therefore preferable that Ni is not contained as possible, but a content to as much as 0.5% by mass is allowable, because an unnecessarily high level of reduction undesirably increases the cost. The Ni content is preferably limited to 0.3% by mass or less, and more preferably to 0.1% by mass or less.
- (13) Al: 0.03% by Mass or Less
- As described in the above, Al is effective as a deoxidizing element, but considerably lowers the corrosion resistance through formation of AlN in the high-nitrogen steel, even under a slight excess of the Al content. In this invention, the Al content is limited to 0.03% by mass or less, in view of avoiding the nonconformity and of raising the amount of N solubilization into the austenite phase as possible. The Al content is preferably limited to 0.025% by mass or less, and more preferably to 0.020% by mass or less.
- (14) O: 0.020% by Mass or Less
- The O content is limited to 0.020% by mass or less, because an excess content lowers the cleanliness of the steel, and thereby degrades the corrosion resistance. The O content is preferably limited to 0.015% by mass or less, and more preferably 0.010% by mass or less.
- The following paragraphs will describe still other elements which can be added to the high-nitrogen austenitic stainless steel of this invention.
- (15) W: 0.01% by Mass to 1.0% by Mass
- W not only contributes to improvement in the corrosion resistance, but also to improvement in the strength as a solid solution strengthening element. An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 1.0% by mass degrades the toughness and ductility due to formation of an embrittled phase, and thereby induces a nonconformity which is hazardous for the hot working. This also increases insoluble Cr nitride during the solution treatment, and thereby considerably lowers the corrosion resistance. The W content is preferably adjusted within a range from 0.05% by mass to 0.9% by mass, and more preferably from 0.1% by mass to 0.8% by mass, both ends inclusive.
- (16) Co: 0.01% by Mass to 5.0% by Mass
- Co contributes to improvement in the corrosion resistance and strength. An amount of addition of less than 0.01% by mass results in only a poor effect, whereas the amount of addition exceeding 5.0% by mass increases the cost, and undesirably increases insoluble Cr nitride during the solution heat treatment, and thereby considerably lowers the corrosion resistance. The Co content is preferably adjusted within a range from 0.05% by mass to 4.5% by mass, and more preferably from 0.1% by mass to 4.0% by mass, both ends inclusive.
- In view of improving the strength and corrosion resistance, either one of, or both of W and Co can be added within the above-specified ranges.
- (17) Ti: 0.01% by Mass to 0.5% by Mass
- (18) Nb: 0.01% by Mass to 0.5% by Mass
- (19) V: 0.01% by Mass to 1.0% by Mass
- (20) Ta: 0.01% by Mass to 0.5% by Mass
- All of Ti, Nb, V and Ta can bind with C and N, allow carbides or carbonitrides to precipitate, and thereby contribute to improvement in the strength. The precipitation can suppress growth of the austenitic grain by the pinning effect, and consequently contribute to improvement in the strength and toughness through refinement of the grain. Amounts of addition of these elements of less than 0.01% by mass result only in poor effects, whereas the amounts of addition exceeding the respective upper limits considerably degrade the corrosion resistance through formation of hazardous oxides or nitrides in the steel, and also undesirably make the strength more likely to degrade through lowering of an effective amount of N solubility. The Ti content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive. The Nb content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive. The V content is preferably adjusted within a range from 0.02% by mass to 0.9% by mass, and more preferably from 0.03% by mass to 0.8% by mass, both ends inclusive. The Ta content is preferably adjusted within a range from 0.02% by mass to 0.4% by mass, and more preferably from 0.03% by mass to 0.3% by mass, both ends inclusive.
- It is allowable to add only a single element selected from Ti, Nb, V and Ta, or two or more elements in combination.
- (21) B: 0.001% by Mass to 0.01% by Mass
- B is an element effective for improving the strength and hot workability. An amount of addition of less than 0.001% by mass results in only a poor effect, whereas the content exceeding 0.01% by mass adversely affects the hot workability and also degrades the corrosion resistance. The B content is preferably adjusted within a range from 0.001% by mass to 0.008% by mass, and more preferably from 0.001% by mass to 0.005% by mass, both ends inclusive.
- (22) Zr: 0.01% by Mass to 0.50% by Mass
- Zr is an additive element effective for improving the strength. An amount of addition of less than 0.01% by mass results in only a limited effect, whereas the amount of addition exceeding 0.50% by mass degrades the toughness and ductility. The Zr content is preferably adjusted within a range from 0.03% by mass to 0.40% by mass, and more preferably from 0.05% by mass to 0.30% by mass, both ends inclusive.
- (23) Ca: 0.001% by Mass to 0.01% by Mass
- (24) Mg: 0.001% by Mass to 0.01% by Mass
- Both of Ca and Mg are additive elements effective for improving the hot workability. Excessive addition of the both degrades the corrosion resistance, toughness, ductility and hot workability. They are also effective in view of improving the machinability. Amounts of addition of the both less than 0.001% results in only poor effects, whereas the amounts of addition exceeding 0.01% by mass undesirably degrade the hot workability. Each of the Ca and Mg contents is preferably adjusted within a range from 0.001% by mass to 0.008% by mass, and more preferably from 0.001% by mass to 0.005% by mass, both ends inclusive.
- It is allowable to add only a single element selected from B, Zr, Ca and Mg, or two or more elements in combination.
- (25) Te: 0.005% by Mass to 0.05% by Mass
- (26) Se: 0.01% by Mass to 0.20% by Mass
- Both of Te and Se are additive elements effective for improving the machinability. Amounts of addition of the both less than the lower limits result in only poor effects, and the amounts of addition exceeding the upper limits undesirably degrade the corrosion resistance, toughness, ductility and hot workability. The Te content is preferably adjusted within a range from 0.01% by mass to 0.04% by mass, both ends inclusive. The Se content is preferably adjusted within a range from 0.02% by mass to 0.18% by mass, and more preferably from 0.05% by mass to 0.15% by mass, both ends inclusive.
- The high-nitrogen austenitic stainless steel of this invention is preferably subjected to solution treatment at 1,100° C. to 1,250° C., both ends inclusive (typically for 0.1 hours to 2 hours, both ends inclusive). For example, by subjecting the steel of this invention after being melted so as to have the above-described composition to hot-forging or rolling, and further by subjecting the product to solution treatment within the above-described temperature range, the precipitated Cr nitride can be dissolved, and this successfully makes the structure uniform, and makes it possible to distinctively improve the corrosion resistance. According to the investigations by the present inventors, the Cr nitride particularly having a diameter (expressed in this patent specification by a diameter of a circle having an area same as that of the projected area of the nitride grain (referred to as circle-converted diameter, hereinafter)) of 2 μm or larger remaining in the steel was found to largely affect the corrosion resistance. In order to ensure a desirable corrosion resistance, it is of course preferable that no Cr-base nitride having a diameter of 2 μm or larger is observed in the sectional structure of the steel. It is to be noted herein that the solution heat treatment carried out within a temperature range from 1,100° C. to 1,250° C. does not always ensure disappearance of the Cr-base nitride of 2 μm or larger in diameter, and that the hazardous Cr-base nitride of 2 μm or larger in diameter can be suppressed to a satisfactory degree, only when an optimum solution heat treatment temperature is selected depending on steel composition within the above-described temperature range, which will be described later in Examples.
- The steel of this invention can realize a strength of as large as 1,000 MPa on the tensile strength basis, after being subjected to the solution treatment carried out to an extent not causative of observable Cr-base nitride having a diameter of 2 μm or larger.
- The high-nitrogen austenitic stainless steel of this invention can be worked so as to produce wire product or sheet product. In this case, a more distinct level of strengthening is available by carrying out the area-reducing process at the final stage of the wire making or sheet making by cold wire drawing or cold rolling. After such process, Cr-base nitride having a diameter of 2 μm or larger is observed neither in the section of a
wire product 100, shown inFIG. 1 , normal to the axis thereof, nor in the section of asheet product 150, shown inFIG. 2 , normal to the drawing direction thereof, and it is made possible to obtain the wire product or sheet product as having a mean grain size (in circle-converted diameter) of the austenitic matrix phase of 100 μm or smaller. The refinement of the mean grain size of the austenitic matrix phase makes it possible to obtain the wire product or sheet product having an extremely high strength and an excellent corrosion resistance. A specific attainable level of strength may be 1,500 MPa or more, or may be even 2,000 MPa or more (strengthening up to 2,500 MPa or around, for example, is attainable, with the upper limit value not specifically limited). - The finally-obtained grain size of the austenitic matrix phase of the wire product or sheet product is adjustable by working ratio (reduction of area for the wire product, and draft for the sheet product) in cold working which precedes the solution heat treatment. The mean grain size exceeding 100 μm results in only a limited effect of improvement in the strength, whereas reduction in the mean grain size to as small as 2 μm or smaller is technically difficult, considering that re-crystallization can proceed to a certain degree during the solution heat treatment within the above-described temperature range. Refinement of the structure may be more distinctive when any one or more of Ti, Nb, V and Ta, all of which being known to be effective in suppressing growth of the grain, are added within the above-described compositional ranges.
- As has been described in the above, the high-nitrogen austenitic stainless steel of this invention is successful in achieving both of high corrosion resistance equivalent to that of SUS836L which is a super-austenitic stainless steel, and strength higher than that of SUS329J4L which is a dual-phase stainless steel, after being subjected to solution heat treatment. The steel can realize a strength of as high as 1,500 MPa or more (or even as high as 2,000 MPa or more), when cold-worked in a form of wire product or sheet product after the solution heat treatment.
- The high-nitrogen austenitic stainless steel of this invention can be processed into various forms of wire product, rod steel, sheet steel, plate product, pipe, forged product and shape steel. Specific applications will be listed below.
- Applications demanding consideration on biological contact are exemplified by those brought into direct contact with human body, and preferable examples include accessories such as necklace, pierce and ring; watch components such as back lid of wrist watch and band of wrist watch; spectacle components such as frame of a pair of spectacles; metal components for furniture or building interior such as door knob; cutlery and kitchen tools such as spoon, folk and ladle; metal components for home appliances; dental materials such as dental floss, artificial root and orthodontic wire; biological implant materials such as plate, bolt, nut, spring, screw, wire, electrode, artificial bone and artificial joint; and medical tools such as syringe needle, surgical knife, scalpel, saw, forceps and surgical drill.
- The steel is applicable to general high-strength, high-corrosion-resistant materials, and preferable examples of the applications include bolt, nut, cylinder liner, shaft, hub, connecter, bearing, lathe, rail, gear, pin, screw, roll, turbine blade, mold, die, drill, valve, valve sheet, cutting edge, nozzle, gasket, ring, spring, ocean beach environmental components, industrial furnace components, chemical plant components, oil drilling components, oil refining plant components, waste incinerator components, steam turbine components, gas turbine components, nuclear reactor components (e.g., secondary cooling water piping components for pressurized water reactor), aircraft components, structural components for construction and civil engineering (e.g., bridge components such as bridge pier and suspension bridge components, electric pole and steel tower for power cable), and decorative components.
- The steel is also effectively applicable to high-strength, high-corrosion-resistant components which are necessarily non-magnetic, and examples of which include spring, shaft, bearing, lathe, pin, die and rail for precision electronic components; wire used for components for printed board production; mesh; biological implant electrode: MRI component; drug production components; hanger components; linear motor car components; components for semiconductor production apparatus; forceps, bearing; saw; and cutting edge.
-
FIG. 1 is a drawing for explaining a definition of grain size of a wire product; and -
FIG. 2 is a drawing for explaining a definition of grain size of a sheet product. -
C Si Mn P S Cu Ni Cr Mo Co W V Al Ti Nb O N Example 1 0.04 0.15 0.2 0.01 0.01 0.16 0.21 30.0 1.00 0.15 0.20 0.008 0.01 0.002 1.38 Example 2 0.03 0.20 1.5 0.02 0.01 0.05 0.20 24.0 6.02 1.52 0.46 0.007 0.05 0.003 1.20 Example 3 0.10 0.31 1.0 0.02 0.01 0.20 0.01 27.0 1.87 0.006 0.002 1.05 Example 4 0.03 0.50 7.0 0.01 0.01 0.51 0.10 18.0 4.03 0.26 0.10 0.21 0.006 0.09 0.04 0.002 1.07 Example 5 0.02 0.11 9.0 0.02 0.01 0.32 0.30 26.0 2.50 0.98 0.48 0.005 0.06 0.002 1.33 Example 6 0.03 0.19 2.0 0.02 0.01 0.16 0.20 25.0 1.50 0.34 0.14 0.01 0.006 0.001 1.20 Example 7 0.05 0.16 3.0 0.01 0.01 1.50 0.08 26.0 2.01 0.13 0.004 0.003 0.84 Example 8 0.03 0.22 1.5 0.02 0.01 0.16 0.07 25.0 2.45 0.47 0.15 0.005 0.001 1.12 Example 9 0.05 0.21 1.8 0.02 0.01 0.16 0.09 25.1 0.10 0.20 0.02 0.006 0.02 0.01 0.003 1.17 Example 10 0.06 0.20 1.5 0.02 0.01 0.97 0.07 32.0 0.51 0.31 0.05 0.32 0.005 0.15 0.05 0.003 1.21 Example 11 0.01 0.28 5.0 0.01 0.01 0.10 0.09 28.0 0.54 0.29 0.16 0.12 0.010 0.07 0.002 0.98 Example 12 0.03 0.01 2.0 0.02 001 0.16 0.03 28.4 0.52 0.15 0.01 0.007 0.005 1.22 Example 13 0.03 0.20 1.8 0.02 001 0.19 0.02 26.0 1.99 0.008 0.001 1.14 Comparative *0.31 0.24 4.0 0.01 0.01 0.14 0.31 26.8 0.54 0.20 0.006 0.002 1.11 Example 1 Comparative 0.06 *2.51 2.0 0.01 0.01 0.16 0.06 23.9 1.97 0.15 0.008 0.03 0.05 0.004 *0.74 Example 2 Comparative 0.04 0.19 *12.2 0.02 0.01 0.14 0.16 *13.0 7.99 0.51 0.009 0.05 0.002 1.21 Example 3 Comparative 0.05 0.14 8.0 0.02 0.01 *4.98 0.10 20.1 0.98 0.11 0.009 0.005 0.99 Example 4 Comparative 0.04 0.12 0.1 0.01 0.01 0.21 *6.01 29.5 0.56 0.05 0.05 0.31 0.007 0.003 1.31 Example 5 Comparative 0.05 0.15 2.0 0.02 0.01 0.19 0.20 *37.0 0.51 0.009 0.002 1.02 Example 6 comparative 0.05 0.20 6.0 0.01 0.01 0.15 0.07 19.2 *12.02 0.008 0.05 0.003 1.08 Example 7 Comparative 0.07 0.21 4.0 0.02 0.01 0.15 0.17 20.9 4.02 0.51 *0.060 0.002 0.99 Example 8 Comparative 0.03 0.16 1.5 0.02 0.01 0.18 0.16 24.0 0.52 0.15 0.05 0.010 *0.031 1.20 Example 9 Comparative 0.08 0.23 1.0 0.01 0.01 0.14 0.24 29.1 1,01 0.009 0.11 0.004 *1.80 Example 10 Comparative 0.07 0.15 *12.0 0.01 0.01 0.20 0.01 17.5 2.01 0.012 0.003 1.01 Example 11 Comparative 0.02 0.17 0.8 0.02 0.01 0.92 *25.1 20.2 6.27 0.009 0.040 *0.14 Example 12 Comparative 0.02 0.21 0.9 0.02 0.01 *6.4 24.9 3.98 0.010 0.004 *0.19 Example 13 Comparative 0.04 0.34 1.1 0.03 0.01 0.15 *11.8 17.5 2.12 0.025 0.005 *0.03 Example 14
*out of inventive range
-
TABLE 2 B Mg Ca Ta Zr Te Se (Cr + 3, 3Mo + 16N)/Mn Example 1 251.7 Example 2 0.09 42.0 Example 3 0.003 50.0 Example 4 0.003 6.9 Example 5 0.003 0.003 0.002 0.09 0.10 0.03 6.2 Example 6 24.7 Example 7 0.03 0.10 15.4 Example 8 34.0 Example 9 24.5 Example 10 0.003 0.09 35.4 Example 11 0.002 0.002 0.09 9.1 Example 12 0.002 0.003 24.8 Example 13 28.2 Comparative Example 1 11.6 Comparative Example 2 0.03 0.10 21.1 Comparative Example 3 0.09 *4.8 Comparative Example 4 0.003 *4.9 Comparative Example 5 0.11 0.02 0.10 475.5 Comparative Example 6 0.003 0.11 27.5 Comparative Example 7 0.002 0.003 0.10 12.7 Comparative Example 8 0.11 0.09 12.5 Comparative Example 9 0.003 0.11 29.9 Comparative Example 10 0.002 61.2 Comparative Example 11 *3.4 Comparative Example 12 57.5 Comparative Example 13 45.6 Comparative Example 14 22.7
*out of inventive range
-
TABLE 3 Solution heat Mean Pitting N blow treatment grain Tensile corrosion holes temperature size strength potential Yes/No ° C. μm MPa V vs SCE Example 1 No 1250 163 1184 >0.90 Example 2 No 1200 97 1147 >0.90 Example 3 No 1200 102 1115 >0.90 Example 4 No 1150 74 1120 >0.90 Example 5 No 1100 54 1171 >0.90 Example 6 No 1200 105 1140 >0.90 Example 7 No 1200 99 1075 >0.90 Example 8 No 1200 93 1130 >0.90 Example 9 No 1200 97 1141 >0.90 Example 10 No 1250 159 1146 >0.90 Example 11 No 1150 78 1102 >0.90 Example 12 No 1200 96 1146 >0.90 Example 13 No 1200 104 1133 >0.90 Comparative Example 1 No 1200 110 1122 0.69 Comparative Example 2 No 1200 98 1039 0.75 Comparative Example 3 No 1100 55 1144 0.63 Comparative Example 4 No Forging crack Forging crack Forging crack Forging crack Comparative Example 5 No 1300 588 1162 >0.90 Comparative Example 6 No 1300 473 1103 >0.90 Comparative Example 7 No 1300 643 1118 >0.90 Comparative Example 8 No 1200 105 1097 0.77 Comparative Example 9 No 1200 100 1140 0.60 Comparative Example 10 Yes Comparative Example 11 No 1100 58 1094 0.49 Comparative Example 12 No 1150 92 690 >0.90 Comparative Example 13 No 1100 55 702 >0.90 Comparative Example 14 No 1100 43 591 0.39 -
TABLE 4 Cold working Tensile Product ratio strength Mean grain form % Mpa size μm Example 5 sheet 50 2178 44 70 2455 26 wire 50 2188 49 70 2461 25 Example 6 sheet 50 2151 54 70 2389 33 wire 50 2156 63 70 2377 35 Example 13 sheet 50 2162 59 70 2392 36 wire 50 2158 60 70 2403 30 - Each of steels having chemical compositions listed in Table 1 and Table 2 was melted under a pressurized atmosphere having a nitrogen partial pressure of 50 atm or less during melting in a pressurizable high-frequency induction furnace, and then cast to produce a 50-kg steel ingot. A test piece was cut out from the bottom portion of the steel ingot, and visually observed for a presence or absence of nitrogen blow holes. The steel ingot was then homogenized under heating, and hot-forged to thereby produce a 24-mm-diameter round rod. A rod was heated at a varied temperature from 1,100° C. to 1,300° C. for one hour, and water-cooled so as to accomplish the solution heat treatment. The sectional structure was then observed under an optical microscope (400×magnification) to thereby confirm whether the Cr-base nitride having a diameter of 2 μm or larger on the circle-converted diameter basis has been produced or not. A minimum temperature not causative of the Cr-base nitride was determined as the solution heat treatment temperature. A test sample was then collected from a steel product processed at thus-determined solution heat treatment temperature, and subjected to each of the measurements listed below (Comparative Examples 12 to 14 correspond to SUS836L, SUS329J4L and SUS316, respectively):
- (1) Mean Grain Size
- Twenty fields of view in the sectional structure were randomly observed under an optical microscope (100× magnification), to thereby measure the mean grain size, conforming to JIS G0551.
- (2) Tensile Strength
- Measured by a method conforming to JIS Z2241.
- (3) Pitting Corrosion Potential
- Measured by a method conforming to JIS G0577.
- In each of Examples 5, 6 and 13, the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 12.5-mm-diameter wire product, subjected to solution heat treatment under the condition determined in the above, and cold-drawn with reductions of area of 50% and 70% so as to obtain wire products of 8.8 mm in diameter and 6.8 mm in diameter, respectively. These wire products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above. Again in each of Examples 5, 6 and 13, the 50-kg steel ingot was homogenized under heating, then hot-forged, and hot-rolled so as to obtain a 5-mm-thick sheet product, subjected to solution heat treatment under the condition determined in the above, and cold-rolling with drafts of 50% and 70% so as to obtain sheet products of 2.5 mm thick and 1.5 mm thick, respectively. These sheet products were also subjected to measurements of tensile strength and mean grain size, similarly to as described in the above. Results are shown in Table 3 and Table 4.
- It was found from the results shown in Table 3 that the steels of Examples 1 to 13 were very excellent in both of the tensile strength after the solution heat treatment and corrosion resistance indicated by the pitting corrosion potential, and were successful in attaining higher levels of strength and corrosion resistance as compared with those of ever-known austenitic stainless steels SUS836L, SUS329J4L and SUS316, shown in Comparative Examples 12 to 14, respectively. It was also found from the results shown in Table 4 that the steels of this invention, cold-processed into forms of wire product and sheet product, successfully achieved a super-high strength of as high as 2,000 MPa or above.
Claims (7)
1. A high-nitrogen austenitic stainless steel having a Fe content of 50% by mass or more, and containing:
□≡(WCr+3.3WMo+16WN)/WMn
Cr: 15.0% by mass to 35.0% by mass;
Mo: 0.05% by mass to 8.0% by mass;
Mn: 0.2% by mass to 10.0% by mass;
Cu: 0.01% by mass to 4.0% by mass; and
N: 0.8% by mass to 1.5% by mass,
both ends inclusive,
having a C content of 0.20% by mass or less, a Si content of 2.0% by mass or less, a P content of 0.03% by mass or less, a S content of 0.05% by mass or less, a Ni content of 0.5% by mass or less, an Al content of 0.03% by mass or less, and an 0 content of 0.020% by mass or less;
wherein the contents of Cr, Mo, N and Mn are adjusted so that a compositional parameter □ expressed by the equation:
□≡(WCr+3.3WMo+16WN)/WMn
where WCr is Cr content (% by mass), WMo is Mo content (% by mass), WN is N content (% by mass) and WMn is Mn content (% by mass) has a value of 5 or above;
and optionally further containing either one of, or both of:
W: 0.01% by mass to 1.0% by mass; and
Co: 0.01% by mass to 5.0% by mass,
both ends inclusive;
and optionally further containing at least one of:
Ti: 0.01% by mass to 0.5% by mass;
Nb: 0.01% by mass to 0.5% by mass;
V: 0.01% by mass to 1.0% by mass; and
Ta: 0.01% by mass to 0.5% by mass,
both ends inclusive;
and optionally further containing at least one of:
B: 0.001% by mass to 0.01% by mass;
Zr: 0.01% by mass to 0.50% by mass;
Ca: 0.001% by mass to 0.01% by mass; and
Mg: 0.001% by mass to 0.01% by mass,
both ends inclusive;
and optionally further containing either one of, or both of:
Te: 0.005% by mass to 0.05% by mass; and
Se: 0.01% by mass to 0.20% by mass,
both ends inclusive.
2. The high-nitrogen austenitic stainless steel as claimed in claims 1, having no Cr-base nitride having a diameter of 2 □m or larger observed in the sectional structure thereof after being subjected to solution heat treatment at 1,100° C. to 1,250° C., both ends inclusive.
3. The high-nitrogen austenitic stainless steel as claimed in claim 2 , having a tensile strength of 1,000 MPa or more after being subjected to the solution heat treatment.
4. The high-nitrogen austenitic stainless steel as claimed in any one of claims 1 to 2 , being cold-worked in a form of wire product, having no Cr-base nitride having a diameter of 2 □m or larger observed in the structure thereof which appears in a section normal to the axis of the wire product, and having a mean grain size of the austenitic matrix phase of 100 □m or smaller.
5. The high-nitrogen austenitic stainless steel as claimed in any one of claims 1 to 2 , being cold-worked in a form of sheet product, having no Cr-base nitride having a diameter of 2 □m or larger observed in the structure thereof which appears in a section normal to the drawing direction of the sheet product, and having a mean grain size of the austenitic matrix phase of 100 □m or smaller.
6. The high-nitrogen austenitic stainless steel as claimed in claim 4 , having a tensile strength of 1,500 MPa or more.
7. The high-nitrogen austenitic stainless steel as claimed in claim 5 , having a tensile strength of 1,500 MPa or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-235880 | 2004-08-13 | ||
JP2004235880A JP4379804B2 (en) | 2004-08-13 | 2004-08-13 | High nitrogen austenitic stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060034724A1 true US20060034724A1 (en) | 2006-02-16 |
Family
ID=35311901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/201,314 Abandoned US20060034724A1 (en) | 2004-08-13 | 2005-08-11 | High-nitrogen austenitic stainless steel |
Country Status (3)
Country | Link |
---|---|
US (1) | US20060034724A1 (en) |
EP (1) | EP1626101B1 (en) |
JP (1) | JP4379804B2 (en) |
Cited By (183)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070295427A1 (en) * | 2006-04-28 | 2007-12-27 | Thorsten Michler | Treated austenitic steel for vehicles |
US20080141826A1 (en) * | 2006-12-18 | 2008-06-19 | Schlumberger Technology Corporation | Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same |
US20090250185A1 (en) * | 2008-04-03 | 2009-10-08 | Deepak Saha | Methods for casting stainless steel and articles prepared therefrom |
US20100147247A1 (en) * | 2008-12-16 | 2010-06-17 | L. E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
US20100170320A1 (en) * | 2007-07-02 | 2010-07-08 | Masayuki Sagara | Method for manufacturing a high alloy pipe |
US20140209220A1 (en) * | 2013-01-25 | 2014-07-31 | Seiko Instruments Inc. | Two-phase stainless steel, method of manufacturing the same, and diaphragm, pressure sensor, and diaphragm valve using two-phase stainless steel |
US20150013820A1 (en) * | 2011-11-30 | 2015-01-15 | National Institute For Materials Science | Method for rolling/drawing nickel-free high-nitrogen stainless steel material, thin seamless tube of nickel-free high-nitrogen stainless steel, and method of manufacturing the same |
US9119127B1 (en) | 2012-12-05 | 2015-08-25 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9154966B2 (en) | 2013-11-06 | 2015-10-06 | At&T Intellectual Property I, Lp | Surface-wave communications and methods thereof |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
CN107083519A (en) * | 2017-02-22 | 2017-08-22 | 广东鑫发精密金属科技有限公司 | A kind of stainless steel cold-rolled precision spring steel strip and its preparation method |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9789544B2 (en) | 2006-02-09 | 2017-10-17 | Schlumberger Technology Corporation | Methods of manufacturing oilfield degradable alloys and related products |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
CN107587071A (en) * | 2017-08-30 | 2018-01-16 | 武汉钢铁有限公司 | A kind of tensile strength >=2100MPa bridge cables steel and production method |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10060003B2 (en) * | 2014-08-19 | 2018-08-28 | Nisshin Steel Co., Ltd. | Austenitic stainless steel sheet and metal gasket |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
CN109642297A (en) * | 2017-03-20 | 2019-04-16 | 苹果公司 | The Solid Solution Nitriding of steel compositions and its stainless steel |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10316616B2 (en) | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
WO2019168893A1 (en) * | 2018-02-27 | 2019-09-06 | Somnio Global Holdings, Llc | Articles with nitrogen alloy protective layer and methods of making same |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10669601B2 (en) | 2015-12-14 | 2020-06-02 | Swagelok Company | Highly alloyed stainless steel forgings made without solution anneal |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10689931B2 (en) * | 2018-10-10 | 2020-06-23 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
CN113088816A (en) * | 2021-03-27 | 2021-07-09 | 京泰控股集团有限公司 | Steel material for furniture and preparation method thereof |
CN113308635A (en) * | 2021-05-19 | 2021-08-27 | 北京科技大学 | Low-thermal-neutron absorption cross section entropy alloy with nanometer precipitated phase and preparation method |
US11136638B2 (en) | 2016-05-27 | 2021-10-05 | The Swatch Group Research And Development Ltd | Method for heat treatment of austenitic steels and austenitic steels obtained thereby |
CN114032461A (en) * | 2021-11-04 | 2022-02-11 | 华北理工大学 | High-nitrogen steel with high strength, low yield ratio and high corrosion resistance for marine engineering and preparation method thereof |
US20220251699A1 (en) * | 2019-10-07 | 2022-08-11 | Showa Denko K.K. | Corrosion-resistant member |
WO2023014411A1 (en) * | 2021-08-06 | 2023-02-09 | Halliburton Energy Services, Inc. | High strength stainless steel material |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4845109B2 (en) * | 2005-07-19 | 2011-12-28 | 独立行政法人物質・材料研究機構 | Nickel-free high-nitrogen stainless steel, living body or medical implants using the same, jewelry, kitchen appliances, etc. |
JP5223046B2 (en) * | 2005-11-02 | 2013-06-26 | 国立大学法人九州大学 | Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use |
JP4915202B2 (en) * | 2005-11-03 | 2012-04-11 | 大同特殊鋼株式会社 | High nitrogen austenitic stainless steel |
JP2007248397A (en) * | 2006-03-17 | 2007-09-27 | Seiko Epson Corp | Ornaments and watches |
JP5217576B2 (en) * | 2008-04-02 | 2013-06-19 | 大同特殊鋼株式会社 | Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same |
EP2644734B1 (en) * | 2010-11-26 | 2018-03-28 | National Institute for Materials Science | Nickel-free stainless steel stent |
JP5616299B2 (en) * | 2011-08-09 | 2014-10-29 | ガウス株式会社 | Nickel- and manganese-free high N austenitic stainless steel sintering powder for biomedical or medical equipment, and biomedical or medical sintered equipment using the powder |
DE102011082905A1 (en) * | 2011-09-19 | 2013-03-21 | Schaeffler Technologies AG & Co. KG | Component e.g. bearing ring, is useful in rolling bearing e.g. spindle bearing, where component is formed from steel, which comprises carbon, nitrogen, chromium, molybdenum and vanadium and is prepared by powder metallurgical process |
CN103185263A (en) * | 2011-12-30 | 2013-07-03 | 北京谊安医疗系统股份有限公司 | Environment lighting lamp device for medical suspension bridge |
RU2499075C1 (en) * | 2012-08-21 | 2013-11-20 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Corrosion-resistant austenitic steel |
CN103667861B (en) * | 2012-08-30 | 2016-10-05 | 日本活塞环株式会社 | Cylinder jacket |
EP2728028B1 (en) * | 2012-11-02 | 2018-04-04 | The Swatch Group Research and Development Ltd. | Edelstahllegierung ohne Nickel |
US20170088910A1 (en) * | 2015-09-29 | 2017-03-30 | Exxonmobil Research And Engineering Company | Corrosion and cracking resistant high manganese austenitic steels containing passivating elements |
RU2608251C1 (en) * | 2015-11-18 | 2017-01-17 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Cold-resistant austenitic high-strength steel |
WO2018032406A1 (en) * | 2016-08-17 | 2018-02-22 | 华为技术有限公司 | High-nitrogen stainless steel and heat treatment process thereof |
CN107354399A (en) * | 2017-07-11 | 2017-11-17 | 合肥众磊信息科技有限公司 | A kind of alloy abrasion resistant steel |
CN109722612B (en) * | 2017-10-27 | 2021-02-26 | 宝武特种冶金有限公司 | High-nitrogen austenitic stainless steel without nitrogen bubble formation and manufacturing method of extra-large electroslag ingot of high-nitrogen austenitic stainless steel |
CN109352274B (en) * | 2018-11-06 | 2019-10-01 | 湖北第二师范学院 | One kind flexible can bend minimally invasive tungsten needle electrode surgery knife and its production method |
CH715726B1 (en) * | 2019-01-11 | 2022-10-14 | Richemont Int Sa | Process for obtaining a functional component for a watch movement. |
CN110042326B (en) * | 2019-05-21 | 2020-05-22 | 马鞍山市庄芝耐磨合金有限公司 | Centrifugal casting stirring impeller and method |
WO2021026778A1 (en) * | 2019-08-13 | 2021-02-18 | 采纳科技股份有限公司 | Stainless steel material capable of improving the rigidity and toughness of injection needle |
CN111575596B (en) * | 2019-10-15 | 2021-11-09 | 哈尔滨工程大学 | Irradiation-resistant Cu-containing nanocluster reinforced high-strength low-alloy steel and preparation method thereof |
CN113249655B (en) * | 2021-05-13 | 2021-09-24 | 北京中科领德健康科技有限公司 | High-nitrogen nickel-free low-manganese antibacterial alloy, preparation method thereof and medical instrument product |
WO2024056822A1 (en) * | 2022-09-14 | 2024-03-21 | Danmarks Tekniske Universitet | Methods for improving corrosion and wear resistance and strength of essentially nickel-free high-manganese austenitic stainless steel components |
CN116083696B (en) * | 2022-12-15 | 2025-03-14 | 攀钢集团攀枝花钢铁研究院有限公司 | Production method of steel for stable incomplete austenite bainite frog |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5714115A (en) * | 1995-04-08 | 1998-02-03 | Vsg Energie-Und Schmiedetechnik Gmbh | Austenitic steel alloy |
US6682581B1 (en) * | 1999-05-26 | 2004-01-27 | Basf Aktiengesellschaft | Nickel-poor austenitic steel |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936297A (en) * | 1972-05-08 | 1976-02-03 | Allegheny Ludlum Industries, Inc. | Method of producing austenitic stainless steel |
US4116683A (en) * | 1973-04-11 | 1978-09-26 | Institute Po Metaloznanie I Technologia Na Metalite | Nickel-free austenitic corrosion-resistant steel |
US3904401A (en) * | 1974-03-21 | 1975-09-09 | Carpenter Technology Corp | Corrosion resistant austenitic stainless steel |
BG29797A1 (en) * | 1979-06-27 | 1981-02-16 | Rashev | Austenite corrosion resistant steel |
DE4023462C1 (en) * | 1989-10-12 | 1991-07-04 | Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De | |
JP2591256B2 (en) * | 1990-05-21 | 1997-03-19 | 住友金属工業株式会社 | High strength non-magnetic steel |
FR2672904B1 (en) * | 1991-02-14 | 1993-05-07 | Aubert & Duval Acieries | NON-MAGNETIC STAINLESS STEEL BASED ON MANGANESE-CHROME RESISTANT TO CORROSION UNDER STRESS, METHOD OF MANUFACTURING A LONG-LENGTH NON-MAGNETIC STEEL BAR. |
CH688862A5 (en) * | 1995-01-03 | 1998-04-30 | Basf Ag | Nickel-free austenitic chromium steel |
CH688914A5 (en) * | 1995-01-12 | 1998-05-29 | Basf Ag | Stainless steel with very low nickel@ content and homogeneous austenitic structure |
DE19607828C2 (en) * | 1995-04-15 | 2003-06-18 | Vsg En Und Schmiedetechnik Gmb | Process for producing an austenitic Cv-Mn steel |
JP4538966B2 (en) * | 2001-02-05 | 2010-09-08 | 大同特殊鋼株式会社 | High strength and high corrosion resistance nonmagnetic stainless steel |
-
2004
- 2004-08-13 JP JP2004235880A patent/JP4379804B2/en not_active Expired - Fee Related
-
2005
- 2005-08-09 EP EP05107313.8A patent/EP1626101B1/en not_active Not-in-force
- 2005-08-11 US US11/201,314 patent/US20060034724A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5714115A (en) * | 1995-04-08 | 1998-02-03 | Vsg Energie-Und Schmiedetechnik Gmbh | Austenitic steel alloy |
US6682581B1 (en) * | 1999-05-26 | 2004-01-27 | Basf Aktiengesellschaft | Nickel-poor austenitic steel |
Cited By (259)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10316616B2 (en) | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US9789544B2 (en) | 2006-02-09 | 2017-10-17 | Schlumberger Technology Corporation | Methods of manufacturing oilfield degradable alloys and related products |
US20070295427A1 (en) * | 2006-04-28 | 2007-12-27 | Thorsten Michler | Treated austenitic steel for vehicles |
US7846272B2 (en) * | 2006-04-28 | 2010-12-07 | Gm Global Technology Operations, Inc. | Treated austenitic steel for vehicles |
US20080141826A1 (en) * | 2006-12-18 | 2008-06-19 | Schlumberger Technology Corporation | Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same |
US7658883B2 (en) | 2006-12-18 | 2010-02-09 | Schlumberger Technology Corporation | Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same |
US8701455B2 (en) * | 2007-07-02 | 2014-04-22 | Nippon Steel & Sumitomo Metal Corporation | Method for manufacturing a high alloy pipe |
US20100170320A1 (en) * | 2007-07-02 | 2010-07-08 | Masayuki Sagara | Method for manufacturing a high alloy pipe |
US20090250185A1 (en) * | 2008-04-03 | 2009-10-08 | Deepak Saha | Methods for casting stainless steel and articles prepared therefrom |
US20100147247A1 (en) * | 2008-12-16 | 2010-06-17 | L. E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
US8430075B2 (en) | 2008-12-16 | 2013-04-30 | L.E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
WO2010074710A3 (en) * | 2008-12-16 | 2010-09-23 | L. E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
WO2010074710A2 (en) * | 2008-12-16 | 2010-07-01 | L. E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
US20150013820A1 (en) * | 2011-11-30 | 2015-01-15 | National Institute For Materials Science | Method for rolling/drawing nickel-free high-nitrogen stainless steel material, thin seamless tube of nickel-free high-nitrogen stainless steel, and method of manufacturing the same |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9119127B1 (en) | 2012-12-05 | 2015-08-25 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US9788326B2 (en) | 2012-12-05 | 2017-10-10 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10194437B2 (en) | 2012-12-05 | 2019-01-29 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9523620B2 (en) * | 2013-01-25 | 2016-12-20 | Seiko Instruments Inc. | Two-phase stainless steel, method of manufacturing the same, and diaphragm, pressure sensor, and diaphragm valve using two-phase stainless steel |
US20140209220A1 (en) * | 2013-01-25 | 2014-07-31 | Seiko Instruments Inc. | Two-phase stainless steel, method of manufacturing the same, and diaphragm, pressure sensor, and diaphragm valve using two-phase stainless steel |
US10091787B2 (en) | 2013-05-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9930668B2 (en) | 2013-05-31 | 2018-03-27 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9467870B2 (en) | 2013-11-06 | 2016-10-11 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9154966B2 (en) | 2013-11-06 | 2015-10-06 | At&T Intellectual Property I, Lp | Surface-wave communications and methods thereof |
US9661505B2 (en) | 2013-11-06 | 2017-05-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9794003B2 (en) | 2013-12-10 | 2017-10-17 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9876584B2 (en) | 2013-12-10 | 2018-01-23 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9479266B2 (en) | 2013-12-10 | 2016-10-25 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US10060003B2 (en) * | 2014-08-19 | 2018-08-28 | Nisshin Steel Co., Ltd. | Austenitic stainless steel sheet and metal gasket |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US10096881B2 (en) | 2014-08-26 | 2018-10-09 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9755697B2 (en) | 2014-09-15 | 2017-09-05 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9998932B2 (en) | 2014-10-02 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9571209B2 (en) | 2014-10-21 | 2017-02-14 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9960808B2 (en) | 2014-10-21 | 2018-05-01 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9948355B2 (en) | 2014-10-21 | 2018-04-17 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9596001B2 (en) | 2014-10-21 | 2017-03-14 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9876587B2 (en) | 2014-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9712350B2 (en) | 2014-11-20 | 2017-07-18 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9749083B2 (en) | 2014-11-20 | 2017-08-29 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9831912B2 (en) | 2015-04-24 | 2017-11-28 | At&T Intellectual Property I, Lp | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US9967002B2 (en) | 2015-06-03 | 2018-05-08 | At&T Intellectual I, Lp | Network termination and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9935703B2 (en) | 2015-06-03 | 2018-04-03 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10050697B2 (en) | 2015-06-03 | 2018-08-14 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142010B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10027398B2 (en) | 2015-06-11 | 2018-07-17 | At&T Intellectual Property I, Lp | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9882657B2 (en) | 2015-06-25 | 2018-01-30 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10090601B2 (en) | 2015-06-25 | 2018-10-02 | At&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US11025300B2 (en) | 2015-07-14 | 2021-06-01 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10560148B2 (en) | 2015-07-14 | 2020-02-11 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9947982B2 (en) | 2015-07-14 | 2018-04-17 | At&T Intellectual Property I, Lp | Dielectric transmission medium connector and methods for use therewith |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9806818B2 (en) | 2015-07-23 | 2017-10-31 | At&T Intellectual Property I, Lp | Node device, repeater and methods for use therewith |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10225842B2 (en) | 2015-09-16 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10349418B2 (en) | 2015-09-16 | 2019-07-09 | At&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10669601B2 (en) | 2015-12-14 | 2020-06-02 | Swagelok Company | Highly alloyed stainless steel forgings made without solution anneal |
US11136638B2 (en) | 2016-05-27 | 2021-10-05 | The Swatch Group Research And Development Ltd | Method for heat treatment of austenitic steels and austenitic steels obtained thereby |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
CN107083519A (en) * | 2017-02-22 | 2017-08-22 | 广东鑫发精密金属科技有限公司 | A kind of stainless steel cold-rolled precision spring steel strip and its preparation method |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
CN109642297A (en) * | 2017-03-20 | 2019-04-16 | 苹果公司 | The Solid Solution Nitriding of steel compositions and its stainless steel |
US11021782B2 (en) * | 2017-03-20 | 2021-06-01 | Apple Inc. | Steel compositions and solution nitriding of stainless steel thereof |
CN107587071A (en) * | 2017-08-30 | 2018-01-16 | 武汉钢铁有限公司 | A kind of tensile strength >=2100MPa bridge cables steel and production method |
CN112004961A (en) * | 2018-02-27 | 2020-11-27 | 索尼奥环球控股有限责任公司 | Article having a protective layer of nitrogen alloy and method of producing the same |
WO2019168893A1 (en) * | 2018-02-27 | 2019-09-06 | Somnio Global Holdings, Llc | Articles with nitrogen alloy protective layer and methods of making same |
US11371305B2 (en) | 2018-10-10 | 2022-06-28 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US10941625B2 (en) | 2018-10-10 | 2021-03-09 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US11066886B2 (en) | 2018-10-10 | 2021-07-20 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US10689931B2 (en) * | 2018-10-10 | 2020-06-23 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US10844678B2 (en) | 2018-10-10 | 2020-11-24 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US11788367B2 (en) | 2018-10-10 | 2023-10-17 | Repeat Precision, Llc | Setting tools and assemblies for setting a downhole isolation device such as a frac plug |
US20220251699A1 (en) * | 2019-10-07 | 2022-08-11 | Showa Denko K.K. | Corrosion-resistant member |
US11859288B2 (en) * | 2019-10-07 | 2024-01-02 | Resonac Corporation | Corrosion-resistant member |
CN113088816A (en) * | 2021-03-27 | 2021-07-09 | 京泰控股集团有限公司 | Steel material for furniture and preparation method thereof |
CN113308635A (en) * | 2021-05-19 | 2021-08-27 | 北京科技大学 | Low-thermal-neutron absorption cross section entropy alloy with nanometer precipitated phase and preparation method |
WO2023014411A1 (en) * | 2021-08-06 | 2023-02-09 | Halliburton Energy Services, Inc. | High strength stainless steel material |
GB2622172A (en) * | 2021-08-06 | 2024-03-06 | Halliburton Energy Services Inc | High strength stainless steel material |
US12291767B2 (en) | 2021-08-06 | 2025-05-06 | Halliburton Energy Services, Inc. | High strength stainless steel material |
CN114032461A (en) * | 2021-11-04 | 2022-02-11 | 华北理工大学 | High-nitrogen steel with high strength, low yield ratio and high corrosion resistance for marine engineering and preparation method thereof |
US11767581B2 (en) | 2021-11-04 | 2023-09-26 | North China University Of Science And Technology | High nitrogen steel with high strength, low yield ratio and high corrosion resistance for ocean engineering and preparation method therefor |
Also Published As
Publication number | Publication date |
---|---|
EP1626101A1 (en) | 2006-02-15 |
JP2006052452A (en) | 2006-02-23 |
EP1626101B1 (en) | 2015-01-28 |
JP4379804B2 (en) | 2009-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060034724A1 (en) | High-nitrogen austenitic stainless steel | |
EP1783240B1 (en) | High-nitrogen austentic stainless steel | |
JP5217576B2 (en) | Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same | |
JP4337268B2 (en) | High hardness martensitic stainless steel with excellent corrosion resistance | |
JP4427790B2 (en) | Martensitic stainless steel | |
JP6966006B2 (en) | Martensitic stainless steel | |
US7507306B2 (en) | Precipitation-strengthened nickel-iron-chromium alloy and process therefor | |
US10351922B2 (en) | Surface hardenable stainless steels | |
JP2008127590A (en) | Austenitic stainless steel | |
JP2005248263A (en) | Martensitic stainless steel | |
US20030102057A1 (en) | High-strength high-toughness precipitation-hardened steel | |
US20040101430A1 (en) | Steel alloy plastic moulding tool and tough-hardened blank for plastic moulding tools | |
US7128791B2 (en) | Heat-resistant martensite alloy excellent in high-temperature creep rupture strength and ductility and process for producing the same | |
CA2686071C (en) | Hot-forming steel alloy | |
JP2001107195A (en) | Low carbon high hardness and high corrosion resistance martensitic stainless steel and its producing method | |
JP3768091B2 (en) | High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof | |
JP2010132998A (en) | Method for manufacturing ferritic stainless steel having high corrosion resistance, high strength and superior cold forgeability | |
US20200123629A1 (en) | Method of producing tube of duplex stainless steel | |
Maznichevsky et al. | Investigation of nitrogen containing austenitic stainless steel | |
CN104357753B (en) | Preparation technique of rare-earth 0Cr17Ni4Cu4Nb chemical fiber spinneret die steel | |
JP2007063658A (en) | Martensitic stainless steel | |
CN106282785A (en) | A kind of niobium-titanium-boron microalloy fossil oil drill string crossover coupling steel | |
JP3204080B2 (en) | Method for producing precipitation-hardened martensitic stainless steel with excellent cold forgeability | |
CN109715839A (en) | Shaft member | |
WO2024057705A1 (en) | Stainless steel and manufacturing method therefor, and stainless steel product and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIDO TOKUSHUKO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMANO, SHUJI;SHIMIZU, TETSUYA;NODA, TOSHIHARU;REEL/FRAME:016893/0054 Effective date: 20050721 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |