US20060029593A1 - Humanised antibodies - Google Patents
Humanised antibodies Download PDFInfo
- Publication number
- US20060029593A1 US20060029593A1 US10/938,117 US93811704A US2006029593A1 US 20060029593 A1 US20060029593 A1 US 20060029593A1 US 93811704 A US93811704 A US 93811704A US 2006029593 A1 US2006029593 A1 US 2006029593A1
- Authority
- US
- United States
- Prior art keywords
- residues
- antibody
- cdr
- donor
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000027455 binding Effects 0.000 claims abstract description 104
- 239000000427 antigen Substances 0.000 claims abstract description 63
- 102000036639 antigens Human genes 0.000 claims abstract description 63
- 108091007433 antigens Proteins 0.000 claims abstract description 63
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 61
- 108060003951 Immunoglobulin Proteins 0.000 claims description 42
- 102000018358 immunoglobulin Human genes 0.000 claims description 42
- 150000001413 amino acids Chemical class 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 28
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 claims description 26
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 22
- 239000003937 drug carrier Substances 0.000 claims description 3
- 102000040430 polynucleotide Human genes 0.000 claims 4
- 108091033319 polynucleotide Proteins 0.000 claims 4
- 239000002157 polynucleotide Substances 0.000 claims 4
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 claims 2
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 claims 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 2
- 241000283984 Rodentia Species 0.000 abstract description 10
- 238000002560 therapeutic procedure Methods 0.000 abstract description 7
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 238000001727 in vivo Methods 0.000 abstract description 3
- 108090000623 proteins and genes Proteins 0.000 description 94
- 210000004027 cell Anatomy 0.000 description 64
- 241001529936 Murinae Species 0.000 description 51
- 239000000047 product Substances 0.000 description 33
- 235000001014 amino acid Nutrition 0.000 description 31
- 229940024606 amino acid Drugs 0.000 description 30
- 238000003556 assay Methods 0.000 description 29
- 239000012634 fragment Substances 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 23
- 239000013598 vector Substances 0.000 description 22
- 108091028043 Nucleic acid sequence Proteins 0.000 description 16
- 238000010276 construction Methods 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 14
- 238000012856 packing Methods 0.000 description 14
- 239000006228 supernatant Substances 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 239000002299 complementary DNA Substances 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 239000013604 expression vector Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000036961 partial effect Effects 0.000 description 11
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 10
- 102100040247 Tumor necrosis factor Human genes 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 230000000903 blocking effect Effects 0.000 description 9
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 9
- 241000283707 Capra Species 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229940072221 immunoglobulins Drugs 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 7
- 238000000159 protein binding assay Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 6
- 238000001712 DNA sequencing Methods 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000002741 site-directed mutagenesis Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 5
- 108010076504 Protein Sorting Signals Proteins 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000010474 transient expression Effects 0.000 description 5
- 102000015271 Intercellular Adhesion Molecule-1 Human genes 0.000 description 4
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 4
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000004408 hybridoma Anatomy 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 239000013641 positive control Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 108091035707 Consensus sequence Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101100370002 Mus musculus Tnfsf14 gene Proteins 0.000 description 3
- 102220485208 Myelin proteolipid protein_L46R_mutation Human genes 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 230000004186 co-expression Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000011325 microbead Substances 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- 102000012406 Carcinoembryonic Antigen Human genes 0.000 description 2
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 2
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 2
- 101100293593 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) nar-1 gene Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000009137 competitive binding Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 150000002333 glycines Chemical class 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 2
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101100517651 Caenorhabditis elegans num-1 gene Proteins 0.000 description 1
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 101100478056 Dictyostelium discoideum cotE gene Proteins 0.000 description 1
- 108010092408 Eosinophil Peroxidase Proteins 0.000 description 1
- 102100028471 Eosinophil peroxidase Human genes 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- AZLASBBHHSLQDB-GUBZILKMSA-N Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CC(C)C AZLASBBHHSLQDB-GUBZILKMSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 244000028344 Primula vulgaris Species 0.000 description 1
- 235000016311 Primula vulgaris Nutrition 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 101150055782 gH gene Proteins 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-O guanidinium Chemical compound NC(N)=[NH2+] ZRALSGWEFCBTJO-UHFFFAOYSA-O 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- QCOXCILKVHKOGO-UHFFFAOYSA-N n-(2-nitramidoethyl)nitramide Chemical compound [O-][N+](=O)NCCN[N+]([O-])=O QCOXCILKVHKOGO-UHFFFAOYSA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/461—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2812—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/464—Igs containing CDR-residues from one specie grafted between FR-residues from another
- C07K16/465—Igs containing CDR-residues from one specie grafted between FR-residues from another with additional modified FR-residues
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/64—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
Definitions
- the present invention relates to humanised antibody molecules, to processes for their production using recombinant DNA technology, and to their therapeutic uses.
- humanised antibody molecule is used to describe a molecule having an antigen binding site derived from an immunoglobulin from a non-human species, and remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin.
- the antigen binding site typically comprises complementarity determining regions (CDRs) which determine the binding specificity of the antibody molecule and which are carried on appropriate framework regions in the variable domains.
- CDRs complementarity determining regions
- Natural immunoglobulins have been known for many years, as have the various fragments thereof, such as the Fab, (Fab′)2 and Fc fragments, which can be derived by enzymatic cleavage. Natural immunoglobulins comprise a generally Y-shaped molecule having an antigen-binding site towards the end of each upper arm. The remainder of the structure, and particularly the stem of the Y, mediates the effector functions associated with immunoglobulins.
- Natural immunoglobulins have been used in assay, diagnosis and, to a more limited extent, therapy. However, such uses, especially in therapy, were hindered until recently by the polyclonal nature of natural immunoglobulins.
- a significant step towards the realisation of the potential of immunoglobulins as therapeutic agents was the discovery of procedures for the production of monoclonal antibodies (MAbs) of defined specificity (1).
- MAbs are produced by hybridomas which are fusions of rodent spleen cells with rodent myeloma cells. They are therefore essentially rodent proteins. There are very few reports of the production of human MAbs.
- HAMA Human Anti-Mouse Antibody
- OKT3 a mouse IgG2a/k MAb which recognises an antigen in the T-cell receptor-CD3 complex has been approved for use in many countries throughout the world as an immunosuppressant in the treatment of acute allograft rejection [Chatenoud et al (2) and Jeffers et al (3)].
- a significant HAMA response which may include a major anti-idiotype component, may build up on use.
- Such humanised chimeric antibodies still contain a significant proportion of non-human amino acid sequence, i.e. the complete non-human variable domains, and thus may still elicit some HAMA response, particularly if administered over a prolonged period [Begent et al (ref. 4)].
- CDRs complementarity determining regions
- the present invention relates to humanised antibody molecules prepared according to this alternative approach, i.e. CDR-grafted humanised antibody molecules.
- CDR-grafted humanised antibodies are much less likely to give rise to a HAMA response than humanised chimeric antibodies in view of the much lower proportion of non-human amino acid sequence which they contain.
- the first criterion is to use as the human acceptor the framework from a particular human immunoglobulin that is unusually homologous to the non-human donor immunoglobulin to be humanised, or to use a consensus framework from many human antibodies.
- the second criterion is to use the donor amino acid rather than the acceptor if the human acceptor residue is unusual and the donor residue is typical for human sequences at a specific residue of the framework.
- the third criterion is to use the donor framework amino acid residue rather than the acceptor at positions immediately adjacent to the CDRs.
- the fourth criterion is to use the donor amino acid residue at framework positions at which the amino acid is predicted to have a side chain atom within about 3 ⁇ of the CDRs in a three-dimensional immunoglobulin model and to be capable of interacting with the antigen or with the CDRs of the humanised immunoglobulin. It is proposed that criteria two, three or four may be applied in addition or alternatively to criterion one, and may be applied singly or in any combination.
- WO 90/07861 describes in detail the preparation of a single CDR-grafted humanised antibody, a humanised antibody having specificity for the p55 Tac protein of the IL-2 receptor.
- the donor CDRs were as defined by Kabat et al (7 and 8) and in addition the mouse donor residues were used in place of the human acceptor residues, at positions 27, 30, 48, 66, 67, 89, 91, 94, 103, 104, 105 and 107 in the heavy chain and at positions 48, 60 and 63 in the light chain, of the variable region frameworks.
- the humanised anti-Tac antibody obtained is reported to have an affinity for p55 of 3 ⁇ 10 9 M ⁇ 1 , about one-third of that of the murine MAb.
- the invention provides a CDR-grafted antibody heavy chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 6, 23 and/or 24, 48 and/or 49, 71 and/or 73, 75 and/or 76 and/or 78 and 88 and/or 91.
- the heavy chain framework comprises donor residues at positions 23, 24, 49, 71, 73 and 78 or at positions 23, 24 and 49.
- the residues at positions 71, 73 and 78 of the heavy chain framework are preferably either all acceptor or all donor residues.
- the heavy chain framework additionally comprises donor residues at one, some or all of positions 6, 37, 48 and 94. Also it is particularly preferred that residues at positions of the heavy chain framework which are c only conserved across species, i.e. positions 2, 4, 25, 36, 39, 47, 93, 103, 104, 106 and 107, if not conserved between donor and acceptor, additionally comprise donor residues. Most preferably the heavy chain framework additionally comprises donor residues at positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
- heavy chain framework optionally comprises donor residues at one, some or ail of positions:
- CDR-grafted antibody products comprising acceptor framework and donor antigen binding regions.
- the invention is widely applicable to the CDR-grafting of antibodies in general.
- the donor and acceptor antibodies may be derived from animals of the same species and even same antibody class or sub-class. More usually, however, the donor and acceptor antibodies are derived from animals of different species.
- the donor antibody is a non-human antibody, such as a rodent MAb, and the acceptor antibody is a human antibody.
- the donor antigen binding region typically comprises at least one CDR from the donor antibody.
- the donor antigen binding region comprises at least two and preferably all three CDRs of each of the heavy chain and/or light chain variable regions.
- the CDRs may comprise the Kabat CDRs, the structural loop CDRs or a composite of the Kabat and structural loop CDRs and any combination of any of these.
- the antigen binding regions of the CDR-grafted heavy chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR2 (residues 50-65) and CDR3 (residues 95-100) and a composite of the Kabat and structural loop CDRs at CDR1 (residues 26-35).
- residue designations given above and elsewhere in the present application are numbered according to the Kabat numbering [refs. (7) and (8)]. Thus the residue designations do not always correspond directly with the linear numbering of the amino acid residues.
- the actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure.
- the heavy chain variable region of the anti-Tac antibody described by Queen et al contains a single amino acid insert (residue 52a) after residue 52 of CDR2 and a three amino acid insert (residues 82a, 82b and 82c) after framework residue 82, in the Kabat numbering.
- the correct Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard; Kabat numbered sequence.
- the invention also provides in a second aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 1 and/or 3 and 46 and/or 47.
- the CDR grafted light chain of the second aspect comprises donor residues at positions 46 and/or 47.
- the invention also provides in a third aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 46, 48, 58 and 71.
- the framework comprises donor residues at all of positions 46, 48, 58 and 71.
- the framework additionally comprises donor residues at positions 36, 44, 47, 85 and 87.
- positions of the light chain framework which are commonly conserved across species, i.e. positions 2, 4, 6, 35, 49, 62, 64-69, 98, 99, 101 and 102, if not conserved between donor and acceptor, additionally comprise donor residues.
- the light chain framework additionally comprises donor residues at positions 2, 4, 6, 35, 36, 38, 44, 47, 49, 62, 64-69, 85, 87, 98, 99, 101 and 102.
- framework of the second or third aspects optionally comprises donor residues at one, same or all of positions:
- the antigen binding regions of the CDR-grafted light chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR1 (residue 24-34), CDR2 (residues 50-56) and CDR3 (residues 89-97).
- the invention further provides in a fourth aspect a CDR-grafted antibody molecule comprising at least one CDR-grafted heavy chain and at least one CDR-grafted light chain-according to the first and second or first and third aspects of the invention.
- the humanised antibody molecules and chains of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, (Fab′) 2 or FV fragment; a light chain or heavy chain monomer or dimer; or a single chain antibody, e.g. a single chain FV in which heavy and light chain variable regions are joined by a peptide linker; or any other CDR-grafted molecule with the same specificity as the original donor antibody.
- the CDR-grafted heavy and light chain variable region may be combined with other antibody domains as appropriate.
- the heavy or light chains or humanized antibody molecules of the present invention may have attached to them an effector or reporter molecule.
- it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure.
- the procedures of recombinant DNA technology may be used to produce an immunoglobulin molecule in which the Fc fragment or CH3 domain of a complete immunoglobulin molecule has been replaced by, or has attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
- acceptor variable region framework sequences may be used having regard to class/type of the donor antibody from which the antigen binding regions are derived.
- the type of acceptor framework used is of the same/similar class/type as the donor antibody.
- the framework may be chosen to maximise/optimise homology with the donor antibody sequence particularly at positions close or adjacent to the CDRs.
- a high level of homology between donor and acceptor sequences is not important for application of the present invention.
- the present invention identifies a hierarchy of framework residue positions at which donor residues may be important or desirable for obtaining a CDR-grafted antibody product having satisfactory binding properties.
- the CDR-grafted products usually have binding affinities of at least 10 5 M ⁇ 1 , preferably at least about 10 8 M ⁇ 1 , or especially in the range 10 8 -10 12 M ⁇ 1 .
- the present invention is applicable to any combination of donor and acceptor antibodies irrespective of the level of homology between their sequences.
- a protocol for applying the invention to any particular donor-acceptor antibody pair is given hereinafter.
- human frameworks which may be used are KOL, NEWM, REI, EU, LAY and POM (refs. 4 and 5) and the like; for instance KOL and NEWM for the heavy chain and REI for the light chain and EU, LAY and POM for both the heavy chain and the light chain.
- the constant region domains of the products of the invention may be selected having regard to the proposed function of the antibody in particular the effector functions which may be required.
- the constant region domains may be human IgA, IgE, IgG or IgM domains.
- IgG human constant region domains may be used, especially of the IgG1 and IgG3 isotypes, when the humanised antibody molecule is intended for therapeutic uses, and antibody effector functions are required.
- IgG2 and IgG4 isotypes may be used when the humanised antibody molecule is intended for therapeutic purposes and antibody effector functions are not required, e.g. for simple blocking of lymphokine activity.
- the remainder of the antibody molecules need not comprise only protein sequences from immunoglobulins.
- a gene may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding the amino acid sequence of a functional polypeptide such as an effector or reporter molecule.
- the CDR-grafted antibody heavy and light chain and antibody molecule products are produced by recombinant DNA technology.
- the invention also includes DNA sequences coding for the CDR-grafted heavy and light chains, cloning and expression vectors containing the DNA sequences, host cells transformed with the DNA sequences and processes for producing the CDR-grafted chains and antibody molecules comprising expressing the DNA sequences in the transformed host cells.
- the DNA sequences which encode the donor amino acid sequence may be obtained by methods well known in the art.
- the donor coding sequences may be obtained by genomic cloning, or cDNA cloning from suitable hybridoma cell lines. Positive clones may be screened using appropriate probes for the heavy and light chain genes in question. Also PCR cloning may be used.
- DNA coding for acceptor e.g. human acceptor
- sequences may be obtained in any appropriate way.
- DNA sequences coding for preferred human acceptor frameworks such as KOL, REI, EU and NEWM, are widely available to workers in the art.
- DNA sequences coding for the CDR-grafted products may be synthesized completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate. For example oligonucleotide directed synthesis as described by Jones et al (ref. 20) may be used. Also oligonucleotide directed mutagenesis of a pre-exising variable region as, for example, described by Verhoeyen et al (ref. 5) or Riechmann et al (ref. 6) may be used. Also enzymatic filling in of gapped oligonucleotides using T 4 DNA polymerase as, for example, described by-Queen et al (ref. 9) may be used.
- PCR polymerase chain reaction
- Any suitable host cell/vector system may be used for expression of the DNA sequences coding for the CDR-grafted heavy and light chains.
- Bacterial e.g. E. coli , and other microbial systems may be used, in particular for expression of antibody fragments such as FAb and (Fab′) 2 fragments, and especially FV fragments and single chain antibody fragments e.g. single chain FVs.
- Eucaryotic e.g. mammalian host cell expression systems may be used for production of larger CDR-grafted antibody products, including complete antibody molecules.
- Suitable mammalian host cells include CHO cells and myeloma or hybridoma cell lines.
- the present invention provides a process for producing a CDR-grafted antibody product comprising:
- the CDR-grafted product may comprise only heavy or light chain derived polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence is used to transfect the host cells.
- the cell line may be transfected with two vectors, the first vector may contain an operon encoding a light chain-derived polypeptide and the second vector containing an operon encoding a heavy chain-derived polypeptide.
- the vectors are identical, except in so far as the coding sequences and selectable markers are concerned, so as to ensure as far as possible that each polypeptide chain is equally expressed.
- a single vector may be used, the vector including the sequences encoding both light chain- and heavy chain-derived polypeptides.
- the DNA in the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both. However, it is preferred that the DNA sequence encoding the heavy or light chain comprises at least partially, genomic DNA, preferably a fusion of EDNA and genomic DNA.
- the present invention is applicable to antibodies of any appropriate specificity.
- the invention may be applied to the humanisation of non-human antibodies which are used for in vivo therapy or diagnosis.
- the antibodies may be site-specific antibodies such as tumour-specific or cell surface-specific antibodies, suitable for use in in vivo therapy or diagnosis, e.g. tumour imaging.
- cell surface-specific antibodies are anti-T cell antibodies, such as anti-CD3, and CD4 and adhesion molecules, such as CR3, ICAM and ELAM.
- the antibodies may have specificity for interleukins (including lymphokines, growth factors and stimulating factors), hormones and other biologically active compounds, and receptors for any of these.
- the antibodies may have specificity for any of the following: Interferons ⁇ , ⁇ , or ⁇ , IL1, IL2, IL3, or IL4, etc., TNF, GCSF, GMCSF, EPO, hGH, or insulin, etc.
- the present invention also includes therapeutic and diagnostic compositions comprising the CDR-grafted products of the invention and uses of such compositions in therapy and diagnosis.
- the invention provides a therapeutic or diagnostic composition
- a therapeutic or diagnostic composition comprising a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- the invention provides a method of therapy or diagnosis comprising administering an effective amount of a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention to a human or animal subject.
- CDRs are substituted for acceptor residues in the CDRs.
- the CDRs are preferably defined as follows: Heavy chain CDR1: residues 26-35 CDR2: residues 50-65 CDR3: residues 95-102 Light chain CDR1: residues 24-34 CDR2: residues 50-56 CDR3: residues 89-97
- FIG. 1 shows DNA and amino acid sequences of the OKT3 light chain
- FIG. 2 shows DNA and amino acid sequences of the OKT3 heavy chain
- FIG. 3 shows the alignment of the OKT3 light variable region amino acid sequence with that of the light variable region of the human antibody REI;
- FIG. 4 shows the alignment of the OKT3 heavy variable region amino acid sequence with that of the heavy variable region of the human antibody KOL
- FIG. 5 shows the heavy variable region amino acid sequences of OKT3, KOL and various corresponding CDR grafts
- FIG. 6 shows the light variable region amino acid sequences of OKT3, REI and various corresponding CDR grafts
- FIG. 7 shows a graph of binding assay results for various grafted OKT3 antibodies
- FIG. 8 shows a graph of blocking assay results for various grafted OKT3 antibodies
- FIG. 9 shows a similar graph of blocking assay results
- FIG. 10 shows similar graphs for both binding assay and blocking assay results
- FIG. 11 shows further similar graphs for both binding assay and blocking assay results
- FIG. 12 shows a graph of competition assay results for a minimally grafted OKT3 antibody compared with the OK3 murine reference standard
- FIG. 13 shows a similar graph of competition assay results comparing a fully grafted OKT3 antibody with the marine reference standard.
- Hybridoma cells producing antibody OKT3 were provided by Ortho (seedlot 4882.1) and were grown up in antibiotic free Dulbecco's Modified Eagles Medium (DMEM) supplemented with glutamine and 5% foetal calf serum, and divided to provide both an overgrown supernatant for evaluation and cells for extraction of RNA.
- the overgrown supernatant was shown to contain 250 ug/mL murine IgG2a/kappa antibody.
- the supernatant was negative for murine lambda light chain and IgG1, IgG2b, IgG3, IgA and IgM heavy chain. 20 mL of supernatant was assayed to confirm that the antibody present was OKT3.
- the assembly assay for intact mouse IgG in COS cell supernatants was an ELISA with the following format:
- the assembly assay for chimeric or CDR-grafted antibody in COS cell supernatants was an ELISA with the following format:
- 96 well microtitre plates were coated with F(ab′)2 goat anti-human IgG Fc. The plates were washed and samples added and incubated for 1 hour at room temperature. The plates were washed and monoclonal mouse anti-human kappa chain was added for 1 hour at room temperature.
- HUT 78 cells human T cell line, CD3 positive
- Monolayers of HUT 78 cells were prepared onto 96 well ELISA plates using poly-L-lysine and glutaraldehyde. Samples were added to the monolayers for 1 hour at room temperature.
- F(ab′)2 goat anti-human IgG Fc (HRPO conjugated) or F(ab′)2 goat anti-mouse IgG Fc (HRPO conjugated) was added as appropriate for humanised or mouse samples. Substrate was added to reveal the reaction.
- the negative control for the call-based assay was chimeric B72.3.
- the positive control was mouse Orthomune OKT3 or chimeric OKT3, when available. This cell-based assay was difficult to perform, and an alternative assay was developed for CDR-grafted OKT3 which was more sensitive and easier to carry out.
- HPB-ALL human peripheral blood acute lymphocytic leukemia
- Binding was measured by the following procedure: HPB-ALL cells were harvested from tissue culture. Cells were incubated at 4° C. for 1 hour with various dilutions of test antibody, positive control antibody, or negative control antibody. The cells were washed once and incubated at 4° C. for 1 hour with an FITC-labelled goat anti-human IgG (Fc-specific, mouse absorbed). The cells were washed twice and analysed by cytofluorography.
- Chimeric OKT3 was used as a positive control for direct binding. Calls incubated with mock-transfected COS cell supernatant, followed by the FITC-labelled goat anti-human IgG, provided the negative control. To test the ability of CDR-grafted OKT3 to block murine OKT3 binding, the HPB-ALL cells were incubated at 4° C. for 1 hour with various dilutions of test antibody or control antibody. A fixed saturating amount of FITC OKT3 was added. The samples were incubated for 1 hour at 4° C., washed twice and analysed by cytofluorography. FITC-labelled OKT3 was used as a positive control to determine maximum binding. Unlabelled marine OKT3 served as a reference standard for blocking.
- Negative controls were unstained cells with or without mock-transfected cell supernatant.
- the ability of the CDR-grafted OKT3 light chain to bind CD3-positive cells and block the binding of marine OKT3 was initially tested in combination with the chimeric OKT3 heavy chain.
- the chimeric OKT3 heavy chain is composed of the murine OKT3 variable region and the human IgG4 constant region.
- the chimeric heavy chain gene is expressed in the same expression vector used for the CDR-grafted genes.
- the CDR-grafted light chain expression vector and the chimeric heavy chain expression vector were co-transfected into COS cells.
- the fully chimeric OKT3 antibody (chimeric light chain and chimeric heavy chain) was found to be fully capable of binding to CD3 positive cells and blocking the binding of murine OKT3 to these cells.
- the relative binding affinities of CDR-grafted anti-CD3 monoclonal antibodies were determined by competition binding (ref. 6) using the HPB-ALL human T cell line as a source of CD3 antigen, and fluorescein-conjugated murine OKT3 (Fl-OKT3) of known binding affinity as a tracer antibody.
- the binding affinity of Fl-OKT3 tracer antibody was determined by a direct binding assay in which increasing amounts of Fl-OKT3 were incubated with HPB-ALL (5 ⁇ 10 5 ) in PBS with 5% foetal calf serum for 60 min. at 4° C.
- Fluorescence intensity per antibody molecule was determined by using microbeads which have a predetermined number of mouse IgG antibody binding sites (Simply Cellular beads, Flow Cytometry Standards). F/P equals the fluorescence intensity of beads saturated with Fl-OKT3 divided by the number of binding sites per bead. The amount of bound and free Fl-OKT3 was calculated from the mean fluorescence intensity per cell, and the ratio of bound/free was plotted against the number of moles of antibody bound. A linear fit was used to determine the affinity of binding (absolute value of the slope).
- the affinities of competing anti-bodies were calculated from the equation [X]-[OKT3] ⁇ (1/Kx) ⁇ (1/Ka), where Ka is the affinity of marine OKT3, Kx is the affinity of competitor X, [ ] is the concentration of competitor antibody at which bound/free binding is R/2, and R is the maximal bound/free binding.
- OKT3 producing cells were grown an described above and 1.2 ⁇ 10 9 cells harvested and mRNA extracted using the guanidinium/LiCl extraction procedure.
- cDNA was prepared by priming from Oligo-dT to generate full length cDNA. The cDNA was methylated and EcoR1 linkers added for cloning.
- the cDNA library was ligated to pSP65 vector DNA which had been EcoR1 cut and the 5′ phosphate groups removed by calf intestinal phosphatase (EcoR1/CIP). The ligation was used to transform high transformation efficiency Escherichia coli ( E. coli ) HB101.
- a cDNA library was prepared. 3600 colonies were screened for the light chain and 10000 colonies were screened for the heavy chain.
- E.coli colonies positive for either heavy or light chain probes were identified by oligonucleotide screening using the oligonucleotides:
- 5′ TCCAGATGTTAACTGCTCAC for the light chain, which is complementary to a sequence in the mouse kappa constant region
- 5′ CAGGGGCCAGTGGATGGATAGAC for the heavy chain which is complementary to a sequence in the mouse IgG2a constant CH1 domain region. 12 light chain and 9 heavy chain clones were identified and taken for second round screening. Positive clones from the second round of screening were grown up and DNA prepared. The sizes of the gene inserts were estimated by gel electrophoresis and inserts of a size capable of containing a full length cDNA were subcloned into M13 for DNA sequencing.
- Clones representing four size classes for both heavy and light chains were obtained in M13.
- DNA sequence for the 5′ untranslated regions, signal sequences, variable regions and 3′ untranslated regions of full length cDNAs (FIGS. 1 ( a ) and 2 ( a )] were obtained and the corresponding amino acid sequences predicted [(FIGS. 1 ( b ) and 2 ( b )].
- FIG. 1 ( a ) the untranslated DNA regions are shown in uppercase, and in both FIGS. 1 and 2 the signal sequences are underlined.
- Celltech expression vectors are based on the plasmid pEE6hCMV (ref. 14).
- a polylinker for the insertion of genes to be expressed has been introduced after the major immediate early promoter/enhancer of the human Cytomegalovirus (hCMV).
- Marker genes for selection of the plasmid in transfected eukaryotic cells can be inserted as BamH1 cassettes in the unique BamH1 site of pEE6 hCMV; for instance, the neo marker to provide pEE6 hCMV neo. It is usual practice to insert the neo and gpt markers prior to insertion of the gene of interest, whereas the GS marker is inserted last because of the presence of internal EcoR1 sites in the cassette.
- the selectable markers are expressed from the SV40 late promoter which also provides an origin of replication so that the vectors can be used for expression in the COS cell transient expression system.
- mice sequences were excised from the M13 based vectors-described above as EcoR1 fragments and cloned into either pEE6-hCMV-neo for the heavy chain and into EE6-hCMV-gpt for the light chain to yield vectors pJA136 and pJA135 respectively.
- Plasmids pJA135 and pJA136 were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to T-cell enriched lymphocytes. Metabolic labelling experiments using 35 S methionine showed expression and assembly of heavy and light chains.
- variable domain sequence A restriction site near the 3′ end of the variable domain sequence is identified and used to attach an oligonucleotide adapter coding for the remainder of the mouse variable region and a suitable restriction site for attachment to the constant region of choice.
- the mouse light chain cDNA sequence contains an Ava1 site near the 3′ end of the variable region [ FIG. 1 ( a )].
- the majority of the sequence of the variable region was isolated as a 396 bp. EcoR1-Ava1 fragment.
- An oligonucleotide adapter was designed to replace the remainder of the 3′ region of the variable region from the Ava1 site and to include the 5′ residues of the human constant region up to and including a unique Nar1 site which had been previously engineered into the constant region.
- Hind111 site was introduced to act as a marker for insertion of the linker.
- the linker was ligated to the V L fragment and the 413 bp EcoR1-Nar1 adapted fragment was purified from the ligation mixture.
- the constant region was isolated as an Nar1-BamH1 fragment from an M13 clone NW361 and was ligated with the variable region DNA into an EcoR1/BamH1/C1P pSP65 treated vector in a three way reaction to yield plasmid JA143. Clones were isolated after transformation into E. coli and the linker and junction sequences were confirmed by the presence of the Hind111 site and by DNA sequencing.
- the construction of the first chimeric light chain gene produces a fusion of mouse and human amino acid sequences at the variable-constant region junction.
- the amino acids at the chimera junction are: Leu-Glu-Ile-Asn-Arg/ ⁇ /Thr-Val-Ala-Ala/VARIABLE CONSTANT
- a second version of the chimeric light chain oligonucleotide adapter was designed in which the threonine (Thr), the first amino acid of the human constant region, was replaced with the equivalent amino acid from the mouse constant region, Alanine (Ala).
- variable region fragment was isolated as a 376 bp EcoR1-Ava1 fragment.
- the oligonucleotide linker was ligated to Nar1 cut pNW361 and then the adapted 396 bp constant region was isolated after recutting the modified pNW361 with EcoR1.
- the variable region fragment and the modified constant region fragment were ligated directly into EcoR1/C1P treated pEE6hCMVneo to yield pJA137.
- the constant region isotype chosen for the heavy chain was human IgG4.
- the heavy chain cDNA sequence showed a Ban1 site near the 3′ end of the variable region [ FIG. 2 ( a )].
- variable region The majority of the sequence of the variable region was isolated as a 426 bp. EcoR1/C1P/Ban1fragment.
- An oligonucleotide adapter was designated to replace the remainder of the 3′ region of the variable region from the Ban1 site up to and including a unique Hind111 site which had been previously engineered into the first two amino acids of the constant region.
- the linker was ligated to the V H fragment and the EcoR1-Hind111 adapted fragment was purified from the ligation mixture.
- variable region was ligated to the constant region by cutting pJA91 with EcoR1 and Hind111 removing the intron fragment and replacing it with the V H to yield pJA142. Clones were isolated after transformation into E.coli JM101 and the linker and junction sequences were confirmed by DNA sequencing. (N. B. The Hind111 site is lost on cloning).
- the chimeric light chain (version 1) was removed from pJA143 as an EcoR1 fragment and cloned into EcoR1/C1P treated pEE6hCMVneo expression vector to yield pJA145. Clones with the insert in the correct orientation were identified by restriction mapping.
- the chimeric light chain (version 2) was constructed as described above.
- the chimeric heavy chain gene was isolated from pJA142 as a 2.5 Kbp EcoR1/BamH1 fragment and cloned into the EcoR1/Bc11/C1P treated vector fragment of a derivative of pEE6hCMVgpt to yield plasmid pJA144.
- GS versions of pJA141 and pJA144 were constructed by replacing the neo and gpt cassettes by a BamH1/Sa11/C1P treatment of the plasmids, isolation of the vector fragment and ligation to a GS-containing fragment from the plasmid pRO49 to yield the light chain vector pJA179 and the heavy chain vector pJA180.
- plasmids were made by treating pJA179 or pJA108 with BamH1/C1P and ligating in a Bg111/Hind111 hCMV promoter cassette along with either the Hind111/BamH1fragment from pJA141 into pJA180 to give the cH-cL-GS plasmid pJA182 or the Hind111/BamH1 fragment from pJA144 into pJA179 to give the cL-cH-GS plasmid pJA181.
- the chimeric antibody plasmid pJA145 (cL) and pJA144 (cH) were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to the HUT 78 human T-cell line. Metabolic labelling experiments using 35 S methionine showed expression and assembly of heavy and light chains. However the light chain mobility seen on reduced gels suggested that the potential glycosylation site was being glycosylated. Expression in COS cells in the presence of tunicamycin showed a reduction in size of the light chain to that shown for control chimeric antibodies and the OKT3 mouse light chain. Therefore JA141 was constructed and expressed.
- Stable cell lines have been prepared from plasmids pJA141/pJA144 and from pJA179/pJA180, pJA181 and pJA182 by transfection into CHO cells.
- the approach taken was to try to introduce sufficient mouse residues into a human variable region framework to generate antigen binding activity comparable to the mouse and chimeric antibodies.
- residues chosen for transfer can be identified in a number of ways:
- FIG. 3 shows an alignment of sequences for the human framework region RE1 and the OKT3 light variable region.
- the structural loops (LOOP) and CDRs (KARAT) believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 13.1(c).
- the residue type indicates the spatial location of each residue side chain, derived by examination of resolved structures from X-ray crystallography analysis.
- the key to this residue type designation is as follows: N near to CDR (From X-ray Structures) P Packing B Buried Non-Packing S Surface B Exposed I Interface * Interface Packing/Part Exposed ? Non-CDR Residues which may require to be left as Mouse sequence.
- Residues underlined in FIG. 3 are amino acids.
- RE1 was chosen as the human framework because the light chain is a kappa chain and the kappa variable regions show higher homology with the mouse sequences than a lambda light variable region, e.g. KOL (see below).
- RE1 was chosen in preference to another kappa light chain because the X-ray structure of the light chain has been determined so that a structural examination of individual residues could be made.
- FIG. 4 shows an alignment of sequences for the human framework region KOL and the OKT3 heavy variable region.
- the structural loops and CDRs believed to correspond to the antigen binding region are marked.
- Also marked are a number of other residues which may also contribute to antigen binding as described in 12.1(c).
- the residue type key and other indicators used in FIG. 4 are the same as those used in FIG. 3 .
- KOL was chosen as the heavy chain framework because the X-ray structure has been determined to a better resolution than, for example, NEWM and also the sequence alignment of OKT3 heavy variable region showed a slightly better homology to KOL than to NEWM.
- variable region domains were designed with mouse variable region optimal codon usage [Grantham and Perrin (ref. 15)] and used the B72.3 signal sequences [Whittle et al (ref. 13)].
- the sequences were designed to be attached to the constant region in the same way as for the chimeric genes described above.
- Some constructs contained the “Kozak consensus sequence” [Kozak (ref. 16)] directly linked to the 5′ of the signal sequence in the gene. This sequence motif is believed to have a beneficial role in translation initiation in eukaryotes.
- the sequence may be assembled by using oligonucleotides in a manner similar to Jones et al (ref. 17) or by simultaneously replacing all of the CDRs or loop regions by oligonucleotide directed site specific mutagenesis in a manner similar to Verhoeyen et al (ref. 2). Both strategies were used and a list of constructions is set out in Tables 1 and 2 and FIGS. 4 and 5 . It was noted in several cases that the mutagenesis approach led to deletions and rearrangements in the gene being remodelled, while the success of the assembly approach was very sensitive to the quality of the oligonucleotides.
- a construct designed to include mouse sequence based on loop length did not lead to active antibody in association with mH or cH.
- a construct designed to include mouse sequence based on Kabat CDRs demonstrated some weak binding in association with mH or cH.
- framework residues 1, 3, 46, 47 were changed from the human to the murine OKT3 equivalents based on the arguments outlined in Section 12.1 antigen binding was demonstrated when both of the new constructs, which were termed 121A and 221A were co-expressed with cH.
- residues 1 and 3 are not major contributing residues as the product of the gL221B gene shows little detectable binding activity in association with cH.
- gH341 gene co-expression of the gH341 gene with cL or mL has been variable and has tended to produce lower amounts of antibody than the cH/cL or mH/mL combinations.
- the kgL221A gene was co-expressed with kgH341, kgH341A or kgH341B.
- kgH221A/kgH341 very little material was produced in a normal COS cell expression.
- kgL221A/kgH341A or kgH221A/kgH341B amounts of antibody similar to gL/cH was produced.
- Antigen binding was detected when kgL221A/kgH341A or kgH221A/kgH341B combinations were expressed.
- the antigen binding was very similar to that of the chimeric antibody.
- CDRs Complementarity Determining Regions
- OKT3 amino acids 89, 90 and 97 are the same between OKT3 and RE1 ( FIG. 3 ).
- constructs based on the loop choice for CDR1 (gL121) and the Kabat choice (gL221) were made and co-expressed with mH or cH no evidence for antigen binding activity could be found for gL121, but trace activity could be detected for the gL221, suggesting that a single extra mouse residue in the grafted variable region could have some detectable effect. Both gene constructs were reasonably well expressed in the transient expression system.
- Additional CDR-grafted heavy chain genes were prepared substantially as described above. With reference to Table 2 the further heavy chain genes were based upon the gh341 (plasmid pJA178) and gH341A (plasmid pJA185) with either mouse OKT3 or human KOL residues at 6, 23, 24, 48, 49, 63, 71, 73, 76, 78, 88 and 91, as indicated.
- the CDR-grafted light chain genes used in these further experiments were gL221, gL221A, gL221B and gL221C as described above. TABLE 2 OKT3 HEAVY CHAIN CDR GRAFTS 1.
- the CDR-grafted heavy and light chain genes were co-expressed in COS cells either with one another in various combinations but also with the corresponding murine and chimeric heavy and light chain genes substantially as described above.
- the resultant antibody products were then assayed in binding and blocking assays with HPB-ALL cells as described above.
- FIGS. 7 and 8 The results of the assays for various grafted heavy chains co-expressed with the gL221C light chain are given in FIGS. 7 and 8 (for the JA184, JA185, JA197 and JA198 constructs—see Table 2), in FIG. 9 (for the JA183, JA184, JA185 and JA197. constructs) in FIG. 10 (for the chimeric, JA185, JA199, JA204, JA205, JA207, JA208 and JA209 constructs) and in FIG. 11 (for the JA183, JA184, JA185, JA198, JA203, JA205 and JA206 constructs).
- the assay used was as described above in section 3.3.
- the results obtained are given in FIG. 12 for the basic grafted product and in FIG. 13 for the fully grafted product.
- binding and blocking assay results indicate the following:
- the JA198 and JA207 constructs appear to have the best binding characteristics and similar binding abilities, both substantially the same as the chimeric and fully grafted gH341A products. This indicates that positions 88 and 91 and position 76 are not highly critical for maintaining the OKT3 binding ability; whereas at least some of positions 6, 23, 24, 48, 49, 71, 73 and 78 are more important.
- Anti OKT4A CDR-grafted heavy and light chain genes were prepared, expressed and tested substantially as described above in Example I for CDR-grafted OKT3.
- the CDR grafting of OKT4A is described in detail in Ortho patent application PCT/GB 90 . . . of even date herewith entitled “Humanised Antibodies”.
- the disclosure of this Ortho patent application PCT/GB 90 . . . is incorporated herein by reference.
- a number of CDR-grafted OKT4 antibodies have been prepared.
- the CDR-grafted OKT4A of choice is the combination of the grafted light chain LCDR2 and the grafted heavy chain HCDR10.
- the human acceptor framework used for the grafted light chains was RE1.
- the preferred LCDR2 light chain has human to mouse changes at positions 33, 34, 38, 49 and 89 in addition to the structural loop CDRs. Of these changed positions, positions 33, 34 and 89 fall within the preferred extended CDRs of the present invention (positions 33 and 34 in CDR1 and position 89 in CDR3).
- the human to murine changes at positions 38 and 49 corresponds to positions at which the amino acid residues are preferably donor murine amino acid residues in accordance with the present invention.
- a comparison of the amino acid sequences of the donor murine light chain variable domain and the RE1 human acceptor light chain variable further reveals that the murine and human residues are identical at all of positions 46, 48 and 71 and at all of positions 2, 4, 6, 35, 36, 44, 47, 62, 64-69, 85, 87, 98, 99 and 101 and 102.
- the amino acid residue at position 58 in LCDR2 is the human RE1 framework residue not the mouse OKT4 residue as would be preferred in accordance with the present invention.
- the human acceptor framework used for the grafted heavy chains was KOL.
- the preferred CDR graft HCDR10 heavy chain has human to mouse changes at positions 24, 35, 57, 58, 60, 88 and 91 in addition to the structural loop CDRs.
- positions 35 (CDR1) and positions 57, 58 and 60 (CDR2) fall within the preferred extended CDRs of the present invention.
- the human to mouse change at position 24 corresponds to a position at which the amino acid residue is a donor murine residue in accordance with the present invention.
- the human to mouse changes at positions 88 and 91 correspond to positions at which the amino acid residues are optionally donor murine residues.
- murine OKT4A and human KOL heavy chain variable amino acid sequences reveals that the murine and human residues are identical at all of positions 23, 49, 71, 73 and 78 and at all of positions 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107 .
- OKT4A CDR-grafted heavy chain HCDR10 corresponds to a particularly preferred embodiment according to the present invention.
- the activity of the resulting grafted light chain was assessed by co-expression in COS cells, of genes for the combinations:
- grafted heavy chain genes containing all human framework regions with either gL or cL genes produced a grafted antibody with little ability to bind to mucin.
- the grafted antibody had about 1% the activity of the chimeric antibody. In these experiments, however, it was noted that the activity of the grafted antibody could be increased ton 10% of B72.3 by exposure to pHs of 2-3.5.
- Position 73 is close to both CDRs 1 and 3 of the heavy chain and, in this position it was possible to envisage that a K to E change in this region could have a detrimental effect on antigen binding.
- mutated CDR-grafted B72.3 heavy chain corresponds to a preferred embodiment of the present invention.
- a murine antibody, R6-5-D6 (EP 0314863) having specificity for Intercellular Adhesion Molecule 1 (ICAM-1) was CDR-grafted substantially as described above in previous examples. This work is described in greater detail in co-pending application, British Patent Application No. 9009549.8, the disclosure of which is incorporated herein by reference.
- the human EU framework was used as the acceptor framework for both heavy and light chains.
- the CDR-grafted antibody currently of choice is provided by co-expression of grafted light chain gL221A and grafted heavy chain gH341D which has a binding affinity for ICAM 1 of about 75% of that of the corresponding mouse-human chimeric antibody.
- gL221A has murine CDRs at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3).
- CDR1 CDR1
- CDR2 CDR2
- CDR3 CDR3
- framework residues are also the murine amino acid. These residues were chosen after consideration of the possible contribution of these residues to domain packing and stability of the conformation of the antigen binding region. The residues which have been retained as mouse are at positions 2, 3, 48 (?), 60, 84, 85 and 87.
- gH341D has murine CDRs at positions 26-35 (CDR1), 50-56 (CDR2) and94-100B (CDR3). In addition murine residues were used in gH341D at positions 24, 48, 69, 71, 73, 80, 88 and 91. Comparison of the marine anti-ICAM 1 and human EU heavy chain amino acid sequences are identical at positions 23, 49 and 78.
- a number of murine anti-TNF ⁇ monoclonal antibodies were CDR-grafted substantially as described above in previous examples. These antibodies include the murine monoclonal antibodies designated 61 B71, hTNF1, hTNF3 and 101.4 A brief summary of the CDR-grafting of each of these antibodies is given below.
- the gL221/gH341(6) antibody was assessed in an L929 cell competition assay in which the antibody competes against the TNF receptor on L929 cells for binding to TNF in solution.
- the gL221/gH341(6) antibody was approximately 10% as active as murine 61E71.
- hTNF1 is a monoclonal antibody which recognises an epitope on human TNF-.
- the EU human framework was used for CDR-grafting of both the heavy and light variable domains.
- CDR-grafted heavy chain mouse CDRs were used at positions 26-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3). House residues were also used in the frameworks at positions 48, 67, 69, 71, 73, 76, 89, 91, 94 and 108. Comparison of the TNF1 mouse and EU human heavy chain residues reveals that these are identical/at positions 23, 24, 29 and 78.
- mice CDR-grafted light chain In the CDR-grafted light chain (gLhTNF1) mouse CDRs were used at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition mouse residues were used in the frameworks at positions 3, 42, 48, 49, 83, 106 and 108. Comparison of the hTNF1 mouse and EU human light chain residues reveals that these are identical at positions 46, 58 and 71.
- the grafted hTNF1 heavy chain was co-expressed with the chimeric light chain and the binding ability of the product compared with that of the chimeric light chain/chimeric heavy chain product in a TNF binding assay.
- the grafted heavy chain product appeared to have binding ability for TNF slightly better than the fully chimeric product.
- a grafted heavy chain/grafted light chain product was co-expressed and compared with the fully chimeric product and found to have closely similar binding properties to the latter product.
- hTNF3 recognises an epitope on human TNF- ⁇ .
- the sequence of hTNF3 shows only 21 differences compared to 61E71 in the light and heavy chain variable regions, 10 in the light chain (2 in the CDRs at positions 50, 96 and 8 in the framework at 1, 19, 40, 45, 46, 76, 103 and 106) and 11 in the heavy chain (3 in the CDR regions at positions 52, 60 and 95 and 8 in the framework at 1, 10, 38, 40, 67, 73, 87 and 105).
- the light and heavy chains of the 61E71 and hTNF3 chimeric antibodies can be exchanged without loss of activity in the direct binding assay.
- 61E71 is an order of magnitude less able to compete with the TNF receptor on L929 cells for TNF-a compared to hTNF3.
- gL221 and gH341(+23, 24, 48, 49 71 and 73 as mouse) genes have been built for hTNF3 and tested and the resultant grafted antibody binds well to TNF-a, but competes very poorly in the L929 assay. It is possible that in this case also the framework residues identified for OKT3 programme may improve the competitive binding ability of this antibody.
- 101.4 is a further marine monoclonal antibody able to recognise human TNF-a.
- the heavy chain of this antibody shows good homology to KOL and so the CDR-grafting has been based on RE1 for the light chain and KOL for the heavy chain.
- Several grafted heavy chain genes have been constructed with conservative choices for the CDR's (gH341) and which have one or a small number of non-CDR residues at positions 73, 78 or 77-79 inclusive, as the mouse amino acids. These have been co-expressed with cL or gL221. In all cases binding to TNF equivalent to the chimeric antibody is seen and when co-expressed with cL the resultant antibodies are able to compete well in the L929 assay. However, with gL221 the resultant antibodies are at least an order of magnitude less able to compete for TNF against the TNF receptor on L929 cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Cell Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
- The present invention relates to humanised antibody molecules, to processes for their production using recombinant DNA technology, and to their therapeutic uses.
- The term “humanised antibody molecule” is used to describe a molecule having an antigen binding site derived from an immunoglobulin from a non-human species, and remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin. The antigen binding site typically comprises complementarity determining regions (CDRs) which determine the binding specificity of the antibody molecule and which are carried on appropriate framework regions in the variable domains. There are 3 CDRs (CDR1, CDR2 and CDR3) in each of the heavy and light chain variable domains.
- In the description, reference is made to a number of publications by number. The publications are listed in numerical order at the end of the description.
- Natural immunoglobulins have been known for many years, as have the various fragments thereof, such as the Fab, (Fab′)2 and Fc fragments, which can be derived by enzymatic cleavage. Natural immunoglobulins comprise a generally Y-shaped molecule having an antigen-binding site towards the end of each upper arm. The remainder of the structure, and particularly the stem of the Y, mediates the effector functions associated with immunoglobulins.
- Natural immunoglobulins have been used in assay, diagnosis and, to a more limited extent, therapy. However, such uses, especially in therapy, were hindered until recently by the polyclonal nature of natural immunoglobulins. A significant step towards the realisation of the potential of immunoglobulins as therapeutic agents was the discovery of procedures for the production of monoclonal antibodies (MAbs) of defined specificity (1).
- However, most MAbs are produced by hybridomas which are fusions of rodent spleen cells with rodent myeloma cells. They are therefore essentially rodent proteins. There are very few reports of the production of human MAbs.
- Since most available MAbs are of rodent origin, they are naturally antigenic in humans and thus can give rise to an undesirable immune response termed the HAMA (Human Anti-Mouse Antibody) response. Therefore, the use of rodent MAbs as therapeutic agents in humans is inherently limited by the fact that the human subject will mount an immunological response to the MAb and will either remove it entirely or at least reduce its effectiveness. In practice, MAbs of rodent origin may not be used in patients for more than one or a few treatments as a HAMA response soon develops rendering the MAb ineffective as well as giving rise to undesirable reactions. For instance, OKT3 a mouse IgG2a/k MAb which recognises an antigen in the T-cell receptor-CD3 complex has been approved for use in many countries throughout the world as an immunosuppressant in the treatment of acute allograft rejection [Chatenoud et al (2) and Jeffers et al (3)]. However, in view of the rodent nature of this and other such MAbs, a significant HAMA response which may include a major anti-idiotype component, may build up on use. Clearly, it would be highly desirable to diminish or abolish this undesirable HAMA response and thus enlarge the areas of use of these very useful antibodies.
- Proposals have therefore been made to render non-human MAbs less antigenic in humans. Such techniques can be generically termed “humanisation” techniques. These techniques typically involve the use of recombinant DNA technology to manipulate DNA sequences encoding the polypeptide chains of the antibody molecule.
- Early methods for humanising MAbs involved production of chimeric antibodies in which an antigen binding site comprising the complete variable domains of one antibody is linked to constant domains derived from another antibody. Methods for carrying out such chimerisation procedures are described in EP0120694 (Celltech Limited), EP0125023 (Genentech Inc. and City of Hope), EP-A-0 171496 (Res. Dev. Corp. Japan), EP-A-0 173 494 (Stanford University), and WO 86/01533 (Celltech Limited). This latter Celltech application (
WO 86/01533) discloses a process for preparing an antibody molecule having the variable domains from a mouse MAb and the constant domains from a human immunoglobulin. Such humanised chimeric antibodies, however, still contain a significant proportion of non-human amino acid sequence, i.e. the complete non-human variable domains, and thus may still elicit some HAMA response, particularly if administered over a prolonged period [Begent et al (ref. 4)]. - In an alternative approach, described in EP-A-0239400 (Winter), the complementarity determining regions (CDRs) of a mouse MAb have been grafted onto the framework regions of the variable domains of a human immunoglobulin by site directed mutagenesis using long oligonucleotides. The present invention relates to humanised antibody molecules prepared according to this alternative approach, i.e. CDR-grafted humanised antibody molecules. Such CDR-grafted humanised antibodies are much less likely to give rise to a HAMA response than humanised chimeric antibodies in view of the much lower proportion of non-human amino acid sequence which they contain.
- The earliest work on humanising MAbs by CDR-grafting was carried out on MAbs recognising synthetic antigens, such as the NP or NIP antigens. However, examples in which a mouse MAb recognising lysozyme and a rat MAb recognising an antigen on human T-cells were humanised by CDR-grafting have been described by Verhoeyen et al (5) and Riechmann et al (6) respectively. The preparation of CDR-grafted antibody to the antigen on human T cells is also described in
WO 89/07452 (Medical Research Council). - In Riechmann et al/Medical Research Council it was found that transfer of the CDR regions alone [as defined by Kabat refs. (7) and (8)] was not sufficient to provide satisfactory antigen binding activity in the CDR-grafted product. Riechmann et al found that it was necessary to convert a serine residue at
position 27 of the human sequence to the corresponding rat phenylalanine residue to obtain a CDR-grafted product having improved antigen binding activity. This residue atposition 27 of the heavy chain is within the structural loop adjacent to CDR1. A further construct which additionally contained a human serine to rat tyrosine change atposition 30 of the heavy chain did not have a significantly altered binding activity over the humanised antibody with the serine to phenylalanine change atposition 27 alone. These results indicate that changes to residues of the human sequence outside the CDR regions, in particular in the structural loop adjacent to CDR1, may be necessary to obtain effective antigen binding activity for CDR-grafted antibodies which recognise more complex antigens. Even so the binding affinity of the best CDR-grafted antibodies obtained was still significantly less than the original MAb. - Very recently Queen et al (9) have described the preparation of a humanised antibody that binds to the interleukin 2 receptor, by combining the CDRs of a marine MAb (anti-Tac) with human immunoglobulin framework and constant regions. The human framework regions were chosen to maximise homology with the anti-Tac MAb sequence. In addition computer modelling was used to identify framework amino acid residues which were likely to interact with the CDR5 or antigen, and mouse amino acids were used at these positions in the humanised antibody.
- In WO 90/07861 Queen et al propose four criteria for designing humanised immunoglobulins. The first criterion is to use as the human acceptor the framework from a particular human immunoglobulin that is unusually homologous to the non-human donor immunoglobulin to be humanised, or to use a consensus framework from many human antibodies. The second criterion is to use the donor amino acid rather than the acceptor if the human acceptor residue is unusual and the donor residue is typical for human sequences at a specific residue of the framework. The third criterion is to use the donor framework amino acid residue rather than the acceptor at positions immediately adjacent to the CDRs. The fourth criterion is to use the donor amino acid residue at framework positions at which the amino acid is predicted to have a side chain atom within about 3 Å of the CDRs in a three-dimensional immunoglobulin model and to be capable of interacting with the antigen or with the CDRs of the humanised immunoglobulin. It is proposed that criteria two, three or four may be applied in addition or alternatively to criterion one, and may be applied singly or in any combination.
- WO 90/07861 describes in detail the preparation of a single CDR-grafted humanised antibody, a humanised antibody having specificity for the p55 Tac protein of the IL-2 receptor. The combination of all four criteria, as above, were employed in designing this humanised antibody, the variable region frameworks of the human antibody Eu (7) being used as acceptor. In the resultant humanised antibody the donor CDRs were as defined by Kabat et al (7 and 8) and in addition the mouse donor residues were used in place of the human acceptor residues, at
positions positions 48, 60 and 63 in the light chain, of the variable region frameworks. The humanised anti-Tac antibody obtained is reported to have an affinity for p55 of 3×109 M−1, about one-third of that of the murine MAb. - We have further investigated the preparation of CDR-grafted humanised antibody molecules and have identified a hierarchy of positions within the framework of the variable regions (i.e. outside both the Kabat CDRs and structural loops of the variable regions) at which the amino acid identities of the residues are important for obtaining CDR-grafted products with satisfactory binding affinity. This has enabled us to establish a protocol for obtaining satisfactory CDR-grafted products which may be applied very widely irrespective of the level of homology between the donor immunoglobulin and acceptor framework. The set of residues which we have identified as being of critical importance does not coincide with the residues identified by Queen et al (9).
- Accordingly, in a first aspect the invention provides a CDR-grafted antibody heavy chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of
positions - In preferred embodiments, the heavy chain framework comprises donor residues at
positions positions positions 71, 73 and 78 of the heavy chain framework are preferably either all acceptor or all donor residues. - In particularly preferred embodiments the heavy chain framework additionally comprises donor residues at one, some or all of
positions 6, 37, 48 and 94. Also it is particularly preferred that residues at positions of the heavy chain framework which are c only conserved across species, i.e. positions 2, 4, 25, 36, 39, 47, 93, 103, 104, 106 and 107, if not conserved between donor and acceptor, additionally comprise donor residues. Most preferably the heavy chain framework additionally comprises donor residues atpositions - In addition the heavy chain framework optionally comprises donor residues at one, some or ail of positions:
-
- 1 and 3,
- 72 and 76,
- 69 (if 48 is different between donor and acceptor),
- 38 and 46 (if 48 is the donor residue),
- 80 and 20 (if 69 is the donor residue),
- 67,
- 82 and 18 (if 67 is the donor residue),
- 91,
- 88, and
- any one or more of 9, 11, 41, 87, 108, 110 and 112.
- In the first and other aspects of the present invention reference is made to CDR-grafted antibody products comprising acceptor framework and donor antigen binding regions. It will be appreciated that the invention is widely applicable to the CDR-grafting of antibodies in general. Thus, the donor and acceptor antibodies may be derived from animals of the same species and even same antibody class or sub-class. More usually, however, the donor and acceptor antibodies are derived from animals of different species. Typically the donor antibody is a non-human antibody, such as a rodent MAb, and the acceptor antibody is a human antibody.
- In the first and other aspects of the present invention, the donor antigen binding region typically comprises at least one CDR from the donor antibody. Usually the donor antigen binding region comprises at least two and preferably all three CDRs of each of the heavy chain and/or light chain variable regions. The CDRs may comprise the Kabat CDRs, the structural loop CDRs or a composite of the Kabat and structural loop CDRs and any combination of any of these. Preferably, the antigen binding regions of the CDR-grafted heavy chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR2 (residues 50-65) and CDR3 (residues 95-100) and a composite of the Kabat and structural loop CDRs at CDR1 (residues 26-35).
- The residue designations given above and elsewhere in the present application are numbered according to the Kabat numbering [refs. (7) and (8)]. Thus the residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure. For example, the heavy chain variable region of the anti-Tac antibody described by Queen et al (9) contains a single amino acid insert (
residue 52a) after residue 52 of CDR2 and a three amino acid insert (residues 82a, 82b and 82c) after framework residue 82, in the Kabat numbering. The correct Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a “standard; Kabat numbered sequence. - The invention also provides in a second aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of
positions 1 and/or 3 and 46 and/or 47. Preferably the CDR grafted light chain of the second aspect comprises donor residues at positions 46 and/or 47. - The invention also provides in a third aspect a CDR-grafted antibody light chain having a variable region domain comprising acceptor framework and donor antigen binding regions wherein the framework comprises donor residues at at least one of positions 46, 48, 58 and 71.
- In a preferred embodiment of the third aspect, the framework comprises donor residues at all of positions 46, 48, 58 and 71.
- In particularly preferred embodiments of the second and third aspects, the framework additionally comprises donor residues at
positions positions - In addition the framework of the second or third aspects optionally comprises donor residues at one, same or all of positions:
- 1 and 3,
- 63,
- 60 (if 60 and 54 are able to form at potential saltbridge),
- 70 (if 70 and 24 are able to form a potential saltbridge),
- 73 and 21 (if 47 is different between donor and acceptor),
- 37 and 45 (if 47 is different between donor and acceptor),
- and
- any one or more of 10, 12, 40, 80, 103 and 105.
- Preferably, the antigen binding regions of the CDR-grafted light chain variable domain comprise CDRs corresponding to the Kabat CDRs at CDR1 (residue 24-34), CDR2 (residues 50-56) and CDR3 (residues 89-97).
- The invention further provides in a fourth aspect a CDR-grafted antibody molecule comprising at least one CDR-grafted heavy chain and at least one CDR-grafted light chain-according to the first and second or first and third aspects of the invention.
- The humanised antibody molecules and chains of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, (Fab′)2 or FV fragment; a light chain or heavy chain monomer or dimer; or a single chain antibody, e.g. a single chain FV in which heavy and light chain variable regions are joined by a peptide linker; or any other CDR-grafted molecule with the same specificity as the original donor antibody. Similarly the CDR-grafted heavy and light chain variable region may be combined with other antibody domains as appropriate.
- Also the heavy or light chains or humanized antibody molecules of the present invention may have attached to them an effector or reporter molecule. For instance, it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure. Alternatively, the procedures of recombinant DNA technology may be used to produce an immunoglobulin molecule in which the Fc fragment or CH3 domain of a complete immunoglobulin molecule has been replaced by, or has attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
- Any appropriate acceptor variable region framework sequences may be used having regard to class/type of the donor antibody from which the antigen binding regions are derived. Preferably, the type of acceptor framework used is of the same/similar class/type as the donor antibody. Conveniently, the framework may be chosen to maximise/optimise homology with the donor antibody sequence particularly at positions close or adjacent to the CDRs. However, a high level of homology between donor and acceptor sequences is not important for application of the present invention. The present invention identifies a hierarchy of framework residue positions at which donor residues may be important or desirable for obtaining a CDR-grafted antibody product having satisfactory binding properties. The CDR-grafted products usually have binding affinities of at least 105 M−1, preferably at least about 108 M−1, or especially in the range 108-1012 M−1. In principle, the present invention is applicable to any combination of donor and acceptor antibodies irrespective of the level of homology between their sequences. A protocol for applying the invention to any particular donor-acceptor antibody pair is given hereinafter. Examples of human frameworks which may be used are KOL, NEWM, REI, EU, LAY and POM (refs. 4 and 5) and the like; for instance KOL and NEWM for the heavy chain and REI for the light chain and EU, LAY and POM for both the heavy chain and the light chain.
- Also the constant region domains of the products of the invention may be selected having regard to the proposed function of the antibody in particular the effector functions which may be required. For example, the constant region domains may be human IgA, IgE, IgG or IgM domains. In particular, IgG human constant region domains may be used, especially of the IgG1 and IgG3 isotypes, when the humanised antibody molecule is intended for therapeutic uses, and antibody effector functions are required. Alternatively, IgG2 and IgG4 isotypes may be used when the humanised antibody molecule is intended for therapeutic purposes and antibody effector functions are not required, e.g. for simple blocking of lymphokine activity.
- However, the remainder of the antibody molecules need not comprise only protein sequences from immunoglobulins. For instance, a gene may be constructed in which a DNA sequence encoding part of a human immunoglobulin chain is fused to a DNA sequence encoding the amino acid sequence of a functional polypeptide such as an effector or reporter molecule.
- Preferably the CDR-grafted antibody heavy and light chain and antibody molecule products are produced by recombinant DNA technology.
- Thus in further aspects the invention also includes DNA sequences coding for the CDR-grafted heavy and light chains, cloning and expression vectors containing the DNA sequences, host cells transformed with the DNA sequences and processes for producing the CDR-grafted chains and antibody molecules comprising expressing the DNA sequences in the transformed host cells.
- The general methods by which the vectors may be constructed, transfection methods and culture methods are well known per se and form no part of the invention. Such methods are shown, for instance, in
references - The DNA sequences which encode the donor amino acid sequence may be obtained by methods well known in the art. For example the donor coding sequences may be obtained by genomic cloning, or cDNA cloning from suitable hybridoma cell lines. Positive clones may be screened using appropriate probes for the heavy and light chain genes in question. Also PCR cloning may be used.
- DNA coding for acceptor, e.g. human acceptor, sequences may be obtained in any appropriate way. For example DNA sequences coding for preferred human acceptor frameworks such as KOL, REI, EU and NEWM, are widely available to workers in the art.
- The standard techniques of molecular biology may be used to prepare DNA sequences coding for the CDR-grafted products. Desired DNA sequences may be synthesized completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate. For example oligonucleotide directed synthesis as described by Jones et al (ref. 20) may be used. Also oligonucleotide directed mutagenesis of a pre-exising variable region as, for example, described by Verhoeyen et al (ref. 5) or Riechmann et al (ref. 6) may be used. Also enzymatic filling in of gapped oligonucleotides using T4 DNA polymerase as, for example, described by-Queen et al (ref. 9) may be used.
- Any suitable host cell/vector system may be used for expression of the DNA sequences coding for the CDR-grafted heavy and light chains. Bacterial e.g. E. coli, and other microbial systems may be used, in particular for expression of antibody fragments such as FAb and (Fab′)2 fragments, and especially FV fragments and single chain antibody fragments e.g. single chain FVs. Eucaryotic e.g. mammalian host cell expression systems may be used for production of larger CDR-grafted antibody products, including complete antibody molecules. Suitable mammalian host cells include CHO cells and myeloma or hybridoma cell lines.
- Thus, in a further aspect the present invention provides a process for producing a CDR-grafted antibody product comprising:
-
- (a) producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy chain according to the first aspect of the invention;
and/or - (b) producing in an expression vector an operon having a DNA sequence which encodes a complementary antibody light chain according to the second or third aspect of the invention;
- (c) transfecting a host cell with the or each vector; and
- (d) culturing the transfected cell line to produce the CDR-grafted antibody product.
- (a) producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy chain according to the first aspect of the invention;
- The CDR-grafted product may comprise only heavy or light chain derived polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence is used to transfect the host cells.
- For production of products comprising both heavy and light chains, the cell line may be transfected with two vectors, the first vector may contain an operon encoding a light chain-derived polypeptide and the second vector containing an operon encoding a heavy chain-derived polypeptide. Preferably, the vectors are identical, except in so far as the coding sequences and selectable markers are concerned, so as to ensure as far as possible that each polypeptide chain is equally expressed. Alternatively, a single vector may be used, the vector including the sequences encoding both light chain- and heavy chain-derived polypeptides.
- The DNA in the coding sequences for the light and heavy chains may comprise cDNA or genomic DNA or both. However, it is preferred that the DNA sequence encoding the heavy or light chain comprises at least partially, genomic DNA, preferably a fusion of EDNA and genomic DNA.
- The present invention is applicable to antibodies of any appropriate specificity. Advantageously, however, the invention may be applied to the humanisation of non-human antibodies which are used for in vivo therapy or diagnosis. Thus the antibodies may be site-specific antibodies such as tumour-specific or cell surface-specific antibodies, suitable for use in in vivo therapy or diagnosis, e.g. tumour imaging. Examples of cell surface-specific antibodies are anti-T cell antibodies, such as anti-CD3, and CD4 and adhesion molecules, such as CR3, ICAM and ELAM. The antibodies may have specificity for interleukins (including lymphokines, growth factors and stimulating factors), hormones and other biologically active compounds, and receptors for any of these. For example, the antibodies may have specificity for any of the following: Interferons β, γ, or δ, IL1, IL2, IL3, or IL4, etc., TNF, GCSF, GMCSF, EPO, hGH, or insulin, etc.
- The present invention also includes therapeutic and diagnostic compositions comprising the CDR-grafted products of the invention and uses of such compositions in therapy and diagnosis.
- Accordingly in a further aspect the invention provides a therapeutic or diagnostic composition comprising a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- Accordingly also the invention provides a method of therapy or diagnosis comprising administering an effective amount of a CDR-grafted antibody heavy or light chain or molecule according to previous aspects of the invention to a human or animal subject.
- A preferred protocol for obtaining CDR-grafted antibody heavy and light chains in accordance with the present invention is set out below together with the rationale by which we have derived this protocol. This protocol and rationale are given without prejudice to the generality of the invention as hereinbefore described and defined.
- Protocol
- It is first of all necessary to sequence the DNA coding for the heavy and light chain variable regions of the donor antibody, to determine their amino acid sequences. It is also necessary to choose appropriate acceptor heavy and light chain variable regions, of known amino acid sequence. The CDR-grafted chain is then designed starting from the basis of the acceptor sequence. It will be appreciated that in some cases the donor and acceptor amino acid residues may be identical at a particular position and thus no change of acceptor framework residue is required.
- 1. As a first step donor residues are substituted for acceptor residues in the CDRs. For this purpose the CDRs are preferably defined as follows:
Heavy chain CDR1: residues 26-35 CDR2: residues 50-65 CDR3: residues 95-102 Light chain CDR1: residues 24-34 CDR2: residues 50-56 CDR3: residues 89-97 - The positions at which donor residues are to be substituted for acceptor in the framework are then chosen as follows, first of all with respect to the heavy chain and subsequently with respect to the light chain.
-
- 2. Heavy Chain
- 2.1 Choose donor residues at all of
positions positions - 2.2 Check that the following have the same amino acid in donor and acceptor sequences, and if not preferably choose the donor: 2, 4, 6, 25, 36, 37, 39, 47, 48, 93, 94, 103, 104, 106 and 107.
- 2.3 To further optimise affinity consider choosing donor residues at one, some or any of:
- i. 1, 3
- ii. 72, 76
- iii. If 48 is different between donor and acceptor sequences, consider 69
- iv. If at 48 the donor residue is chosen, consider 38 and 46
- v. If at 69 the donor residue is chosen, consider 80 and then 20
- vi. 67
- vii. If at 67 the donor residue is chosen, consider 82 and then 18
- viii. 91
- ix. 88
- x. 9, 11, 41, 87, 108, 110, 112
- 3. Light Chain
- 3.1 Choose donor at 46, 48, 58 and 71
- 3.2 Check that the following have the same amino acid in donor and acceptor sequences, if not preferably choose donor:
- 2, 4, 6, 35, 38, 44, 47, 49, 62, 64-69 inclusive, 85, 87, 98, 99, 101 and 102
- 3.3 To further optimise affinity consider choosing donor residues at one, some or any of:
- i. 1, 3
- ii. 63
- iii. 60, if 60 and 54 are able to form potential saltbridge
- iv. 70, if 70 and 24 are able to form potential saltbridge
- v. 73, and 21 if 47 is different between donor and acceptor
- vi. 37, and 45 if 47 is different between donor and acceptor
- vii. 10, 12, 40, 80, 103, 105
Rationale
- In order to transfer the binding site of an antibody into a different acceptor framework, a number of factors need to be considered.
-
- 1. The extent of the CDRs
- The CDRs (Complementary Determining Regions) were defined by Wu and Kabat (refs. 4 and 5) on the basis of an analysis of the variability of different regions of antibody variable regions. Three regions per domain were recognised. In the light chain the sequences are 24-34, 50-56, 89-97 (numbering according to Kabat (ref. 4), Eu Index) inclusive and in the heavy chain the sequences are 31-35, 50-65 and 95-102 inclusive.
- When antibody structures became available it became apparent that these CDR regions corresponded in the main to loop regions which extended from the barrel framework of the light and heavy variable domains. For Hi there was a discrepancy in that the loop was from 26 to 32 inclusive and for H2 the loop was 52 to 56and for L2 from 50 to 53. However, with the exception of H1 the CDR regions encompassed the loop regions and extended into the p strand frameworks. In
H1 residue 26 tends to be a serine and 27 a phenylalanine or tyrosine,residue 29 is a phenylalanine in most cases.Residues - It is of interest to note the example of Riechmann et al (ref. 3), who used the residue 31-35 choice for CDR-E1. In order to produce efficient antigen binding,
residue 27 also needed to be recruited from the donor (rat) antibody. - 2. Non-CDR residues which contribute to antigen binding
- By examination of available X-ray structures we have identified a number of residues which may have an effect on net antigen binding and which can be demonstrated by experiment. These residues can be sub-divided into a number of groups.
- 2.1 Surface residues near CDR [all numbering as in Kabat et al (ref. 7)].
- 2.1.1. Heavy Chain—Key residues are 23, 71 and 73.
- Other residues which may contribute to a lesser extent are 1, 3 and 76. Finally 25 is usually conserved but the murine residue should be used if there is a difference.
- 2.1.2 Light Chain—Many residues close to the CDRs, e.g. 63, 65, 67 and 69 are conserved. If conserved none of the surface residues in the light chain are likely to have a major effect. However, if the murine residue at these positions is unusual, then it would be of benefit to analyse the likely contribution more closely. Other residues which may also contribute to binding are 1 and 3, and also 60 and 70 if the residues at these positions and at 54 and 24 respectively are potentially able to form a salt bridge i.e. 60+54; 70+24.
- 2.2 Packing residues near the CDRs.
- 2.2.1. Heavy Chain—Key residues are 24, 49 and 78. Other key residues would be 36 if not a tryptophan, 94 if not an arginine, 104 and 106 if not glycines and 107 if not a threonine. Residues which may make a further contribution to stable packing of the heavy chain and hence improved affinity are 2, 4, 6, 38, 46, 67 and 69. 67 packs against the CDR residue 63 and this pair could be either both mouse or both human. Finally, residues which contribute to packing in this region but from a longer range are 18, 20, 80, 82 and 86. 82 packs against 67 and in
turn 18 packs against 82. 80 packs against 69 and inturn 20 packs against 80. 86 forms an H bond network with 38 and 46. Many of the mouse-human differences appear minor e.g. Leu-Ile, but could have an minor impact on correct packing which could translate into altered positioning of the CDRs. - 2.2.2. Light Chain—Key residues are 48, 58 and 71.
- Other key residues would be 6 if not glutamine, 35 if not tryptophan, 62 if not phenylalanine or tryosine, 64, 66, 68, 99 and 101 if not glycines and 102 if not a threonine. Residues which make a further contribution are 2, 4, 37, 45 and 47. Finally
residues - 2.3. Residues at the variable domain interface between heavy and light chains—In both the light and heavy chains most of the non-CDR interface residues are conserved. If a conserved residue is replaced by a residue of different characters, e.g. size or charge, it should be considered for retention as the murine residue.
- 2.3.1. Heavy Chain—Residues which need to be considered are 37 if the residue is not a valine but is of larger side chain volume or has a charge or polarity. Other residues are 39 if not a glutamine, 45 if not a leucine, 47 if not a tryptophan, 91 if not a phenylalanine or tyrosine, 93 if not an alanine and 103 if not a tryptophan.
Residue 89 is also at the interface but is not in a position where the side chain could be of great impact. - 2.3.2. Light Chain—Residues which need to be considered are 36, if not a tyrosine, 38 if not a glutamine, 44 if not a proline, 46, 49 if not a tyrosine,
residue 85, residue 87 if not a tyrosine and 98 if not a phenylalanine. - 2.4. Variable-Constant region interface—The elbow angle between variable and constant regions may be affected by alterations in packing of key residues in the variable region against the constant region which may affect the position of VL and VH with respect to one another.
- Therefore it is worth noting the residues likely to be in contact with the constant region. In the heavy chain the surface residues potentially in contact with the variable region are conserved between mouse and human antibodies therefore the variable region contact residues may influence the V-C interaction. In the light chain the amino acids found at a number of the constant region contact points vary, and the V & C regions are not in such close proximity as the heavy chain. Therefore the influences of the light chain V-C interface may be minor.
- 2.4.1. Heavy Chain—Contact residues are 7, 11, 41, 87, 108, 110, 112.
- 2.4.2. Light Chain—In the light chain potentially contacting residues are 10, 12, 40, 80, 83, 103 and 105.
- The above analysis coupled with our considerable practical experimental experience in the CDR-grafting of a number of different antibodies have lead us to the protocol given above.
- The present invention is now described, by way of example only, with reference to the-accompanying
FIGS. 1-13 . -
FIG. 1 shows DNA and amino acid sequences of the OKT3 light chain; -
FIG. 2 shows DNA and amino acid sequences of the OKT3 heavy chain; -
FIG. 3 shows the alignment of the OKT3 light variable region amino acid sequence with that of the light variable region of the human antibody REI; -
FIG. 4 shows the alignment of the OKT3 heavy variable region amino acid sequence with that of the heavy variable region of the human antibody KOL; -
FIG. 5 shows the heavy variable region amino acid sequences of OKT3, KOL and various corresponding CDR grafts; -
FIG. 6 shows the light variable region amino acid sequences of OKT3, REI and various corresponding CDR grafts; -
FIG. 7 shows a graph of binding assay results for various grafted OKT3 antibodies -
FIG. 8 shows a graph of blocking assay results for various grafted OKT3 antibodies; -
FIG. 9 shows a similar graph of blocking assay results; -
FIG. 10 shows similar graphs for both binding assay and blocking assay results; -
FIG. 11 shows further similar graphs for both binding assay and blocking assay results; -
FIG. 12 shows a graph of competition assay results for a minimally grafted OKT3 antibody compared with the OK3 murine reference standard, and -
FIG. 13 shows a similar graph of competition assay results comparing a fully grafted OKT3 antibody with the marine reference standard. - CDR-Grafting of OKT3
- Material and Methods
- 1. Incoming Cells
- Hybridoma cells producing antibody OKT3 were provided by Ortho (seedlot 4882.1) and were grown up in antibiotic free Dulbecco's Modified Eagles Medium (DMEM) supplemented with glutamine and 5% foetal calf serum, and divided to provide both an overgrown supernatant for evaluation and cells for extraction of RNA. The overgrown supernatant was shown to contain 250 ug/mL murine IgG2a/kappa antibody. The supernatant was negative for murine lambda light chain and IgG1, IgG2b, IgG3, IgA and IgM heavy chain. 20 mL of supernatant was assayed to confirm that the antibody present was OKT3.
- 2. Molecular Biology Procedures
- Basic molecular biology procedures were as described in Maniatis et al (ref. 9) with, in some cases, minor modifications. DNA sequencing was performed as described in Sanger et al (ref. 11) and the Amersham International Pic sequencing handbook. Site directed mutagenesis was as described in Kramer et al (ref. 12) and the Anglian Biotechnology Ltd. handbook. COS cell expression and metabolic labelling studies were as described in Whittle et al (ref. 13)
- 3. Research Assays
- 3.1. Assembly Assays
- Assembly assays were performed on supernatants from transfected COS cells to determine the amount of intact IgG present.
- 3.1.1. COS Cells Transfected with Mouse OKT3 Genes
- The assembly assay for intact mouse IgG in COS cell supernatants was an ELISA with the following format:
- 96 well microtitre plates were coated with F(ab′)2 goat anti-mouse IgG Fc. The plates were washed in water and samples added for 1 hour at room temperature. The plates were washed and F(ab′)2 goat anti-mouse IgG F(ab′)2 (HRPO conjugated) was then added. Substrate was added to reveal the reaction. UPC10, a mouse IgG2a myeloma, was used as a standard.
- 3.1.2. COS and CHO Cells Transfected with Chimeric or CDR-Grafted OKT3 Genes
- The assembly assay for chimeric or CDR-grafted antibody in COS cell supernatants was an ELISA with the following format:
- 96 well microtitre plates were coated with F(ab′)2 goat anti-human IgG Fc. The plates were washed and samples added and incubated for 1 hour at room temperature. The plates were washed and monoclonal mouse anti-human kappa chain was added for 1 hour at room temperature.
- The plates were washed and F(ab′)2 goat anti-mouse IgG Fc (HRPO conjugated) was added. Enzyme substrate was added to reveal the reaction. Chimeric B72.3 (IgG4) (ref. 13) was used as a standard. The use of a monoclonal anti-kappa chain in this assay allows grafted antibodies to be read from the chimeric standard.
- 3.2. Assay for Antigen Binding Activity
- Material from COS cell supernatants was assayed for OKT3 antigen binding activity onto CD3 positive cells in a direct assay. The procedure was as follows:
-
HUT 78 cells (human T cell line, CD3 positive) were maintained in culture. Monolayers ofHUT 78 cells were prepared onto 96 well ELISA plates using poly-L-lysine and glutaraldehyde. Samples were added to the monolayers for 1 hour at room temperature. - The plates were washed gently using PBS. F(ab′)2 goat anti-human IgG Fc (HRPO conjugated) or F(ab′)2 goat anti-mouse IgG Fc (HRPO conjugated) was added as appropriate for humanised or mouse samples. Substrate was added to reveal the reaction.
- The negative control for the call-based assay was chimeric B72.3. The positive control was mouse Orthomune OKT3 or chimeric OKT3, when available. This cell-based assay was difficult to perform, and an alternative assay was developed for CDR-grafted OKT3 which was more sensitive and easier to carry out.
- In this system CDR-grafted OKT3 produced by COS cells was tested for its ability to bind to the CD3-positive HPB-ALL (human peripheral blood acute lymphocytic leukemia) cell line. It was also tested for its ability to block the binding of murine OKT3 to these cells. Binding was measured by the following procedure: HPB-ALL cells were harvested from tissue culture. Cells were incubated at 4° C. for 1 hour with various dilutions of test antibody, positive control antibody, or negative control antibody. The cells were washed once and incubated at 4° C. for 1 hour with an FITC-labelled goat anti-human IgG (Fc-specific, mouse absorbed). The cells were washed twice and analysed by cytofluorography. Chimeric OKT3 was used as a positive control for direct binding. Calls incubated with mock-transfected COS cell supernatant, followed by the FITC-labelled goat anti-human IgG, provided the negative control. To test the ability of CDR-grafted OKT3 to block murine OKT3 binding, the HPB-ALL cells were incubated at 4° C. for 1 hour with various dilutions of test antibody or control antibody. A fixed saturating amount of FITC OKT3 was added. The samples were incubated for 1 hour at 4° C., washed twice and analysed by cytofluorography. FITC-labelled OKT3 was used as a positive control to determine maximum binding. Unlabelled marine OKT3 served as a reference standard for blocking. Negative controls were unstained cells with or without mock-transfected cell supernatant. The ability of the CDR-grafted OKT3 light chain to bind CD3-positive cells and block the binding of marine OKT3 was initially tested in combination with the chimeric OKT3 heavy chain. The chimeric OKT3 heavy chain is composed of the murine OKT3 variable region and the human IgG4 constant region. The chimeric heavy chain gene is expressed in the same expression vector used for the CDR-grafted genes. The CDR-grafted light chain expression vector and the chimeric heavy chain expression vector were co-transfected into COS cells. The fully chimeric OKT3 antibody (chimeric light chain and chimeric heavy chain) was found to be fully capable of binding to CD3 positive cells and blocking the binding of murine OKT3 to these cells.
- 3.3 Determination of Relative Binding Affinity
- The relative binding affinities of CDR-grafted anti-CD3 monoclonal antibodies were determined by competition binding (ref. 6) using the HPB-ALL human T cell line as a source of CD3 antigen, and fluorescein-conjugated murine OKT3 (Fl-OKT3) of known binding affinity as a tracer antibody. The binding affinity of Fl-OKT3 tracer antibody was determined by a direct binding assay in which increasing amounts of Fl-OKT3 were incubated with HPB-ALL (5×105) in PBS with 5% foetal calf serum for 60 min. at 4° C. Cells were washed, and the fluorescence intensity was determined on a FACScan flow cytometer calibrated with quantitative microbead standards (Flow Cytometry Standards, Research Triangle Park, N.C.). Fluorescence intensity per antibody molecule (F/P ratio) was determined by using microbeads which have a predetermined number of mouse IgG antibody binding sites (Simply Cellular beads, Flow Cytometry Standards). F/P equals the fluorescence intensity of beads saturated with Fl-OKT3 divided by the number of binding sites per bead. The amount of bound and free Fl-OKT3 was calculated from the mean fluorescence intensity per cell, and the ratio of bound/free was plotted against the number of moles of antibody bound. A linear fit was used to determine the affinity of binding (absolute value of the slope).
- For competitive binding, increasing amounts of competitor antibody were added to a sub-saturating dose of Fl-OKT3 and incubated with 5×105 HPB-ALL in 200 ml of PBS with 5% foetal calf serum, for 60 min at 4° C. The fluorescence intensities of the cells were measured on a FACScan flow cytometer calibrated with quantitative microbead standards. The concentrations of bound and free Fl-OKT3 were calculated. The affinities of competing anti-bodies were calculated from the equation [X]-[OKT3]−(1/Kx)−(1/Ka), where Ka is the affinity of marine OKT3, Kx is the affinity of competitor X, [ ] is the concentration of competitor antibody at which bound/free binding is R/2, and R is the maximal bound/free binding.
- 4. cDNA Library Construction
- 4.1. mRNA Preparation and cDNA Synthesis
- OKT3 producing cells were grown an described above and 1.2×109 cells harvested and mRNA extracted using the guanidinium/LiCl extraction procedure. cDNA was prepared by priming from Oligo-dT to generate full length cDNA. The cDNA was methylated and EcoR1 linkers added for cloning.
- 4.2. Library Construction
- The cDNA library was ligated to pSP65 vector DNA which had been EcoR1 cut and the 5′ phosphate groups removed by calf intestinal phosphatase (EcoR1/CIP). The ligation was used to transform high transformation efficiency Escherichia coli (E. coli) HB101. A cDNA library was prepared. 3600 colonies were screened for the light chain and 10000 colonies were screened for the heavy chain.
- 5. Screening
- E.coli colonies positive for either heavy or light chain probes were identified by oligonucleotide screening using the oligonucleotides:
- 5′ TCCAGATGTTAACTGCTCAC for the light chain, which is complementary to a sequence in the mouse kappa constant region, and 5′ CAGGGGCCAGTGGATGGATAGAC for the heavy chain which is complementary to a sequence in the mouse IgG2a constant CH1 domain region. 12 light chain and 9 heavy chain clones were identified and taken for second round screening. Positive clones from the second round of screening were grown up and DNA prepared. The sizes of the gene inserts were estimated by gel electrophoresis and inserts of a size capable of containing a full length cDNA were subcloned into M13 for DNA sequencing.
- 6. DNA Sequencing
- Clones representing four size classes for both heavy and light chains were obtained in M13. DNA sequence for the 5′ untranslated regions, signal sequences, variable regions and 3′ untranslated regions of full length cDNAs (FIGS. 1(a) and 2(a)] were obtained and the corresponding amino acid sequences predicted [(FIGS. 1(b) and 2(b)]. In
FIG. 1 (a) the untranslated DNA regions are shown in uppercase, and in bothFIGS. 1 and 2 the signal sequences are underlined. - 7. Construction of cDNA Expression Vectors
- Celltech expression vectors are based on the plasmid pEE6hCMV (ref. 14). A polylinker for the insertion of genes to be expressed has been introduced after the major immediate early promoter/enhancer of the human Cytomegalovirus (hCMV). Marker genes for selection of the plasmid in transfected eukaryotic cells can be inserted as BamH1 cassettes in the unique BamH1 site of pEE6 hCMV; for instance, the neo marker to provide pEE6 hCMV neo. It is usual practice to insert the neo and gpt markers prior to insertion of the gene of interest, whereas the GS marker is inserted last because of the presence of internal EcoR1 sites in the cassette.
- The selectable markers are expressed from the SV40 late promoter which also provides an origin of replication so that the vectors can be used for expression in the COS cell transient expression system.
- The mouse sequences were excised from the M13 based vectors-described above as EcoR1 fragments and cloned into either pEE6-hCMV-neo for the heavy chain and into EE6-hCMV-gpt for the light chain to yield vectors pJA136 and pJA135 respectively.
- 8. Expression of cDNAS in COS Cells
- Plasmids pJA135 and pJA136 were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to T-cell enriched lymphocytes. Metabolic labelling experiments using 35S methionine showed expression and assembly of heavy and light chains.
- 9. Construction of Chimeric Genes
- Construction of chimeric genes followed a previously described strategy [Whittle et al (ref. 13)]. A restriction site near the 3′ end of the variable domain sequence is identified and used to attach an oligonucleotide adapter coding for the remainder of the mouse variable region and a suitable restriction site for attachment to the constant region of choice.
- 9.1. Light Chain Gene Construction
- The mouse light chain cDNA sequence contains an Ava1 site near the 3′ end of the variable region [
FIG. 1 (a)]. The majority of the sequence of the variable region was isolated as a 396 bp. EcoR1-Ava1 fragment. An oligonucleotide adapter was designed to replace the remainder of the 3′ region of the variable region from the Ava1 site and to include the 5′ residues of the human constant region up to and including a unique Nar1 site which had been previously engineered into the constant region. - A Hind111 site was introduced to act as a marker for insertion of the linker.
- The linker was ligated to the VL fragment and the 413 bp EcoR1-Nar1 adapted fragment was purified from the ligation mixture.
- The constant region was isolated as an Nar1-BamH1 fragment from an M13 clone NW361 and was ligated with the variable region DNA into an EcoR1/BamH1/C1P pSP65 treated vector in a three way reaction to yield plasmid JA143. Clones were isolated after transformation into E. coli and the linker and junction sequences were confirmed by the presence of the Hind111 site and by DNA sequencing.
- 9.2 Light Chain Gene Construction—Version 2
- The construction of the first chimeric light chain gene produces a fusion of mouse and human amino acid sequences at the variable-constant region junction. In the case of the OKT3 light chain the amino acids at the chimera junction are:
Leu-Glu-Ile-Asn-Arg/−/Thr-Val-Ala-Ala/VARIABLE CONSTANT - This arrangement of sequence introduces a potential site for Asparagine (Asn) linked (N-linked) glycosylation at the V-C junction. Therefore, a second version of the chimeric light chain oligonucleotide adapter was designed in which the threonine (Thr), the first amino acid of the human constant region, was replaced with the equivalent amino acid from the mouse constant region, Alanine (Ala).
- An internal Hind111 site was not included in this adapter, to differentiate the two chimeric light chain genes.
- The variable region fragment was isolated as a 376 bp EcoR1-Ava1 fragment. The oligonucleotide linker was ligated to Nar1 cut pNW361 and then the adapted 396 bp constant region was isolated after recutting the modified pNW361 with EcoR1. The variable region fragment and the modified constant region fragment were ligated directly into EcoR1/C1P treated pEE6hCMVneo to yield pJA137.
- Initially all clones examined had the insert in the incorrect orientation. Therefore, the insert was re-isolated and recloned to turn the insert round and yield plasmid pJA141. Several clones with the insert in the correct orientation were obtained and the adapter sequence of one was confirmed by DNA sequencing
- 9.3. Heavy Chain Gene Construction
- 9.3.1. Choice of Heavy Chain Gene Isotype
- The constant region isotype chosen for the heavy chain was human IgG4.
- 9.3.2. Gene Construction
- The heavy chain cDNA sequence showed a Ban1 site near the 3′ end of the variable region [
FIG. 2 (a)]. - The majority of the sequence of the variable region was isolated as a 426 bp. EcoR1/C1P/Ban1fragment. An oligonucleotide adapter was designated to replace the remainder of the 3′ region of the variable region from the Ban1 site up to and including a unique Hind111 site which had been previously engineered into the first two amino acids of the constant region.
- The linker was ligated to the VH fragment and the EcoR1-Hind111 adapted fragment was purified from the ligation mixture.
- The variable region was ligated to the constant region by cutting pJA91 with EcoR1 and Hind111 removing the intron fragment and replacing it with the VH to yield pJA142. Clones were isolated after transformation into E.coli JM101 and the linker and junction sequences were confirmed by DNA sequencing. (N. B. The Hind111 site is lost on cloning).
- 10. Construction of Chimeric Expression Vectors
- 10.1. neo and gpt Vectors
- The chimeric light chain (version 1) was removed from pJA143 as an EcoR1 fragment and cloned into EcoR1/C1P treated pEE6hCMVneo expression vector to yield pJA145. Clones with the insert in the correct orientation were identified by restriction mapping.
- The chimeric light chain (version 2) was constructed as described above.
- The chimeric heavy chain gene was isolated from pJA142 as a 2.5 Kbp EcoR1/BamH1 fragment and cloned into the EcoR1/Bc11/C1P treated vector fragment of a derivative of pEE6hCMVgpt to yield plasmid pJA144.
- 10.2. GS Separate Vectors
- GS versions of pJA141 and pJA144 were constructed by replacing the neo and gpt cassettes by a BamH1/Sa11/C1P treatment of the plasmids, isolation of the vector fragment and ligation to a GS-containing fragment from the plasmid pRO49 to yield the light chain vector pJA179 and the heavy chain vector pJA180.
- 10.3. GS Single Vector Construction
- Single vector constructions containing the cL (chimeric light), cH (chimeric heavy) and GS genes on one plasmid in the order cL-cH-GS, or cH-cL-GS and with transcription of the genes being head to tail e.g. cL>cH>GS were constructed. These plasmids were made by treating pJA179 or pJA108 with BamH1/C1P and ligating in a Bg111/Hind111 hCMV promoter cassette along with either the Hind111/BamH1fragment from pJA141 into pJA180 to give the cH-cL-GS plasmid pJA182 or the Hind111/BamH1 fragment from pJA144 into pJA179 to give the cL-cH-GS plasmid pJA181.
- 11. Expression of Chimeric Genes
- 11.1. Expression in COS Cells
- The chimeric antibody plasmid pJA145 (cL) and pJA144 (cH) were co-transfected into COS cells and supernatant from the transient expression experiment was shown to contain assembled antibody which bound to the
HUT 78 human T-cell line. Metabolic labelling experiments using 35S methionine showed expression and assembly of heavy and light chains. However the light chain mobility seen on reduced gels suggested that the potential glycosylation site was being glycosylated. Expression in COS cells in the presence of tunicamycin showed a reduction in size of the light chain to that shown for control chimeric antibodies and the OKT3 mouse light chain. Therefore JA141 was constructed and expressed. In this case the light chain did not show an aberrant mobility or a size shift in the presence or absence of tunicamycin. This second version of the chimeric light chain, when expressed in association with chimeric heavy (cH) chain, produced antibody which showed good binding toHUT 78 cells. In both cases antigen binding was equivalent to that of the mouse antibody. - 11.2 Expression in Chinese Hamster Ovary (CHO) Cells
- Stable cell lines have been prepared from plasmids pJA141/pJA144 and from pJA179/pJA180, pJA181 and pJA182 by transfection into CHO cells.
- 12. CDR-Grafting
- The approach taken was to try to introduce sufficient mouse residues into a human variable region framework to generate antigen binding activity comparable to the mouse and chimeric antibodies.
- 12.1. Variable Region Analysis
- From an examination of a small database of structures of antibodies and antigen-antibody complexes it is clear that only a small number of antibody residues make direct contact with antigen. Other residues may contribute to antigen-binding by positioning the contact residues in favourable configurations and also by inducing a stable packing of the individual variable domains and stable interaction of the light and heavy chain variable domains.
- The residues chosen for transfer can be identified in a number of ways:
-
- (a) By examination of antibody X-ray crystal structures the antigen binding surface can be predominantly located on a series of loops, three per domain, which extend from the B-barrel framework.
- (b) By analysis of antibody variable domain sequences regions of hypervariability [termed the Complementarity Determining Regions (CDRs) by Wu and Kabat (ref. 5)] can be identified. In the most but not all cases these CDRs correspond to, but extend a short way beyond, the loop regions noted above.
- (c) Residues not identified by (a) and (b) may contribute to antigen binding directly or indirectly by affecting antigen binding site topology, or by inducing a stable packing of the individual variable domains and stabilising the inter-variable domain interaction. These residues may be identified either by superimposing the sequences for a given antibody on a known structure and looking at key residues for their contribution, or by sequence alignment analysis and noting “idiosyncratic” residues followed by examination of their structural location and likely effects.
12.1.1. Light Chain
-
FIG. 3 shows an alignment of sequences for the human framework region RE1 and the OKT3 light variable region. The structural loops (LOOP) and CDRs (KARAT) believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 13.1(c). - Above the sequence in
FIG. 3 the residue type indicates the spatial location of each residue side chain, derived by examination of resolved structures from X-ray crystallography analysis. The key to this residue type designation is as follows:N near to CDR (From X-ray Structures) P Packing B Buried Non-Packing S Surface B Exposed I Interface * Interface Packing/Part Exposed ? Non-CDR Residues which may require to be left as Mouse sequence. - Residues underlined in
FIG. 3 are amino acids. RE1 was chosen as the human framework because the light chain is a kappa chain and the kappa variable regions show higher homology with the mouse sequences than a lambda light variable region, e.g. KOL (see below). RE1 was chosen in preference to another kappa light chain because the X-ray structure of the light chain has been determined so that a structural examination of individual residues could be made. - 12.1.2. Heavily Chain
- Similarly
FIG. 4 shows an alignment of sequences for the human framework region KOL and the OKT3 heavy variable region. The structural loops and CDRs believed to correspond to the antigen binding region are marked. Also marked are a number of other residues which may also contribute to antigen binding as described in 12.1(c). The residue type key and other indicators used inFIG. 4 are the same as those used inFIG. 3 . KOL was chosen as the heavy chain framework because the X-ray structure has been determined to a better resolution than, for example, NEWM and also the sequence alignment of OKT3 heavy variable region showed a slightly better homology to KOL than to NEWM. - 12.2. Design of Variable Genes
- The variable region domains were designed with mouse variable region optimal codon usage [Grantham and Perrin (ref. 15)] and used the B72.3 signal sequences [Whittle et al (ref. 13)]. The sequences were designed to be attached to the constant region in the same way as for the chimeric genes described above. Some constructs contained the “Kozak consensus sequence” [Kozak (ref. 16)] directly linked to the 5′ of the signal sequence in the gene. This sequence motif is believed to have a beneficial role in translation initiation in eukaryotes.
- 12.3. Gene Construction
- To build the variable regions, various strategies are available. The sequence may be assembled by using oligonucleotides in a manner similar to Jones et al (ref. 17) or by simultaneously replacing all of the CDRs or loop regions by oligonucleotide directed site specific mutagenesis in a manner similar to Verhoeyen et al (ref. 2). Both strategies were used and a list of constructions is set out in Tables 1 and 2 and
FIGS. 4 and 5 . It was noted in several cases that the mutagenesis approach led to deletions and rearrangements in the gene being remodelled, while the success of the assembly approach was very sensitive to the quality of the oligonucleotides. - 13. Construction of Expression Vectors
- Genes were isolated from M13 or SP65 base intermediate vectors and cloned into pEE6hCMVneo for the light chains and pEE6hCMVgpt for the heavy chains in a manner similar to that for the chimeric genes as described above.
TABLE 1 CDR-GRAFTED GENE CONSTRUCTS METHOD OF KOZAK SEQUENCE CODE MOUSE SEQUENCE CONTENT CONSTRUCTION − + LIGHT CHAIN ALL HUMAN FRAMEWORK RE1 121 26-32, 50-56, 91-96 SDM and gene assembly + n.d. inclusive 121A 26-32, 50-56, 91-96 Partial gene assembly n.d. + inclusive + 121B 26-32, 50-56. 91-96 Partial gene assembly n.d. + inclusive + 46, 47 221 24-24, 50-56, 91-96 Partial gene assembly + + inclusive 221A 24-34, 50-56, 91-96 Partial gene assembly + + inclusive + 221B 24-34, 50-56, 91-96 Partial gene assembly + + inclusive + 221C 24-34, 50-56, 91-96 Partial gene assembly + + inclusive HEAVY CHAIN ALL HUMAN FRAMEWORK KOL 121 26-32, 50-56, 95-100B Gene assembly n.d. + inclusive 131 26-32, 50-58, 95-100B Gene assembly n.d. + inclusive 141 26-32, 50-65, 95-100B Partial gene assembly + n.d. inclusive 321 26-35, 50-56, 95-100B Partial gene assembly + n.d. inclusive 331 26-35, 50-58, 95-100B Partial gene assembly + inclusive Gene assembly + 341 26-35, 50-65, 95-100B SDM + inclusive Partial gene assembly + 341A 26-35, 50-65, 95-100B Gene assembly n.d. + inclusive + 73, 76, 78, 88, 91 (+63 − human) 341B 26-35, 50-65, 95-100B Gene assembly n.d. + inclusive + 48, 49, 71, 73, 76, 78, 88, 91 (+63 + human)
KEY
n.d. not done
SDM Site directed mutagenesis
Gene assembly Variable region assembled entirely from oligonucleotides
Partial gene assembly Variable region assembled by combination of restriction fragments either from other genes originally created by SDM and gene assembly or by oligonucleotide assembly of part of the variable region and reconstruction with restriction fragments from other genes originally created by SDM and gene assembly
14. Expression of CDR-Grafted Genes
14.1. Production of Antibody Consisting of Grafted Light (gL) Chains with Mouse Heavy (mH) or Chimeric Heavy (cH) Chains - All gL chains, in association with mH or cH produced reasonable amounts of antibody. Insertion of the Kozak consensus sequence at a position 5′ to the ATG (kgL constructs) however, led to a 2-5 fold improvement in net expression. Over an extended series of experiments expression levels were raised from approximately 200 ng/ml to approximately 500 ng/ml for kgL/cH or kgL/mH combinations.
- When direct binding to antigen on
HUT 78 cells was measured, a construct designed to include mouse sequence based on loop length (gL121) did not lead to active antibody in association with mH or cH. A construct designed to include mouse sequence based on Kabat CDRs (gL221) demonstrated some weak binding in association with mH or cH. However, whenframework residues residues - 14.2 Production of Antibody Consisting of Grafted Heavy (gH) Chains with Mouse Light (mL) or Chimeric Light (cL) Chains
- Expression of the gH genes proved to be more difficult to achieve than for gL. First, inclusion of the Kozak sequence appeared to have no marked effect on expression of gH genes. Expression appears to be slightly improved but not to the same degree as seen for the grafted light chain.
- Also, it proved difficult to demonstrate production of expected quantities of material when the loop choice (amino acid 26-32) for CDR1 is used, e.g. gH121, 131, 141 and no conclusions can be drawn about these constructs.
- Moreover, co-expression of the gH341 gene with cL or mL has been variable and has tended to produce lower amounts of antibody than the cH/cL or mH/mL combinations. The alterations to gH341 to produce gH341A and gH341B lead to improved levels of expression.
- This may be due either to a general increase in the fraction of mouse sequence in the variable region, or to the alteration at position 63 where the residue is returned to the human amino acid Valine (Val) from Phenylalanine (Phe) to avoid possible internal packing problems with the rest of the human framework. This arrangement also occurs in gH331 and gH321.
- When gH321 or gH331 were expressed in association with cL, antibody was produced but antibody binding activity was not detected.
- When the more conservative gH341 gene was used antigen binding could be detected in association with cL or mL, but the activity was only marginally above the background level.
- When further mouse residues were substituted based on the arguments in 12.1, antigen binding could be clearly demonstrated for the antibody produced when kgH341A and kgH341B were expressed in association with cL.
- 14.3 Production of Fully CDR-Grafted Antibody
- The kgL221A gene was co-expressed with kgH341, kgH341A or kgH341B. For the combination kgH221A/kgH341 very little material was produced in a normal COS cell expression.
- For the combinations kgL221A/kgH341A or kgH221A/kgH341B amounts of antibody similar to gL/cH was produced.
- In several experiments no antigen binding activity could be detected with kgH221A/gH341 or kgH221A/kgH341 combinations, although expression levels were very low.
- Antigen binding was detected when kgL221A/kgH341A or kgH221A/kgH341B combinations were expressed. In the case of the antibody produced from the kgH221A/kgH341A combination the antigen binding was very similar to that of the chimeric antibody.
- An analysis of the above results is given below.
- 15. Discussion of CDR-Grafting Results
- In the design of the fully humanised antibody the aim was to transfer the minimum number of mouse amino acids that would confer antigen binding onto a human antibody framework.
- 15.1. Light Chain
- 15.1.1. Extent of the CDRs
- For the light chain the regions defining the loops known from structural studies of other antibodies to contain the antigen contacting residues, and those hypervariable sequences defined by Kabat et al (refs. 4 and 5) as Complementarity Determining Regions (CDRs) are equivalent for CDR2. For CDR1 the hypervariable region extends from residues 24-34 inclusive while the structural loop extends from 26-32 inclusive. In the case of OKT3 there is only one amino acid difference between the two options, at
amino acid 24, where the mouse sequence is a serine and the human framework RE1 has glutamine. For CDR3 the loop extends from residues 91-96 inclusive while the Kabat hypervariability extends from residues 89-97 inclusive. ForOKT3 amino acids 89, 90 and 97 are the same between OKT3 and RE1 (FIG. 3 ). When constructs based on the loop choice for CDR1 (gL121) and the Kabat choice (gL221) were made and co-expressed with mH or cH no evidence for antigen binding activity could be found for gL121, but trace activity could be detected for the gL221, suggesting that a single extra mouse residue in the grafted variable region could have some detectable effect. Both gene constructs were reasonably well expressed in the transient expression system. - 15.1.2. Framework Residues
- The remaining framework residues were then further examined, in particular amino acids known from X-ray analysis of other antibodies to be close to the CDRs and also those amino acids which in OKT3 showed differences from the consensus framework for the mouse subgroup (subgroup VI) to which OKT3 shows most homology. Four
positions FIG. 3 and Table 1) was made, cloned in EE6hCMVneo and co-expressed with cH (pJA144). The resultant antibody was well expressed and showed good binding activity. When the related genes gL221B (gL221+D1Q, Q3V) and gL221C (gL221+L46R, L47W) were made and similarly tested, while both genes produced antibody when co-expressed with cH, only the gL221C/cH combination showed good antigen binding. When the gL121A (gL121+D1Q, Q3V, L46R, L47W) gene was made and co-expressed with cH, antibody was produced which also bound to antigen. - 15.2. Heavy Chain
- 15.2.1. Extent of the CDRs
- For the heavy chain the loop and hypervariability analyses agree only in CDR3. For CDR1 the loop region extends from residues 26-32 inclusive whereas the Kabat CDR extends from residues 31-35 inclusive. For CDR2 the loop region is from 50-58 inclusive while the hypervariable region covers amino acids 50-65 inclusive. Therefore humanised heavy chains were constructed using the framework from antibody KOL and with various combinations of these CDR choices, including a shorter choice for CDR2 of 50-56 inclusive as there was some uncertainty as to the definition of the end point for the CDR2 loop around
residues 56 to 58. The genes were co-expressed with mL or cL initially. In the case of the gH genes with loop choices for CDR1 e.g. gH121, gH131, gH141 very little antibody was produced in the culture supernatants. As no free light chain was detected it was presumed that the antibody was being made and assembled inside the cell but that the heavy chain was aberrant in some way, possibly incorrectly folded, and therefore the antibody was being degraded internally. In same experiments trace amounts of antibody could be detected in 35S labelling studies. - As no net antibody was produced, analysis of these constructs was not pursued further.
- When, however, a combination of the loop choice and the Kabat choice for CDR1 was tested (mouse amino acids 26-35 inclusive) and in which residues 31 (Ser to Arg), 33 (Ala to Thr), and 35 (Tyr to His) were changed from the human residues to the mouse residue and compared to the first series, antibody was produced for gH321, kgH331 and kgH341 when co-expressed with cL. Expression was generally low and could not be markedly improved by the insertion of the Kozak consensus sequence 5′ to the ATG of the signal sequence of the gene, as distinct from the case of the gL genes where such insertion led to a 2-5 fold increase in net antibody production. However, only in the case of gH341/mL or kgH341/cL could marginal antigen binding activity be demonstrated. When the kgH341 gene was co-expressed with kgL221A, the net yield of antibody was too low to give a signal above the background level in the antigen binding assay.
- 15.2.2. Framework Residues
- An in the case of the light chain the heavy chain frameworks were re-examined. Possibly because of the lower initial homology between the mouse and human heavy variable domains compared to the light chains, more amino acid positions proved to be of interest. Two genes kgH341A and kgH341B were constructed, with 11 or 8 human residues respectively substituted by mouse residues compared to gH341, and with the CDR2 residue 63 returned to the human amino acid potentially to improve domain packing. Both showed antigen binding when combined with cL or kgL221A, the kgH341A gene with all 11 changes appearing to be the superior choice.
- 15.3 Interim Conclusions
- It has been demonstrated, therefore, for OKT3 that to transfer antigen binding ability to the humanised antibody, mouse residues outside the CDR regions defined by the Kabat hypervariability or structural loop choices are required for both the light and heavy chains. Fewer extra residues are needed for the light chain, possibly due to the higher initial homology between the mouse and human kappa variable regions.
- Of the changes seven (1 and 3 from the light chain and 6, 23, 71, 73 and 76 from the heavy chain) are predicted from a knowledge of other antibody structures to be either partly exposed or on the antibody surface. It has been shown here that
residues - 16. Further CDR-Grafting Experiments
- Additional CDR-grafted heavy chain genes were prepared substantially as described above. With reference to Table 2 the further heavy chain genes were based upon the gh341 (plasmid pJA178) and gH341A (plasmid pJA185) with either mouse OKT3 or human KOL residues at 6, 23, 24, 48, 49, 63, 71, 73, 76, 78, 88 and 91, as indicated. The CDR-grafted light chain genes used in these further experiments were gL221, gL221A, gL221B and gL221C as described above.
TABLE 2 OKT3 HEAVY CHAIN CDR GRAFTS 1. gH341 and derivatives RES NUM 6 23 24 48 49 63 71 73 76 78 88 91 OKT3vh Q K A I G F T K S A A Y gH341 E S S V A F R N N L G F JA178 gH341A Q K A I G V T K S A A Y JA185 gH34IE Q K A I G V T K S A G G JA198 gH341* Q K A I G V T K N A G F JA207 gH341* Q K A I G V R N N A G F JA209 gH341D Q K A I G V T K N L G F JA197 gH341* Q K A I G V R N N L G F JA199 gH341C Q K A V A F R N N L G F JA184 gH341* Q S A I G V T K S A A Y JA203 gH341* E S A I G V T K S A A Y JA205 gH341B E S S I G V T K S A A Y JA183 gH341* Q S A I G V T K S A G F JA204 gH341* E S A I G V T K S A G F JA206 gH341* Q S A I G V T K N A G F JA208 KOL E S S V A R N N L G F OKT3 LIGHT CHAIN CDR GRAFTS 2. gL221 and derivatives RES NUM 1 3 46 47 OKT3v1 Q V R W GL221 D Q L L DA221 gL221A Q V R W DA221A gL221B Q V L L DA221B GL221C D Q R W DA221C RE1 D Q L L
MURINE RESIDUES ARE UNDERLINED
- The CDR-grafted heavy and light chain genes were co-expressed in COS cells either with one another in various combinations but also with the corresponding murine and chimeric heavy and light chain genes substantially as described above. The resultant antibody products were then assayed in binding and blocking assays with HPB-ALL cells as described above.
- The results of the assays for various grafted heavy chains co-expressed with the gL221C light chain are given in
FIGS. 7 and 8 (for the JA184, JA185, JA197 and JA198 constructs—see Table 2), inFIG. 9 (for the JA183, JA184, JA185 and JA197. constructs) inFIG. 10 (for the chimeric, JA185, JA199, JA204, JA205, JA207, JA208 and JA209 constructs) and inFIG. 11 (for the JA183, JA184, JA185, JA198, JA203, JA205 and JA206 constructs). - The basic grafted product without any human to murine changes in the variable frameworks, i.e. gL221 co-expressed with gh341 (JA178), and also the “fully grafted” product, having most human to marine changes in the grafted heavy chain framework, i.e. gL221C co-expressed with gh341A (JA185), were assayed for relative binding affinity in a competition assay against murine OKT3 reference standard, using HPB-ALL cells. The assay used was as described above in section 3.3. The results obtained are given in
FIG. 12 for the basic grafted product and inFIG. 13 for the fully grafted product. These results indicate that the basic grafted product has negligible binding ability as compared with the OKT3 murine reference standard; whereas the “fully grafted” product has a binding ability very similar to that of the OKT3 murine reference standard. - The binding and blocking assay results indicate the following:
- The JA198 and JA207 constructs appear to have the best binding characteristics and similar binding abilities, both substantially the same as the chimeric and fully grafted gH341A products. This indicates that
positions 88 and 91 and position 76 are not highly critical for maintaining the OKT3 binding ability; whereas at least some ofpositions - This is borne out by the finding that the JA209 and JA199, although of similar binding ability to one another, are of lower binding ability than the JA198 and JA207 constructs. This indicates the importance of having mouse residues at
positions 71, 73 and 78, which are either completely or partially human in the JA199 and JA209 constructs respectively. - Moreover, on comparing the results obtained for the JA205 and JA183 constructs it is seen that there is a decrease in binding going from the JA205 to the JA183 constructs. This indicates the importance of retaining a mouse residue at
position 23, the only position changed between JA205 and JA183. - These and other results lead us to the conclusion that of the 11 mouse framework residues used in the gH341A (JA185) construct, it is important to retain mouse residues at all of
positions - Similar Experiments were carried out to CDR-graft a number of the rodent antibodies including antibodies having specificity for CD4 (OKT4), ICAM-1 (R6-5), TAG72 (B72.3), and TNF (61E71, 101.4, hTNF1, hTNF2 and hTNF3).
- CDR-Grafting of a Murine Anti-CD4 T Cell Receptor Antibody, OKT4A
- Anti OKT4A CDR-grafted heavy and light chain genes were prepared, expressed and tested substantially as described above in Example I for CDR-grafted OKT3. The CDR grafting of OKT4A is described in detail in Ortho patent application PCT/GB 90 . . . of even date herewith entitled “Humanised Antibodies”. The disclosure of this Ortho patent application PCT/GB 90 . . . is incorporated herein by reference. A number of CDR-grafted OKT4 antibodies have been prepared. Presently the CDR-grafted OKT4A of choice is the combination of the grafted light chain LCDR2 and the grafted heavy chain HCDR10.
- The Light Chain
- The human acceptor framework used for the grafted light chains was RE1. The preferred LCDR2 light chain has human to mouse changes at
positions positions 33 and 34 in CDR1 andposition 89 in CDR3). The human to murine changes at positions 38 and 49 corresponds to positions at which the amino acid residues are preferably donor murine amino acid residues in accordance with the present invention. - A comparison of the amino acid sequences of the donor murine light chain variable domain and the RE1 human acceptor light chain variable further reveals that the murine and human residues are identical at all of positions 46, 48 and 71 and at all of
positions - The Heavy Chain
- The human acceptor framework used for the grafted heavy chains was KOL.
- The preferred CDR graft HCDR10 heavy chain has human to mouse changes at
positions - Of these positions, positions 35 (CDR1) and positions 57, 58 and 60 (CDR2) fall within the preferred extended CDRs of the present invention. Also the human to mouse change at
position 24 corresponds to a position at which the amino acid residue is a donor murine residue in accordance with the present invention. Moreover, the human to mouse changes atpositions 88 and 91 correspond to positions at which the amino acid residues are optionally donor murine residues. - Moreover, a comparison of the murine OKT4A and human KOL heavy chain variable amino acid sequences reveals that the murine and human residues are identical at all of
positions positions - Thus the OKT4A CDR-grafted heavy chain HCDR10 corresponds to a particularly preferred embodiment according to the present invention.
- CDR-Grafting of an Anti-Mucin Specific Murine Antibody, B72.3
- The cloning of the genes coding for the anti-mucin specific murine monoclonal antibody B72.3 and the preparation of B72.3 mouse-human chimeric antibodies has been described previously (ref. 13 and WO 89/01783). CDR-grafted versions of B72.3 were prepared as follows.
- (a) B72.3 Light Chain
- CDR-grafting of this light chain was accomplished by direct transfer of the murine CDRs into the framework of the human light chain RE1.
- The regions transferred were:
CDR Number Residues 1 24-34 2 50-56 3 90-96 - The activity of the resulting grafted light chain was assessed by co-expression in COS cells, of genes for the combinations:
-
- B72.3 cH/B72.3 cL
- and B72.3 cH/B72.3 gL
- Supernatants were assayed for antibody concentration and for the ability to bind to microtitre plates coated with mucin. The results obtained indicated that, in combination with the B72.3 cH chain, 872.3 cL and 372.3 gL had similar binding properties.
- Comparison of the murine B72.3 and REI light chain amino acid sequences reveals that the residues are identical at positions 46, 58 and 71 but are different at position 48.
- Thus changing the human residue to the donor mouse residue at position 48 may further improve the binding characteristics of the CDR-grafted light chain, (B72.3 gL) in accordance with the present invention.
- (b) B72.3 Heavy Chain
- i. Choice of Framework
- At the outset it was necessary to make a choice of human framework. Simply put, the question was as follows: Was it necessary to use the framework regions from an antibody whose crystal structure was known or could the choice be made on some other criteria?
- For B72.3 heavy chain, it was reasoned that, while knowledge of structure was important, transfer of the CDRs from mouse to human frameworks might be facilitated if the overall homology between the donor and receptor frameworks was maximised.
- Comparison of the B72.3 heavy chain sequence with those in Kabat (ref. 4) for human heavy chains showed clearly that B72.3 had poor homology for KOL and NEWM (for which crystal structures are available) but was very homologous to the heavy chain for EU.
- On this basis, EU was chosen for the CDR-grafting and the following residues transferred as CDRs.
CDR Number Residues 1 27-36 2 50-63 3 93-102 - Also it was noticed that the FR4 region of EU was unlike that of any other human (or mouse) antibody. Consequently, in the grafted heavy chain genes this was also changed to produce a “consensus” human sequence. (Preliminary experiments showed that grafted heavy chain genes containing the EU FR4 sequence expressed very poorly in transient expression systems.)
- ii. Results with Grafted Heavy Chain Genes
- Expression of grafted heavy chain genes containing all human framework regions with either gL or cL genes produced a grafted antibody with little ability to bind to mucin. The grafted antibody had about 1% the activity of the chimeric antibody. In these experiments, however, it was noted that the activity of the grafted antibody could be increased
ton 10% of B72.3 by exposure to pHs of 2-3.5. - This observation provided a clue as to how the activity of the grafted antibody could be improved without acid treatment. It was postulated that acid exposure brought about the protonation of an acidic residue (pa of aspartic acid=3.86 and of glutamine acid=4.25) which in turn caused a change in structure of the CDR loops, or allowed better access of antigen.
- From comparison of the sequences of B72.3 (ref. 13) and EU (refs. 4 and 5), it was clear that, in going from the mouse to human frameworks, only two positions had been changed in such a way that acidic residues had been introduced. These positions are at residues 73 and 81, where K to E and Q to E changes had been made, respectively.
- Which of these positions might be important was determined by examining the crystal structure of the KOL antibody. In KOL heavy chain, position 81 is far removed from either of the CDR loops.
- Position 73, however, is close to both
CDRs - iii. Framework Changes in B72.3 gH Gene
- On the basis of the above analysis, E73 was mutated to a lysine (K). It was found that this change had a dramatic effect on the ability of the grafted Ab to bind to mucin. Further the ability of the grafted B72.3 produced by the mutated gH/gL combination to bind to mucin was similar to that of the B72.3 chimeric antibody.
- iv. Other Framework Changes
- In the course of the above experiments, other changes were made in the heavy chain framework regions. Within the accuracy of the assays used, none of the changes, either alone or together, appeared beneficial.
- v. Other
- All assays used measured the ability of the grafted Ab to bind to mucin and, as a whole, indicated that the single framework change at position 73 is sufficient to generate an antibody with similar binding properties to B72.3.
- Comparison of the B72.3 murine and EU heavy chain sequences reveals that the mouse and human residues are identical at
positions - Thus the mutated CDR-grafted B72.3 heavy chain corresponds to a preferred embodiment of the present invention.
- CDR-Grafting of a Murine Anti-ICAM-1 Monoclonal Antibody
- A murine antibody, R6-5-D6 (EP 0314863) having specificity for Intercellular Adhesion Molecule 1 (ICAM-1) was CDR-grafted substantially as described above in previous examples. This work is described in greater detail in co-pending application, British Patent Application No. 9009549.8, the disclosure of which is incorporated herein by reference.
- The human EU framework was used as the acceptor framework for both heavy and light chains. The CDR-grafted antibody currently of choice is provided by co-expression of grafted light chain gL221A and grafted heavy chain gH341D which has a binding affinity for
ICAM 1 of about 75% of that of the corresponding mouse-human chimeric antibody. - Light Chain
- gL221A has murine CDRs at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition several framework residues are also the murine amino acid. These residues were chosen after consideration of the possible contribution of these residues to domain packing and stability of the conformation of the antigen binding region. The residues which have been retained as mouse are at
positions 2, 3, 48 (?), 60, 84, 85 and 87. - Comparison of the
murine anti-ICAM 1 and human EU light chain amino acid sequences reveals that the murine and human residues are identical at positions 46, 58 and 71. - Heavy Chain
- gH341D has murine CDRs at positions 26-35 (CDR1), 50-56 (CDR2) and94-100B (CDR3). In addition murine residues were used in gH341D at
positions positions - CDR-Grafting of Murine Anti-TNFα Antibodies
- A number of murine anti-TNFα monoclonal antibodies were CDR-grafted substantially as described above in previous examples. These antibodies include the murine monoclonal antibodies designated 61 B71, hTNF1, hTNF3 and 101.4 A brief summary of the CDR-grafting of each of these antibodies is given below.
- 61E71
- A similar analysis as described above (Example 1, Section 12.1.) was done for 61E71 and for the
heavy chain 10 residues were identified at 23, 24, 48, 49, 68, 69, 71, 73, 75 and 88 as residues to potentially retain as murine. The human frameworks chosen for CDR-grafting of this antibody, and the hTNF3 and 101.4 antibodies were RE1 for the light chain and KOL for the heavy chain. Three genes were built, the first of which contained 23, 24, 48, 49, 71 and 73 [gH341(6)] as murine residues. The second gene also had 75 and 88 as murine residues [gH341(8)] while the third gene additionally had 68, 69, 75 and 88 as murine residues [gH341(10)]. Each was co-expressed with gL221, the minimum grafted light chain (CDRs only). The gL221/gH341(6) and gL221/gH341(8) antibodies both bound as well to TNF as murine 61E71. The gL221/gH341(10) antibody did not express and this combination was not taken further. - Subsequently the gL221/gH341(6) antibody was assessed in an L929 cell competition assay in which the antibody competes against the TNF receptor on L929 cells for binding to TNF in solution. In this assay the gL221/gH341(6) antibody was approximately 10% as active as murine 61E71.
- hTNF1
- hTNF1 is a monoclonal antibody which recognises an epitope on human TNF-. The EU human framework was used for CDR-grafting of both the heavy and light variable domains.
- Heavy Chain
- In the CDR-grafted heavy chain (ghTHF1) mouse CDRs were used at positions 26-35 (CDR1), 50-65 (CDR2) and 95-102 (CDR3). House residues were also used in the frameworks at
positions positions - Light Chain
- In the CDR-grafted light chain (gLhTNF1) mouse CDRs were used at positions 24-34 (CDR1), 50-56 (CDR2) and 89-97 (CDR3). In addition mouse residues were used in the frameworks at
positions - The grafted hTNF1 heavy chain was co-expressed with the chimeric light chain and the binding ability of the product compared with that of the chimeric light chain/chimeric heavy chain product in a TNF binding assay. The grafted heavy chain product appeared to have binding ability for TNF slightly better than the fully chimeric product.
- Similarly, a grafted heavy chain/grafted light chain product was co-expressed and compared with the fully chimeric product and found to have closely similar binding properties to the latter product.
- hTNF3
- hTNF3 recognises an epitope on human TNF-α. The sequence of hTNF3 shows only 21 differences compared to 61E71 in the light and heavy chain variable regions, 10 in the light chain (2 in the CDRs at
positions positions - 101.4
- 101.4 is a further marine monoclonal antibody able to recognise human TNF-a. The heavy chain of this antibody shows good homology to KOL and so the CDR-grafting has been based on RE1 for the light chain and KOL for the heavy chain. Several grafted heavy chain genes have been constructed with conservative choices for the CDR's (gH341) and which have one or a small number of non-CDR residues at
positions 73, 78 or 77-79 inclusive, as the mouse amino acids. These have been co-expressed with cL or gL221. In all cases binding to TNF equivalent to the chimeric antibody is seen and when co-expressed with cL the resultant antibodies are able to compete well in the L929 assay. However, with gL221 the resultant antibodies are at least an order of magnitude less able to compete for TNF against the TNF receptor on L929 cells. - Mouse residues at other positions in the heavy chain, for example, at 23 and 24 together or at 76 have been demonstrated to provide no improvement to the competitive ability of the grafted antibody in the L929 assay.
- A number of other antibodies including antibodies having specificity for interleukins e.g. IL1 and cancer markers such as carcinoembryonic antigen (CEA) e.g. the monoclonal antibody A5B7 (ref. 21), have been successfully CDR-grafted according to the present invention. It will be appreciated that the foregoing examples are given by way of illustration only and are not intended to limit the scope of the claimed invention. Changes and modifications may be made to the methods described whilst still falling within the spirit and scope of the invention.
-
- 1. Kohler & Milstein, Nature, 265, 295-497, 1975.
- 2. Chatenoud et al, (1986), J. Immunol. 137, 830-838.
- 3. Jeffers et al, (1986), Transplantation, 41, 572-578.
- 4. Begent et al, Br. J. Cancer 62: 487 (1990).
- 5. Verhoeyen et al, Science, 239, 1534-1536, 1988.
- 6. Riechmann et al, Nature, 332, 323-324, 1988.
- 7. Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., Gottesman, K. S., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA.
- 8. Wu, T. T., and Kabat, E. A., 1970, J. Exp. Med. 132 211-250.
- 9. Queen et al, (1989), Proc. Natl. Acad. Sci. USA, 86, 10029-10033 and WO 90/07861
- 10. Maniatis et al, Molecular Cloning, Cold Spring Harbor, N.Y., 1989.
- 11. Primrose and Old, Principles of Gene Manipulation, Blackwell, Oxford, 1980.
- 12. Sanger, F., Nicklen, S., Coulson, A. R., 1977, Proc. Natl. Acad. Sci. USA, 74 5463
- 13. Kramer, W., Drutsa, V., Jansen, H.-W., Kramer, B., Plugfelder, M., Fritz, B.-J., 1984, Nucl. Acids Res. 12, 9441
- 14. Whittle, N., Adair, J., Lloyd, J. C., Jenkins, E., Devine, J., Schlom, J., Raubitshek, A., Colcher, D., Bodmer, M., 1987,
Protein Engineering 1, 499. - 15. Sikder, S. S., Akolkar, P. N., Kaledau, P. M., Morrison, S. L., Kabat, E. A., 1985, J. Immunol. 135, 4215.
- 16. Wallick, S. C., Kabat, E. A., Morrison, S. L., 1988, J. Exp. Med. 168, 1099
- 17. Bebbington, C. R., Published International Patent Application WO 89/01036.
- 18. Granthan and Perrin 1986,
Immunology Today 7, 160. - 19. Kozak, M., 1987, J. Mol. Biol. 196, 947.
- 20. Jones, T. P., Dear, P. H., Foote, J., Neuberger, M. S., Winter, G., 1986, Nature, 321, 522
- 21. Harwood et al, Br. J. Cancer, 54, 75-82 (1986).
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/938,117 US20060029593A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB898928874A GB8928874D0 (en) | 1989-12-21 | 1989-12-21 | Humanised antibodies |
GB8928874.0 | 1989-12-21 | ||
WOPCT/GB90/02017 | 1990-12-21 | ||
PCT/GB1990/002017 WO1991009967A1 (en) | 1989-12-21 | 1990-12-21 | Humanised antibodies |
US74332991A | 1991-09-17 | 1991-09-17 | |
US08/303,569 US5859205A (en) | 1989-12-21 | 1994-09-07 | Humanised antibodies |
US84665897A | 1997-05-01 | 1997-05-01 | |
US10/938,117 US20060029593A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US84665897A Continuation | 1989-12-21 | 1997-05-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060029593A1 true US20060029593A1 (en) | 2006-02-09 |
Family
ID=10668300
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/116,247 Expired - Lifetime US5929212A (en) | 1989-12-21 | 1993-09-03 | CD3 specific recombinant antibody |
US10/703,344 Expired - Fee Related US7262050B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/704,071 Expired - Fee Related US7244615B2 (en) | 1989-12-21 | 2003-11-07 | Humanized antibodies |
US10/704,352 Expired - Fee Related US7241877B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/703,963 Expired - Fee Related US7244832B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/937,949 Abandoned US20050136054A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
US10/938,117 Abandoned US20060029593A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
US10/937,971 Abandoned US20050123534A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
US11/284,261 Abandoned US20060073137A1 (en) | 1989-12-21 | 2005-11-21 | Humanised antibodies |
US11/284,260 Abandoned US20060073136A1 (en) | 1989-12-21 | 2005-11-21 | Humanised antibodies |
US17/464,970 Active USRE50178E1 (en) | 1989-12-21 | 2021-09-02 | Humanised antibodies |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/116,247 Expired - Lifetime US5929212A (en) | 1989-12-21 | 1993-09-03 | CD3 specific recombinant antibody |
US10/703,344 Expired - Fee Related US7262050B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/704,071 Expired - Fee Related US7244615B2 (en) | 1989-12-21 | 2003-11-07 | Humanized antibodies |
US10/704,352 Expired - Fee Related US7241877B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/703,963 Expired - Fee Related US7244832B2 (en) | 1989-12-21 | 2003-11-07 | Humanised antibodies |
US10/937,949 Abandoned US20050136054A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/937,971 Abandoned US20050123534A1 (en) | 1989-12-21 | 2004-09-10 | Humanised antibodies |
US11/284,261 Abandoned US20060073137A1 (en) | 1989-12-21 | 2005-11-21 | Humanised antibodies |
US11/284,260 Abandoned US20060073136A1 (en) | 1989-12-21 | 2005-11-21 | Humanised antibodies |
US17/464,970 Active USRE50178E1 (en) | 1989-12-21 | 2021-09-02 | Humanised antibodies |
Country Status (21)
Country | Link |
---|---|
US (11) | US5929212A (en) |
EP (5) | EP0626390B1 (en) |
JP (4) | JPH04505398A (en) |
KR (3) | KR100191152B1 (en) |
AT (4) | ATE208794T1 (en) |
AU (4) | AU646009B2 (en) |
BG (1) | BG60462B1 (en) |
BR (1) | BR9007197A (en) |
CA (3) | CA2046904C (en) |
DE (4) | DE69033857T2 (en) |
DK (4) | DK0460171T3 (en) |
ES (4) | ES2165864T3 (en) |
FI (4) | FI108777B (en) |
GB (4) | GB8928874D0 (en) |
GR (2) | GR3017734T3 (en) |
HU (4) | HU215383B (en) |
NO (5) | NO913229L (en) |
RO (3) | RO114298B1 (en) |
RU (1) | RU2112037C1 (en) |
WO (3) | WO1991009967A1 (en) |
ZA (1) | ZA9110129B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8491901B2 (en) | 2010-11-19 | 2013-07-23 | Toshio Imai | Neutralizing anti-CCL20 antibodies |
Families Citing this family (1363)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5800815A (en) * | 1903-05-05 | 1998-09-01 | Cytel Corporation | Antibodies to P-selectin and their uses |
CU22545A1 (en) * | 1994-11-18 | 1999-03-31 | Centro Inmunologia Molecular | OBTAINING A CHEMICAL AND HUMANIZED ANTIBODY AGAINST THE RECEPTOR OF THE EPIDERMAL GROWTH FACTOR FOR DIAGNOSTIC AND THERAPEUTIC USE |
US6054561A (en) * | 1984-02-08 | 2000-04-25 | Chiron Corporation | Antigen-binding sites of antibody molecules specific for cancer antigens |
US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
US5449760A (en) * | 1987-12-31 | 1995-09-12 | Tanox Biosystems, Inc. | Monoclonal antibodies that bind to soluble IGE but do not bind IGE on IGE expressing B lymphocytes or basophils |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US20030225254A1 (en) | 1989-08-07 | 2003-12-04 | Rathjen Deborah Ann | Tumour necrosis factor binding ligands |
DK0486526T3 (en) | 1989-08-07 | 1996-06-24 | Peptide Technology Ltd | Binding ligands for tumor necrosis factor |
EP0497883B1 (en) * | 1989-10-27 | 1998-07-15 | Arch Development Corporation | Compositions and their use for promoting immunopotentiation |
US6406696B1 (en) | 1989-10-27 | 2002-06-18 | Tolerance Therapeutics, Inc. | Methods of stimulating the immune system with anti-CD3 antibodies |
US6750325B1 (en) * | 1989-12-21 | 2004-06-15 | Celltech R&D Limited | CD3 specific recombinant antibody |
GB8928874D0 (en) * | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
US7037496B2 (en) | 1989-12-27 | 2006-05-02 | Centocor, Inc. | Chimeric immunoglobulin for CD4 receptors |
GB9014932D0 (en) | 1990-07-05 | 1990-08-22 | Celltech Ltd | Recombinant dna product and method |
US5770429A (en) * | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
GB9020282D0 (en) | 1990-09-17 | 1990-10-31 | Gorman Scott D | Altered antibodies and their preparation |
GB9021679D0 (en) * | 1990-10-05 | 1990-11-21 | Gorman Scott David | Antibody preparation |
GB9022543D0 (en) * | 1990-10-17 | 1990-11-28 | Wellcome Found | Antibody production |
US6399062B1 (en) * | 1990-11-06 | 2002-06-04 | The United States Of America As Represented By The Secretary Of The Navy | Murine monoclonal antibody protective against Plasmodium vivax malaria |
ATE153536T1 (en) * | 1990-11-27 | 1997-06-15 | Biogen Inc | HIV-INDUCED SYNZYTIA BLOCKING ANTI-CD-4 ANTIBODIES |
GB9109645D0 (en) * | 1991-05-03 | 1991-06-26 | Celltech Ltd | Recombinant antibodies |
US5994510A (en) * | 1990-12-21 | 1999-11-30 | Celltech Therapeutics Limited | Recombinant antibodies specific for TNFα |
GB9104498D0 (en) * | 1991-03-04 | 1991-04-17 | Ks Biomedix Ltd | Antibody |
EP1681305A3 (en) * | 1991-03-18 | 2008-02-27 | New York University | Monoclonal and chimeric antibodies specific for human tumor necrosis factor |
US5656272A (en) * | 1991-03-18 | 1997-08-12 | New York University Medical Center | Methods of treating TNF-α-mediated Crohn's disease using chimeric anti-TNF antibodies |
US7192584B2 (en) | 1991-03-18 | 2007-03-20 | Centocor, Inc. | Methods of treating psoriasis with anti-TNF antibodies |
US6277969B1 (en) | 1991-03-18 | 2001-08-21 | New York University | Anti-TNF antibodies and peptides of human tumor necrosis factor |
US5698195A (en) * | 1991-03-18 | 1997-12-16 | New York University Medical Center | Methods of treating rheumatoid arthritis using chimeric anti-TNF antibodies |
US5919452A (en) * | 1991-03-18 | 1999-07-06 | New York University | Methods of treating TNFα-mediated disease using chimeric anti-TNF antibodies |
US6284471B1 (en) | 1991-03-18 | 2001-09-04 | New York University Medical Center | Anti-TNFa antibodies and assays employing anti-TNFa antibodies |
DK0628639T3 (en) | 1991-04-25 | 2000-01-24 | Chugai Pharmaceutical Co Ltd | Reconstituted human antibody to human interleukin-6 receptor |
US6797492B2 (en) | 1991-05-17 | 2004-09-28 | Merck & Co., Inc. | Method for reducing the immunogenicity of antibody variable domains |
US6800738B1 (en) | 1991-06-14 | 2004-10-05 | Genentech, Inc. | Method for making humanized antibodies |
WO1994004679A1 (en) * | 1991-06-14 | 1994-03-03 | Genentech, Inc. | Method for making humanized antibodies |
DE69233254T2 (en) * | 1991-06-14 | 2004-09-16 | Genentech, Inc., South San Francisco | Humanized Heregulin antibody |
GB9115364D0 (en) | 1991-07-16 | 1991-08-28 | Wellcome Found | Antibody |
US6685939B2 (en) | 1991-08-14 | 2004-02-03 | Genentech, Inc. | Method of preventing the onset of allergic disorders |
US6329509B1 (en) | 1991-08-14 | 2001-12-11 | Genentech, Inc. | Anti-IgE antibodies |
ES2145004T3 (en) * | 1991-08-21 | 2000-07-01 | Novartis Ag | DERIVATIVES OF ANTIBODIES. |
AU669124B2 (en) * | 1991-09-18 | 1996-05-30 | Kyowa Hakko Kirin Co., Ltd. | Process for producing humanized chimera antibody |
GB9120467D0 (en) * | 1991-09-26 | 1991-11-06 | Celltech Ltd | Anti-hmfg antibodies and process for their production |
GB9122820D0 (en) * | 1991-10-28 | 1991-12-11 | Wellcome Found | Stabilised antibodies |
JPH05244982A (en) * | 1991-12-06 | 1993-09-24 | Sumitomo Chem Co Ltd | Humanized b-b10 |
GB9125979D0 (en) * | 1991-12-06 | 1992-02-05 | Wellcome Found | Antibody |
WO1993012220A1 (en) * | 1991-12-12 | 1993-06-24 | Berlex Laboratories, Inc. | RECOMBINANT AND CHIMERIC ANTIBODIES TO c-erbB-2 |
US5635177A (en) | 1992-01-22 | 1997-06-03 | Genentech, Inc. | Protein tyrosine kinase agonist antibodies |
US5837822A (en) * | 1992-01-27 | 1998-11-17 | Icos Corporation | Humanized antibodies specific for ICAM related protein |
EP1514934B1 (en) * | 1992-02-06 | 2008-12-31 | Novartis Vaccines and Diagnostics, Inc. | Biosynthetic binding protein for cancer marker |
GB9206422D0 (en) | 1992-03-24 | 1992-05-06 | Bolt Sarah L | Antibody preparation |
US7381803B1 (en) * | 1992-03-27 | 2008-06-03 | Pdl Biopharma, Inc. | Humanized antibodies against CD3 |
EP0563487A1 (en) | 1992-03-31 | 1993-10-06 | Laboratoire Europeen De Biotechnologie S.A. | Monoclonal antibodies against the interferon receptor, with neutralizing activity against type I interferon |
US5646253A (en) * | 1994-03-08 | 1997-07-08 | Memorial Sloan-Kettering Cancer Center | Recombinant human anti-LK26 antibodies |
US6033667A (en) * | 1992-05-05 | 2000-03-07 | Cytel Corporation | Method for detecting the presence of P-selectin |
DE4225853A1 (en) * | 1992-08-05 | 1994-02-10 | Behringwerke Ag | Granulocyte-binding antibody fragments, their production and use |
US6042828A (en) | 1992-09-07 | 2000-03-28 | Kyowa Hakko Kogyo Co., Ltd. | Humanized antibodies to ganglioside GM2 |
US5639641A (en) * | 1992-09-09 | 1997-06-17 | Immunogen Inc. | Resurfacing of rodent antibodies |
US5958708A (en) * | 1992-09-25 | 1999-09-28 | Novartis Corporation | Reshaped monoclonal antibodies against an immunoglobulin isotype |
US6066718A (en) * | 1992-09-25 | 2000-05-23 | Novartis Corporation | Reshaped monoclonal antibodies against an immunoglobulin isotype |
GB9221654D0 (en) * | 1992-10-15 | 1992-11-25 | Scotgen Ltd | Recombinant human anti-cytomegalovirus antibodies |
GB9223377D0 (en) * | 1992-11-04 | 1992-12-23 | Medarex Inc | Humanized antibodies to fc receptors for immunoglobulin on human mononuclear phagocytes |
US5804187A (en) * | 1992-11-16 | 1998-09-08 | Cancer Research Fund Of Contra Costa | Modified antibodies with human milk fat globule specificity |
DE69419721T2 (en) | 1993-01-12 | 2000-04-27 | Biogen, Inc. | RECOMBINANT ANTI-VLA4 ANTIBODY MOLECULES |
US5885573A (en) * | 1993-06-01 | 1999-03-23 | Arch Development Corporation | Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies |
US6491916B1 (en) | 1994-06-01 | 2002-12-10 | Tolerance Therapeutics, Inc. | Methods and materials for modulation of the immunosuppresive activity and toxicity of monoclonal antibodies |
US6180377B1 (en) * | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
WO1995001997A1 (en) * | 1993-07-09 | 1995-01-19 | Smithkline Beecham Corporation | RECOMBINANT AND HUMANIZED IL-1β ANTIBODIES FOR TREATMENT OF IL-1 MEDIATED INFLAMMATORY DISORDERS IN MAN |
JPH09511220A (en) * | 1993-11-10 | 1997-11-11 | ブリストル‐マイヤーズ スクイブ カンパニー | Treatment of inflammatory diseases induced by bacteria |
EP0729976A1 (en) | 1993-11-19 | 1996-09-04 | Chugai Seiyaku Kabushiki Kaisha | Reconstituted human antibody against human medulloblastomatous cell |
GB9325182D0 (en) * | 1993-12-08 | 1994-02-09 | T Cell Sciences Inc | Humanized antibodies or binding proteins thereof specific for t cell subpopulations exhibiting select beta chain variable regions |
MX9603773A (en) * | 1994-03-03 | 1997-07-31 | Genentech Inc | Anti-il-8 monoclonal antibodies for treatment of inflammatory disorders. |
US5597710A (en) * | 1994-03-10 | 1997-01-28 | Schering Corporation | Humanized monoclonal antibodies against human interleukin-4 |
CA2186455A1 (en) | 1994-03-29 | 1995-10-05 | Raymond John Owens | Antibodies against e-selectin |
WO1995031546A1 (en) * | 1994-04-28 | 1995-11-23 | Scotgen Biopharmaceuticals, Inc. | Recombinant human anti-varicella zoster virus antibodies |
US5773001A (en) * | 1994-06-03 | 1998-06-30 | American Cyanamid Company | Conjugates of methyltrithio antitumor agents and intermediates for their synthesis |
USRE39548E1 (en) * | 1994-06-17 | 2007-04-03 | Celltech R&D Limited | Interleukin-5 specific recombinant antibodies |
GB9412230D0 (en) * | 1994-06-17 | 1994-08-10 | Celltech Ltd | Interleukin-5 specific recombiant antibodies |
US8771694B2 (en) * | 1994-08-12 | 2014-07-08 | Immunomedics, Inc. | Immunoconjugates and humanized antibodies specific for B-cell lymphoma and leukemia cells |
US5874540A (en) * | 1994-10-05 | 1999-02-23 | Immunomedics, Inc. | CDR-grafted type III anti-CEA humanized mouse monoclonal antibodies |
US7597886B2 (en) | 1994-11-07 | 2009-10-06 | Human Genome Sciences, Inc. | Tumor necrosis factor-gamma |
GB9424449D0 (en) * | 1994-12-02 | 1995-01-18 | Wellcome Found | Antibodies |
EP0746619A1 (en) * | 1994-12-23 | 1996-12-11 | Celltech Therapeutics Limited | Human phosphodiesterase type ivc, and its production and use |
US5977315A (en) * | 1994-12-28 | 1999-11-02 | The Board Of Trustees Of The University Of Kentucky | Murine anti-idiotype antibody 3H1 |
US6949244B1 (en) * | 1995-12-20 | 2005-09-27 | The Board Of Trustees Of The University Of Kentucky | Murine monoclonal anti-idiotype antibody 11D10 and methods of use thereof |
US6551593B1 (en) | 1995-02-10 | 2003-04-22 | Millennium Pharmaceuticals, Inc. | Treatment of Inflammatory bowel disease by inhibiting binding and/or signalling through α 4 β 7 and its ligands and madcam |
US7803904B2 (en) | 1995-09-01 | 2010-09-28 | Millennium Pharmaceuticals, Inc. | Mucosal vascular addressing and uses thereof |
US5795961A (en) * | 1995-02-14 | 1998-08-18 | Ludwig Institute For Cancer Research | Recombinant human anti-Lewis b antibodies |
US5705154A (en) * | 1995-03-08 | 1998-01-06 | Schering Corporation | Humanized monoclonal antibodies against human interleukin-4 |
US7429646B1 (en) | 1995-06-05 | 2008-09-30 | Human Genome Sciences, Inc. | Antibodies to human tumor necrosis factor receptor-like 2 |
ES2196150T3 (en) * | 1995-05-18 | 2003-12-16 | Ortho Mcneil Pharm Inc | IMMUNOLOGICAL TOLERANCE INDUCTION BY THE USE OF ANTI-CD4 ANTIBODIES THAT DO NOT INDUCE DEPLOYMENT. |
ATE266726T1 (en) | 1995-06-07 | 2004-05-15 | Ortho Pharma Corp | CDR-TRANSPLANTED ANTIBODIES AGAINST ßTISSUE FACTORß AND METHOD FOR USE THEREOF |
US5712374A (en) * | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
US7060808B1 (en) | 1995-06-07 | 2006-06-13 | Imclone Systems Incorporated | Humanized anti-EGF receptor monoclonal antibody |
US5977322A (en) * | 1995-06-14 | 1999-11-02 | The Regents Of The University Of California | High affinity human antibodies to tumor antigens |
DE19543039C1 (en) * | 1995-11-08 | 1996-11-21 | Medac Klinische Spezialpraep | DNA mols. encoding CD30-specific immunoglobulin variable regions |
US6090382A (en) * | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
US7888466B2 (en) | 1996-01-11 | 2011-02-15 | Human Genome Sciences, Inc. | Human G-protein chemokine receptor HSATU68 |
MA24512A1 (en) * | 1996-01-17 | 1998-12-31 | Univ Vermont And State Agrienl | PROCESS FOR THE PREPARATION OF ANTICOAGULATING AGENTS USEFUL IN THE TREATMENT OF THROMBOSIS |
NZ536216A (en) * | 1996-02-09 | 2006-08-31 | Abbott Biotech Ltd | Use of an isolated antibody D2E7 for the treatment of a disorder in which TNF(alpha) activity is detrimental |
US7964190B2 (en) | 1996-03-22 | 2011-06-21 | Human Genome Sciences, Inc. | Methods and compositions for decreasing T-cell activity |
US6635743B1 (en) | 1996-03-22 | 2003-10-21 | Human Genome Sciences, Inc. | Apoptosis inducing molecule II and methods of use |
US6136311A (en) | 1996-05-06 | 2000-10-24 | Cornell Research Foundation, Inc. | Treatment and diagnosis of cancer |
US6107090A (en) * | 1996-05-06 | 2000-08-22 | Cornell Research Foundation, Inc. | Treatment and diagnosis of prostate cancer with antibodies to extracellur PSMA domains |
ATE248192T1 (en) | 1996-06-07 | 2003-09-15 | Neorx Corp | HUMANIZED ANTIBODIES THAT BIND TO THE SAME ANTIGEN AS ANTIBODIES NR-LU-13 AND THEIR USE IN PRETARGETING PROCESSES |
US7147851B1 (en) | 1996-08-15 | 2006-12-12 | Millennium Pharmaceuticals, Inc. | Humanized immunoglobulin reactive with α4β7 integrin |
JP2001515345A (en) * | 1996-09-20 | 2001-09-18 | ザ・ジェネラル・ホスピタル・コーポレイション | Compositions and methods for enhancing fibrinolysis using antibodies to alpha-2-antiplasmin |
UA76934C2 (en) * | 1996-10-04 | 2006-10-16 | Chugai Pharmaceutical Co Ltd | Reconstructed human anti-hm 1.24 antibody, coding dna, vector, host cell, method for production of reconstructed human antibody, pharmaceutical composition and drug for treating myeloma containing reconstructed human anti-hm 1.24 antibody |
US7883872B2 (en) | 1996-10-10 | 2011-02-08 | Dyadic International (Usa), Inc. | Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose |
US6037454A (en) | 1996-11-27 | 2000-03-14 | Genentech, Inc. | Humanized anti-CD11a antibodies |
US6737057B1 (en) * | 1997-01-07 | 2004-05-18 | The University Of Tennessee Research Corporation | Compounds, compositions and methods for the endocytic presentation of immunosuppressive factors |
US6455040B1 (en) | 1997-01-14 | 2002-09-24 | Human Genome Sciences, Inc. | Tumor necrosis factor receptor 5 |
US8329179B2 (en) | 1997-01-28 | 2012-12-11 | Human Genome Sciences, Inc. | Death domain containing receptor 4 antibodies and methods |
US7452538B2 (en) | 1997-01-28 | 2008-11-18 | Human Genome Sciences, Inc. | Death domain containing receptor 4 antibodies and methods |
US6433147B1 (en) | 1997-01-28 | 2002-08-13 | Human Genome Sciences, Inc. | Death domain containing receptor-4 |
ES2284199T5 (en) | 1997-01-28 | 2011-11-14 | Human Genome Sciences, Inc. | RECEIVER 4 CONTAINING DEATH DOMAIN (DR4: DEATH RECEIVER 4), MEMBER OF THE TNF RECEPTORS SUPERFAMILY AND TRAIL UNION (APO-2L). |
US6541212B2 (en) | 1997-03-10 | 2003-04-01 | The Regents Of The University Of California | Methods for detecting prostate stem cell antigen protein |
US7803615B1 (en) * | 1997-03-17 | 2010-09-28 | Human Genome Sciences, Inc. | Death domain containing receptor 5 |
US6872568B1 (en) | 1997-03-17 | 2005-03-29 | Human Genome Sciences, Inc. | Death domain containing receptor 5 antibodies |
US6884879B1 (en) | 1997-04-07 | 2005-04-26 | Genentech, Inc. | Anti-VEGF antibodies |
US20070059302A1 (en) | 1997-04-07 | 2007-03-15 | Genentech, Inc. | Anti-vegf antibodies |
DE69829891T2 (en) * | 1997-04-07 | 2005-10-06 | Genentech, Inc., South San Francisco | Anti-VEGF antibody |
CN101210051B (en) * | 1997-04-07 | 2012-12-26 | 基因技术股份有限公司 | Anti-VEGF antibodies |
US20020032315A1 (en) | 1997-08-06 | 2002-03-14 | Manuel Baca | Anti-vegf antibodies |
GB2339430A (en) | 1997-05-21 | 2000-01-26 | Biovation Ltd | Method for the production of non-immunogenic proteins |
BR9812846A (en) | 1997-10-03 | 2000-08-08 | Chugai Pharmaceutical Co Ltd | Natural humanized antibody |
US7179892B2 (en) | 2000-12-06 | 2007-02-20 | Neuralab Limited | Humanized antibodies that recognize beta amyloid peptide |
TWI239847B (en) * | 1997-12-02 | 2005-09-21 | Elan Pharm Inc | N-terminal fragment of Abeta peptide and an adjuvant for preventing and treating amyloidogenic disease |
US6761888B1 (en) | 2000-05-26 | 2004-07-13 | Neuralab Limited | Passive immunization treatment of Alzheimer's disease |
US20080050367A1 (en) | 1998-04-07 | 2008-02-28 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
US7588766B1 (en) | 2000-05-26 | 2009-09-15 | Elan Pharma International Limited | Treatment of amyloidogenic disease |
US7790856B2 (en) | 1998-04-07 | 2010-09-07 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize beta amyloid peptide |
US7964192B1 (en) | 1997-12-02 | 2011-06-21 | Janssen Alzheimer Immunotherapy | Prevention and treatment of amyloidgenic disease |
JP2002506625A (en) | 1998-03-19 | 2002-03-05 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | Cytokine receptor common γ chain-like |
JP3998419B2 (en) * | 1998-04-03 | 2007-10-24 | 中外製薬株式会社 | Humanized antibody against human tissue factor (TF) and method for producing humanized antibody |
BRPI9909860B8 (en) | 1998-04-21 | 2021-05-25 | Amgen Res Munich Gmbh | multifunctional single-chain polypeptide, polynucleotide, vector, prokaryotic, yeast or unicellular cell, composition, uses of polypeptide and polynucleotide, and methods for preparing said polypeptide and for identifying activators or inhibitors of activation or stimulation of t cells |
US7244826B1 (en) | 1998-04-24 | 2007-07-17 | The Regents Of The University Of California | Internalizing ERB2 antibodies |
DE69920897T2 (en) * | 1998-04-28 | 2005-10-13 | Smithkline Beecham Corp. | MONOCLONAL ANTIBODIES WITH REDUCED IMMUNIZATION ABILITY |
US6455677B1 (en) * | 1998-04-30 | 2002-09-24 | Boehringer Ingelheim International Gmbh | FAPα-specific antibody with improved producibility |
GB9812545D0 (en) | 1998-06-10 | 1998-08-05 | Celltech Therapeutics Ltd | Biological products |
GB9815909D0 (en) * | 1998-07-21 | 1998-09-16 | Btg Int Ltd | Antibody preparation |
US6727349B1 (en) | 1998-07-23 | 2004-04-27 | Millennium Pharmaceuticals, Inc. | Recombinant anti-CCR2 antibodies and methods of use therefor |
US6696550B2 (en) | 1998-07-23 | 2004-02-24 | Millennium Pharmaceuticals, Inc. | Humanized anti-CCR2 antibodies and methods of use therefor |
US6312689B1 (en) | 1998-07-23 | 2001-11-06 | Millennium Pharmaceuticals, Inc. | Anti-CCR2 antibodies and methods of use therefor |
CA2345356C (en) | 1998-10-06 | 2012-10-02 | Mark Aaron Emalfarb | Transformation system in the field of filamentous fungal hosts |
US6160099A (en) * | 1998-11-24 | 2000-12-12 | Jonak; Zdenka Ludmila | Anti-human αv β3 and αv β5 antibodies |
ES2350454T3 (en) | 1998-11-27 | 2011-01-24 | Ucb Pharma S.A. | COMPOSITIONS AND METHODS TO INCREASE THE MINERALIZATION OF THE BONE SUBSTANCE. |
US20040009535A1 (en) | 1998-11-27 | 2004-01-15 | Celltech R&D, Inc. | Compositions and methods for increasing bone mineralization |
WO2000050620A2 (en) | 1999-02-26 | 2000-08-31 | Human Genome Sciences, Inc. | Human endokine alpha and methods of use |
US6492497B1 (en) | 1999-04-30 | 2002-12-10 | Cambridge Antibody Technology Limited | Specific binding members for TGFbeta1 |
US6949245B1 (en) * | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
US20040013667A1 (en) * | 1999-06-25 | 2004-01-22 | Genentech, Inc. | Treatment with anti-ErbB2 antibodies |
US20030086924A1 (en) * | 1999-06-25 | 2003-05-08 | Genentech, Inc. | Treatment with anti-ErbB2 antibodies |
WO2001021215A1 (en) * | 1999-09-22 | 2001-03-29 | Ortho-Mcneil Pharmaceutical, Inc. | Cell based assay |
CA2386197A1 (en) * | 1999-09-30 | 2001-04-05 | Kyowa Hakko Kogyo Co., Ltd. | Complementarity determining region-grafted antibody against ganglioside gd3 and derivative of antibody against ganglioside gd3 |
US6346249B1 (en) * | 1999-10-22 | 2002-02-12 | Ludwig Institute For Cancer Research | Methods for reducing the effects of cancers that express A33 antigen using A33 antigen specific immunoglobulin products |
US6342587B1 (en) * | 1999-10-22 | 2002-01-29 | Ludwig Institute For Cancer Research | A33 antigen specific immunoglobulin products and uses thereof |
CU22921A1 (en) * | 1999-11-16 | 2004-02-20 | Centro Inmunologia Molecular | CHEMICAL, HUMANIZED ANTIBODIES AND THE SIMPLE CHAIN FV TYPE FRAGMENT RECOGNIZING ANTIGEN C2. ITS USE IN THE DIAGNOSIS AND TREATMENT OF COLORECTURAL TUMORS |
GB0001448D0 (en) | 2000-01-21 | 2000-03-08 | Novartis Ag | Organic compounds |
US7229619B1 (en) | 2000-11-28 | 2007-06-12 | Medimmune, Inc. | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
AU785038B2 (en) * | 2000-01-27 | 2006-08-31 | Applied Molecular Evolution, Inc. | Ultra high affinity neutralizing antibodies |
WO2002043660A2 (en) | 2000-11-28 | 2002-06-06 | Mediummune, Inc | Methods of administering/dosing anti-rsv antibodies for prophylaxis and treatment |
JP4398620B2 (en) * | 2000-02-03 | 2010-01-13 | ミレニアム・ファーマシューティカルズ・インコーポレイテッド | Humanized anti-CCR-2 antibody and method of use thereof |
EP1783227A1 (en) * | 2000-02-03 | 2007-05-09 | Millennium Pharmaceuticals, Inc. | Humanized anti-CCR2 antibodies and methods of use therefor |
CA2897626C (en) | 2000-02-11 | 2020-03-24 | Biogen Idec Ma Inc. | Heterologous polypeptide of the tnf family |
DE1257584T1 (en) | 2000-02-24 | 2003-05-28 | Lilly Co Eli | HUMANIZED ANTIBODIES THAT DETECT AMYLOID BETA PEPTID |
EP2341074A1 (en) * | 2000-03-01 | 2011-07-06 | MedImmune, LLC | Antibodies binding to the f protein of a respiratory syncytial virus (rsv) |
CA2401993A1 (en) * | 2000-03-02 | 2001-09-07 | Abgenix, Inc. | Human monoclonal antibodies against oxidized ldl receptor and pharmaceutical uses thereof |
AU4574501A (en) | 2000-03-17 | 2001-10-03 | Millennium Pharm Inc | Method of inhibiting stenosis and restenosis |
JP2003530846A (en) | 2000-04-12 | 2003-10-21 | ヒューマン ゲノム サイエンシズ インコーポレイテッド | Albumin fusion protein |
JPWO2001081401A1 (en) | 2000-04-21 | 2004-04-15 | 扶桑薬品工業株式会社 | New collectin |
US20030031675A1 (en) | 2000-06-06 | 2003-02-13 | Mikesell Glen E. | B7-related nucleic acids and polypeptides useful for immunomodulation |
GB0013810D0 (en) | 2000-06-06 | 2000-07-26 | Celltech Chiroscience Ltd | Biological products |
EP1294949A4 (en) | 2000-06-15 | 2004-08-25 | Human Genome Sciences Inc | Human tumor necrosis factor delta and epsilon |
KR20120053525A (en) | 2000-06-16 | 2012-05-25 | 캠브리지 안티바디 테크놀로지 리미티드 | Antibodies that immunospecifically bind to blys |
UA81743C2 (en) | 2000-08-07 | 2008-02-11 | Центокор, Инк. | HUMAN MONOCLONAL ANTIBODY WHICH SPECIFICALLY BINDS TUMOR NECROSIS FACTOR ALFA (TNFα), PHARMACEUTICAL MIXTURE CONTAINING THEREOF, AND METHOD FOR TREATING ARTHRITIS |
GB0020685D0 (en) | 2000-08-22 | 2000-10-11 | Novartis Ag | Organic compounds |
US7060802B1 (en) | 2000-09-18 | 2006-06-13 | The Trustees Of Columbia University In The City Of New York | Tumor-associated marker |
PL366307A1 (en) | 2000-10-13 | 2005-01-24 | Biogen, Inc. | Humanized anti-lt-beta-r antibodies |
US6989247B2 (en) | 2000-11-28 | 2006-01-24 | Celltech R & D, Inc. | Compositions and methods for diagnosing or treating psoriasis |
US7179900B2 (en) * | 2000-11-28 | 2007-02-20 | Medimmune, Inc. | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
US6855493B2 (en) | 2000-11-28 | 2005-02-15 | Medimmune, Inc. | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
US7700751B2 (en) | 2000-12-06 | 2010-04-20 | Janssen Alzheimer Immunotherapy | Humanized antibodies that recognize β-amyloid peptide |
TWI255272B (en) | 2000-12-06 | 2006-05-21 | Guriq Basi | Humanized antibodies that recognize beta amyloid peptide |
RU2196605C2 (en) * | 2000-12-07 | 2003-01-20 | Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии им. Пастера | Method of preparing soluble conjugates of biologically active substances |
EP2341060B1 (en) | 2000-12-12 | 2019-02-20 | MedImmune, LLC | Molecules with extended half-lives, compositions and uses thereof |
PL224873B1 (en) | 2001-01-05 | 2017-02-28 | Amgen Fremont Inc | Anti-insulin-like growth I factor receptor, a pharmaceutical composition containing it, a method for its production, the use of cell line, the isolated nucleic acid molecule, the vector, the host cell and a transgenic animal |
US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
AU2002251913A1 (en) * | 2001-02-02 | 2002-08-19 | Millennium Pharmaceuticals, Inc. | Hybrid antibodies and uses thereof |
CA2437811A1 (en) | 2001-02-09 | 2002-08-22 | Human Genome Sciences, Inc. | Human g-protein chemokine receptor (ccr5) hdgnr10 |
CN100404673C (en) | 2001-02-19 | 2008-07-23 | 默克专利有限公司 | Method for identifying T-cell epitopes and use for preparing molecules with reduced immunogenicity |
EP1411962B1 (en) * | 2001-03-15 | 2011-01-19 | Neogenix Oncology, Inc. | Monoclonal antibody therapy for pancreas cancer |
US8981061B2 (en) | 2001-03-20 | 2015-03-17 | Novo Nordisk A/S | Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
US8231878B2 (en) | 2001-03-20 | 2012-07-31 | Cosmo Research & Development S.P.A. | Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
CA2444632A1 (en) | 2001-04-13 | 2002-10-24 | Human Genome Sciences, Inc. | Vascular endothelial growth factor 2 |
US7064189B2 (en) | 2001-05-25 | 2006-06-20 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to trail receptors |
US7348003B2 (en) | 2001-05-25 | 2008-03-25 | Human Genome Sciences, Inc. | Methods of treating cancer using antibodies that immunospecifically bind to TRAIL receptors |
US7361341B2 (en) | 2001-05-25 | 2008-04-22 | Human Genome Sciences, Inc. | Methods of treating cancer using antibodies that immunospecifically bind to trail receptors |
CA2385745C (en) | 2001-06-08 | 2015-02-17 | Abbott Laboratories (Bermuda) Ltd. | Methods of administering anti-tnf.alpha. antibodies |
US6867189B2 (en) | 2001-07-26 | 2005-03-15 | Genset S.A. | Use of adipsin/complement factor D in the treatment of metabolic related disorders |
TWI327597B (en) | 2001-08-01 | 2010-07-21 | Centocor Inc | Anti-tnf antibodies, compositions, methods and uses |
JP4729717B2 (en) † | 2001-08-03 | 2011-07-20 | 株式会社医学生物学研究所 | Antibody that recognizes GM1 ganglioside-binding amyloid β protein, and DNA encoding the antibody |
EP1944040B1 (en) | 2001-08-17 | 2012-08-01 | Washington University | Assay method for Alzheimer's disease |
US8129504B2 (en) | 2001-08-30 | 2012-03-06 | Biorexis Technology, Inc. | Oral delivery of modified transferrin fusion proteins |
DE60238497D1 (en) * | 2001-09-14 | 2011-01-13 | Fraunhofer Ges Forschung | IMMUNOGLOBULIN WITH A PARTICULAR FRAME SCAFFOLD AND METHOD FOR THE PRODUCTION AND USE THEREOF |
GB0124317D0 (en) | 2001-10-10 | 2001-11-28 | Celltech R&D Ltd | Biological products |
US20030113333A1 (en) * | 2001-10-15 | 2003-06-19 | Immunomedics, Inc. | Affinity enhancement agents |
US7148038B2 (en) * | 2001-10-16 | 2006-12-12 | Raven Biotechnologies, Inc. | Antibodies that bind to cancer-associated antigen CD46 and methods of use thereof |
US20040151721A1 (en) | 2001-10-19 | 2004-08-05 | O'keefe Theresa | Humanized anti-CCR2 antibodies and methods of use therefor |
WO2003063768A2 (en) * | 2001-10-25 | 2003-08-07 | Euro-Celtique S.A. | Compositions and methods directed to anthrax toxin |
AU2002353017A1 (en) * | 2001-12-03 | 2003-06-17 | Abgenix, Inc. | Discovery of therapeutic products |
AU2002357779A1 (en) * | 2001-12-03 | 2003-06-17 | Abgenix, Inc. | Identification of high affinity molecules by limited dilution screening |
EP1461423B1 (en) * | 2001-12-03 | 2008-05-14 | Amgen Fremont Inc. | Antibody categorization based on binding characteristics |
GB0129105D0 (en) | 2001-12-05 | 2002-01-23 | Celltech R&D Ltd | Expression control using variable intergenic sequences |
AU2002364586A1 (en) | 2001-12-21 | 2003-07-30 | Delta Biotechnology Limited | Albumin fusion proteins |
MY139983A (en) | 2002-03-12 | 2009-11-30 | Janssen Alzheimer Immunotherap | Humanized antibodies that recognize beta amyloid peptide |
JP2005535572A (en) | 2002-04-12 | 2005-11-24 | メディミューン,インコーポレーテッド | Recombinant anti-interleukin-9 antibody |
US20040009172A1 (en) * | 2002-04-26 | 2004-01-15 | Steven Fischkoff | Use of anti-TNFalpha antibodies and another drug |
EP1534752B1 (en) | 2002-05-01 | 2011-08-03 | Human Genome Sciences, Inc. | Antibodies that specifically bind to chemokine beta-4 |
AU2012244218C1 (en) * | 2002-05-02 | 2016-12-15 | Wyeth Holdings Llc. | Calicheamicin derivative-carrier conjugates |
CN100482277C (en) | 2002-05-02 | 2009-04-29 | 惠氏控股公司 | Calicheamicin derivative-carrier conjugates |
GB0210121D0 (en) * | 2002-05-02 | 2002-06-12 | Celltech R&D Ltd | Biological products |
IL149820A0 (en) | 2002-05-23 | 2002-11-10 | Curetech Ltd | Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency |
ATE518885T1 (en) | 2002-05-28 | 2011-08-15 | Ucb Pharma Sa | PEG POSITION ISOMER OF AN ANTIBODY TO TNFALPHA (CDP870) |
CN100418981C (en) | 2002-06-10 | 2008-09-17 | 瓦西尼斯公司 | Differentially expressed genes and encoded polypeptides in breast cancer and bladder cancer |
US7132100B2 (en) | 2002-06-14 | 2006-11-07 | Medimmune, Inc. | Stabilized liquid anti-RSV antibody formulations |
US7425618B2 (en) | 2002-06-14 | 2008-09-16 | Medimmune, Inc. | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
CA2487321A1 (en) | 2002-06-17 | 2003-12-24 | The Government Of The United States Of America, As Represented By The Se Cretary Of The Department Of Health And Human Services | Specificity grafting of a murine antibody onto a human framework |
US9321832B2 (en) | 2002-06-28 | 2016-04-26 | Domantis Limited | Ligand |
AU2003248782A1 (en) | 2002-07-01 | 2004-01-19 | Biogen Idec Ma Inc. | Humanized anti-lymphotoxin beta receptor antibodies |
KR20110027851A (en) * | 2002-07-19 | 2011-03-16 | 애보트 바이오테크놀로지 리미티드 | Treatment of TNP-Related Diseases |
US7425619B2 (en) | 2002-08-14 | 2008-09-16 | Macrogenics, Inc. | FcγRIIB specific antibodies and methods of use thereof |
EP1542609B8 (en) | 2002-08-29 | 2013-02-20 | CytoCure LLC | Pharmaceutical compositions comprising Interferon beta for use in treating melanoma |
CA2501616C (en) | 2002-10-08 | 2015-05-12 | Immunomedics, Inc. | Antibody therapy |
SI2891666T1 (en) | 2002-10-16 | 2017-11-30 | Purdue Pharma L.P. | Antibodies that bind cell-associated CA 125/O722P and methods of use thereof |
MY150740A (en) * | 2002-10-24 | 2014-02-28 | Abbvie Biotechnology Ltd | Low dose methods for treating disorders in which tnf? activity is detrimental |
WO2004110345A2 (en) * | 2002-10-29 | 2004-12-23 | Pharmacia Corporation | Differentially expressed genes involved in cancer, the polypeptides encoded thereby, and methods of using the same |
AU2002368305A1 (en) * | 2002-10-31 | 2004-05-25 | Universita'degli Studi Di Roma "La Sapienza" | Antimicrobial lipase antibodies their nucleotide and aminoacid sequences and uses thereof |
EP2284192A3 (en) | 2002-11-08 | 2011-07-20 | Ablynx N.V. | Camelidae antibodies for sublingual administration |
CA2505633A1 (en) * | 2002-11-13 | 2004-05-27 | Raven Biotechnologies, Inc. | Antigen pipa and antibodies that bind thereto |
ATE481422T1 (en) | 2002-11-21 | 2010-10-15 | Celltech R & D Inc | MODULATING IMMUNE RESPONSES |
CA2507099C (en) | 2002-11-26 | 2013-09-24 | Protein Design Labs, Inc. | Chimeric and humanized antibodies to .alpha.5.beta.1 integrin that modulate angiogenesis |
CA2510315C (en) | 2002-12-20 | 2014-01-28 | Protein Design Labs, Inc. | Antibodies against gpr64 and uses thereof |
US7355008B2 (en) | 2003-01-09 | 2008-04-08 | Macrogenics, Inc. | Identification and engineering of antibodies with variant Fc regions and methods of using same |
MXPA05007615A (en) | 2003-01-21 | 2005-09-30 | Bristol Myers Squibb Co | Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (mgat3), and uses thereof. |
EP1585768A2 (en) * | 2003-01-23 | 2005-10-19 | Genentech, Inc. | Methods for producing humanized antibodies and improving yield of antibodies or antigen binding fragments in cell culture |
DE10303974A1 (en) | 2003-01-31 | 2004-08-05 | Abbott Gmbh & Co. Kg | Amyloid β (1-42) oligomers, process for their preparation and their use |
US20060188512A1 (en) * | 2003-02-01 | 2006-08-24 | Ted Yednock | Active immunization to generate antibodies to solble a-beta |
ES2344645T3 (en) * | 2003-02-10 | 2010-09-02 | Applied Molecular Evolution, Inc. | MOLECULES OF UNION TO ABETA. |
GB0303337D0 (en) | 2003-02-13 | 2003-03-19 | Celltech R&D Ltd | Biological products |
EP2241330A1 (en) | 2003-02-14 | 2010-10-20 | The Curators Of The University Of Missouri | Contraceptive methods and compositions related to proteasomal interference |
ES2347959T3 (en) | 2003-02-20 | 2010-11-26 | Seattle Genetics, Inc. | ANTI-CD70-FARMACO ANTIBODIES CONJUGATES AND THEIR USE FOR CANCER TREATMENT. |
PL2248899T3 (en) | 2003-03-19 | 2015-10-30 | Biogen Ma Inc | NOGO receptor binding protein |
EP1460088A1 (en) * | 2003-03-21 | 2004-09-22 | Biotest AG | Humanized anti-CD4 antibody with immunosuppressive properties |
ES2391087T3 (en) | 2003-04-11 | 2012-11-21 | Medimmune, Llc | Recombinant IL-9 antibodies and uses thereof |
DK1631312T3 (en) | 2003-04-23 | 2009-01-19 | Medarex Inc | Composition and method of treatment for inflammatory bowel disease |
US7605235B2 (en) | 2003-05-30 | 2009-10-20 | Centocor, Inc. | Anti-tissue factor antibodies and compositions |
TWI306458B (en) | 2003-05-30 | 2009-02-21 | Elan Pharma Int Ltd | Humanized antibodies that recognize beta amyloid peptide |
US9708410B2 (en) | 2003-05-30 | 2017-07-18 | Janssen Biotech, Inc. | Anti-tissue factor antibodies and compositions |
GB0312481D0 (en) | 2003-05-30 | 2003-07-09 | Celltech R&D Ltd | Antibodies |
CN100509850C (en) | 2003-05-31 | 2009-07-08 | 麦克罗梅特股份公司 | Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders |
CN1835974A (en) | 2003-06-16 | 2006-09-20 | 细胞技术研究与发展公司 | Antibodies specific for sclerostin and methods for increasing bone mineralization |
CA2529945A1 (en) | 2003-06-27 | 2005-01-06 | Biogen Idec Ma Inc. | Use of hydrophobic-interaction-chromatography or hinge-region modifications for the production of homogeneous antibody-solutions |
US7393534B2 (en) | 2003-07-15 | 2008-07-01 | Barros Research Institute | Compositions and methods for immunotherapy of cancer and infectious diseases |
TWI395756B (en) * | 2003-07-18 | 2013-05-11 | Amgen Inc | Specific binding agents to hepatocyte growth factor |
AU2004258955C1 (en) * | 2003-07-21 | 2012-07-26 | Immunogen, Inc. | A CA6 antigen-specific cytotoxic conjugate and methods of using the same |
US7834155B2 (en) | 2003-07-21 | 2010-11-16 | Immunogen Inc. | CA6 antigen-specific cytotoxic conjugate and methods of using the same |
US7727752B2 (en) | 2003-07-29 | 2010-06-01 | Life Technologies Corporation | Kinase and phosphatase assays |
US20050221383A1 (en) | 2003-08-08 | 2005-10-06 | Choong-Chin Liew | Osteoarthritis biomarkers and uses thereof |
PL1656391T3 (en) | 2003-08-13 | 2011-03-31 | Pfizer Prod Inc | Modified human igf-1r antibodies |
JP4934426B2 (en) | 2003-08-18 | 2012-05-16 | メディミューン,エルエルシー | Antibody humanization |
US20060228350A1 (en) * | 2003-08-18 | 2006-10-12 | Medimmune, Inc. | Framework-shuffling of antibodies |
WO2005035575A2 (en) * | 2003-08-22 | 2005-04-21 | Medimmune, Inc. | Humanization of antibodies |
GB0321100D0 (en) | 2003-09-09 | 2003-10-08 | Celltech R&D Ltd | Biological products |
BRPI0415457A (en) * | 2003-10-16 | 2006-12-05 | Micromet Ag | cytotoxically active cd3 specific binding construct, its production process, composition comprising the same, nucleic acid sequence, vector, host, its uses in the preparation of a pharmaceutical composition and kit comprising the same |
US8268582B2 (en) | 2003-10-22 | 2012-09-18 | Keck Graduate Institute | Methods of synthesizing heteromultimeric polypeptides in yeast using a haploid mating strategy |
ATE485307T1 (en) | 2003-11-07 | 2010-11-15 | Ablynx Nv | CAMELIDAE HEAVY CHAIN ANTIBODIES VHHS TO EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) AND THEIR USE |
WO2005054868A1 (en) * | 2003-12-05 | 2005-06-16 | Multimmune Gmbh | Compositions and methods for the treatment and diagnosis of neoplastic and infectious diseases |
US8067199B2 (en) | 2003-12-23 | 2011-11-29 | Genentech, Inc. | Anti-IL13 antibodies and uses thereof |
CN101189264B (en) | 2004-01-07 | 2017-10-10 | 诺华疫苗和诊断公司 | M CSF monoclonal antibody specifics and its application |
JPWO2005068504A1 (en) | 2004-01-19 | 2008-01-10 | 株式会社医学生物学研究所 | Inflammatory cytokine inhibitor |
HUE027902T2 (en) | 2004-02-09 | 2016-11-28 | Human Genome Sciences Inc Corp Service Company | Albumin fusion proteins |
EP2340850A1 (en) | 2004-02-10 | 2011-07-06 | The Regents of the University of Colorado, a Body Corporate | Inhibition of factor B, the alternative complement pathway and methods related thereto |
KR20060132006A (en) | 2004-03-23 | 2006-12-20 | 비오겐 아이덱 엠에이 아이엔씨. | Receptor Coupling Agents and Their Therapeutic Uses |
WO2005097184A2 (en) | 2004-03-26 | 2005-10-20 | Human Genome Sciences, Inc. | Antibodies against nogo receptor |
US7527791B2 (en) | 2004-03-31 | 2009-05-05 | Genentech, Inc. | Humanized anti-TGF-beta antibodies |
TW201705980A (en) | 2004-04-09 | 2017-02-16 | 艾伯維生物技術有限責任公司 | Multiple-variable dose regimen for treating TNF[alpha]-related disorders |
HUE035082T2 (en) | 2004-06-21 | 2018-05-02 | Squibb & Sons Llc | Interferon alpha receptor 1 antibodies and their uses |
EP2474317A1 (en) | 2004-06-24 | 2012-07-11 | Biogen Idec MA Inc. | Treatment of conditions involving demyelination |
AU2005259992A1 (en) * | 2004-06-25 | 2006-01-12 | Medimmune, Llc | Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis |
GB0414886D0 (en) | 2004-07-02 | 2004-08-04 | Neutec Pharma Plc | Treatment of bacterial infections |
EP2322215A3 (en) | 2004-07-16 | 2011-09-28 | Pfizer Products Inc. | Combination treatment for non-hematologic malignancies using an anti-IGF-1R antibody |
PL1781321T3 (en) * | 2004-08-02 | 2014-07-31 | Zenyth Operations Pty Ltd | A method of treating cancer comprising a vegf-b antagonist |
JP5060293B2 (en) | 2004-08-03 | 2012-10-31 | バイオジェン・アイデック・エムエイ・インコーポレイテッド | TAJ in neural function |
US7741299B2 (en) | 2004-08-16 | 2010-06-22 | Quark Pharmaceuticals, Inc. | Therapeutic uses of inhibitors of RTP801 |
CA2486285C (en) | 2004-08-30 | 2017-03-07 | Viktor S. Goldmakher | Immunoconjugates targeting syndecan-1 expressing cells and use thereof |
CA2580921C (en) | 2004-09-21 | 2016-04-12 | Medimmune, Inc. | Antibodies against and methods for producing vaccines for respiratory syncytial virus |
EP1807111A4 (en) * | 2004-10-08 | 2009-05-27 | Abbott Biotech Ltd | Respiratory syncytial virus (rsv) infection |
WO2006047639A2 (en) | 2004-10-27 | 2006-05-04 | Medimmune, Inc. | Modulation of antibody specificity by tailoring the affinity to cognate antigens |
AU2005302453A1 (en) * | 2004-10-29 | 2006-05-11 | Medimmune, Llc | Methods of preventing and treating RSV infections and related conditions |
GB0426146D0 (en) | 2004-11-29 | 2004-12-29 | Bioxell Spa | Therapeutic peptides and method |
AU2005313026B2 (en) | 2004-12-06 | 2011-09-08 | Kyowa Hakko Kirin Co., Ltd. | Human monoclonal antibodies to influenza M2 protein and methods of making and using same |
AR052051A1 (en) | 2004-12-15 | 2007-02-28 | Neuralab Ltd | AB HUMANIZED ANTIBODIES USED TO IMPROVE COGNITION |
TW200636066A (en) | 2004-12-15 | 2006-10-16 | Elan Pharm Inc | Humanized antibodies that recognize beta amyloid peptide |
PE20061401A1 (en) * | 2004-12-15 | 2006-12-23 | Neuralab Ltd | Aß ANTIBODIES TO IMPROVE COGNITION |
WO2006074399A2 (en) | 2005-01-05 | 2006-07-13 | Biogen Idec Ma Inc. | Multispecific binding molecules comprising connecting peptides |
ES2732623T3 (en) | 2005-01-06 | 2019-11-25 | Innate Pharma Sa | Anti-KIR combination treatments and methods |
EP2520669A3 (en) | 2005-02-07 | 2013-02-27 | GeneNews Inc. | Mild osteoathritis biomarkers and uses thereof |
AU2006214121B9 (en) | 2005-02-15 | 2013-02-14 | Duke University | Anti-CD19 antibodies and uses in oncology |
EP1858545A2 (en) | 2005-03-04 | 2007-11-28 | Curedm Inc. | Methods and pharmaceutical compositions for treating type 1 diabetes mellitus and other conditions |
CA2602035C (en) | 2005-03-18 | 2015-06-16 | Medimmune, Inc. | Framework-shuffling of antibodies |
EP1863531A1 (en) | 2005-03-19 | 2007-12-12 | Medical Research Council | Improvements in or relating to treatment and prevention of viral infections |
EP2535355B1 (en) | 2005-03-23 | 2019-01-02 | Genmab A/S | Antibodies against CD38 for treatment of multiple myeloma |
EP3479844B1 (en) | 2005-04-15 | 2023-11-22 | MacroGenics, Inc. | Covalent diabodies and uses thereof |
US8067546B2 (en) | 2005-04-19 | 2011-11-29 | Seattle Genetics, Inc. | Humanized anti-CD70 binding agents and uses thereof |
US20090041783A1 (en) | 2005-04-28 | 2009-02-12 | Mochida Pharmaceutical Co., Ltd. | Anti-platelet membrane glycoprotein vi monoclonal antibody |
JP5047947B2 (en) | 2005-05-05 | 2012-10-10 | デューク ユニバーシティ | Anti-CD19 antibody treatment for autoimmune disease |
AU2006244180B2 (en) | 2005-05-06 | 2012-03-01 | Zymogenetics, Inc. | IL-31 monoclonal antibodies and methods of use |
WO2006121159A1 (en) * | 2005-05-12 | 2006-11-16 | Kyowa Hakko Kogyo Co., Ltd. | Humanized cdr-grafted antibody specifically reacting with cd10 and antibody fragment of the same |
WO2006125229A2 (en) | 2005-05-16 | 2006-11-23 | Abbott Biotechnology Ltd. | Use of tnf inhibitor for treatment of erosive polyarthritis |
EP3613767A1 (en) | 2005-05-18 | 2020-02-26 | Ablynx N.V. | Improved nanobodiestm against tumor cecrosis factor-alpha |
JP4991705B2 (en) | 2005-05-20 | 2012-08-01 | ロンザ・バイオロジクス・ピーエルシー | High level expression of recombinant antibodies in mammalian host cells |
HUE039846T2 (en) | 2005-05-20 | 2019-02-28 | Ablynx Nv | Improved nanobodies tm for the treatment of aggregation-mediated disorders |
WO2006128083A2 (en) | 2005-05-25 | 2006-11-30 | Curedm, Inc. | Human proislet peptide, derivatives and analogs thereof, and methods of using same |
CA2610340C (en) | 2005-05-26 | 2016-02-16 | Vernon Michael Holers | Inhibition of the alternative complement pathway for treatment of traumatic brain injury, spinal cord injury and related conditions |
NZ563580A (en) * | 2005-06-07 | 2010-09-30 | Esbatech An Alcon Biomedical R | Stable and soluble antibodies inhibiting TNFaplha |
CA2613512A1 (en) | 2005-06-23 | 2007-01-04 | Medimmune, Inc. | Antibody formulations having optimized aggregation and fragmentation profiles |
KR20130080058A (en) | 2005-06-30 | 2013-07-11 | 아보트 러보러터리즈 | Il-12/p40 binding proteins |
WO2007008604A2 (en) | 2005-07-08 | 2007-01-18 | Bristol-Myers Squibb Company | Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof |
BRPI0613387A2 (en) | 2005-07-08 | 2011-01-11 | Biogen Idec Inc | isolated antibody or antigen binding fragment thereof and its use, isolated polynucleotide, composition, vector, host cell, anti-sp35 antibody and method for producing the same, isolated polypeptide, in vitro method for reducing inhibition of axonal growth and in vitro method for inhibiting cone collapse growth |
SG163615A1 (en) | 2005-07-11 | 2010-08-30 | Macrogenics Inc | Methods for the treatment of autoimmune disorders using immunosuppressive monoclonal antibodies with reduced toxicity |
CA2616395C (en) | 2005-07-25 | 2016-10-04 | Trubion Pharmaceuticals | B-cell reduction using cd37-specific and cd20-specific binding molecules |
EP1913027B1 (en) | 2005-07-28 | 2015-03-04 | Novartis AG | M-csf specific monoclonal antibody and uses thereof |
EP1919503B1 (en) | 2005-08-10 | 2014-09-24 | MacroGenics, Inc. | Identification and engineering of antibodies with variant fc regions and methods of using same |
EP2500357A3 (en) | 2005-08-19 | 2012-10-24 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
RU2515108C2 (en) | 2005-08-19 | 2014-05-10 | Эббви Инк | Immunoglobulin with double variable domains and its applications |
US20070041905A1 (en) * | 2005-08-19 | 2007-02-22 | Hoffman Rebecca S | Method of treating depression using a TNF-alpha antibody |
JP5106111B2 (en) | 2005-09-29 | 2012-12-26 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | T cell adhesion molecules and antibodies thereto |
EP1928905B1 (en) | 2005-09-30 | 2015-04-15 | AbbVie Deutschland GmbH & Co KG | Binding domains of proteins of the repulsive guidance molecule (rgm) protein family and functional fragments thereof, and their use |
EP3770174A1 (en) | 2005-10-11 | 2021-01-27 | Amgen Research (Munich) GmbH | Compositions comprising cross-species-specific antibodies and uses thereof |
EP1945816B1 (en) | 2005-10-21 | 2011-07-27 | GeneNews Inc. | Method and apparatus for correlating levels of biomarker products with disease |
MX337061B (en) | 2005-11-04 | 2016-02-11 | Genentech Inc | Use of complement pathway inhibitors to treat ocular diseases. |
EP1959979A4 (en) | 2005-11-04 | 2010-01-27 | Biogen Idec Inc | METHODS FOR PROMOTING NEURITY GROWTH AND SURVIVAL OF DOPAMINERGIC NEURONS |
US20100028358A1 (en) | 2005-11-07 | 2010-02-04 | Wolfram Ruf | Compositions and Methods for Controlling Tissue Factor Signaling Specificity |
TWI461436B (en) | 2005-11-25 | 2014-11-21 | Kyowa Hakko Kirin Co Ltd | Human monoclonal antibody human cd134 (ox40) and methods of making and using same |
WO2007064972A2 (en) | 2005-11-30 | 2007-06-07 | Abbott Laboratories | Monoclonal antibodies against amyloid beta protein and uses thereof |
EP1954718B1 (en) | 2005-11-30 | 2014-09-03 | AbbVie Inc. | Anti-a globulomer antibodies, antigen-binding moieties thereof, corresponding hybridomas, nucleic acids, vectors, host cells, methods of producing said antibodies, compositions comprising said antibodies, uses of said antibodies and methods of using said antibodies |
AU2006320479B2 (en) | 2005-12-02 | 2012-11-08 | Biogen Ma Inc. | Treatment of conditions involving demyelination |
NZ569234A (en) | 2005-12-09 | 2011-07-29 | Ucb Pharma Sa | Antibody molecules having specificity for human IL-6 |
GB0525214D0 (en) | 2005-12-12 | 2006-01-18 | Bioinvent Int Ab | Biological materials and uses thereof |
HUE031151T2 (en) | 2005-12-21 | 2017-06-28 | Amgen Res (Munich) Gmbh | Pharmaceutical compositions with resistance to soluble cea |
UY30097A1 (en) | 2006-01-20 | 2007-08-31 | Atugen Ag | THERAPEUTIC USES OF RTP801 INHIBITORS |
NZ569697A (en) | 2006-01-20 | 2012-01-12 | Women S & Children S Health Res Inst | Method of treatment, prophylaxis and diagnosis of pathologies of the bone by the modulation of GPC3 |
CA2913655A1 (en) | 2006-01-27 | 2007-08-09 | Biogen Ma Inc. | Nogo receptor antagonists |
EP2540741A1 (en) | 2006-03-06 | 2013-01-02 | Aeres Biomedical Limited | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
EP1994055B1 (en) | 2006-03-10 | 2014-07-02 | Wyeth LLC | Anti-5t4 antibodies and uses thereof |
BRPI0709259B1 (en) | 2006-03-27 | 2022-05-31 | Zenyth Operations Pty. Ltd | Isolated antibody molecule for human gm-csfra, composition, and use |
NZ611859A (en) | 2006-04-05 | 2014-12-24 | Abbvie Biotechnology Ltd | Antibody purification |
US9101670B2 (en) | 2006-04-07 | 2015-08-11 | Nektar Therapeutics | Conjugates of an anti-TNF-α antibody |
US20080118496A1 (en) * | 2006-04-10 | 2008-05-22 | Medich John R | Uses and compositions for treatment of juvenile rheumatoid arthritis |
US20090317399A1 (en) * | 2006-04-10 | 2009-12-24 | Pollack Paul F | Uses and compositions for treatment of CROHN'S disease |
US9399061B2 (en) | 2006-04-10 | 2016-07-26 | Abbvie Biotechnology Ltd | Methods for determining efficacy of TNF-α inhibitors for treatment of rheumatoid arthritis |
US9624295B2 (en) | 2006-04-10 | 2017-04-18 | Abbvie Biotechnology Ltd. | Uses and compositions for treatment of psoriatic arthritis |
US9605064B2 (en) | 2006-04-10 | 2017-03-28 | Abbvie Biotechnology Ltd | Methods and compositions for treatment of skin disorders |
US8784810B2 (en) | 2006-04-18 | 2014-07-22 | Janssen Alzheimer Immunotherapy | Treatment of amyloidogenic diseases |
US20080131374A1 (en) * | 2006-04-19 | 2008-06-05 | Medich John R | Uses and compositions for treatment of rheumatoid arthritis |
US8377448B2 (en) | 2006-05-15 | 2013-02-19 | The Board Of Trustees Of The Leland Standford Junior University | CD47 related compositions and methods for treating immunological diseases and disorders |
AU2007258694B2 (en) * | 2006-06-06 | 2011-12-22 | Glaxo Group Limited | Administration of anti-CD3 antibodies in the treatment of autoimmune diseases |
AT503690A1 (en) | 2006-06-09 | 2007-12-15 | Biomay Ag | HYPOALLERGENIC MOLECULES |
BRPI0713426A2 (en) | 2006-06-14 | 2012-10-09 | Macrogenics Inc | methods of treating, slowing the progression, or ameliorating one or more symptoms of a disorder, and preventing or delaying the onset of a disorder |
PT2029173T (en) | 2006-06-26 | 2016-11-02 | Macrogenics Inc | Fc riib-specific antibodies and methods of use thereof |
EP2032159B1 (en) | 2006-06-26 | 2015-01-07 | MacroGenics, Inc. | Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof |
CN101484199B (en) | 2006-06-30 | 2014-06-25 | 艾伯维生物技术有限公司 | Automatic injection device |
DK2426150T3 (en) | 2006-06-30 | 2018-01-22 | Novo Nordisk As | ANTI-NKG2A ANTIBODIES AND APPLICATIONS THEREOF |
US7572618B2 (en) | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
GB0613209D0 (en) | 2006-07-03 | 2006-08-09 | Ucb Sa | Methods |
CN101622276B (en) | 2006-07-18 | 2015-04-22 | 赛诺菲-安万特 | Antagonistic antibodies against EPHA2 for the treatment of cancer |
CN101511868B (en) | 2006-07-24 | 2013-03-06 | 比奥雷克西斯制药公司 | Exendin fusion proteins |
GB0614780D0 (en) | 2006-07-25 | 2006-09-06 | Ucb Sa | Biological products |
WO2008019326A2 (en) | 2006-08-04 | 2008-02-14 | Novartis Ag | Ephb3-specific antibody and uses thereof |
TW200817438A (en) | 2006-08-17 | 2008-04-16 | Hoffmann La Roche | A conjugate of an antibody against CCR5 and an antifusogenic peptide |
KR101368596B1 (en) | 2006-08-18 | 2014-03-17 | 조마 테크놀로지 리미티드 | Prlr-specific antibody and uses thereof |
EP2064243A2 (en) | 2006-08-28 | 2009-06-03 | Kyowa Hakko Kirin Co., Ltd. | Antagonistic human light-specific human monoclonal antibodies |
CN103044550A (en) | 2006-09-01 | 2013-04-17 | 津莫吉尼蒂克斯公司 | IL-31 monoclonal antibodies and methods of use |
JP2010502224A (en) | 2006-09-08 | 2010-01-28 | アボット・ラボラトリーズ | Interleukin-13 binding protein |
WO2008048545A2 (en) | 2006-10-16 | 2008-04-24 | Medimmune, Llc. | Molecules with reduced half-lives, compositions and uses thereof |
GB0620729D0 (en) | 2006-10-18 | 2006-11-29 | Ucb Sa | Biological products |
EP1914242A1 (en) | 2006-10-19 | 2008-04-23 | Sanofi-Aventis | Novel anti-CD38 antibodies for the treatment of cancer |
US20100047247A1 (en) | 2006-11-17 | 2010-02-25 | The Research Foundation For Microbial Diseases Of Osaka University | Nerve elongation promoter and elongation inhibitor |
US8785400B2 (en) | 2006-11-22 | 2014-07-22 | Curedm Group Holdings, Llc | Methods and compositions relating to islet cell neogenesis |
CA2683287A1 (en) | 2006-11-27 | 2008-12-18 | Patrys Limited | Novel glycosylated peptide target in neoplastic cells |
TW200831528A (en) | 2006-11-30 | 2008-08-01 | Astrazeneca Ab | Compounds |
US8455626B2 (en) | 2006-11-30 | 2013-06-04 | Abbott Laboratories | Aβ conformer selective anti-aβ globulomer monoclonal antibodies |
US8455622B2 (en) | 2006-12-01 | 2013-06-04 | Seattle Genetics, Inc. | Variant target binding agents and uses thereof |
CN101678100A (en) | 2006-12-06 | 2010-03-24 | 米迪缪尼有限公司 | methods of treating systemic lupus erythematosus |
MX2009006034A (en) | 2006-12-07 | 2009-10-12 | Novartis Ag | Antagonist antibodies against ephb3. |
EP2102366A4 (en) | 2006-12-10 | 2010-01-27 | Dyadic International Inc | Expression and high-throughput screening of complex expressed dna libraries in filamentous fungi |
CL2007003661A1 (en) | 2006-12-18 | 2008-07-18 | Genentech Inc | VARIABLE AND LIGHT VARIABLE HEAVY CHAIN REGIONS; NUCLEIC ACIDS THAT CODE THEM; METHOD OF PRODUCTION; ANTI-NOTCH3 ANTIBODIES THAT UNDERSTAND THEM; AND USE OF ANTIBODIES TO TREAT DISEASES RELATED TO THE RECEIVER NOTCH3. |
WO2009138519A1 (en) | 2008-05-16 | 2009-11-19 | Ablynx Nv | AMINO ACID SEQUENCES DIRECTED AGAINST CXCR4 AND OTHER GPCRs AND COMPOUNDS COMPRISING THE SAME |
EP2115004A2 (en) | 2006-12-19 | 2009-11-11 | Ablynx N.V. | Amino acid sequences directed against gpcrs and polypeptides comprising the same for the treatment of gpcr-related diseases and disorders |
EP2514767A1 (en) | 2006-12-19 | 2012-10-24 | Ablynx N.V. | Amino acid sequences directed against a metalloproteinase from the ADAM family and polypeptides comprising the same for the treatment of ADAM-related diseases and disorders |
WO2009077483A1 (en) | 2007-12-14 | 2009-06-25 | Novo Nordisk A/S | Antibodies against human nkg2d and uses thereof |
US8128926B2 (en) | 2007-01-09 | 2012-03-06 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
DK2068887T3 (en) | 2007-01-09 | 2014-05-19 | Biogen Idec Inc | SP35 antibodies and their applications |
JP5867795B2 (en) | 2007-02-01 | 2016-02-24 | テーツェーエフ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Specific activation of regulatory T cells and their use for the treatment of asthma, allergic diseases, autoimmune diseases, graft rejection and induction of immune tolerance |
EP2114983B8 (en) | 2007-02-07 | 2015-02-18 | The Regents of the University of Colorado, A Body Corporate | Axl tyrosine kinase inhibitors and methods of making and using the same |
EP1958645A1 (en) | 2007-02-13 | 2008-08-20 | Biomay AG | Peptides derived from the major allergen of ragweed (Ambrosia artemisiifolia) and uses thereof |
AR065368A1 (en) | 2007-02-15 | 2009-06-03 | Astrazeneca Ab | ANTIBODIES FOR IGE MOLECULES |
WO2008101184A2 (en) | 2007-02-16 | 2008-08-21 | The Board Of Trustees Of Southern Illinois University | Arl-1 specific antibodies |
US8685666B2 (en) | 2007-02-16 | 2014-04-01 | The Board Of Trustees Of Southern Illinois University | ARL-1 specific antibodies and uses thereof |
US9023352B2 (en) | 2007-02-20 | 2015-05-05 | Tufts University | Methods, compositions and kits for treating a subject using a recombinant heteromultimeric neutralizing binding protein |
US8895004B2 (en) | 2007-02-27 | 2014-11-25 | AbbVie Deutschland GmbH & Co. KG | Method for the treatment of amyloidoses |
US20090143288A1 (en) | 2007-03-13 | 2009-06-04 | Roche Palo Alto Llc | Peptide-complement conjugates |
GEP20146112B (en) | 2007-03-22 | 2014-06-25 | Ucb Pharma Sa | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and usage thereof |
US8557588B2 (en) * | 2007-03-27 | 2013-10-15 | Schlumberger Technology Corporation | Methods and apparatus for sampling and diluting concentrated emulsions |
CA2682170A1 (en) | 2007-03-30 | 2008-10-09 | Medimmune, Llc | Antibodies with decreased deamidation profiles |
US8003097B2 (en) | 2007-04-18 | 2011-08-23 | Janssen Alzheimer Immunotherapy | Treatment of cerebral amyloid angiopathy |
EP2164868B1 (en) | 2007-05-04 | 2015-03-25 | Technophage, Investigação E Desenvolvimento Em Biotecnologia, SA | Engineered rabbit antibody variable domains and uses thereof |
DK2068927T3 (en) | 2007-05-14 | 2016-01-18 | Medimmune Llc | PROCEDURES FOR REDUCING EOSINOFIL LEVELS |
AU2007353779B2 (en) | 2007-05-17 | 2013-11-07 | Genentech, Inc. | Crystal structures of neuropilin fragments and neuropilin-antibody complexes |
US8062864B2 (en) | 2007-05-21 | 2011-11-22 | Alderbio Holdings Llc | Nucleic acids encoding antibodies to IL-6, and recombinant production of anti-IL-6 antibodies |
US8404235B2 (en) | 2007-05-21 | 2013-03-26 | Alderbio Holdings Llc | Antagonists of IL-6 to raise albumin and/or lower CRP |
KR20160005134A (en) * | 2007-05-21 | 2016-01-13 | 앨더바이오 홀딩스 엘엘씨 | Novel rabbit antibody humanization methods and humanized rabbit antibodies |
US8178101B2 (en) | 2007-05-21 | 2012-05-15 | Alderbio Holdings Inc. | Use of anti-IL-6 antibodies having specific binding properties to treat cachexia |
US7906117B2 (en) | 2007-05-21 | 2011-03-15 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat cachexia, weakness, fatigue, and/or fever |
MX349322B (en) | 2007-05-21 | 2017-07-21 | Alderbio Holdings Llc | Antibodies to il-6 and use thereof. |
US9701747B2 (en) | 2007-05-21 | 2017-07-11 | Alderbio Holdings Llc | Method of improving patient survivability and quality of life by anti-IL-6 antibody administration |
US8252286B2 (en) | 2007-05-21 | 2012-08-28 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat thrombosis |
EP1997830A1 (en) * | 2007-06-01 | 2008-12-03 | AIMM Therapeutics B.V. | RSV specific binding molecules and means for producing them |
US8999337B2 (en) | 2007-06-11 | 2015-04-07 | Abbvie Biotechnology Ltd. | Methods for treating juvenile idiopathic arthritis by inhibition of TNFα |
US8613923B2 (en) | 2007-06-12 | 2013-12-24 | Ac Immune S.A. | Monoclonal antibody |
US8048420B2 (en) | 2007-06-12 | 2011-11-01 | Ac Immune S.A. | Monoclonal antibody |
CA2691434C (en) | 2007-06-21 | 2020-07-21 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
GB0712503D0 (en) * | 2007-06-27 | 2007-08-08 | Therapeutics Pentraxin Ltd | Use |
US20090022720A1 (en) | 2007-07-20 | 2009-01-22 | Stephan Fischer | Conjugate of an antibody against CD4 and antifusogenic peptides |
EP2182983B1 (en) | 2007-07-27 | 2014-05-21 | Janssen Alzheimer Immunotherapy | Treatment of amyloidogenic diseases with humanised anti-abeta antibodies |
US8551751B2 (en) | 2007-09-07 | 2013-10-08 | Dyadic International, Inc. | BX11 enzymes having xylosidase activity |
AU2008296538B2 (en) | 2007-08-29 | 2014-08-14 | Sanofi | Humanized anti-CXCR5 antibodies, derivatives thereof and their uses |
PT2193142E (en) | 2007-08-30 | 2015-04-22 | Curedm Group Holdings Llc | Compositions and methods of using proislet peptides and analogs thereof |
EP2185190B1 (en) * | 2007-08-31 | 2015-06-24 | University Of Chicago | Methods and compositions related to immunizing against staphylococcal lung diseases and conditions |
GB0717337D0 (en) | 2007-09-06 | 2007-10-17 | Ucb Pharma Sa | Method of treatment |
US20090136427A1 (en) | 2007-09-18 | 2009-05-28 | La Jolla Institute For Allergy And Immunology | LIGHT Inhibitors For Asthma, Lung and Airway Inflammation, Respiratory, Interstitial, Pulmonary and Fibrotic Disease Treatment |
JP5592792B2 (en) | 2007-09-26 | 2014-09-17 | ユセベ ファルマ ソシエテ アノニム | Bispecific antibody fusions |
EP2650308A3 (en) * | 2007-10-05 | 2014-11-12 | Genentech, Inc. | Use of anti-amyloid beta antibody in ocular diseases |
WO2009048539A2 (en) | 2007-10-05 | 2009-04-16 | Genentech, Inc. | Monoclonal antibody |
EP2050764A1 (en) | 2007-10-15 | 2009-04-22 | sanofi-aventis | Novel polyvalent bispecific antibody format and uses thereof |
JO3076B1 (en) | 2007-10-17 | 2017-03-15 | Janssen Alzheimer Immunotherap | Immunotherapy regimes dependent on apoe status |
JP5767475B2 (en) | 2007-11-05 | 2015-08-19 | メディミューン,エルエルシー | How to treat scleroderma |
EP2902494A1 (en) | 2007-11-09 | 2015-08-05 | The Salk Institute for Biological Studies | Use of tam receptor inhibitors as antimicrobials |
EP2586797A3 (en) | 2007-11-27 | 2013-07-24 | Medtronic, Inc. | Humanized anti-amyloid beta antibodies |
US9308257B2 (en) | 2007-11-28 | 2016-04-12 | Medimmune, Llc | Protein formulation |
TR201802202T4 (en) | 2007-12-07 | 2018-03-21 | Merck Serono Sa | IL-31 specific humanized antibody molecules. |
JP2011508738A (en) | 2007-12-26 | 2011-03-17 | バイオテスト・アクチエンゲゼルシヤフト | Method and agent for improving targeting of CD138 expressing tumor cells |
CA2710453C (en) | 2007-12-26 | 2019-07-02 | Biotest Ag | Agents targeting cd138 and uses thereof |
EP2237792B1 (en) | 2007-12-26 | 2017-05-24 | Vaccinex, Inc. | Anti-c35 antibody combination therapies and methods |
RU2547939C2 (en) | 2007-12-26 | 2015-04-10 | Биотест Аг | Anti-cd138 immunoconjugates and using them |
US9011864B2 (en) | 2007-12-26 | 2015-04-21 | Biotest Ag | Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates |
GB0800277D0 (en) | 2008-01-08 | 2008-02-13 | Imagination Tech Ltd | Video motion compensation |
CA2711771C (en) | 2008-01-11 | 2017-01-24 | Gene Techno Science Co., Ltd. | Humanized anti-.alpha.9 integrin antibodies and the uses thereof |
NZ586828A (en) | 2008-01-15 | 2012-12-21 | Abbott Gmbh & Co Kg | Powdered antibody compositions and methods of making same |
CN102083460A (en) | 2008-01-18 | 2011-06-01 | 米迪缪尼有限公司 | Cysteine engineered antibodies for site-specific conjugation |
EP2247619A1 (en) | 2008-01-24 | 2010-11-10 | Novo Nordisk A/S | Humanized anti-human nkg2a monoclonal antibody |
EP3153526B1 (en) | 2008-01-31 | 2020-09-23 | INSERM - Institut National de la Santé et de la Recherche Médicale | Antibodies against human cd39 and use thereof for inhibiting t regulatory cells activity |
EP2250279B1 (en) | 2008-02-08 | 2016-04-13 | MedImmune, LLC | Anti-ifnar1 antibodies with reduced fc ligand affinity |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
CA2718184A1 (en) | 2008-03-13 | 2009-10-08 | Biotest Ag | Agent for treating disease |
AU2009235622C9 (en) | 2008-03-13 | 2015-07-02 | Biotest Ag | Agent for treating disease |
JP5604311B2 (en) | 2008-03-13 | 2014-10-08 | バイオテスト・アクチエンゲゼルシヤフト | Disease treatment agent |
WO2009118300A1 (en) | 2008-03-25 | 2009-10-01 | Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Treating cancer by down-regulating frizzled-4 and/or frizzled-1 |
JPWO2009119794A1 (en) | 2008-03-27 | 2011-07-28 | タカラバイオ株式会社 | Infectious disease prevention and treatment |
EP2281005B1 (en) | 2008-04-03 | 2013-11-20 | Vib Vzw | Single domain antibodies capable of modulating bace1 activity |
US9908943B2 (en) | 2008-04-03 | 2018-03-06 | Vib Vzw | Single domain antibodies capable of modulating BACE activity |
JP2011516520A (en) | 2008-04-07 | 2011-05-26 | アブリンクス エン.ヴェー. | Amino acid sequence having directivity in Notch pathway and use thereof |
US8333966B2 (en) | 2008-04-11 | 2012-12-18 | Emergent Product Development Seattle, Llc | CD37 immunotherapeutics and uses thereof |
GB0807413D0 (en) | 2008-04-23 | 2008-05-28 | Ucb Pharma Sa | Biological products |
AU2009238897B2 (en) | 2008-04-24 | 2015-03-19 | Gene Techno Science Co., Ltd. | Humanized antibodies specific for amino acid sequence RGD of an extracellular matrix protein and the uses thereof |
EP2282769A4 (en) | 2008-04-29 | 2012-04-25 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
EP2282773B2 (en) | 2008-05-02 | 2025-03-05 | Seagen Inc. | Methods and compositions for making antibodies and antibody derivatives with reduced core fucosylation |
WO2009136382A2 (en) | 2008-05-09 | 2009-11-12 | Abbott Gmbh & Co. Kg | Antibodies to receptor of advanced glycation end products (rage) and uses thereof |
EP2304439A4 (en) | 2008-05-29 | 2012-07-04 | Nuclea Biotechnologies Llc | Anti-phospho-akt antibodies |
CA2726131C (en) | 2008-05-29 | 2018-03-13 | Baoming Jiang | Expression and assembly of human group c rotavirus-like particles and uses thereof |
CN102112495A (en) | 2008-06-03 | 2011-06-29 | 雅培制药有限公司 | Dual variable domain immunoglobulins and uses thereof |
NZ589436A (en) | 2008-06-03 | 2012-12-21 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
CA2728347A1 (en) | 2008-06-16 | 2010-01-14 | Patrys Limited | Lm-1 antibodies, functional fragments, lm-1 target antigen, and methods for making and using same |
RU2531523C3 (en) | 2008-06-25 | 2022-05-04 | Новартис Аг | STABLE AND SOLUBLE ANTIBODIES INHIBITING VEGF |
WO2009155723A2 (en) | 2008-06-25 | 2009-12-30 | Esbatech, An Alcon Biomedical Research Unit Llc | STABLE AND SOLUBLE ANTIBODIES INHIBITING TNFα |
KR101956059B1 (en) | 2008-06-25 | 2019-03-08 | 에스바테크 - 어 노바티스 컴파니 엘엘씨 | Humanization of rabbit antibodies using a universal antibody framework |
SG192489A1 (en) | 2008-07-08 | 2013-08-30 | Abbott Lab | Prostaglandin e2 dual variable domain immunoglobulins and uses thereof |
BRPI0915825A2 (en) | 2008-07-08 | 2015-11-03 | Abbott Lab | prostaglandin binding proteins and uses thereof |
CA2729961C (en) | 2008-07-09 | 2018-05-01 | Biogen Idec Ma Inc. | Li113, li62 variant co2, anti-lingo antibodies |
US8802706B2 (en) | 2008-08-07 | 2014-08-12 | Nagasaki University | Method for treating fibromyalgia |
NZ591488A (en) | 2008-09-07 | 2012-11-30 | Glyconex Inc | Anti-extended type i glycosphingolipid antibody, derivatives thereof and use |
US8937046B2 (en) | 2008-09-22 | 2015-01-20 | The Regents Of The University Of Colorado, A Body Corporate | Modulating the alternative complement pathway |
EP2352765B1 (en) | 2008-10-01 | 2018-01-03 | Amgen Research (Munich) GmbH | Cross-species-specific single domain bispecific single chain antibody |
MX2011003502A (en) | 2008-10-01 | 2011-09-01 | Micromet Ag | Cross-species-specific psmaxcd3 bispecific single chain antibody. |
US8481033B2 (en) | 2008-10-07 | 2013-07-09 | INSERM (Institute National de la Santé et de la Recherche Médicale) | Neutralizing antibodies and fragments thereof directed against platelet factor-4 variant 1 (PF4V1) |
WO2010048615A2 (en) | 2008-10-24 | 2010-04-29 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health & Human Services, Center For Disease Control And Prevention | Human ebola virus species and compositions and methods thereof |
US9067981B1 (en) | 2008-10-30 | 2015-06-30 | Janssen Sciences Ireland Uc | Hybrid amyloid-beta antibodies |
US8415291B2 (en) | 2008-10-31 | 2013-04-09 | Centocor Ortho Biotech Inc. | Anti-TNF alpha fibronectin type III domain based scaffold compositions, methods and uses |
US8298533B2 (en) | 2008-11-07 | 2012-10-30 | Medimmune Limited | Antibodies to IL-1R1 |
EP2356251A1 (en) | 2008-11-07 | 2011-08-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Teneurin and cancer |
US8420089B2 (en) | 2008-11-25 | 2013-04-16 | Alderbio Holdings Llc | Antagonists of IL-6 to raise albumin and/or lower CRP |
US9452227B2 (en) | 2008-11-25 | 2016-09-27 | Alderbio Holdings Llc | Methods of treating or diagnosing conditions associated with elevated IL-6 using anti-IL-6 antibodies or fragments |
US8323649B2 (en) | 2008-11-25 | 2012-12-04 | Alderbio Holdings Llc | Antibodies to IL-6 and use thereof |
US8992920B2 (en) | 2008-11-25 | 2015-03-31 | Alderbio Holdings Llc | Anti-IL-6 antibodies for the treatment of arthritis |
US9212223B2 (en) | 2008-11-25 | 2015-12-15 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat thrombosis |
US8337847B2 (en) | 2008-11-25 | 2012-12-25 | Alderbio Holdings Llc | Methods of treating anemia using anti-IL-6 antibodies |
EP2191841A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and vincristine |
EP2191842A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and cytarabine |
EP2191840A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan |
EP2191843A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and cyclophosphamide |
EP2198884A1 (en) | 2008-12-18 | 2010-06-23 | Centre National de la Recherche Scientifique (CNRS) | Monoclonal antibodies directed against LG4-5 domain of alpha3 chain of human laminin-5 |
MX357289B (en) | 2008-12-19 | 2018-07-04 | Macrogenics Inc | COVALENT DIABODIES and USES THEREOF. |
AU2009334498A1 (en) | 2008-12-31 | 2011-07-21 | Biogen Idec Ma Inc. | Anti-lymphotoxin antibodies |
GB0900425D0 (en) | 2009-01-12 | 2009-02-11 | Ucb Pharma Sa | Biological products |
EP2387584A1 (en) | 2009-01-14 | 2011-11-23 | IQ Therapeutics BV | Combination antibodies for the treatment and prevention of disease caused by bacillus anthracis and related bacteria and their toxins |
EP2389195B1 (en) | 2009-01-20 | 2015-05-20 | Homayoun H. Zadeh | Antibody mediated osseous regeneration |
KR20110110349A (en) | 2009-01-29 | 2011-10-06 | 아보트 러보러터리즈 | IL-1 binding protein |
WO2010087927A2 (en) | 2009-02-02 | 2010-08-05 | Medimmune, Llc | Antibodies against and methods for producing vaccines for respiratory syncytial virus |
EP2396035A4 (en) | 2009-02-12 | 2012-09-12 | Human Genome Sciences Inc | USE OF ANTAGONISTS OF THE B-LYMPHOCYTE STIMULATOR PROTEIN TO PROMOTE TRANSPLANT TOLERANCE |
JP5906090B2 (en) | 2009-02-17 | 2016-04-20 | コーネル・リサーチ・ファンデーション・インコーポレイテッドCornell Research Foundation, Incorporated | Methods and kits for cancer diagnosis and estimation of therapeutic value |
PT2398498T (en) | 2009-02-17 | 2018-12-03 | Ucb Biopharma Sprl | Antibody molecules having specificity for human ox40 |
GB0902916D0 (en) | 2009-02-20 | 2009-04-08 | Fusion Antibodies Ltd | Antibody therapy |
US8030026B2 (en) | 2009-02-24 | 2011-10-04 | Abbott Laboratories | Antibodies to troponin I and methods of use thereof |
EP2810652A3 (en) | 2009-03-05 | 2015-03-11 | AbbVie Inc. | IL-17 binding proteins |
US20110311521A1 (en) | 2009-03-06 | 2011-12-22 | Pico Caroni | Novel therapy for anxiety |
KR101667227B1 (en) | 2009-03-10 | 2016-10-18 | 가부시키가이샤 진 테크노 사이언스 | Generation, expression and characterization of the humanized k33n monoclonal antibody |
GB0904214D0 (en) | 2009-03-11 | 2009-04-22 | Ucb Pharma Sa | Biological products |
BRPI1009460A2 (en) * | 2009-03-16 | 2016-03-01 | Cephalon Australia Pty Ltd | antibody binding domain, antibody, use of a binding domain or antibody, method for detecting the presence of cancer cells in a sample. |
EP3002296B1 (en) | 2009-03-17 | 2020-04-29 | Université d'Aix-Marseille | Btla antibodies and uses thereof |
WO2010110346A1 (en) | 2009-03-24 | 2010-09-30 | 独立行政法人理化学研究所 | Leukemia stem cell markers |
RU2542394C2 (en) | 2009-03-24 | 2015-02-20 | ТЕВА БИОФАРМАСЬЮТИКАЛЗ ЮЭсЭй, ИНК. | Humanised anti-light antibodies and using them |
ES2571235T3 (en) | 2009-04-10 | 2016-05-24 | Kyowa Hakko Kirin Co Ltd | Procedure for the treatment of a blood tumor that uses the anti-TIM-3 antibody |
MX2011010681A (en) | 2009-04-10 | 2012-01-20 | Ablynx Nv | Improved amino acid sequences directed against il-6r and polypeptides comprising the same for the treatment of il-6r related diseases and disorders. |
EP2241323A1 (en) | 2009-04-14 | 2010-10-20 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Tenascin-W and brain cancers |
NZ595687A (en) | 2009-04-16 | 2013-11-29 | Abbvie Biotherapeutics Inc | Anti-tnf-alpha antibodies and their uses |
US8492119B2 (en) | 2009-04-27 | 2013-07-23 | Kyowa Hakko Kirin Co., Ltd | Antibody to human IL-3 receptor alpha chain |
CA2761310C (en) | 2009-05-07 | 2017-02-28 | Charles S. Craik | Antibodies and methods of use thereof |
FR2945538B1 (en) | 2009-05-12 | 2014-12-26 | Sanofi Aventis | HUMANIZED ANTIBODIES SPECIFIC TO THE PROTOFIBRILLARY FORM OF THE BETA-AMYLOID PEPTIDE. |
NZ597314A (en) | 2009-06-05 | 2013-07-26 | Ablynx Nv | Monovalent, bivalent and trivalent anti human respiratory syncytial virus (hrsv) nanobody constructs for the prevention and/or treatment of respiratory tract infections |
WO2010142603A1 (en) | 2009-06-08 | 2010-12-16 | Vib Vzw | Screening for compounds that modulate gpr3-mediated beta-arrestin signaling and amyloid beta peptide generation |
US8609097B2 (en) * | 2009-06-10 | 2013-12-17 | Hoffmann-La Roche Inc. | Use of an anti-Tau pS422 antibody for the treatment of brain diseases |
EP2443149B1 (en) | 2009-06-15 | 2016-08-10 | Vib Vzw | Bace1 inhibitory antibodies |
CA2765755C (en) | 2009-06-17 | 2018-01-02 | Abbott Biotherapeutics Corp. | Anti-vegf antibodies and their uses |
BRPI1015234A2 (en) | 2009-06-22 | 2018-02-20 | Medimmune Llc | fc regions designed for site specific conjugation. |
AU2010266127B2 (en) | 2009-07-02 | 2015-11-05 | Musc Foundation For Research Development | Methods of stimulating liver regeneration |
JP5946766B2 (en) | 2009-07-03 | 2016-07-06 | ビオノール イミュノ エーエスBionor Immuno As | Combinations or fusions of HIV-related peptides for use in HIV vaccine compositions or as diagnostic tools |
BR112012003064B8 (en) | 2009-08-13 | 2021-05-25 | Crucell Holland Bv | antibody or antigen-binding fragment thereof, combination comprising them, method of detecting rsv infection, nucleic acid molecules, and method of producing an antibody or antigen-binding fragment thereof |
JP5883384B2 (en) | 2009-08-13 | 2016-03-15 | ザ ジョンズ ホプキンス ユニバーシティー | How to regulate immune function |
EP2292266A1 (en) | 2009-08-27 | 2011-03-09 | Novartis Forschungsstiftung, Zweigniederlassung | Treating cancer by modulating copine III |
CN102002104A (en) | 2009-08-28 | 2011-04-06 | 江苏先声药物研究有限公司 | Anti-VEGF monoclonal antibody and medicinal composition containing same |
EP3029070A1 (en) | 2009-08-29 | 2016-06-08 | AbbVie Inc. | Therapeutic dll4 binding proteins |
BR112012004510A2 (en) | 2009-08-31 | 2016-11-16 | Abbott Biotherapeutics Corp | use of an immunoregulatory nk cell population to monitor the effectiveness of anti-il-2r antibodies in multiple sclerosis patients. |
KR20120060877A (en) | 2009-09-01 | 2012-06-12 | 아보트 러보러터리즈 | Dual variable domain immunoglobulins and uses thereof |
US20120244170A1 (en) | 2009-09-22 | 2012-09-27 | Rafal Ciosk | Treating cancer by modulating mex-3 |
GB201005063D0 (en) | 2010-03-25 | 2010-05-12 | Ucb Pharma Sa | Biological products |
UY32914A (en) | 2009-10-02 | 2011-04-29 | Sanofi Aventis | ANTIBODIES SPECIFICALLY USED TO THE EPHA2 RECEIVER |
US8568726B2 (en) | 2009-10-06 | 2013-10-29 | Medimmune Limited | RSV specific binding molecule |
CN102666874B (en) | 2009-10-07 | 2016-06-01 | 宏观基因有限公司 | Polypeptide and the using method thereof in the effector function Han Fc district of improvement is shown due to the change of fucosylation degree |
WO2011045352A2 (en) | 2009-10-15 | 2011-04-21 | Novartis Forschungsstiftung | Spleen tyrosine kinase and brain cancers |
WO2011047262A2 (en) | 2009-10-15 | 2011-04-21 | Abbott Laboratories | Dual variable domain immunoglobulins and uses thereof |
GEP201706604B (en) | 2009-10-16 | 2017-01-25 | Inst Nat De La Santé Et De La Recherché Médicale (Inserm) | Monoclonal antibodies to progastrin and their uses |
US9234037B2 (en) | 2009-10-27 | 2016-01-12 | Ucb Biopharma Sprl | Method to generate antibodies to ion channels |
GB0922435D0 (en) | 2009-12-22 | 2010-02-03 | Ucb Pharma Sa | Method |
GB0922434D0 (en) | 2009-12-22 | 2010-02-03 | Ucb Pharma Sa | antibodies and fragments thereof |
CN102781963B (en) | 2009-10-27 | 2018-02-16 | Ucb医药有限公司 | Functionalized modification NAv1.7 antibody |
UY32979A (en) | 2009-10-28 | 2011-02-28 | Abbott Lab | IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
CN102753580A (en) | 2009-10-28 | 2012-10-24 | 亚培生物医疗股份有限公司 | Anti-egfr antibodies and their uses |
US9181527B2 (en) | 2009-10-29 | 2015-11-10 | The Trustees Of Dartmouth College | T cell receptor-deficient T cell compositions |
US9273283B2 (en) | 2009-10-29 | 2016-03-01 | The Trustees Of Dartmouth College | Method of producing T cell receptor-deficient T cells expressing a chimeric receptor |
US20110104153A1 (en) | 2009-10-30 | 2011-05-05 | Facet Biotech Corporation | Use of immunoregulatory nk cell populations for predicting the efficacy of anti-il-2r antibodies in multiple sclerosis patients |
US20120213801A1 (en) | 2009-10-30 | 2012-08-23 | Ekaterina Gresko | Phosphorylated Twist1 and cancer |
US8420083B2 (en) | 2009-10-31 | 2013-04-16 | Abbvie Inc. | Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof |
CN102740885B (en) | 2009-11-05 | 2015-04-01 | 梯瓦制药澳大利亚私人有限公司 | Treatment of cancer involving mutated kras or braf genes |
WO2011057188A1 (en) | 2009-11-06 | 2011-05-12 | Idexx Laboratories, Inc. | Canine anti-cd20 antibodies |
US9775921B2 (en) | 2009-11-24 | 2017-10-03 | Alderbio Holdings Llc | Subcutaneously administrable composition containing anti-IL-6 antibody |
US9468676B2 (en) | 2009-11-24 | 2016-10-18 | Alderbio Holdings Llc | Antagonists of IL-6 to prevent or treat thrombosis |
GB0920944D0 (en) | 2009-11-30 | 2010-01-13 | Biotest Ag | Agents for treating disease |
US8790887B2 (en) | 2009-12-04 | 2014-07-29 | Vib Vzw | Screening methods for compounds that modulate ARF-6 mediated endosomal redistribution |
BR112012013734A2 (en) | 2009-12-08 | 2017-01-10 | Abbott Gmbh & Co Kg | monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration. |
WO2011084496A1 (en) | 2009-12-16 | 2011-07-14 | Abbott Biotherapeutics Corp. | Anti-her2 antibodies and their uses |
NZ600974A (en) | 2009-12-23 | 2014-08-29 | 4Antibody Ag | Binding members for human cytomegalovirus |
US9217032B2 (en) | 2010-01-08 | 2015-12-22 | Les Laboratoires Servier | Methods for treating colorectal cancer |
US8900817B2 (en) | 2010-01-08 | 2014-12-02 | Les Laboratories Servier | Progastrin and liver pathologies |
US8900588B2 (en) | 2010-01-08 | 2014-12-02 | Les Laboratories Servier | Methods for treating breast cancer |
GB201001791D0 (en) | 2010-02-03 | 2010-03-24 | Ucb Pharma Sa | Process for obtaining antibodies |
SG183872A1 (en) | 2010-03-02 | 2012-11-29 | Abbvie Inc | Therapeutic dll4 binding proteins |
US9434716B2 (en) | 2011-03-01 | 2016-09-06 | Glaxo Group Limited | Antigen binding proteins |
WO2011107586A1 (en) | 2010-03-05 | 2011-09-09 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research, | Smoc1, tenascin-c and brain cancers |
JP5920929B2 (en) | 2010-03-11 | 2016-05-18 | ユセベ ファルマ ソシエテ アノニム | PD-1 antibody |
TW201134488A (en) | 2010-03-11 | 2011-10-16 | Ucb Pharma Sa | PD-1 antibodies |
CN103003304B (en) | 2010-03-24 | 2016-03-09 | 瑟维尔实验室 | The prevention of colorectal cancer and gastrointestinal cancer |
EP2550297B1 (en) | 2010-03-25 | 2019-01-23 | UCB Biopharma SPRL | Disulfide stabilized dvd-lg molecules |
GB201005064D0 (en) | 2010-03-25 | 2010-05-12 | Ucb Pharma Sa | Biological products |
TWI653333B (en) | 2010-04-01 | 2019-03-11 | 安進研究(慕尼黑)有限責任公司 | Cross-species specific PSMAxCD3 bispecific single chain antibody |
EP2558503B1 (en) | 2010-04-14 | 2015-12-09 | National Research Council of Canada | Compositions and methods for brain delivery of analgesic peptides |
US8987419B2 (en) | 2010-04-15 | 2015-03-24 | AbbVie Deutschland GmbH & Co. KG | Amyloid-beta binding proteins |
PL2558499T3 (en) | 2010-04-16 | 2017-10-31 | Biogen Ma Inc | Anti-vla-4 antibodies |
EP2561076A1 (en) | 2010-04-19 | 2013-02-27 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Modulating xrn1 |
MX350723B (en) | 2010-05-14 | 2017-09-14 | Abbvie Inc | Il-1 binding proteins. |
WO2011149461A1 (en) | 2010-05-27 | 2011-12-01 | Medtronic, Inc. | Anti-amyloid beta antibodies conjugated to sialic acid-containing molecules |
WO2011154485A1 (en) | 2010-06-10 | 2011-12-15 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Treating cancer by modulating mammalian sterile 20-like kinase 3 |
ES2961381T3 (en) * | 2010-06-19 | 2024-03-11 | Memorial Sloan Kettering Cancer Center | Anti-GD2 antibodies |
CN103068400A (en) | 2010-06-25 | 2013-04-24 | 阿斯顿大学 | Glycoproteins having lipid mobilizing properties and therapeutic uses thereof |
WO2012006500A2 (en) | 2010-07-08 | 2012-01-12 | Abbott Laboratories | Monoclonal antibodies against hepatitis c virus core protein |
BR112012031638B1 (en) | 2010-07-09 | 2021-01-12 | Janssen Vaccines & Prevention B.V. | anti-rsv antibody or antigen binding fragment thereof, multivalent antibody, pharmaceutical composition, use of antibody or antigen binding fragment, method of detecting rsv infection, and isolated nucleic acid |
UY33492A (en) | 2010-07-09 | 2012-01-31 | Abbott Lab | IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
WO2012010696A1 (en) | 2010-07-23 | 2012-01-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for cancer management targeting co-029 |
EA201790882A1 (en) | 2010-07-26 | 2017-08-31 | Ле Лаборатуар Сервье | METHODS AND COMPOSITIONS FOR LIVER CANCER THERAPY |
GB201012599D0 (en) | 2010-07-27 | 2010-09-08 | Ucb Pharma Sa | Process for purifying proteins |
AU2011282536B2 (en) | 2010-07-30 | 2015-12-24 | Ac Immune S.A. | Safe and functional humanized anti beta-amyloid antibody |
AU2011286024B2 (en) | 2010-08-02 | 2014-08-07 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
JP2013537415A (en) | 2010-08-03 | 2013-10-03 | アッヴィ・インコーポレイテッド | Dual variable domain immunoglobulins and uses thereof |
CN103298833B (en) | 2010-08-14 | 2015-12-16 | Abbvie公司 | Amyloid beta associated proteins |
SI3333188T1 (en) | 2010-08-19 | 2022-04-29 | Zoetis Belgium S.A. | Anti-ngf antibodies and their use |
GB201014033D0 (en) | 2010-08-20 | 2010-10-06 | Ucb Pharma Sa | Biological products |
TW201211252A (en) | 2010-08-26 | 2012-03-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
EP2614080A1 (en) | 2010-09-10 | 2013-07-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Phosphorylated twist1 and metastasis |
US9066986B2 (en) | 2010-10-01 | 2015-06-30 | National Research Council Of Canada | Anti-CEACAM6 antibodies and uses thereof |
AR083495A1 (en) | 2010-10-22 | 2013-02-27 | Esbatech Alcon Biomed Res Unit | STABLE AND SOLUBLE ANTIBODIES |
WO2012055030A1 (en) | 2010-10-25 | 2012-05-03 | National Research Council Of Canada | Clostridium difficile-specific antibodies and uses thereof |
ES2931477T3 (en) | 2010-10-29 | 2022-12-29 | Perseus Proteomics Inc | Anti-CDH3 antibody that has high internalization capacity |
WO2012065937A1 (en) | 2010-11-15 | 2012-05-24 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | Anti-fungal agents |
JP2014500879A (en) | 2010-11-16 | 2014-01-16 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Factors and methods for treating diseases correlated with BCMA expression |
EP2643016A2 (en) | 2010-11-23 | 2013-10-02 | Alder Biopharmaceuticals, Inc. | Anti-il-6 antibodies for the treatment of anemia |
US9249217B2 (en) | 2010-12-03 | 2016-02-02 | Secretary, DHHS | Bispecific EGFRvIII x CD3 antibody engaging molecules |
UA112170C2 (en) | 2010-12-10 | 2016-08-10 | Санофі | ANTI-TUMOR COMBINATION CONTAINING AN ANTIBODY SPECIFICALLY RECOGNIZING CD38 AND BORTESOMB |
WO2012080769A1 (en) | 2010-12-15 | 2012-06-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-cd277 antibodies and uses thereof |
AU2011347354A1 (en) | 2010-12-20 | 2013-08-01 | Medimmune Limited | Anti-IL-18 antibodies and their uses |
US20120275996A1 (en) | 2010-12-21 | 2012-11-01 | Abbott Laboratories | IL-1 Binding Proteins |
PH12013501336A1 (en) | 2010-12-21 | 2013-08-28 | Abbvie Inc | Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use |
MX2013007392A (en) | 2010-12-22 | 2013-11-01 | Cephalon Australia Pty Ltd | Modified antibody with improved half-life. |
WO2012085132A1 (en) | 2010-12-22 | 2012-06-28 | Orega Biotech | Antibodies against human cd39 and use thereof |
US20120171195A1 (en) | 2011-01-03 | 2012-07-05 | Ravindranath Mepur H | Anti-hla-e antibodies, therapeutic immunomodulatory antibodies to human hla-e heavy chain, useful as ivig mimetics and methods of their use |
CA2823812C (en) | 2011-01-14 | 2017-02-14 | Ucb Pharma S.A. | Antibody molecules which bind il-17a and il-17f |
WO2012101125A1 (en) | 2011-01-24 | 2012-08-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Specific antibodies against human cxcl4 and uses thereof |
WO2012103165A2 (en) | 2011-01-26 | 2012-08-02 | Kolltan Pharmaceuticals, Inc. | Anti-kit antibodies and uses thereof |
WO2012110500A1 (en) | 2011-02-15 | 2012-08-23 | Vib Vzw | Means and methods for improvement of synaptic dysfunction disorders |
AR085302A1 (en) | 2011-02-24 | 2013-09-18 | Sanofi Sa | METHOD OF PRODUCTION OF STIRATED ANTIBODIES |
EP3189835B1 (en) | 2011-02-28 | 2018-07-25 | National Cerebral and Cardiovascular Center | Medical agent for suppressing malignant tumor metastasis |
WO2012119989A2 (en) | 2011-03-04 | 2012-09-13 | Oryzon Genomics, S.A. | Methods and antibodies for the diagnosis and treatment of cancer |
US20140056897A1 (en) | 2011-03-10 | 2014-02-27 | Hco Antibody, Inc. | Bispecific three-chain antibody-like molecules |
US8722044B2 (en) | 2011-03-15 | 2014-05-13 | Janssen Biotech, Inc. | Human tissue factor antibody and uses thereof |
PL3235508T3 (en) | 2011-03-16 | 2021-07-12 | Sanofi | Compositions comprising a dual v region antibody-like protein |
US9376493B2 (en) | 2011-03-31 | 2016-06-28 | INSERM (Institut National de la Sante et de la Recherche Mediacale) | Antibodies directed against ICOS and uses thereof |
DK2699264T3 (en) | 2011-04-20 | 2018-06-25 | Medimmune Llc | ANTIBODIES AND OTHER MOLECULES BINDING B7-H1 AND PD-1 |
UA118950C2 (en) | 2011-04-22 | 2019-04-10 | Аптево Рісьорч Енд Девелопмент Ллс | Prostate-specific membrane antigen binding proteins and related compositions and methods |
WO2012149197A2 (en) | 2011-04-27 | 2012-11-01 | Abbott Laboratories | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
UA116189C2 (en) | 2011-05-02 | 2018-02-26 | Мілленніум Фармасьютікалз, Інк. | COMPOSITION OF ANTI-α4β7 ANTIBODY |
MX384203B (en) | 2011-05-02 | 2025-03-14 | Takeda Pharmaceuticals Co | Formulation for anti-î±4î²7 antibody |
ES2643694T3 (en) | 2011-05-19 | 2017-11-23 | Inserm (Institut National De La Santé Et De La Recherche Medicale) | Human anti-HER3 antibodies and their uses |
MX347818B (en) | 2011-05-21 | 2017-05-15 | Macrogenics Inc | Deimmunized serum-binding domains and their use for extending serum half-life. |
AR086543A1 (en) | 2011-05-25 | 2014-01-08 | Bg Medicine Inc | GALECTIN-3 INHIBITORS AND METHODS OF USE OF THE SAME, PHARMACEUTICAL COMPOSITION |
CN108329391A (en) | 2011-05-27 | 2018-07-27 | 埃博灵克斯股份有限公司 | Inhibit bone absorption using RANKL binding peptides |
US20140088021A1 (en) | 2011-05-27 | 2014-03-27 | Nektar Therapeutics | Water-Soluble Polymer-Linked Binding Moiety and Drug Compounds |
WO2012168259A1 (en) | 2011-06-06 | 2012-12-13 | Novartis Forschungsstiftung, Zweigniederlassung | Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer |
US9561274B2 (en) | 2011-06-07 | 2017-02-07 | University Of Hawaii | Treatment and prevention of cancer with HMGB1 antagonists |
WO2012170740A2 (en) | 2011-06-07 | 2012-12-13 | University Of Hawaii | Biomarker of asbestos exposure and mesothelioma |
DK3150632T3 (en) | 2011-06-10 | 2020-04-27 | Canada Minister Nat Defence | ANTI-RICIN ANTIBODIES AND APPLICATIONS THEREOF |
AU2012267732A1 (en) | 2011-06-10 | 2014-01-09 | Medimmune Limited | Anti-Pseudomonas Psl binding molecules and uses thereof |
BR112013032899A2 (en) | 2011-06-22 | 2017-01-24 | Inserm Inst Nat De La Santé Et De La Rech Médicale | anti-axl antibodies and uses thereof |
WO2012175691A1 (en) | 2011-06-22 | 2012-12-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-axl antibodies and uses thereof |
EP2543678A1 (en) | 2011-07-08 | 2013-01-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies for the treatment and prevention of thrombosis |
EP2543679A1 (en) | 2011-07-08 | 2013-01-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies for the treatment and prevention of thrombosis |
EP2543677A1 (en) | 2011-07-08 | 2013-01-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies for the treatment and prevention of thrombosis |
CN103857411A (en) | 2011-07-13 | 2014-06-11 | 阿布维公司 | Methods and compositions for treating asthma using anti-il-13 antibodies |
JP6120848B2 (en) | 2011-08-15 | 2017-04-26 | メディミューン,エルエルシー | Anti-B7-H4 antibody and use thereof |
US9833476B2 (en) | 2011-08-31 | 2017-12-05 | The Trustees Of Dartmouth College | NKP30 receptor targeted therapeutics |
AU2012304362A1 (en) | 2011-09-09 | 2014-03-06 | Amgen Inc. | Use of c-Met protein for predicting the efficacy of anti-hepatocyte growth factor ("HGF") antibodies in esophageal and gastric cancer patients |
US20130108641A1 (en) | 2011-09-14 | 2013-05-02 | Sanofi | Anti-gitr antibodies |
DK2758432T3 (en) | 2011-09-16 | 2019-06-03 | Ucb Biopharma Sprl | Neutralizing antibodies to the main toxins TcdA and TcdB from Clostridium difficile |
CN103827145A (en) | 2011-09-21 | 2014-05-28 | 富士瑞必欧株式会社 | Antibody against affinity complex |
EP2758422A1 (en) | 2011-09-23 | 2014-07-30 | Technophage, Investigação E Desenvolvimento Em Biotecnologia, SA | Modified albumin-binding domains and uses thereof to improve pharmacokinetics |
US20140335081A1 (en) | 2011-10-10 | 2014-11-13 | Medlmmune Limited | Treatment For Rheumatoid Arthritis |
MX2014004977A (en) | 2011-10-24 | 2014-09-11 | Abbvie Inc | Immunobinders directed against sclerostin. |
US9272002B2 (en) | 2011-10-28 | 2016-03-01 | The Trustees Of The University Of Pennsylvania | Fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting |
US9221906B2 (en) | 2011-11-01 | 2015-12-29 | Bionomics Inc. | Methods of inhibiting solid tumor growth by administering GPR49 antibodies |
EP2773664A1 (en) | 2011-11-01 | 2014-09-10 | Bionomics, Inc. | Anti-gpr49 antibodies |
WO2013067055A1 (en) | 2011-11-01 | 2013-05-10 | Bionomics, Inc. | Methods of blocking cancer stem cell growth |
AU2012332593B2 (en) | 2011-11-01 | 2016-11-17 | Bionomics, Inc. | Anti-GPR49 antibodies |
EP2773651B1 (en) | 2011-11-03 | 2020-12-23 | The Trustees of the University of Pennsylvania | Isolated b7-h4 specific compositions and methods of use thereof |
WO2013068431A1 (en) | 2011-11-08 | 2013-05-16 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | New treatment for neurodegenerative diseases |
US20140322216A1 (en) | 2011-11-08 | 2014-10-30 | The Trustees Of The University Of Pennsylvania | Glypican-3-specific antibody and uses thereof |
WO2013068432A1 (en) | 2011-11-08 | 2013-05-16 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | Early diagnostic of neurodegenerative diseases |
WO2013070821A1 (en) | 2011-11-08 | 2013-05-16 | Quark Pharmaceuticals, Inc. | Methods and compositions for treating diseases, disorders or injury of the nervous system |
SI2776466T1 (en) | 2011-11-11 | 2017-12-29 | Ucb Biopharma Sprl | Albumin binding antibodies and binding fragments thereof |
UA112203C2 (en) | 2011-11-11 | 2016-08-10 | Юсб Фарма С.А. | Fusion protein of a biospecific antibody that binds to human OX40 and serum human albumin |
EP2599496A1 (en) | 2011-11-30 | 2013-06-05 | Kenta Biotech AG | Novel targets of Acinetobacter baumannii |
EP2788379B1 (en) | 2011-12-05 | 2020-02-05 | X-Body, Inc. | Pdgf receptor beta binding polypeptides |
US10117932B2 (en) | 2011-12-08 | 2018-11-06 | Biotest Ag | Uses of immunoconjugates targeting CD138 |
US20150030602A1 (en) | 2011-12-23 | 2015-01-29 | Phenoquest Ag | Antibodies for the treatment and diagnosis of affective and anxiety disorders |
US11147852B2 (en) | 2011-12-23 | 2021-10-19 | Pfizer Inc. | Engineered antibody constant regions for site-specific conjugation and methods and uses therefor |
EP2793947B1 (en) | 2011-12-23 | 2021-02-03 | Innate Pharma | Enzymatic conjugation of polypeptides |
TW201333035A (en) | 2011-12-30 | 2013-08-16 | Abbvie Inc | Dual specific binding proteins directed against IL-13 and/or IL-17 |
WO2013102825A1 (en) | 2012-01-02 | 2013-07-11 | Novartis Ag | Cdcp1 and breast cancer |
US10800847B2 (en) | 2012-01-11 | 2020-10-13 | Dr. Mepur Ravindranath | Anti-HLA class-IB antibodies mimic immunoreactivity and immunomodulatory functions of intravenous immunoglobulin (IVIG) useful as therapeutic IVIG mimetics and methods of their use |
US20130177574A1 (en) | 2012-01-11 | 2013-07-11 | Paul I. Terasaki Foundation Laboratory | ANTI-HLA CLASS-Ib ANTIBODIES MIMIC IMMUNOREACTIVITY AND IMMUNOMODULATORY FUNCTIONS OF INTRAVENOUS IMMUNOGLOBULIN (IVIg) USEFUL AS THERAPEUTIC IVIg MIMETICS AND METHODS OF THEIR USE |
PL2804878T3 (en) | 2012-01-20 | 2019-03-29 | Genzyme Corporation | Anti-cxcr3 antibodies |
GB201201332D0 (en) | 2012-01-26 | 2012-03-14 | Imp Innovations Ltd | Method |
HUE039611T2 (en) | 2012-01-27 | 2019-01-28 | Abbvie Deutschland | Composition and method for diagnosis and treatment of diseases associated with neurite degeneration |
AU2013216863B2 (en) | 2012-02-10 | 2018-09-06 | Seagen Inc. | Detection and treatment of CD30+ cancers |
NO2814844T3 (en) | 2012-02-15 | 2017-12-30 | ||
US9550830B2 (en) | 2012-02-15 | 2017-01-24 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
WO2013120554A1 (en) | 2012-02-15 | 2013-08-22 | Novo Nordisk A/S | Antibodies that bind peptidoglycan recognition protein 1 |
GB201203071D0 (en) | 2012-02-22 | 2012-04-04 | Ucb Pharma Sa | Biological products |
GB201203051D0 (en) | 2012-02-22 | 2012-04-04 | Ucb Pharma Sa | Biological products |
FR2987627B1 (en) | 2012-03-05 | 2016-03-18 | Splicos | USE OF RBM39 AS A BIOMARKER |
US9592289B2 (en) | 2012-03-26 | 2017-03-14 | Sanofi | Stable IgG4 based binding agent formulations |
ES2673869T3 (en) | 2012-03-28 | 2018-06-26 | Sanofi | Antibodies against bradykinin B1 receptor ligands |
WO2013144240A1 (en) | 2012-03-29 | 2013-10-03 | Friedrich Miescher Institute For Biomedical Research | Inhibition of interleukin- 8 and/or its receptor cxcrl in the treatment her2/her3 -overexpressing breast cancer |
WO2013151649A1 (en) | 2012-04-04 | 2013-10-10 | Sialix Inc | Glycan-interacting compounds |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
US9181572B2 (en) | 2012-04-20 | 2015-11-10 | Abbvie, Inc. | Methods to modulate lysine variant distribution |
US9150645B2 (en) | 2012-04-20 | 2015-10-06 | Abbvie, Inc. | Cell culture methods to reduce acidic species |
WO2013166043A1 (en) | 2012-05-02 | 2013-11-07 | Children's Hospital Medical Center | Rejuvenation of precursor cells |
WO2013166290A1 (en) | 2012-05-04 | 2013-11-07 | Abbvie Biotherapeutics Inc. | P21 biomarker assay |
CN110511278B (en) | 2012-05-07 | 2024-08-09 | 达特茅斯大学理事会 | Anti-B7-H6 antibodies, fusion proteins, and methods of use thereof |
GB201208370D0 (en) | 2012-05-14 | 2012-06-27 | Ucb Pharma Sa | Antibodies |
EA030716B1 (en) | 2012-05-14 | 2018-09-28 | Байоджен Ма Инк. | ANTAGONISTS LINGO-2 FOR THE TREATMENT OF DISEASES IN WHICH MOTOR NEURONS PARTICIPATE |
WO2013172951A1 (en) | 2012-05-15 | 2013-11-21 | Morphotek, Inc. | Methods for treatment of gastric cancer |
WO2013175276A1 (en) | 2012-05-23 | 2013-11-28 | Argen-X B.V | Il-6 binding molecules |
WO2013176754A1 (en) | 2012-05-24 | 2013-11-28 | Abbvie Inc. | Novel purification of antibodies using hydrophobic interaction chromatography |
WO2013177386A1 (en) | 2012-05-24 | 2013-11-28 | Abbvie Biotherapeutics Inc. | Biomarkers for predicting response to tweak receptor (tweakr) agonist therapy |
CA2875624A1 (en) | 2012-06-06 | 2013-12-12 | Bionor Immuno As | Hiv vaccine |
EP2859018B1 (en) | 2012-06-06 | 2021-09-22 | Zoetis Services LLC | Caninized anti-ngf antibodies and methods thereof |
WO2014001368A1 (en) | 2012-06-25 | 2014-01-03 | Orega Biotech | Il-17 antagonist antibodies |
EP2867674B1 (en) | 2012-06-28 | 2018-10-10 | UCB Biopharma SPRL | A method for identifying compounds of therapeutic interest |
WO2014001482A1 (en) | 2012-06-29 | 2014-01-03 | Novartis Forschungsstiftung, Zweigniererlassung, Friedrich Miescher Institute For Biomedical Research | Treating diseases by modulating a specific isoform of mkl1 |
US20150184154A1 (en) | 2012-07-05 | 2015-07-02 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Resear | New treatment for neurodegenerative diseases |
US10656156B2 (en) | 2012-07-05 | 2020-05-19 | Mepur Ravindranath | Diagnostic and therapeutic potential of HLA-E monospecific monoclonal IgG antibodies directed against tumor cell surface and soluble HLA-E |
US20150224190A1 (en) | 2012-07-06 | 2015-08-13 | Mohamed Bentires-Alj | Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the IL-8/CXCR interaction |
TW201402608A (en) | 2012-07-12 | 2014-01-16 | Abbvie Inc | IL-1 binding proteins |
EA201590208A1 (en) | 2012-07-13 | 2015-11-30 | Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания | CAR ACTIVITY STRENGTHENING BY CAR BY JOINT INTRODUCTION OF BISPECIFIC ANTIBODIES |
US10132799B2 (en) | 2012-07-13 | 2018-11-20 | Innate Pharma | Screening of conjugated antibodies |
EP2877493B1 (en) | 2012-07-25 | 2018-03-21 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
SG11201504249XA (en) | 2012-09-02 | 2015-07-30 | Abbvie Inc | Methods to control protein heterogeneity |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
US9695247B2 (en) | 2012-09-03 | 2017-07-04 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Antibodies directed against ICOS for treating graft-versus-host disease |
WO2014055442A2 (en) | 2012-10-01 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
NO2760138T3 (en) | 2012-10-01 | 2018-08-04 | ||
WO2014055771A1 (en) | 2012-10-05 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Human alpha-folate receptor chimeric antigen receptor |
ES2802873T3 (en) | 2012-10-15 | 2021-01-21 | Medimmune Ltd | Antibodies to beta amyloid |
CN104870472A (en) | 2012-10-24 | 2015-08-26 | 加拿大国家研究委员会 | Anti-campylobacter jejuni antibodies and uses therefor |
WO2014071074A2 (en) | 2012-11-01 | 2014-05-08 | Abbvie Inc. | Anti-vegf/dll4 dual variable domain immunoglobulins and uses thereof |
EP3564259A3 (en) | 2012-11-09 | 2020-02-12 | Innate Pharma | Recognition tags for tgase-mediated conjugation |
KR20150083121A (en) | 2012-11-12 | 2015-07-16 | 레드우드 바이오사이언스 인코포레이티드 | Compounds and methods for producing a conjugate |
EP2733153A1 (en) | 2012-11-15 | 2014-05-21 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the preparation of immunoconjugates and uses thereof |
US9310374B2 (en) | 2012-11-16 | 2016-04-12 | Redwood Bioscience, Inc. | Hydrazinyl-indole compounds and methods for producing a conjugate |
AU2013344464A1 (en) | 2012-11-16 | 2015-05-21 | The Regents Of The University Of California | Pictet-Spengler ligation for protein chemical modification |
PT2922875T (en) | 2012-11-20 | 2017-05-31 | Sanofi Sa | Anti-ceacam5 antibodies and uses thereof |
WO2014083379A1 (en) | 2012-11-30 | 2014-06-05 | Institut Pasteur | Use of anti-fcyri and/or anti-fcyriia antibodies for treating arthritis, inflammation, thrombocytopenia and allergic shock |
US20140154255A1 (en) | 2012-11-30 | 2014-06-05 | Abbvie Biotherapeutics Inc. | Anti-vegf antibodies and their uses |
US10342869B2 (en) | 2012-12-07 | 2019-07-09 | The Regents Of The University Of California | Compositions comprising anti-CD38 antibodies and lenalidomide |
UA118255C2 (en) | 2012-12-07 | 2018-12-26 | Санофі | Compositions comprising anti-cd38 antibodies and lenalidomide |
WO2014100439A2 (en) | 2012-12-19 | 2014-06-26 | Amplimmune, Inc. | B7-h4 specific antibodies, and compositions and methods of use thereof |
GB201223276D0 (en) | 2012-12-21 | 2013-02-06 | Ucb Pharma Sa | Antibodies and methods of producing same |
BR112015014621A2 (en) | 2012-12-21 | 2017-10-03 | Amplimmune Inc | ANTI-H7CR ANTIBODIES |
WO2014100542A1 (en) | 2012-12-21 | 2014-06-26 | Abbvie, Inc. | High-throughput antibody humanization |
WO2014102299A2 (en) | 2012-12-27 | 2014-07-03 | Sanofi | Anti-lamp1 antibodies and antibody drug conjugates, and uses thereof |
JP6247646B2 (en) | 2013-01-28 | 2017-12-13 | 株式会社イーベック | Humanized anti-HMGB1 antibody or antigen-binding fragment thereof |
US9834610B2 (en) | 2013-01-31 | 2017-12-05 | Thomas Jefferson University | Fusion proteins for modulating regulatory and effector T cells |
UY35340A (en) | 2013-02-20 | 2014-09-30 | Novartis Ag | EFFECTIVE MARKING OF HUMAN LEUKEMIA USING CELLS DESIGNED WITH AN ANTIGEN CHEMERIC RECEIVER ANTI-CD123 |
HUE046961T2 (en) | 2013-02-20 | 2020-04-28 | Univ Pennsylvania | Treatment of cancer using a chimeric antigen receptor against humanized EGFRVIII |
AU2013381687A1 (en) | 2013-03-12 | 2015-09-24 | Abbvie Inc. | Human antibodies that bind human TNF-alpha and methods of preparing the same |
JP6279065B2 (en) | 2013-03-13 | 2018-02-14 | サノフイ | Composition comprising anti-CD38 antibody and carfilzomib |
US9194873B2 (en) | 2013-03-14 | 2015-11-24 | Abbott Laboratories | HCV antigen-antibody combination assay and methods and compositions for use therein |
US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
WO2014159579A1 (en) | 2013-03-14 | 2014-10-02 | Abbvie Inc. | MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE |
WO2014151878A2 (en) | 2013-03-14 | 2014-09-25 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides |
JP2016512241A (en) | 2013-03-14 | 2016-04-25 | アボット・ラボラトリーズAbbott Laboratories | HCVNS3 recombinant antigen for improved antibody detection and mutants thereof |
US9371374B2 (en) | 2013-03-14 | 2016-06-21 | Abbott Laboratories | HCV core lipid binding domain monoclonal antibodies |
CA2904528C (en) | 2013-03-15 | 2021-01-19 | Abbvie Biotherapeutics Inc. | Fc variants |
US9446105B2 (en) | 2013-03-15 | 2016-09-20 | The Trustees Of The University Of Pennsylvania | Chimeric antigen receptor specific for folate receptor β |
WO2014144280A2 (en) | 2013-03-15 | 2014-09-18 | Abbvie Inc. | DUAL SPECIFIC BINDING PROTEINS DIRECTED AGAINST IL-1β AND / OR IL-17 |
CA2904532A1 (en) | 2013-03-15 | 2014-09-18 | Abbvie Biotechnology Ltd. | Anti-cd25 antibodies and their uses |
EP2968582B1 (en) | 2013-03-15 | 2020-07-01 | Innate Pharma | Solid phase tgase-mediated conjugation of antibodies |
US9745368B2 (en) | 2013-03-15 | 2017-08-29 | The Trustees Of The University Of Pennsylvania | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
WO2014144935A2 (en) | 2013-03-15 | 2014-09-18 | Abbvie Biotherapeutics Inc. | Anti-cd25 antibodies and their uses |
EP2968545B1 (en) | 2013-03-15 | 2019-03-06 | Memorial Sloan Kettering Cancer Center | High affinity anti-gd2 antibodies |
TWI654206B (en) | 2013-03-16 | 2019-03-21 | 諾華公司 | Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor |
TWI679019B (en) | 2013-04-29 | 2019-12-11 | 法商賽諾菲公司 | Anti-il-4/anti-il-13 bispecific antibody formulations |
IL319092A (en) | 2013-05-06 | 2025-04-01 | Scholar Rock Inc | Compositions and methods for growth factor modulation |
WO2014183885A1 (en) | 2013-05-17 | 2014-11-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antagonist of the btla/hvem interaction for use in therapy |
WO2014190356A2 (en) | 2013-05-24 | 2014-11-27 | Amplimmune, Inc. | Anti-b7-h5 antibodies and their uses |
WO2014197849A2 (en) | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Anti-c10orf54 antibodies and uses thereof |
US9499628B2 (en) | 2013-06-14 | 2016-11-22 | Children's Hospital Medical Center | Method of boosting the immune response in neonates |
WO2014202773A1 (en) | 2013-06-20 | 2014-12-24 | Innate Pharma | Enzymatic conjugation of polypeptides |
AU2014283185B2 (en) | 2013-06-21 | 2019-05-02 | Araris Biotech Ltd. | Enzymatic conjugation of polypeptides |
WO2015007337A1 (en) | 2013-07-19 | 2015-01-22 | Bionor Immuno As | Method for the vaccination against hiv |
KR102216088B1 (en) | 2013-07-25 | 2021-02-15 | 싸이톰스 테라퓨틱스, 인크. | Multispecific antibodies, multispecific activatable antibodies and methods of using the same |
US20160178610A1 (en) | 2013-08-07 | 2016-06-23 | Friedrich Miescher Institute For Biomedical Research | New screening method for the treatment Friedreich's ataxia |
TW201734054A (en) | 2013-08-13 | 2017-10-01 | 賽諾菲公司 | Antibodies to plasminogen activator inhibitor-1 (PAI-1) and uses thereof |
EA033403B1 (en) | 2013-08-13 | 2019-10-31 | Sanofi Sa | Antibodies to plasminogen activator inhibitor-1 (pai-1) and uses thereof |
GB201315487D0 (en) | 2013-08-30 | 2013-10-16 | Ucb Pharma Sa | Antibodies |
KR20160068742A (en) | 2013-09-04 | 2016-06-15 | 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 | Dpp-4-targeting vaccine for treating diabetes |
WO2015035044A2 (en) | 2013-09-04 | 2015-03-12 | Abbvie Biotherapeutics Inc. | Fc VARIANTS WITH IMPROVED ANTIBODY-DEPENDENT CELL-MEDIATED CYTOTOXICITY |
CN104418947A (en) | 2013-09-11 | 2015-03-18 | 香港大学 | Anti-HER2 and anti-IGF-IR bispecific antibodies and uses thereof |
WO2015036606A1 (en) * | 2013-09-16 | 2015-03-19 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Bi- or multispecific polypeptides binding immune effector cell surface antigens and hbv antigens for treating hbv infections and associated conditions |
WO2015051293A2 (en) | 2013-10-04 | 2015-04-09 | Abbvie, Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
US8946395B1 (en) | 2013-10-18 | 2015-02-03 | Abbvie Inc. | Purification of proteins using hydrophobic interaction chromatography |
US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
EP3372236A1 (en) | 2013-10-25 | 2018-09-12 | PsiOxus Therapeutics Limited | Oncolytic adenoviruses armed with heterologous genes |
CA3120508A1 (en) | 2013-10-28 | 2015-05-07 | Dots Technology Corp. | Allergen detection |
MX373301B (en) | 2013-10-31 | 2020-04-24 | Sanofi Sa | SPECIFIC ANTI-CD38 ANTIBODIES FOR USE TO TREAT HUMAN CANCERS. |
US9580504B1 (en) | 2013-11-07 | 2017-02-28 | Curetech Ltd. | Pidilizumab monoclonal antibody therapy following stem cell transplantation |
PL3066124T4 (en) | 2013-11-07 | 2021-08-16 | Inserm - Institut National De La Santé Et De La Recherche Médicale | Anticorps allosteriques de la neureguline, dirigés contre her3 |
GB201320066D0 (en) | 2013-11-13 | 2013-12-25 | Ucb Pharma Sa | Biological products |
WO2015073884A2 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
CA2927806C (en) | 2013-11-27 | 2023-01-10 | Redwood Bioscience, Inc. | Hydrazinyl-pyrrolo compounds and methods for producing a conjugate |
WO2015088346A1 (en) | 2013-12-13 | 2015-06-18 | Rijksuniversiteit Groningen | Antibodies against staphylococcus aureus and uses thereof. |
AU2014365838B2 (en) | 2013-12-16 | 2021-01-14 | The University Of North Carolina At Chapel Hill | Depletion of plasmacytoid dendritic cells |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
LT3083680T (en) | 2013-12-20 | 2020-04-10 | F. Hoffmann-La Roche Ag | HUMANIZED ANTI-Tau(pS422) ANTIBODIES AND METHODS OF USE |
EP3087101B1 (en) | 2013-12-20 | 2024-06-05 | Novartis AG | Regulatable chimeric antigen receptor |
KR101836756B1 (en) | 2013-12-27 | 2018-03-08 | 오사카 유니버시티 | Vaccine targeting il-17a |
EP2893939A1 (en) | 2014-01-10 | 2015-07-15 | Netris Pharma | Anti-netrin-1 antibody |
ES2963718T3 (en) | 2014-01-21 | 2024-04-01 | Novartis Ag | Antigen-presenting capacity of CAR-T cells enhanced by co-introduction of co-stimulatory molecules |
EP3110445A4 (en) | 2014-02-25 | 2017-09-27 | Immunomedics, Inc. | Humanized rfb4 anti-cd22 antibody |
GB201403775D0 (en) | 2014-03-04 | 2014-04-16 | Kymab Ltd | Antibodies, uses & methods |
UA120048C2 (en) | 2014-03-06 | 2019-09-25 | Нешнл Рісеч Каунсіл Оф Канада | Insulin-like growth factor 1 receptor -specific antibodies and uses thereof |
BR112016020643B1 (en) | 2014-03-06 | 2023-05-02 | National Research Council Of Canada | SPECIFIC ANTIBODIES FOR INSULIN-LIKE GROWTH FACTOR RECEPTOR TYPE 1 AND THEIR USE |
US10112998B2 (en) | 2014-03-06 | 2018-10-30 | National Research Council Of Canada | Insulin-like growth factor 1 receptor-specific antibodies and uses thereof |
US9738702B2 (en) | 2014-03-14 | 2017-08-22 | Janssen Biotech, Inc. | Antibodies with improved half-life in ferrets |
US20170335281A1 (en) | 2014-03-15 | 2017-11-23 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
ES2857226T3 (en) | 2014-03-15 | 2021-09-28 | Novartis Ag | Regulable chimeric antigen receptor |
EP3119812B1 (en) | 2014-03-21 | 2020-04-29 | X-Body, Inc. | Bi-specific antigen-binding polypeptides |
JP6614582B2 (en) | 2014-04-04 | 2019-12-04 | バイオノミクス インコーポレイテッド | Humanized antibody that binds to LGR5 |
IL280215B (en) | 2014-04-07 | 2022-07-01 | Novartis Ag | Cancer treatment using a chimeric receptor antigen (car) against cd19 |
GB201406608D0 (en) | 2014-04-12 | 2014-05-28 | Psioxus Therapeutics Ltd | Virus |
ES2924393T3 (en) | 2014-04-16 | 2022-10-06 | Inst Nat Sante Rech Med | Antibodies for the prevention or treatment of bleeding episodes |
US20170044257A1 (en) | 2014-04-25 | 2017-02-16 | The Brigham And Women's Hospital, Inc. | Methods to manipulate alpha-fetoprotein (afp) |
CN106659801B (en) | 2014-04-30 | 2019-12-10 | 辉瑞大药厂 | anti-PTK 7 antibody-drug conjugates |
WO2015175874A2 (en) | 2014-05-16 | 2015-11-19 | Medimmune, Llc | Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties |
TWI709573B (en) | 2014-05-28 | 2020-11-11 | 美商艾吉納斯公司 | Anti-gitr antibodies and methods of use thereof |
GB201409558D0 (en) | 2014-05-29 | 2014-07-16 | Ucb Biopharma Sprl | Method |
CN106456608B (en) | 2014-06-06 | 2020-08-28 | 雷德伍德生物科技股份有限公司 | anti-HER 2 antibody-maytansinoid conjugates and methods of use thereof |
WO2015189816A1 (en) | 2014-06-13 | 2015-12-17 | Friedrich Miescher Institute For Biomedical Research | New treatment against influenza virus |
NL2013661B1 (en) | 2014-10-21 | 2016-10-05 | Ablynx Nv | KV1.3 Binding immunoglobulins. |
US10308935B2 (en) | 2014-06-23 | 2019-06-04 | Friedrich Miescher Institute For Biomedical Research | Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small RNAS |
GB201411320D0 (en) | 2014-06-25 | 2014-08-06 | Ucb Biopharma Sprl | Antibody construct |
AR100978A1 (en) | 2014-06-26 | 2016-11-16 | Hoffmann La Roche | ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME |
WO2016001830A1 (en) | 2014-07-01 | 2016-01-07 | Friedrich Miescher Institute For Biomedical Research | Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma |
US9139648B1 (en) | 2014-07-15 | 2015-09-22 | Kymab Limited | Precision medicine by targeting human NAV1.9 variants for treatment of pain |
GB201412658D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
GB201412659D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
MX378492B (en) | 2014-07-17 | 2025-03-11 | Novo Nordisk As | Site directed mutagenesis of trem-1 antibodies for decreasing viscosity |
US10174095B2 (en) | 2014-07-21 | 2019-01-08 | Novartis Ag | Nucleic acid encoding a humanized anti-BCMA chimeric antigen receptor |
US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
EP3172234B1 (en) | 2014-07-21 | 2020-04-08 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
JP7020909B2 (en) | 2014-07-25 | 2022-02-16 | シトムクス セラピューティクス,インコーポレイティド | Anti-CD3 antibody, activating anti-CD3 antibody, multispecific anti-CD3 antibody, multispecific activating anti-CD3 antibody, and how to use them. |
MX367787B (en) | 2014-07-29 | 2019-09-06 | Cellectis | ROR1 (NTRKR1) CHEMERICAL ANTIGEN RECEPTORS SPECIFIC FOR CANCER IMMUNOTHERAPY. |
EP3660042B1 (en) | 2014-07-31 | 2023-01-11 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
US10544201B2 (en) | 2014-07-31 | 2020-01-28 | Cellectis | ROR1 specific multi-chain chimeric antigen receptor |
US10851149B2 (en) | 2014-08-14 | 2020-12-01 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using GFR α-4 chimeric antigen receptor |
AU2015305531B2 (en) | 2014-08-19 | 2021-05-20 | Novartis Ag | Anti-CD123 chimeric antigen receptor (CAR) for use in cancer treatment |
RU2741470C9 (en) | 2014-09-02 | 2021-04-27 | Иммьюноджен, Инк. | Methods for preparing antibody-drug conjugate compositions |
DK3189073T3 (en) | 2014-09-04 | 2020-03-30 | Cellectis | TROPHOBLAST GLYCOPROTEIN (5T4, TPBG) -Specific Chimeric Antigen Receptors for Cancer Therapy |
MY186337A (en) | 2014-09-05 | 2021-07-13 | Janssen Pharmaceutica Nv | Cd123 binding agents and uses thereof |
WO2016043577A1 (en) | 2014-09-16 | 2016-03-24 | Academisch Medisch Centrum | Ig-like molecules binding to bmp4 |
WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US10080790B2 (en) | 2014-09-19 | 2018-09-25 | The Regents Of The University Of Michigan | Staphylococcus aureus materials and methods |
US20170298360A1 (en) | 2014-09-24 | 2017-10-19 | Friedrich Miescher Institute For Biomedical Research | Lats and breast cancer |
US10365280B2 (en) | 2014-10-02 | 2019-07-30 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating malignancies |
EP3204411A4 (en) | 2014-10-10 | 2018-03-28 | National Research Council of Canada | Anti-tau antibody and uses thereof |
CA2959821A1 (en) | 2014-10-24 | 2016-04-28 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods for inducing phagocytosis of mhc class i positive cells and countering anti-cd47/sirpa resistance |
EP3215166B9 (en) | 2014-10-31 | 2024-11-27 | The Trustees of the University of Pennsylvania | Altering gene expression in car-t cells and uses thereof |
BR112017008945A2 (en) | 2014-10-31 | 2018-01-16 | Abbvie Biotherapeutics Inc | ANTI-CS1 ANTIBODIES AND PHARMACEUTICAL-ANTIBODY CONJUGATES |
KR20230141922A (en) | 2014-10-31 | 2023-10-10 | 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 | Compositions and methods of stimulating and expanding t cells |
WO2016077526A1 (en) | 2014-11-12 | 2016-05-19 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
CA2967222C (en) | 2014-11-12 | 2023-10-31 | Rinat Neuroscience Corp. | Inhibitory chimeric antigen receptors |
US9879087B2 (en) | 2014-11-12 | 2018-01-30 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
US20170269092A1 (en) | 2014-12-02 | 2017-09-21 | Cemm - Forschungszentrum Fuer Molekulare Medizin Gmbh | Anti-mutant calreticulin antibodies and their use in the diagnosis and therapy of myeloid malignancies |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
EP3029137B1 (en) | 2014-12-06 | 2019-01-02 | GEMoaB Monoclonals GmbH | Genetic modified pluri- or multipotent stem cells and uses thereof |
AU2015360613A1 (en) | 2014-12-09 | 2017-06-29 | Abbvie Inc. | Bcl xl inhibitory compounds having low cell permeability and antibody drug conjugates including the same |
CN113209306A (en) | 2014-12-09 | 2021-08-06 | 艾伯维公司 | Antibody drug conjugates with cell permeable BCL-XL inhibitors |
US11001625B2 (en) | 2014-12-10 | 2021-05-11 | Tufts University | VHH based binding antibodies for anthrax and botulinum toxins and methods of making and using therefor |
MX2017007381A (en) | 2014-12-11 | 2017-11-06 | Inbiomotion Sl | Binding members for human c-maf. |
US10093733B2 (en) | 2014-12-11 | 2018-10-09 | Abbvie Inc. | LRP-8 binding dual variable domain immunoglobulin proteins |
HUE052771T2 (en) | 2014-12-11 | 2021-05-28 | Pf Medicament | Antibodies against C10orf54 and their use |
BR112017012910A2 (en) | 2014-12-19 | 2018-02-06 | Biotecnol Limited | fusion protein comprising three 5t4 and cd3 binding domains |
JP6827928B2 (en) | 2014-12-19 | 2021-02-10 | ユニヴェルシテ・ドゥ・ナント | Anti-IL-34 antibody |
CA2972048C (en) | 2014-12-22 | 2023-03-07 | The Rockefeller University | Anti-mertk agonistic antibodies and uses thereof |
WO2016112270A1 (en) | 2015-01-08 | 2016-07-14 | Biogen Ma Inc. | Lingo-1 antagonists and uses for treatment of demyelinating disorders |
WO2016115345A1 (en) | 2015-01-14 | 2016-07-21 | The Brigham And Women's Hospital, | Treatment of cancer with anti-lap monoclonal antibodies |
MA40801B2 (en) | 2015-01-23 | 2024-09-30 | Sanofi | ANTI-CD3 ANTIBODIES, ANTI-CD123 ANTIBODIES AND BISPECIFIC ANTIBODIES BINDING SPECIFICALLY TO CD3 AND/OR CD123 |
ES2842212T3 (en) | 2015-01-26 | 2021-07-13 | Cellectis | Anti-CLL1 Specific Single Chain Chimeric Antigen Receptors (scCAR) for Cancer Immunotherapy |
EP4223873A3 (en) | 2015-01-31 | 2023-09-06 | The Trustees of the University of Pennsylvania | Compositions and methods for t cell delivery of therapeutic molecules |
WO2016126608A1 (en) | 2015-02-02 | 2016-08-11 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
WO2016128349A1 (en) | 2015-02-09 | 2016-08-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies specific to glycoprotein (gp) of ebolavirus and uses for the treatment and diagnosis of ebola virus infection |
FI3265123T3 (en) | 2015-03-03 | 2023-01-31 | ANTIBODIES, USES AND PROCEDURES | |
ES2772933T3 (en) | 2015-03-06 | 2020-07-08 | CSL Behring Lengnau AG | Modified von Willebrand factor that has an improved half-life |
US10876156B2 (en) | 2015-03-13 | 2020-12-29 | President And Fellows Of Harvard College | Determination of cells using amplification |
US11066480B2 (en) | 2015-03-17 | 2021-07-20 | Memorial Sloan Kettering Cancer Center | Anti-MUC16 antibodies and uses thereof |
US10744157B2 (en) | 2015-03-26 | 2020-08-18 | The Trustees Of Dartmouth College | Anti-MICA antigen binding fragments, fusion molecules, cells which express and methods of using |
EP3280455A1 (en) | 2015-04-07 | 2018-02-14 | INSERM - Institut National de la Santé et de la Recherche Médicale | Non-invasive imaging of tumor pd-l1 expression |
CA2981751A1 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
GB201506869D0 (en) | 2015-04-22 | 2015-06-03 | Ucb Biopharma Sprl | Method |
GB201506870D0 (en) | 2015-04-22 | 2015-06-03 | Ucb Biopharma Sprl | Method |
US12128069B2 (en) | 2015-04-23 | 2024-10-29 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
EP3584260A1 (en) | 2015-04-28 | 2019-12-25 | Mitsubishi Tanabe Pharma Corporation | Rgma binding protein and use thereof |
MX2017013807A (en) | 2015-04-30 | 2018-03-15 | Harvard College | Anti-ap2 antibodies and antigen binding agents to treat metabolic disorders. |
CA2984991A1 (en) | 2015-05-04 | 2016-11-10 | Bionor Immuno As | Dosage regimen for hiv vaccine |
JP7019423B2 (en) | 2015-05-06 | 2022-02-15 | ヤンセン バイオテツク,インコーポレーテツド | Prostate-specific membrane antigen (PSMA) bispecific binder and its use |
CN115109158A (en) | 2015-05-07 | 2022-09-27 | 阿吉纳斯公司 | Anti-OX40 antibodies and methods of use |
GB201508180D0 (en) | 2015-05-13 | 2015-06-24 | Ucb Biopharma Sprl | Antibodies |
EP3294773A1 (en) | 2015-05-15 | 2018-03-21 | The General Hospital Corporation | Antagonistic anti-tumor necrosis factor receptor superfamily antibodies |
CN107995913B (en) | 2015-05-18 | 2022-02-11 | T细胞受体治疗公司 | Compositions and Methods for TCR Reprogramming Using Fusion Proteins |
TW201706300A (en) | 2015-05-20 | 2017-02-16 | 瑟勒提斯公司 | Anti-GD3 specific chimeric antigen receptor for cancer immunotherapy |
EP3932428A1 (en) | 2015-05-21 | 2022-01-05 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
MX2017014782A (en) | 2015-05-27 | 2018-02-15 | Ucb Biopharma Sprl | Method for the treatment of neurological disease. |
US10144779B2 (en) | 2015-05-29 | 2018-12-04 | Agenus Inc. | Anti-CTLA-4 antibodies and methods of use thereof |
EP3626744A1 (en) | 2015-05-29 | 2020-03-25 | AbbVie Inc. | Anti-cd40 antibodies and uses thereof |
TW201710286A (en) | 2015-06-15 | 2017-03-16 | 艾伯維有限公司 | Binding proteins against VEGF, PDGF, and/or their receptors |
GB201510758D0 (en) | 2015-06-18 | 2015-08-05 | Ucb Biopharma Sprl | Novel TNFa structure for use in therapy |
CN107810196B (en) | 2015-06-24 | 2021-11-05 | 豪夫迈·罗氏有限公司 | Humanized anti-Tau(pS422) antibodies and methods of use |
WO2017005732A1 (en) | 2015-07-06 | 2017-01-12 | Ucb Biopharma Sprl | Tau-binding antibodies |
JP6630426B2 (en) | 2015-07-06 | 2020-01-15 | ユーシービー バイオファルマ エスピーアールエル | Tau binding antibody |
JP2018525029A (en) | 2015-07-07 | 2018-09-06 | インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) | Antibody having specificity for myosin 18A and use thereof |
GB201601075D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies molecules |
GB201601077D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibody molecule |
GB201601073D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies |
WO2017027392A1 (en) | 2015-08-07 | 2017-02-16 | Novartis Ag | Treatment of cancer using chimeric cd3 receptor proteins |
WO2017025458A1 (en) | 2015-08-07 | 2017-02-16 | Gamamabs Pharma | Antibodies, antibody drug conjugates and methods of use |
US10709775B2 (en) | 2015-08-11 | 2020-07-14 | Cellectis | Cells for immunotherapy engineered for targeting CD38 antigen and for CD38 gene inactivation |
EP3340995A4 (en) | 2015-08-28 | 2019-04-03 | The Trustees Of The University Of Pennsylvania | METHODS AND COMPOSITIONS FOR CELLS EXPRESSING A CHIMERIC INTRACELLULAR SIGNALING MOLECULE |
WO2017040195A1 (en) | 2015-08-28 | 2017-03-09 | The Trustees Of The University Of Pennsylvania | Methods and compositions for cells expressing a chimeric intracellular signaling molecule |
CN107949573B (en) | 2015-09-01 | 2022-05-03 | 艾吉纳斯公司 | anti-PD-1 antibodies and methods of use thereof |
CN108367004B (en) | 2015-09-21 | 2022-09-13 | 阿帕特夫研究和发展有限公司 | CD3 binding polypeptides |
WO2017060397A1 (en) | 2015-10-09 | 2017-04-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of subjects suffering from melanoma metastases |
US10149887B2 (en) | 2015-10-23 | 2018-12-11 | Canbas Co., Ltd. | Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment |
MX2018005031A (en) | 2015-10-27 | 2018-06-13 | Ucb Biopharma Sprl | Methods of treatment using anti-il-17a/f antibodies. |
JP6921067B2 (en) | 2015-10-28 | 2021-08-18 | イエール ユニバーシティ | Humanized anti-Dkk2 antibody and how to use it |
EP3368566A1 (en) | 2015-10-28 | 2018-09-05 | Friedrich Miescher Institute for Biomedical Research | Tenascin-w and biliary tract cancers |
AR106543A1 (en) | 2015-11-02 | 2018-01-24 | Netris Pharma | NTN1 NEUTRALIZING AGENT COMBINATION THERAPY WITH DRUGS THAT INHIBIT EPIGENTICAL CONTROL |
EP3909984A1 (en) | 2015-11-03 | 2021-11-17 | Merck Patent GmbH | Affinity matured c-met antibodies |
US20190209697A1 (en) | 2015-11-05 | 2019-07-11 | The Regents Of The University Of California | Cells labelled with lipid conjugates and methods of use thereof |
AU2016354009B2 (en) | 2015-11-09 | 2021-05-20 | R.P. Scherer Technologies, Llc | Anti-CD22 antibody-maytansine conjugates and methods of use thereof |
CN108463248B (en) | 2015-11-12 | 2022-10-21 | 西雅图基因公司 | Glycan interactive compounds and methods of use |
JP2019501139A (en) | 2015-11-25 | 2019-01-17 | イミュノジェン・インコーポレーテッド | Pharmaceutical formulations and uses thereof |
EP3383909B1 (en) | 2015-11-30 | 2020-06-17 | AbbVie Inc. | Anti-human lrrc15 antibody drug conjugates and methods for their use |
AU2016365117A1 (en) | 2015-11-30 | 2018-05-31 | Abbvie Biotherapeutics Inc. | Anti-huLRRC15 antibody drug conjugates and methods for their use |
CN114470194A (en) | 2015-12-02 | 2022-05-13 | 斯特库伯株式会社 | Antibodies and molecules that immunospecifically bind to BTN1A1 and their therapeutic uses |
US11253590B2 (en) | 2015-12-02 | 2022-02-22 | Stsciences, Inc. | Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator) |
GB201521393D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521383D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl And Ucb Celltech | Method |
GB201521389D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Method |
GB201521391D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521382D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
US20180271998A1 (en) | 2015-12-04 | 2018-09-27 | Merrimack Pharmaceuticals, Inc. | Disulfide-stabilized fabs |
US11052111B2 (en) | 2015-12-08 | 2021-07-06 | Chimera Bioengineering, Inc. | Smart CAR devices and DE CAR polypeptides for treating disease and methods for enhancing immune responses |
SG11201804969PA (en) | 2015-12-15 | 2018-07-30 | Oncoimmune Inc | Chimeric and humanized anti-human ctla4 monoclonal antibodies and uses thereof |
GB201522394D0 (en) | 2015-12-18 | 2016-02-03 | Ucb Biopharma Sprl | Antibodies |
EP3184544A1 (en) | 2015-12-23 | 2017-06-28 | Julius-Maximilians-Universität Würzburg | Glycoprotein v inhibitors for use as coagulants |
AU2017204683B2 (en) | 2015-12-31 | 2023-03-16 | Syncerus S.À R.L. | Compositions and methods for assessing the risk of cancer occurrence |
EP3405492B1 (en) | 2016-01-21 | 2020-10-21 | Novartis AG | Multispecific molecules targeting cll-1 |
US10465003B2 (en) | 2016-02-05 | 2019-11-05 | Janssen Biotech, Inc. | Anti-TNF antibodies, compositions, methods and use for the treatment or prevention of type 1 diabetes |
GB201602413D0 (en) | 2016-02-10 | 2016-03-23 | Nascient Ltd | Method |
WO2017144668A1 (en) | 2016-02-26 | 2017-08-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity for btla and uses thereof |
AR107786A1 (en) | 2016-03-02 | 2018-06-06 | Idexx Lab Inc | METHODS AND COMPOSITIONS FOR DETECTION AND DIAGNOSIS OF RENAL DISEASE AND PERIODONTAL DISEASE |
AU2017225733A1 (en) | 2016-03-04 | 2018-09-27 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (CAR) molecules and uses therefore |
US20190262327A1 (en) | 2016-03-15 | 2019-08-29 | Astrazeneca Ab | Combination of a bace inhibitor and an antibody or antigen-binding fragment for the treatment of a disorder associated with the accumulation of amyloid beta |
US10787508B2 (en) | 2016-03-17 | 2020-09-29 | Numab Innovation Ag | Anti-TNFα-antibodies and functional fragments thereof |
LT3219726T (en) | 2016-03-17 | 2021-01-25 | Tillotts Pharma Ag | Anti-tnf alpha-antibodies and functional fragments thereof |
HUE052869T2 (en) | 2016-03-17 | 2021-05-28 | Tillotts Pharma Ag | Anti-tnf alpha-antibodies and functional fragments thereof |
JP7184746B2 (en) | 2016-03-17 | 2022-12-06 | ヌマブ イノヴェイション アーゲー | Anti-TNFα antibodies and functional fragments thereof |
KR102571700B1 (en) | 2016-03-17 | 2023-08-29 | 누맙 세러퓨틱스 아게 | Anti-TNFα antibodies and functional fragments thereof |
CN108697799A (en) | 2016-03-22 | 2018-10-23 | 生态学有限公司 | The application of anti-LGR5 monoclonal antibodies |
US11549099B2 (en) | 2016-03-23 | 2023-01-10 | Novartis Ag | Cell secreted minibodies and uses thereof |
CN109715207B (en) | 2016-03-29 | 2023-03-31 | 南加利福尼亚大学 | Chimeric antigen receptors for targeting cancer |
IL262321B2 (en) | 2016-04-15 | 2024-09-01 | Novartis Ag | Compositions and methods for selective protein expression |
SG11201809253RA (en) | 2016-04-27 | 2018-11-29 | Abbvie Inc | Methods of treatment of diseases in which il-13 activity is detrimental using anti-il-13 antibodies |
BR112018071288A2 (en) | 2016-05-01 | 2019-02-26 | Ucb Biopharma Sprl | modified affinity serum protein carrier binding domain |
TW201808336A (en) | 2016-05-11 | 2018-03-16 | 賽諾菲公司 | Treatment regimen using anti-MUC1 maytansinoid immunoconjugate antibody for the treatment of tumors |
EP3626273B1 (en) | 2016-05-17 | 2020-12-30 | AbbVie Biotherapeutics Inc. | Anti-cmet antibody drug conjugates and methods for their use |
CN119060177A (en) | 2016-05-20 | 2024-12-03 | 哈普恩治疗公司 | Single domain serum albumin binding protein |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
US11649291B2 (en) | 2016-05-24 | 2023-05-16 | Insmed Incorporated | Antibodies and methods of making same |
SG11201810522UA (en) | 2016-05-27 | 2018-12-28 | Abbvie Biotherapeutics Inc | Anti-cd40 antibodies and their uses |
CN109476751B (en) | 2016-05-27 | 2024-04-19 | 艾吉纳斯公司 | Anti-TIM-3 antibodies and methods of use thereof |
WO2017205745A1 (en) | 2016-05-27 | 2017-11-30 | Abbvie Biotherapeutics Inc. | Anti-4-1bb antibodies and their uses |
US20210177896A1 (en) | 2016-06-02 | 2021-06-17 | Novartis Ag | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
BR112018075649A2 (en) | 2016-06-08 | 2019-04-09 | Abbvie Inc. | anti-b7-h3 antibodies and antibody drug conjugates |
UY37278A (en) | 2016-06-08 | 2018-01-31 | Abbvie Inc | ANTI-B7-H3 ANTIBODIES AND DRUG AND ANTIBODY CONJUGATES |
AU2017279539A1 (en) | 2016-06-08 | 2019-01-03 | Abbvie Inc. | Anti-B7-H3 antibodies and antibody drug conjugates |
GB201610198D0 (en) | 2016-06-10 | 2016-07-27 | Ucb Biopharma Sprl | Anti-ige antibodies |
CN108350082B (en) | 2016-06-13 | 2021-09-24 | 天境生物科技(上海)有限公司 | PD-L1 antibody and its use |
KR102531889B1 (en) | 2016-06-20 | 2023-05-17 | 키맵 리미티드 | Anti-PD-L1 and IL-2 cytokines |
MX2018016404A (en) | 2016-06-21 | 2019-10-15 | Teneobio Inc | Cd3 binding antibodies. |
CA3030099A1 (en) | 2016-07-08 | 2018-01-11 | Staten Biotechnology B.V. | Anti-apoc3 antibodies and methods of use thereof |
WO2018014001A1 (en) | 2016-07-14 | 2018-01-18 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
CA3030837A1 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
TWI790206B (en) | 2016-07-18 | 2023-01-21 | 法商賽諾菲公司 | Bispecific antibody-like binding proteins specifically binding to cd3 and cd123 |
KR20190057275A (en) | 2016-07-18 | 2019-05-28 | 헬릭스 바이오파마 코포레이션 | CAR Immune Cells for Cancer Embryonic Antigen Associated Cell Adhesion Molecules 6 to Treat Cancer |
WO2018017964A2 (en) | 2016-07-21 | 2018-01-25 | Emory University | Ebola virus antibodies and binding agents derived therefrom |
WO2018023025A1 (en) | 2016-07-28 | 2018-02-01 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
US11186634B2 (en) | 2016-07-29 | 2021-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies targeting tumor associated macrophages and uses thereof |
EP3490590A2 (en) | 2016-08-01 | 2019-06-05 | Novartis AG | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
CN109715668A (en) | 2016-08-02 | 2019-05-03 | T细胞受体治疗公司 | For using fusion protein to carry out the composition and method of TCR reprogramming |
CN109923129A (en) | 2016-08-26 | 2019-06-21 | 新加坡科技研究局 | Macrophage stimulating protein receptor (or RON-Recepteur d,Origine Nantais) antibody and application thereof |
KR102491752B1 (en) | 2016-08-29 | 2023-01-26 | 싸이오서스 테라퓨틱스 엘티디. | Adenovirus armed with bispecific T cell engagner(BITE) |
CN109789205B (en) | 2016-09-14 | 2022-12-13 | 艾伯维生物制药股份有限公司 | Anti-PD-1(CD279) antibody |
IL313895A (en) | 2016-09-14 | 2024-08-01 | Teneoone Inc | Cd3 binding antibodies |
EP3512880A1 (en) | 2016-09-15 | 2019-07-24 | Ablynx NV | Immunoglobulin single variable domains directed against macrophage migration inhibitory factor |
KR20190035790A (en) | 2016-09-19 | 2019-04-03 | 아이-맵 | Anti-gm-csf antibodies and uses thereof |
EP4360714A3 (en) | 2016-09-21 | 2024-07-24 | Nextcure, Inc. | Antibodies for siglec-15 and methods of use thereof |
CA3033571A1 (en) | 2016-09-21 | 2018-03-29 | Nextcure, Inc. | Antibodies for siglec-15 and methods of use thereof |
GB201616596D0 (en) | 2016-09-29 | 2016-11-16 | Nascient Limited | Epitope and antibodies |
HUE054080T2 (en) | 2016-10-07 | 2021-08-30 | Tcr2 Therapeutics Inc | Compositions and methods for reprogramming T cell receptors using fusion proteins |
TW202340473A (en) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | Treatment of cancer using chimeric antigen receptors |
SG10201912663YA (en) | 2016-10-11 | 2020-03-30 | Agenus Inc | Anti-lag-3 antibodies and methods of use thereof |
US11007254B2 (en) | 2016-10-17 | 2021-05-18 | Musc Foundation For Research Development | Compositions and methods for treating central nervous system injury |
JP2020500214A (en) | 2016-11-02 | 2020-01-09 | イミュノジェン・インコーポレーテッド | Combination therapy of antibody drug conjugate and PARP inhibitor |
WO2018083257A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding transgenes |
US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
WO2018083258A1 (en) | 2016-11-03 | 2018-05-11 | Psioxus Therapeutics Limited | Oncolytic adenovirus encoding at least three transgenes |
WO2018083538A1 (en) | 2016-11-07 | 2018-05-11 | Neuracle Scienc3 Co., Ltd. | Anti-family with sequence similarity 19, member a5 antibodies and method of use thereof |
EP3541847A4 (en) | 2016-11-17 | 2020-07-08 | Seattle Genetics, Inc. | GLYCAN INTERACTING COMPOUNDS AND METHOD FOR USE |
WO2018091720A1 (en) | 2016-11-21 | 2018-05-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the prophylactic treatment of metastases |
EP3544996A2 (en) | 2016-11-22 | 2019-10-02 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
BR112019010602A2 (en) | 2016-11-23 | 2019-12-17 | Harpoon Therapeutics Inc | trispecific psma proteins and methods of use |
CA3044659A1 (en) | 2016-11-23 | 2018-05-31 | Harpoon Therapeutics, Inc. | Prostate specific membrane antigen binding protein |
US10899842B2 (en) | 2016-11-23 | 2021-01-26 | Immunoah Therapeutics, Inc. | 4-1BB binding proteins and uses thereof |
WO2018106864A1 (en) | 2016-12-07 | 2018-06-14 | Agenus Inc. | Antibodies and methods of use thereof |
WO2018106862A1 (en) | 2016-12-07 | 2018-06-14 | Agenus Inc. | Anti-ctla-4 antibodies and methods of use thereof |
PE20191403A1 (en) | 2016-12-15 | 2019-10-04 | Abbvie Biotherapeutics Inc | ANTI-OX40 ANTIBODIES AND THEIR USES |
GB201621635D0 (en) | 2016-12-19 | 2017-02-01 | Ucb Biopharma Sprl | Crystal structure |
KR102633423B1 (en) | 2016-12-21 | 2024-02-06 | 테네오바이오, 인코포레이티드 | Anti-BCMA heavy chain-only antibody |
WO2018119288A1 (en) | 2016-12-22 | 2018-06-28 | Sanofi | Anti-human cxcr3 antibodies for treatment of vitiligo |
US20180214542A1 (en) | 2016-12-22 | 2018-08-02 | Sanofi | Humanized cxcr3 antibodies with depleting activity and methods of use thereof |
CN110291105B (en) | 2017-01-05 | 2024-03-01 | 奈特里斯药物公司 | Combination therapy of guide-1 interfering drugs and immune checkpoint inhibitor drugs |
US11390685B2 (en) | 2017-01-06 | 2022-07-19 | Biosion, Inc. | ErbB2 antibodies and uses therefore |
EP3571231A4 (en) | 2017-01-20 | 2020-12-02 | Tayu Huaxia Biotech Medical Group Co., Ltd. | ANTI-PD-1 ANTIBODIES AND USES THEREOF |
CN109476755B (en) | 2017-01-24 | 2020-12-04 | 天境生物科技(上海)有限公司 | CD73 antibody and its use |
WO2018140725A1 (en) | 2017-01-26 | 2018-08-02 | Novartis Ag | Cd28 compositions and methods for chimeric antigen receptor therapy |
KR20190113858A (en) | 2017-01-30 | 2019-10-08 | 얀센 바이오테크 인코포레이티드 | Anti-TNF Antibodies, Compositions, and Methods for the Treatment of Active Psoriatic Arthritis |
EP3354278A1 (en) | 2017-01-31 | 2018-08-01 | Sanofi | Neuronal cell protective effect of antibodies specific for the protofibrillar form of the beta-amyloid peptide |
WO2018144535A1 (en) | 2017-01-31 | 2018-08-09 | Novartis Ag | Treatment of cancer using chimeric t cell receptor proteins having multiple specificities |
KR20190115042A (en) | 2017-02-07 | 2019-10-10 | 얀센 바이오테크 인코포레이티드 | Anti-TNF Antibodies, Compositions, and Methods for the Treatment of Active Ankylosing Spondylitis |
WO2018151841A1 (en) | 2017-02-17 | 2018-08-23 | Sanofi | Multispecific binding molecules having specificity to dystroglycan and laminin-2 |
JP7304288B2 (en) | 2017-02-17 | 2023-07-06 | サノフイ | Multispecific binding molecules with specificity for dystroglycan and laminin-2 |
WO2018160754A2 (en) | 2017-02-28 | 2018-09-07 | Harpoon Therapeutics, Inc. | Inducible monovalent antigen binding protein |
US11274160B2 (en) | 2017-03-02 | 2022-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale | Antibodies having specificity to Nectin-4 and uses thereof |
WO2018160909A1 (en) | 2017-03-03 | 2018-09-07 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
US11578136B2 (en) | 2017-03-16 | 2023-02-14 | Innate Pharma | Compositions and methods for treating cancer |
TWI808963B (en) | 2017-03-22 | 2023-07-21 | 法商賽諾菲公司 | Treatment of lupus using humanized anti-cxcr5 antibodies |
EP3601351A1 (en) | 2017-03-27 | 2020-02-05 | Celgene Corporation | Methods and compositions for reduction of immunogenicity |
WO2018183366A1 (en) | 2017-03-28 | 2018-10-04 | Syndax Pharmaceuticals, Inc. | Combination therapies of csf-1r or csf-1 antibodies and a t-cell engaging therapy |
CN110546166B (en) | 2017-04-13 | 2024-03-29 | 艾吉纳斯公司 | anti-CD 137 antibodies and methods of use thereof |
CN110944665B (en) | 2017-04-14 | 2024-04-19 | 埃克塞里艾克西斯公司 | AMHRII binding compounds for preventing or treating lung cancer |
WO2018189379A1 (en) | 2017-04-14 | 2018-10-18 | Gamamabs Pharma | Amhrii-binding compounds for preventing or treating cancers |
KR20190141659A (en) | 2017-04-21 | 2019-12-24 | 스태튼 바이오테크놀로지 비.브이. | Anti-APOC3 Antibodies and Methods of Use thereof |
WO2018196782A1 (en) | 2017-04-27 | 2018-11-01 | The University Of Hong Kong | Use of hcn inhibitors for treatment of cancer |
EP3615055A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
FI3618863T3 (en) | 2017-05-01 | 2023-09-01 | Agenus Inc | Anti-tigit antibodies and methods of use thereof |
US12054537B2 (en) * | 2017-05-10 | 2024-08-06 | The Wistar Institute Of Anatomy And Biology | Optimized nucleic acid antibody constructs encoding anti-respiratory syncytial virus (RSV) antibodies |
KR20200006985A (en) | 2017-05-12 | 2020-01-21 | 오거스타 유니버시티 리서치 인스티튜트, 인크. | Human alpha fetal protein-specific T cell receptors and uses thereof |
JOP20190256A1 (en) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | Newcastle disease viruses and uses thereof |
BR112019023855B1 (en) | 2017-05-12 | 2021-11-30 | Harpoon Therapeutics, Inc | MESOTHELIN BINDING PROTEINS |
EP3621648A4 (en) | 2017-05-12 | 2021-01-20 | Harpoon Therapeutics, Inc. | TRISPECIFIC PROTEINS MSLN AND METHOD OF USE |
EP3624848A1 (en) | 2017-05-19 | 2020-03-25 | Syndax Pharmaceuticals, Inc. | Combination therapies |
US12116406B2 (en) | 2017-05-26 | 2024-10-15 | Fred Hutchinson Cancer Center | Anti-CD33 antibodies and uses thereof |
CA3065300A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
CA3065301A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
EP3409688A1 (en) | 2017-05-31 | 2018-12-05 | Tillotts Pharma Ag | Topical treatment of inflammatory bowel disease using anti-tnf-alpha antibodies and fragments thereof |
ES2952601T3 (en) | 2017-06-01 | 2023-11-02 | Akamis Bio Ltd | Oncolytic virus and method |
NZ759601A (en) | 2017-06-02 | 2023-06-30 | Merck Patent Gmbh | Aggrecan binding immunoglobulins |
EP3635007A1 (en) | 2017-06-06 | 2020-04-15 | STCube & Co., Inc. | Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands |
US20210079057A1 (en) | 2017-06-13 | 2021-03-18 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
CA3067584A1 (en) | 2017-06-20 | 2018-12-27 | Teneobio, Inc. | Anti-bcma heavy chain-only antibodies |
BR112019026803A2 (en) | 2017-06-20 | 2020-06-30 | Teneoone, Inc. | anti-bcma heavy chain antibodies only |
US10882907B2 (en) | 2017-06-21 | 2021-01-05 | Gilead Sciences, Inc. | Multispecific antibodies that target HIV GP120 and CD3 |
US11613588B2 (en) | 2017-06-28 | 2023-03-28 | The Rockefeller University | Anti-mertk agonistic antibodies and uses thereof |
US20190048073A1 (en) | 2017-07-20 | 2019-02-14 | Pfizer Inc. | Anti-gd3 antibodies and antibody-drug conjugates |
US11174322B2 (en) | 2017-07-24 | 2021-11-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies and peptides to treat HCMV related diseases |
AU2018306436A1 (en) | 2017-07-27 | 2020-02-13 | Nomocan Pharmaceuticals Llc | Antibodies to M(H)DM2/4 and their use in diagnosing and treating cancer |
US11680110B2 (en) * | 2017-07-31 | 2023-06-20 | Hoffmann-La Roche Inc. | Three-dimensional structure-based humanization method |
JP7241080B2 (en) | 2017-08-28 | 2023-03-16 | アンジーエックス・インコーポレーテッド | Anti-TM4SF1 Antibodies and Methods of Using The Same |
CN111133005B (en) | 2017-09-07 | 2024-09-03 | 奥古斯塔大学研究所公司 | Programming cell death protein 1 antibodies |
EP3456739A1 (en) | 2017-09-19 | 2019-03-20 | Tillotts Pharma Ag | Use of anti-tnfalpha antibodies for treating wounds |
EP3459528B1 (en) | 2017-09-20 | 2022-11-23 | Tillotts Pharma Ag | Preparation of solid dosage forms comprising antibodies by solution/suspension layering |
EP3459527B1 (en) | 2017-09-20 | 2022-11-23 | Tillotts Pharma Ag | Method for preparing a solid dosage form comprising antibodies by wet granulation, extrusion and spheronization |
EP3459529A1 (en) | 2017-09-20 | 2019-03-27 | Tillotts Pharma Ag | Preparation of sustained release solid dosage forms comprising antibodies by spray drying |
EP3684795A1 (en) | 2017-09-21 | 2020-07-29 | Imcheck Therapeutics SAS | Antibodies having specificity for btn2 and uses thereof |
EP3692370A2 (en) | 2017-10-04 | 2020-08-12 | OPKO Pharmaceuticals, LLC | Articles and methods directed to personalized therapy of cancer |
US11230601B2 (en) | 2017-10-10 | 2022-01-25 | Tilos Therapeutics, Inc. | Methods of using anti-lap antibodies |
CN111201244A (en) | 2017-10-12 | 2020-05-26 | 学校法人庆应义塾 | anti-AQP 3 monoclonal antibodies that specifically bind to the extracellular domain of aquaporin 3(AQP3) and uses thereof |
IL315737A (en) | 2017-10-13 | 2024-11-01 | Harpoon Therapeutics Inc | B cell maturation antigen binding proteins |
EP3694529B1 (en) | 2017-10-13 | 2024-06-26 | Harpoon Therapeutics, Inc. | Trispecific proteins and methods of use |
MX2020004512A (en) | 2017-10-31 | 2020-08-13 | Anti-apoc3 antibodies and methods of use thereof. | |
WO2019089594A1 (en) | 2017-10-31 | 2019-05-09 | Immunogen, Inc. | Combination treatment with antibody-drug conjugates and cytarabine |
EP3706795A4 (en) | 2017-11-09 | 2021-10-13 | Pinteon Therapeutics Inc. | Methods and compositions for the generation and use of humanized conformation-specific phosphorylated tau antibodies |
MX2020004935A (en) | 2017-11-14 | 2020-09-25 | Arcellx Inc | Multifunctional immune cell therapies. |
EP3717069A1 (en) | 2017-11-27 | 2020-10-07 | Purdue Pharma L.P. | Humanized antibodies targeting human tissue factor |
MX2020006715A (en) | 2017-12-27 | 2020-08-20 | Teneobio Inc | SPECIFIC ANTIBODIES TO CD3-DELTA/EPSILON HETERODIMER. |
GB201802486D0 (en) | 2018-02-15 | 2018-04-04 | Ucb Biopharma Sprl | Methods |
AU2019225393A1 (en) | 2018-02-23 | 2020-08-20 | Cartherics Pty. Ltd. | T cell disease treatment targeting TAG-72 |
US20210002373A1 (en) | 2018-03-01 | 2021-01-07 | Nextcure, Inc. | KLRG1 Binding Compositions and Methods of Use Thereof |
WO2019177690A1 (en) | 2018-03-12 | 2019-09-19 | Zoetis Services Llc | Anti-ngf antibodies and methods thereof |
GB201804701D0 (en) | 2018-03-23 | 2018-05-09 | Gammadelta Therapeutics Ltd | Lymphocytes expressing heterologous targeting constructs |
SG11202009625WA (en) | 2018-04-02 | 2020-10-29 | Bristol Myers Squibb Co | Anti-trem-1 antibodies and uses thereof |
CN112004558A (en) | 2018-04-12 | 2020-11-27 | 米迪亚制药有限责任公司 | LGALS3BP antibody-drug-conjugate and its use for the treatment of cancer |
EP3784351A1 (en) | 2018-04-27 | 2021-03-03 | Novartis AG | Car t cell therapies with enhanced efficacy |
EP3784274A1 (en) | 2018-04-27 | 2021-03-03 | Fondazione Ebri Rita Levi-Montalcini | Antibody directed against a tau-derived neurotoxic peptide and uses thereof |
WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
JP7530638B2 (en) | 2018-05-10 | 2024-08-08 | ニューラクル サイエンス カンパニー リミテッド | Antibody family with sequence similarity 19, member A5 antibodies and methods of use thereof |
WO2019222130A1 (en) | 2018-05-15 | 2019-11-21 | Immunogen, Inc. | Combination treatment with antibody-drug conjugates and flt3 inhibitors |
CN112513085B (en) | 2018-05-24 | 2024-06-18 | 詹森生物科技公司 | PSMA binding agents and uses thereof |
US20210213063A1 (en) | 2018-05-25 | 2021-07-15 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
MX2020012495A (en) | 2018-06-01 | 2021-02-15 | Novartis Ag | Binding molecules against bcma and uses thereof. |
EP3800999A4 (en) | 2018-06-04 | 2022-06-01 | Biogen MA Inc. | Anti-vla-4 antibodies having reduced effector function |
DK3807316T3 (en) | 2018-06-18 | 2024-07-29 | Innate Pharma | COMPOSITIONS AND METHODS FOR THE TREATMENT OF CANCER |
SG11202012312UA (en) | 2018-06-18 | 2021-01-28 | UCB Biopharma SRL | Gremlin-1 antagonist for the prevention and treatment of cancer |
SG11202012706PA (en) | 2018-06-21 | 2021-01-28 | Yumanity Therapeutics Inc | Compositions and methods for the treatment and prevention of neurological disorders |
WO2019244107A1 (en) | 2018-06-21 | 2019-12-26 | Daiichi Sankyo Company, Limited | Compositions including cd3 antigen binding fragments and uses thereof |
US11629179B2 (en) | 2018-06-29 | 2023-04-18 | Stichting Het Nederlands Kanker Instituut—Antoni van Leeuwenhoek Ziekenhuis | TWEAK-receptor agonists for use in combination with immunotherapy of a cancer |
MX2020013923A (en) | 2018-06-29 | 2021-03-29 | Apitbio Inc | ANTIBODIES TO CELL ADHESION MOLECULE L1 (L1CAM) AND THEIR USES. |
AU2019301336B2 (en) | 2018-07-10 | 2022-11-24 | Mitsubishi Tanabe Pharma Corporation | Prevention or treatment method for peripheral neuropathy or pain accompanying disease in which peripheral neuropathy or astrocyte disorder is recognized |
CN112424231B (en) | 2018-07-19 | 2022-09-13 | 大有华夏生物医药集团有限公司 | anti-PD-1 antibodies and dosages and uses thereof |
AU2019306165A1 (en) | 2018-07-20 | 2021-02-25 | Pierre Fabre Medicament | Receptor for vista |
CA3107383A1 (en) | 2018-07-23 | 2020-01-30 | Magenta Therapeutics, Inc. | Use of anti-cd5 antibody drug conjugate (adc) in allogeneic cell therapy |
EP3844192A1 (en) | 2018-08-30 | 2021-07-07 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
EP3849565A4 (en) | 2018-09-12 | 2022-12-28 | Fred Hutchinson Cancer Research Center | REDUCING CD33 EXPRESSION FOR SELECTIVE PROTECTION OF THERAPEUTIC CELLS |
JP2022502076A (en) | 2018-09-18 | 2022-01-11 | メリマック ファーマシューティカルズ インコーポレーティッド | Anti-TNFR2 antibody and its use |
EP3853261A4 (en) | 2018-09-21 | 2022-11-09 | National Research Council of Canada | Intrabodies for reducing fut8 activity |
US12195544B2 (en) | 2018-09-21 | 2025-01-14 | Harpoon Therapeutics, Inc. | EGFR binding proteins and methods of use |
KR20210086623A (en) | 2018-09-25 | 2021-07-08 | 하푼 테라퓨틱스, 인크. | DDL3 Binding Proteins and Methods of Use |
US20220047633A1 (en) | 2018-09-28 | 2022-02-17 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
EP3856782A1 (en) | 2018-09-28 | 2021-08-04 | Novartis AG | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
US20210380675A1 (en) | 2018-09-28 | 2021-12-09 | Kyowa Kirin Co., Ltd. | Il-36 antibodies and uses thereof |
WO2020070678A2 (en) | 2018-10-03 | 2020-04-09 | Staten Biotechnology B.V. | Antibodies specific for human and cynomolgus apoc3 and methods of use thereof |
US11130802B2 (en) | 2018-10-10 | 2021-09-28 | Tilos Therapeutics, Inc. | Anti-lap antibody variants |
WO2020079086A1 (en) | 2018-10-16 | 2020-04-23 | UCB Biopharma SRL | Method for the treatment of myasthenia gravis |
GB201817311D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
GB201817309D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
US12129305B2 (en) | 2018-10-25 | 2024-10-29 | The Medical College Of Wisconsin, Inc. | Targeting CLPTM1L for treatment and prevention of cancer |
US20220170097A1 (en) | 2018-10-29 | 2022-06-02 | The Broad Institute, Inc. | Car t cell transcriptional atlas |
BR112021008354A2 (en) | 2018-10-31 | 2021-08-03 | Intocell, Inc. | fused heterocyclic benzodiazepine derivatives and uses thereof |
JP2022512860A (en) | 2018-11-06 | 2022-02-07 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods and Pharmaceutical Compositions for the Treatment of Acute Myeloid Leukemia by Eradication of Leukemia Stem Cells |
US20220026445A1 (en) | 2018-12-07 | 2022-01-27 | Georgia Tech Research Corporation | Antibodies that bind to natively folded myocilin |
WO2020114616A1 (en) | 2018-12-07 | 2020-06-11 | Tillotts Pharma Ag | Topical treatment of immune checkpoint inhibitor induced diarrhoea, colitis or enterocolitis using antibodies and fragments thereof |
WO2020123662A2 (en) | 2018-12-11 | 2020-06-18 | AdMIRx Inc. | Fusion protein constructs for complement associated disease |
JP7609775B2 (en) | 2018-12-14 | 2025-01-07 | インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラ リシェルシェ メディカル) | Isolated MHC-derived human peptides and their use for stimulating and activating the suppressive function of CD8+CD45RC Low Tregs - Patent application |
EP3898687A1 (en) | 2018-12-20 | 2021-10-27 | Kyowa Kirin Co., Ltd. | Fn14 antibodies and uses thereof |
GB201900732D0 (en) | 2019-01-18 | 2019-03-06 | Ucb Biopharma Sprl | Antibodies |
CA3127776A1 (en) | 2019-01-30 | 2020-08-06 | Nomocan Pharmaceuticals Llc | Antibodies to m(h)dm2/4 and their use in diagnosing and treating cancer |
WO2020157305A1 (en) | 2019-01-31 | 2020-08-06 | Numab Therapeutics AG | Multispecific antibodies having specificity for tnfa and il-17a, antibodies targeting il-17a, and methods of use thereof |
WO2020162452A1 (en) | 2019-02-04 | 2020-08-13 | 国立大学法人愛媛大学 | Car library and production method for scfv |
WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
WO2020168554A1 (en) | 2019-02-22 | 2020-08-27 | 武汉友芝友生物制药有限公司 | Modified fc fragment, antibody comprising same, and application thereof |
US20220088075A1 (en) | 2019-02-22 | 2022-03-24 | The Trustees Of The University Of Pennsylvania | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
JP2022530301A (en) | 2019-02-22 | 2022-06-29 | 武▲漢▼友芝友生物制▲薬▼有限公司 | CD3 antigen-binding fragment and its use |
WO2020176497A1 (en) | 2019-02-26 | 2020-09-03 | Rgenix, Inc. | High-affinity anti-mertk antibodies and uses thereof |
US20220281990A1 (en) | 2019-03-01 | 2022-09-08 | Merrimack Pharmaceuticals, Inc. | Anti-tnfr2 antibodies and uses thereof |
CA3133074A1 (en) | 2019-03-11 | 2020-09-17 | Memorial Sloan Kettering Cancer Center | Cd22 antibodies and methods of using the same |
AU2020243076A1 (en) | 2019-03-20 | 2021-10-14 | Centre National De La Recherche Scientifique - Cnrs - | Antibodies having specificity for BTN2 and uses thereof |
JP2022526334A (en) | 2019-03-25 | 2022-05-24 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Methods of Treatment of Tauopathy Disorders by Targeting New Tau Species |
KR20210143788A (en) | 2019-03-26 | 2021-11-29 | 아슬란 파마슈티컬스 피티이 엘티디 | Treatment with an anti-IL-13R antibody or binding fragment thereof |
WO2020198731A2 (en) | 2019-03-28 | 2020-10-01 | Danisco Us Inc | Engineered antibodies |
EA202192736A1 (en) | 2019-04-05 | 2022-01-27 | Тенеобио, Инк. | ANTIBODIES CONTAINING ONLY HEAVY CHAINS THAT BIND TO PSMA |
WO2020213084A1 (en) | 2019-04-17 | 2020-10-22 | Keio University | Anti aqp3 monoclonal antibody specifically binding to extracellular domain of aquaporin 3 (aqp3) and use thereof |
WO2020236792A1 (en) | 2019-05-21 | 2020-11-26 | Novartis Ag | Cd19 binding molecules and uses thereof |
EP3972993A1 (en) | 2019-05-21 | 2022-03-30 | Novartis AG | Variant cd58 domains and uses thereof |
MX2021014302A (en) | 2019-05-23 | 2022-01-04 | Janssen Biotech Inc | Method of treating inflammatory bowel disease with a combination therapy of antibodies to il-23 and tnf alpha. |
PE20220575A1 (en) | 2019-06-14 | 2022-04-20 | Teneobio Inc | MULTISPECIFIC HEAVY-CHAIN ANTIBODIES THAT BIND CD22 AND CD3 |
KR20220038362A (en) | 2019-07-02 | 2022-03-28 | 프레드 헛친슨 켄서 리서치 센터 | Recombinant AD35 Vector and Related Gene Therapy Improvements |
MX2022000456A (en) | 2019-07-11 | 2022-04-18 | Wuhan Yzy Biopharma Co Ltd | Tetravalent symmetric bispecific antibody. |
EP4004050A2 (en) | 2019-07-30 | 2022-06-01 | QLSF Biotherapeutics Inc. | Multispecific binding compound that bind to lfrrc15 and cd3 |
JP2022543259A (en) | 2019-08-02 | 2022-10-11 | オレガ・バイオテック | Novel IL-17B antibody |
EP4013506A1 (en) | 2019-08-12 | 2022-06-22 | Aptevo Research and Development LLC | 4-1bb and ox40 binding proteins and related compositions and methods, antibodies against 4-1bb, antibodies against ox40 |
US20220288197A1 (en) | 2019-08-16 | 2022-09-15 | Children’s Hospital Medicai Center | Methods of treating a subject with a cdc42-specific inhibitor |
WO2021035170A1 (en) | 2019-08-21 | 2021-02-25 | Precision Biosciences, Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
MX2022002315A (en) | 2019-08-30 | 2022-03-25 | Agenus Inc | ANTI-CD96 ANTIBODIES AND THEIR METHODS OF USE. |
CN114206929B (en) | 2019-09-03 | 2023-12-22 | 百奥泰生物制药股份有限公司 | anti-TIGIT immunosuppressant and application |
WO2021062323A1 (en) | 2019-09-26 | 2021-04-01 | Stcube & Co. | Antibodies specific to glycosylated ctla-4 and methods of use thereof |
JP7657785B2 (en) | 2019-09-27 | 2025-04-07 | アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル | Anti-Mullerian Inhibitory Substance Antibodies and Uses Thereof |
WO2021058729A1 (en) | 2019-09-27 | 2021-04-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof |
CN114829404A (en) | 2019-10-09 | 2022-07-29 | 斯特库比公司 | Antibodies specific for glycosylated LAG3 and methods of use thereof |
EP3812008A1 (en) | 2019-10-23 | 2021-04-28 | Gamamabs Pharma | Amh-competitive antagonist antibody |
EP3825330A1 (en) | 2019-11-19 | 2021-05-26 | International-Drug-Development-Biotech | Anti-cd117 antibodies and methods of use thereof |
EP4061944A1 (en) | 2019-11-22 | 2022-09-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Inhibitors of adrenomedullin for the treatment of acute myeloid leukemia by eradicating leukemic stem cells |
GB201917480D0 (en) | 2019-11-29 | 2020-01-15 | Univ Oxford Innovation Ltd | Antibodies |
US11897950B2 (en) | 2019-12-06 | 2024-02-13 | Augusta University Research Institute, Inc. | Osteopontin monoclonal antibodies |
WO2021116119A1 (en) | 2019-12-09 | 2021-06-17 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity to her4 and uses thereof |
WO2021116277A1 (en) | 2019-12-10 | 2021-06-17 | Institut Pasteur | New antibody blocking human fcgriiia and fcgriiib |
GB201919058D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Multi-specific antibodies |
GB201919061D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Multi-specific antibody |
GB201919062D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Antibody |
AR120898A1 (en) | 2019-12-26 | 2022-03-30 | Univ Osaka | AGENT TO TREAT OR PREVENT ACUTE NEUROMYELITIS OPTICA |
EP4085073A1 (en) | 2019-12-30 | 2022-11-09 | Seagen Inc. | Methods of treating cancer with nonfucosylated anti-cd70 antibodies |
CA3164037A1 (en) | 2020-01-08 | 2021-07-15 | Synthis Therapeutics, Inc. | Alk5 inhibitor conjugates and uses thereof |
JPWO2021145432A1 (en) | 2020-01-15 | 2021-07-22 | ||
MX2022008588A (en) | 2020-01-15 | 2022-08-10 | Univ Osaka | Prophylactic or therapeutic agent for dementia. |
GB202001447D0 (en) | 2020-02-03 | 2020-03-18 | Ucb Biopharma Sprl | Antibodies |
CA3167027A1 (en) | 2020-02-05 | 2021-08-12 | Larimar Therapeutics, Inc. | Tat peptide binding proteins and uses thereof |
EP4103610A1 (en) | 2020-02-13 | 2022-12-21 | UCB Biopharma SRL | Anti cd44-ctla4 bispecific antibodies |
WO2021160266A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies binding hvem and cd9 |
WO2021160265A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd137 |
US20230151109A1 (en) | 2020-02-13 | 2023-05-18 | UCB Biopharma SRL | Bispecific antibodies against cd9 |
WO2021160267A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd7 |
KR20220144841A (en) | 2020-02-21 | 2022-10-27 | 하푼 테라퓨틱스, 인크. | FLT3 Binding Proteins and Methods of Use |
WO2021174034A1 (en) | 2020-02-28 | 2021-09-02 | Genzyme Corporation | Modified binding polypeptides for optimized drug conjugation |
WO2021175954A1 (en) | 2020-03-04 | 2021-09-10 | Imcheck Therapeutics Sas | Antibodies having specificity for btnl8 and uses thereof |
AU2021231890A1 (en) | 2020-03-06 | 2022-09-29 | Go Therapeutics, Inc. | Anti-glyco-CD44 antibodies and their uses |
IL296241A (en) | 2020-03-10 | 2022-11-01 | Massachusetts Inst Technology | Compositions and methods for immunotherapy for npm1c-positive cancer |
US20230203191A1 (en) | 2020-03-30 | 2023-06-29 | Danisco Us Inc | Engineered antibodies |
EP4130035A4 (en) | 2020-03-31 | 2024-06-26 | Bio-Thera Solutions, Ltd. | Antibody and fusion protein for treating coronaviruses and use thereof |
EP4132971A1 (en) | 2020-04-09 | 2023-02-15 | Merck Sharp & Dohme LLC | Affinity matured anti-lap antibodies and uses thereof |
MX2022013402A (en) | 2020-04-24 | 2022-11-14 | Sanofi Sa | Antitumor combinations containing anti-ceacam5 antibody conjugates and folfiri. |
KR20230005176A (en) | 2020-04-24 | 2023-01-09 | 사노피 | Anti-tumor combination containing an anti-CEACAM5 antibody conjugate and cetuximab |
CA3181005A1 (en) | 2020-04-24 | 2021-10-28 | Sanofi | Antitumor combinations containing anti-ceacam5 antibody conjugates and folfox |
CN115484989A (en) | 2020-04-24 | 2022-12-16 | 赛诺菲 | Antitumor combinations containing anti-CEACAM 5 antibody conjugates, trifluridine and triflouracil |
CN113637082A (en) | 2020-04-27 | 2021-11-12 | 启愈生物技术(上海)有限公司 | Bispecific antibody targeting human claudin and human PDL1 protein and application thereof |
IL297644A (en) | 2020-04-29 | 2022-12-01 | Teneobio Inc | Multispecific heavy chain antibodies with modified heavy chain constant regions |
EP4149558A1 (en) | 2020-05-12 | 2023-03-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas |
EP4153220A4 (en) | 2020-05-21 | 2024-09-11 | Janssen Biotech, Inc. | METHOD FOR TREATING INFLAMMATORY BOWEL DISEASE WITH A COMBINATION THERAPY OF ANTIBODIES AGAINST IL-23 AND TNF-ALPHA |
EP3915641A1 (en) | 2020-05-27 | 2021-12-01 | International-Drug-Development-Biotech | Anti-cd5 antibodies and methods of use thereof |
IL298473A (en) | 2020-06-11 | 2023-01-01 | Novartis Ag | zbtb32 inhibitors and uses thereof |
TW202214844A (en) | 2020-06-17 | 2022-04-16 | 美商健生生物科技公司 | Materials and methods for the manufacture of pluripotent stem cells |
WO2022006219A2 (en) | 2020-07-02 | 2022-01-06 | Trustees Of Tufts College | Vhh polypeptides that bind to clostridium difficile toxin b and methods of use thereof |
WO2022014703A1 (en) | 2020-07-17 | 2022-01-20 | 田辺三菱製薬株式会社 | Agent for preventing or treating muscular disease |
JP2023537470A (en) | 2020-08-03 | 2023-09-01 | ヤンセン バイオテツク,インコーポレーテツド | Materials and methods for multidirectional biotransport in viral therapy |
CN114057877A (en) | 2020-08-07 | 2022-02-18 | 百奥泰生物制药股份有限公司 | anti-PD-L1 antibody and application thereof |
EP4208481A1 (en) | 2020-09-04 | 2023-07-12 | Merck Patent GmbH | Anti-ceacam5 antibodies and conjugates and uses thereof |
EP4225788A2 (en) | 2020-10-07 | 2023-08-16 | Zoetis Services LLC | Anti-ngf antibodies and methods of use thereof |
EP3981789A1 (en) | 2020-10-12 | 2022-04-13 | Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives | Anti-lilrb antibodies and uses thereof |
WO2022081436A1 (en) | 2020-10-15 | 2022-04-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibody specific for sars-cov-2 receptor binding domain and therapeutic methods |
IL301859A (en) | 2020-10-15 | 2023-06-01 | UCB Biopharma SRL | Binding molecules for CD45 multimerization |
WO2022082005A1 (en) | 2020-10-16 | 2022-04-21 | Qlsf Biotherapeutics, Inc. | Multispecific binding compounds that bind to pd-l1 |
WO2022087274A1 (en) | 2020-10-21 | 2022-04-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibodies that neutralize type-i interferon (ifn) activity |
CA3197465A1 (en) | 2020-11-02 | 2022-05-05 | UCB Biopharma SRL | Use of anti-trem1 neutralizing antibodies for the treatment of motor neuron neurodegenerative disorders |
EP4240494A1 (en) | 2020-11-06 | 2023-09-13 | Novartis AG | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
WO2022095970A1 (en) | 2020-11-06 | 2022-05-12 | 百奥泰生物制药股份有限公司 | Bispecific antibody and use thereof |
JP2023548529A (en) | 2020-11-06 | 2023-11-17 | ノバルティス アーゲー | CD19 binding molecules and uses thereof |
CN116635062A (en) | 2020-11-13 | 2023-08-22 | 诺华股份有限公司 | Combination Therapies Using Cells Expressing Chimeric Antigen Receptors (CARs) |
EP4247829A1 (en) | 2020-11-20 | 2023-09-27 | R.P. Scherer Technologies, LLC | Glycoside dual-cleavage linkers for antibody-drug conjugates |
CA3200314A1 (en) | 2020-12-01 | 2022-06-09 | Peter Pavlik | Tumor-associated antigens and cd-3 binding proteins, related compositions, and methods |
AR124250A1 (en) | 2020-12-07 | 2023-03-01 | UCB Biopharma SRL | ANTIBODIES |
WO2022122654A1 (en) | 2020-12-07 | 2022-06-16 | UCB Biopharma SRL | Multi-specific antibodies and antibody combinations |
TW202237639A (en) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
TW202237638A (en) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
WO2022143794A1 (en) | 2020-12-30 | 2022-07-07 | 百奥泰生物制药股份有限公司 | Anti-cldn18.2 antibody, and preparation method therefor and use thereof |
WO2022148736A1 (en) | 2021-01-05 | 2022-07-14 | Transgene | Vectorization of muc1 t cell engager |
CA3204731A1 (en) | 2021-01-13 | 2022-07-21 | John T. POIRIER | Anti-dll3 antibody-drug conjugate |
EP4277664A1 (en) | 2021-01-13 | 2023-11-22 | Memorial Sloan Kettering Cancer Center | Antibody-pyrrolobenzodiazepine derivative conjugate |
EP4281187A1 (en) | 2021-01-20 | 2023-11-29 | Bioentre LLC | Ctla4-binding proteins and methods of treating cancer |
UY39610A (en) | 2021-01-20 | 2022-08-31 | Abbvie Inc | ANTI-EGFR ANTIBODY-DRUG CONJUGATES |
CA3209479A1 (en) | 2021-02-03 | 2022-08-11 | Mozart Therapeutics, Inc. | Binding agents and methods of using the same |
WO2022186772A1 (en) | 2021-03-01 | 2022-09-09 | Aslan Pharmaceuticals Pte Ltd | TREATMENT OF ATOPIC DERMATITIS EMPLOYING ANTI-IL-13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF |
WO2022186773A1 (en) | 2021-03-01 | 2022-09-09 | Aslan Pharmaceuticals Pte Ltd | TREATMENT OF ATOPIC DERMATITIS EMPLOYING ANTI-IL-13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF IN AN ALLERGIC POPULATION |
JP2024508157A (en) | 2021-03-04 | 2024-02-22 | センター ナショナル デ ラ レシェルシェ サイエンティフィーク | Use of periostin antibodies to treat inflammation, fibrosis and lung diseases |
EP4301782A1 (en) | 2021-03-05 | 2024-01-10 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
US11964005B2 (en) | 2021-03-17 | 2024-04-23 | Receptos, Llc | Methods of treating atopic dermatitis |
MX2023011340A (en) | 2021-03-26 | 2023-12-14 | Janssen Biotech Inc | Humanized antibodies against paired helical filament tau and uses thereof. |
EP4067381A1 (en) | 2021-04-01 | 2022-10-05 | Julius-Maximilians-Universität Würzburg | Novel tnfr2 binding molecules |
EP4314068A1 (en) | 2021-04-02 | 2024-02-07 | The Regents Of The University Of California | Antibodies against cleaved cdcp1 and uses thereof |
CA3218933A1 (en) | 2021-05-03 | 2022-11-10 | UCB Biopharma SRL | Antibodies |
KR20240005823A (en) | 2021-05-04 | 2024-01-12 | 리제너론 파아마슈티컬스, 인크. | Multispecific FGF21 receptor agonists and uses thereof |
US20240262917A1 (en) | 2021-05-06 | 2024-08-08 | Dana-Farber Cancer Institute, Inc. | Antibodies against alk and methods of use thereof |
JP2024522213A (en) | 2021-06-14 | 2024-06-11 | アルジェニクス ビーブイ | Anti-IL-9 antibodies and methods of use thereof |
AR126161A1 (en) | 2021-06-17 | 2023-09-27 | Boehringer Lngelheim Int Gmbh | NOVEL TRISPECIFIC BINDING MOLECULES |
WO2022269473A1 (en) | 2021-06-23 | 2022-12-29 | Janssen Biotech, Inc. | Materials and methods for hinge regions in functional exogenous receptors |
MX2023013915A (en) | 2021-06-29 | 2024-01-25 | Seagen Inc | Methods of treating cancer with a combination of a nonfucosylated anti-cd70 antibody and a cd47 antagonist. |
CA3226537A1 (en) | 2021-07-29 | 2023-02-02 | Ana HENNINO | Humanized anti-human .beta.ig-h3 protein and uses thereof |
US20240350627A1 (en) | 2021-07-29 | 2024-10-24 | Takeda Pharmaceutical Company Limited | Engineered immune cell that specifically targets mesothelin and uses thereof |
KR20240107093A (en) | 2021-08-05 | 2024-07-08 | 고 테라퓨틱스, 인크. | Anti-glyco-MUC4 antibodies and uses thereof |
WO2023012343A1 (en) | 2021-08-06 | 2023-02-09 | Institut Du Cancer De Montpellier | Methods for the treatment of cancer |
AU2022325950A1 (en) | 2021-08-11 | 2024-02-22 | Viela Bio, Inc. | Inebilizumab and methods of using the same in the treatment or prevention of igg4-related disease |
GB202111905D0 (en) | 2021-08-19 | 2021-10-06 | UCB Biopharma SRL | Antibodies |
EP4396232A1 (en) | 2021-09-03 | 2024-07-10 | Go Therapeutics, Inc. | Anti-glyco-lamp1 antibodies and their uses |
AU2022339667A1 (en) | 2021-09-03 | 2024-04-11 | Go Therapeutics, Inc. | Anti-glyco-cmet antibodies and their uses |
WO2023048650A1 (en) | 2021-09-27 | 2023-03-30 | Aslan Pharmaceuticals Pte Ltd | TREATMENT OF PRURITIS EMPLOYING ANTI-IL13Rα1 ANTIBODY OR BINDING FRAGMENT THEREOF |
WO2023048651A1 (en) | 2021-09-27 | 2023-03-30 | Aslan Pharmaceuticals Pte Ltd | Method for treatment of moderate to severe atoptic dematitis |
WO2023051663A1 (en) | 2021-09-30 | 2023-04-06 | 百奥泰生物制药股份有限公司 | Anti-b7-h3 antibody and application thereof |
WO2023056069A1 (en) | 2021-09-30 | 2023-04-06 | Angiex, Inc. | Degrader-antibody conjugates and methods of using same |
GB202115122D0 (en) | 2021-10-21 | 2021-12-08 | Dualyx Nv | Binding molecules targeting IL-2 receptor |
WO2023076876A1 (en) | 2021-10-26 | 2023-05-04 | Mozart Therapeutics, Inc. | Modulation of immune responses to viral vectors |
TW202333784A (en) | 2021-10-29 | 2023-09-01 | 新加坡商亞獅康私人有限公司 | Anti-il-13r antibody formulation |
CA3237142A1 (en) | 2021-11-05 | 2023-05-11 | Sanofi | Antitumor combinations containing anti-ceacam5 antibody-drug conjugates and anti-vegfr-2 antibodies |
EP4436998A1 (en) | 2021-11-24 | 2024-10-02 | Dana-Farber Cancer Institute, Inc. | Antibodies against ctla-4 and methods of use thereof |
US20250051755A1 (en) | 2021-12-17 | 2025-02-13 | Dana-Farber Cancer Institute, Inc. | Platform for antibody discovery |
CA3241395A1 (en) | 2021-12-17 | 2023-06-22 | Barbel SCHROFELBAUER | Antibodies and uses thereof |
CN116333135A (en) | 2021-12-24 | 2023-06-27 | 百奥泰生物制药股份有限公司 | anti-FR alpha antibody, antibody drug conjugate and application thereof |
US20230227545A1 (en) | 2022-01-07 | 2023-07-20 | Johnson & Johnson Enterprise Innovation Inc. | Materials and methods of il-1beta binding proteins |
WO2023140780A1 (en) | 2022-01-24 | 2023-07-27 | Aslan Pharmaceuticals Pte Ltd. | Method of treating inflammatory disease |
CN118984837A (en) | 2022-01-28 | 2024-11-19 | 乔治穆内公司 | Antibodies to programmed cell death protein 1 as PD-1 agonists |
WO2023163659A1 (en) | 2022-02-23 | 2023-08-31 | Aslan Pharmaceuticals Pte Ltd | Glycosylated form of anti-il13r antibody |
WO2023170239A1 (en) | 2022-03-09 | 2023-09-14 | Merck Patent Gmbh | Methods and tools for conjugation to antibodies |
KR20240155334A (en) | 2022-03-09 | 2024-10-28 | 메르크 파텐트 게엠베하 | Anti-GD2 antibodies, immunoconjugates and therapeutic uses thereof |
IL315540A (en) | 2022-03-11 | 2024-11-01 | Janssen Pharmaceutica Nv | Multispecific antibodies and uses thereof |
JP2025509445A (en) | 2022-03-11 | 2025-04-11 | ヤンセン ファーマシューティカ エヌ.ベー. | Multispecific antibodies and uses thereof |
CN119173532A (en) | 2022-03-11 | 2024-12-20 | 詹森药业有限公司 | Multispecific antibodies and their uses |
EP4245772A1 (en) | 2022-03-18 | 2023-09-20 | Netris Pharma | Anti-netrin-1 antibody to treat liver inflammation |
EP4249509A1 (en) | 2022-03-22 | 2023-09-27 | Netris Pharma | Anti-netrin-1 antibody against arthritis-associated pain |
CN119213027A (en) | 2022-03-29 | 2024-12-27 | 奈特里斯药物公司 | Novel Mcl-1 inhibitors and combinations of Mcl-1 with BH3 mimetics such as Bcl-2 inhibitors |
GB202205200D0 (en) | 2022-04-08 | 2022-05-25 | Ucb Biopharma Sprl | Combination with chemotherapy |
GB202205203D0 (en) | 2022-04-08 | 2022-05-25 | UCB Biopharma SRL | Combination with inhibitor |
WO2023215498A2 (en) | 2022-05-05 | 2023-11-09 | Modernatx, Inc. | Compositions and methods for cd28 antagonism |
CN117143237A (en) | 2022-06-01 | 2023-12-01 | 百奥泰生物制药股份有限公司 | Anti-CLDN18.2 antibodies and their antibody-drug conjugates and uses |
WO2023239803A1 (en) | 2022-06-08 | 2023-12-14 | Angiex, Inc. | Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same |
WO2023240287A1 (en) | 2022-06-10 | 2023-12-14 | Bioentre Llc | Combinations of ctla4 binding proteins and methods of treating cancer |
CN119948051A (en) | 2022-07-15 | 2025-05-06 | 詹森生物科技公司 | Materials and methods for improving bioengineered pairing of antigen binding variable regions |
WO2024015953A1 (en) | 2022-07-15 | 2024-01-18 | Danisco Us Inc. | Methods for producing monoclonal antibodies |
GB202210679D0 (en) | 2022-07-21 | 2022-09-07 | Dualyx Nv | Binding molecules targeting il-12rb2 |
GB202210680D0 (en) | 2022-07-21 | 2022-09-07 | Dualyx Nv | Binding molecules targeting il-35r |
WO2024018426A1 (en) | 2022-07-22 | 2024-01-25 | Janssen Biotech, Inc. | Enhanced transfer of genetic instructions to effector immune cells |
WO2024039670A1 (en) | 2022-08-15 | 2024-02-22 | Dana-Farber Cancer Institute, Inc. | Antibodies against cldn4 and methods of use thereof |
CN119855829A (en) | 2022-08-15 | 2025-04-18 | 丹娜-法伯癌症研究院 | Antibodies against MSLN and methods of using the same |
WO2024043837A1 (en) | 2022-08-26 | 2024-02-29 | Aslan Pharmaceuticals Pte Ltd | High concentration anti-il13r antibody formulation |
WO2024050354A1 (en) | 2022-08-31 | 2024-03-07 | Washington University | Alphavirus antigen binding antibodies and uses thereof |
WO2024050524A1 (en) | 2022-09-01 | 2024-03-07 | University Of Georgia Research Foundation, Inc. | Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death |
WO2024054157A1 (en) | 2022-09-06 | 2024-03-14 | Aslan Pharmaceuticals Pte Ltd | Treatment for sleep loss or sleep disturbance in patients with dermatitis |
WO2024053742A1 (en) | 2022-09-09 | 2024-03-14 | 国立大学法人 東京医科歯科大学 | Therapeutic agent for coronavirus infection |
WO2024056668A1 (en) | 2022-09-12 | 2024-03-21 | Institut National de la Santé et de la Recherche Médicale | New anti-itgb8 antibodies and its uses thereof |
WO2024056861A1 (en) | 2022-09-15 | 2024-03-21 | Avidicure Ip B.V. | Multispecific antigen binding proteins for stimulating nk cells and use thereof |
WO2024062072A2 (en) | 2022-09-21 | 2024-03-28 | Domain Therapeutics | Anti-ccr8 monoclonal antibodies and their therapeutic use |
WO2024062082A1 (en) | 2022-09-21 | 2024-03-28 | Domain Therapeutics | Anti-ccr8 monoclonal antibodies and their therapeutic use |
WO2024062076A1 (en) | 2022-09-21 | 2024-03-28 | Domain Therapeutics | Anti-ccr8 monoclonal antibodies and their therapeutic use |
GB202214132D0 (en) | 2022-09-27 | 2022-11-09 | Coding Bio Ltd | CLL1 binding molecules |
WO2024068996A1 (en) | 2022-09-30 | 2024-04-04 | Centre Hospitalier Universitaire Vaudois (C.H.U.V.) | Anti-sars-cov-2 antibodies and use thereof in the treatment of sars-cov-2 infection |
EP4353253A1 (en) | 2022-10-10 | 2024-04-17 | Charité - Universitätsmedizin Berlin | Purification of tcr-modified t cells using tcr-specific car-nk cells |
WO2024097639A1 (en) | 2022-10-31 | 2024-05-10 | Modernatx, Inc. | Hsa-binding antibodies and binding proteins and uses thereof |
WO2024115393A1 (en) | 2022-11-28 | 2024-06-06 | UCB Biopharma SRL | Treatment of fibromyalgia |
GB202217923D0 (en) | 2022-11-29 | 2023-01-11 | Univ Oxford Innovation Ltd | Antibodies |
WO2024118866A1 (en) | 2022-12-01 | 2024-06-06 | Modernatx, Inc. | Gpc3-specific antibodies, binding domains, and related proteins and uses thereof |
WO2024133052A1 (en) | 2022-12-19 | 2024-06-27 | Universität Basel Vizerektorat Forschung | T-cell receptor fusion protein |
WO2024138144A1 (en) * | 2022-12-22 | 2024-06-27 | The Medical College Of Wisconsin, Inc. | Compositions that target cd138 and cd3 and methods of making and using the same |
WO2024133858A1 (en) | 2022-12-22 | 2024-06-27 | Julius-Maximilians-Universität-Würzburg | Antibodies for use as coagulants |
WO2024152014A1 (en) | 2023-01-13 | 2024-07-18 | Regeneron Pharmaceuticals, Inc. | Fgfr3 binding molecules and methods of use thereof |
WO2024167898A1 (en) | 2023-02-07 | 2024-08-15 | Go Therapeutics, Inc. | ANTIBODY FUSION PROTEINS COMPRISING ANTI-GLYCO-MUC4 ANTIBODIES AND MIC PROTEIN α1-α2 DOMAINS, AND THEIR USES |
GB202301949D0 (en) | 2023-02-10 | 2023-03-29 | Coding Bio Ltd | CLL1 and/or CD33 binding molecules |
WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
WO2024180085A1 (en) | 2023-02-27 | 2024-09-06 | Netris Pharma | Anti-netrin-1 monoclonal antibody for treating endometriosis and associated pains |
TW202502387A (en) | 2023-03-01 | 2025-01-16 | 法商賽諾菲公司 | Use of anti-ceacam5 immunoconjugates for treating neuroendocrine cancers expressing ceacam5 |
EP4427763A1 (en) | 2023-03-06 | 2024-09-11 | Sanofi | Antitumor combinations containing anti-ceacam5 antibody-drug conjugates, anti-vegfr-2 antibodies and anti-pd1/pd-l1 antibodies |
WO2024188356A1 (en) | 2023-03-16 | 2024-09-19 | Inmagene Biopharmaceuticals (Hangzhou) Co., Ltd. | Ilt7-targeting antibodies and uses thereof |
EP4431526A1 (en) | 2023-03-16 | 2024-09-18 | Emfret Analytics GmbH & Co. KG | Anti-gpvi antibodies and functional fragments thereof |
WO2024194685A2 (en) | 2023-03-17 | 2024-09-26 | Oxitope Pharma B.V. | Anti-phosphocholine antibodies and methods of use thereof |
WO2024194686A2 (en) | 2023-03-17 | 2024-09-26 | Oxitope Pharma B.V. | Anti-phosphocholine antibodies and methods of use thereof |
WO2024194455A1 (en) | 2023-03-23 | 2024-09-26 | Sanofi | CEACAM5 mRNA ASSAY FOR PATIENT SELECTION IN CANCER THERAPY |
WO2024206126A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Cd16-binding antibodies and uses thereof |
WO2024206329A1 (en) | 2023-03-27 | 2024-10-03 | Modernatx, Inc. | Nucleic acid molecules encoding bi-specific secreted engagers and uses thereof |
WO2024200722A1 (en) | 2023-03-28 | 2024-10-03 | Tillotts Pharma Ag | Solid oral dosage form comprising antibodies for sustained release in the lower gastrointestinal tract |
WO2024209089A1 (en) | 2023-04-07 | 2024-10-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Use of antibody against the endothelin receptor b for diagnostic and therapeutic applications |
WO2024251733A1 (en) | 2023-06-05 | 2024-12-12 | Sanofi | Antitumor combinations containing anti-ceacam5 antibody-drug conjugates, anti-pd1/pd-l1 antibodies and anti-ctla4 antibodies |
WO2024258967A1 (en) | 2023-06-13 | 2024-12-19 | Synthis Therapeutics, Inc. | Anti-cd5 antibodies and their uses |
WO2024259305A1 (en) | 2023-06-14 | 2024-12-19 | The Broad Institute, Inc. | Vhh polypeptides that bind to mesothelin, compositions and methods of use thereof |
WO2024261239A1 (en) | 2023-06-23 | 2024-12-26 | Imcheck Therapeutics | Bispecific antibodies targeting btn3a and the pd-1/pd-l1 inhibitory axis |
WO2025012417A1 (en) | 2023-07-13 | 2025-01-16 | Institut National de la Santé et de la Recherche Médicale | Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof |
WO2025027529A1 (en) | 2023-07-31 | 2025-02-06 | Advesya | Anti-il-1rap antibody drug conjugates and methods of use thereof |
WO2025032158A1 (en) | 2023-08-08 | 2025-02-13 | Institut National de la Santé et de la Recherche Médicale | Method to treat tauopathies |
WO2025049272A1 (en) | 2023-08-25 | 2025-03-06 | The Broad Institute, Inc. | Card9 variant polypeptide and antibodies directed thereto |
WO2025061994A1 (en) | 2023-09-21 | 2025-03-27 | Domain Therapeutics | Anti-ccr8 monoclonal antibodies and their therapeutic use |
WO2025061993A1 (en) | 2023-09-21 | 2025-03-27 | Domain Therapeutics | Anti-ccr8 monoclonal antibodies and their therapeutic use |
WO2025072888A2 (en) | 2023-09-28 | 2025-04-03 | Novavax, Inc. | Anti-sars-cov-2 spike (s) antibodies and their use in treating covid-19 |
WO2025073890A1 (en) | 2023-10-06 | 2025-04-10 | Institut National de la Santé et de la Recherche Médicale | Method to capture circulating tumor extracellular vesicles |
WO2025085805A1 (en) | 2023-10-20 | 2025-04-24 | OncoC4, Inc. | Anti-cd24/anti-cd3 bispecific binding proteins and uses thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530101A (en) * | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5859205A (en) * | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4381295A (en) * | 1979-04-26 | 1983-04-26 | Ortho Pharmaceutical Corporation | Monoclonal antibody to human helper T cells and methods of preparing same |
US4348376A (en) * | 1980-03-03 | 1982-09-07 | Goldenberg Milton David | Tumor localization and therapy with labeled anti-CEA antibody |
GB8308235D0 (en) | 1983-03-25 | 1983-05-05 | Celltech Ltd | Polypeptides |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4695459A (en) * | 1984-12-26 | 1987-09-22 | The Board Of Trustees Of Leland Stanford Junior University | Method of treating autoimmune diseases that are mediated by Leu3/CD4 phenotype T cells |
US5618920A (en) * | 1985-11-01 | 1997-04-08 | Xoma Corporation | Modular assembly of antibody genes, antibodies prepared thereby and use |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
GB8720833D0 (en) * | 1987-09-04 | 1987-10-14 | Celltech Ltd | Recombinant dna product |
AU625613B2 (en) * | 1988-01-05 | 1992-07-16 | Novartis Ag | Novel chimeric antibodies |
EP0328404B1 (en) * | 1988-02-12 | 1993-09-29 | Btg International Limited | Modified antibodies |
EP0365209A3 (en) * | 1988-10-17 | 1990-07-25 | Becton, Dickinson and Company | Anti-leu 3a amino acid sequence |
IL162181A (en) | 1988-12-28 | 2006-04-10 | Pdl Biopharma Inc | A method of producing humanized immunoglubulin, and polynucleotides encoding the same |
CA2018248A1 (en) * | 1989-06-07 | 1990-12-07 | Clyde W. Shearman | Monoclonal antibodies against the human alpha/beta t-cell receptor, their production and use |
US5062934A (en) * | 1989-12-18 | 1991-11-05 | Oronzio Denora S.A. | Method and apparatus for cathodic protection |
GB8928874D0 (en) * | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
US6750325B1 (en) | 1989-12-21 | 2004-06-15 | Celltech R&D Limited | CD3 specific recombinant antibody |
GB9014932D0 (en) * | 1990-07-05 | 1990-08-22 | Celltech Ltd | Recombinant dna product and method |
GB9019812D0 (en) * | 1990-09-11 | 1990-10-24 | Scotgen Ltd | Novel antibodies for treatment and prevention of infection in animals and man |
GB9021679D0 (en) * | 1990-10-05 | 1990-11-21 | Gorman Scott David | Antibody preparation |
US5994510A (en) | 1990-12-21 | 1999-11-30 | Celltech Therapeutics Limited | Recombinant antibodies specific for TNFα |
EP1362868A3 (en) * | 1991-03-06 | 2004-02-11 | MERCK PATENT GmbH | Humanized and chimeric monoclonal antibodies that bind epidermal growth factor receptor (EGF-R) |
EP1681305A3 (en) * | 1991-03-18 | 2008-02-27 | New York University | Monoclonal and chimeric antibodies specific for human tumor necrosis factor |
JPH06202412A (en) * | 1992-12-26 | 1994-07-22 | Canon Inc | Image forming device |
US6180377B1 (en) * | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
US5535089A (en) * | 1994-10-17 | 1996-07-09 | Jing Mei Industrial Holdings, Ltd. | Ionizer |
-
1989
- 1989-12-21 GB GB898928874A patent/GB8928874D0/en active Pending
-
1990
- 1990-12-21 EP EP94202090A patent/EP0626390B1/en not_active Revoked
- 1990-12-21 EP EP91901433A patent/EP0460167B1/en not_active Revoked
- 1990-12-21 AU AU69740/91A patent/AU646009B2/en not_active Expired
- 1990-12-21 JP JP3501864A patent/JPH04505398A/en active Pending
- 1990-12-21 AU AU70486/91A patent/AU631481B2/en not_active Expired
- 1990-12-21 DE DE69033857T patent/DE69033857T2/en not_active Revoked
- 1990-12-21 KR KR1019910700944A patent/KR100191152B1/en not_active Expired - Lifetime
- 1990-12-21 DK DK91901559.4T patent/DK0460171T3/en active
- 1990-12-21 ES ES94202090T patent/ES2165864T3/en not_active Expired - Lifetime
- 1990-12-21 ES ES91901835T patent/ES2112270T3/en not_active Expired - Lifetime
- 1990-12-21 DK DK94202090T patent/DK0626390T3/en active
- 1990-12-21 HU HU734/91A patent/HU215383B/en unknown
- 1990-12-21 RU SU5001870A patent/RU2112037C1/en active
- 1990-12-21 AT AT94202090T patent/ATE208794T1/en not_active IP Right Cessation
- 1990-12-21 WO PCT/GB1990/002017 patent/WO1991009967A1/en not_active Application Discontinuation
- 1990-12-21 AT AT91901835T patent/ATE159299T1/en not_active IP Right Cessation
- 1990-12-21 EP EP94104042A patent/EP0620276A1/en not_active Withdrawn
- 1990-12-21 DE DE69020544T patent/DE69020544T2/en not_active Expired - Lifetime
- 1990-12-21 RO RO148282A patent/RO114298B1/en unknown
- 1990-12-21 RO RO148281A patent/RO114232B1/en unknown
- 1990-12-21 WO PCT/GB1990/002015 patent/WO1991009966A1/en active IP Right Grant
- 1990-12-21 JP JP50210791A patent/JP3452062B2/en not_active Expired - Lifetime
- 1990-12-21 KR KR1019910700949A patent/KR100197956B1/en not_active Expired - Lifetime
- 1990-12-21 EP EP91901835A patent/EP0460178B1/en not_active Expired - Lifetime
- 1990-12-21 AT AT91901559T patent/ATE124459T1/en not_active IP Right Cessation
- 1990-12-21 DE DE69031591T patent/DE69031591T2/en not_active Expired - Lifetime
- 1990-12-21 HU HU912751A patent/HUT60786A/en unknown
- 1990-12-21 WO PCT/GB1990/002018 patent/WO1991009968A1/en active IP Right Grant
- 1990-12-21 DK DK91901433.2T patent/DK0460167T3/en active
- 1990-12-21 RO RO148283A patent/RO114980B1/en unknown
- 1990-12-21 CA CA002046904A patent/CA2046904C/en not_active Expired - Lifetime
- 1990-12-21 ES ES91901433T patent/ES2079638T3/en not_active Expired - Lifetime
- 1990-12-21 DK DK91901835.8T patent/DK0460178T3/en active
- 1990-12-21 AU AU70330/91A patent/AU649645B2/en not_active Expired
- 1990-12-21 DE DE69022982T patent/DE69022982T2/en not_active Revoked
- 1990-12-21 HU HU752/91A patent/HU217693B/en unknown
- 1990-12-21 HU HU912734A patent/HUT58372A/en unknown
- 1990-12-21 EP EP91901559A patent/EP0460171B1/en not_active Expired - Lifetime
- 1990-12-21 AT AT91901433T patent/ATE129017T1/en not_active IP Right Cessation
- 1990-12-21 JP JP50186591A patent/JP3242913B2/en not_active Expired - Lifetime
- 1990-12-21 CA CA002050479A patent/CA2050479C/en not_active Expired - Lifetime
- 1990-12-21 BR BR909007197A patent/BR9007197A/en unknown
- 1990-12-21 ES ES91901559T patent/ES2074701T3/en not_active Expired - Lifetime
-
1991
- 1991-03-06 CA CA002037607A patent/CA2037607C/en not_active Expired - Lifetime
- 1991-08-15 GB GB9117612A patent/GB2246570B/en not_active Expired - Lifetime
- 1991-08-15 GB GB9117611A patent/GB2246781B/en not_active Revoked
- 1991-08-19 NO NO91913229A patent/NO913229L/en not_active Application Discontinuation
- 1991-08-19 NO NO19913228A patent/NO316076B1/en not_active IP Right Cessation
- 1991-08-20 NO NO19913271A patent/NO310560B1/en not_active IP Right Cessation
- 1991-08-20 FI FI913926A patent/FI108777B/en active
- 1991-08-20 BG BG95018A patent/BG60462B1/en unknown
- 1991-08-20 FI FI913927A patent/FI108776B/en active
- 1991-08-20 FI FI913932A patent/FI108917B/en active
- 1991-08-20 KR KR1019910700950A patent/KR100198478B1/en not_active Expired - Lifetime
- 1991-12-23 ZA ZA9110129A patent/ZA9110129B/en unknown
-
1993
- 1993-09-03 US US08/116,247 patent/US5929212A/en not_active Expired - Lifetime
- 1993-09-13 GB GB9318911A patent/GB2268744B/en not_active Expired - Lifetime
-
1994
- 1994-06-08 AU AU64612/94A patent/AU664801B2/en not_active Expired
-
1995
- 1995-10-12 GR GR950402787T patent/GR3017734T3/en unknown
-
1997
- 1997-12-22 JP JP9353861A patent/JPH11243955A/en active Pending
- 1997-12-24 GR GR970403432T patent/GR3025781T3/en unknown
-
1998
- 1998-11-23 NO NO19985468A patent/NO316074B1/en not_active IP Right Cessation
- 1998-11-23 NO NO985467A patent/NO985467D0/en not_active Application Discontinuation
-
1999
- 1999-04-19 FI FI990875A patent/FI109768B/en active
-
2003
- 2003-11-07 US US10/703,344 patent/US7262050B2/en not_active Expired - Fee Related
- 2003-11-07 US US10/704,071 patent/US7244615B2/en not_active Expired - Fee Related
- 2003-11-07 US US10/704,352 patent/US7241877B2/en not_active Expired - Fee Related
- 2003-11-07 US US10/703,963 patent/US7244832B2/en not_active Expired - Fee Related
-
2004
- 2004-09-10 US US10/937,949 patent/US20050136054A1/en not_active Abandoned
- 2004-09-10 US US10/938,117 patent/US20060029593A1/en not_active Abandoned
- 2004-09-10 US US10/937,971 patent/US20050123534A1/en not_active Abandoned
-
2005
- 2005-11-21 US US11/284,261 patent/US20060073137A1/en not_active Abandoned
- 2005-11-21 US US11/284,260 patent/US20060073136A1/en not_active Abandoned
-
2021
- 2021-09-02 US US17/464,970 patent/USRE50178E1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530101A (en) * | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5585089A (en) * | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5859205A (en) * | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8491901B2 (en) | 2010-11-19 | 2013-07-23 | Toshio Imai | Neutralizing anti-CCL20 antibodies |
US9133273B2 (en) | 2010-11-19 | 2015-09-15 | Eisai R&D Management Co., Ltd. | Nucleic acids encoding neutralizing anti-CCL20 antibodies |
US9809647B2 (en) | 2010-11-19 | 2017-11-07 | Eisai R&D Management Co., Ltd. | Neutralizing anti-CCL20 antibodies |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE50178E1 (en) | Humanised antibodies | |
USRE48787E1 (en) | Humanised antibodies | |
US6750325B1 (en) | CD3 specific recombinant antibody | |
CA2129219C (en) | Humanised antibodies | |
GB2268745A (en) | Humanised antibodies. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CELLTECH CHIROSCIENCE LIMITED, UNITED KINGDOM Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH THERAPEUTICS LIMITED;REEL/FRAME:015278/0584 Effective date: 20000516 Owner name: CELLTECH THERAPEUTICS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAIR, JOHN ROBERT;ATHWAL, DILJEET SINGH;EMTAGE, JOHN SPENCER;REEL/FRAME:015278/0286;SIGNING DATES FROM 19980402 TO 19980416 Owner name: CELLTECH THERAPEUTICS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAIR, JOHN ROBERT;ATHWAL, DILJEET SINGH;EMTAGE, JOHN SPENCER;REEL/FRAME:015278/0486;SIGNING DATES FROM 19980402 TO 19980416 Owner name: CELLTECH R&D LIMITED, UNITED KINGDOM Free format text: CHANGE OF NAME;ASSIGNOR:CELLTECH CHIROSCIENCE LIMITED;REEL/FRAME:015278/0509 Effective date: 20010402 |
|
AS | Assignment |
Owner name: UCB S.A., BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELLTECH R & D LIMITED;REEL/FRAME:022365/0407 Effective date: 20090304 Owner name: UCB PHARMA S.A., BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UCB S.A.;REEL/FRAME:022365/0565 Effective date: 20090305 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |