US20060016180A1 - Apparatus and method for preventing overheating of exhaust purification filter - Google Patents
Apparatus and method for preventing overheating of exhaust purification filter Download PDFInfo
- Publication number
- US20060016180A1 US20060016180A1 US11/181,823 US18182305A US2006016180A1 US 20060016180 A1 US20060016180 A1 US 20060016180A1 US 18182305 A US18182305 A US 18182305A US 2006016180 A1 US2006016180 A1 US 2006016180A1
- Authority
- US
- United States
- Prior art keywords
- filter
- overheat
- flow rate
- temperature
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/14—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
- F02M26/15—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
Definitions
- the present invention relates to an apparatus and a method for preventing overheating of an exhaust purification filter that is provided in the exhaust system of an internal combustion engine, which exhaust purification filter filters particulate matter in exhaust gas, and burns and purifies particulate matter accumulated during the filtering.
- Japanese Laid-Open Patent Publication No. 2002-371889 discloses a technique for purifying exhaust gas, in which a NOx storage reduction catalyst is disposed in the exhaust system of an internal combustion engine.
- exhaust gas is set to reducing atmosphere when the internal combustion engine is decelerating, so that NOx stored in a catalyst is reduced.
- the intake flow rate is reduced or the amount of exhaust gas recirculation is increased.
- an exhaust purification filter for filtering particulate matter is disposed in the exhaust system in some cases.
- particulate matter gradually accumulates in the filter as the operation of the internal combustion engine continues. Therefore, a temperature increase process needs to be executed to prevent the filter from clogging. In the temperature increase process, when a certain amount of particulate matter has accumulated, the accumulated particulate matter is burned to regenerate the exhaust purification filter.
- the temperature increase process for the exhaust purification filter may be stopped immediately when the internal combustion engine starts decelerating. However, even if this is the case, since oxygen exists in the filter in one form or another, it is difficult stop the generation of the heat right away.
- an apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating is provided.
- the filter filters particulate matter in exhaust gas. Particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated.
- the apparatus includes overheat prevention means. During the temperature increase process, the overheat prevention means executes an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat.
- the present invention also provides an apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating.
- the filter filters particulate matter in exhaust gas. Particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated.
- the apparatus includes means for reducing the rate of decrease of the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
- Another objective of the present invention is to provide a method that effectively prevents an exhaust purification filter of an internal combustion engine from overheating.
- the present invention provides a method for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating.
- the method includes: filtering particulate matter in exhaust gas with the filter; burning and purifying particulate matter that is accumulated in the filter through filtering by executing the temperature increase process in which the filter is heated; and executing an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
- FIG. 1 is a diagrammatic view illustrating an overheat prevention apparatus for a diesel engine according to a first embodiment of the present invention
- FIG. 2 is a flowchart showing an overheat prevention process for an exhaust purification filter
- FIG. 3 is a graph used in the overheat prevention process shown in FIG. 2 ;
- FIG. 4 is a time chart showing one example of the control by the overheat prevention process shown in FIG. 2 ;
- FIG. 5 is a flowchart showing a fuel injection amount control process
- FIG. 6 is a graph used in the fuel injection amount control process shown in FIG. 5 ;
- FIG. 7 is a time chart showing one example of control according to a process of a second embodiment of the present invention.
- FIG. 8 is a time chart showing one example of control by a process according to a third embodiment of the present invention.
- FIG. 1 shows a vehicle diesel engine 2 according to the present invention and its control system.
- the diesel engine 2 has a plurality of cylinders.
- the engine 2 is a four-cylinder engine having first to fourth cylinders #1, #2, #3, #4.
- the present invention may be applied to engines having three or less cylinders or five or more cylinders.
- Each of the cylinders #1 to #4 has a combustion chamber 4 that is connected to an intake port 8 .
- Each intake port 8 is selectively opened and closed with an intake valve 6 .
- the intake ports 8 are connected to a surge tank 12 with an intake manifold 10 .
- An intake passage 13 extends from the surge tank 12 .
- An intercooler 14 and a compressor 16 a of a turbocharger (supercharger) 16 are located in the intake passage 13 .
- An air cleaner 18 is connected to the inlet of the intake passage 13 .
- the intake manifold 10 , the surge tank 12 and the intake passage 13 form an intake system.
- An outlet 20 a of an exhaust gas recirculation passage (hereinafter, referred to as EGR passage) 20 is connected to the surge tank 12 .
- a throttle valve 22 is disposed in a section of the intake passage 13 between surge tank 12 and the intercooler 14 .
- An intake flow rate sensor 24 and an intake temperature sensor 26 are disposed in a section of the intake passage 13 between the compressor 16 a and the air cleaner 18 .
- the combustion chamber 4 of each of the cylinders #1 to #4 is connected to an exhaust port 30 that is selectively opened and closed by an exhaust valve 28 .
- the exhaust ports 30 are connected to an inlet of the turbine 16 b of the turbocharger 16 through an exhaust manifold 32 .
- the outlet of the turbine 16 b is connected to an exhaust passage 34 .
- the turbine 16 b draws exhaust gas from a section of the exhaust manifold 32 that corresponds to the fourth cylinder #4.
- the exhaust manifold 32 and the exhaust passage 34 form an exhaust system.
- the first catalytic converter 36 located at the most upstream section contains a NOx storage reduction catalyst 36 a .
- the NOx storage reduction catalyst 36 a stores NOx.
- exhaust gas is regarded as a reducing atmosphere (stoichiometric or lower air-fuel ratio)
- NOx is released from the NOx storage reduction catalyst 36 a , and is reduced by HC and CO. NOx is purified in this manner.
- the second catalytic converter 38 containing an exhaust purification filter 38 a is located at the second position from the most upstream side.
- the exhaust purification filter 38 a has a monolithic wall. The wall has pores through which exhaust gas passes. Since a layer of NOx storage reduction catalyst is coated on the surface of the exhaust purification filter 38 a , the exhaust purification filter 38 a functions as an exhaust purification catalyst, and thus purifies NOx as described above. Further, the pores in the wall of the filter 38 a trap particulate matter (hereinafter, referred to as “PM”) in exhaust gas.
- PM particulate matter
- active oxygen which is generated in a high-temperature oxidizing atmosphere when NOx is stored, starts oxidizing trapped PM. Further, ambient excessive oxygen further oxidizes the PM.
- the second catalytic converter 38 performs purification of NOx, and burning and purification of PM.
- the first catalytic converter 36 and the second catalytic converter 38 are formed integrally.
- the third catalytic converter 40 is located in the most downstream section.
- the third catalytic converter 40 contains an oxidation catalyst 40 a , which oxidizes and purifies HC and CO.
- a first exhaust temperature sensor 44 is located between the NOx storage reduction catalyst 36 a and the exhaust purification filter 38 a , which are close to each other. Between the exhaust purification filter 38 a and the oxidation catalyst 40 a , a second exhaust temperature sensor 46 is located in the vicinity of the exhaust purification filter 38 a , and an air-fuel ratio sensor 48 is located in the vicinity of the oxidation catalyst 40 a.
- the air-fuel ratio sensor 48 detects the air-fuel ratio based on components in exhaust gas, and outputs a continuous voltage signal that is proportionate to the air-fuel ratio.
- the first exhaust temperature sensor 44 and the second exhaust temperature sensor 46 detect exhaust temperatures thci, thco, respectively, at the corresponding position.
- Pipes of a differential pressure sensor 50 are connected to a section upstream of the filter 38 a and a section downstream of the filter 38 a .
- the differential pressure sensor 50 detects the pressure difference ⁇ P between the sections upstream and downstream of the exhaust purification filter 38 a , thereby detecting the degree of clogging of the filter 38 a .
- the degree of clogging represents the degree of accumulation of PM in the filter 38 a.
- An inlet 20 b of the EGR passage 20 is connected to the exhaust manifold 32 .
- the inlet 20 b is located at a section of the exhaust manifold 32 that is close to the first cylinder #1, which section is opposite to a section of the exhaust manifold 32 at which the turbine 16 b introduces exhaust gas.
- An iron based EGR catalyst 52 and an EGR cooler 54 are located in the EGR passage 20 in this order from the inlet 20 b .
- the iron based EGR catalyst 52 reforms exhaust gas that passes through the EGR passage 20 (hereinafter, referred to as EGR gas).
- the EGR cooler 54 cools EGR gas.
- the EGR catalyst 52 also has a function to prevent the EGR cooler 54 from clogging.
- EGR amount the amount of exhaust gas that is recirculated to the intake system through the outlet 20 a from the EGR passage 20 is adjusted.
- Each of the cylinders #1 to #4 is provided with a fuel injection valve 58 that directly injects fuel into the corresponding combustion chamber 4 .
- the fuel injection valves 58 are connected to a common rail 60 with fuel supply pipes 58 a .
- a variable displacement fuel pump 62 which is electrically controlled, supplies fuel to the common rail 60 .
- High pressure fuel supplied from the fuel pump 62 to the common rail 60 is distributed to the fuel injection valves 58 through the fuel supply pipes 58 a .
- a fuel pressure sensor 64 for detecting the pressure of fuel is attached to the common rail 60 .
- the fuel pump 62 also supplies low pressure fuel to a fuel adding valve 68 through a fuel supply pipe 66 .
- the fuel adding valve 68 is provided in the vicinity of the exhaust port 30 of the fourth cylinder #4 and injects fuel to the exhaust turbine 16 b , thereby adding fuel to exhaust gas.
- a catalyst control mode which is described below, is executed by such addition of fuel.
- An electronic control unit (hereinafter, referred to as ECU) 70 is mainly composed of a digital computer having a CPU, a ROM, and a RAM, and drive circuits for driving other devices.
- the ECU 70 reads signals from the intake flow rate sensor 24 , the intake temperature sensor 26 , the first exhaust temperature sensor 44 , the second exhaust temperature sensor 46 , the air-fuel ratio sensor 48 , the differential pressure sensor 50 , an EGR opening degree sensor (not shown) in the EGR valve 56 , the fuel pressure sensor 64 , and a throttle opening degree sensor 22 a .
- the ECU 70 reads signals from a pedal position sensor 74 that detects the depression degree ACCP of an accelerator pedal 72 , and a coolant temperature sensor 76 that detects the temperature THW of coolant of the diesel engine 2 .
- the ECU 70 also reads signals from an engine speed sensor 80 that detects the number of revolutions NE of a crankshaft 78 , and a cylinder distinguishing sensor 82 that distinguishes cylinders by detecting the rotation phase of the crankshaft 78 or the rotation phase of the intake cams.
- the ECU 70 controls the amount and the timing of fuel injection by the fuel injection valves 58 .
- the ECU 70 controls the EGR valve 56 , a motor 22 B that actuates the throttle valve 22 , the fuel pump 62 , and the fuel adding valve 68 , thereby executing catalyst control such as PM elimination control, sulfur release control, or NOx reduction control, which are discussed below, a process for preventing overheat of the exhaust purification filter, and other processes.
- the ECU 70 selects one of a normal combustion mode and a low temperature combustion mode according to the operating state of the engine.
- the low temperature combustion mode refers to a combustion mode in which an EGR opening degree map for the low temperature combustion mode is used for increasing the amount of exhaust gas recirculation to slow down the increase of the combustion temperature in the combustion chamber 4 , thereby simultaneously reducing NOx and smoke.
- the low temperature combustion mode is executed in a low load, low-to-middle rotation speed region, and air-fuel ratio feedback control is performed by adjusting the throttle opening degree TA based on the air-fuel ratio AF detected by the air-fuel ratio sensor 48 .
- the other combustion mode is the normal combustion mode, in which a normal EGR control (including a case where no EGR is executed) is performed using an EGR opening degree map for the normal combustion mode.
- the ECU 70 performs four catalyst control modes, which are modes for controlling the exhaust purification catalysts.
- the catalyst control modes include a PM elimination control mode, a sulfur release control mode, a NOx reduction control mode, and a normal control mode.
- PM elimination control mode PM deposited on the exhaust purification filter 38 a in the second catalytic converter 38 is burned. The PM is then converted into CO 2 and H 2 O and discharged.
- the PM elimination control mode is executed when an estimated accumulation amount of PM reaches a PM elimination reference value.
- fuel is added to exhaust gas by the fuel adding valve 68 in a state where the air-fuel ratio is higher than the stoichiometric air-fuel ratio, so that the catalyst bed temperature is increased (for example, 600 to 700° C.).
- an after injection is performed by the fuel injection valves 58 in this mode in some cases.
- the after injection refers to fuel injection to the combustion chambers 4 during the expansion stroke and the exhaust stroke.
- the S release control mode if the NOx storage reduction catalyst 36 a and the exhaust purification filter 38 a are poisoned with sulfur compounds and the NOx storage capacity is lowered, S components (sulfur components) are released so that NOx storage capacity is restored.
- addition of fuel from the fuel adding valve 68 is repeated so that the catalyst bed temperature is increased (for example, to 650° C.). Further, fuel is intermittently added to exhaust gas by the fuel adding valve 68 , so that the air-fuel ratio is changed to the stoichiometric air-fuel ratio or a value slightly lower than the stoichiometric air-fuel ratio.
- after injection may be performed by the fuel injection valves 58 .
- NOx reduction control mode NOx stored in the NOx storage reduction catalyst 36 a and the exhaust purification filter 38 a is reduced, and N 2 , CO 2 , and H 2 O are emitted.
- addition of fuel is intermittently performed at a relatively long interval so that the catalyst bed temperature becomes relatively low (for example, 250 to 500° C.). Accordingly, the air-fuel ratio is lowered to or below the stoichiometric air-fuel ratio.
- the normal control is a control mode other than the above three catalyst control modes. During the normal control, addition of fuel from the fuel adding valve 68 and the after injection by the fuel injection valve 58 are not performed.
- FIG. 2 shows a flowchart of the filter overheat prevention process. This process is repeatedly executed at a predetermined cycle. Steps in the flowchart, each of which corresponds to a stage, is denoted as S.
- the ECU 70 determines whether the exhaust purification filter 38 a is likely to overheat at step S 102 . That is, if the following conditions (1) and (2) are both met, it is determined that the exhaust purification filter 38 a is likely to overheat.
- a PM elimination control mode that is, a process in which the exhaust purification filter 38 a is heated for burning the deposited PM, is being executed.
- a expected maximum bed temperature CTmax which is obtained based on the relationship between a decrease amount ⁇ GA of the intake flow rate per unit time and a PM accumulation amount in the exhaust purification filter 38 a , is higher than an overheat determination temperature OT.
- the expected maximum bed temperature CTmax is the highest bed temperature that occurs immediately after the intake flow rate GA starts decreasing.
- the decrease amount ⁇ GA(g/s 2 ) of the intake flow rate is obtained as an amount of change of the intake flow rate GA(g/s) detected by the intake flow rate sensor 24 per unit time (s).
- ⁇ GA >0.
- the PM accumulation amount of the exhaust purification filter 38 a is obtained through PM accumulation amount computation executed by the ECU 70 based on the operating state of the diesel engine 2 (the intake temperature, the air-fuel ratio, the exhaust temperatures thci, thco). More specifically, the PM accumulation amount of the exhaust purification filter 38 a is obtained by accumulating a value that is obtained through computing the balance between a PM emission amount from the diesel engine 2 in a predetermined cycle computed based on the engine operating state, and a PM loss amount due to oxidation in the exhaust purification filter 38 a.
- the expected maximum bed temperature CTmax is computed by referring to a map MapCT shown in FIG. 3 . Whether the expected maximum bed temperature CTmax is higher than the overheat determination temperature OT is determined. If CTmax>OT, the condition (2) is deemed to be met.
- the map MapCT has been obtained in the following manner. That is, experiments were conducted using the decrease amount ⁇ GA of the intake flow rate and the PM accumulation amount as parameters.
- the highest bed temperature of the exhaust purification filter 38 a was actually measured in a period immediately after the intake flow rate started to decrease during the PM elimination control.
- the greater the PM accumulation amount the higher the expected maximum bed temperature CTmax becomes.
- the greater the PM accumulation amount the greater the rate of increase of the expected maximum bed temperature CTmax relative to an increase of the intake flow rate decrease amount ⁇ GA becomes.
- the expected maximum bed temperature CTmax PM 1 a .
- the expected maximum bed temperature CTmax PM 1 b . In either case, expected maximum bed temperature CTmax is lower than the overheat determination temperature OT.
- the exhaust flow rate increase process includes the following processes (a) and (b).
- the opening degree TA of the throttle valve 22 is controlled in accordance with the engine operating state such that combustion is properly performed in the diesel engine 2 .
- the throttle opening degree TA is maximized (100%) or increased compared to that of the normal control by a degree that is determined in advance for preventing overheat of the exhaust purification filter 38 a.
- the throttle valve 22 is fully opened. This increases the amount of air drawn into the combustion chambers 4 . As a result, the amount of exhaust gas discharged to the exhaust passage 34 is increased.
- “increase process”, that is, increasing the flow rate of air drawn into the engine 2 and the flow rate of exhaust gas discharged from the engine 2 refer to processes in which the flow rates are increased relative to those in a case where the normal opening degree control is executed for the throttle valve 22 . That is, when the intake flow rate GA and the exhaust flow rate decrease, the “increase process” includes a process in which the rate of decrease of the intake flow rate GA and the exhaust flow rate is reduced, a process in which the intake flow rate GA and the exhaust flow rate are maintained against reduction, and a process in which the intake flow rate GA and the exhaust flow rate are increased. When the intake flow rate GA and the exhaust flow rate increase, the “increase process” includes a process in which the intake flow rate GA and the exhaust flow rate are further increased.
- the opening degree of the EGR valve 56 is controlled in accordance with the engine operating state such that the combustion of the diesel the engine 2 is properly conducted.
- a target EGR opening degree EGRt is reduced to zero (0%), or is reduced compared to that of the normal control by a degree that is determined in advance for preventing overheat of the exhaust purification filter 38 a.
- the EGR valve 56 is fully closed. This increases the amount of air drawn into the combustion chambers 4 . As a result, the amount of exhaust gas discharged to the exhaust passage 34 is increased.
- the rate of decrease of the intake flow rate GA is reduced, the rate of decrease of the exhaust flow rate is reduced, and the catalyst bed temperature, that is, the temperature of the exhaust purification filter 38 a , is not increased to the overheat determination temperature OT.
- the throttle opening degree TA is not increased and the EGR opening degree EGRa is not reduced, the intake flow rate GA is quickly reduced as shown by a broken line.
- the temperature of the exhaust purification filter 38 a exceeds the overheat determination temperature OT.
- the ECU 70 determines whether the exhaust flow rate increase process is being executed at step S 106 . If the exhaust flow rate increase process is not being executed (NO at S 106 ), the ECU 70 temporarily suspends the current procedure.
- the ECU 70 determines a condition for stopping the exhaust flow rate increase process is met at step S 108 .
- the stopping condition is deemed to be established when one of the following conditions (e1) and (e2) is met.
- the condition (e1) is therefore selected as one of the stopping conditions for the exhaust flow rate increase process.
- the condition (e2) is met when the expected maximum bed temperature CTmax satisfies the following formula 1, which expected maximum bed temperature CTmax has been computed based on the current intake flow rate decrease amount ⁇ GA and PM accumulation amount, by referring to the map MapCT of FIG. 3 .
- H represents a constant determined taking the hysteresis into consideration.
- the ECU 70 stops the exhaust flow rate increase process at step S 110 .
- FIG. 5 is a flowchart of the procedure of fuel injection amount control executed by the ECU 70 .
- the fuel injection amount control if the exhaust flow rate increase process is being executed during idling of the engine 2 , an idle up process is executed.
- the idle up process is executed in an interrupting manner at every fuel injection. Specifically, since the present invention is applied to the four-cylinder diesel engine 2 , the idle up process is executed at every crank angle of 180°.
- the ECU 70 determines whether the current engine operating state is out of a fuel cutoff region for deceleration of the engine 2 at step S 152 .
- the fuel cutoff region for deceleration is determined according to the engine operating state (for example, the pedal depression degree ACCP and engine speed NE). If the engine operating state is not out of the fuel cutoff region for deceleration (NO at S 152 ), the ECU 70 suspends the current routine. Fuel is not injected from the fuel injection valves 58 .
- the ECU 70 computes an idling governor injection amount QGOV 1 and a driving governor injection amount at step S 154 based on a governor pattern map shown in FIG. 6 that defines the relationship of a governor injection amount to the engine speed NE and the pedal depression degree ACCP.
- the idling governor injection amount QGOV 1 is an injection amount for a low speed range of the engine 2 , that is, for a state where the engine 2 is mainly idling.
- the idling governor injection amount QGOV 1 is shown by a broken line in FIG. 6 .
- the driving governor injection amount is an injection amount for a high speed range of the engine 2 , that is, for a state where the vehicle is mainly driving.
- the driving governor injection amount is shown by a solid line in FIG. 6 .
- step S 156 the ECU 70 determines whether the exhaust flow rate increase process is being executed. If the exhaust flow rate increase process is not being executed (NO at S 156 ), the ECU 70 computes the governor injection amount QGOV at step S 158 .
- the governor injection amount QGOV computed according to the following formula 2. QGOV ⁇ Max( QGOV 1 + QII+QIPB+QIPNT, QGOV 2 + QIPB ) [Formula 2]
- a value obtained by adding an integration correction amount QII, an expected load correction factor QIPB for idle speed control (ISC) and an ISC expected speed correction factor QIPNT to the idling governor injection amount QGOV 1 is computed.
- a value obtained by adding the ISC expected load correction factor QIPB to the driving governor injection amount QGOV 2 is computed. The computed values are compared, and the greater one is set as the governor injection amount QGOV.
- the governor injection amount QGOV is determined as schematically shown in FIG. 6 . That is, in the low speed region of the engine 2 , a value obtained by adding the integration correction amount QII, the ISC expected load correction factor QIPB and the ISC expected speed correction factor QIPNT to the idling governor injection amount QGOV 1 is selected as the governor injection amount QGOV. On the other hand, in the high speed range of the engine 2 , a value obtained by adding the ISC expected load correction factor QIPB to the driving governor injection amount is selected as the governor injection amount QGOV.
- the ECU 70 computes the governor injection amount QGOV at step S 160 , using the following formula 3.
- the formula 3 is different from the formula 2 in that a value obtained by adding the integration correction amount QII and an ISC speed correction factor QINC for an idle up process for preventing overheat of the exhaust purification filter 38 a to the idling governor injection amount QGOV 1 is used as the governor injection amount QGOV.
- the fuel injection amount is increased according to the ISC speed correction factor QINC, so that the engine speed NE is increased relative to that of the normal idling as indicated by broken line denoted as “during an idle up process” in FIG. 6 .
- the exhaust purification filter 38 a is prevented from overheating.
- step 162 which is after step S 158 or step S 160 , the ECU 70 sets the smaller one of a maximum injection amount QFULL and the governor injection amount QGOV as a final injection amount QFIN.
- step S 164 the ECU 70 computes an injection amount command value (time conversion value) TSP that corresponds to the final injection amount QFIN, and outputs the injection amount command value TSP. The ECU 70 then temporarily suspends the current procedure. Based on the output of the injection amount command value TSP, the fuel injection valve 58 is actuated to perform fuel injection.
- TSP time conversion value
- the throttle opening degree is maximized (fully open), the EGR opening degree is minimized (fully closed), and the idle up process is continued to prevent the exhaust purification filter 38 a from overheating after time t 3 as long as the expected maximum bed temperature CTmax is not sufficiently low after the engine 2 starts idling.
- the overheat prevention process of FIG. 2 and steps S 156 , S 160 in the fuel injection amount control process of FIG. 5 correspond to processes executed when the ECU 70 functions as overheat prevention means.
- the first embodiment described above has the following advantages.
- the exhaust flow rate is increased before the actual bed temperature of the exhaust purification filter 38 a exceeds the overheat determination temperature OT. As a result, the exhaust purification filter 38 a is effectively prevented from overheating.
- FIGS. 1, 2 , 5 are referred to as necessary in the following description.
- step 102 of FIG. 2 whether the exhaust purification filter 38 a is likely to overheat is determined based on whether at least one of the following conditions (1) and (2) is met.
- the exhaust temperature thci in a section upstream of the exhaust purification filter 38 a (that is, the exhaust temperature in a section downstream of the NOx storage reduction catalyst 36 a ) is higher than an overheat determination temperature OTi for the upstream section.
- the exhaust temperature thco in a section downstream of the exhaust purification filter 38 a is higher than an overheat determination temperature OTo for the downstream section.
- a condition for stopping the exhaust flow rate increase process is determined to be met when the following condition (e1) is met.
- the upstream exhaust temperature thci is sufficiently lower than the overheat determination temperature OTi, and the downstream exhaust temperature thco is sufficiently lower than the overheat determination temperature. OTo.
- the throttle valve 22 is fully opened, and the EGR valve 56 is fully closed at time t 11 , where the exhaust flow rate, that is, the intake flow rate GA is reduced due to, for example, deceleration of the engine 2 during the PM elimination control mode, and the downstream exhaust temperature thco exceeds the overheat determination temperature OTo.
- the exhaust flow rate that is, the intake flow rate GA is reduced due to, for example, deceleration of the engine 2 during the PM elimination control mode
- the downstream exhaust temperature thco exceeds the overheat determination temperature OTo.
- the intake flow rate GA is quickly reduced as shown by a broken line.
- the temperature of the exhaust purification filter 38 a exceeds the overheat determination temperature OT.
- the idle up process is executed during idling as discussed in the fuel injection amount control of FIG. 5 .
- the second embodiment as described above has the following advantages.
- the second embodiment has the same advantage as the item (A1) of the first embodiment.
- the temperature of the exhaust purification filter 38 a is affected by the temperature of exhaust gas that flows into the filter 38 a . Therefore, whether the exhaust purification filter 38 a is likely to overheat can be determined by determining the upstream exhaust temperature thci of the exhaust purification filter 38 a.
- the NOx storage reduction catalyst 36 a which is another exhaust purification catalyst, is disposed in a section upstream of the exhaust purification filter 38 a .
- the NOx storage reduction catalyst 36 a does not function as a filter for PM, but generates heat with fuel added by the fuel adding valve 68 during temperature increase process of the PM elimination control process.
- NOx storage reduction catalyst 36 a upstream of the exhaust purification filter 38 a is heated, the exhaust temperature thci that flows into the exhaust purification filter 38 a increases. This increases the possibility of overheat of the exhaust purification filter 38 a.
- downstream exhaust temperature thco is the temperature in the vicinity of the exhaust purification filter 38 a , the likeliness of overheat of the exhaust purification filter 38 a is substantially directly detected.
- overheat of the exhaust purification filter 38 a can be predicted at an early stage. Accordingly, the exhaust flow rate is increased at an early stage, so that overheat of the exhaust purification filter 38 a is reliably prevented.
- FIGS. 1, 2 , 5 are referred to as necessary in the following description.
- step 102 of FIG. 2 whether the exhaust purification filter 38 a is likely to overheat is determined based on whether the following condition (1) is met.
- An estimated bed temperature thcf of the exhaust purification filter 38 a is higher than the overheat determination temperature OTf.
- the estimated bed temperature thcf is computed by the ECU 70 using the following formula 4 in a predetermined cycle. thcf ⁇ thcfold +( Cf ⁇ Ce )/ Hcp [Formula 4]
- the estimated bed temperature thcfold is the estimated bed temperature thcf that was computed in the preceding cycle.
- the generated heat amount Cf of the exhaust purification filter 38 a refers to the amount of heat generated in the exhaust purification filter 38 a during one cycle in which the estimated bed temperature thcf is computed.
- the generated heat amount Cf is the amount of heat that is generated with a portion of the fuel that has been added to exhaust gas by the fuel adding valve 68 , but has not been consumed at the upstream NOx storage reduction catalyst 36 a .
- the amount of fuel consumed at the upstream NOx storage reduction catalyst 36 a is estimated based on the upstream exhaust temperature thci of the exhaust purification filter 38 a and the intake flow rate GA.
- the amount of fuel that is burned at the exhaust purification filter 38 a is obtained. Based on the obtained fuel amount, the generated heat amount Cf of the exhaust purification filter is determined.
- the emitted heat amount Ce refers to the amount of heat that is removed from the exhaust purification filter 38 a by exhaust gas during one cycle for computing the estimated bed temperature thcf.
- the emitted heat amount Ce is computed based on the intake flow rate GA, which reflects the exhaust flow rate, the upstream exhaust temperature thci and the estimated bed temperature thcfold of the preceding cycle.
- Thermal capacity Hcp of the exhaust purification filter is a thermal capacity of the exhaust purification filter 38 a that has been measured in advance.
- a condition for stopping the exhaust flow rate increase process is determined to be met when the following condition (e1) is met.
- the estimated bed temperature thcf of the exhaust purification filter is sufficiently lower than the overheat determination temperature OTf.
- the throttle valve 22 is fully opened, and the EGR valve 56 is fully closed at time t 21 , where the exhaust flow rate, that is, the intake flow rate GA is reduced due to, for example, deceleration of the engine 2 during the PM elimination control mode, and the estimated bed temperature thcf of the exhaust purification filter exceeds the overheat determination temperature OTf.
- the intake flow rate GA is increased and decrease of the exhaust flow rate is prevented, the temperature of the exhaust purification filter 38 a is not increased to the overheat determination temperature OT.
- the intake flow rate GA is quickly reduced as shown by a broken line.
- the temperature of the exhaust purification filter 38 a exceeds the overheat determination temperature OT.
- the idle up process is executed during idling as discussed in the fuel injection amount control of FIG. 5 .
- the third embodiment as described above has the following advantages.
- the third embodiment has the same advantage as the item (A1) of the first embodiment.
- FIGS. 1, 2 , 5 are referred to as necessary in the following description.
- step 102 of FIG. 2 whether the exhaust purification filter 38 a is likely to overheat is determined based on whether the following condition (1) is met.
- the PM elimination control is being executed, and the PM accumulation amount is greater than a reference accumulation amount.
- the exhaust purification filter 38 a is likely to overheat when the exhaust flow rate decreases.
- the condition in which the PM accumulation amount>the reference accumulation amount is used to determine whether the exhaust purification filter 38 a is likely to overheat.
- a condition for stopping the exhaust flow rate increase process is determined to be met when one of the following conditions (e1) and (e2) is met.
- the fourth embodiment as described above has the following advantages.
- the fourth embodiment has the same advantage as the item (A1) of the first embodiment.
- increase of the intake flow rate is carried out by adjusting the opening degree of both of the throttle valve 22 and the EGR valve 56 .
- the increase of the intake flow rate may be carried out only by increasing the opening degree of the throttle valve 22 .
- the increase of the intake flow rate may be carried out only by reducing the opening degree of the EGR valve 56 .
- the throttle valve 22 when the intake flow rate is increased, the throttle valve 22 is fully opened. However, the throttle valve 22 may be increased relative to that of the normal control by an amount that is set in advance for preventing overheat. Also, when the intake flow rate is increased, the EGR valve 56 is fully closed in the illustrated embodiments. However, the EGR valve 56 may be decreased relative to that of the normal control by an amount that is set in advance for preventing overheat.
- whether the exhaust purification filter 38 a is likely to overheat may be determined based only on whether the condition (2) is met. In this case, the condition for stopping the exhaust flow rate increase process is met when the downstream exhaust temperature thco of the exhaust purification filter 38 a is sufficiently lower than the overheat determination temperature OTo.
- the temperature increase process is being executed according to one of the PM elimination control mode and the S release control mode.
- CTmax is higher than the overheat determination temperature OT (CTmax>OT).
- condition for stopping the exhaust flow rate increase process is as follows.
- condition (e2) is the same as that of the first embodiment.
- the exhaust purification filter 38 a may be determined that the exhaust purification filter 38 a is likely to overheat when the following condition (1) is met.
- the temperature increase process is being executed according to one of the PM elimination control mode and the S release control mode, and the PM accumulation amount at the exhaust purification filter 38 a is greater than a reference accumulation amount.
- condition for stopping the exhaust flow rate increase process is as follows.
- the condition (e1) is the same as that of the fourth embodiment.
- the state where the S release control mode is being executed is used as the condition (1). This effectively prevents the exhaust purification filter 38 a from overheating during the S release control.
- the state in which the engine is decelerated is not used as the condition for determining whether the exhaust purification filter 38 a is likely to overheat in the illustrated embodiments.
- the state in which the engine is decelerating may be used as a condition for determining the likeliness of overheat. This configuration is particularly effective when the engine is decelerating.
- the idle up process is executed together with a process for increasing throttle opening degree and a process for reducing the EGR opening degree. However, in the same situation, only the idle up process may be executed. Increase of the exhaust flow rate due to the idle up process effectively prevents the exhaust purification filter 38 a from overheating.
- step S 156 in the fuel injection amount control of FIG. 5 whether the idle up process should be performed is determined based on whether the exhaust flow rate increase process for preventing the exhaust purification filter 38 a from overheating is being executed. However, whether the idle up process should be performed may be determined using, at step 156 , the same conditions as the conditions for executing the exhaust flow rate increase process and the conditions for stopping the process in the illustrated embodiments.
- step S 156 whether the expected maximum bed temperature CTmax has been stable and lower than the overheat determination temperature OT for a predetermined period may be determined. If the condition is not met, the idle up process is continued (S 160 ), and if the condition is met, the idle up process is stopped and step S 158 is executed.
- the present invention may be applied to other types of engine such as a lean combustion gasoline engine if the engine has a similar catalyst system to the system described herein.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
An apparatus for preventing a filter for purifying exhaust gas emitted by a vehicle diesel engine from overheating is provided. The filter filters particulate matter in exhaust gas. Particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated. The apparatus includes an electronic control unit as overheat prevention means. During the temperature increase process, the overheat prevention means executes an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat. As a result, the filter is effectively prevented from overheating.
Description
- The present invention relates to an apparatus and a method for preventing overheating of an exhaust purification filter that is provided in the exhaust system of an internal combustion engine, which exhaust purification filter filters particulate matter in exhaust gas, and burns and purifies particulate matter accumulated during the filtering.
- Japanese Laid-Open Patent Publication No. 2002-371889 discloses a technique for purifying exhaust gas, in which a NOx storage reduction catalyst is disposed in the exhaust system of an internal combustion engine. In the configuration of the publication, exhaust gas is set to reducing atmosphere when the internal combustion engine is decelerating, so that NOx stored in a catalyst is reduced. When setting exhaust gas to reducing atmosphere, the intake flow rate is reduced or the amount of exhaust gas recirculation is increased.
- Instead of or in addition to the catalyst, an exhaust purification filter for filtering particulate matter is disposed in the exhaust system in some cases. In such an exhaust purification filter, particulate matter gradually accumulates in the filter as the operation of the internal combustion engine continues. Therefore, a temperature increase process needs to be executed to prevent the filter from clogging. In the temperature increase process, when a certain amount of particulate matter has accumulated, the accumulated particulate matter is burned to regenerate the exhaust purification filter.
- Some of the heat generated during the regeneration of the exhaust purification filter is lost to the outside. When an internal combustion engine is decelerating, the flow rate of exhaust gas is reduced. Thus, the amount of heat lost to the outside is reduced, accordingly. Thus, if the internal combustion engine is decelerated during the temperature increase process for regenerating the filter, heat is accumulated in the filter, causing the filter to overheat or deteriorate.
- Especially, if the intake flow rate is reduced by the intake throttle valve and the amount of exhaust gas recirculation is increased by the exhaust gas recirculation valve when the internal combustion engine is decelerating as in the above publication, exhaust flow rate is further reduced. Thus, an exhaust purification filter becomes more likely to overheat.
- The temperature increase process for the exhaust purification filter may be stopped immediately when the internal combustion engine starts decelerating. However, even if this is the case, since oxygen exists in the filter in one form or another, it is difficult stop the generation of the heat right away.
- Accordingly, it is an objective of the present invention to provide an apparatus that effectively prevent an exhaust purification filter of an internal combustion engine from overheating.
- To achieve the foregoing and other objectives and in accordance with the purpose of the present invention, an apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating is provided. The filter filters particulate matter in exhaust gas. Particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated. The apparatus includes overheat prevention means. During the temperature increase process, the overheat prevention means executes an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat.
- The present invention also provides an apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating. The filter filters particulate matter in exhaust gas. Particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated. The apparatus includes means for reducing the rate of decrease of the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
- Another objective of the present invention is to provide a method that effectively prevents an exhaust purification filter of an internal combustion engine from overheating.
- Accordingly, the present invention provides a method for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating. The method includes: filtering particulate matter in exhaust gas with the filter; burning and purifying particulate matter that is accumulated in the filter through filtering by executing the temperature increase process in which the filter is heated; and executing an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
- Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
- The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
-
FIG. 1 is a diagrammatic view illustrating an overheat prevention apparatus for a diesel engine according to a first embodiment of the present invention; -
FIG. 2 is a flowchart showing an overheat prevention process for an exhaust purification filter; -
FIG. 3 is a graph used in the overheat prevention process shown inFIG. 2 ; -
FIG. 4 is a time chart showing one example of the control by the overheat prevention process shown inFIG. 2 ; -
FIG. 5 is a flowchart showing a fuel injection amount control process; -
FIG. 6 is a graph used in the fuel injection amount control process shown inFIG. 5 ; -
FIG. 7 is a time chart showing one example of control according to a process of a second embodiment of the present invention; and -
FIG. 8 is a time chart showing one example of control by a process according to a third embodiment of the present invention. -
FIG. 1 shows avehicle diesel engine 2 according to the present invention and its control system. Thediesel engine 2 has a plurality of cylinders. In this embodiment theengine 2 is a four-cylinder engine having first tofourth cylinders # 1, #2, #3, #4. However, the present invention may be applied to engines having three or less cylinders or five or more cylinders. Each of thecylinders # 1 to #4 has acombustion chamber 4 that is connected to anintake port 8. Eachintake port 8 is selectively opened and closed with an intake valve 6. Theintake ports 8 are connected to asurge tank 12 with anintake manifold 10. Anintake passage 13 extends from thesurge tank 12. Anintercooler 14 and acompressor 16 a of a turbocharger (supercharger) 16 are located in theintake passage 13. Anair cleaner 18 is connected to the inlet of theintake passage 13. Theintake manifold 10, thesurge tank 12 and theintake passage 13 form an intake system. Anoutlet 20 a of an exhaust gas recirculation passage (hereinafter, referred to as EGR passage) 20 is connected to thesurge tank 12. Athrottle valve 22 is disposed in a section of theintake passage 13 betweensurge tank 12 and theintercooler 14. An intakeflow rate sensor 24 and anintake temperature sensor 26 are disposed in a section of theintake passage 13 between thecompressor 16 a and theair cleaner 18. - The
combustion chamber 4 of each of thecylinders # 1 to #4 is connected to anexhaust port 30 that is selectively opened and closed by anexhaust valve 28. Theexhaust ports 30 are connected to an inlet of theturbine 16 b of theturbocharger 16 through anexhaust manifold 32. The outlet of theturbine 16 b is connected to anexhaust passage 34. Theturbine 16 b draws exhaust gas from a section of theexhaust manifold 32 that corresponds to thefourth cylinder # 4. Theexhaust manifold 32 and theexhaust passage 34 form an exhaust system. - Three
catalytic converters exhaust passage 34. The firstcatalytic converter 36 located at the most upstream section contains a NOxstorage reduction catalyst 36 a. When exhaust gas is regarded as an oxidizing atmosphere (lean) during a normal operation of thediesel engine 2, the NOxstorage reduction catalyst 36 a stores NOx. On the other hand, when exhaust gas is regarded as a reducing atmosphere (stoichiometric or lower air-fuel ratio), NOx is released from the NOxstorage reduction catalyst 36 a, and is reduced by HC and CO. NOx is purified in this manner. - The second
catalytic converter 38 containing anexhaust purification filter 38 a is located at the second position from the most upstream side. Theexhaust purification filter 38 a has a monolithic wall. The wall has pores through which exhaust gas passes. Since a layer of NOx storage reduction catalyst is coated on the surface of theexhaust purification filter 38 a, theexhaust purification filter 38 a functions as an exhaust purification catalyst, and thus purifies NOx as described above. Further, the pores in the wall of thefilter 38 a trap particulate matter (hereinafter, referred to as “PM”) in exhaust gas. Thus, active oxygen, which is generated in a high-temperature oxidizing atmosphere when NOx is stored, starts oxidizing trapped PM. Further, ambient excessive oxygen further oxidizes the PM. In this manner, the secondcatalytic converter 38 performs purification of NOx, and burning and purification of PM. In this embodiment, the firstcatalytic converter 36 and the secondcatalytic converter 38 are formed integrally. - The third
catalytic converter 40 is located in the most downstream section. The thirdcatalytic converter 40 contains anoxidation catalyst 40 a, which oxidizes and purifies HC and CO. - A first
exhaust temperature sensor 44 is located between the NOxstorage reduction catalyst 36 a and theexhaust purification filter 38 a, which are close to each other. Between theexhaust purification filter 38 a and theoxidation catalyst 40 a, a secondexhaust temperature sensor 46 is located in the vicinity of theexhaust purification filter 38 a, and an air-fuel ratio sensor 48 is located in the vicinity of theoxidation catalyst 40 a. - The air-
fuel ratio sensor 48 detects the air-fuel ratio based on components in exhaust gas, and outputs a continuous voltage signal that is proportionate to the air-fuel ratio. The firstexhaust temperature sensor 44 and the secondexhaust temperature sensor 46 detect exhaust temperatures thci, thco, respectively, at the corresponding position. - Pipes of a
differential pressure sensor 50 are connected to a section upstream of thefilter 38 a and a section downstream of thefilter 38 a. Thedifferential pressure sensor 50 detects the pressure difference ΔP between the sections upstream and downstream of theexhaust purification filter 38 a, thereby detecting the degree of clogging of thefilter 38 a. The degree of clogging represents the degree of accumulation of PM in thefilter 38 a. - An
inlet 20 b of theEGR passage 20 is connected to theexhaust manifold 32. Theinlet 20 b is located at a section of theexhaust manifold 32 that is close to thefirst cylinder # 1, which section is opposite to a section of theexhaust manifold 32 at which theturbine 16 b introduces exhaust gas. - An iron based
EGR catalyst 52 and anEGR cooler 54 are located in theEGR passage 20 in this order from theinlet 20 b. The iron basedEGR catalyst 52 reforms exhaust gas that passes through the EGR passage 20 (hereinafter, referred to as EGR gas). TheEGR cooler 54 cools EGR gas. TheEGR catalyst 52 also has a function to prevent the EGR cooler 54 from clogging. By adjusting the opening degree of theEGR valve 56, the amount of exhaust gas (hereinafter referred to as EGR amount) that is recirculated to the intake system through theoutlet 20 a from theEGR passage 20 is adjusted. - Each of the
cylinders # 1 to #4 is provided with afuel injection valve 58 that directly injects fuel into the correspondingcombustion chamber 4. Thefuel injection valves 58 are connected to acommon rail 60 withfuel supply pipes 58 a. A variabledisplacement fuel pump 62, which is electrically controlled, supplies fuel to thecommon rail 60. High pressure fuel supplied from thefuel pump 62 to thecommon rail 60 is distributed to thefuel injection valves 58 through thefuel supply pipes 58 a. A fuel pressure sensor 64 for detecting the pressure of fuel is attached to thecommon rail 60. - Further, the
fuel pump 62 also supplies low pressure fuel to afuel adding valve 68 through afuel supply pipe 66. Thefuel adding valve 68 is provided in the vicinity of theexhaust port 30 of thefourth cylinder # 4 and injects fuel to theexhaust turbine 16 b, thereby adding fuel to exhaust gas. A catalyst control mode, which is described below, is executed by such addition of fuel. - An electronic control unit (hereinafter, referred to as ECU) 70 is mainly composed of a digital computer having a CPU, a ROM, and a RAM, and drive circuits for driving other devices. The
ECU 70 reads signals from the intakeflow rate sensor 24, theintake temperature sensor 26, the firstexhaust temperature sensor 44, the secondexhaust temperature sensor 46, the air-fuel ratio sensor 48, thedifferential pressure sensor 50, an EGR opening degree sensor (not shown) in theEGR valve 56, the fuel pressure sensor 64, and a throttleopening degree sensor 22 a. Further, theECU 70 reads signals from apedal position sensor 74 that detects the depression degree ACCP of anaccelerator pedal 72, and acoolant temperature sensor 76 that detects the temperature THW of coolant of thediesel engine 2. TheECU 70 also reads signals from anengine speed sensor 80 that detects the number of revolutions NE of acrankshaft 78, and acylinder distinguishing sensor 82 that distinguishes cylinders by detecting the rotation phase of thecrankshaft 78 or the rotation phase of the intake cams. - Based on the engine operating state obtained from these signals, the
ECU 70 controls the amount and the timing of fuel injection by thefuel injection valves 58. TheECU 70 controls theEGR valve 56, a motor 22B that actuates thethrottle valve 22, thefuel pump 62, and thefuel adding valve 68, thereby executing catalyst control such as PM elimination control, sulfur release control, or NOx reduction control, which are discussed below, a process for preventing overheat of the exhaust purification filter, and other processes. - The
ECU 70 selects one of a normal combustion mode and a low temperature combustion mode according to the operating state of the engine. The low temperature combustion mode refers to a combustion mode in which an EGR opening degree map for the low temperature combustion mode is used for increasing the amount of exhaust gas recirculation to slow down the increase of the combustion temperature in thecombustion chamber 4, thereby simultaneously reducing NOx and smoke. The low temperature combustion mode is executed in a low load, low-to-middle rotation speed region, and air-fuel ratio feedback control is performed by adjusting the throttle opening degree TA based on the air-fuel ratio AF detected by the air-fuel ratio sensor 48. The other combustion mode is the normal combustion mode, in which a normal EGR control (including a case where no EGR is executed) is performed using an EGR opening degree map for the normal combustion mode. - The
ECU 70 performs four catalyst control modes, which are modes for controlling the exhaust purification catalysts. The catalyst control modes include a PM elimination control mode, a sulfur release control mode, a NOx reduction control mode, and a normal control mode. - In the PM elimination control mode, PM deposited on the
exhaust purification filter 38 a in the secondcatalytic converter 38 is burned. The PM is then converted into CO2 and H2O and discharged. The PM elimination control mode is executed when an estimated accumulation amount of PM reaches a PM elimination reference value. In this mode, fuel is added to exhaust gas by thefuel adding valve 68 in a state where the air-fuel ratio is higher than the stoichiometric air-fuel ratio, so that the catalyst bed temperature is increased (for example, 600 to 700° C.). Further, an after injection is performed by thefuel injection valves 58 in this mode in some cases. The after injection refers to fuel injection to thecombustion chambers 4 during the expansion stroke and the exhaust stroke. - In the S release control mode, if the NOx
storage reduction catalyst 36 a and theexhaust purification filter 38 a are poisoned with sulfur compounds and the NOx storage capacity is lowered, S components (sulfur components) are released so that NOx storage capacity is restored. In this mode, addition of fuel from thefuel adding valve 68 is repeated so that the catalyst bed temperature is increased (for example, to 650° C.). Further, fuel is intermittently added to exhaust gas by thefuel adding valve 68, so that the air-fuel ratio is changed to the stoichiometric air-fuel ratio or a value slightly lower than the stoichiometric air-fuel ratio. In the S release control mode, after injection may be performed by thefuel injection valves 58. - In the NOx reduction control mode, NOx stored in the NOx
storage reduction catalyst 36 a and theexhaust purification filter 38 a is reduced, and N2, CO2, and H2O are emitted. In this mode, addition of fuel is intermittently performed at a relatively long interval so that the catalyst bed temperature becomes relatively low (for example, 250 to 500° C.). Accordingly, the air-fuel ratio is lowered to or below the stoichiometric air-fuel ratio. - Among the four control modes, the normal control is a control mode other than the above three catalyst control modes. During the normal control, addition of fuel from the
fuel adding valve 68 and the after injection by thefuel injection valve 58 are not performed. - Among the processes executed by the
ECU 70, a filter overheat prevention process will now be described.FIG. 2 shows a flowchart of the filter overheat prevention process. This process is repeatedly executed at a predetermined cycle. Steps in the flowchart, each of which corresponds to a stage, is denoted as S. - When the routine is started, the
ECU 70 determines whether theexhaust purification filter 38 a is likely to overheat at step S102. That is, if the following conditions (1) and (2) are both met, it is determined that theexhaust purification filter 38 a is likely to overheat. - (1) A PM elimination control mode, that is, a process in which the
exhaust purification filter 38 a is heated for burning the deposited PM, is being executed. - (2) A expected maximum bed temperature CTmax, which is obtained based on the relationship between a decrease amount ΔGA of the intake flow rate per unit time and a PM accumulation amount in the
exhaust purification filter 38 a, is higher than an overheat determination temperature OT. The expected maximum bed temperature CTmax is the highest bed temperature that occurs immediately after the intake flow rate GA starts decreasing. - The decrease amount ΔGA(g/s2) of the intake flow rate is obtained as an amount of change of the intake flow rate GA(g/s) detected by the intake
flow rate sensor 24 per unit time (s). When the intake flow rate GA is decreased, ΔGA>0. - The PM accumulation amount of the
exhaust purification filter 38 a is obtained through PM accumulation amount computation executed by theECU 70 based on the operating state of the diesel engine 2 (the intake temperature, the air-fuel ratio, the exhaust temperatures thci, thco). More specifically, the PM accumulation amount of theexhaust purification filter 38 a is obtained by accumulating a value that is obtained through computing the balance between a PM emission amount from thediesel engine 2 in a predetermined cycle computed based on the engine operating state, and a PM loss amount due to oxidation in theexhaust purification filter 38 a. - Based on the decrease amount ΔGA of the intake flow rate and the PM accumulation amount, the expected maximum bed temperature CTmax is computed by referring to a map MapCT shown in
FIG. 3 . Whether the expected maximum bed temperature CTmax is higher than the overheat determination temperature OT is determined. If CTmax>OT, the condition (2) is deemed to be met. - The map MapCT has been obtained in the following manner. That is, experiments were conducted using the decrease amount ΔGA of the intake flow rate and the PM accumulation amount as parameters. The highest bed temperature of the
exhaust purification filter 38 a was actually measured in a period immediately after the intake flow rate started to decrease during the PM elimination control. As shown inFIG. 3 , for the same value of the intake flow rate decrease amount ΔGA, the greater the PM accumulation amount, the higher the expected maximum bed temperature CTmax becomes. Also the greater the PM accumulation amount, the greater the rate of increase of the expected maximum bed temperature CTmax relative to an increase of the intake flow rate decrease amount ΔGA becomes. For example, when the intake flow rate decrease amount ΔGA=ΔGA1, and the PM accumulation amount is small, the expected maximum bed temperature CTmax=PM1 a. When the PM accumulation amount is great, the expected maximum bed temperature CTmax=PM1 b. In either case, expected maximum bed temperature CTmax is lower than the overheat determination temperature OT. - However, when the intake flow rate decrease amount ΔGA=ΔGA2, and the rate of decrease of the exhaust flow rate is increased, the expected maximum bed temperature CTmax=PM2 a if the PM accumulation amount is small. That is, the expected maximum bed temperature CTmax is lower than the overheat determination temperature OT. If the PM accumulation amount is great, the expected maximum bed temperature CTmax=PM2 b. That is, the expected maximum bed temperature CTmax is higher than the overheat determination temperature OT.
- If the conditions (1) and (2) are both met, it is determined that the
exhaust purification filter 38 a is likely to overheat (YES at S102). TheECU 70 then executes an exhaust flow rate increase process at step S104, thereby preventing theexhaust purification filter 38 a from overheating. - The exhaust flow rate increase process includes the following processes (a) and (b).
- (a) Increase the opening degree TA of the
throttle valve 22 relative to that during the normal control. - The opening degree TA of the
throttle valve 22 is controlled in accordance with the engine operating state such that combustion is properly performed in thediesel engine 2. In the process (a), for example, the throttle opening degree TA is maximized (100%) or increased compared to that of the normal control by a degree that is determined in advance for preventing overheat of theexhaust purification filter 38 a. - In this embodiment, the
throttle valve 22 is fully opened. This increases the amount of air drawn into thecombustion chambers 4. As a result, the amount of exhaust gas discharged to theexhaust passage 34 is increased. - In this specification, “increase process”, that is, increasing the flow rate of air drawn into the
engine 2 and the flow rate of exhaust gas discharged from theengine 2, refer to processes in which the flow rates are increased relative to those in a case where the normal opening degree control is executed for thethrottle valve 22. That is, when the intake flow rate GA and the exhaust flow rate decrease, the “increase process” includes a process in which the rate of decrease of the intake flow rate GA and the exhaust flow rate is reduced, a process in which the intake flow rate GA and the exhaust flow rate are maintained against reduction, and a process in which the intake flow rate GA and the exhaust flow rate are increased. When the intake flow rate GA and the exhaust flow rate increase, the “increase process” includes a process in which the intake flow rate GA and the exhaust flow rate are further increased. - (b) Reduce the opening degree EGRa of the EGR of the
valve 56 relative to that of the normal control. - The opening degree of the
EGR valve 56 is controlled in accordance with the engine operating state such that the combustion of the diesel theengine 2 is properly conducted. In the process (b), for example, a target EGR opening degree EGRt is reduced to zero (0%), or is reduced compared to that of the normal control by a degree that is determined in advance for preventing overheat of theexhaust purification filter 38 a. - In this embodiment, the
EGR valve 56 is fully closed. This increases the amount of air drawn into thecombustion chambers 4. As a result, the amount of exhaust gas discharged to theexhaust passage 34 is increased. - For example, a case as shown in the time chart of
FIG. 4 will now be discussed. In the case, after the PM elimination control mode is started at time t0 as shown in the time chart ofFIG. 4 , the exhaust flow rate is reduced due to deceleration of the diesel the engine 2 (FIG. 4 shows a decrease of the intake flow rate GA). At time t1, the expected maximum bed temperature CTmax of theexhaust purification filter 38 a is determined to exceed the overheat determination temperature OT. In this case, at time t1, thethrottle valve 22 is fully opened, and theEGR valve 56 is fully closed. - As a result, since the rate of decrease of the intake flow rate GA is reduced, the rate of decrease of the exhaust flow rate is reduced, and the catalyst bed temperature, that is, the temperature of the
exhaust purification filter 38 a, is not increased to the overheat determination temperature OT. When the throttle opening degree TA is not increased and the EGR opening degree EGRa is not reduced, the intake flow rate GA is quickly reduced as shown by a broken line. At time t2, the temperature of theexhaust purification filter 38 a exceeds the overheat determination temperature OT. - Referring back to
FIG. 2 , if at least one the conditions (1) and (2) is not met, it is determined that theexhaust purification filter 38 a is not likely to overheat (NO at S102). TheECU 70 determines whether the exhaust flow rate increase process is being executed at step S106. If the exhaust flow rate increase process is not being executed (NO at S106), theECU 70 temporarily suspends the current procedure. - If the above described exhaust flow rate increase process is being executed (YES at S106), the
ECU 70 determines a condition for stopping the exhaust flow rate increase process is met at step S108. - The stopping condition is deemed to be established when one of the following conditions (e1) and (e2) is met.
- (e1) Sufficient time has elapsed since the PM elimination control was completed.
- If the PM elimination control has been completed, generation of heat in the
exhaust purification filter 38 a due to the burning of PM has been stopped. If time sufficient for cooling theexhaust purification filter 38 a by exhaust gas has elapsed since the PM elimination control was completed, resumption of the normal throttle opening degree control and EGR opening degree control will not cause theexhaust purification filter 38 a to overheat. The condition (e1) is therefore selected as one of the stopping conditions for the exhaust flow rate increase process. - (e2) The expected maximum bed temperature CTmax of the
exhaust purification filter 38 a is sufficiently lower than the overheat determination temperature OT. - For example, the condition (e2) is met when the expected maximum bed temperature CTmax satisfies the following
formula 1, which expected maximum bed temperature CTmax has been computed based on the current intake flow rate decrease amount ΔGA and PM accumulation amount, by referring to the map MapCT ofFIG. 3 . H represents a constant determined taking the hysteresis into consideration.
CTmax<OT−H [Formula 1] - If the
formula 1 is satisfied, resumption of the normal throttle opening degree control and EGR opening degree control will not cause hunting. - If at least one of the conditions (e1) and (e2) is met (YES at S108), the
ECU 70 stops the exhaust flow rate increase process at step S110. - If neither of the conditions (e1) and (e2) is met (NO at S108), the
ECU 70 suspends the current procedure. The exhaust flow rate increase process is thus continued. -
FIG. 5 is a flowchart of the procedure of fuel injection amount control executed by theECU 70. In the fuel injection amount control, if the exhaust flow rate increase process is being executed during idling of theengine 2, an idle up process is executed. The idle up process is executed in an interrupting manner at every fuel injection. Specifically, since the present invention is applied to the four-cylinder diesel engine 2, the idle up process is executed at every crank angle of 180°. - When the fuel injection amount control is started, the
ECU 70 determines whether the current engine operating state is out of a fuel cutoff region for deceleration of theengine 2 at step S152. The fuel cutoff region for deceleration is determined according to the engine operating state (for example, the pedal depression degree ACCP and engine speed NE). If the engine operating state is not out of the fuel cutoff region for deceleration (NO at S152), theECU 70 suspends the current routine. Fuel is not injected from thefuel injection valves 58. - On the other hand, if the engine operating state is out of the fuel cutoff region for deceleration (YES at S152), the
ECU 70 computes an idling governor injection amount QGOV1 and a driving governor injection amount at step S154 based on a governor pattern map shown inFIG. 6 that defines the relationship of a governor injection amount to the engine speed NE and the pedal depression degree ACCP. The idling governor injection amount QGOV1 is an injection amount for a low speed range of theengine 2, that is, for a state where theengine 2 is mainly idling. The idling governor injection amount QGOV1 is shown by a broken line inFIG. 6 . The driving governor injection amount is an injection amount for a high speed range of theengine 2, that is, for a state where the vehicle is mainly driving. The driving governor injection amount is shown by a solid line inFIG. 6 . - Next, at step S156, the
ECU 70 determines whether the exhaust flow rate increase process is being executed. If the exhaust flow rate increase process is not being executed (NO at S156), theECU 70 computes the governor injection amount QGOV at step S158. The governor injection amount QGOV computed according to the followingformula 2.
QGOV←Max(QGOV 1+QII+QIPB+QIPNT, QGOV 2+QIPB) [Formula 2] - That is, a value obtained by adding an integration correction amount QII, an expected load correction factor QIPB for idle speed control (ISC) and an ISC expected speed correction factor QIPNT to the idling governor injection amount QGOV1 is computed. Also, a value obtained by adding the ISC expected load correction factor QIPB to the driving governor injection amount QGOV2 is computed. The computed values are compared, and the greater one is set as the governor injection amount QGOV.
- Therefore, when the exhaust flow rate increase process is not being executed, the governor injection amount QGOV is determined as schematically shown in
FIG. 6 . That is, in the low speed region of theengine 2, a value obtained by adding the integration correction amount QII, the ISC expected load correction factor QIPB and the ISC expected speed correction factor QIPNT to the idling governor injection amount QGOV1 is selected as the governor injection amount QGOV. On the other hand, in the high speed range of theengine 2, a value obtained by adding the ISC expected load correction factor QIPB to the driving governor injection amount is selected as the governor injection amount QGOV. - In contrast, if the exhaust flow rate increase process is being executed (YES at S156), the
ECU 70 computes the governor injection amount QGOV at step S160, using the followingformula 3.
QGOV←Max(QGOV 1+QII+QINC, QGOV 2+QIPB) [Formula 3] - The
formula 3 is different from theformula 2 in that a value obtained by adding the integration correction amount QII and an ISC speed correction factor QINC for an idle up process for preventing overheat of theexhaust purification filter 38 a to the idling governor injection amount QGOV1 is used as the governor injection amount QGOV. - Therefore, when the exhaust flow rate increase process is being executed, the fuel injection amount is increased according to the ISC speed correction factor QINC, so that the engine speed NE is increased relative to that of the normal idling as indicated by broken line denoted as “during an idle up process” in
FIG. 6 . As a result, even if theengine 2 idles during the exhaust flow rate increase process, a sufficient amount of the exhaust flow rate is ensured, so that theexhaust purification filter 38 a is prevented from overheating. - At
step 162, which is after step S158 or step S160, theECU 70 sets the smaller one of a maximum injection amount QFULL and the governor injection amount QGOV as a final injection amount QFIN. At step S164, theECU 70 computes an injection amount command value (time conversion value) TSP that corresponds to the final injection amount QFIN, and outputs the injection amount command value TSP. TheECU 70 then temporarily suspends the current procedure. Based on the output of the injection amount command value TSP, thefuel injection valve 58 is actuated to perform fuel injection. - As shown in the time chart of
FIG. 4 , the throttle opening degree is maximized (fully open), the EGR opening degree is minimized (fully closed), and the idle up process is continued to prevent theexhaust purification filter 38 a from overheating after time t3 as long as the expected maximum bed temperature CTmax is not sufficiently low after theengine 2 starts idling. - Among the processes executed by the
ECU 70, the overheat prevention process ofFIG. 2 and steps S156, S160 in the fuel injection amount control process ofFIG. 5 correspond to processes executed when theECU 70 functions as overheat prevention means. - The first embodiment described above has the following advantages.
- (A1) In the overheat prevention process of
FIG. 2 , when theexhaust purification filter 38 a is likely to overheat, thethrottle valve 22 is fully opened, and theEGR valve 56 is fully closed. Accordingly, the intake flow rate and the exhaust flow rate are increased. Then, when steps S156, S160 of the fuel injection amount control ofFIG. 5 are executed, the idle speed is increased during idling. A sufficient exhaust flow rate is thus ensured. Therefore, the heat generated in theexhaust purification filter 38 a is positively lost to the outside, and theexhaust purification filter 38 a is effectively prevented from overheating. - (A2) Whether the
exhaust purification filter 38 a is likely to overheat is determined by monitoring whether the expected maximum bed temperature CTmax, which is estimated based on the map MapCT ofFIG. 3 , exceeds the overheat determination temperature OT based on the intake flow rate decrease amount ΔGA and the PM accumulation amount. - Therefore, when the engine decelerates in various types of operating state, for example, when the driver releases the
accelerator pedal 72 while the vehicle driving downhill, the exhaust flow rate is increased before the actual bed temperature of theexhaust purification filter 38 a exceeds the overheat determination temperature OT. As a result, theexhaust purification filter 38 a is effectively prevented from overheating. - A second embodiment according to the present invention will now be described. The second embodiment is different form the first embodiment only in that the determination condition of step S102 and the stopping condition of step S108 in the overheat prevention process in
FIG. 2 , and the other configurations are the same as the first embodiment. Thus,FIGS. 1, 2 , 5 are referred to as necessary in the following description. - In this embodiment, at
step 102 ofFIG. 2 , whether theexhaust purification filter 38 a is likely to overheat is determined based on whether at least one of the following conditions (1) and (2) is met. - (1) The exhaust temperature thci in a section upstream of the
exhaust purification filter 38 a (that is, the exhaust temperature in a section downstream of the NOxstorage reduction catalyst 36 a) is higher than an overheat determination temperature OTi for the upstream section. - (2) The exhaust temperature thco in a section downstream of the
exhaust purification filter 38 a is higher than an overheat determination temperature OTo for the downstream section. - When at least one of the conditions (1) and (2) is met, it is determined that the
exhaust purification filter 38 a is likely to overheat. - In this embodiment, at
step 108 ofFIG. 2 , a condition for stopping the exhaust flow rate increase process is determined to be met when the following condition (e1) is met. - (e1) The upstream exhaust temperature thci is sufficiently lower than the overheat determination temperature OTi, and the downstream exhaust temperature thco is sufficiently lower than the overheat determination temperature. OTo.
- Therefore, as shown in the time chart of
FIG. 7 , thethrottle valve 22 is fully opened, and theEGR valve 56 is fully closed at time t11, where the exhaust flow rate, that is, the intake flow rate GA is reduced due to, for example, deceleration of theengine 2 during the PM elimination control mode, and the downstream exhaust temperature thco exceeds the overheat determination temperature OTo. As a result, since the intake flow rate GA is increased and decrease of the exhaust flow rate is prevented, the catalyst bed temperature, that is, the temperature of theexhaust purification filter 38 a is not increased to the overheat determination temperature OT. In contrast, if the throttle opening degree TA is not increased, and the EGR opening degree EGRa is not reduced, the intake flow rate GA is quickly reduced as shown by a broken line. At time t12, the temperature of theexhaust purification filter 38 a exceeds the overheat determination temperature OT. After time t13, the idle up process is executed during idling as discussed in the fuel injection amount control ofFIG. 5 . - The second embodiment as described above has the following advantages.
- (A1) The second embodiment has the same advantage as the item (A1) of the first embodiment.
- (A2) Whether the exhaust purification filter 38.a is likely to overheat is determined based on the upstream exhaust temperature thci detected by the first
exhaust temperature sensor 44 and the downstream exhaust temperature thco detected by the secondexhaust temperature sensor 46. - The temperature of the
exhaust purification filter 38 a is affected by the temperature of exhaust gas that flows into thefilter 38 a. Therefore, whether theexhaust purification filter 38 a is likely to overheat can be determined by determining the upstream exhaust temperature thci of theexhaust purification filter 38 a. - Particularly, the NOx
storage reduction catalyst 36 a, which is another exhaust purification catalyst, is disposed in a section upstream of theexhaust purification filter 38 a. The NOxstorage reduction catalyst 36 a does not function as a filter for PM, but generates heat with fuel added by thefuel adding valve 68 during temperature increase process of the PM elimination control process. When NOxstorage reduction catalyst 36 a upstream of theexhaust purification filter 38 a is heated, the exhaust temperature thci that flows into theexhaust purification filter 38 a increases. This increases the possibility of overheat of theexhaust purification filter 38 a. - Further, since the downstream exhaust temperature thco is the temperature in the vicinity of the
exhaust purification filter 38 a, the likeliness of overheat of theexhaust purification filter 38 a is substantially directly detected. - When at least one of thci>OTi and thco>OTo is satisfied, it is determined that the
exhaust purification filter 38 a is likely to overheat. - Particularly, by determining the temperature thci of exhaust gas that flows into the
exhaust purification filter 38 a, overheat of theexhaust purification filter 38 a can be predicted at an early stage. Accordingly, the exhaust flow rate is increased at an early stage, so that overheat of theexhaust purification filter 38 a is reliably prevented. - A third embodiment according to the present invention will now be described. The third embodiment is different form the first embodiment only in that the determination condition of step S102 and the stopping condition of step S108 in the overheat prevention process in
FIG. 2 , and the other configurations are the same as the first embodiment. Thus,FIGS. 1, 2 , 5 are referred to as necessary in the following description. - In this embodiment, at
step 102 ofFIG. 2 , whether theexhaust purification filter 38 a is likely to overheat is determined based on whether the following condition (1) is met. - (1) An estimated bed temperature thcf of the
exhaust purification filter 38 a is higher than the overheat determination temperature OTf. - The estimated bed temperature thcf is computed by the
ECU 70 using the followingformula 4 in a predetermined cycle.
thcf←thcfold+(Cf−Ce)/Hcp [Formula 4] - The estimated bed temperature thcfold is the estimated bed temperature thcf that was computed in the preceding cycle.
- The generated heat amount Cf of the
exhaust purification filter 38 a refers to the amount of heat generated in theexhaust purification filter 38 a during one cycle in which the estimated bed temperature thcf is computed. In other words, the generated heat amount Cf is the amount of heat that is generated with a portion of the fuel that has been added to exhaust gas by thefuel adding valve 68, but has not been consumed at the upstream NOxstorage reduction catalyst 36 a. The amount of fuel consumed at the upstream NOxstorage reduction catalyst 36 a is estimated based on the upstream exhaust temperature thci of theexhaust purification filter 38 a and the intake flow rate GA. Therefore, by subtracting the consumed fuel amount from the total amount of fuel added by thefuel adding valve 68, the amount of fuel that is burned at theexhaust purification filter 38 a is obtained. Based on the obtained fuel amount, the generated heat amount Cf of the exhaust purification filter is determined. - The emitted heat amount Ce refers to the amount of heat that is removed from the
exhaust purification filter 38 a by exhaust gas during one cycle for computing the estimated bed temperature thcf. The emitted heat amount Ce is computed based on the intake flow rate GA, which reflects the exhaust flow rate, the upstream exhaust temperature thci and the estimated bed temperature thcfold of the preceding cycle. - Thermal capacity Hcp of the exhaust purification filter is a thermal capacity of the
exhaust purification filter 38 a that has been measured in advance. - In the present embodiment, at
step 108 ofFIG. 2 , a condition for stopping the exhaust flow rate increase process is determined to be met when the following condition (e1) is met. - (e1) The estimated bed temperature thcf of the exhaust purification filter is sufficiently lower than the overheat determination temperature OTf.
- Therefore, as shown in the time chart of
FIG. 8 , thethrottle valve 22 is fully opened, and theEGR valve 56 is fully closed at time t21, where the exhaust flow rate, that is, the intake flow rate GA is reduced due to, for example, deceleration of theengine 2 during the PM elimination control mode, and the estimated bed temperature thcf of the exhaust purification filter exceeds the overheat determination temperature OTf. As a result, since the intake flow rate GA is increased and decrease of the exhaust flow rate is prevented, the temperature of theexhaust purification filter 38 a is not increased to the overheat determination temperature OT. In contrast, if the throttle opening degree TA is not increased, and the EGR opening degree EGRa is not reduced, the intake flow rate GA is quickly reduced as shown by a broken line. At time t22, the temperature of theexhaust purification filter 38 a exceeds the overheat determination temperature OT. After time t23, the idle up process is executed during idling as discussed in the fuel injection amount control ofFIG. 5 . - The third embodiment as described above has the following advantages.
- (A1) The third embodiment has the same advantage as the item (A1) of the first embodiment.
- (A2) Whether the
exhaust purification filter 38 a is likely to overheat is determined based on the estimated bed temperature thcf estimated based on the intake flow rate GA, the amount of added fuel, and the upstream exhaust temperature thci and the downstream exhaust temperature thco of theexhaust purification filter 38 a. - As a result, overheat of the
exhaust purification filter 38 a is accurately predicted, and the exhaust flow rate is properly increased. Thus, theexhaust purification filter 38 a is effectively prevented from overheating. - A fourth embodiment according to the present invention will now be described. The fourth embodiment is different form the first embodiment only in that the determination condition of step S102 and the stopping condition of step S108 in the overheat prevention process in
FIG. 2 , and the other configurations are the same as the first embodiment. Thus,FIGS. 1, 2 , 5 are referred to as necessary in the following description. - In this embodiment, at
step 102 ofFIG. 2 , whether theexhaust purification filter 38 a is likely to overheat is determined based on whether the following condition (1) is met. - (1) The PM elimination control is being executed, and the PM accumulation amount is greater than a reference accumulation amount.
- That is, since the amount of heat generated during the PM elimination control is increased when the PM accumulation amount is great, the
exhaust purification filter 38 a is likely to overheat when the exhaust flow rate decreases. The condition in which the PM accumulation amount>the reference accumulation amount is used to determine whether theexhaust purification filter 38 a is likely to overheat. - In the present embodiment, at
step 108 ofFIG. 2 , a condition for stopping the exhaust flow rate increase process is determined to be met when one of the following conditions (e1) and (e2) is met. - (e1) The PM accumulation amount is sufficiently less than the reference accumulation amount.
- That is, since the generated heat amount decreases due to decrease of burning PM, it is determined that the
exhaust purification filter 38 a is not likely to overheat even if the exhaust flow rate decreases. - (e2) Sufficient time has elapsed since the PM elimination control was completed.
- Since sufficient time has elapsed since burning of PM stopped, it is determined that the
exhaust purification filter 38 a is not likely to overheat even if the exhaust flow rate decreases. - The fourth embodiment as described above has the following advantages.
- (A1) The fourth embodiment has the same advantage as the item (A1) of the first embodiment.
- (A2) Since whether the
exhaust purification filter 38 a is likely to overheat is determined based on the PM accumulation amount during the PM elimination control, the determination is performed easily. - Embodiment other than the above describe ones will now be described.
- (a) In the above embodiments, increase of the intake flow rate is carried out by adjusting the opening degree of both of the
throttle valve 22 and theEGR valve 56. However, the increase of the intake flow rate may be carried out only by increasing the opening degree of thethrottle valve 22. Alternatively, the increase of the intake flow rate may be carried out only by reducing the opening degree of theEGR valve 56. - In the illustrated embodiments, when the intake flow rate is increased, the
throttle valve 22 is fully opened. However, thethrottle valve 22 may be increased relative to that of the normal control by an amount that is set in advance for preventing overheat. Also, when the intake flow rate is increased, theEGR valve 56 is fully closed in the illustrated embodiments. However, theEGR valve 56 may be decreased relative to that of the normal control by an amount that is set in advance for preventing overheat. - (b) In the second embodiment, whether the
exhaust purification filter 38 a is likely to overheat may be determined based only on whether the condition (2) is met. In this case, the condition for stopping the exhaust flow rate increase process is met when the downstream exhaust temperature thco of theexhaust purification filter 38 a is sufficiently lower than the overheat determination temperature OTo. - (c) In the first embodiment, it may be determined that the
exhaust purification filter 38 a is likely to overheat when the following conditions (1) and (2) are both met. The condition (2) is the same as that of the first embodiment. - (1) The temperature increase process is being executed according to one of the PM elimination control mode and the S release control mode.
- (2) The expected maximum bed temperature CTmax is higher than the overheat determination temperature OT (CTmax>OT).
- In this case, the condition for stopping the exhaust flow rate increase process is as follows. The condition (e2) is the same as that of the first embodiment.
- (e1) Sufficient time has elapsed since the PM elimination control and the S release control were both completed.
- (e2) The expected maximum bed temperature CTmax is sufficiently lower than the overheat determination temperature OT.
- In the fourth embodiment, it may be determined that the
exhaust purification filter 38 a is likely to overheat when the following condition (1) is met. - (1) The temperature increase process is being executed according to one of the PM elimination control mode and the S release control mode, and the PM accumulation amount at the
exhaust purification filter 38 a is greater than a reference accumulation amount. - In this case, the condition for stopping the exhaust flow rate increase process is as follows. The condition (e1) is the same as that of the fourth embodiment.
- (e1) The PM accumulation amount is sufficiently less than the reference accumulation amount.
- (e2) Sufficient time has elapsed since the PM elimination control and the S release control were both completed.
- In this manner, in either of the first and fourth embodiments, the state where the S release control mode is being executed is used as the condition (1). This effectively prevents the
exhaust purification filter 38 a from overheating during the S release control. - (d) The state in which the engine is decelerated is not used as the condition for determining whether the
exhaust purification filter 38 a is likely to overheat in the illustrated embodiments. However, the state in which the engine is decelerating may be used as a condition for determining the likeliness of overheat. This configuration is particularly effective when the engine is decelerating. - (e) In the illustrated embodiments, when the
exhaust purification filter 38 a is likely to overheat during idling, the idle up process is executed together with a process for increasing throttle opening degree and a process for reducing the EGR opening degree. However, in the same situation, only the idle up process may be executed. Increase of the exhaust flow rate due to the idle up process effectively prevents theexhaust purification filter 38 a from overheating. - (f) At step S156 in the fuel injection amount control of
FIG. 5 , whether the idle up process should be performed is determined based on whether the exhaust flow rate increase process for preventing theexhaust purification filter 38 a from overheating is being executed. However, whether the idle up process should be performed may be determined using, atstep 156, the same conditions as the conditions for executing the exhaust flow rate increase process and the conditions for stopping the process in the illustrated embodiments. - For example, at step S156, whether the expected maximum bed temperature CTmax has been stable and lower than the overheat determination temperature OT for a predetermined period may be determined. If the condition is not met, the idle up process is continued (S160), and if the condition is met, the idle up process is stopped and step S158 is executed.
- The present invention may be applied to other types of engine such as a lean combustion gasoline engine if the engine has a similar catalyst system to the system described herein.
Claims (20)
1. An apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating, wherein the filter filters particulate matter in exhaust gas, particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated, the apparatus comprising:
overheat prevention means, wherein, during the temperature increase process, the overheat prevention means executes an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat.
2. The apparatus according to claim 1 , wherein the increase process includes reducing, when the exhaust flow rate is decreasing, the rate at which the exhaust flow rate decreases.
3. The apparatus according to claim 1 , wherein the increase process of exhaust gas includes maintaining, when the exhaust flow rate is decreasing, the exhaust flow rate so that the exhaust flow rate stops decreasing.
4. The apparatus according to claim 1 , wherein the overheat prevention means executes the exhaust flow rate increase process by executing an intake flow rate increase process for increasing the flow rate of air that is drawn into the internal combustion engine.
5. The apparatus according to claim 4 , wherein the internal combustion engine includes an intake system, a throttle valve disposed in the intake system, an exhaust system, an exhaust gas recirculation passage connecting the exhaust system with the intake system, and an exhaust gas recirculation valve disposed in the exhaust gas recirculation passage, and wherein the intake flow rate increase process includes at least one of increasing an opening degree of the throttle valve and reducing an opening degree of the exhaust gas recirculation valve.
6. The apparatus according to claim 5 , wherein the increasing of the opening degree of the throttle valve includes maximizing the opening degree of the throttle valve, and wherein the reducing of the opening degree of the exhaust gas recirculation valve includes minimizing the opening degree of the exhaust gas recirculation valve.
7. The apparatus according to claim 1 , wherein the exhaust flow rate increase process includes increasing an idle speed when the internal combustion engine is idling.
8. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when the temperature of exhaust gas that flows out of the filter is higher than an overheat determination temperature.
9. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when at least one of situations occurs, the situations being a situation where the temperature of exhaust gas that flows into the filter is higher than a first overheat determination temperature and a situation where the temperature of exhaust gas that flows out of the filter is higher than a second overheat determination temperature.
10. The apparatus according to claim 1 , wherein the internal combustion engine includes an exhaust system and a fuel adding valve disposed in the exhaust system, wherein the overheat prevention means estimates the temperature of the filter based on the exhaust flow rate, an amount of fuel added to exhaust gas from the fuel adding valve, the temperature of exhaust gas that flows into the filter, and the temperature of exhaust gas that flows out of the filter, and wherein, when the estimated temperature of the filter is higher than an overheat determination temperature, the overheat prevention means determines that the filter is likely to overheat.
11. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when an amount of particulate matter accumulated in the filter is greater than a reference accumulation amount during the temperature increase process.
12. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when, during the temperature increase process, the internal combustion engine decelerates and the highest temperature of the filter that is estimated based on an operating state of the internal combustion engine exceeds an overheat determination temperature.
13. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when, during the temperature increase process, the highest temperature of the filter that is estimated based on an operating state of the internal combustion engine is higher than an overheat determination temperature.
14. The apparatus according to claim 13 , wherein the overheat prevention means estimates the highest temperature based on a decrease amount of the flow rate of air that is drawn into the internal combustion engine per unit time, and an amount of particulate matter accumulated in the filter.
15. The apparatus according to claim 1 , wherein the overheat prevention means determines that the filter is likely to overheat when the internal combustion engine decelerates and an amount of particulate matter accumulated in the filter exceeds a reference accumulation amount during the temperature increase process.
16. The apparatus according to claim 11 , wherein the temperature increase process includes a process for releasing sulfur collected on the filter.
17. The apparatus according to claim 13 , wherein the temperature increase process includes a process for releasing sulfur collected on the filter.
18. An apparatus for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating, wherein the filter filters particulate matter in exhaust gas, particulate matter that is accumulated in the filter through filtering is burned and purified by executing a temperature increase process in which the filter is heated, the apparatus comprising:
means for reducing the rate of decrease of the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
19. A method for preventing a filter for purifying exhaust gas emitted by an internal combustion engine from overheating, the method comprising:
filtering particulate matter in exhaust gas with the filter;
burning and purifying particulate matter that is accumulated in the filter through filtering by executing the temperature increase process in which the filter is heated; and
executing an increase process for increasing the flow rate of exhaust gas when the filter is likely to overheat during the temperature increase process.
20. The method according to claim 19 , wherein the increase process is executed by executing an intake flow rate increase process for increasing the flow rate of air that is drawn into the internal combustion engine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-210624 | 2004-07-16 | ||
JP2004210624A JP2006029239A (en) | 2004-07-16 | 2004-07-16 | Exhaust purification filter overheat prevention device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060016180A1 true US20060016180A1 (en) | 2006-01-26 |
Family
ID=35520092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/181,823 Abandoned US20060016180A1 (en) | 2004-07-16 | 2005-07-15 | Apparatus and method for preventing overheating of exhaust purification filter |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060016180A1 (en) |
JP (1) | JP2006029239A (en) |
DE (1) | DE102005033232A1 (en) |
FR (1) | FR2873164A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050188695A1 (en) * | 2004-02-27 | 2005-09-01 | Nissan Motor Co., Ltd. | Engine control device |
US20060137660A1 (en) * | 2004-12-27 | 2006-06-29 | Takashi Shirakawa | Engine control apparatus |
US20070220868A1 (en) * | 2006-03-27 | 2007-09-27 | Nissan Motor Co., Ltd. | Method for regenerating exhaust gas purifying filter apparatus |
EP1892400A2 (en) * | 2006-08-08 | 2008-02-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine, and control method of the system |
US20080202103A1 (en) * | 2006-12-22 | 2008-08-28 | Greg Henderson | Software, methods and systems including soot loading metrics |
US20080264049A1 (en) * | 2005-09-15 | 2008-10-30 | Volvo Lastvagnar Ab | Method for Internal Combustion Engine With Exhaust Recirculation |
US20090056314A1 (en) * | 2006-04-10 | 2009-03-05 | Masashi Gabe | Exhaust Gas Purification Method and Exhaust Gas Purification System |
US20100307139A1 (en) * | 2009-06-05 | 2010-12-09 | Gm Global Technology Operations, Inc. | Regeneration systems and methods for particulate filters using virtual brick temperature sensors |
US20110160984A1 (en) * | 2009-11-11 | 2011-06-30 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US20120035830A1 (en) * | 2009-04-16 | 2012-02-09 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US8359837B2 (en) | 2006-12-22 | 2013-01-29 | Cummins Inc. | Temperature determination and control of exhaust aftertreatment system adsorbers |
CN103277173A (en) * | 2013-01-18 | 2013-09-04 | 贵州黄帝车辆净化器有限公司 | Control system and control method for temperature rising of diesel engine exhaust aftertreatment device |
US20150128567A1 (en) * | 2012-06-01 | 2015-05-14 | Toyota Jidosha Kabushiki Kaisha | Catalyst protection device and catalyst protection method for internal combustion engine |
WO2015118856A1 (en) * | 2014-02-10 | 2015-08-13 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
CN104863678A (en) * | 2014-02-24 | 2015-08-26 | 通用汽车环球科技运作有限责任公司 | Detecting over-temperature in exhaust system |
CN106321239A (en) * | 2015-06-30 | 2017-01-11 | 福特环球技术公司 | Method and system for detection of hot spark plug fouling |
CN108779721A (en) * | 2016-03-23 | 2018-11-09 | 斯堪尼亚商用车有限公司 | A kind of method and system for determining the specific gas constant and stoichiometric air-fuel ratio of the fuel gas for gas engine |
US20180347504A1 (en) * | 2015-12-03 | 2018-12-06 | Isuzu Motors Limited | Internal combustion engine and control method for same |
US20220341368A1 (en) * | 2021-04-21 | 2022-10-27 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006266221A (en) * | 2005-03-25 | 2006-10-05 | Mitsubishi Fuso Truck & Bus Corp | Rising temperature controller of aftertreatment device |
FR2906301B1 (en) * | 2006-09-27 | 2008-11-07 | Renault Sas | METHOD AND DEVICE FOR MONITORING A DELEGATION SYSTEM AND VEHICLE PROVIDED WITH THE DEVICE |
JP4957343B2 (en) * | 2007-04-11 | 2012-06-20 | トヨタ自動車株式会社 | EGR system for internal combustion engine |
FR2927363A1 (en) * | 2008-02-13 | 2009-08-14 | Renault Sas | State e.g. operating state, diagnosing method for particle filter in heat engine of motor vehicle, involves determining rate of change of parameter relative to variable, and comparing rate of change of parameter to predetermined threshold |
JP5284228B2 (en) * | 2009-09-07 | 2013-09-11 | 本田技研工業株式会社 | Exhaust purification device |
JP5163964B2 (en) * | 2009-09-09 | 2013-03-13 | 株式会社デンソー | DPF overheat prevention device |
FR2958969B1 (en) * | 2010-04-14 | 2012-05-25 | Peugeot Citroen Automobiles Sa | METHOD FOR REGENERATING A PARTICLE FILTER |
JP5589541B2 (en) * | 2010-05-07 | 2014-09-17 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP5553243B2 (en) * | 2011-11-01 | 2014-07-16 | 株式会社豊田自動織機 | Exhaust gas purification device for internal combustion engine |
KR101766025B1 (en) | 2015-07-23 | 2017-08-08 | 현대자동차주식회사 | Method for regenerating exhoust gas filter for vehicle and system for the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5489319A (en) * | 1992-09-09 | 1996-02-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for purifying exhaust gas of diesel engine |
US6568173B1 (en) * | 2000-08-02 | 2003-05-27 | Ford Global Technologies, Inc. | Control method for turbocharged diesel engine aftertreatment system |
US6574956B1 (en) * | 2000-11-03 | 2003-06-10 | Ford Global Technologies, Llc | Apparatus and method for interrupting regeneration of a particulate filter in a diesel engine |
US6802180B2 (en) * | 2001-11-28 | 2004-10-12 | Isuzu Motors Limited | Exhaust gas purification system and method for controlling regeneration thereof |
US6823663B2 (en) * | 2002-11-21 | 2004-11-30 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US6931842B2 (en) * | 2002-11-29 | 2005-08-23 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US6969413B2 (en) * | 2002-06-13 | 2005-11-29 | Denso Corporation | Exhaust gas filtering system having particulate filter for internal combustion engine |
US6978602B2 (en) * | 2002-12-25 | 2005-12-27 | Nissan Motor Co., Ltd. | Engine exhaust cleaning device |
US7051520B2 (en) * | 2003-11-05 | 2006-05-30 | Isuzu Motors Limited | Sulfur purge control method and exhaust gas purifying system |
US7059113B2 (en) * | 2000-07-24 | 2006-06-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device |
-
2004
- 2004-07-16 JP JP2004210624A patent/JP2006029239A/en active Pending
-
2005
- 2005-07-15 DE DE102005033232A patent/DE102005033232A1/en not_active Ceased
- 2005-07-15 US US11/181,823 patent/US20060016180A1/en not_active Abandoned
- 2005-07-18 FR FR0507622A patent/FR2873164A1/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5489319A (en) * | 1992-09-09 | 1996-02-06 | Matsushita Electric Industrial Co., Ltd. | Apparatus for purifying exhaust gas of diesel engine |
US7059113B2 (en) * | 2000-07-24 | 2006-06-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device |
US6568173B1 (en) * | 2000-08-02 | 2003-05-27 | Ford Global Technologies, Inc. | Control method for turbocharged diesel engine aftertreatment system |
US6574956B1 (en) * | 2000-11-03 | 2003-06-10 | Ford Global Technologies, Llc | Apparatus and method for interrupting regeneration of a particulate filter in a diesel engine |
US6802180B2 (en) * | 2001-11-28 | 2004-10-12 | Isuzu Motors Limited | Exhaust gas purification system and method for controlling regeneration thereof |
US6969413B2 (en) * | 2002-06-13 | 2005-11-29 | Denso Corporation | Exhaust gas filtering system having particulate filter for internal combustion engine |
US6823663B2 (en) * | 2002-11-21 | 2004-11-30 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
US6931842B2 (en) * | 2002-11-29 | 2005-08-23 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US6978602B2 (en) * | 2002-12-25 | 2005-12-27 | Nissan Motor Co., Ltd. | Engine exhaust cleaning device |
US7051520B2 (en) * | 2003-11-05 | 2006-05-30 | Isuzu Motors Limited | Sulfur purge control method and exhaust gas purifying system |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7107770B2 (en) * | 2004-02-27 | 2006-09-19 | Nissan Motor Co., Ltd. | Engine control device |
US20050188695A1 (en) * | 2004-02-27 | 2005-09-01 | Nissan Motor Co., Ltd. | Engine control device |
US20060137660A1 (en) * | 2004-12-27 | 2006-06-29 | Takashi Shirakawa | Engine control apparatus |
US7296561B2 (en) * | 2004-12-27 | 2007-11-20 | Nissan Motor Co., Ltd. | Engine control apparatus |
US8069650B2 (en) * | 2005-09-15 | 2011-12-06 | Volvo Lastvagnar Ab | Method for internal combustion engine with exhaust recirculation |
US20080264049A1 (en) * | 2005-09-15 | 2008-10-30 | Volvo Lastvagnar Ab | Method for Internal Combustion Engine With Exhaust Recirculation |
EP1840358A3 (en) * | 2006-03-27 | 2011-04-06 | Nissan Motor Company Limited | Exhaust gas purification |
US20070220868A1 (en) * | 2006-03-27 | 2007-09-27 | Nissan Motor Co., Ltd. | Method for regenerating exhaust gas purifying filter apparatus |
EP1840358A2 (en) * | 2006-03-27 | 2007-10-03 | Nissan Motor Company Limited | Exhaust gas purification |
US8001772B2 (en) | 2006-03-27 | 2011-08-23 | Nissan Motor Co., Ltd. | Method for regenerating exhaust gas purifying filter apparatus |
US20090056314A1 (en) * | 2006-04-10 | 2009-03-05 | Masashi Gabe | Exhaust Gas Purification Method and Exhaust Gas Purification System |
EP2006504A4 (en) * | 2006-04-10 | 2017-06-28 | Isuzu Motors Limited | Exhaust gas purification method and exhaust gas purification system |
US8056321B2 (en) * | 2006-04-10 | 2011-11-15 | Isuzu Motors Limited | Exhaust gas purification method and exhaust gas purification system |
EP1892400A3 (en) * | 2006-08-08 | 2008-04-02 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine, and control method of the system |
EP1892400A2 (en) * | 2006-08-08 | 2008-02-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine, and control method of the system |
US8359837B2 (en) | 2006-12-22 | 2013-01-29 | Cummins Inc. | Temperature determination and control of exhaust aftertreatment system adsorbers |
US20080202103A1 (en) * | 2006-12-22 | 2008-08-28 | Greg Henderson | Software, methods and systems including soot loading metrics |
US8171726B2 (en) | 2006-12-22 | 2012-05-08 | Cummins Inc. | Software, methods and systems including soot loading metrics |
US8434452B2 (en) * | 2009-04-16 | 2013-05-07 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US20120035830A1 (en) * | 2009-04-16 | 2012-02-09 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US8146351B2 (en) * | 2009-06-05 | 2012-04-03 | GM Global Technology Operations LLC | Regeneration systems and methods for particulate filters using virtual brick temperature sensors |
US20100307139A1 (en) * | 2009-06-05 | 2010-12-09 | Gm Global Technology Operations, Inc. | Regeneration systems and methods for particulate filters using virtual brick temperature sensors |
US9020739B2 (en) * | 2009-11-11 | 2015-04-28 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine having an external exhaust gas recirculation system |
US20110160984A1 (en) * | 2009-11-11 | 2011-06-30 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
US20150128567A1 (en) * | 2012-06-01 | 2015-05-14 | Toyota Jidosha Kabushiki Kaisha | Catalyst protection device and catalyst protection method for internal combustion engine |
US9371762B2 (en) * | 2012-06-01 | 2016-06-21 | Toyota Jidosha Kabushiki Kaisha | Catalyst protection device and catalyst protection method for internal combustion engine |
CN103277173A (en) * | 2013-01-18 | 2013-09-04 | 贵州黄帝车辆净化器有限公司 | Control system and control method for temperature rising of diesel engine exhaust aftertreatment device |
WO2015118856A1 (en) * | 2014-02-10 | 2015-08-13 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
CN104863678A (en) * | 2014-02-24 | 2015-08-26 | 通用汽车环球科技运作有限责任公司 | Detecting over-temperature in exhaust system |
US9328645B2 (en) * | 2014-02-24 | 2016-05-03 | GM Global Technology Operations LLC | Detecting over-temperature in exhaust system |
DE102015102227B4 (en) * | 2014-02-24 | 2018-02-08 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | An exhaust treatment system for an engine and method for determining an over-temperature condition in an exhaust treatment system |
CN106321239A (en) * | 2015-06-30 | 2017-01-11 | 福特环球技术公司 | Method and system for detection of hot spark plug fouling |
US9683535B2 (en) * | 2015-06-30 | 2017-06-20 | Ford Global Technologies, Llc | Method and system for detection of hot spark plug fouling |
US20180347504A1 (en) * | 2015-12-03 | 2018-12-06 | Isuzu Motors Limited | Internal combustion engine and control method for same |
US10823107B2 (en) * | 2015-12-03 | 2020-11-03 | Isuzu Motors Limited | Internal combustion engine and control method for same |
CN108779721A (en) * | 2016-03-23 | 2018-11-09 | 斯堪尼亚商用车有限公司 | A kind of method and system for determining the specific gas constant and stoichiometric air-fuel ratio of the fuel gas for gas engine |
US20220341368A1 (en) * | 2021-04-21 | 2022-10-27 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
US11536212B2 (en) * | 2021-04-21 | 2022-12-27 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
FR2873164A1 (en) | 2006-01-20 |
JP2006029239A (en) | 2006-02-02 |
DE102005033232A1 (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060016180A1 (en) | Apparatus and method for preventing overheating of exhaust purification filter | |
US7299625B2 (en) | Exhaust purifying apparatus and exhaust purifying method for internal combustion engine | |
US8307629B2 (en) | Control method of exhaust emission purification system and exhaust emission purification system | |
US7600373B2 (en) | Regeneration controller for exhaust purification apparatus of internal combustion engine | |
US8079212B2 (en) | Exhaust purifying apparatus and exhaust purifying method for internal combustion engine | |
US20080196395A1 (en) | Exhaust Gas Purification System For Internal Combustion Engine | |
US7320214B2 (en) | Exhaust gas purifier for internal combustion engine | |
US7849677B2 (en) | Regeneration controller for exhaust purification apparatus of internal combustion engine | |
US7677029B2 (en) | Regeneration controller for exhaust purification apparatus of internal combustion engine | |
EP1515017B1 (en) | Catalyst control apparatus of internal combustion engine | |
EP1555401A1 (en) | Exhaust purifying apparatus for internal combustion engine | |
US7836685B2 (en) | Regeneration controller for exhaust purification apparatus of internal combustion engine | |
JP2010169032A (en) | Engine control device | |
US7841169B2 (en) | Regeneration controller for exhaust purification apparatus of internal combustion engine | |
EP1515014B1 (en) | Exhaust purifying apparatus of internal combustion engine | |
US20080148714A1 (en) | Exhaust control system for an internal combustion engine | |
JP2008144726A (en) | Exhaust gas purification device for internal combustion engine | |
KR100879326B1 (en) | Exhaust Purification System and Exhaust Purification Method for Internal Combustion Engine | |
JP4367123B2 (en) | Catalyst control device for internal combustion engine | |
KR20180067898A (en) | Method for reducing exhaust gas of engine in case of controlling scavenging | |
JP2005076504A (en) | Catalyst control method and catalyst control apparatus for internal combustion engine | |
JP2006274863A (en) | Internal combustion engine combustion control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TOMITA, TETSUJI;SUGIYAMA, TATSUMASA;TAHARA, JUN;REEL/FRAME:017061/0269 Effective date: 20050913 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |