US20060015008A1 - Video recording and image capture device - Google Patents
Video recording and image capture device Download PDFInfo
- Publication number
- US20060015008A1 US20060015008A1 US11/229,152 US22915205A US2006015008A1 US 20060015008 A1 US20060015008 A1 US 20060015008A1 US 22915205 A US22915205 A US 22915205A US 2006015008 A1 US2006015008 A1 US 2006015008A1
- Authority
- US
- United States
- Prior art keywords
- imager
- video
- image
- touch screen
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 238000004891 communication Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 2
- 238000001356 surgical procedure Methods 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 10
- 230000002452 interceptive effect Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 4
- 230000005236 sound signal Effects 0.000 description 10
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000006837 decompression Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012552 review Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 241001562081 Ikeda Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002674 endoscopic surgery Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/042—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/0002—Operational features of endoscopes provided with data storages
- A61B1/00022—Operational features of endoscopes provided with data storages removable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00039—Operational features of endoscopes provided with input arrangements for the user
- A61B1/0004—Operational features of endoscopes provided with input arrangements for the user for electronic operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00039—Operational features of endoscopes provided with input arrangements for the user
- A61B1/00042—Operational features of endoscopes provided with input arrangements for the user for mechanical operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
- A61B1/0005—Display arrangement combining images e.g. side-by-side, superimposed or tiled
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/80—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
- H04N9/804—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
- H04N9/8042—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/765—Interface circuits between an apparatus for recording and another apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/765—Interface circuits between an apparatus for recording and another apparatus
- H04N5/77—Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/765—Interface circuits between an apparatus for recording and another apparatus
- H04N5/775—Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/78—Television signal recording using magnetic recording
- H04N5/781—Television signal recording using magnetic recording on disks or drums
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/84—Television signal recording using optical recording
- H04N5/85—Television signal recording using optical recording on discs or drums
Definitions
- the invention relates generally to device for video recording and image capture, and more particularly to such a device for image based documentation of surgical procedures.
- the invention also relates to means to process signals into an MPEG layer stream.
- Image data availability is only of value when the data can be read and images displayed readily. Thus, exotic and unusual methods of storing and reading image data chain physicians. Most convenient are displays in NTSC and PAL standards and devices that can play image data on these displays. NTSC is the common television standard in the U.S., while PAL standards predominate in Europe and in parts of Asia. Additionally, most convenient for medical personal, is for images and video to be viewable utilizing common off-the-shelf optical media players (i.e. set-top DVD players) and/or standard personal computers.
- U.S. Pat. No. 5,045,955 to Ikeda discloses an apparatus coupled to a digital tape drive for recording and reproducing high-definition medical images having specific analog matrix exceeding that of NTSC or PAL standards.
- these images can only be produced by specialized imaging equipment and can only be viewed on highly specialized monitors. They are incompatible with NTSC or PAL standards and thus are inapplicable to the use of documenting procedures where analog or digital cameras provide a video signal to be displayed.
- imaging is primarily related to diagnosis rather than documentation; resulting in files solely consisting of visually relevant components and omitting narration by the treating physician.
- Surgical suites include a plurality of equipment.
- Vertically stacking equipment in shelves, i.e. racking advantageously conserves space.
- What is also desired is a device that formats a video signal into a plurality of video formats for display, displays an image stream, and allows a user to capture still images and save same as a still graphic file to the same media as the documentary recording file.
- the device and the parts that the user interacts with are convenient and accessible.
- the device is capable of “feed through” of real-time video signals to a plurality of display devices, in a plurality of video formats, when the device is in a standby mode, when the device is off, or in the event when the device malfunctions.
- a device for medical video recording includes an endoscope, and an imager for converting energy such as electromagnetic energy, direct current energy and the like, which is received from said endoscope to signals that are contemporaneously stored onto said media.
- a device that encodes a video signal into a documentary recording file formatted in an MPEG-2 layer.
- a multimedia interface to process a video signal and audio signal into a first and second digital data stream having common characteristics is provided.
- a recording mode for recording a video stream during a surgical procedure is provide for surgical documentation.
- a means for a video signal to be displayed by a display unit during recording mode, or when the device is in a standby mode, or when the device is off, or when the device has malfunction, is provided.
- an archival mode is provided for review, edit and playback of a documentary recording file and graphic file.
- a medical instrument having touch screen control includes a touch screen for entering control commands, a processor for receiving the control commands and for generating control signals to operate the medical instrument, a housing for enclosing the processor.
- the touch screen is movable between a first position protected by the housing and second position extended from the housing for entry of the control commands.
- a multimedia interface for processing a video signal for recording video into a multiple frame layer includes a controller for an inter-ic bus for providing a multiple master digital connection, an analog to digital converter for converting a video signal to a first digital stream, the converter operably connected to the inter-ic bus, a video compression and decompression integrated circuit for encoding the first digital stream into a second digital stream having frames and decoding a second digital stream, the video compression and decompression integrated circuit operably connected to the inter-ic bus a programmable buffer for selectively saving frames handled by the controller, the buffer operably connected to the controller and the video compression and decompression integrated circuit and the buffer inserting the frame into the second digital stream for decoding.
- a method for recording an MPEG layer file for documenting surgical procedures while displaying an MPEG layer stream and n number selecting still image files corresponding to the MPEG layer stream includes the steps of providing a first digital data stream comprising a video signal, providing a second digital data stream comprising an audio signal, multiplexing an MPEG layer data stream from the first and second digital data stream, streaming the MPEG layer data stream to a hard drive and an optical media drive operably connected on a vertically stacked bus, writing the MPEG layer stream to the hard drive and the optical media drive, displaying the MPEG layer stream on a display unit, selecting n number of frames from the MPEG layer stream, converting n frames to n still image files, and multiplexing the output signal to the display unit by adding n still image files.
- communicate means both conveying data from a source to a destination, as well as delivering data to a communications medium, system or link to be conveyed to a destination.
- communication means the act of communicating or the data communicated, as appropriate.
- FIG. 1 is a schematic diagram of a Video Recording and Image Capture Device used in a surgical patient setting in accordance with the present invention
- FIG. 2 depicts a front panel elevation view of a Video Recording and Image Capture Device of FIG. 1 ;
- FIGS. 3 depicts a rear panel elevation view of a Video Recording and Image Capture Device of FIG. 1 ;
- FIG. 4 is a schematic diagram of a Video Recording and Image Capture Device of FIG. 1 ;
- FIGS. 5 a , 5 b , and 5 c depict a Video Recording and Image Capture Device of FIG. 1 ;
- FIG. 6 is a schematic diagram of a multimedia interface of FIG. 1 ;
- FIG. 7 depicts a schematic of interconnecting Video Recording and Image Capture Device and a display unit of FIG. 1 ;
- FIGS. 8 through 13 depict use of a Video Recording and Image Capture Device through the interactive display of the touchscreen of FIG. 1 ;
- FIGS. 14 a and 14 b depict a plan view a track advance system for a touchscreen of a Video Recording and Image Capture Device of FIG. 1 ;
- FIG. 15 depict a Video Recording and Image Capture Device of FIG. 1 with touch screen fully retracted, touch screen extended and touch screen extended and deflected.
- the present invention will be described as used in connection with one or more endoscopes. It will be understood that other applications may be used equally effectively.
- Various frame displays and icons having particular graphical representations are described in connection with the functions of the present invention. It will be understood that other graphical representations may be used equally effectively in communicating to users the function performed therein.
- image and image stream refer to the perception of the user utilizing their audiovisual capabilities; an image stream may also include an auditory component.
- Video signal, digital signal, analog signal, data stream, or the like refer to electrical signals in the present invention and electrical equipment operably connected and/or associated with the present invention.
- FIG. 1 is a schematic diagram of a Video Recording and Image Capture Device used in a surgical patient setting in accordance with one embodiment of the present invention.
- Patient 5 is being examined by user 10 with an endoscope 15 .
- User 10 may be a physician, surgeon, nurse, or other qualified professional or para-professional.
- Video Recording and Image Capture Device (imager) 100 has been placed into a video recording mode.
- a camera head 20 such as a charge coupled device (CCD), CMOS, or CCI chip, is coupled to endoscope 15 to receive and produce a video signal 300 (see FIG. 4 ) of a body cavity of patient 5 .
- Video signal 300 results in an image stream 25 when displayed on a display unit.
- CCD charge coupled device
- imager 100 is operably connected to CCU 30 to receive video signal 300 .
- Device is also operably connected to external video screen 35 , microphone 40 , printer 45 , and network 50 through standard ports.
- imager 100 is operably connected to camera head 20 to receive video signal 300 and control camera head 20 , obviating the need for CCU 30 .
- imager 100 is recording a digital data stream representing image stream 25 on optical media drive (OMD) 125 (see FIG. 2 ) and saving a backup copy to hard drive (HDD) 120 (see FIG. 4 ) for a plurality of purposes.
- OMD optical media drive
- HDD hard drive
- user 10 may provide narration to the examination.
- Microphone 40 or an independent audio recording system captures the narration and converts it into audio signal 314 i (see FIG. 6 ) or 316 i (see FIG. 6 ), respectively, collectively audio signal 315 (see FIG. 6 ).
- user 10 Upon encountering a situation requiring further investigation, user 10 utilizes an image capture mode to save and freeze a first image from image stream 25 for further investigation.
- imager 100 Using imager 100 , a second image substantially like the first image can be superimposed on image stream 25 .
- a plurality of second images substantially corresponding to respective first images found of interest can be saved and concurrently superimposed on image stream 25 .
- a file corresponding to second image can be printed with printer 45 and/or forwarded over network 50 to other persons for consultation.
- FIGS. 2 and 3 depict a front panel and rear panel elevation view, respectively, of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention.
- FIG. 4 is a schematic diagram of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention.
- Imager 100 is substantially housed in chassis 105 and includes a plurality of components: power supply 110 , microprocessor main board (MMB) 115 , hard drive (HDD) 120 , optical media drive (OMD) 125 , communication interface 130 , multimedia interface 135 , speaker 140 , digital video interface 150 .
- Chassis 105 includes an add-on tray 105 a that advantageously houses touchscreen 145 .
- Power supply 110 is connected to an AC power supply with an electric cord at power port 110 a located on chassis back panel 105 b .
- power supply 110 provides suitable power to components of imager 100 .
- Power supply 110 conforms to IEC 601-1 isolation requirements, provides power meeting medical grade standards of 145 Watts, includes a power correction factor, and is capable of automatically handling automatically an AC voltage range of 100 to 250 VAC, 50-60 Hz.
- Microprocessor main board (MMB) 115 executes software and includes a central processor unit (“processor”), random access memory, a plurality of expansion slots, a BIOS chip, and on-board sound and graphics capabilities on a footprint convenient for chassis 105 .
- processor central processor unit
- BIOS chip a BIOS chip
- on-board sound and graphics capabilities on a footprint convenient for chassis 105 .
- Intel Pentium III with a processing speed of at least 800 MHz; an Intel 815 chip set; at least three (3) PCI and one (1) AGP slot; SDRAM of at least 128 MB; on-board AGP graphics; and a flash upgradeable BIOS chip wherein a customized logo may be loaded, is provided on an ATX motherboard.
- MMB 115 preferably includes port panel 115 a to connect to other devices and or networks via serial, parallel, USB and ethernet, and to connect to mouse, keyboard, and video monitor; a Intel 40-pin DVO motherboard connector, or similar, and support for the connector.
- Hard drive (HDD) 120 and optical media drive (OMD) 125 maybe IDE or Enhanced IDE (alternatively IDE) compatible data storage media drives operably connected MMB 115 by a vertically stacked IDE bus 116 .
- HDD 120 maybe a magnetic hard drive having at least 40 Gigabytes of storage and minimal access time, as such a drive from Maxtor having EIDE access time of 8.0 ms, 7200 rpm disk speed is preferred.
- OMD 125 is preferably a DVD+RW drive capable of reading and writing data to an optical media disk, such as a compact disk (CD) and/or a digital versatile disk (DVD).
- Communication interface 130 is any kind of network or proprietary communications interface. Therein, for example, a network card that is capable of interfacing with the Karl Storz®, Inc. Storz Communication Bus (SCB) is preferred.
- SCB Storz Communication Bus
- Multimedia interface 135 connects to MMB 115 via a Peripheral Component Interconnect (PCI) local bus to provide record and write image stream 25 originating from camera head 20 .
- Speaker 140 is housed in chassis 105 and provides auditory capabilities for imager 100 .
- Digital video interface 150 is operably connected to MMB 115 to create a video signal conforming to the digital visual interface (DVI) standard.
- a digital video interface 150 is preferably physically implemented as a printed circuit board having an Intel 40-pin DVO connector, or similar, to MMB 115 and a DVI-D output connector in expansion slot 105 d.
- a touchscreen 145 is provided as illustrated on FIGS. 5 a , 5 b , and 5 c in accordance with one embodiment of the present invention.
- a surface 145 a responsive to touch by an operator, such as user 10 , and a display 400 capable of showing the functions of imager 100 are included in touchscreen 145 .
- Preferred is a touchscreen manufactured by Optrex Inc. of Plymouth, Mich.
- a video connection to MMB 115 is made to the corresponding DVI-D output and a data and power connection is made between standard RS-232 serial ports.
- Touchscreen 145 is advantageously housed in tray 105 a (see FIG. 14 a ) of imager 100 within chassis 105 . Therein, it is mounted within a track advance system (TAS) 146 (see FIG. 14 a ) so that touchscreen 145 is secure and is relatively flush with a front face of chassis 105 as depicted in accordance with one embodiment of the present invention in FIG. 18 .
- TAS track advance system
- TAS 146 allows user 10 to advantageously use the space available when equipment is racked.
- User 10 presses a button or other releasing mechanism to release touchscreen 145 and slides touchscreen 145 away from chassis 105 and out of tray 105 a as indicated by the arrows as depicted in accordance with one embodiment of the present invention in FIG. 5 b .
- user 10 is able to tilt touchscreen 145 at an angle as indicated by the arcuate arrows in accordance with one embodiment of the present invention in FIG. 5 c.
- FIG. 15 discloses the touch screen in various states of deployment.
- 101 shows one embodiment in which the touch screen is fully retracted, however, other embodiments will not have the touch screen fully retract.
- 102 shows the touch screen extended out and 103 shows the touch screen extended out and deflected from the plane of the housing.
- FIGS. 14 a and 14 b depict a plan view of a track advance system for a touchscreen of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention.
- a platform 144 (shown advanced out of tray 105 a ) disposed to tray 105 a is operable with rails 143 a and 143 b and is guided by tracks 147 a and 147 b by bearings or other friction reducing mechanisms as depicted in accordance with one embodiment of the present invention in FIG. 14 a .
- Releasing mechanism 143 d includes one or more components that selective to user desire, release touchscreen 145 in order to advance it.
- Releasing mechanism 143 d further may include one or more springs 143 e.
- Platform 144 may be of any suitable design to hold touchscreen 145 even when placed at an angle from horizontal. Touchscreen 145 is operative with imager 100 through cables and connectors.
- Rails 143 a and 143 b have stops 143 c (only partially shown for clarity) operable with tracks 147 a and 147 b to prevent advancing touchscreen 145 beyond a predetermined point.
- TAS 146 includes on or more hinge 142 , such as edged hinge 142 a and 142 b , or center hinge 143 c a center hinge as depicted in accordance with one embodiment of the present invention in FIG. 14 b .
- Hinge 142 a and 142 b cooperate to angle platform 144 so that user 10 can during the surgery interactively access touchscreen 145 .
- one or more tapping mechanisms are disposed with hinge 142 , that make it resistant to unintentional movement.
- FIG. 6 is a schematic diagram of multimedia interface 135 in accordance with one embodiment of the present invention.
- Multimedia interface 135 is physically implemented on one or more printed circuit boards, also commonly referred to as expansion cards, having a plurality of integrated circuits and a PCI bus connection 136 to MBB 115 for data transfer. Through bus 136 multimedia interface 135 also receives electric power. Audio and video connection ports, i.e. input and output ports, are physically implemented in expansion slots 105 and integrally connected to multimedia interface 135 .
- multimedia interface 135 is implemented as a PCI expansion card with bus connection 136 to MBB 115 and a further printed circuit board connecting directly to the PCI expansion card.
- Controller 200 implements the Inter-IC bus as a multi-master bus to connect circuits to PCI interface 210 .
- Router 220 is provided as a field programmable gate array and has programmable read only memory that is accessible via a port, such as a JTAG port.
- imager 100 receives the input of video signal 300 and audio signal 315 and contemporaneously encodes both signals while writing the data stream to HDD 120 (see FIG. 4 ) and/or media in OMD 125 (see FIG. 4 ).
- Video signal 300 is received by multimedia interface 135 as analog video signal 304 i or digital video signal 306 i in input ports located in expansion slot 105 d (see FIG. 3 ).
- the active input port is automatically detected by multimedia interface 135 , as are active output ports.
- a relay 205 is operative to bypass video signal 300 to an exit port corresponding to the input port for display by an external monitor when imager 100 is not powered or imager 100 is in standby mode.
- relay 205 includes a receiver for receiving a sense signal from software to indicate that the recording mode is engaged. If the sense signal is not received with a predetermined time, video signal 300 is bypassed. If imager 100 is not powered, a default mode of relay 205 bypasses the signal to the corresponding port, i.e. video signal 300 input on the S-video input is bypassed to an S-video output port.
- Analog video signal 304 i is received using composite video input or S-Video input. If analog video signal 304 i is received when imager 100 is not electrically powered or recording mode is not engaged, video signal 300 is bypassed using bypass relay 205 . Received analog video signal 304 i is digitized using analog to digital converter 240 . Therein, the NTSC or PAL standard analog video signal 304 i is digitized to first internal data stream, digital data stream (DDS) 310 . A digitized data stream having 4:2:2 luminance to chrominance (YUV) pixels is preferred. Other data stream configurations may also be used. In particular, a data stream having 8:2:2 YUV may be advantageously used in connection with CCU 30 (see FIG. 1 ) which is capable of producing higher analog video frame quality. DDS 310 is then streamed via router 220 to video media compression and decompression integrated circuit (V-codec) 230 where it is encoded.
- V-codec video media compression and decompression integrated
- Digital video signal 306 i is received using the SDI digital video signal input. If digital video signal 306 i is received when imager 100 is not electrically powered or recording mode is not engaged, video signal 300 is bypassed using bypass relay 205 . Received signal 306 i is processed by SDI receiver 250 and converted to a first internal data stream, DDS 310 . A digitized data stream having a 4:2:2 luminance to chrominance (YUV) pixels is preferred; although other data stream configurations may also be used. DDS 310 is streamed via router 220 to V-codec 230 where it is encoded.
- Audio signal 314 i originating from a stereo line and audio signal 316 i originating from microphone 40 are provided for recording a desired audio signal such as dictation. Both inputs may be combined to create a single audio signal 315 or used individually. Audio signal 315 is received by audio compression and decompression integrated circuit (A-codec) 260 and converted to a second internal data stream, digital data stream for audio (DDSA) 312 , and passed to automatic gain control 270 disposed on the Inter-IC bus. DDSA 312 is then streamed to V-codec 230 .
- A-codec audio compression and decompression integrated circuit
- V-codec 230 is provided as embedded software, preferably operating on a LINUX or UNIX embedded platform, on one or more integrated circuits on the Inter-IC bus and operatively connected to controller 200 . Also operatively connected are one or more buffer memories, such as SDRAM integrated circuits. Configuration settings of V-codec 230 are stored on an associated erasable electronic programmable read only memory (EEPROM or EPROM) circuit, or similar.
- the embedded software of V-codec 230 executes an algorithm to decode and/or encode a Motion Picture Experts Group (MPEG) layer, such as MPEG, MPEG-2 and/or MPEG-4, data stream (MDS) 320 .
- MPEG Motion Picture Experts Group
- MDS data stream
- MDS 320 advantageously utilizes high compression rates achieved by using an index frame and noting a sequence of changes to that index frame in subsequent images. Therein, MDS 320 is comprised of a stream of frames 322 .
- MDS 320 is preferred to encode in a file format designated as “VOB” applicable to DVD+RW media storage and play. It should be appreciated that the present invention may be adapted readily to utilize other compression and decompression algorithms.
- V-codec 230 multiplexes DDS 310 and DDSA 312 into MDS 320 which is then streamed to MMB 115 . From there, MDS 320 is streamed to HDD 120 and to OMD 125 via vertically stacked IDE bus 116 . Therein, HDD 120 writes MDS 320 to a magnetic disk and streams a copy to OMD 125 for writing to an optical disk such as a CD-R or DVD media to create contemporaneous documentary recording file while the surgery is being conducted by user 10 . If the write process on OMD 125 is interrupted or fails, a backup copy resides on HDD 120 for a subsequent write attempt after the conclusion of the surgery.
- FIG. 7 depicts a schematic of interconnecting imager 100 and a display unit in accordance with one or more embodiments of the present invention.
- An embodiment of video screen 35 , external video screen 35 a is operable to receive an analog and/or digital signal using connectors for S-video, composite and/or SDI format.
- multimedia interface 135 senses the active output port and router 220 streams DDS 310 accordingly to either SDI transmitter 280 to produce digital video signal 306 ⁇ or to digital to analog converter 290 to produce analog video signal 304 x , respectively.
- common data stream DDS 310 is automatically converted to the appropriate NTSC or PAL standard analog signal in use by video screen 35 a.
- Touchscreen 145 is operable to receive a video signal in digital visual interface (DVI) format, and an embodiment of video screen 35 , external video screen 35 b having touchscreen capabilities, is operable to receive a video signal in digital visual interface (DVI) format or analog monitor format.
- DVI digital visual interface
- MMB 115 streams a copy of MDS 320 to resident AGP graphics support and/or DVI graphics support and digital video interface 150 for output to touchscreen 145 and video screen 35 b as required by the active output.
- Image capture mode is provided for saving a frame 322 (see FIG. 6 ) from MDS 320 substantially like image of image stream 25 .
- User 10 views an image of interest in image stream 25 and initiates instruction to “freeze” the image of interest. Since both reaction time on behalf user 10 and processing time on behalf of imager 100 has passed when such an instruction has been received, a frame 322 substantially like image 26 is saved, wherein the substantiality is temporal.
- the freeze instruction is forwarded to multimedia interface 135 .
- controller 200 instructs PCI interface 210 to forward the current frame 322 being handled to frame buffer 295 , also known as frame grabber, which stores frame 322 .
- Frame buffer 295 can be implemented as an integrated circuit, capable of storing and identifying a plurality n of frames 322 corresponding to maximum number n frames capable of being stored according to the buffer size (hereinafter frame 322 , designating the first frame 322 stored, frame 322 2 the second . . . , and frame 322 n the last frame stored). As shown, identification may be implemented by designating a first-in-first-out order, or similar order.
- buffer 295 Upon receipt of frame 322 1 , buffer 295 forwards a copy to router 220 .
- Router 220 multiplexes frame 322 , with DDS 310 and streams the combined signal to the active output port for display as combined image.
- user 10 is able to manipulate the position and size of the combined image within image stream 25 and on a display unit.
- a copy of frame 322 1 is saved to HDD 120 , preferably in file format Joint Picture Experts Group JPEG layer corresponding to the MPEG layer such as MPEG, MPEG-2 and/or MPEG-4 layer, as a graphic file.
- JPEG Joint Picture Experts Group
- a software application for conversion to other formats such as “TIFF,” “BMP,” and/or “FPX”, or similar, is provided.
- frame 322 2 is multiplexed with frame 322 1 and DDS 310 and the combined signal streamed to the active output for display on a display unit.
- An archival mode is provided for review, edit and playback of documentary recording file and a graphic file.
- the recording file is accessed and a digital data stream corresponding to MDS 320 is read from media of HDD 120 and/or OMD 125 and is streamed to V-codec 230 and is decompressed into a digital data stream corresponding to DDS 310 .
- the decompressed digital data stream is then routed to the active port for display or transferred to MMB 115 for display on a display unit.
- FIGS. 8 through 13 depict use of imager 100 through interactive display 400 of touchscreen 145 in accordance with one embodiment of the present invention. It should be appreciated that similar usage is achieved through use of other input devices, as for example mouse and keyboard, coupled to a display unit.
- imager 100 Upon powering of imager 100 , it is in standby mode and page 410 is shown as depicted in FIG. 8 in accordance with one embodiment of the present invention.
- Display 400 is shown as page 410 providing a plurality of fields.
- the fields depicted include fields grouped to display surgical information 600 , multimedia status 610 , image panel 620 , and control panel 630 .
- multimedia status 610 indicates that the optical media includes data saved from a previous surgical session.
- user 10 touches the desired field in surgical information block 600 to include the requisite data.
- Surgical information block 600 includes fields for biographical patient information, identity of treating physician, and additional information as may be convenient and necessary. If the field requires an alpha-numeric entry, alpha-numeric keyboard page 420 is displayed on top of page 410 , as depicted in FIG. 9 . User 10 enters the data by touch. Field 422 contemporaneously displays the entry made. The user confirms the entry and is taken back to page 410 to make the next selection. If the desired field of frame 410 requires a numeric entry, numeric keyboard page 430 is displayed on top of page 410 , as depicted in FIG. 10 according to one embodiment of the present invention. User 10 enters the data by touch. Field 422 contemporaneously displays the entry made. The user confirms the entry and is taken back to page 410 , now modified with additional date as depicted in FIG. 11 according to one embodiment of the present invention, to make the next selection.
- control panel 630 provides functions to control imager 100 including recording video, capturing images, muting audio input, and confirming choices. Other functions as may be convenient and/or necessary may also be included.
- icon 632 may change design, such as becoming highlighted.
- image panel 620 image 25 is displayed in image window 624 and image status bar 622 displays confirmation of recording and elapsed recording as depicted in FIG. 12 .
- image status bar 622 displays confirmation of recording and elapsed recording, also as depicted in FIG. 12 according to one embodiment of the present invention.
- user 10 touches highlighted icon 632 or engages the appropriate control on CCU 30 .
- icon 636 may change design, such as becoming highlighted.
- icon 636 which in response may change design, preferably returning to its previous design.
- icon 634 may change design, such as becoming highlighted, and a confirmation message that the desired action is being performed will be displayed.
- image capture mode can be accessed if user 10 engages the appropriate control on CCU 30 to capture image 26 that is being displayed in image window 624 .
- Instruction is processed as described above and icon 634 may change design, such as becoming highlighted, and a confirmation message that the desired action is being performed will be displayed.
- multimedia status 610 includes fields identifying the remaining capacity of disc and the number of images captured and the length of time of image stream 25 recorded.
- the archival mode is accessible from control panel 630 to review and/or manipulate saved documentary recording files and graphics file.
- User 10 touches the designated icon, here illustrated as icon 638 , and review page 440 is displayed as depicted in FIG. 13 according to one embodiment of the present invention.
- Page 440 preferably includes a control panel 630 a , note area 670 , file directory 660 , image panel 620 including image window 624 , image status bar 622 , and controls 626 .
- Controls 626 preferably include pause, playback, print and confirmation means as well as elapsed time and other controls as deemed useful and/or necessary.
- a graphic file may be printed to printer 45 located in the surgical suite so that it is immediately available for review by user 10 .
- Software is provided to enlarge and view and manipulate the graphic file such as providing visual contrast, inserting a scaled file object corresponding to a physical prosthesis and thus determining whether such prosthesis fits patient 5 .
- sensor 318 (see FIG. 4 ) is provided for detecting an infrared remote control signal.
- Sensor 318 enables user 10 to remotely operate imager 100 .
- Sensor 318 is in communication with the processor or Microprocessor main board (MMB) 115 , the sensor receiving control signals to operate the medical instrument.
- MMB Microprocessor main board
- a system for speech recognition for user 10 interaction with imager 100 .
- Microphone 40 receives user 10 voice commands, which are routed to speech recognition module 319 .
- Speech recognition module 319 is software that executes on Microprocessor main board (MMB) 115 to receive voice signals that control the medical instrument.
- MMB Microprocessor main board
- database module 321 provides a database server and/or database management application that is operatively provided to enable user 10 to access, manage and/or update data in imager 100 .
- Database module 321 is software that executes on Microprocessor main board (MMB) 115 to establish control signals to operate the hard drive and the optical media drive.
- MMB Microprocessor main board
- expert system 323 is provided wherein characteristics of video signal 300 meeting predetermined characteristics are automatically brought to the attention of user 10 and/or saved as graphic files 810 .
- Expert system 323 is software that executes on Microprocessor main board (MMB) 115 to generate control signals to operate the medical instrument.
- MMB Microprocessor main board
- a stereoscopic module 324 is provided for associating a plurality of video signals 300 with each other, as such providing stereoscopic images on a display unit.
- Stereoscopic module 324 is software that executes on Microprocessor main board (MMB) 115 to associate a plurality of files to provide stereoscopic images on a multimedia interface.
- MMB Microprocessor main board
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Closed-Circuit Television Systems (AREA)
- Television Signal Processing For Recording (AREA)
- Endoscopes (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
A video recording and image capture device for documenting surgical procedures that includes a main board for executing a plurality of software, a multimedia interface operable to receive a video signal and process it into an MPEG layer stream, the video interface connected on a first bus to the main board, a hard drive to record an MPEG layer stream as a file, an optical media drive to write an MPEG layer stream as a file, the hard drive and the optical media drive operably connected on a second bus, the bus being vertically stacked and connected to the main board, and a touchscreen interactive for user control, connected to the main board on a second bus to control the video interface.
Description
- Applicant claims priority benefits under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/410,456 filed Sep. 13, 2002.
- The invention relates generally to device for video recording and image capture, and more particularly to such a device for image based documentation of surgical procedures. The invention also relates to means to process signals into an MPEG layer stream.
- The maxim that “a picture is worth a thousand words” is more true than ever in image based documentation of surgical procedures. There patients' lives and physicians' reputations are at stake. The early history of image based documentation is littered with crude attempts at utilizing photographic film to capture anatomical curiosities and groundbreaking surgical advances for teaching purposes. However, little attempt was made to provide documentation of routine cases. Average patients simply did not merit this special consideration.
- With the advent of analog cameras coupled to fiber optics, physicians began displaying some surgical patient images on video monitors in the operating room. This was especially true in endoscopic surgeries where physicians peer inside patients' body cavities normally only viewable with open surgery. Attempts made to systematically record all patient procedures on videotape required large and cumbersome archives of videotapes.
- Although analog cameras are still used, solid state image cameras coupled to endoscopes and other medical instruments are now standard. These cameras produce images in digital format. Such format allows convenient and efficient image transfer, review, and archival.
- One method for archiving digital images is suggested in U.S. Pat. No. 6,067,075 to Pelanek. Therein, a workstation is disclosed for transferring and archiving patient images previously stored in the memory of diagnostic equipment. However, this method does not disclose contemporaneously saving images in a permanent location, meaning that the equipment is subject to “downtime” as data is extracted from its memory.
- Once image data has been extracted and archived it must be made available to those in a position to best make use of it, the treating physician. Ironically in a circular manner, the person to whom eventual delivery of images is made is the same person who used the diagnostic equipment to record the images in the first place who must now await it being made available to him. Thus, it would be advantageous to the physician to have the data available at the conclusion of the surgical procedure or series of surgeries. Consequently, equipment downtime for data extraction also is eliminated increasing efficiency of equipment and facility utilization.
- Image data availability, however, is only of value when the data can be read and images displayed readily. Thus, exotic and unusual methods of storing and reading image data chain physicians. Most convenient are displays in NTSC and PAL standards and devices that can play image data on these displays. NTSC is the common television standard in the U.S., while PAL standards predominate in Europe and in parts of Asia. Additionally, most convenient for medical personal, is for images and video to be viewable utilizing common off-the-shelf optical media players (i.e. set-top DVD players) and/or standard personal computers.
- U.S. Pat. No. 5,045,955 to Ikeda discloses an apparatus coupled to a digital tape drive for recording and reproducing high-definition medical images having specific analog matrix exceeding that of NTSC or PAL standards. Typically, these images can only be produced by specialized imaging equipment and can only be viewed on highly specialized monitors. They are incompatible with NTSC or PAL standards and thus are inapplicable to the use of documenting procedures where analog or digital cameras provide a video signal to be displayed.
- Other suggestions have been made to integrate images into a medical setting. Therein, imaging is primarily related to diagnosis rather than documentation; resulting in files solely consisting of visually relevant components and omitting narration by the treating physician.
- Suggestions to incorporate equipment in surgical suites fail to consider issues relevant to logistics of placing equipment. Surgical suites include a plurality of equipment. Vertically stacking equipment in shelves, i.e. racking, advantageously conserves space. However, this limits the readily available user-operator access to front face plates. Equipment that incorporates space saving advantages while providing maximum user-operator access, therefore, is highly desired.
- Therefore, what is desired is a device that produces and saves a surgical documentary recording file that incorporates both video and audio to a transportable and common media contemporaneously during the surgery.
- What is also desired is a device that formats a video signal into a plurality of video formats for display, displays an image stream, and allows a user to capture still images and save same as a still graphic file to the same media as the documentary recording file.
- It is further desired that the device and the parts that the user interacts with are convenient and accessible.
- Also, it is desired that the device is capable of “feed through” of real-time video signals to a plurality of display devices, in a plurality of video formats, when the device is in a standby mode, when the device is off, or in the event when the device malfunctions.
- Further, what is desired is an interactive tutorial which allows a user to manipulate the files saved.
- These and other objectives are met by the embodiments of the present invention.
- In accordance with one embodiment, a device for medical video recording includes an endoscope, and an imager for converting energy such as electromagnetic energy, direct current energy and the like, which is received from said endoscope to signals that are contemporaneously stored onto said media.
- In accordance with one embodiment of the invention, a device is provided that encodes a video signal into a documentary recording file formatted in an MPEG-2 layer.
- In accordance with one embodiment of the invention, a multimedia interface to process a video signal and audio signal into a first and second digital data stream having common characteristics is provided.
- In accordance with one embodiment of the invention, a recording mode for recording a video stream during a surgical procedure is provide for surgical documentation.
- In accordance with one embodiment of the invention, a means for a video signal to be displayed by a display unit during recording mode, or when the device is in a standby mode, or when the device is off, or when the device has malfunction, is provided.
- In accordance with one embodiment of the invention, an archival mode is provided for review, edit and playback of a documentary recording file and graphic file.
- In accordance with one embodiment of the invention, a medical instrument having touch screen control includes a touch screen for entering control commands, a processor for receiving the control commands and for generating control signals to operate the medical instrument, a housing for enclosing the processor. The touch screen is movable between a first position protected by the housing and second position extended from the housing for entry of the control commands.
- In accordance with one embodiment of the invention, a multimedia interface for processing a video signal for recording video into a multiple frame layer includes a controller for an inter-ic bus for providing a multiple master digital connection, an analog to digital converter for converting a video signal to a first digital stream, the converter operably connected to the inter-ic bus, a video compression and decompression integrated circuit for encoding the first digital stream into a second digital stream having frames and decoding a second digital stream, the video compression and decompression integrated circuit operably connected to the inter-ic bus a programmable buffer for selectively saving frames handled by the controller, the buffer operably connected to the controller and the video compression and decompression integrated circuit and the buffer inserting the frame into the second digital stream for decoding.
- In accordance with one embodiment of the invention, a method for recording an MPEG layer file for documenting surgical procedures while displaying an MPEG layer stream and n number selecting still image files corresponding to the MPEG layer stream, includes the steps of providing a first digital data stream comprising a video signal, providing a second digital data stream comprising an audio signal, multiplexing an MPEG layer data stream from the first and second digital data stream, streaming the MPEG layer data stream to a hard drive and an optical media drive operably connected on a vertically stacked bus, writing the MPEG layer stream to the hard drive and the optical media drive, displaying the MPEG layer stream on a display unit, selecting n number of frames from the MPEG layer stream, converting n frames to n still image files, and multiplexing the output signal to the display unit by adding n still image files.
- The terms “communicate”, “communicating” and “communication” as used herein include both conveying data from a source to a destination, as well as delivering data to a communications medium, system or link to be conveyed to a destination. The term “communication” as used herein means the act of communicating or the data communicated, as appropriate.
- The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings.
-
FIG. 1 is a schematic diagram of a Video Recording and Image Capture Device used in a surgical patient setting in accordance with the present invention; -
FIG. 2 depicts a front panel elevation view of a Video Recording and Image Capture Device ofFIG. 1 ; - FIGS. 3 depicts a rear panel elevation view of a Video Recording and Image Capture Device of
FIG. 1 ; -
FIG. 4 is a schematic diagram of a Video Recording and Image Capture Device ofFIG. 1 ; -
FIGS. 5 a, 5 b, and 5 c depict a Video Recording and Image Capture Device ofFIG. 1 ; -
FIG. 6 is a schematic diagram of a multimedia interface ofFIG. 1 ; -
FIG. 7 depicts a schematic of interconnecting Video Recording and Image Capture Device and a display unit ofFIG. 1 ; -
FIGS. 8 through 13 depict use of a Video Recording and Image Capture Device through the interactive display of the touchscreen ofFIG. 1 ; -
FIGS. 14 a and 14 b depict a plan view a track advance system for a touchscreen of a Video Recording and Image Capture Device ofFIG. 1 ; and -
FIG. 15 depict a Video Recording and Image Capture Device ofFIG. 1 with touch screen fully retracted, touch screen extended and touch screen extended and deflected. - The present invention will be described as used in connection with one or more endoscopes. It will be understood that other applications may be used equally effectively. Various frame displays and icons having particular graphical representations are described in connection with the functions of the present invention. It will be understood that other graphical representations may be used equally effectively in communicating to users the function performed therein.
- Herein, image and image stream refer to the perception of the user utilizing their audiovisual capabilities; an image stream may also include an auditory component. Video signal, digital signal, analog signal, data stream, or the like refer to electrical signals in the present invention and electrical equipment operably connected and/or associated with the present invention.
-
FIG. 1 is a schematic diagram of a Video Recording and Image Capture Device used in a surgical patient setting in accordance with one embodiment of the present invention.Patient 5 is being examined byuser 10 with anendoscope 15.User 10 may be a physician, surgeon, nurse, or other qualified professional or para-professional. Video Recording and Image Capture Device (imager) 100 has been placed into a video recording mode. Acamera head 20, such as a charge coupled device (CCD), CMOS, or CCI chip, is coupled toendoscope 15 to receive and produce a video signal 300 (seeFIG. 4 ) of a body cavity ofpatient 5. Video signal 300 results in animage stream 25 when displayed on a display unit. - As
user 10 manipulatesendoscope 15,user 10controls camera head 20 with camera control unit (CCU) 30 and observesimage stream 25 on a display unit, for exampleexternal video screen 35.Imager 100 is operably connected toCCU 30 to receive video signal 300. Device is also operably connected toexternal video screen 35,microphone 40,printer 45, andnetwork 50 through standard ports. In one embodiment,imager 100 is operably connected tocamera head 20 to receive video signal 300 andcontrol camera head 20, obviating the need forCCU 30. - As
user 10 examines and treatspatient 5,imager 100 is recording a digital data stream representingimage stream 25 on optical media drive (OMD) 125 (seeFIG. 2 ) and saving a backup copy to hard drive (HDD) 120 (seeFIG. 4 ) for a plurality of purposes. During thisperiod user 10 may provide narration to the examination.Microphone 40 or an independent audio recording system captures the narration and converts it into audio signal 314 i (seeFIG. 6 ) or 316 i (seeFIG. 6 ), respectively, collectively audio signal 315 (seeFIG. 6 ). - Upon encountering a situation requiring further investigation,
user 10 utilizes an image capture mode to save and freeze a first image fromimage stream 25 for further investigation. Usingimager 100, a second image substantially like the first image can be superimposed onimage stream 25. Upon encountering further situations that attracts the attention ofuser 10, a plurality of second images substantially corresponding to respective first images found of interest can be saved and concurrently superimposed onimage stream 25. A file corresponding to second image can be printed withprinter 45 and/or forwarded overnetwork 50 to other persons for consultation. -
FIGS. 2 and 3 depict a front panel and rear panel elevation view, respectively, of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention.FIG. 4 is a schematic diagram of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention.Imager 100 is substantially housed inchassis 105 and includes a plurality of components:power supply 110, microprocessor main board (MMB) 115, hard drive (HDD) 120, optical media drive (OMD) 125,communication interface 130,multimedia interface 135,speaker 140,digital video interface 150.Chassis 105 includes an add-ontray 105 a that advantageously housestouchscreen 145. -
Power supply 110 is connected to an AC power supply with an electric cord atpower port 110 a located on chassis backpanel 105 b. Whenpower switch 110 b ofchassis front panel 105 c is engaged,power supply 110 provides suitable power to components ofimager 100.Power supply 110 conforms to IEC 601-1 isolation requirements, provides power meeting medical grade standards of 145 Watts, includes a power correction factor, and is capable of automatically handling automatically an AC voltage range of 100 to 250 VAC, 50-60 Hz. - Microprocessor main board (MMB) 115 executes software and includes a central processor unit (“processor”), random access memory, a plurality of expansion slots, a BIOS chip, and on-board sound and graphics capabilities on a footprint convenient for
chassis 105. Therein, it may be that an Intel Pentium III with a processing speed of at least 800 MHz; an Intel 815 chip set; at least three (3) PCI and one (1) AGP slot; SDRAM of at least 128 MB; on-board AGP graphics; and a flash upgradeable BIOS chip wherein a customized logo may be loaded, is provided on an ATX motherboard. Further,MMB 115 preferably includesport panel 115 a to connect to other devices and or networks via serial, parallel, USB and ethernet, and to connect to mouse, keyboard, and video monitor; a Intel 40-pin DVO motherboard connector, or similar, and support for the connector. - Hard drive (HDD) 120 and optical media drive (OMD) 125 maybe IDE or Enhanced IDE (alternatively IDE) compatible data storage media drives operably
connected MMB 115 by a vertically stacked IDE bus 116.HDD 120 maybe a magnetic hard drive having at least 40 Gigabytes of storage and minimal access time, as such a drive from Maxtor having EIDE access time of 8.0 ms, 7200 rpm disk speed is preferred.OMD 125 is preferably a DVD+RW drive capable of reading and writing data to an optical media disk, such as a compact disk (CD) and/or a digital versatile disk (DVD). -
Communication interface 130 is any kind of network or proprietary communications interface. Therein, for example, a network card that is capable of interfacing with the Karl Storz®, Inc. Storz Communication Bus (SCB) is preferred. -
Multimedia interface 135 connects toMMB 115 via a Peripheral Component Interconnect (PCI) local bus to provide record and writeimage stream 25 originating fromcamera head 20.Speaker 140 is housed inchassis 105 and provides auditory capabilities forimager 100. -
Digital video interface 150 is operably connected toMMB 115 to create a video signal conforming to the digital visual interface (DVI) standard. Therein, adigital video interface 150 is preferably physically implemented as a printed circuit board having an Intel 40-pin DVO connector, or similar, toMMB 115 and a DVI-D output connector inexpansion slot 105 d. - A
touchscreen 145 is provided as illustrated onFIGS. 5 a, 5 b, and 5 c in accordance with one embodiment of the present invention. A surface 145 a responsive to touch by an operator, such asuser 10, and adisplay 400 capable of showing the functions ofimager 100 are included intouchscreen 145. Preferred is a touchscreen manufactured by Optrex Inc. of Plymouth, Mich. A video connection toMMB 115 is made to the corresponding DVI-D output and a data and power connection is made between standard RS-232 serial ports. -
Touchscreen 145 is advantageously housed intray 105 a (seeFIG. 14 a) ofimager 100 withinchassis 105. Therein, it is mounted within a track advance system (TAS) 146 (seeFIG. 14 a) so thattouchscreen 145 is secure and is relatively flush with a front face ofchassis 105 as depicted in accordance with one embodiment of the present invention inFIG. 18 . -
TAS 146 allowsuser 10 to advantageously use the space available when equipment is racked.User 10 presses a button or other releasing mechanism to releasetouchscreen 145 and slidestouchscreen 145 away fromchassis 105 and out oftray 105 a as indicated by the arrows as depicted in accordance with one embodiment of the present invention inFIG. 5 b. To maketouchscreen 145 more user friendly and visible,user 10 is able to tilttouchscreen 145 at an angle as indicated by the arcuate arrows in accordance with one embodiment of the present invention inFIG. 5 c. -
FIG. 15 discloses the touch screen in various states of deployment. For example, 101 shows one embodiment in which the touch screen is fully retracted, however, other embodiments will not have the touch screen fully retract. 102 shows the touch screen extended out and 103 shows the touch screen extended out and deflected from the plane of the housing. -
FIGS. 14 a and 14 b depict a plan view of a track advance system for a touchscreen of a Video Recording and Image Capture Device in accordance with one embodiment of the present invention. A platform 144 (shown advanced out oftray 105 a) disposed totray 105 a is operable withrails 143 a and 143 b and is guided bytracks FIG. 14 a. Releasingmechanism 143 d includes one or more components that selective to user desire,release touchscreen 145 in order to advance it. Releasingmechanism 143 d further may include one ormore springs 143 e. -
Platform 144 may be of any suitable design to holdtouchscreen 145 even when placed at an angle from horizontal.Touchscreen 145 is operative withimager 100 through cables and connectors. -
Rails 143 a and 143 b havestops 143 c (only partially shown for clarity) operable withtracks touchscreen 145 beyond a predetermined point. -
TAS 146 includes on ormore hinge 142, such asedged hinge center hinge 143 c a center hinge as depicted in accordance with one embodiment of the present invention inFIG. 14 b. Hinge 142 a and 142 b cooperate toangle platform 144 so thatuser 10 can during the surgeryinteractively access touchscreen 145. To prevent changing angle of theplatform 144 or accidental closure, one or more tapping mechanisms are disposed withhinge 142, that make it resistant to unintentional movement. -
FIG. 6 is a schematic diagram ofmultimedia interface 135 in accordance with one embodiment of the present invention.Multimedia interface 135 is physically implemented on one or more printed circuit boards, also commonly referred to as expansion cards, having a plurality of integrated circuits and aPCI bus connection 136 toMBB 115 for data transfer. Throughbus 136multimedia interface 135 also receives electric power. Audio and video connection ports, i.e. input and output ports, are physically implemented inexpansion slots 105 and integrally connected tomultimedia interface 135. In one embodiment,multimedia interface 135 is implemented as a PCI expansion card withbus connection 136 toMBB 115 and a further printed circuit board connecting directly to the PCI expansion card. - Resident on
multimedia interface 135 is an Inter-IC bus operatively controlled bycontroller 200.Controller 200 implements the Inter-IC bus as a multi-master bus to connect circuits toPCI interface 210.Router 220 is provided as a field programmable gate array and has programmable read only memory that is accessible via a port, such as a JTAG port. - In recording mode,
imager 100 receives the input of video signal 300 andaudio signal 315 and contemporaneously encodes both signals while writing the data stream to HDD 120 (seeFIG. 4 ) and/or media in OMD 125 (seeFIG. 4 ). - Video signal 300 is received by
multimedia interface 135 as analog video signal 304 i ordigital video signal 306 i in input ports located inexpansion slot 105 d (seeFIG. 3 ). The active input port is automatically detected bymultimedia interface 135, as are active output ports. - A
relay 205 is operative to bypass video signal 300 to an exit port corresponding to the input port for display by an external monitor whenimager 100 is not powered orimager 100 is in standby mode. Therein,relay 205 includes a receiver for receiving a sense signal from software to indicate that the recording mode is engaged. If the sense signal is not received with a predetermined time, video signal 300 is bypassed. Ifimager 100 is not powered, a default mode ofrelay 205 bypasses the signal to the corresponding port, i.e. video signal 300 input on the S-video input is bypassed to an S-video output port. - Analog video signal 304 i is received using composite video input or S-Video input. If analog video signal 304 i is received when
imager 100 is not electrically powered or recording mode is not engaged, video signal 300 is bypassed usingbypass relay 205. Received analog video signal 304 i is digitized using analog todigital converter 240. Therein, the NTSC or PAL standard analog video signal 304 i is digitized to first internal data stream, digital data stream (DDS) 310. A digitized data stream having 4:2:2 luminance to chrominance (YUV) pixels is preferred. Other data stream configurations may also be used. In particular, a data stream having 8:2:2 YUV may be advantageously used in connection with CCU 30 (seeFIG. 1 ) which is capable of producing higher analog video frame quality.DDS 310 is then streamed viarouter 220 to video media compression and decompression integrated circuit (V-codec) 230 where it is encoded. -
Digital video signal 306 i is received using the SDI digital video signal input. Ifdigital video signal 306 i is received whenimager 100 is not electrically powered or recording mode is not engaged, video signal 300 is bypassed usingbypass relay 205.Received signal 306 i is processed bySDI receiver 250 and converted to a first internal data stream,DDS 310. A digitized data stream having a 4:2:2 luminance to chrominance (YUV) pixels is preferred; although other data stream configurations may also be used.DDS 310 is streamed viarouter 220 to V-codec 230 where it is encoded. - Inputs for audio signal 314 i originating from a stereo line and
audio signal 316 i originating frommicrophone 40 are provided for recording a desired audio signal such as dictation. Both inputs may be combined to create asingle audio signal 315 or used individually.Audio signal 315 is received by audio compression and decompression integrated circuit (A-codec) 260 and converted to a second internal data stream, digital data stream for audio (DDSA) 312, and passed toautomatic gain control 270 disposed on the Inter-IC bus.DDSA 312 is then streamed to V-codec 230. - V-
codec 230 is provided as embedded software, preferably operating on a LINUX or UNIX embedded platform, on one or more integrated circuits on the Inter-IC bus and operatively connected tocontroller 200. Also operatively connected are one or more buffer memories, such as SDRAM integrated circuits. Configuration settings of V-codec 230 are stored on an associated erasable electronic programmable read only memory (EEPROM or EPROM) circuit, or similar. The embedded software of V-codec 230 executes an algorithm to decode and/or encode a Motion Picture Experts Group (MPEG) layer, such as MPEG, MPEG-2 and/or MPEG-4, data stream (MDS) 320.MDS 320 advantageously utilizes high compression rates achieved by using an index frame and noting a sequence of changes to that index frame in subsequent images. Therein,MDS 320 is comprised of a stream offrames 322. - Algorithms of this type are known to execute file formatting appropriate for CD-R and a plurality of DVD media storage and play. Typically,
MDS 320 is preferred to encode in a file format designated as “VOB” applicable to DVD+RW media storage and play. It should be appreciated that the present invention may be adapted readily to utilize other compression and decompression algorithms. - V-
codec 230multiplexes DDS 310 andDDSA 312 intoMDS 320 which is then streamed toMMB 115. From there,MDS 320 is streamed toHDD 120 and toOMD 125 via vertically stacked IDE bus 116. Therein,HDD 120 writesMDS 320 to a magnetic disk and streams a copy toOMD 125 for writing to an optical disk such as a CD-R or DVD media to create contemporaneous documentary recording file while the surgery is being conducted byuser 10. If the write process onOMD 125 is interrupted or fails, a backup copy resides onHDD 120 for a subsequent write attempt after the conclusion of the surgery. - A means for a video signal to be displayed by a display unit during recording mode is provided. The display unit may be
external video screen 35 ortouchscreen 145.FIG. 7 depicts a schematic of interconnectingimager 100 and a display unit in accordance with one or more embodiments of the present invention. An embodiment ofvideo screen 35,external video screen 35 a, is operable to receive an analog and/or digital signal using connectors for S-video, composite and/or SDI format. Therein,multimedia interface 135 senses the active output port androuter 220streams DDS 310 accordingly to eitherSDI transmitter 280 to produce digital video signal 306× or to digital toanalog converter 290 to produceanalog video signal 304 x, respectively. Inconverter 290, commondata stream DDS 310 is automatically converted to the appropriate NTSC or PAL standard analog signal in use byvideo screen 35 a. -
Touchscreen 145 is operable to receive a video signal in digital visual interface (DVI) format, and an embodiment ofvideo screen 35,external video screen 35 b having touchscreen capabilities, is operable to receive a video signal in digital visual interface (DVI) format or analog monitor format. Therein,MMB 115 streams a copy ofMDS 320 to resident AGP graphics support and/or DVI graphics support anddigital video interface 150 for output totouchscreen 145 andvideo screen 35 b as required by the active output. - Image capture mode is provided for saving a frame 322 (see
FIG. 6 ) fromMDS 320 substantially like image ofimage stream 25.User 10 views an image of interest inimage stream 25 and initiates instruction to “freeze” the image of interest. Since both reaction time onbehalf user 10 and processing time on behalf ofimager 100 has passed when such an instruction has been received, aframe 322 substantially like image 26 is saved, wherein the substantiality is temporal. The freeze instruction is forwarded tomultimedia interface 135. Therein,controller 200 instructsPCI interface 210 to forward thecurrent frame 322 being handled toframe buffer 295, also known as frame grabber, which storesframe 322. -
Frame buffer 295 can be implemented as an integrated circuit, capable of storing and identifying a plurality n offrames 322 corresponding to maximum number n frames capable of being stored according to the buffer size (hereinafterframe 322, designating thefirst frame 322 stored,frame 322 2 the second . . . , and frame 322 n the last frame stored). As shown, identification may be implemented by designating a first-in-first-out order, or similar order. Upon receipt offrame 322 1, buffer 295 forwards a copy torouter 220.Router 220multiplexes frame 322, withDDS 310 and streams the combined signal to the active output port for display as combined image. As described further herein in connection with image capture mode,user 10 is able to manipulate the position and size of the combined image withinimage stream 25 and on a display unit. - A copy of
frame 322 1 is saved toHDD 120, preferably in file format Joint Picture Experts Group JPEG layer corresponding to the MPEG layer such as MPEG, MPEG-2 and/or MPEG-4 layer, as a graphic file. A software application for conversion to other formats such as “TIFF,” “BMP,” and/or “FPX”, or similar, is provided. - Upon additional instruction by
user 10 to capture further images, further correspondingframes 322 are saved in the manner described. Therein,frame 322 2 is multiplexed withframe 322 1 andDDS 310 and the combined signal streamed to the active output for display on a display unit. - An archival mode is provided for review, edit and playback of documentary recording file and a graphic file. Therein, the recording file is accessed and a digital data stream corresponding to
MDS 320 is read from media ofHDD 120 and/orOMD 125 and is streamed to V-codec 230 and is decompressed into a digital data stream corresponding toDDS 310. The decompressed digital data stream is then routed to the active port for display or transferred toMMB 115 for display on a display unit. -
FIGS. 8 through 13 depict use ofimager 100 throughinteractive display 400 oftouchscreen 145 in accordance with one embodiment of the present invention. It should be appreciated that similar usage is achieved through use of other input devices, as for example mouse and keyboard, coupled to a display unit. - Upon powering of
imager 100, it is in standby mode andpage 410 is shown as depicted inFIG. 8 in accordance with one embodiment of the present invention.Display 400 is shown aspage 410 providing a plurality of fields. The fields depicted include fields grouped to displaysurgical information 600,multimedia status 610,image panel 620, andcontrol panel 630. In the embodiment illustrated,multimedia status 610 indicates that the optical media includes data saved from a previous surgical session. To useimager 100 for the current session and input patient data,user 10 touches the desired field in surgical information block 600 to include the requisite data. - Surgical information block 600 includes fields for biographical patient information, identity of treating physician, and additional information as may be convenient and necessary. If the field requires an alpha-numeric entry, alpha-
numeric keyboard page 420 is displayed on top ofpage 410, as depicted inFIG. 9 .User 10 enters the data by touch.Field 422 contemporaneously displays the entry made. The user confirms the entry and is taken back topage 410 to make the next selection. If the desired field offrame 410 requires a numeric entry,numeric keyboard page 430 is displayed on top ofpage 410, as depicted inFIG. 10 according to one embodiment of the present invention.User 10 enters the data by touch.Field 422 contemporaneously displays the entry made. The user confirms the entry and is taken back topage 410, now modified with additional date as depicted inFIG. 11 according to one embodiment of the present invention, to make the next selection. - Returning to
FIG. 8 ,control panel 630 provides functions to controlimager 100 including recording video, capturing images, muting audio input, and confirming choices. Other functions as may be convenient and/or necessary may also be included. - To place device in recording mode to record a video file to a disk properly loaded in
OMD 125,user 10 touches the designated icon, here illustrated asicon 632, incontrol panel icon 630. In response,icon 632 may change design, such as becoming highlighted. Concurrently, inimage panel 620,image 25 is displayed inimage window 624 andimage status bar 622 displays confirmation of recording and elapsed recording as depicted inFIG. 12 . Similarly if recording is initiated viaCCU 30,icon 632 becomes highlighted,image 25 is displayed inimage window 624 andimage status bar 622 displays confirmation of recording and elapsed recording, also as depicted inFIG. 12 according to one embodiment of the present invention. To cease recording,user 10 touches highlightedicon 632 or engages the appropriate control onCCU 30. - To mute audio recording or conversely engage audio recording,
user 10 touches the designated icon, here illustrated asicon 636, incontrol panel 630. In response,icon 636 may change design, such as becoming highlighted. To reverse the action,user 10 touchesicon 636 which in response may change design, preferably returning to its previous design. - To capture an image that is being displayed in
image window 624,user 10 touches the designated icon, here illustrated asicon 634, incontrol panel 630 andimager 100 is placed in image capture mode and the instruction is processed as described above. In response,icon 634 may change design, such as becoming highlighted, and a confirmation message that the desired action is being performed will be displayed. Similarly, image capture mode can be accessed ifuser 10 engages the appropriate control onCCU 30 to capture image 26 that is being displayed inimage window 624. Instruction is processed as described above andicon 634 may change design, such as becoming highlighted, and a confirmation message that the desired action is being performed will be displayed. - To allow
user 10 to monitor available resources on a multimedia disc,multimedia status 610 includes fields identifying the remaining capacity of disc and the number of images captured and the length of time ofimage stream 25 recorded. - The archival mode is accessible from
control panel 630 to review and/or manipulate saved documentary recording files and graphics file.User 10 touches the designated icon, here illustrated asicon 638, and review page 440 is displayed as depicted inFIG. 13 according to one embodiment of the present invention. Page 440 preferably includes acontrol panel 630 a,note area 670,file directory 660,image panel 620 includingimage window 624,image status bar 622, and controls 626.Controls 626 preferably include pause, playback, print and confirmation means as well as elapsed time and other controls as deemed useful and/or necessary. - Therein, a graphic file may be printed to
printer 45 located in the surgical suite so that it is immediately available for review byuser 10. Software is provided to enlarge and view and manipulate the graphic file such as providing visual contrast, inserting a scaled file object corresponding to a physical prosthesis and thus determining whether such prosthesis fitspatient 5. - In accordance with one embodiment of the present invention, sensor 318 (see
FIG. 4 ) is provided for detecting an infrared remote control signal.Sensor 318 enablesuser 10 to remotely operateimager 100.Sensor 318 is in communication with the processor or Microprocessor main board (MMB) 115, the sensor receiving control signals to operate the medical instrument. - In accordance with one embodiment of the present invention, a system for speech recognition is provided for
user 10 interaction withimager 100.Microphone 40 receivesuser 10 voice commands, which are routed tospeech recognition module 319.Speech recognition module 319 is software that executes on Microprocessor main board (MMB) 115 to receive voice signals that control the medical instrument. - In accordance with one embodiment of the present invention,
database module 321 provides a database server and/or database management application that is operatively provided to enableuser 10 to access, manage and/or update data inimager 100.Database module 321 is software that executes on Microprocessor main board (MMB) 115 to establish control signals to operate the hard drive and the optical media drive. - In accordance with one embodiment of the present invention,
expert system 323 is provided wherein characteristics of video signal 300 meeting predetermined characteristics are automatically brought to the attention ofuser 10 and/or saved as graphic files 810.Expert system 323 is software that executes on Microprocessor main board (MMB) 115 to generate control signals to operate the medical instrument. - In accordance with one embodiment of the invention, a
stereoscopic module 324 is provided for associating a plurality of video signals 300 with each other, as such providing stereoscopic images on a display unit.Stereoscopic module 324 is software that executes on Microprocessor main board (MMB) 115 to associate a plurality of files to provide stereoscopic images on a multimedia interface.
Claims (19)
1. A device for medical video recording comprising:
an endoscope;
a digital media; and
an imager in communication with said endoscope, said imager converting energy received from said endoscope to signals that are contemporaneously stored onto said digital media.
2. The device of claim 1 further comprising an encoder in communication with said imager, said encoder compressing said signals.
3. The device of claim 1 wherein said media is an optical disc.
4. The device of claim 3 wherein said media is a digital versatile disk.
5. The device of claim 4 wherein said stored signals are stored as VOB files.
6. The device of claim 2 wherein said encoder is an MPEG encoder.
7. The device of claim 1 wherein said imager is a solid state device.
8. The device of claim 1 wherein said imager includes a still frame grabber.
9. The device of claim 8 wherein said imager stores still frames on said media.
10. The device of claim 1 further including a touch screen for entering control commands for said imager and said endoscope and said touchscreen is responsive to a touch by a user.
11. The device of claim 10 further including a housing, said housing enclosing said imager.
12. The device of claim 11 wherein said touch screen is at least partially retractable within a footprint of said housing.
13. The device of claim 11 wherein the touch screen is slidable at least partially out of a footprint of said housing.
14. The device of claim 11 wherein the touch screen is deflectable relative to said housing.
15. The device of claim 11 wherein the touch screen is pivotable relative to said housing.
16. The device of claim 10 wherein said touch screen displays said signal.
17. The device of claim 1 wherein said signal is electromagnetic energy.
18. The device of claim 1 wherein said signal is direct current energy.
19.-45. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/229,152 US20060015008A1 (en) | 2002-09-13 | 2005-09-16 | Video recording and image capture device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41045602P | 2002-09-13 | 2002-09-13 | |
US10/662,599 US9936862B2 (en) | 2002-09-13 | 2003-09-15 | Video recording and image capture device |
US11/229,152 US20060015008A1 (en) | 2002-09-13 | 2005-09-16 | Video recording and image capture device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/662,599 Division US9936862B2 (en) | 2002-09-13 | 2003-09-15 | Video recording and image capture device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060015008A1 true US20060015008A1 (en) | 2006-01-19 |
Family
ID=31994139
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/662,599 Active 2028-12-24 US9936862B2 (en) | 2002-09-13 | 2003-09-15 | Video recording and image capture device |
US11/229,185 Active 2027-12-24 US8992418B2 (en) | 2002-09-13 | 2005-09-16 | Video recording and image capture device |
US11/229,152 Abandoned US20060015008A1 (en) | 2002-09-13 | 2005-09-16 | Video recording and image capture device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/662,599 Active 2028-12-24 US9936862B2 (en) | 2002-09-13 | 2003-09-15 | Video recording and image capture device |
US11/229,185 Active 2027-12-24 US8992418B2 (en) | 2002-09-13 | 2005-09-16 | Video recording and image capture device |
Country Status (6)
Country | Link |
---|---|
US (3) | US9936862B2 (en) |
EP (1) | EP1550311B1 (en) |
JP (3) | JP2005538779A (en) |
AU (1) | AU2003274984A1 (en) |
CA (3) | CA2752536C (en) |
WO (1) | WO2004025963A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040199052A1 (en) * | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Endoscopic imaging system |
US20050131279A1 (en) * | 2003-04-01 | 2005-06-16 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US20050197536A1 (en) * | 2003-04-01 | 2005-09-08 | Banik Michael S. | Video endoscope |
US20060069306A1 (en) * | 2004-09-30 | 2006-03-30 | Banik Michael S | Automated control of irrigation and aspiration in a single-use endoscope |
US20060114986A1 (en) * | 2004-09-30 | 2006-06-01 | Knapp Keith N Ii | Adapter for use with digital imaging medical device |
US20070225561A1 (en) * | 2006-03-24 | 2007-09-27 | Olympus Medical Systems Corp. | Endoscope and display device |
US20070249932A1 (en) * | 2006-04-25 | 2007-10-25 | Shahinian Hrayr K | Remote manipulator with eyeballs |
US7597662B2 (en) | 2004-09-30 | 2009-10-06 | Boston Scientific Scimed, Inc. | Multi-fluid delivery system |
US20100256448A1 (en) * | 2003-04-01 | 2010-10-07 | Boston Scientific Scimed, Inc. | Fluid manifold for endoscope system |
US20110130632A1 (en) * | 2009-11-30 | 2011-06-02 | King Systems Corporation | Visualization Instrument |
US8083671B2 (en) | 2004-09-30 | 2011-12-27 | Boston Scientific Scimed, Inc. | Fluid delivery system for use with an endoscope |
US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
US8202265B2 (en) | 2006-04-20 | 2012-06-19 | Boston Scientific Scimed, Inc. | Multiple lumen assembly for use in endoscopes or other medical devices |
CN102984438A (en) * | 2012-11-26 | 2013-03-20 | 成都爱斯顿测控技术有限公司 | Multi-interface video capture card |
US8870753B2 (en) | 2006-04-20 | 2014-10-28 | Boston Scientific Scimed, Inc. | Imaging assembly with transparent distal cap |
US9295375B2 (en) | 2012-09-27 | 2016-03-29 | Hrayr Karnig Shahinian | Programmable spectral source and design tool for 3D imaging using complementary bandpass filters |
US9401078B2 (en) * | 2014-02-26 | 2016-07-26 | Dell Products L.P. | Systems and methods for muting visual indicators in an information handling system |
US9456735B2 (en) | 2012-09-27 | 2016-10-04 | Shahinian Karnig Hrayr | Multi-angle rear-viewing endoscope and method of operation thereof |
US20160331213A1 (en) * | 2013-10-31 | 2016-11-17 | Optimede Inc. | Portable inspection system |
US9549667B2 (en) | 2007-12-18 | 2017-01-24 | Harish M. MANOHARA | Endoscope and system and method of operation thereof |
US9820642B2 (en) | 2007-08-04 | 2017-11-21 | King Systems Corporation | Airway intubation device |
US9861261B2 (en) | 2014-03-14 | 2018-01-09 | Hrayr Karnig Shahinian | Endoscope system and method of operation thereof |
US11529042B2 (en) | 2009-11-13 | 2022-12-20 | Hrayr Karnig Shahinian | Stereo imaging miniature endoscope with single imaging and conjugated multi-bandpass filters |
US12167829B2 (en) | 2019-12-19 | 2024-12-17 | Ambu A/S | Image capture selection |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040190874A1 (en) * | 2003-03-25 | 2004-09-30 | Phoury Lei | Method of generating a multimedia disc |
JP2005211159A (en) * | 2004-01-27 | 2005-08-11 | Fujinon Corp | Electronic endoscope apparatus |
US7265759B2 (en) | 2004-04-09 | 2007-09-04 | Nvidia Corporation | Field changeable rendering system for a computing device |
KR20060135944A (en) * | 2004-04-09 | 2006-12-29 | 엔비디아 코포레이션 | Method and apparatus for routing graphics processing signals to standalone modules |
US7773110B2 (en) * | 2004-04-16 | 2010-08-10 | Fujinon Corporation | Electronic endoscope apparatus |
JP2006015131A (en) * | 2004-06-02 | 2006-01-19 | Pentax Corp | Electronic endoscope system |
US8827899B2 (en) * | 2004-09-24 | 2014-09-09 | Vivid Medical, Inc. | Disposable endoscopic access device and portable display |
FR2880226B1 (en) * | 2004-12-23 | 2007-05-25 | Inst Nat De L Audiovisuel Ina | AUDIOVISUAL RECORDING EQUIPMENT |
JP2006218233A (en) * | 2005-02-14 | 2006-08-24 | Olympus Corp | Endoscope apparatus |
JP4577085B2 (en) * | 2005-05-17 | 2010-11-10 | ソニー株式会社 | Video processing apparatus and video processing method |
EP2062179A2 (en) * | 2006-09-07 | 2009-05-27 | Advanced Medical Optics, Inc. | Systems and methods for historical display of surgical operating parameters |
US8982195B2 (en) * | 2006-09-07 | 2015-03-17 | Abbott Medical Optics Inc. | Digital video capture system and method with customizable graphical overlay |
JP2008104535A (en) * | 2006-10-24 | 2008-05-08 | Pentax Corp | Electronic endoscope device |
US8810637B2 (en) | 2007-04-03 | 2014-08-19 | Karl Storz Imaging, Inc. | Universal camera control unit |
US20140320684A1 (en) * | 2007-04-03 | 2014-10-30 | David Chatenever | Universal Control Unit and Display With Non-Contact Adjustment Functionality |
JP5464815B2 (en) * | 2008-03-25 | 2014-04-09 | オリンパスメディカルシステムズ株式会社 | Imaging system and operation method of self-check processing of imaging system |
US20100231735A1 (en) * | 2009-03-13 | 2010-09-16 | Nokia Corporation | Methods, Apparatuses, and Computer Program Products for Facilitating Concurrent Video Recording and Still Image Capture |
US9474440B2 (en) | 2009-06-18 | 2016-10-25 | Endochoice, Inc. | Endoscope tip position visual indicator and heat management system |
US10524645B2 (en) | 2009-06-18 | 2020-01-07 | Endochoice, Inc. | Method and system for eliminating image motion blur in a multiple viewing elements endoscope |
US10130246B2 (en) | 2009-06-18 | 2018-11-20 | Endochoice, Inc. | Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope |
EP2378449A1 (en) * | 2010-04-14 | 2011-10-19 | Linked IP GmbH | Diagnostic imaging device |
US9706908B2 (en) | 2010-10-28 | 2017-07-18 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
US10663714B2 (en) | 2010-10-28 | 2020-05-26 | Endochoice, Inc. | Optical system for an endoscope |
US10517464B2 (en) | 2011-02-07 | 2019-12-31 | Endochoice, Inc. | Multi-element cover for a multi-camera endoscope |
US9098611B2 (en) * | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US20150213212A1 (en) * | 2012-08-06 | 2015-07-30 | Koninklijke Philips N.V. | Method and apparatus for the real time annotation of a medical treatment event |
US9167160B2 (en) | 2012-11-14 | 2015-10-20 | Karl Storz Imaging, Inc. | Image capture stabilization |
US12207796B2 (en) | 2013-03-28 | 2025-01-28 | Endochoice Inc. | Multi-jet controller for an endoscope |
US9636003B2 (en) | 2013-06-28 | 2017-05-02 | Endochoice, Inc. | Multi-jet distributor for an endoscope |
US10595714B2 (en) | 2013-03-28 | 2020-03-24 | Endochoice, Inc. | Multi-jet controller for an endoscope |
CN105358043B (en) | 2013-05-07 | 2018-12-21 | 恩多巧爱思股份有限公司 | The white balance shell being used together with more observation element endoscopes |
US9949623B2 (en) | 2013-05-17 | 2018-04-24 | Endochoice, Inc. | Endoscope control unit with braking system |
US10064541B2 (en) | 2013-08-12 | 2018-09-04 | Endochoice, Inc. | Endoscope connector cover detection and warning system |
US9943218B2 (en) | 2013-10-01 | 2018-04-17 | Endochoice, Inc. | Endoscope having a supply cable attached thereto |
US9968242B2 (en) | 2013-12-18 | 2018-05-15 | Endochoice, Inc. | Suction control unit for an endoscope having two working channels |
WO2015112747A2 (en) | 2014-01-22 | 2015-07-30 | Endochoice, Inc. | Image capture and video processing systems and methods for multiple viewing element endoscopes |
WO2015112899A1 (en) * | 2014-01-25 | 2015-07-30 | Endochoice, Inc. | Method and system for eliminating image motion blur in a multiple viewing elements endoscope |
US11234581B2 (en) | 2014-05-02 | 2022-02-01 | Endochoice, Inc. | Elevator for directing medical tool |
US10258222B2 (en) | 2014-07-21 | 2019-04-16 | Endochoice, Inc. | Multi-focal, multi-camera endoscope systems |
EP4501204A3 (en) | 2014-08-29 | 2025-04-16 | EndoChoice, Inc. | Systems and methods for varying stiffness of an endoscopic insertion tube |
US10123684B2 (en) | 2014-12-18 | 2018-11-13 | Endochoice, Inc. | System and method for processing video images generated by a multiple viewing elements endoscope |
WO2016112034A2 (en) | 2015-01-05 | 2016-07-14 | Endochoice, Inc. | Tubed manifold of a multiple viewing elements endoscope |
US10376181B2 (en) | 2015-02-17 | 2019-08-13 | Endochoice, Inc. | System for detecting the location of an endoscopic device during a medical procedure |
US10078207B2 (en) | 2015-03-18 | 2018-09-18 | Endochoice, Inc. | Systems and methods for image magnification using relative movement between an image sensor and a lens assembly |
US10401611B2 (en) | 2015-04-27 | 2019-09-03 | Endochoice, Inc. | Endoscope with integrated measurement of distance to objects of interest |
EP3297515B1 (en) | 2015-05-17 | 2020-07-01 | Endochoice, Inc. | Endoscopic image enhancement using contrast limited adaptive histogram equalization (clahe) implemented in a processor |
US20170119474A1 (en) | 2015-10-28 | 2017-05-04 | Endochoice, Inc. | Device and Method for Tracking the Position of an Endoscope within a Patient's Body |
WO2017091459A1 (en) | 2015-11-24 | 2017-06-01 | Endochoice, Inc. | Disposable air/water and suction valves for an endoscope |
JP2019507628A (en) | 2016-02-24 | 2019-03-22 | エンドチョイス インコーポレイテッドEndochoice, Inc. | Circuit board assembly for multiple view element endoscopes using CMOS sensors |
JP2019508143A (en) * | 2016-03-01 | 2019-03-28 | インスコープ メディカル ソリューションズ インコーポレイテッド | Improved laryngoscope |
WO2017160792A1 (en) | 2016-03-14 | 2017-09-21 | Endochoice, Inc. | System and method for guiding and tracking a region of interest using an endoscope |
CN114098601A (en) | 2016-06-21 | 2022-03-01 | 安多卓思公司 | Endoscope system with multiple connection interfaces to different video data signal sources |
CN112839220A (en) * | 2020-12-31 | 2021-05-25 | 杭州当虹科技股份有限公司 | Method for realizing quality observation of HDR video through sdi sdk |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4625714A (en) * | 1984-08-20 | 1986-12-02 | Fuji Photo Optical Co., Ltd. | Endoscope having a control for image stand still and photographing the image |
US5045955A (en) * | 1986-03-17 | 1991-09-03 | Hitachi Medical Corporation | Digital data recording and reproducing apparatus for recording and producing an image on and from a video tape through matrix conversion |
US5873814A (en) * | 1996-07-12 | 1999-02-23 | Adair; Edwin L. | Sterile encapsulated endoscopic video monitor and method |
US5894322A (en) * | 1992-01-15 | 1999-04-13 | Olympus Optical Co., Ltd. | Endoscope system with improved controller |
US6016439A (en) * | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
US6067075A (en) * | 1995-12-21 | 2000-05-23 | Eastman Kodak Company | Controller for medical image review station |
US6066089A (en) * | 1997-08-08 | 2000-05-23 | Olympus Optical Co., Ltd. | Portable remote visual inspection system and a case and a peripheral carriage case insert for transporting and storing a remote visual inspection system |
US6120435A (en) * | 1997-07-16 | 2000-09-19 | Olympus Optical Co., Ltd. | Endoscope system in which operation switch sets designed to function and be handled same way are included in endoscope and image processing apparatus respectively |
US6146523A (en) * | 1995-02-13 | 2000-11-14 | Aksys, Ltd. | User interface and method for control of medical instruments, such as dialysis machines |
US6148922A (en) * | 1996-05-13 | 2000-11-21 | Maritime Hydraulics As | Slip joint |
US6184922B1 (en) * | 1997-07-31 | 2001-02-06 | Olympus Optical Co., Ltd. | Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner |
US6224542B1 (en) * | 1999-01-04 | 2001-05-01 | Stryker Corporation | Endoscopic camera system with non-mechanical zoom |
US6272470B1 (en) * | 1996-09-03 | 2001-08-07 | Kabushiki Kaisha Toshiba | Electronic clinical recording system |
US6314211B1 (en) * | 1997-12-30 | 2001-11-06 | Samsung Electronics Co., Ltd. | Apparatus and method for converting two-dimensional image sequence into three-dimensional image using conversion of motion disparity into horizontal disparity and post-processing method during generation of three-dimensional image |
US20020015370A1 (en) * | 2000-06-12 | 2002-02-07 | Chisato Yoshida | Optical recording apparatus and method for displaying residual space on optical recording medium |
US20020026093A1 (en) * | 2000-08-23 | 2002-02-28 | Kabushiki Kaisha Toshiba | Endscope system |
US20020062062A1 (en) * | 2000-04-03 | 2002-05-23 | Amir Belson | Steerable segmented endoscope and method of insertion |
US6411851B1 (en) * | 1999-11-04 | 2002-06-25 | Medtronic, Inc. | Implantable medical device programming apparatus having an auxiliary component storage compartment |
US20020149706A1 (en) * | 2001-04-13 | 2002-10-17 | Rosen Products Llc. | Retractable utility structure monitor |
US6491628B1 (en) * | 2000-05-31 | 2002-12-10 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic endoscope |
US20030025789A1 (en) * | 1998-11-26 | 2003-02-06 | Olympus Optical Co., Ltd. | Image processing unit for expanding endoscope image signal processing capability |
US20030076410A1 (en) * | 2001-10-24 | 2003-04-24 | Richard Beutter | Powered optical coupler and endoscopic viewing system using same |
US20030091155A1 (en) * | 2001-11-15 | 2003-05-15 | Ge Medical Systems Global Technology Company, Llc | X-ray positioner with side-mounted, independently articulated arms |
US20030193602A1 (en) * | 1997-07-04 | 2003-10-16 | Makoto Satoh | Image pickup apparatus method and storage medium for displaying compressing and encoding image data |
US6791601B1 (en) * | 1999-11-11 | 2004-09-14 | Stryker Corporation | Multi-function image and video capture device for use in an endoscopic camera system |
US20050147399A1 (en) * | 1999-05-27 | 2005-07-07 | Naohiro Kimura | Information reproduction apparatus, information carrier, and information recording apparatus |
US7231135B2 (en) * | 2001-05-18 | 2007-06-12 | Pentax Of American, Inc. | Computer-based video recording and management system for medical diagnostic equipment |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050611B2 (en) * | 2001-05-29 | 2006-05-23 | Mevis Breastcare Gmbh Co. Kg | Method and computer system for screening of medical cases |
US4774568A (en) * | 1986-01-27 | 1988-09-27 | Kabushiki Kaisha Toshiba | Endoscopic apparatus |
JPH01147085A (en) | 1987-12-02 | 1989-06-08 | Sumitomo Metal Ind Ltd | Steel sheet having fine appearance after coating and superior pressability |
JPH01282774A (en) * | 1988-05-10 | 1989-11-14 | Hitachi Medical Corp | Voice report recorder and recording medium |
JPH01297035A (en) * | 1988-05-25 | 1989-11-30 | Olympus Optical Co Ltd | Endoscope device |
JP2940827B2 (en) * | 1988-09-07 | 1999-08-25 | オリンパス光学工業株式会社 | Medical image filing equipment |
US5697885A (en) * | 1989-01-30 | 1997-12-16 | Olympus Optical Co., Ltd. | Endoscope for recording and displaying time-serial images |
JPH0366423A (en) | 1989-08-01 | 1991-03-22 | Toyota Auto Body Co Ltd | Forming method by deep drawing and die for drawing press |
JPH0620184Y2 (en) * | 1989-10-31 | 1994-05-25 | スタンレー電気株式会社 | Operation panel drawer |
JPH04176435A (en) * | 1990-11-09 | 1992-06-24 | Olympus Optical Co Ltd | Endoscope apparatus |
JP3083606B2 (en) * | 1990-11-22 | 2000-09-04 | 株式会社東芝 | Medical diagnosis support system |
JPH06142037A (en) | 1992-11-09 | 1994-05-24 | Machida Endscope Co Ltd | Television endoscope system |
JPH06178758A (en) * | 1992-12-14 | 1994-06-28 | Fuji Photo Optical Co Ltd | Operation control device for electronic endoscope |
ATE225964T1 (en) * | 1993-03-31 | 2002-10-15 | Luma Corp | INFORMATION MANAGEMENT IN AN ENDOSCOPY SYSTEM |
JPH06304133A (en) * | 1993-04-20 | 1994-11-01 | Fukuda Denshi Co Ltd | Angioscope |
JPH06338876A (en) * | 1993-05-31 | 1994-12-06 | Toshiba Corp | Data transferring device |
JPH07213536A (en) * | 1994-01-31 | 1995-08-15 | Shimadzu Corp | Display system for surgical tools |
US5902230A (en) * | 1995-02-06 | 1999-05-11 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic endoscope system with information combined in digital output |
JPH10248805A (en) | 1997-03-12 | 1998-09-22 | Olympus Optical Co Ltd | Image data recording reproducing system |
US6538687B1 (en) | 1997-07-23 | 2003-03-25 | Olympus Optical Co., Ltd. | Endoscopic imaging system making it possible to detachably attach expansion unit having external expansion facility and add expansion facility for improving capability of system |
JP3780071B2 (en) * | 1997-07-31 | 2006-05-31 | オリンパス株式会社 | Endoscopic imaging system |
US6144549A (en) * | 1998-03-12 | 2000-11-07 | Dell Usa, L.P. | Peripheral bay flat panel display module for computer |
EP1103028A2 (en) * | 1998-08-04 | 2001-05-30 | Contec Medical Ltd. | Surgical recording and reporting system |
US6278444B1 (en) * | 1998-08-21 | 2001-08-21 | Geoffrey D. Wilson | Low current four-wire interface for five-wire resistive touch-screen |
US6490490B1 (en) * | 1998-11-09 | 2002-12-03 | Olympus Optical Co., Ltd. | Remote operation support system and method |
JP2000148886A (en) * | 1998-11-12 | 2000-05-30 | Seta Corp | Method and device for processing medical data and medical data processing system |
US6626825B2 (en) * | 1998-11-25 | 2003-09-30 | Jory Tsai | Medical inspection device |
US6522906B1 (en) * | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
WO2000044276A1 (en) | 1999-01-31 | 2000-08-03 | Visual Systems, Inc. | Hand held scope video system with internal video processor |
JP2001034355A (en) * | 1999-07-27 | 2001-02-09 | Nanao Corp | Display device |
JP2001128098A (en) * | 1999-10-26 | 2001-05-11 | Olympus Optical Co Ltd | Medical information recording and reproducing device and medical information reproducing device |
JP2001120499A (en) * | 1999-10-26 | 2001-05-08 | Olympus Optical Co Ltd | Display device of endoscope image |
US6428487B1 (en) * | 1999-12-17 | 2002-08-06 | Ethicon Endo-Surgery, Inc. | Surgical biopsy system with remote control for selecting an operational mode |
JP4464572B2 (en) * | 2000-03-28 | 2010-05-19 | オリンパス株式会社 | Endoscopic image recording apparatus and endoscopic image recording method |
JP2001359039A (en) * | 2000-06-09 | 2001-12-26 | Olympus Optical Co Ltd | Image recorder |
JP2002023650A (en) * | 2000-06-14 | 2002-01-23 | Internatl Business Mach Corp <Ibm> | Portable computer device |
US6561333B2 (en) * | 2000-07-14 | 2003-05-13 | Reell Precision Manufacturing Corporation | Spring clutch utilizing torque slip clips |
GB0020845D0 (en) * | 2000-08-23 | 2000-10-11 | Edwards Lee D | Monitoring systems |
US6471649B1 (en) * | 2000-11-09 | 2002-10-29 | Koninklijke Philips Electronics N.V. | Method and apparatus for storing image information in an ultrasound device |
JP2002215796A (en) * | 2001-01-18 | 2002-08-02 | Hitachi Medical Corp | Diagnostic report making method |
TW548964B (en) * | 2001-01-24 | 2003-08-21 | Koninkl Philips Electronics Nv | Window brightness enhancement for LCD display |
JP2002232821A (en) * | 2001-02-01 | 2002-08-16 | Canon Inc | Imaging device and control method |
US7057639B2 (en) * | 2001-02-28 | 2006-06-06 | Eastman Kodak Company | Intra-oral camera with integral display |
JP2005527245A (en) * | 2001-08-03 | 2005-09-15 | ヒル−ロム サービシーズ,インコーポレイティド | Computer system for patient care |
JP4709443B2 (en) * | 2001-08-29 | 2011-06-22 | オリンパス株式会社 | Endoscopic image filing system |
US6728599B2 (en) * | 2001-09-07 | 2004-04-27 | Computer Motion, Inc. | Modularity system for computer assisted surgery |
EP1293876B1 (en) * | 2001-09-13 | 2004-08-04 | STMicroelectronics S.r.l. | A modular data processing system |
US8038602B2 (en) * | 2001-10-19 | 2011-10-18 | Visionscope Llc | Portable imaging system employing a miniature endoscope |
US20030103324A1 (en) * | 2001-12-03 | 2003-06-05 | Gallivan Susanne M. | Position adjustable display screen for portable computer devices |
US6824539B2 (en) * | 2002-08-02 | 2004-11-30 | Storz Endoskop Produktions Gmbh | Touchscreen controlling medical equipment from multiple manufacturers |
DE102004011170B4 (en) | 2004-03-08 | 2006-03-23 | Siemens Ag | Tamper-proof generation of true random numbers |
-
2003
- 2003-09-15 US US10/662,599 patent/US9936862B2/en active Active
- 2003-09-15 AU AU2003274984A patent/AU2003274984A1/en not_active Abandoned
- 2003-09-15 WO PCT/US2003/029012 patent/WO2004025963A1/en active Application Filing
- 2003-09-15 CA CA2752536A patent/CA2752536C/en not_active Expired - Lifetime
- 2003-09-15 JP JP2004536547A patent/JP2005538779A/en active Pending
- 2003-09-15 CA CA2752652A patent/CA2752652C/en not_active Expired - Lifetime
- 2003-09-15 CA CA2498578A patent/CA2498578C/en not_active Expired - Lifetime
- 2003-09-15 EP EP03759253A patent/EP1550311B1/en not_active Expired - Lifetime
-
2005
- 2005-09-16 US US11/229,185 patent/US8992418B2/en active Active
- 2005-09-16 US US11/229,152 patent/US20060015008A1/en not_active Abandoned
-
2008
- 2008-09-25 JP JP2008245394A patent/JP2009081857A/en active Pending
-
2012
- 2012-01-18 JP JP2012008335A patent/JP5613693B2/en not_active Expired - Fee Related
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4625714A (en) * | 1984-08-20 | 1986-12-02 | Fuji Photo Optical Co., Ltd. | Endoscope having a control for image stand still and photographing the image |
US5045955A (en) * | 1986-03-17 | 1991-09-03 | Hitachi Medical Corporation | Digital data recording and reproducing apparatus for recording and producing an image on and from a video tape through matrix conversion |
US5894322A (en) * | 1992-01-15 | 1999-04-13 | Olympus Optical Co., Ltd. | Endoscope system with improved controller |
US6146523A (en) * | 1995-02-13 | 2000-11-14 | Aksys, Ltd. | User interface and method for control of medical instruments, such as dialysis machines |
US6067075A (en) * | 1995-12-21 | 2000-05-23 | Eastman Kodak Company | Controller for medical image review station |
US6148922A (en) * | 1996-05-13 | 2000-11-21 | Maritime Hydraulics As | Slip joint |
US5873814A (en) * | 1996-07-12 | 1999-02-23 | Adair; Edwin L. | Sterile encapsulated endoscopic video monitor and method |
US6272470B1 (en) * | 1996-09-03 | 2001-08-07 | Kabushiki Kaisha Toshiba | Electronic clinical recording system |
US6016439A (en) * | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
US20030193602A1 (en) * | 1997-07-04 | 2003-10-16 | Makoto Satoh | Image pickup apparatus method and storage medium for displaying compressing and encoding image data |
US6120435A (en) * | 1997-07-16 | 2000-09-19 | Olympus Optical Co., Ltd. | Endoscope system in which operation switch sets designed to function and be handled same way are included in endoscope and image processing apparatus respectively |
US6184922B1 (en) * | 1997-07-31 | 2001-02-06 | Olympus Optical Co., Ltd. | Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner |
US6066089A (en) * | 1997-08-08 | 2000-05-23 | Olympus Optical Co., Ltd. | Portable remote visual inspection system and a case and a peripheral carriage case insert for transporting and storing a remote visual inspection system |
US6314211B1 (en) * | 1997-12-30 | 2001-11-06 | Samsung Electronics Co., Ltd. | Apparatus and method for converting two-dimensional image sequence into three-dimensional image using conversion of motion disparity into horizontal disparity and post-processing method during generation of three-dimensional image |
US20030025789A1 (en) * | 1998-11-26 | 2003-02-06 | Olympus Optical Co., Ltd. | Image processing unit for expanding endoscope image signal processing capability |
US6224542B1 (en) * | 1999-01-04 | 2001-05-01 | Stryker Corporation | Endoscopic camera system with non-mechanical zoom |
US20050147399A1 (en) * | 1999-05-27 | 2005-07-07 | Naohiro Kimura | Information reproduction apparatus, information carrier, and information recording apparatus |
US6411851B1 (en) * | 1999-11-04 | 2002-06-25 | Medtronic, Inc. | Implantable medical device programming apparatus having an auxiliary component storage compartment |
US6791601B1 (en) * | 1999-11-11 | 2004-09-14 | Stryker Corporation | Multi-function image and video capture device for use in an endoscopic camera system |
US20020062062A1 (en) * | 2000-04-03 | 2002-05-23 | Amir Belson | Steerable segmented endoscope and method of insertion |
US6491628B1 (en) * | 2000-05-31 | 2002-12-10 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic endoscope |
US20020015370A1 (en) * | 2000-06-12 | 2002-02-07 | Chisato Yoshida | Optical recording apparatus and method for displaying residual space on optical recording medium |
US20020026093A1 (en) * | 2000-08-23 | 2002-02-28 | Kabushiki Kaisha Toshiba | Endscope system |
US20020149706A1 (en) * | 2001-04-13 | 2002-10-17 | Rosen Products Llc. | Retractable utility structure monitor |
US7231135B2 (en) * | 2001-05-18 | 2007-06-12 | Pentax Of American, Inc. | Computer-based video recording and management system for medical diagnostic equipment |
US20030076410A1 (en) * | 2001-10-24 | 2003-04-24 | Richard Beutter | Powered optical coupler and endoscopic viewing system using same |
US20030091155A1 (en) * | 2001-11-15 | 2003-05-15 | Ge Medical Systems Global Technology Company, Llc | X-ray positioner with side-mounted, independently articulated arms |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
US20050075538A1 (en) * | 2003-04-01 | 2005-04-07 | Banik Michael S. | Single use endoscopic imaging system |
US20050131279A1 (en) * | 2003-04-01 | 2005-06-16 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US20050197536A1 (en) * | 2003-04-01 | 2005-09-08 | Banik Michael S. | Video endoscope |
US11324395B2 (en) | 2003-04-01 | 2022-05-10 | Boston Scientific Scimed, Inc. | Endoscopic imaging system |
US10765307B2 (en) | 2003-04-01 | 2020-09-08 | Boston Scientific Scimed, Inc. | Endoscopic imaging system |
US9913573B2 (en) | 2003-04-01 | 2018-03-13 | Boston Scientific Scimed, Inc. | Endoscopic imaging system |
US8622894B2 (en) | 2003-04-01 | 2014-01-07 | Boston Scientific Scimed, Inc. | Articulation joint |
US7413543B2 (en) | 2003-04-01 | 2008-08-19 | Scimed Life Systems, Inc. | Endoscope with actively cooled illumination sources |
US8608648B2 (en) | 2003-04-01 | 2013-12-17 | Boston Scientific Scimed, Inc. | Articulation joint |
US8535219B2 (en) | 2003-04-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Fluid manifold for endoscope system |
US7578786B2 (en) | 2003-04-01 | 2009-08-25 | Boston Scientific Scimed, Inc. | Video endoscope |
US7591783B2 (en) | 2003-04-01 | 2009-09-22 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US8475366B2 (en) | 2003-04-01 | 2013-07-02 | Boston Scientific Scimed, Inc. | Articulation joint for a medical device |
US20040199052A1 (en) * | 2003-04-01 | 2004-10-07 | Scimed Life Systems, Inc. | Endoscopic imaging system |
US20100048999A1 (en) * | 2003-04-01 | 2010-02-25 | Boston Scientific Scimed, Inc. | Video endoscope |
US20100076266A1 (en) * | 2003-04-01 | 2010-03-25 | Boston Scientific Scimed, Inc | Articulation joint for video endoscope |
US20100256448A1 (en) * | 2003-04-01 | 2010-10-07 | Boston Scientific Scimed, Inc. | Fluid manifold for endoscope system |
US8425408B2 (en) | 2003-04-01 | 2013-04-23 | Boston Scientific Scimed, Inc. | Articulation joint for video endoscope |
US8435172B2 (en) | 2004-09-30 | 2013-05-07 | Boston Scientific Scimed, Inc. | Automated control of irrigation and aspiration in a single-use endoscope |
USRE46007E1 (en) | 2004-09-30 | 2016-05-24 | Boston Scientific Scimed, Inc. | Automated control of irrigation and aspiration in a single-use endoscope |
US8199187B2 (en) | 2004-09-30 | 2012-06-12 | Boston Scientific Scimed, Inc. | Adapter for use with digital imaging medical device |
US20060069306A1 (en) * | 2004-09-30 | 2006-03-30 | Banik Michael S | Automated control of irrigation and aspiration in a single-use endoscope |
US20060114986A1 (en) * | 2004-09-30 | 2006-06-01 | Knapp Keith N Ii | Adapter for use with digital imaging medical device |
US8083671B2 (en) | 2004-09-30 | 2011-12-27 | Boston Scientific Scimed, Inc. | Fluid delivery system for use with an endoscope |
US7597662B2 (en) | 2004-09-30 | 2009-10-06 | Boston Scientific Scimed, Inc. | Multi-fluid delivery system |
US7479106B2 (en) | 2004-09-30 | 2009-01-20 | Boston Scientific Scimed, Inc. | Automated control of irrigation and aspiration in a single-use endoscope |
US20070225561A1 (en) * | 2006-03-24 | 2007-09-27 | Olympus Medical Systems Corp. | Endoscope and display device |
US9358363B2 (en) | 2006-04-20 | 2016-06-07 | Boston Scientific Scimed, Inc. | Multiple lumen assembly for use in endoscopes or other medical devices |
US8870753B2 (en) | 2006-04-20 | 2014-10-28 | Boston Scientific Scimed, Inc. | Imaging assembly with transparent distal cap |
US8202265B2 (en) | 2006-04-20 | 2012-06-19 | Boston Scientific Scimed, Inc. | Multiple lumen assembly for use in endoscopes or other medical devices |
US20070249932A1 (en) * | 2006-04-25 | 2007-10-25 | Shahinian Hrayr K | Remote manipulator with eyeballs |
WO2008066944A3 (en) * | 2006-04-25 | 2008-08-28 | Hrayr Karnig Shahinian | Remote manipulator with eyeballs |
US7601119B2 (en) * | 2006-04-25 | 2009-10-13 | Hrayr Kamig Shahinian | Remote manipulator with eyeballs |
US9820642B2 (en) | 2007-08-04 | 2017-11-21 | King Systems Corporation | Airway intubation device |
US10278568B2 (en) | 2007-12-18 | 2019-05-07 | Harish M. MANOHARA | Endoscope and system and method of operation thereof |
US9549667B2 (en) | 2007-12-18 | 2017-01-24 | Harish M. MANOHARA | Endoscope and system and method of operation thereof |
US11529042B2 (en) | 2009-11-13 | 2022-12-20 | Hrayr Karnig Shahinian | Stereo imaging miniature endoscope with single imaging and conjugated multi-bandpass filters |
US9854962B2 (en) | 2009-11-30 | 2018-01-02 | King Systems Corporation | Visualization instrument |
US9179831B2 (en) | 2009-11-30 | 2015-11-10 | King Systems Corporation | Visualization instrument |
US20110130632A1 (en) * | 2009-11-30 | 2011-06-02 | King Systems Corporation | Visualization Instrument |
US9713419B2 (en) | 2011-09-27 | 2017-07-25 | California Institute Of Technology | Programmable spectral source and design tool for 3D imaging using complementary bandpass filters |
US11375884B2 (en) | 2011-09-27 | 2022-07-05 | California Institute Of Technology | Multi-angle rear-viewing endoscope and method of operation thereof |
US9456735B2 (en) | 2012-09-27 | 2016-10-04 | Shahinian Karnig Hrayr | Multi-angle rear-viewing endoscope and method of operation thereof |
US9295375B2 (en) | 2012-09-27 | 2016-03-29 | Hrayr Karnig Shahinian | Programmable spectral source and design tool for 3D imaging using complementary bandpass filters |
CN102984438A (en) * | 2012-11-26 | 2013-03-20 | 成都爱斯顿测控技术有限公司 | Multi-interface video capture card |
US20160331213A1 (en) * | 2013-10-31 | 2016-11-17 | Optimede Inc. | Portable inspection system |
US9401078B2 (en) * | 2014-02-26 | 2016-07-26 | Dell Products L.P. | Systems and methods for muting visual indicators in an information handling system |
US9861261B2 (en) | 2014-03-14 | 2018-01-09 | Hrayr Karnig Shahinian | Endoscope system and method of operation thereof |
US12167829B2 (en) | 2019-12-19 | 2024-12-17 | Ambu A/S | Image capture selection |
Also Published As
Publication number | Publication date |
---|---|
JP2009081857A (en) | 2009-04-16 |
AU2003274984A1 (en) | 2004-04-30 |
EP1550311B1 (en) | 2011-08-17 |
US8992418B2 (en) | 2015-03-31 |
CA2498578A1 (en) | 2004-03-25 |
CA2752536C (en) | 2015-01-27 |
JP5613693B2 (en) | 2014-10-29 |
JP2012142949A (en) | 2012-07-26 |
US20040133072A1 (en) | 2004-07-08 |
US20060050144A1 (en) | 2006-03-09 |
EP1550311A1 (en) | 2005-07-06 |
CA2752652A1 (en) | 2004-03-25 |
CA2498578C (en) | 2011-11-22 |
WO2004025963A1 (en) | 2004-03-25 |
CA2752536A1 (en) | 2004-03-25 |
CA2752652C (en) | 2015-02-03 |
EP1550311A4 (en) | 2009-09-02 |
WO2004025963A9 (en) | 2004-06-10 |
JP2005538779A (en) | 2005-12-22 |
US9936862B2 (en) | 2018-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9936862B2 (en) | Video recording and image capture device | |
US6184922B1 (en) | Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner | |
US8982195B2 (en) | Digital video capture system and method with customizable graphical overlay | |
US6791601B1 (en) | Multi-function image and video capture device for use in an endoscopic camera system | |
US20190327401A1 (en) | Video signal generating apparatus, video signal receiving apparatus, and video signal generating and receiving system | |
US20130342668A1 (en) | Medical information recording apparatus | |
WO2014103879A1 (en) | Image recording device and image recording method | |
US20180092509A1 (en) | Image recording device | |
CN103491851B (en) | Medical information recording device | |
EP2704439A1 (en) | Medical image recording apparatus, recording method of the same, and medical image recording program | |
US20160119305A1 (en) | Electronic protected health information security for digital medical treatment room | |
KR0155895B1 (en) | Peripheral device of endoscopic operation system and its control method | |
JP2005044004A (en) | Medical image recording device | |
JP3780071B2 (en) | Endoscopic imaging system | |
US8379100B2 (en) | Medical camera platform | |
JP3327980B2 (en) | Endoscope file device | |
WO2022195725A1 (en) | Information processing device and image display method | |
WO2022201800A1 (en) | Surgical operation room system, image recording method, program, and medical information processing system | |
JP2000354240A (en) | Endoscopic image pickup device | |
JP4116915B2 (en) | DV capture system, DV capture method, DV capture processing program, recording medium, and computer | |
JPH10165354A (en) | Endoscopic image recording carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |