US20060011925A1 - Radiation-emitting semiconductor element and method for producing the same - Google Patents
Radiation-emitting semiconductor element and method for producing the same Download PDFInfo
- Publication number
- US20060011925A1 US20060011925A1 US11/065,769 US6576905A US2006011925A1 US 20060011925 A1 US20060011925 A1 US 20060011925A1 US 6576905 A US6576905 A US 6576905A US 2006011925 A1 US2006011925 A1 US 2006011925A1
- Authority
- US
- United States
- Prior art keywords
- radiation
- gan
- substrate
- layer
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 99
- 238000004519 manufacturing process Methods 0.000 title abstract description 29
- 230000005855 radiation Effects 0.000 claims abstract description 35
- 150000004767 nitrides Chemical class 0.000 claims description 16
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 229910002704 AlGaN Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 abstract description 116
- 239000000758 substrate Substances 0.000 abstract description 71
- 239000011229 interlayer Substances 0.000 abstract description 38
- 229910002601 GaN Inorganic materials 0.000 description 48
- 239000002131 composite material Substances 0.000 description 17
- 238000000407 epitaxy Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005530 etching Methods 0.000 description 6
- 238000007788 roughening Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005488 sandblasting Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
Definitions
- This invention relates to a radiation-emitting semiconductor component pursuant to the preamble of Patent claim 1 and a method for producing it pursuant to the preamble of Patent claim 8 or 18 .
- Radiation-emitting semiconductor components based on GaN are disclosed, for example, by U.S. Pat. No. 5,210,051.
- Such semiconductor components contain a semiconductor body with an active GaN layer that is applied to an SiC substrate. The semiconductor body is contacted on the front on the light-emitting GaN layer and on the back on the SiC substrate.
- III-V nitride semiconductor refers to these ternary and quaternary mixed crystals as well as to gallium nitride itself.
- GaN semiconductor crystals by epitaxy.
- a sapphire crystal or SiC is ordinarily used as substrate.
- an SiC substrate is preferred with regard to avoiding lattice defects, since GaN layers grown on sapphire have a large number of lattice defects because of the relatively large lattice mismatch between sapphire and GaN.
- One drawback of radiation-emitting GaN semiconductor components consists of the fact that at the surface at which the radiation produced in the semiconductor body is emitted, a large refractive index discontinuity occurs at the transition from semiconductor body to the surroundings. A large refractive index discontinuity leads to a considerable fraction of the radiation being reflected back into the semiconductor body and to the radiation yield of the component thereby being reduced.
- One means of increasing the radiation yield consists of applying a reflector to the substrate of the semiconductor body. This is shown, for example, in DE 43 05 296. This again points the radiation back-reflected into the semiconductor body in the direction of the emission surface, so that the back-reflected portion of the radiation is not lost but is at least partially likewise emitted after one or more internal reflections.
- U.S. Pat. No. 5,786,606 discloses a method for producing radiation-emitting semiconductor components based on GaN in which an SiC layer is first grown by epitaxy on a SIMOX substrate (Separation by IMplantation of OXygen) on an SOI substrate (Silicon On Isolator). A plurality of GaN-based layers are then deposited on the SiC layer.
- the radiation yield of the component is reduced by the SiC layer, since a portion of the radiation produced is absorbed in the SiC layer. Also, the epitaxial formation of an SiC layer with adequate crystal quality requires a high production cost.
- the task underlying this invention is to provide a III-V nitride semiconductor component with increased light yield. It is also the purpose of this invention to develop a method for producing such semiconductor components.
- This task is accomplished by a semiconductor component pursuant to claim 1 and a production method pursuant to claim 8 or 18 .
- Beneficial refinements of the invention are the objects of Subclaims 2 to 7 .
- Subclaims 9 to 17 and 19 to 31 describe beneficial forms of embodiment of the production process pursuant to claim 8 and/or claim 18 .
- the radiation-emitting semiconductor component is developed as a thin-layer component that in particular has no radiation-absorbing substrate.
- the semiconductor body of the component is made up of a stacked plurality of different III-V nitride semiconductor layers.
- an active semiconductor layer based on GaN or on a related nitride produces electromagnetic radiation that is emitted through a first principal surface of the stack.
- a reflector is applied to a second principal surface of the stack, so that a portion of the radiation that is initially reflected back into the semiconductor body during the emission is again pointed toward the emission surface by means of this reflector.
- the GaN-based semiconductor layers consist of GaN, AlN, InN, AlGaN, InGaN, InAlN, or AlInGaN.
- the central wavelength of the radiation produced can be set within a broad range of the visible spectral region down to the ultraviolet spectral region. Blue and green LEDs, UV LEDs, and corresponding laser diodes can thus be realized with this invention with particular advantage.
- the reflector can be produced by a metallic contact surface. This serves both as reflector and for electrical contact with the semiconductor body. It is beneficial with this embodiment that no other devices are needed on the reflector side for contacting the semiconductor body.
- Al and Ag, as well as Al and Ag alloys, are particularly suitable as material for the contact surfaces.
- the reflector can also be made by dielectric vapor deposition.
- Such vapor deposition can be performed by applying a sequence of layers of SiO 2 or TiO 2 to the semiconductor body. With dielectric vapor deposition, a loss-free reflection in a broad wavelength region can advantageously be produced.
- the reflector has a transparent first layer applied to the second principal surface, and a second reflecting layer applied to this one. This permits optimizing the contact layer in a simple manner both with regard to its electrical characteristics and to its reflection characteristics.
- the entire free surface of the semiconductor body or a subregion of it is roughened. This roughing interferes with total reflection at the emission surface and the optical degree of emission is thereby further increased.
- an interlayer is first applied to a substrate.
- a plurality of different III-V nitride semiconductor layers are then deposited on this interlayer. These layers constitute the semiconductor body of the component.
- the substrate including the interlayer is then stripped from the stack of III-V nitride layers thus formed.
- a reflector is applied to one of the two principal surfaces of the semiconductor body.
- an Si substrate is used, on which is applied an SiC interlayer.
- SiC is particularly suitable for the production of GaN-based components, since it has a lattice constant similar to that of GaN, so that layers based on GaN deposited on SiC have a small number of lattice defects.
- the interlayer is applied by a wafer-bonding method and is then thinned.
- the Si wafer can advantageously be bonded to the SiC wafer by making an SiO 2 layer.
- the interlayer can be grown by epitaxy, by which especially homogeneous interlayers can be produced.
- the reflector is made by applying a reflecting metal contact to the GaN semiconductor body.
- Ag and Al as well as Ag and Al alloys are especially suitable as materials for the metal contact because of their reflectivity and bonding characteristics.
- Another embodiment of the production method consists of making the reflector as a dielectric mirror in the form of a plurality of dielectric layers, which results in the benefits of a dielectric reflector described above.
- the production method is continued by roughening the semiconductor body, with the entire free surface of the semiconductor body or subregions thereof being roughened.
- Especially effective roughening with regard to increasing the yield of light is produced by etching the semiconductor body or by a sand-blasting method.
- a mask layer is applied to the interlayer prior to the deposition of the III-V nitride layers.
- This mask layer structures the layers and in particular it separates the III-V nitride layers into several discontinuous regions. This very beneficially prevents cracking and detachment of the interlayer from the substrate.
- An oxide mask is advantageously made as the mask, especially when using SiC as the interlayer material.
- a plurality of III-V nitride layers are applied by epitaxy to a composite substrate that has a substrate body and an interlayer, with the coefficient of thermal expansion of the substrate body being similar to or greater than the coefficient of thermal expansion of the III-V nitride layers.
- a composite substrate in this context means a substrate that contains at least two regions, the substrate body and the interlayer, and that as such represents the starting substrate for the epitaxial process.
- the interlayer is not applied to the substrate body by epitaxy, but preferably by a wafer-bonding method.
- the thermal properties are determined above all by the substrate body, while the epitaxy surface and especially its lattice constant are largely independently fixed by the interlayer.
- the interlayer can beneficially be optimally matched to the lattice constant of the layers to be applied.
- the use of a substrate body with a sufficiently high coefficient of thermal expansion prevents the development of tensile stresses in the GaN-based layers in the cooling phase after application, and the resulting formation of cracks in the layers. Therefore, the interlayer is advantageously made so thin that the coefficient of thermal expansion of the entire composite substrate corresponds essentially to the coefficient of expansion of the substrate body.
- the substrate body in this case is typically at least twenty times as thick as the interlayer.
- the substrate body contains SiC, preferably polycrystalline (poly-SiC), sapphire, GaN, or AlN.
- SiC preferably polycrystalline (poly-SiC), sapphire, GaN, or AlN.
- the coefficient of thermal expansion of SiC is similar to the coefficient of expansion of GaN-based materials, while the other materials mentioned have larger coefficients of thermal expansion than GaN-based materials.
- the interlayer contains SiC, silicon, sapphire, MgO, GaN, or AlGaN. These materials are especially suitable for producing an essentially monocrystalline surface with a lattice constant matching that of GaN.
- An Si(111) surface or a monocrystalline SiC surface is preferably used as the epitaxy surface on which the GaN-based layers are grown.
- the GaN-based layers are deposited on a composite substrate in which the interlayer is applied to the substrate body by a wafer-bonding method.
- a bonding layer for example of silicon oxide, is produced between the substrate body and the interlayer.
- a number of material systems can beneficially be combined with wafer-bonding procedures, without being limited by material incompatibilities, as for example in the case of the epitaxial application of an interlayer on a substrate body.
- a thicker interlayer can also first be bonded to the substrate body, which is then thinned to the necessary thickness, for example by grinding or splitting.
- a mask layer is produced on the composite substrate before the deposition of the III-V nitride layers, so that the III-V nitride layers grow only on the regions of the epitaxial surface that are not covered by the mask.
- Another preferred configuration of the invention consists of structuring the III-V nitride layers into individual semiconductor layer stacks after deposition on the composite substrate. A support is then applied to the III-V nitride semiconductor layer stack and the composite substrate is detached. The composite substrate in this way can then be reused, at least in part. This represents a special advantage for SiC substrate bodies, the production of which involves very high costs.
- a thin-layer component can also be made in this way.
- a thin-layer component means a component that contains no epitaxy substrate.
- the radiation yield is thus increased since absorption of the radiation produced in the epitaxy substrate, such as that occurring in particular with SiC substrates, is avoided.
- the so-called rebonding of the semiconductor layer stack just described, from the composite substrate to a support can also be performed in two steps with the invention, with the GaN-based semiconductor layer stack first being bonded to an intermediate support and then to the actual carrier, so that the actual carrier then takes the place of the composite substrate.
- Semiconductor layer stacks made in this way advantageously have a layer sequence corresponding to GaN-based semiconductor bodies with epitaxy substrate pursuant to the state of the art, so that the same subsequent processing steps can be used for both layer stacks, for example singling, contacting, and incorporation into a housing.
- a reflector layer is produced on the semiconductor layer stack to increase the radiation yield.
- the radiation yield in the case of GaN-base semiconductor components in large part is limited by reflection at the interfaces of the semiconductor body.
- the radiation fractions reflected at the emission surfaces can advantageously be pointed back to the emission surface again by a reflector layer. This further increases the radiation yield.
- the reflector layer is preferably made as a metallic layer. which contains aluminum, silver, or an appropriate aluminum or silver alloy, for example.
- the reflector layer can also be made by dielectric vapor deposition in the form of a plurality of dielectric layers.
- FIG. 1 a schematic cross-sectional view of a first embodiment of a semiconductor component pursuant to the invention
- FIG. 2 a schematic cross-sectional view of a second embodiment of a semiconductor component pursuant to the invention
- FIG. 3 a schematic illustration of a first example of embodiment of a first production method pursuant to the invention.
- FIG. 4 a schematic illustration of a first example of embodiment of a second production method pursuant to the invention.
- FIG. 5 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention
- FIG. 6 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention.
- FIG. 7 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention.
- the radiation-emitting semiconductor component shown in FIG. 1 has a plurality of different semiconductor layers 1 in stacked arrangement that consist of GaN or of a ternary or quaternary compound based thereon. In operation, an active zone 2 is formed within these layers in which the radiation 5 is generated.
- the stack of layers is bounded by a first principal surface 3 and a second principal surface 4 .
- the radiation 5 produced is essentially emitted through the first principal surface 3 to the adjoining surroundings.
- a reflector 6 is applied to the second principal surface 4 , formed from an Ag layer vapor-deposited on the semiconductor body. Contact with the semiconductor body is made on the emission side by the contact surface 12 , and on the reflector side by the Ag reflector layer. Contacting can be achieved on the reflector side, for example, by contacting the semiconductor body on the reflector side with a metal body that serves both as carrier and to infeed current.
- the reflector 6 causes a portion of the radiation 5 that is reflected back into the semiconductor body at the first principal surface 3 during emission, to be reflected back toward the first principal surface 3 , so that the amount of radiation emitted through the first principal surface 3 is increased overall. This increase is made possible by the fact that the component is made as a thin-layer component with no radiation-absorbing substrate, and the reflector 6 is applied directly to the GaN semiconductor body.
- the example of embodiment of a semiconductor component pursuant to the invention shown in FIG. 2 differs from the component shown in FIG. 1 in that the surface of the semiconductor body has a roughening 7 .
- This roughening 7 causes scattering of the radiation 5 at the first principal surface 3 , so as to interfere with total reflection at the first principal surface 3 . Furthermore, this scattering prevents the radiation produced by continuing reflections of the same kind from being guided between the two principal surfaces 3 and 4 and the reflector 6 , in the way of an optical waveguide, without leaving the semiconductor body.
- the roughening 7 further increases the light yield.
- FIG. 3 shows a first example of embodiment of a production method pursuant to the invention.
- the starting point is an Si substrate 8 , FIG. 3 a .
- an SiC interlayer 9 is applied to this Si substrate by a wafer-bonding method, with an SiO 2 layer 10 being developed between the two substrates, FIG. 3 b .
- the SiC substrate 9 is thinned to a few micrometers, FIG. 3 c .
- a plurality of different GaN semiconductor layers 1 are epitaxially deposited on the thinned SiC substrate 9 by an MOCVD method, which constitute the semiconductor body of the component pursuant to the invention, FIG. 3 d .
- FIG. 3 e After producing the GaN layer stack, the Si substrate 8 and the SiC interlayer 9 are removed, FIG. 3 e .
- a reflecting metallic contact surface 6 consisting of an Ag or Al alloy, is then vapor-deposited on a principal surface 4 of the GaN semiconductor body, FIG. 3 f.
- the semiconductor body can then be roughened by a sandblasting procedure or by etching with a suitable etching mixture.
- the reflector 6 FIG. 4 g , is produced as described above.
- a composite substrate is used with a substrate body 21 of poly-SiC, to which a monocrystalline SiC interlayer 22 is bonded by a known method.
- a bonding layer 23 for example of silicon oxide, is formed between the substrate body 21 and the interlayer 22 , FIG. 5 a.
- a plurality of GaN-based layers 24 are grown by epitaxy on this composite substrate, FIG. 5 b .
- the structure of the sequence of layers is subject to no restrictions in principle.
- an active layer is formed to produce radiation, which is surrounded by one or more mantle layers and/or waveguide layers.
- the active layer can be made up of a number of thin individual layers in the form of a mono quantum well or multiple quantum well structure.
- a buffer layer for example based on AlGaN
- electrically conductive channels can be enclosed in the buffer layer, for example based on InGaN.
- the GaN-based layers 24 are then divided into individual semiconductor layer stacks 25 by lateral structuring, preferably by mesa etching, FIG. 5 c.
- a carrier 26 for example of GaAs or a material transparent to the radiation produced, is applied to these semiconductor layer stacks 25 .
- the composite substrate including the interlayer 22 is thereupon detached from the semiconductor layer stacks 25 , FIG. 5 e . This can be done, for example, by an etching process in which the interlayer 22 or the bonding layer 23 is destroyed.
- the substrate body 21 can advantageously be reused in another production cycle.
- Contact surfaces 30 are then applied to the thin-layer semiconductor body 25 thus formed, FIG. 5 f .
- the semiconductor layer stack 25 is then singled, FIG. 5 g , and further processed in the usual way.
- a composite substrate is again used, which is essentially made up of a poly-SiC substrate body 21 and an Si(111) interlayer 22 .
- the interlayer 22 is applied to the substrate body 21 using a wafer-bonding method, with the production of a silicon oxide bonding layer 23 , FIG. 6 a.
- FIG. 6 b A plurality of GaN-based layers are then grown in turn on this composite substrate, FIG. 6 b , which is then provided with a contact layer 28 , for example made of platinum, FIG. 6 c.
- the GaN-based layers 24 are then divided into individual semiconductor layer stacks 25 by etch structuring, FIG. 6 d.
- a passivating layer 31 preferably based on silicon nitride, is then applied to these semiconductor layer stacks 25 formed in this way, FIG. 6 e.
- Bonding solder 32 is then deposited on each region of the contact layer 28 not covered by the passivating layer, and on it is deposited a reflector 29 of a silver or aluminum alloy, FIG. 6 f.
- the semiconductor layer stacks 25 with the reflector 29 are then rebonded eutectically to a carrier 26 , FIG. 6 g.
- the substrate body 21 is removed and can thus be reused.
- the individual semiconductor layer stacks are then provided with contact surfaces 30 on their tops, FIG. 6 i .
- the semiconductor layer stacks can then by singled and optionally incorporated into a housing (not shown).
- FIG. 7 The example of embodiment of a production method pursuant to the invention shown in FIG. 7 represents a variant of the previous examples of embodiment.
- FIG. 7 a a composite substrate is used as the epitaxy substrate, FIG. 7 a.
- a mask layer 27 is applied to the epitaxy surface of the interlayer 22 , FIG. 7 b .
- the GaN-based layers 24 thus grow only on the regions of the epitaxy surface that are not covered by the mask layer 27 (epitaxy windows), FIG. 7 c .
- the GaN-based layers 24 are thereby interrupted in the layer plane. This additionally avoids tensile stresses in the epitaxially deposited layers in the cooling phase.
- the production method can then be continued as in the other examples of embodiment.
Landscapes
- Led Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
- This invention relates to a radiation-emitting semiconductor component pursuant to the preamble of
Patent claim 1 and a method for producing it pursuant to the preamble ofPatent claim 8 or 18. - Radiation-emitting semiconductor components based on GaN are disclosed, for example, by U.S. Pat. No. 5,210,051. Such semiconductor components contain a semiconductor body with an active GaN layer that is applied to an SiC substrate. The semiconductor body is contacted on the front on the light-emitting GaN layer and on the back on the SiC substrate.
- It is also disclosed by U.S. Pat. No. 5,874,747, for example, how to use related nitrides and ternary or quaternary mixed crystals based on them instead of GaN. Included among them in particular are the compounds AlN, InN, AlGaN, InGaN, InAlN, and AlInGaN.
- The term “III-V nitride semiconductor” as used below refers to these ternary and quaternary mixed crystals as well as to gallium nitride itself.
- It is also known how to produce GaN semiconductor crystals by epitaxy. A sapphire crystal or SiC is ordinarily used as substrate. According to U.S. Pat. No. 5,928,421, an SiC substrate is preferred with regard to avoiding lattice defects, since GaN layers grown on sapphire have a large number of lattice defects because of the relatively large lattice mismatch between sapphire and GaN.
- One drawback of radiation-emitting GaN semiconductor components consists of the fact that at the surface at which the radiation produced in the semiconductor body is emitted, a large refractive index discontinuity occurs at the transition from semiconductor body to the surroundings. A large refractive index discontinuity leads to a considerable fraction of the radiation being reflected back into the semiconductor body and to the radiation yield of the component thereby being reduced.
- One cause of this is the total reflection of the radiation produced at the emission surface. Light rays are completely reflected back into the semiconductor body if the angle of incidence of the light rays at the emission surface is greater than the angle of total reflection, each based on the normal to the surface. As the difference between the refractive index of the semiconductor body and that of the surroundings increases, the angle of total reflection decreases and the fraction of totally reflected radiation rises.
- Light rays whose angle of incidence is smaller than the angle of total reflection are also partially reflected back into the semiconductor body, with the back-reflected fraction becoming larger as the difference between the refractive indices of the semiconductor body and of the surroundings increases. A large refractive index discontinuity, such as that occurring with GaN components, therefore leads to large reflection losses at the emission surface. The back-reflected radiation is partially absorbed in the semiconductor body or escapes at surfaces other than the emission surface, so that the overall radiation yield is reduced.
- One means of increasing the radiation yield consists of applying a reflector to the substrate of the semiconductor body. This is shown, for example, in DE 43 05 296. This again points the radiation back-reflected into the semiconductor body in the direction of the emission surface, so that the back-reflected portion of the radiation is not lost but is at least partially likewise emitted after one or more internal reflections.
- In the case of radiation-emitting GaN components pursuant to the state of the art, it is a drawback in this regard to use an absorbing substrate such as SiC, for example. The radiation reflected back into the semiconductor body is absorbed in large part by the substrate, so that it is impossible to increase the radiation yield by means of a reflector.
- U.S. Pat. No. 5,786,606 discloses a method for producing radiation-emitting semiconductor components based on GaN in which an SiC layer is first grown by epitaxy on a SIMOX substrate (Separation by IMplantation of OXygen) on an SOI substrate (Silicon On Isolator). A plurality of GaN-based layers are then deposited on the SiC layer.
- However, the radiation yield of the component is reduced by the SiC layer, since a portion of the radiation produced is absorbed in the SiC layer. Also, the epitaxial formation of an SiC layer with adequate crystal quality requires a high production cost.
- The task underlying this invention is to provide a III-V nitride semiconductor component with increased light yield. It is also the purpose of this invention to develop a method for producing such semiconductor components.
- This task is accomplished by a semiconductor component pursuant to claim 1 and a production method pursuant to claim 8 or 18.
- Beneficial refinements of the invention are the objects of Subclaims 2 to 7.
Subclaims 9 to 17 and 19 to 31 describe beneficial forms of embodiment of the production process pursuant to claim 8 and/or claim 18. - The invention provides that the radiation-emitting semiconductor component is developed as a thin-layer component that in particular has no radiation-absorbing substrate. The semiconductor body of the component is made up of a stacked plurality of different III-V nitride semiconductor layers. In operation, an active semiconductor layer based on GaN or on a related nitride produces electromagnetic radiation that is emitted through a first principal surface of the stack. A reflector is applied to a second principal surface of the stack, so that a portion of the radiation that is initially reflected back into the semiconductor body during the emission is again pointed toward the emission surface by means of this reflector.
- In this way, in addition to the primarily emitted fraction of the produced radiation, another portion is emitted after one or more internal reflections at the reflector. Overall, the degree of emission is thus increased compared to a GaN semiconductor component pursuant to the state of the art.
- In a preferred embodiment, the GaN-based semiconductor layers consist of GaN, AlN, InN, AlGaN, InGaN, InAlN, or AlInGaN. By using these materials, the central wavelength of the radiation produced can be set within a broad range of the visible spectral region down to the ultraviolet spectral region. Blue and green LEDs, UV LEDs, and corresponding laser diodes can thus be realized with this invention with particular advantage.
- In an especially preferred embodiment, the reflector can be produced by a metallic contact surface. This serves both as reflector and for electrical contact with the semiconductor body. It is beneficial with this embodiment that no other devices are needed on the reflector side for contacting the semiconductor body. Al and Ag, as well as Al and Ag alloys, are particularly suitable as material for the contact surfaces.
- In another advantageous embodiment, the reflector can also be made by dielectric vapor deposition. Such vapor deposition can be performed by applying a sequence of layers of SiO2 or TiO2 to the semiconductor body. With dielectric vapor deposition, a loss-free reflection in a broad wavelength region can advantageously be produced.
- In a preferred refinement, the reflector has a transparent first layer applied to the second principal surface, and a second reflecting layer applied to this one. This permits optimizing the contact layer in a simple manner both with regard to its electrical characteristics and to its reflection characteristics.
- In another preferred embodiment, the entire free surface of the semiconductor body or a subregion of it is roughened. This roughing interferes with total reflection at the emission surface and the optical degree of emission is thereby further increased.
- In the production method pursuant to the invention, an interlayer is first applied to a substrate. A plurality of different III-V nitride semiconductor layers are then deposited on this interlayer. These layers constitute the semiconductor body of the component. In the next step, the substrate including the interlayer is then stripped from the stack of III-V nitride layers thus formed. In a further step, a reflector is applied to one of the two principal surfaces of the semiconductor body.
- In another embodiment, an Si substrate is used, on which is applied an SiC interlayer. SiC is particularly suitable for the production of GaN-based components, since it has a lattice constant similar to that of GaN, so that layers based on GaN deposited on SiC have a small number of lattice defects.
- In another especially preferred embodiment, the interlayer is applied by a wafer-bonding method and is then thinned. When using an Si substrate and an SiC interlayer, the Si wafer can advantageously be bonded to the SiC wafer by making an SiO2 layer.
- Alternatively, the interlayer can be grown by epitaxy, by which especially homogeneous interlayers can be produced.
- In another preferred embodiment, the reflector is made by applying a reflecting metal contact to the GaN semiconductor body. Ag and Al as well as Ag and Al alloys are especially suitable as materials for the metal contact because of their reflectivity and bonding characteristics.
- Another embodiment of the production method consists of making the reflector as a dielectric mirror in the form of a plurality of dielectric layers, which results in the benefits of a dielectric reflector described above.
- In an especially preferred refinement of the invention, the production method is continued by roughening the semiconductor body, with the entire free surface of the semiconductor body or subregions thereof being roughened. Especially effective roughening with regard to increasing the yield of light is produced by etching the semiconductor body or by a sand-blasting method.
- In another particularly preferred embodiment, a mask layer is applied to the interlayer prior to the deposition of the III-V nitride layers. This mask layer structures the layers and in particular it separates the III-V nitride layers into several discontinuous regions. This very beneficially prevents cracking and detachment of the interlayer from the substrate. An oxide mask is advantageously made as the mask, especially when using SiC as the interlayer material.
- In another production method pursuant to the invention, a plurality of III-V nitride layers are applied by epitaxy to a composite substrate that has a substrate body and an interlayer, with the coefficient of thermal expansion of the substrate body being similar to or greater than the coefficient of thermal expansion of the III-V nitride layers. A composite substrate in this context means a substrate that contains at least two regions, the substrate body and the interlayer, and that as such represents the starting substrate for the epitaxial process. In particular, the interlayer is not applied to the substrate body by epitaxy, but preferably by a wafer-bonding method.
- With such a composite substrate, the thermal properties are determined above all by the substrate body, while the epitaxy surface and especially its lattice constant are largely independently fixed by the interlayer. Thus the interlayer can beneficially be optimally matched to the lattice constant of the layers to be applied. At the same time, the use of a substrate body with a sufficiently high coefficient of thermal expansion prevents the development of tensile stresses in the GaN-based layers in the cooling phase after application, and the resulting formation of cracks in the layers. Therefore, the interlayer is advantageously made so thin that the coefficient of thermal expansion of the entire composite substrate corresponds essentially to the coefficient of expansion of the substrate body. The substrate body in this case is typically at least twenty times as thick as the interlayer.
- In an advantageous configuration of the invention, the substrate body contains SiC, preferably polycrystalline (poly-SiC), sapphire, GaN, or AlN. The coefficient of thermal expansion of SiC is similar to the coefficient of expansion of GaN-based materials, while the other materials mentioned have larger coefficients of thermal expansion than GaN-based materials. Thus cracking of the epitaxially applied layers during cooling is advantageously avoided.
- In a preferred configuration of the invention, the interlayer contains SiC, silicon, sapphire, MgO, GaN, or AlGaN. These materials are especially suitable for producing an essentially monocrystalline surface with a lattice constant matching that of GaN. An Si(111) surface or a monocrystalline SiC surface is preferably used as the epitaxy surface on which the GaN-based layers are grown.
- In an advantageous refinement of the invention, the GaN-based layers are deposited on a composite substrate in which the interlayer is applied to the substrate body by a wafer-bonding method. A bonding layer, for example of silicon oxide, is produced between the substrate body and the interlayer.
- A number of material systems can beneficially be combined with wafer-bonding procedures, without being limited by material incompatibilities, as for example in the case of the epitaxial application of an interlayer on a substrate body.
- To obtain a sufficiently thin interlayer, a thicker interlayer can also first be bonded to the substrate body, which is then thinned to the necessary thickness, for example by grinding or splitting.
- In a beneficial refinement of the invention, a mask layer is produced on the composite substrate before the deposition of the III-V nitride layers, so that the III-V nitride layers grow only on the regions of the epitaxial surface that are not covered by the mask. These layers are thereby advantageously interrupted in the plane of the layer, and additional protection against tensile stress and the associated cracking is thus achieved.
- Another preferred configuration of the invention consists of structuring the III-V nitride layers into individual semiconductor layer stacks after deposition on the composite substrate. A support is then applied to the III-V nitride semiconductor layer stack and the composite substrate is detached. The composite substrate in this way can then be reused, at least in part. This represents a special advantage for SiC substrate bodies, the production of which involves very high costs. A thin-layer component can also be made in this way. A thin-layer component means a component that contains no epitaxy substrate.
- In the case of radiation-emitting semiconductor components, the radiation yield is thus increased since absorption of the radiation produced in the epitaxy substrate, such as that occurring in particular with SiC substrates, is avoided.
- The so-called rebonding of the semiconductor layer stack just described, from the composite substrate to a support, can also be performed in two steps with the invention, with the GaN-based semiconductor layer stack first being bonded to an intermediate support and then to the actual carrier, so that the actual carrier then takes the place of the composite substrate. Semiconductor layer stacks made in this way advantageously have a layer sequence corresponding to GaN-based semiconductor bodies with epitaxy substrate pursuant to the state of the art, so that the same subsequent processing steps can be used for both layer stacks, for example singling, contacting, and incorporation into a housing.
- In the production method, a reflector layer is produced on the semiconductor layer stack to increase the radiation yield. The radiation yield in the case of GaN-base semiconductor components in large part is limited by reflection at the interfaces of the semiconductor body. In the case of radiation-emitting semiconductor bodies with no absorbing substrate, the radiation fractions reflected at the emission surfaces can advantageously be pointed back to the emission surface again by a reflector layer. This further increases the radiation yield.
- The reflector layer is preferably made as a metallic layer. which contains aluminum, silver, or an appropriate aluminum or silver alloy, for example.
- Such a metallic layer can be used advantageously as a contact surface at the same time. Alternatively, the reflector layer can also be made by dielectric vapor deposition in the form of a plurality of dielectric layers.
- In an advantageous refinement of the invention, at least a portion of the surface of the semiconductor layer stack is roughened. This interferes with total reflection at the surface and thus the radiation yield is increased. The roughening is preferably done by etching or by a sand blasting process.
- Other features, advantages, and uses are found in the following description of four examples of embodiment, in combination with FIGS. 1 to 7. The figures show:
-
FIG. 1 a schematic cross-sectional view of a first embodiment of a semiconductor component pursuant to the invention, -
FIG. 2 a schematic cross-sectional view of a second embodiment of a semiconductor component pursuant to the invention, -
FIG. 3 a schematic illustration of a first example of embodiment of a first production method pursuant to the invention, and -
FIG. 4 a schematic illustration of a first example of embodiment of a second production method pursuant to the invention. -
FIG. 5 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention, -
FIG. 6 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention, and -
FIG. 7 a schematic cross-sectional illustration of another example of embodiment of a production method pursuant to the invention. - The radiation-emitting semiconductor component shown in
FIG. 1 has a plurality ofdifferent semiconductor layers 1 in stacked arrangement that consist of GaN or of a ternary or quaternary compound based thereon. In operation, anactive zone 2 is formed within these layers in which theradiation 5 is generated. - The stack of layers is bounded by a first
principal surface 3 and a secondprincipal surface 4. Theradiation 5 produced is essentially emitted through the firstprincipal surface 3 to the adjoining surroundings. - A
reflector 6 is applied to the secondprincipal surface 4, formed from an Ag layer vapor-deposited on the semiconductor body. Contact with the semiconductor body is made on the emission side by thecontact surface 12, and on the reflector side by the Ag reflector layer. Contacting can be achieved on the reflector side, for example, by contacting the semiconductor body on the reflector side with a metal body that serves both as carrier and to infeed current. - The
reflector 6 causes a portion of theradiation 5 that is reflected back into the semiconductor body at the firstprincipal surface 3 during emission, to be reflected back toward the firstprincipal surface 3, so that the amount of radiation emitted through the firstprincipal surface 3 is increased overall. This increase is made possible by the fact that the component is made as a thin-layer component with no radiation-absorbing substrate, and thereflector 6 is applied directly to the GaN semiconductor body. - The example of embodiment of a semiconductor component pursuant to the invention shown in
FIG. 2 differs from the component shown inFIG. 1 in that the surface of the semiconductor body has a roughening 7. This roughening 7 causes scattering of theradiation 5 at the firstprincipal surface 3, so as to interfere with total reflection at the firstprincipal surface 3. Furthermore, this scattering prevents the radiation produced by continuing reflections of the same kind from being guided between the twoprincipal surfaces reflector 6, in the way of an optical waveguide, without leaving the semiconductor body. Thus, the roughening 7 further increases the light yield. -
FIG. 3 shows a first example of embodiment of a production method pursuant to the invention. The starting point is anSi substrate 8,FIG. 3 a. In a first step, anSiC interlayer 9 is applied to this Si substrate by a wafer-bonding method, with an SiO2 layer 10 being developed between the two substrates,FIG. 3 b. In the next step, theSiC substrate 9 is thinned to a few micrometers,FIG. 3 c. A plurality of different GaN semiconductor layers 1 are epitaxially deposited on the thinnedSiC substrate 9 by an MOCVD method, which constitute the semiconductor body of the component pursuant to the invention,FIG. 3 d. After producing the GaN layer stack, theSi substrate 8 and theSiC interlayer 9 are removed,FIG. 3 e. A reflectingmetallic contact surface 6, consisting of an Ag or Al alloy, is then vapor-deposited on aprincipal surface 4 of the GaN semiconductor body,FIG. 3 f. - To minimize total reflection at the first
principal surface 3, the semiconductor body can then be roughened by a sandblasting procedure or by etching with a suitable etching mixture. - The embodiment of a production method pursuant to the invention shown in
FIG. 4 is analogous to the first example of embodiment described above up to and including the thinning of the SiC substrate 9 (FIGS. 4 a to 4 c). In contrast to it, anoxide mask 11 is applied to theSiC layer 9 prior to the deposition of the GaN layers 1,FIG. 4 d. Thisoxide mask 11 causes the GaN layers 1 to grow in the next step only on the subregions of the SiC interlayer not covered by the mask. - Since the GaN layers 1 formed in this way are interrupted along the plane of the layer, stresses from the differing coefficients of thermal expansion of SiC and GaN that occur especially during the cooling of the component after its production, are reduced. This leads advantageously to less cracking in the GaN layers 1 and suppresses delamination of the
SiC interlayer 9 from the substrate. Thereflector 6,FIG. 4 g, is produced as described above. - In the production method shown in
FIG. 5 , a composite substrate is used with asubstrate body 21 of poly-SiC, to which amonocrystalline SiC interlayer 22 is bonded by a known method. To this end, abonding layer 23, for example of silicon oxide, is formed between thesubstrate body 21 and theinterlayer 22,FIG. 5 a. - A plurality of GaN-based
layers 24 are grown by epitaxy on this composite substrate,FIG. 5 b. The structure of the sequence of layers is subject to no restrictions in principle. - Preferably an active layer is formed to produce radiation, which is surrounded by one or more mantle layers and/or waveguide layers. The active layer can be made up of a number of thin individual layers in the form of a mono quantum well or multiple quantum well structure.
- It is also advantageous first to produce a buffer layer, for example based on AlGaN, on the
interlayer 22, by which an improved lattice match and higher wettability with regard to the following layers can be achieved. To increase the electrical conductivity of such a buffer layer, electrically conductive channels can be enclosed in the buffer layer, for example based on InGaN. - The GaN-based
layers 24 are then divided into individual semiconductor layer stacks 25 by lateral structuring, preferably by mesa etching,FIG. 5 c. - In the next step,
FIG. 5 d, acarrier 26, for example of GaAs or a material transparent to the radiation produced, is applied to these semiconductor layer stacks 25. - The composite substrate including the
interlayer 22 is thereupon detached from the semiconductor layer stacks 25,FIG. 5 e. This can be done, for example, by an etching process in which theinterlayer 22 or thebonding layer 23 is destroyed. Thesubstrate body 21 can advantageously be reused in another production cycle. - Contact surfaces 30 are then applied to the thin-
layer semiconductor body 25 thus formed,FIG. 5 f. Thesemiconductor layer stack 25 is then singled,FIG. 5 g, and further processed in the usual way. - In the production method illustrated in
FIG. 6 , a composite substrate is again used, which is essentially made up of a poly-SiC substrate body 21 and an Si(111)interlayer 22. Theinterlayer 22 is applied to thesubstrate body 21 using a wafer-bonding method, with the production of a siliconoxide bonding layer 23,FIG. 6 a. - A plurality of GaN-based layers are then grown in turn on this composite substrate,
FIG. 6 b, which is then provided with acontact layer 28, for example made of platinum,FIG. 6 c. - The GaN-based
layers 24 are then divided into individual semiconductor layer stacks 25 by etch structuring,FIG. 6 d. - For protection, a
passivating layer 31, preferably based on silicon nitride, is then applied to these semiconductor layer stacks 25 formed in this way,FIG. 6 e. -
Bonding solder 32 is then deposited on each region of thecontact layer 28 not covered by the passivating layer, and on it is deposited areflector 29 of a silver or aluminum alloy,FIG. 6 f. - The semiconductor layer stacks 25 with the
reflector 29 are then rebonded eutectically to acarrier 26,FIG. 6 g. - In the following step,
FIG. 6 h, thesubstrate body 21 is removed and can thus be reused. - The individual semiconductor layer stacks are then provided with contact surfaces 30 on their tops,
FIG. 6 i. The semiconductor layer stacks can then by singled and optionally incorporated into a housing (not shown). - The example of embodiment of a production method pursuant to the invention shown in
FIG. 7 represents a variant of the previous examples of embodiment. - Again, as already described, a composite substrate is used as the epitaxy substrate,
FIG. 7 a. - Before depositing the GaN-based
layer 24, amask layer 27 is applied to the epitaxy surface of theinterlayer 22,FIG. 7 b. The GaN-basedlayers 24 thus grow only on the regions of the epitaxy surface that are not covered by the mask layer 27 (epitaxy windows),FIG. 7 c. The GaN-basedlayers 24 are thereby interrupted in the layer plane. This additionally avoids tensile stresses in the epitaxially deposited layers in the cooling phase. - The production method can then be continued as in the other examples of embodiment.
- The explanation of the invention with reference to the described examples of embodiment naturally does not imply any limitation of the invention thereto, but it comprises all forms of embodiment that make use of the inventive concept.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/065,769 US20060011925A1 (en) | 2000-04-26 | 2005-02-25 | Radiation-emitting semiconductor element and method for producing the same |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10020464A DE10020464A1 (en) | 2000-04-26 | 2000-04-26 | Radiation-emitting semiconductor element has a semiconductor body formed by a stack of different semiconductor layers based on gallium nitride |
DE10020464.3 | 2000-04-26 | ||
DE10026255.4 | 2000-05-26 | ||
DE10026255A DE10026255A1 (en) | 2000-04-26 | 2000-05-26 | Radiation-emitting semiconductor element has a semiconductor body formed by a stack of different semiconductor layers based on gallium nitride |
DE10051465.0 | 2000-10-17 | ||
DE10051465A DE10051465A1 (en) | 2000-10-17 | 2000-10-17 | Method for producing a GaN-based semiconductor component |
US10/239,106 US6878563B2 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
PCT/DE2001/001002 WO2001082384A1 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
US11/065,769 US20060011925A1 (en) | 2000-04-26 | 2005-02-25 | Radiation-emitting semiconductor element and method for producing the same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2001/001002 Division WO2001082384A1 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
US10/239,106 Division US6878563B2 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060011925A1 true US20060011925A1 (en) | 2006-01-19 |
Family
ID=27213826
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/239,106 Expired - Lifetime US6878563B2 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
US11/067,349 Expired - Fee Related US7691659B2 (en) | 2000-04-26 | 2005-02-25 | Radiation-emitting semiconductor element and method for producing the same |
US11/065,769 Abandoned US20060011925A1 (en) | 2000-04-26 | 2005-02-25 | Radiation-emitting semiconductor element and method for producing the same |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/239,106 Expired - Lifetime US6878563B2 (en) | 2000-04-26 | 2001-03-16 | Radiation-emitting semiconductor element and method for producing the same |
US11/067,349 Expired - Fee Related US7691659B2 (en) | 2000-04-26 | 2005-02-25 | Radiation-emitting semiconductor element and method for producing the same |
Country Status (6)
Country | Link |
---|---|
US (3) | US6878563B2 (en) |
EP (2) | EP2270875B1 (en) |
JP (1) | JP2003532298A (en) |
CN (1) | CN1292494C (en) |
TW (1) | TW567616B (en) |
WO (1) | WO2001082384A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030168664A1 (en) * | 2000-05-26 | 2003-09-11 | Berthold Hahn | Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same |
US20040026709A1 (en) * | 2000-04-26 | 2004-02-12 | Stefan Bader | Gan-based light emitting-diode chip and a method for producing a luminescent diode component |
US20040033638A1 (en) * | 2000-10-17 | 2004-02-19 | Stefan Bader | Method for fabricating a semiconductor component based on GaN |
US20050199885A1 (en) * | 2004-03-09 | 2005-09-15 | Sanyo Electric Co., Ltd. | Light-emitting device and method of manufacturing the same |
US20050282373A1 (en) * | 2000-04-26 | 2005-12-22 | Osram Gmbh, A Germany Corporation | Radiation-emitting semiconductor element and method for producing the same |
US20060011941A1 (en) * | 2004-07-13 | 2006-01-19 | Toshiba Ceramics Co., Ltd. | Substrate for growing electro-optical single crystal thin film and method of manufacturing the same |
US20080093611A1 (en) * | 2004-04-29 | 2008-04-24 | Berthold Hahn | Method for Production of a Radiation-Emitting Semiconductor Chip |
EP2017898A1 (en) * | 2007-07-17 | 2009-01-21 | Vishay Israel Ltd. | Semiconductor light-emitting device and method for the manufacture thereof |
US20100072500A1 (en) * | 2007-01-29 | 2010-03-25 | Osram Opto Semiconductors Gmbh | Thin-Film Light Emitting Diode Chip and Method for Producing a Thin-Film Light Emitting Diode Chip |
US20100133564A1 (en) * | 2005-08-05 | 2010-06-03 | Siegfried Herrmann | Method for Producing Semiconductor Components and Thin-Film Semiconductor Component |
US20100163915A1 (en) * | 2006-08-04 | 2010-07-01 | Osram Opto Semiconductors Gmbh | Thin-Film Semiconductor Component and Component Assembly |
US20110198562A1 (en) * | 2010-02-18 | 2011-08-18 | Yong Tae Moon | Light emitting device and method of manufacturing the same |
US20130146919A1 (en) * | 2007-09-21 | 2013-06-13 | Osram Opto Semiconductors Gmbh | Radiation-emitting component |
US9190560B2 (en) | 2010-05-18 | 2015-11-17 | Agency For Science Technology And Research | Method of forming a light emitting diode structure and a light diode structure |
US11695099B2 (en) | 2009-06-25 | 2023-07-04 | Lumileds Llc | Contact for a semiconductor light emitting device |
Families Citing this family (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE525755T1 (en) | 2001-10-12 | 2011-10-15 | Nichia Corp | LIGHT-EMITTING COMPONENT AND METHOD FOR THE PRODUCTION THEREOF |
US7148520B2 (en) * | 2001-10-26 | 2006-12-12 | Lg Electronics Inc. | Diode having vertical structure and method of manufacturing the same |
US6784462B2 (en) * | 2001-12-13 | 2004-08-31 | Rensselaer Polytechnic Institute | Light-emitting diode with planar omni-directional reflector |
FR2835095B1 (en) * | 2002-01-22 | 2005-03-18 | PROCESS FOR PREPARING SEPARABLE SEMICONDUCTOR ASSEMBLIES, IN PARTICULAR FOR FORMING SUBSTRATES FOR ELECTRONICS, OPTOELECTRIC, AND OPTICS | |
JP4207781B2 (en) * | 2002-01-28 | 2009-01-14 | 日亜化学工業株式会社 | Nitride semiconductor device having supporting substrate and method for manufacturing the same |
DE10203809B4 (en) | 2002-01-31 | 2010-05-27 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component |
US20030189215A1 (en) * | 2002-04-09 | 2003-10-09 | Jong-Lam Lee | Method of fabricating vertical structure leds |
JP4233268B2 (en) | 2002-04-23 | 2009-03-04 | シャープ株式会社 | Nitride-based semiconductor light-emitting device and manufacturing method thereof |
US20040140474A1 (en) * | 2002-06-25 | 2004-07-22 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light-emitting device, method for fabricating the same and method for bonding the same |
US6841802B2 (en) | 2002-06-26 | 2005-01-11 | Oriol, Inc. | Thin film light emitting diode |
KR101030068B1 (en) * | 2002-07-08 | 2011-04-19 | 니치아 카가쿠 고교 가부시키가이샤 | Nitride semiconductor device manufacturing method and nitride semiconductor device |
DE10234977A1 (en) * | 2002-07-31 | 2004-02-12 | Osram Opto Semiconductors Gmbh | Radiation-emitting thin layer semiconductor component comprises a multiple layer structure based on gallium nitride containing an active radiation-producing layer and having a first main surface and a second main surface |
DE10244200A1 (en) | 2002-09-23 | 2004-04-08 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component |
JP4116387B2 (en) * | 2002-09-30 | 2008-07-09 | 株式会社東芝 | Semiconductor light emitting device |
DE10245628A1 (en) * | 2002-09-30 | 2004-04-15 | Osram Opto Semiconductors Gmbh | Light-emitting semiconductor chip includes mirror layer with planar reflection surfaces inclined at acute angle with respect to main plane of beam production region |
DE10245631B4 (en) * | 2002-09-30 | 2022-01-20 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | semiconductor device |
US6900474B2 (en) * | 2002-12-20 | 2005-05-31 | Lumileds Lighting U.S., Llc | Light emitting devices with compact active regions |
EP2365095A1 (en) | 2003-02-26 | 2011-09-14 | Callida Genomics, Inc. | Random array DNA analysis by hybridization |
DE10308866A1 (en) | 2003-02-28 | 2004-09-09 | Osram Opto Semiconductors Gmbh | Lighting module and method for its production |
US6831302B2 (en) * | 2003-04-15 | 2004-12-14 | Luminus Devices, Inc. | Light emitting devices with improved extraction efficiency |
DE10334202A1 (en) * | 2003-07-24 | 2005-02-17 | Aixtron Ag | CVD method for depositing at least one III-V-N layer on a substrate |
KR100853882B1 (en) * | 2003-08-29 | 2008-08-22 | 오스람 옵토 세미컨덕터스 게엠베하 | Radiation emitting semiconductor devices |
US7915085B2 (en) | 2003-09-18 | 2011-03-29 | Cree, Inc. | Molded chip fabrication method |
TWI223460B (en) | 2003-09-23 | 2004-11-01 | United Epitaxy Co Ltd | Light emitting diodes in series connection and method of making the same |
CN100499184C (en) * | 2003-09-26 | 2009-06-10 | 奥斯兰姆奥普托半导体有限责任公司 | Radiation-emitting thin-film semiconductor chip |
CN100483752C (en) * | 2003-12-05 | 2009-04-29 | 炬鑫科技股份有限公司 | Gallium nitride series light-emitting diode with high luminous efficiency and manufacturing method thereof |
AU2003296426A1 (en) | 2003-12-09 | 2005-07-21 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
JP2005252222A (en) * | 2004-02-03 | 2005-09-15 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device, lighting module, lighting device, display element, and method for manufacturing semiconductor light emitting device |
JP2005223165A (en) | 2004-02-06 | 2005-08-18 | Sanyo Electric Co Ltd | Nitride-based light emitting device |
KR20070013273A (en) * | 2004-03-15 | 2007-01-30 | 팅기 테크놀러지스 프라이빗 리미티드 | Fabrication of Semiconductor Devices |
DE102005016592A1 (en) | 2004-04-14 | 2005-11-24 | Osram Opto Semiconductors Gmbh | LED chip |
WO2005104780A2 (en) * | 2004-04-28 | 2005-11-10 | Verticle, Inc | Vertical structure semiconductor devices |
DE102004037868A1 (en) * | 2004-04-30 | 2005-11-24 | Osram Opto Semiconductors Gmbh | A radiation emitting and / or receiving semiconductor device and method for patterning a contact on a semiconductor body |
KR100595884B1 (en) * | 2004-05-18 | 2006-07-03 | 엘지전자 주식회사 | Nitride semiconductor device manufacturing method |
US7795623B2 (en) | 2004-06-30 | 2010-09-14 | Cree, Inc. | Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures |
EP1774599B1 (en) | 2004-07-30 | 2015-11-04 | OSRAM Opto Semiconductors GmbH | Method for producing semiconductor chips using thin-film technology and a semiconductor chip produced using thin-film technology |
US8728937B2 (en) | 2004-07-30 | 2014-05-20 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology |
US20060054919A1 (en) * | 2004-08-27 | 2006-03-16 | Kyocera Corporation | Light-emitting element, method for manufacturing the same and lighting equipment using the same |
KR101217659B1 (en) * | 2004-09-03 | 2013-01-02 | 스탠리 일렉트릭 컴퍼니, 리미티드 | Electroluminescence element |
DE102004047324A1 (en) * | 2004-09-29 | 2006-04-13 | Osram Opto Semiconductors Gmbh | LED array |
ATE420461T1 (en) | 2004-11-09 | 2009-01-15 | Soitec Silicon On Insulator | METHOD FOR PRODUCING COMPOSITE WAFERS |
US20100140627A1 (en) * | 2005-01-10 | 2010-06-10 | Shelton Bryan S | Package for Semiconductor Devices |
US20060151868A1 (en) * | 2005-01-10 | 2006-07-13 | Zhu Tinggang | Package for gallium nitride semiconductor devices |
US20060154393A1 (en) * | 2005-01-11 | 2006-07-13 | Doan Trung T | Systems and methods for removing operating heat from a light emitting diode |
TWI308396B (en) * | 2005-01-21 | 2009-04-01 | Epistar Corp | Light emitting diode and fabricating method thereof |
US7335920B2 (en) | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
US7932111B2 (en) | 2005-02-23 | 2011-04-26 | Cree, Inc. | Substrate removal process for high light extraction LEDs |
JP4818732B2 (en) * | 2005-03-18 | 2011-11-16 | シャープ株式会社 | Method of manufacturing nitride semiconductor device |
KR100638819B1 (en) * | 2005-05-19 | 2006-10-27 | 삼성전기주식회사 | Vertical nitride semiconductor light emitting device with improved light extraction efficiency |
KR100691363B1 (en) * | 2005-09-23 | 2007-03-12 | 삼성전기주식회사 | Manufacturing method of vertical structure light emitting diode |
US20070069225A1 (en) * | 2005-09-27 | 2007-03-29 | Lumileds Lighting U.S., Llc | III-V light emitting device |
US8334155B2 (en) * | 2005-09-27 | 2012-12-18 | Philips Lumileds Lighting Company Llc | Substrate for growing a III-V light emitting device |
DE102006023685A1 (en) * | 2005-09-29 | 2007-04-05 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip for emitting electromagnetic radiation, has support substrate comprising material from group of transparent conducting oxides, where substrate mechanically supports semiconductor layered construction |
DE102005046942A1 (en) * | 2005-09-30 | 2007-04-05 | Osram Opto Semiconductors Gmbh | Method for connecting several layers made from a semiconductor material and a replacement substrate used in thin layer technology comprises using a joining layer formed by thermal compression |
EP1798781B1 (en) * | 2005-12-15 | 2009-08-05 | LG Electronics Inc. | LED having vertical structure and method for fabricating the same |
JP2007180059A (en) * | 2005-12-26 | 2007-07-12 | Toshiba Corp | Optical semiconductor device and manufacturing method therefor |
US20070194342A1 (en) * | 2006-01-12 | 2007-08-23 | Kinzer Daniel M | GaN SEMICONDUCTOR DEVICE AND PROCESS EMPLOYING GaN ON THIN SAPHIRE LAYER ON POLYCRYSTALLINE SILICON CARBIDE |
JP2007207981A (en) * | 2006-02-01 | 2007-08-16 | Rohm Co Ltd | Method of manufacturing nitride semiconductor light-emitting device |
US8124957B2 (en) | 2006-02-22 | 2012-02-28 | Cree, Inc. | Low resistance tunnel junctions in wide band gap materials and method of making same |
US7737451B2 (en) * | 2006-02-23 | 2010-06-15 | Cree, Inc. | High efficiency LED with tunnel junction layer |
JP2007258338A (en) * | 2006-03-22 | 2007-10-04 | Rohm Co Ltd | Semiconductor light-emitting element |
JP2007258277A (en) * | 2006-03-20 | 2007-10-04 | Matsushita Electric Works Ltd | Semiconductor light emitting device |
US9335006B2 (en) * | 2006-04-18 | 2016-05-10 | Cree, Inc. | Saturated yellow phosphor converted LED and blue converted red LED |
DE102006061167A1 (en) * | 2006-04-25 | 2007-12-20 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component |
DE102006060410A1 (en) * | 2006-06-30 | 2008-01-03 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser chip |
US7885306B2 (en) | 2006-06-30 | 2011-02-08 | Osram Opto Semiconductors Gmbh | Edge-emitting semiconductor laser chip |
JP2008053685A (en) | 2006-08-23 | 2008-03-06 | Samsung Electro Mech Co Ltd | Vertical structure gallium nitride based light-emitting diode device and method of manufacturing the same |
JP2008066590A (en) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Works Ltd | Compound semiconductor light emitting device, illumination apparatus employing the same and manufacturing method of compound semiconductor device |
DE102006057747B4 (en) * | 2006-09-27 | 2015-10-15 | Osram Opto Semiconductors Gmbh | Semiconductor body and semiconductor chip with a semiconductor body |
JP2008130799A (en) * | 2006-11-21 | 2008-06-05 | Sharp Corp | Semiconductor light emitting device and method for manufacturing semiconductor light emitting device |
DE102007008524A1 (en) * | 2007-02-21 | 2008-08-28 | Osram Opto Semiconductors Gmbh | Radiation emitting chip with at least one semiconductor body |
GB2447091B8 (en) * | 2007-03-02 | 2010-01-13 | Photonstar Led Ltd | Vertical light emitting diodes |
US8362503B2 (en) * | 2007-03-09 | 2013-01-29 | Cree, Inc. | Thick nitride semiconductor structures with interlayer structures |
US8368114B2 (en) * | 2007-05-18 | 2013-02-05 | Chiuchung Yang | Flip chip LED die and array thereof |
CN101689587B (en) * | 2007-06-15 | 2012-04-25 | 罗姆股份有限公司 | Semiconductor light emitting element |
JP4985260B2 (en) * | 2007-09-18 | 2012-07-25 | 日立電線株式会社 | Light emitting device |
KR100928259B1 (en) * | 2007-10-15 | 2009-11-24 | 엘지전자 주식회사 | Light emitting device and manufacturing method thereof |
CN101488539B (en) * | 2008-01-17 | 2010-12-08 | 晶元光电股份有限公司 | Light emitting element |
DE102008009108A1 (en) * | 2008-02-14 | 2009-08-20 | Osram Opto Semiconductors Gmbh | Method for producing a semiconductor laser and semiconductor laser |
US8637883B2 (en) * | 2008-03-19 | 2014-01-28 | Cree, Inc. | Low index spacer layer in LED devices |
DE102008030584A1 (en) * | 2008-06-27 | 2009-12-31 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic component and optoelectronic component |
TWI495141B (en) * | 2008-08-01 | 2015-08-01 | Epistar Corp | Wafer light emitting structure forming method and light source generating device |
DE102008038750A1 (en) | 2008-08-12 | 2010-02-18 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for its production |
US8287346B2 (en) * | 2008-11-03 | 2012-10-16 | Cfph, Llc | Late game series information change |
KR101103882B1 (en) * | 2008-11-17 | 2012-01-12 | 엘지이노텍 주식회사 | Semiconductor light emitting device and manufacturing method thereof |
JP2010147446A (en) * | 2008-12-22 | 2010-07-01 | Panasonic Electric Works Co Ltd | Light-emitting device |
DE102009019161A1 (en) | 2009-04-28 | 2010-11-04 | Osram Opto Semiconductors Gmbh | Light-emitting diode and method for producing a light-emitting diode |
US20120086035A1 (en) * | 2009-05-11 | 2012-04-12 | SemiLEDs Optoelectronics Co., Ltd. | LED Device With A Light Extracting Rough Structure And Manufacturing Methods Thereof |
US8434883B2 (en) | 2009-05-11 | 2013-05-07 | SemiOptoelectronics Co., Ltd. | LLB bulb having light extracting rough surface pattern (LERSP) and method of fabrication |
JP5350070B2 (en) * | 2009-05-11 | 2013-11-27 | フューチャー ライト リミテッド ライアビリティ カンパニー | Light emitting element |
TWI394299B (en) * | 2009-11-06 | 2013-04-21 | Semileds Optoelectronics Co | Vertical light-emitting diode with externally-transferred electrode |
TWI467798B (en) * | 2009-12-28 | 2015-01-01 | Hon Hai Prec Ind Co Ltd | Method for preparing light emitting diode chip |
JP4509217B2 (en) * | 2010-02-01 | 2010-07-21 | 三洋電機株式会社 | Method for manufacturing light emitting device |
DE102010012602B4 (en) | 2010-03-24 | 2023-02-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Radiation-emitting semiconductor component and display device and manufacturing method |
CN102237348B (en) * | 2010-04-20 | 2015-08-05 | 鸿富锦精密工业(深圳)有限公司 | LED microarray packaging structure and manufacture method thereof |
JP2010263251A (en) * | 2010-08-25 | 2010-11-18 | Sanyo Electric Co Ltd | Light-emitting device and method of manufacturing the same |
DE102011012298A1 (en) | 2010-12-28 | 2012-06-28 | Osram Opto Semiconductors Gmbh | Composite substrate, composite substrate semiconductor chip and method of manufacturing composite substrates and semiconductor chips |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
DE102011112000B4 (en) | 2011-08-31 | 2023-11-30 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | LED chip |
WO2013078219A1 (en) * | 2011-11-23 | 2013-05-30 | University Of South Carolina | Method of growing high quality, thick sic epitaxial films by eliminating silicon gas phase nucleation and suppressing parasitic deposition |
US9184346B2 (en) | 2011-12-12 | 2015-11-10 | Sensor Electronic Technology, Inc. | Ultraviolet reflective contact |
US9818912B2 (en) | 2011-12-12 | 2017-11-14 | Sensor Electronic Technology, Inc. | Ultraviolet reflective contact |
GB201202222D0 (en) * | 2012-02-09 | 2012-03-28 | Mled Ltd | Enhanced light extraction |
US8952413B2 (en) | 2012-03-08 | 2015-02-10 | Micron Technology, Inc. | Etched trenches in bond materials for die singulation, and associated systems and methods |
KR101945791B1 (en) * | 2012-03-14 | 2019-02-11 | 삼성전자주식회사 | Fabrication method of semiconductor light emitting device |
FR2992465B1 (en) * | 2012-06-22 | 2015-03-20 | Soitec Silicon On Insulator | METHOD FOR THE COLLECTIVE PRODUCTION OF LEDS AND STRUCTURE FOR THE COLLECTIVE MANUFACTURE OF LEDS |
US10276749B2 (en) | 2013-01-09 | 2019-04-30 | Sensor Electronic Technology, Inc. | Ultraviolet reflective rough adhesive contact |
WO2014110197A1 (en) | 2013-01-09 | 2014-07-17 | Sensor Electronic Technology, Inc. | Ultraviolet reflective rough adhesive contact |
US9768357B2 (en) | 2013-01-09 | 2017-09-19 | Sensor Electronic Technology, Inc. | Ultraviolet reflective rough adhesive contact |
CN103346233A (en) * | 2013-07-10 | 2013-10-09 | 合肥彩虹蓝光科技有限公司 | LED inverted installation structure for improving luminance |
DE102016104965A1 (en) | 2016-03-17 | 2017-09-21 | Osram Opto Semiconductors Gmbh | Light-emitting semiconductor chip and method for producing a light-emitting semiconductor chip |
CN110600435A (en) * | 2019-09-05 | 2019-12-20 | 方天琦 | Multilayer composite substrate structure and preparation method thereof |
JP2020010056A (en) * | 2019-09-11 | 2020-01-16 | 晶元光電股▲ふん▼有限公司Epistar Corporation | Semiconductor light-emitting component |
GB2595684A (en) * | 2020-06-03 | 2021-12-08 | Plessey Semiconductors Ltd | Spacer LED architecture for high efficiency micro LED displays |
DE102020124258A1 (en) * | 2020-09-17 | 2022-03-17 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | OPTOELECTRONIC SEMICONDUCTOR COMPONENT AND METHOD FOR MANUFACTURING AT LEAST ONE OPTOELECTRONIC SEMICONDUCTOR COMPONENT |
US20230317877A1 (en) * | 2020-11-27 | 2023-10-05 | Enkris Semiconductor, Inc | Semiconductor light-emitting device and manufacturing method thereof |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4170018A (en) * | 1977-04-12 | 1979-10-02 | Siemens Aktiengesellschaft | Light emitting semiconductor component |
US5040044A (en) * | 1989-06-21 | 1991-08-13 | Mitsubishi Monsanto Chemical Company | Compound semiconductor device and method for surface treatment |
US5157468A (en) * | 1990-09-21 | 1992-10-20 | Eastman Kodak Company | Light emitting diode resistant to change in operating temperature |
US5210051A (en) * | 1990-03-27 | 1993-05-11 | Cree Research, Inc. | High efficiency light emitting diodes from bipolar gallium nitride |
US5376580A (en) * | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
US5429954A (en) * | 1993-02-20 | 1995-07-04 | Temic Telefunken Microelectronic Gmbh | Radiation-emitting diode with improved radiation output |
US5578839A (en) * | 1992-11-20 | 1996-11-26 | Nichia Chemical Industries, Ltd. | Light-emitting gallium nitride-based compound semiconductor device |
US5625202A (en) * | 1995-06-08 | 1997-04-29 | University Of Central Florida | Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth |
US5661074A (en) * | 1995-02-03 | 1997-08-26 | Advanced Technology Materials, Inc. | High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same |
US5701321A (en) * | 1995-04-28 | 1997-12-23 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing short wavelength light |
US5739554A (en) * | 1995-05-08 | 1998-04-14 | Cree Research, Inc. | Double heterojunction light emitting diode with gallium nitride active layer |
US5780873A (en) * | 1995-09-01 | 1998-07-14 | Kabushiki Kaisha Toshiba | Semiconductor device capable of easily forming cavity and its manufacturing method |
US5786606A (en) * | 1995-12-15 | 1998-07-28 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
US5851905A (en) * | 1996-07-11 | 1998-12-22 | North Carolina State University | Methods of forming indium gallium nitride or aluminum indium gallium nitride using controlled hydrogen gas flows |
US5862167A (en) * | 1994-07-19 | 1999-01-19 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound |
US5874747A (en) * | 1996-02-05 | 1999-02-23 | Advanced Technology Materials, Inc. | High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same |
US5928421A (en) * | 1996-08-27 | 1999-07-27 | Matsushita Electronics Corporation | Method of forming gallium nitride crystal |
US5985687A (en) * | 1996-04-12 | 1999-11-16 | The Regents Of The University Of California | Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials |
US6046464A (en) * | 1995-03-29 | 2000-04-04 | North Carolina State University | Integrated heterostructures of group III-V nitride semiconductor materials including epitaxial ohmic contact comprising multiple quantum well |
US6060335A (en) * | 1997-02-12 | 2000-05-09 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method of manufacturing the same |
US6100104A (en) * | 1997-09-19 | 2000-08-08 | Siemens Aktiengesellschaft | Method for fabricating a plurality of semiconductor bodies |
US6111272A (en) * | 1997-09-29 | 2000-08-29 | Siemens Aktiengesellschaft | Semiconductor light source formed of layer stack with total thickness of 50 microns |
US6133589A (en) * | 1999-06-08 | 2000-10-17 | Lumileds Lighting, U.S., Llc | AlGaInN-based LED having thick epitaxial layer for improved light extraction |
US6150230A (en) * | 1997-05-29 | 2000-11-21 | International Business Machines Corporation | Trench separator for self-defining discontinuous film |
US6222207B1 (en) * | 1999-05-24 | 2001-04-24 | Lumileds Lighting, U.S. Llc | Diffusion barrier for increased mirror reflectivity in reflective solderable contacts on high power LED chip |
US6303405B1 (en) * | 1998-09-25 | 2001-10-16 | Kabushiki Kaisha Toshiba | Semiconductor light emitting element, and its manufacturing method |
US6347101B1 (en) * | 1998-04-16 | 2002-02-12 | 3D Systems, Inc. | Laser with absorption optimized pumping of a gain medium |
US6355497B1 (en) * | 2000-01-18 | 2002-03-12 | Xerox Corporation | Removable large area, low defect density films for led and laser diode growth |
US6365427B1 (en) * | 1999-02-11 | 2002-04-02 | Avalon Photonics Ltd. | Semiconductor laser device and method for fabrication thereof |
US20030168664A1 (en) * | 2000-05-26 | 2003-09-11 | Berthold Hahn | Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same |
US20040033638A1 (en) * | 2000-10-17 | 2004-02-19 | Stefan Bader | Method for fabricating a semiconductor component based on GaN |
US6878563B2 (en) * | 2000-04-26 | 2005-04-12 | Osram Gmbh | Radiation-emitting semiconductor element and method for producing the same |
US6975444B2 (en) * | 1995-06-19 | 2005-12-13 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2423869A1 (en) | 1978-04-21 | 1979-11-16 | Radiotechnique Compelec | ELECTROLUMINESCENT SEMICONDUCTOR DEVICE WITH PHOTON RECYCLING |
US4232440A (en) | 1979-02-27 | 1980-11-11 | Bell Telephone Laboratories, Incorporated | Contact structure for light emitting device |
DE3041358A1 (en) | 1980-11-03 | 1982-06-09 | Siemens AG, 1000 Berlin und 8000 München | LIGHT REFLECTIVE OHMSCHER CONTACT FOR COMPONENTS |
US4448636A (en) | 1982-06-02 | 1984-05-15 | Texas Instruments Incorporated | Laser assisted lift-off |
DE3508469A1 (en) | 1985-03-09 | 1986-09-11 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Process for patterning layer sequences applied to a transparent substrate |
US5373171A (en) | 1987-03-12 | 1994-12-13 | Sumitomo Electric Industries, Ltd. | Thin film single crystal substrate |
US4982538A (en) * | 1987-08-07 | 1991-01-08 | Horstketter Eugene A | Concrete panels, concrete decks, parts thereof, and apparatus and methods for their fabrication and use |
JPH067594B2 (en) | 1987-11-20 | 1994-01-26 | 富士通株式会社 | Method for manufacturing semiconductor substrate |
US4912532A (en) | 1988-08-26 | 1990-03-27 | Hewlett-Packard Company | Electro-optical device with inverted transparent substrate and method for making same |
DE4038216A1 (en) | 1990-01-20 | 1991-07-25 | Telefunken Electronic Gmbh | LED prodn. on transparent substrate - by single liq. phase epitaxy step, useful for integration on chip, etc. |
US5362667A (en) | 1992-07-28 | 1994-11-08 | Harris Corporation | Bonded wafer processing |
US5102821A (en) | 1990-12-20 | 1992-04-07 | Texas Instruments Incorporated | SOI/semiconductor heterostructure fabrication by wafer bonding of polysilicon to titanium |
JPH0831419B2 (en) | 1990-12-25 | 1996-03-27 | 名古屋大学長 | Method for producing compound semiconductor single crystal on single crystal silicon substrate |
US5300788A (en) | 1991-01-18 | 1994-04-05 | Kopin Corporation | Light emitting diode bars and arrays and method of making same |
FR2681472B1 (en) | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | PROCESS FOR PRODUCING THIN FILMS OF SEMICONDUCTOR MATERIAL. |
US5965698A (en) | 1993-04-23 | 1999-10-12 | Virginia Commonwealth University | Polypeptides that include conformation-constraining groups which flank a protein--protein interaction site |
US5385632A (en) | 1993-06-25 | 1995-01-31 | At&T Laboratories | Method for manufacturing integrated semiconductor devices |
US5753134A (en) | 1994-01-04 | 1998-05-19 | Siemens Aktiengesellschaft | Method for producing a layer with reduced mechanical stresses |
JP3344056B2 (en) | 1994-02-08 | 2002-11-11 | 日亜化学工業株式会社 | Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same |
JP2669368B2 (en) | 1994-03-16 | 1997-10-27 | 日本電気株式会社 | Method for manufacturing compound semiconductor laminated structure on Si substrate |
JP3974667B2 (en) * | 1994-08-22 | 2007-09-12 | ローム株式会社 | Manufacturing method of semiconductor light emitting device |
JP3561536B2 (en) | 1994-08-23 | 2004-09-02 | 三洋電機株式会社 | Semiconductor light emitting device |
US5523589A (en) | 1994-09-20 | 1996-06-04 | Cree Research, Inc. | Vertical geometry light emitting diode with group III nitride active layer and extended lifetime |
US5585648A (en) * | 1995-02-03 | 1996-12-17 | Tischler; Michael A. | High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same |
JPH08250687A (en) | 1995-03-08 | 1996-09-27 | Komatsu Electron Metals Co Ltd | SOI substrate manufacturing method and SOI substrate |
JPH08322116A (en) | 1995-05-25 | 1996-12-03 | Nissin Electric Co Ltd | Pole mounted gas switch |
US5917202A (en) | 1995-12-21 | 1999-06-29 | Hewlett-Packard Company | Highly reflective contacts for light emitting semiconductor devices |
WO1997026680A1 (en) | 1996-01-19 | 1997-07-24 | Matsushita Electric Industrial Co., Ltd. | Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor |
US5889295A (en) * | 1996-02-26 | 1999-03-30 | Kabushiki Kaisha Toshiba | Semiconductor device |
JP3164016B2 (en) * | 1996-05-31 | 2001-05-08 | 住友電気工業株式会社 | Light emitting device and method for manufacturing wafer for light emitting device |
WO1997048138A2 (en) | 1996-06-11 | 1997-12-18 | Philips Electronics N.V. | Visible light emitting devices including uv-light emitting diode and uv-excitable, visible light emitting phosphor, and method of producing such devices |
DE19640594B4 (en) | 1996-10-01 | 2016-08-04 | Osram Gmbh | module |
JPH10150220A (en) | 1996-11-15 | 1998-06-02 | Toyoda Gosei Co Ltd | Semiconductor light emitting device |
JPH10209494A (en) | 1997-01-24 | 1998-08-07 | Rohm Co Ltd | Semiconductor light emitting device |
US5880491A (en) | 1997-01-31 | 1999-03-09 | The United States Of America As Represented By The Secretary Of The Air Force | SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices |
TW353202B (en) | 1997-02-28 | 1999-02-21 | Hewlett Packard Co | Scribe and break of hard-to-scribe materials |
JP3792041B2 (en) * | 1997-04-09 | 2006-06-28 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
EP0871228A3 (en) | 1997-04-09 | 2001-10-24 | Matsushita Electric Industrial Co., Ltd. | Semiconductor substrate, semiconductor device and method of manufacturing the same |
US6239033B1 (en) * | 1998-05-28 | 2001-05-29 | Sony Corporation | Manufacturing method of semiconductor device |
US5877070A (en) | 1997-05-31 | 1999-03-02 | Max-Planck Society | Method for the transfer of thin layers of monocrystalline material to a desirable substrate |
JP4119501B2 (en) | 1997-07-10 | 2008-07-16 | ローム株式会社 | Semiconductor light emitting device |
JPH11154774A (en) * | 1997-08-05 | 1999-06-08 | Canon Inc | Method for manufacturing surface-emitting semiconductor device, surface-emitting semiconductor device manufactured by this method, and display device using this device |
JP3914615B2 (en) | 1997-08-19 | 2007-05-16 | 住友電気工業株式会社 | Semiconductor light emitting device and manufacturing method thereof |
JP3537643B2 (en) | 1997-08-28 | 2004-06-14 | 京セラ株式会社 | Electronic components |
DE19741442A1 (en) * | 1997-09-19 | 1999-04-01 | Siemens Ag | Semiconductor especially radiation emitting chips are produced from a wafer |
DE19838810B4 (en) | 1998-08-26 | 2006-02-09 | Osram Opto Semiconductors Gmbh | Method for producing a plurality of Ga (In, Al) N light-emitting diode chips |
JP3130292B2 (en) | 1997-10-14 | 2001-01-31 | 松下電子工業株式会社 | Semiconductor light emitting device and method of manufacturing the same |
JP3631359B2 (en) | 1997-11-14 | 2005-03-23 | 日亜化学工業株式会社 | Nitride semiconductor light emitting device |
DE69839300T2 (en) * | 1997-12-15 | 2009-04-16 | Philips Lumileds Lighting Company, LLC, San Jose | Light-emitting device |
US6071795A (en) | 1998-01-23 | 2000-06-06 | The Regents Of The University Of California | Separation of thin films from transparent substrates by selective optical processing |
US6936859B1 (en) | 1998-05-13 | 2005-08-30 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using group III nitride compound |
DE19921987B4 (en) | 1998-05-13 | 2007-05-16 | Toyoda Gosei Kk | Light-emitting semiconductor device with group III element-nitride compounds |
TW369731B (en) | 1998-05-29 | 1999-09-11 | Visual Photonics Epitaxy Co Ltd | Light-emitting diode (LED) with transparent glass or quartz as permanent substrate and process for the same |
US6291839B1 (en) | 1998-09-11 | 2001-09-18 | Lulileds Lighting, U.S. Llc | Light emitting device having a finely-patterned reflective contact |
JP3201475B2 (en) | 1998-09-14 | 2001-08-20 | 松下電器産業株式会社 | Semiconductor device and method of manufacturing the same |
JP4530234B2 (en) | 1998-10-09 | 2010-08-25 | シャープ株式会社 | Semiconductor light emitting device |
JP3469484B2 (en) | 1998-12-24 | 2003-11-25 | 株式会社東芝 | Semiconductor light emitting device and method of manufacturing the same |
US6744800B1 (en) | 1998-12-30 | 2004-06-01 | Xerox Corporation | Method and structure for nitride based laser diode arrays on an insulating substrate |
US6328796B1 (en) | 1999-02-01 | 2001-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Single-crystal material on non-single-crystalline substrate |
US6320206B1 (en) * | 1999-02-05 | 2001-11-20 | Lumileds Lighting, U.S., Llc | Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks |
US20010042866A1 (en) | 1999-02-05 | 2001-11-22 | Carrie Carter Coman | Inxalygazn optical emitters fabricated via substrate removal |
US6803603B1 (en) * | 1999-06-23 | 2004-10-12 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting element |
JP3675234B2 (en) | 1999-06-28 | 2005-07-27 | 豊田合成株式会社 | Manufacturing method of semiconductor light emitting device |
JP2001053336A (en) | 1999-08-05 | 2001-02-23 | Toyoda Gosei Co Ltd | Group III nitride compound semiconductor light emitting device |
DE10008583A1 (en) | 2000-02-24 | 2001-09-13 | Osram Opto Semiconductors Gmbh | Production of an optically transparent substrate comprises epitaxially growing a substrate layer on a substrate, connecting the substrate layer to the side with an optically transparent layer, and removing the substrate |
JP4060511B2 (en) | 2000-03-28 | 2008-03-12 | パイオニア株式会社 | Method for separating nitride semiconductor device |
TW441859U (en) | 2000-04-12 | 2001-06-16 | Uni Light Technology Inc | Flip-chip light emitting diode device |
US7319247B2 (en) | 2000-04-26 | 2008-01-15 | Osram Gmbh | Light emitting-diode chip and a method for producing same |
US6380564B1 (en) | 2000-08-16 | 2002-04-30 | United Epitaxy Company, Ltd. | Semiconductor light emitting device |
DE10042947A1 (en) | 2000-08-31 | 2002-03-21 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component based on GaN |
US6518079B2 (en) | 2000-12-20 | 2003-02-11 | Lumileds Lighting, U.S., Llc | Separation method for gallium nitride devices on lattice-mismatched substrates |
US6446571B1 (en) | 2001-01-25 | 2002-09-10 | Printmark Industries, Inc. | Light reflecting warning kit for vehicles |
US6468824B2 (en) | 2001-03-22 | 2002-10-22 | Uni Light Technology Inc. | Method for forming a semiconductor device having a metallic substrate |
US6562701B2 (en) | 2001-03-23 | 2003-05-13 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing nitride semiconductor substrate |
US6861130B2 (en) | 2001-11-02 | 2005-03-01 | General Electric Company | Sintered polycrystalline gallium nitride and its production |
US6881261B2 (en) | 2001-11-13 | 2005-04-19 | Matsushita Electric Industrial Co., Ltd. | Method for fabricating semiconductor device |
US6617261B2 (en) | 2001-12-18 | 2003-09-09 | Xerox Corporation | Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates |
US6869820B2 (en) | 2002-01-30 | 2005-03-22 | United Epitaxy Co., Ltd. | High efficiency light emitting diode and method of making the same |
US20040104395A1 (en) * | 2002-11-28 | 2004-06-03 | Shin-Etsu Handotai Co., Ltd. | Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device |
JP4217093B2 (en) | 2003-03-27 | 2009-01-28 | スタンレー電気株式会社 | Semiconductor light emitting device and manufacturing method thereof |
-
2001
- 2001-03-16 US US10/239,106 patent/US6878563B2/en not_active Expired - Lifetime
- 2001-03-16 CN CNB018086616A patent/CN1292494C/en not_active Expired - Lifetime
- 2001-03-16 EP EP10180345.0A patent/EP2270875B1/en not_active Expired - Lifetime
- 2001-03-16 WO PCT/DE2001/001002 patent/WO2001082384A1/en active Application Filing
- 2001-03-16 EP EP01931363.4A patent/EP1277240B1/en not_active Expired - Lifetime
- 2001-03-16 JP JP2001579374A patent/JP2003532298A/en active Pending
- 2001-04-25 TW TW090109885A patent/TW567616B/en not_active IP Right Cessation
-
2005
- 2005-02-25 US US11/067,349 patent/US7691659B2/en not_active Expired - Fee Related
- 2005-02-25 US US11/065,769 patent/US20060011925A1/en not_active Abandoned
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4170018A (en) * | 1977-04-12 | 1979-10-02 | Siemens Aktiengesellschaft | Light emitting semiconductor component |
US5040044A (en) * | 1989-06-21 | 1991-08-13 | Mitsubishi Monsanto Chemical Company | Compound semiconductor device and method for surface treatment |
US5210051A (en) * | 1990-03-27 | 1993-05-11 | Cree Research, Inc. | High efficiency light emitting diodes from bipolar gallium nitride |
US5157468A (en) * | 1990-09-21 | 1992-10-20 | Eastman Kodak Company | Light emitting diode resistant to change in operating temperature |
US5578839A (en) * | 1992-11-20 | 1996-11-26 | Nichia Chemical Industries, Ltd. | Light-emitting gallium nitride-based compound semiconductor device |
US5429954A (en) * | 1993-02-20 | 1995-07-04 | Temic Telefunken Microelectronic Gmbh | Radiation-emitting diode with improved radiation output |
US5376580A (en) * | 1993-03-19 | 1994-12-27 | Hewlett-Packard Company | Wafer bonding of light emitting diode layers |
US5862167A (en) * | 1994-07-19 | 1999-01-19 | Toyoda Gosei Co., Ltd. | Light-emitting semiconductor device using gallium nitride compound |
US5661074A (en) * | 1995-02-03 | 1997-08-26 | Advanced Technology Materials, Inc. | High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same |
US6046464A (en) * | 1995-03-29 | 2000-04-04 | North Carolina State University | Integrated heterostructures of group III-V nitride semiconductor materials including epitaxial ohmic contact comprising multiple quantum well |
US5701321A (en) * | 1995-04-28 | 1997-12-23 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing short wavelength light |
US5739554A (en) * | 1995-05-08 | 1998-04-14 | Cree Research, Inc. | Double heterojunction light emitting diode with gallium nitride active layer |
US5625202A (en) * | 1995-06-08 | 1997-04-29 | University Of Central Florida | Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth |
US6975444B2 (en) * | 1995-06-19 | 2005-12-13 | Reflectivity, Inc. | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
US5780873A (en) * | 1995-09-01 | 1998-07-14 | Kabushiki Kaisha Toshiba | Semiconductor device capable of easily forming cavity and its manufacturing method |
US5786606A (en) * | 1995-12-15 | 1998-07-28 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
US5874747A (en) * | 1996-02-05 | 1999-02-23 | Advanced Technology Materials, Inc. | High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same |
US5985687A (en) * | 1996-04-12 | 1999-11-16 | The Regents Of The University Of California | Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials |
US5851905A (en) * | 1996-07-11 | 1998-12-22 | North Carolina State University | Methods of forming indium gallium nitride or aluminum indium gallium nitride using controlled hydrogen gas flows |
US5928421A (en) * | 1996-08-27 | 1999-07-27 | Matsushita Electronics Corporation | Method of forming gallium nitride crystal |
US6060335A (en) * | 1997-02-12 | 2000-05-09 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method of manufacturing the same |
US6150230A (en) * | 1997-05-29 | 2000-11-21 | International Business Machines Corporation | Trench separator for self-defining discontinuous film |
US6100104A (en) * | 1997-09-19 | 2000-08-08 | Siemens Aktiengesellschaft | Method for fabricating a plurality of semiconductor bodies |
US6111272A (en) * | 1997-09-29 | 2000-08-29 | Siemens Aktiengesellschaft | Semiconductor light source formed of layer stack with total thickness of 50 microns |
US6347101B1 (en) * | 1998-04-16 | 2002-02-12 | 3D Systems, Inc. | Laser with absorption optimized pumping of a gain medium |
US6303405B1 (en) * | 1998-09-25 | 2001-10-16 | Kabushiki Kaisha Toshiba | Semiconductor light emitting element, and its manufacturing method |
US6365427B1 (en) * | 1999-02-11 | 2002-04-02 | Avalon Photonics Ltd. | Semiconductor laser device and method for fabrication thereof |
US6222207B1 (en) * | 1999-05-24 | 2001-04-24 | Lumileds Lighting, U.S. Llc | Diffusion barrier for increased mirror reflectivity in reflective solderable contacts on high power LED chip |
US6133589A (en) * | 1999-06-08 | 2000-10-17 | Lumileds Lighting, U.S., Llc | AlGaInN-based LED having thick epitaxial layer for improved light extraction |
US6355497B1 (en) * | 2000-01-18 | 2002-03-12 | Xerox Corporation | Removable large area, low defect density films for led and laser diode growth |
US6878563B2 (en) * | 2000-04-26 | 2005-04-12 | Osram Gmbh | Radiation-emitting semiconductor element and method for producing the same |
US20050282373A1 (en) * | 2000-04-26 | 2005-12-22 | Osram Gmbh, A Germany Corporation | Radiation-emitting semiconductor element and method for producing the same |
US20030168664A1 (en) * | 2000-05-26 | 2003-09-11 | Berthold Hahn | Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same |
US20040033638A1 (en) * | 2000-10-17 | 2004-02-19 | Stefan Bader | Method for fabricating a semiconductor component based on GaN |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7691659B2 (en) | 2000-04-26 | 2010-04-06 | Osram Gmbh | Radiation-emitting semiconductor element and method for producing the same |
US20040026709A1 (en) * | 2000-04-26 | 2004-02-12 | Stefan Bader | Gan-based light emitting-diode chip and a method for producing a luminescent diode component |
US20050282373A1 (en) * | 2000-04-26 | 2005-12-22 | Osram Gmbh, A Germany Corporation | Radiation-emitting semiconductor element and method for producing the same |
US20070012944A1 (en) * | 2000-04-26 | 2007-01-18 | Stefan Bader | GaN-based light emitting-diode chip and a method for producing same |
US7319247B2 (en) | 2000-04-26 | 2008-01-15 | Osram Gmbh | Light emitting-diode chip and a method for producing same |
US8436393B2 (en) | 2000-05-26 | 2013-05-07 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same |
US20110175058A1 (en) * | 2000-05-26 | 2011-07-21 | Berthold Hahn | LIGHT-EMITTING-DIODE CHIP COMPRISING A SEQUENCE OF GaN-BASED EPITAXIAL LAYERS WHICH EMIT RADIATION AND A METHOD FOR PRODUCING THE SAME |
US7939844B2 (en) | 2000-05-26 | 2011-05-10 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of GAN-based epitaxial layers which emit radiation and a method for producing the same |
US20030168664A1 (en) * | 2000-05-26 | 2003-09-11 | Berthold Hahn | Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same |
US7265392B2 (en) | 2000-05-26 | 2007-09-04 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same |
US20070221936A1 (en) * | 2000-05-26 | 2007-09-27 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of gan-based epitaxial layers which emit radiation and a method for producing the same |
US20100200864A1 (en) * | 2000-10-17 | 2010-08-12 | Osram Gmbh | Method for Fabricating a Semiconductor Component Based on GaN |
US8809086B2 (en) | 2000-10-17 | 2014-08-19 | Osram Gmbh | Method for fabricating a semiconductor component based on GaN |
US7691656B2 (en) | 2000-10-17 | 2010-04-06 | Osram Gmbh | Method for fabricating a semiconductor component based on GaN |
US20040033638A1 (en) * | 2000-10-17 | 2004-02-19 | Stefan Bader | Method for fabricating a semiconductor component based on GaN |
US8129209B2 (en) | 2000-10-17 | 2012-03-06 | Osram Ag | Method for fabricating a semiconductor component based on GaN |
US7968897B2 (en) | 2004-03-09 | 2011-06-28 | Sanyo Electric Co., Ltd. | Light-emitting device having a support substrate and inclined sides |
US20050199885A1 (en) * | 2004-03-09 | 2005-09-15 | Sanyo Electric Co., Ltd. | Light-emitting device and method of manufacturing the same |
US8273593B2 (en) | 2004-04-29 | 2012-09-25 | Osram Opto Semiconductors Gmbh | Method for production of a radiation-emitting semiconductor chip |
US7897423B2 (en) | 2004-04-29 | 2011-03-01 | Osram Opto Semiconductors Gmbh | Method for production of a radiation-emitting semiconductor chip |
US20080093611A1 (en) * | 2004-04-29 | 2008-04-24 | Berthold Hahn | Method for Production of a Radiation-Emitting Semiconductor Chip |
US20110140141A1 (en) * | 2004-04-29 | 2011-06-16 | Osram Opto Semiconductor Gmbh | Method for Production of a Radiation-Emitting Semiconductor Chip |
US7262485B2 (en) * | 2004-07-13 | 2007-08-28 | Covalent Materials Corporation | Substrate for growing electro-optical single crystal thin film and method of manufacturing the same |
US20060011941A1 (en) * | 2004-07-13 | 2006-01-19 | Toshiba Ceramics Co., Ltd. | Substrate for growing electro-optical single crystal thin film and method of manufacturing the same |
US8058147B2 (en) | 2005-08-05 | 2011-11-15 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor components and thin-film semiconductor component |
US20100133564A1 (en) * | 2005-08-05 | 2010-06-03 | Siegfried Herrmann | Method for Producing Semiconductor Components and Thin-Film Semiconductor Component |
US20100163915A1 (en) * | 2006-08-04 | 2010-07-01 | Osram Opto Semiconductors Gmbh | Thin-Film Semiconductor Component and Component Assembly |
US8872330B2 (en) | 2006-08-04 | 2014-10-28 | Osram Opto Semiconductors Gmbh | Thin-film semiconductor component and component assembly |
US20100072500A1 (en) * | 2007-01-29 | 2010-03-25 | Osram Opto Semiconductors Gmbh | Thin-Film Light Emitting Diode Chip and Method for Producing a Thin-Film Light Emitting Diode Chip |
US9142720B2 (en) | 2007-01-29 | 2015-09-22 | Osram Opto Semiconductors Gmbh | Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip |
EP2017898A1 (en) * | 2007-07-17 | 2009-01-21 | Vishay Israel Ltd. | Semiconductor light-emitting device and method for the manufacture thereof |
US8963181B2 (en) * | 2007-09-21 | 2015-02-24 | Osram Opto Semiconductors Gmbh | Radiation-emitting component |
US20130146919A1 (en) * | 2007-09-21 | 2013-06-13 | Osram Opto Semiconductors Gmbh | Radiation-emitting component |
US11695099B2 (en) | 2009-06-25 | 2023-07-04 | Lumileds Llc | Contact for a semiconductor light emitting device |
US20110198562A1 (en) * | 2010-02-18 | 2011-08-18 | Yong Tae Moon | Light emitting device and method of manufacturing the same |
TWI455357B (en) * | 2010-02-18 | 2014-10-01 | Lg Innotek Co Ltd | Light emitting device and method of manufacturing same |
US8618566B2 (en) * | 2010-02-18 | 2013-12-31 | Lg Innotek Co., Ltd. | Light emitting device and method of manufacturing the same |
US9190560B2 (en) | 2010-05-18 | 2015-11-17 | Agency For Science Technology And Research | Method of forming a light emitting diode structure and a light diode structure |
US10186635B2 (en) | 2010-05-18 | 2019-01-22 | Agency For Science Technology And Research | Method of forming a light emitting diode structure and a light diode structure |
Also Published As
Publication number | Publication date |
---|---|
US7691659B2 (en) | 2010-04-06 |
US6878563B2 (en) | 2005-04-12 |
EP2270875A1 (en) | 2011-01-05 |
TW567616B (en) | 2003-12-21 |
JP2003532298A (en) | 2003-10-28 |
EP1277240B1 (en) | 2015-05-20 |
CN1292494C (en) | 2006-12-27 |
EP2270875B1 (en) | 2018-01-10 |
EP1277240A1 (en) | 2003-01-22 |
US20050282373A1 (en) | 2005-12-22 |
CN1426603A (en) | 2003-06-25 |
US20040056254A1 (en) | 2004-03-25 |
WO2001082384A1 (en) | 2001-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6878563B2 (en) | Radiation-emitting semiconductor element and method for producing the same | |
JP5623074B2 (en) | Optoelectronic semiconductor parts | |
US6607931B2 (en) | Method of producing an optically transparent substrate and method of producing a light-emitting semiconductor chip | |
US7691656B2 (en) | Method for fabricating a semiconductor component based on GaN | |
US7205578B2 (en) | Semiconductor component which emits radiation, and method for producing the same | |
JP6419077B2 (en) | Wavelength conversion light emitting device | |
US9257619B2 (en) | Light-emitting device and manufacturing method thereof | |
CN100464438C (en) | Method for manufacturing light emitting semiconductor element | |
US20090141502A1 (en) | Light output enhanced gallium nitride based thin light emitting diode | |
US20060097274A1 (en) | Light emitting device and method for fabricating the same | |
KR20070042214A (en) | Nitride Semiconductor Light Emitting Diode and Manufacturing Method Thereof | |
CN1950957A (en) | Lift-off process for gan films formed on sic substrates and devices fabricated using the method | |
KR20070089821A (en) | Optoelectronic Substrate Manufacturing Method | |
JP5523277B2 (en) | Light emitting semiconductor device and method for manufacturing light emitting semiconductor device | |
JP6321013B2 (en) | Light emitting device comprising a molded substrate | |
WO2022053786A1 (en) | Selective optical filter for rgb led | |
US7446346B2 (en) | Semiconductor substrate for optoelectronic components and method for fabricating it | |
KR20060097512A (en) | Nitride Semiconductor Vertical Electrode Light Emitting Diode and Manufacturing Method Thereof | |
CN113228310A (en) | Semiconductor light-emitting element and preparation method thereof | |
US8658446B2 (en) | Method for fabricating semiconductor substrate for optoelectronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSRAM OPTO SEMICONDUCTORS GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BADER, STEFAN;HAHN, BERTHOLD;HARLE, VOLKER;AND OTHERS;SIGNING DATES FROM 20021120 TO 20021208;REEL/FRAME:017181/0677 Owner name: OSRAM GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:017181/0702 Effective date: 20041209 Owner name: OSRAM OPTO SEMICONDUCTORS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BADER, STEFAN;HAHN, BERTHOLD;HARLE, VOLKER;AND OTHERS;REEL/FRAME:017181/0677;SIGNING DATES FROM 20021120 TO 20021208 Owner name: OSRAM GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSRAM OPTO SEMICONDUCTORS GMBH;REEL/FRAME:017181/0702 Effective date: 20041209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |