US20060010689A1 - Automated drill process for two-diameter holes in multi-layer variable thickness composite materials - Google Patents
Automated drill process for two-diameter holes in multi-layer variable thickness composite materials Download PDFInfo
- Publication number
- US20060010689A1 US20060010689A1 US10/890,619 US89061904A US2006010689A1 US 20060010689 A1 US20060010689 A1 US 20060010689A1 US 89061904 A US89061904 A US 89061904A US 2006010689 A1 US2006010689 A1 US 2006010689A1
- Authority
- US
- United States
- Prior art keywords
- hole
- diameter
- tool
- panel
- fastener
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims description 35
- 239000000565 sealant Substances 0.000 claims description 19
- 238000005553 drilling Methods 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 5
- 238000000429 assembly Methods 0.000 claims description 5
- 230000000712 assembly Effects 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims 2
- 230000007704 transition Effects 0.000 description 33
- 239000000463 material Substances 0.000 description 9
- 238000003754 machining Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/10—Riveting machines
- B21J15/14—Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D47/00—Making rigid structural elements or units, e.g. honeycomb structures
- B21D47/04—Making rigid structural elements or units, e.g. honeycomb structures composite sheet metal profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J15/00—Riveting
- B21J15/10—Riveting machines
- B21J15/14—Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
- B21J15/142—Aerospace structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/10—Manufacturing or assembling aircraft, e.g. jigs therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49616—Structural member making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49616—Structural member making
- Y10T29/49623—Static structure, e.g., a building component
- Y10T29/49629—Panel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49947—Assembling or joining by applying separate fastener
- Y10T29/49966—Assembling or joining by applying separate fastener with supplemental joining
Definitions
- This invention relates generally to the manufacture of mobile platforms and, more particularly, the assembly of skin panels to the airframes of aircraft.
- Aircraft bodies are assembled by fabricating a frame and fastening panels to the frame.
- the frame is an aluminum or titanium structure with ribs, stringers, and the like to distribute the loads imposed by the aircraft's weight and aerodynamic forces that act on the aircraft.
- the assembly process continues with panels being fastened to the structure to form the skin of the aircraft. Because these skin panel fasteners carry much of the load on the aircraft as shear stress, the fastening of the skin panels to the aircraft frame is a factor in how efficiently the aircraft carries the loads.
- the hole may be sized with one constant diameter through the two sub-assemblies.
- metals and composites behave differently when subjected to loads. For instance, interference fits are frequently selected between metallic structures and fasteners to improve fatigue life in the tensilely loaded panels and frames.
- composites generally require a clearance between the composite and the fastener to prevent the composite from delaminating while installing interference fit fasteners through the composite panel.
- the panel must therefore be removed from the airframe after the fastener hole is drilled to the interference diameter.
- the hole in the composite panel is then reamed to a slightly larger size to create the clearance. Thereafter, the panel is placed on the structure once again. Then, the fastener is placed in the hole having the two diameters and tightened into place.
- the process of providing the clearance causes several disadvantageous results.
- perfect re-alignment between the panel and the structure may not be re-acquired either.
- any interlaminar metallic burrs generated during the enlargement process must be removed manually from the airframe structure before fastening the panel to the structure.
- the reamer could be brought to the panel while it is still mounted on the airframe and the hole enlarged.
- this alternative has produced poor assemblies because the thickness of the composite panel varies from the theoretical thickness across the panel (both by design and due to variations inherent to fabrication of composite parts).
- the liquid shim applied to the panel may vary in thickness because of the gaps between the airframe and the panel and because of variations in how the liquid shim is applied.
- the operator or numerically controlled machine programmer
- the operator does not know at what depth to stop the reamer before it engages the airframe. If the reamer is advanced too far, it creates a clearance within the metal and weakens the joint. If the reamer does not advance far enough, it leaves an interference fit in the composite and weakens the joint.
- the invention provides improved mobile platform skin panel assemblies and methods of assembling the same.
- the present invention provides an assembly that includes a skin panel made from a composite material and a structure made from a metal.
- the assembly defines a hole through the panel and the structure with a first diameter through the metal and a second diameter through the panel, which has a thickness profile known in advance.
- the transition between the two diameters occurs within a pre-selected tolerance from the surface of the metal that is adjacent to the panel and another pre-selected tolerance from the surface of the panel that abuts the structure.
- the clearance reliably extends into the metal only to the extent of the first tolerance
- the interference fit reliably extends into the composite only to the extent of the second tolerance.
- the present invention provides superior joints between composite skin panels and metallic structures.
- the present invention provides assemblies with a structure having a first material and a member having a second material and a fastener hole therethrough, the materials requiring the hole to have two different diameters.
- the present invention provides a method of assembling composite panels to metallic structures.
- the method includes leaving the panel on the structure while a hole, which extends through the panel and structure, is enlarged down to between a pre-selected tolerance from the surface of the panel and another pre-selected tolerance in the structure.
- FIG. 1 illustrates a wing assembly in accordance with the principals of the present invention
- FIG. 2 illustrates a mechanical joint of the wing of FIG. 1 in cross section taken along the line 2 - 2 ;
- FIG. 3 illustrates test results of mechanical joints constructed in accordance with the principles of the present invention
- FIG. 4 illustrates an instrument for verifying the mechanical joint of FIG. 2 ;
- FIG. 5 illustrates another instrument for verifying the mechanical joint of FIG. 2 ;
- FIG. 6 illustrates a method in accordance with a preferred embodiment of the present invention.
- FIG. 1 illustrates an assembly including a composite panel fastened to a metallic structure in accordance with the principals of the present invention. More particularly, FIG. 1 shows a wing 10 for use on a mobile platform (e.g. an aircraft) that has a structure 12 (including, for example ribs and spars) and a plurality of skin panels 14 .
- the panels 14 define the outer mold line of the wing 10 and are fastened to the structure 12 with fasteners 16 (e.g. rivets) as shown.
- fasteners 16 e.g. rivets
- a liquid shim 18 is applied to the inner surface of the panels 14 .
- the liquid shim 18 flows to fill gaps between the structure 12 and the panel 14 .
- the panel 14 will fit directly against the structure 12 and the liquid shim 18 will essentially flow completely out of these areas. In other areas, gaps, on the order of several thousandths of an inch, will exist where the liquid shim 18 will gather.
- a sealant 20 is also applied to the outer surface of the structure 12 to prevent moisture and other environmental contaminants from reaching the joint (i.e. the region where the panels 14 are adjacent the structure 12 with some quantity of liquid shim 18 and sealant 20 there between) following formation of the joint.
- outer refers to the panel 14 side of the joint
- inner refers to the structure 12 side of the joint
- depth refers to the distance from the outer surface of the panel 14 measured generally perpendicular thereto.
- FIG. 2 illustrates the joint between the structure 12 and the panel 14 of FIG. 1 in cross section.
- the fastener 16 is not shown, though it fits in a hole 22 .
- the hole 22 has a first diameter 24
- the hole 22 has a second diameter 26 .
- a transition region 28 connects the portion of the hole 22 having the first diameter 24 and the portion having the second diameter 26 . While a transition 28 is shown that makes an acute angle with the axis 30 of the hole 22 , step and curvilinear transitions 28 are also within the scope of the present invention.
- the hole 22 includes an overall depth 32 that includes a first depth 34 defined by the first diameter 24 portion, a second depth 36 defined by the second diameter 26 portion, and a third depth 38 defined by the transition 28 . Since the transition 28 may be a step, the depth 38 will henceforth be treated as being generally negligible.
- the assembly 10 e.g. the wing of FIG. 1
- the overall thickness 40 includes a thickness 42 of the panel (which is measured in advance of the hole drilling and reaming method described herein), a thickness 44 of the liquid shim, a thickness 46 of the sealant, and a thickness 48 of the structure.
- the overall thickness 40 of the panel, the liquid shim 44 , and (to an extent) the sealant 46 vary with each hole 22 location and, in general, between panels 12 .
- the overall thickness 40 in the locale of each of the holes 22 is not known until measured at each hole location.
- the overall depth 32 of the holes are not known until the overall thickness 40 is measured.
- Various methods exist for measuring the overall thickness 40 (and therefore the overall depth 32 ) including sonar and laser-based measurements.
- FIG. 2 shows two tolerances associated with the hole 22 including a first tolerance 50 and a second tolerance 52 .
- the tolerance 50 begins at the inner surface of the panel 14 , extends into the panel 14 therefrom, and defines the allowable depth to which the first diameter 24 portion of the hole 22 may extend into the panel 14 .
- the tolerance 52 begins at the outer surface of the structure 12 , extends into the structure 12 therefrom, and defines the depth to which the second diameter 26 portion of the hole 22 may extend into the structure 12 .
- a variable thickness 54 portion of the joint exists defined by the local variations in the liquid shim 18 and the sealant 20 .
- the thickness 42 of the panel 14 also varies.
- the variations in the thickness 42 of the panel(s) arise from the complexity of the composite panels 14 and the design and manufacturing requirements, or preferences, for a given panel.
- the number of plies (e.g. carbon epoxy plies) in the panel typically varies with location on the panel 14 .
- manual lay-up methods and autoclave cure cycles are likely to cause further deviations from the theoretical thickness of the panel 14 .
- the following data may be loaded into a database for a numerically controlled machine prior to performing the drilling and reaming operations described for the present embodiment: a hole identification number, a hole location on the panel, and the actual panel 14 thickness 42 .
- the methods discussed herein may also be performed manually, although automated machining is preferred. Whether the machining is performed manually or automatically, the machining parameters (e.g. drill feeds and speeds) can be changed as the tool(s) progress through the various layers of the assembly based on the stack-up information and the theoretical and actual thicknesses associated with a given hole identification number. As a result, it is possible to machine at the optimum rate for each material in the assembly and, thereby, reduce the cycle time for each hole. In particular, the machining speed may increase as progress is made through the softer materials (e.g. composites and aluminum) as compared to the speed preferred for the harder materials (e.g. titanium).
- the machining parameters e.g. drill feeds and speeds
- variable thickness 54 region is defined by materials (the liquid shim 18 and the sealant 20 ) for which neither an interference fit, nor a clearance, with the fastener 16 (see FIG. 1 ) is preferred. That is to say that the liquid shim 18 and the sealant 20 will allow for either an interference fit or a clearance with the fastener 16 . Accordingly, the transition 28 may occur anywhere within the portion of the joint defined by the combination of the tolerances 50 and 52 and the variable thickness 54 . It has been found, in experimental operation, that the second diameter 26 portion of the hole 22 can be enlarged to the second diameter 26 without exceeding either tolerance 50 and 52 by using the variable thickness 54 portion to advantage, as illustrated in FIG. 3 .
- FIG. 3 shows the results of experimental holes produced in accordance with the present invention.
- FIG. 3A shows a realistic worst-case example of a joint between a structure 112 and a composite panel 114 .
- a small gap (of up to about 0.005 inches containing liquid shim 118 ) exists between the structure 112 and the panel 114 because almost all of the liquid shim was forced from between the structure 112 and the panel 114 .
- the variable thicknesses employed to advantage by the present invention are at a minimum. Because experience has shown that the application of the sealant 120 is generally uniform, the present discussion will assume that the sealant is typically about 0.0056 inches thick and generally uniform.
- the sealant thickness can vary.
- the structure 112 could vary in thickness, although the structure 112 usually has a uniform thickness. However, in operation, whether the structure 112 is of uniform thickness, or not, has no bearing on the quality of joints constructed in accordance with the principles of the present invention.
- the joint includes a 3 ⁇ 8′′ composite panel 114 and a 3 ⁇ 8′′ aluminum structure 112 .
- the hole 122 was drilled through the joint with a bit to produce the interference fit diameter 124 .
- Tolerances 150 and 152 were selected for the joint based on good engineering practice to prevent delamination of the panel 114 and to create a satisfactory interference fit with the structure 112 .
- the hole was reamed (from the panel side of the joint with the panel 114 remaining on the structure 112 ) to enlarge the portion of the hole 122 in the panel 120 to the clearance diameter 126 .
- the reamer was allowed to advance into the panel 120 a distance equal to the measured thickness of the panel 114 and liquid shim 118 and then withdrawn.
- the hole 122 was thereafter inspected to determine where the transition 128 actually occurred with respect to the inner surface of the panel 114 and the outer surface of the structure 112 .
- the process was repeated for the remainder of the holes 122 desired for securely fastening the panel 114 to the structure 112 .
- FIG. 3B shows a more typical joint.
- the liquid shim 118 (gap) is about 0.10 inches thick.
- the resulting average transition 128 again fell within the variable thickness of the liquid shim 118 , thereby creating a satisfactory joint.
- the Cpk of the process operating on a typical joint was found to be about 2.05 and more than adequate to ensure the quality of the joint.
- the depth of the reaming operation possessed a standard deviation of about 0.0028 inches using otherwise conventional drilling and reaming techniques.
- 3C also produces a satisfactory joint.
- controlling the drilling and reaming subprocesses to a smaller standard deviation will eliminate the existence of even those few transitions 128 that lie outside of the tolerance 150 .
- the present invention provides suitable joints even in the worst-case scenario involving no liquid shim 118 at a particular hole 122 location in the joint.
- the panel 114 and the structure 112 remain generally adjacent each after the application of the liquid shim 118 and the sealant 120 , no manufacturing debris, or other contaminants, will be found in the joint.
- the overall joint is stronger than provided by previous methods of assembly.
- the drilling and reaming may be performed by using the same conventional 6-degree of freedom robot that can remain stationary relative to the axis 130 of the hole 122 (except as it traverse the axis 130 ).
- eccentricity of the clearance diameter 126 portion of the hole 122 is significantly reduced over that of previous processes.
- the vast majority of holes 122 had an eccentricity of less than about 0.0013 inches, thereby yielding improved fit between the fastener and the panel 114 and structure 112 assembly.
- the “one-up” method of the present embodiment is, thus, particularly well suited to applications wherein the panels 114 are sealed, or bonded, to the structure 112 and thereafter left in place for the remainder of the aircraft assembly.
- the term “one up” refers to one of the advantages of the present invention in that the panel 114 may be lifted “up” into place on the structure 112 (or otherwise moved into place) only once with no subsequent disassembly required.
- the present invention may also be employed where no sealant, or bonding agent, is applied between the panel 14 and the structure.
- the panel 114 may be clamped to the structure 112 , an initial one-diameter hole drilled, and the hole may then be enlarged through the panel 114 . Thereafter, the panel 114 may be unclamped from the structure 112 and, if desired, removed for de-burring and other operations prior to subsequent assembly operations.
- a pair of instruments 200 and 300 are shown as used for inspecting holes 222 and 322 in accordance with the principles of the present invention.
- the instruments 200 and 300 are used to verify the end point of the clearance diameter portion of the hole.
- the instrument 200 includes a boroscope eyepiece at the proximal end (not shown) and a mirror 202 at the distal end.
- the distal end is shown inserted in the hole 222 and further includes a pair of diametrically opposed apertures 204 , an index mark 206 , and a flat distal end 208 .
- the flat distal end 308 is adapted to engage the transition 228 as shown.
- the instrument 200 is held in a fixed position relative to the transition 228 .
- the outside diameter (of at least a portion) of, the distal end is the same as the clearance diameter 226 , thereby further facilitating holding the instrument 200 in fixed relationship to the transition 228 .
- the mirror 202 is positioned so that it allows a user looking through the eyepiece to see out through the aperture 204 and inspect the side of the hole 222 in the vicinity of the transition 228 .
- the index mark 206 is also viewable by the user and set (inside the distal end of the instrument 200 ) at a distance from the distal end equal to the tolerance 252 associated with the structure 212 .
- FIG. 4A shows a hole 222 wherein the index mark 206 is at the outer surface of the structure 222 .
- FIG. 4A illustrates an acceptable hole 222 .
- the instrument 200 is referred to as a “too deep” gage 200 .
- FIGS. 4C and 4D illustrate the corresponding “too shallow” gage 300 in a hole 322 that is acceptable ( FIG. 4C ) and in an unacceptable hole 322 ( FIG. 3D ).
- the differences between the “too deep” gage 200 and the “too shallow” gage 300 include the presence of a step 308 on the sides of the distal end and the location of the index mark 306 .
- the step 308 is adapted to engage the transition 328 and generally corresponds in shape to the transition 328 .
- the index mark 306 may be positioned at a distance equal to the tolerance 350 associated with the panel 314 from the step 308 as shown.
- a user may view the index mark 306 and the side of the hole 322 via the mirror 302 to judge whether any of the liquid shim 318 , sealant 320 , or structure 312 is visible between the index mark 306 and the distal end. If so, the hole 322 is deep enough (i.e. is within or deeper than the tolerance 350 ). If not, then the transition 328 is too shallow (i.e. the clearance diameter 326 portion of the hole 322 does not extend far enough through the panel 320 to produce a satisfactory joint).
- the present invention is not thereby limited. Rather, in a preferred embodiment, a joint with a “ramped” pair of mating surfaces is provided. That is to say that the axis 30 (see FIG. 2 ) of the hole is orientated at an acute angle with respect to the mating surfaces.
- the depth 36 of the clearance diameter 26 portion of the hole 22 is measured along the axis 30 of the hole 22 .
- the intersection of the axis 30 with the plane defining the end of the clearance diameter 26 portion lies within the acceptable depth range 56 .
- Ramped holes 22 are inspected by, for example, rotating the “too deep/too shallow” gage 400 in the hole 22 until the views through the pair of diametrically opposed apertures 404 are the same. If both views are neither too deep, nor too shallow, the hole 22 is considered acceptable.
- Lighting may also be provided internal to the instruments 200 and 300 to enable the user to view the visible differences between the structure 212 , the panel 214 , the liquid shim 218 , and the sealant 220 .
- the instruments 200 and 300 also enable the user to inspect the sides of the hole 222 to determine whether any chips or cuttings were caught between the outer pitch of the drill bit (and reamer) and the sides of the hole 322 by turning the instrument while traversing the axis of the hole 322 .
- the composite panels 220 and 320 may be inspected for internal machining damage that would otherwise be hidden.
- FIG. 5 shows a combined “too deep/too shallow” instrument 400 .
- the instrument 400 differs from the instruments 200 and 300 in that, the instrument 400 includes both of the index marks 406 and the step 408 .
- the index mark 406 ′ is positioned a distance from the step 408 equal to the tolerance 452 associated with the structure 412 . Thus, it indicates whether the hole 422 is too deep.
- the index mark 406 ′ is positioned a distance equal to the clearance 450 associated with the panel 414 from the distal end, thereby indicating whether the transition is too shallow.
- the one tool 400 may be used to simultaneously determine whether the hole 422 is deep enough and whether the hole 422 is shallow enough (i.e. within an acceptable range of depth).
- the present invention provides a dial indicator for inspecting the depth of the transitions.
- the dial indicator includes a plunger operatively connected to a depth dial gage. Further, the end of the plunger is adapted to engage the transition of a hole, thereby enabling the inspection.
- the indicator is zeroed by fully depressing the plunger against a hard surface. Then the plunger is inserted into the hole and allowed (by a biasing member such as a spring) to extend to the depth at which it stops.
- a biasing member such as a spring
- the depth at which the plunger stops indicates the location of the transition.
- debris in the hole may cause the dial indicator to indicate a transition depth shallower than the true transition depth.
- the boroscope based instruments 200 , 300 , and 400 are preferred over the dial indicator of the current embodiment.
- the method 500 includes laying up a plurality of composite panels and subsequently curing them in operation 502 .
- an airframe is fabricated (or assembled) as in operation 504 .
- Liquid shim is then applied to the cured panels. Before the liquid shim cures, the panels are pressed against the airframe to cause the liquid shim to fill the gaps there between. See operation 506 . The liquid shim is allowed to cure.
- operation 508 applies sealant to the airframe.
- the panels are mounted (with jigs or other support equipment) to the airframe as in operation 510 . Holes having a diameter that will cause an interference fit with the fasteners are drilled through the panels and through the structure at pre-selected locations. See operation 512 . While leaving the panels on the airframe (as in operation 514 ) the holes are then reamed to the larger clearance diameter to a depth that is pre-selected to cause an acceptable joint in operation 516 . While many types of tools may be employed to enlarge the hole, either step or flat-bottom reamers are employed in preferred embodiments of the present invention. Depending on the tool selected, the set-up values (e.g.
- step reamer lengths are measured in advance and included in the machining program to enable the machine to ream the hole to the specified depth (e.g. to the bottom of the flat reamer or to the step of the step reamer).
- the overall thickness of the panel(s) is known or measured before pre-selecting the depth of the enlargement.
- the holes are then inspected to determine whether the diameter transitions are within the acceptable ranges (neither too deep, nor, too shallow) with, for example, the instruments provided by the present invention.
- Fasteners are inserted into the holes and the panels are fastened to the structure as shown at operation 520 .
- the superior joints discussed herein may be assembled by use of the present embodiment.
- the several advantages of the invention are achieved and attained.
- satisfactory joints are provided with the panels remaining on the airframe once placed thereon.
- the present invention reduces the cost of assembling aircraft.
- the present invention provides joints having superior mechanical properties (e.g. strength, fit, noise or rattling because of poor “fit up”). Additionally, the present invention provides improved inspection tools over those previously available.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Connection Of Plates (AREA)
Abstract
A method of manufacturing a mobile platform. The platform includes a structure and a member assembled to the structure. Further, the member has a first and a second surface with a thickness defined there between that is varied. The method includes leaving the member on the structure. Also, the method includes advancing a tool through the member while on the structure. The tool is stopped before the tool advances into the structure by more than about a first pre-selected tolerance. Also, a mobile platform assembly is provided that includes a structure, a member, and a fastener fastening the structure and member via a hole through the structure and assembly. The hole has a first diameter through the structure and a second diameter through the member, wherein the diameter changes within an acceptable depth range. In another preferred embodiment, a boroscope, adapted for inspecting holes having two diameters, is also provided.
Description
- This invention was developed in the course of work under U.S. government contract No. F/A-18 E/F N00019-99-C-1226; FY00-04. The U.S. government may possess certain rights in the invention.
- This invention relates generally to the manufacture of mobile platforms and, more particularly, the assembly of skin panels to the airframes of aircraft.
- Aircraft bodies are assembled by fabricating a frame and fastening panels to the frame. Typically, the frame is an aluminum or titanium structure with ribs, stringers, and the like to distribute the loads imposed by the aircraft's weight and aerodynamic forces that act on the aircraft. The assembly process continues with panels being fastened to the structure to form the skin of the aircraft. Because these skin panel fasteners carry much of the load on the aircraft as shear stress, the fastening of the skin panels to the aircraft frame is a factor in how efficiently the aircraft carries the loads.
- Increasingly, composite skin panels are being used to lighten the aircraft and improve its load carrying capability. Assembling the composite panels to the aircraft requires that a liquid shim be applied to the cured panel to fill any gaps that might otherwise exist between the panel and the frame. These gaps arise because the composite panels generally will not match the shape of the frame exactly. Rather, some variation will exist between the frame and the panel that may be several thousands of an inch in magnitude. Thus, the liquid shim compensates for the variation. Once applied to the composite panel, the liquid shim begins curing and eventually forms a portion of the panel. Next, the panel is mounted to the airframe and fastener holes are drilled through the panel and frame for subsequent installation of a fastener.
- If the material of the structure and the panel are the same, the hole may be sized with one constant diameter through the two sub-assemblies. However, metals and composites behave differently when subjected to loads. For instance, interference fits are frequently selected between metallic structures and fasteners to improve fatigue life in the tensilely loaded panels and frames. On the other hand composites generally require a clearance between the composite and the fastener to prevent the composite from delaminating while installing interference fit fasteners through the composite panel.
- To provide the interference fit and the clearance, the panel must therefore be removed from the airframe after the fastener hole is drilled to the interference diameter. The hole in the composite panel is then reamed to a slightly larger size to create the clearance. Thereafter, the panel is placed on the structure once again. Then, the fastener is placed in the hole having the two diameters and tightened into place.
- Unfortunately, the process of providing the clearance causes several disadvantageous results. First, removing and reinstalling the panel consumes time and resources that could be employed for other useful activities. Second, because the panel has been moved after the initial hole was formed, the reamer used to enlarge the hole in the composite panel may be positioned off of the longitudinal axis of the hole. Accordingly, the reamed enlargement may be off-center, or eccentric, with respect to the axis of the hole (through the panel). Moreover, perfect re-alignment between the panel and the structure may not be re-acquired either. Further with these previous assembly methods, any interlaminar metallic burrs generated during the enlargement process must be removed manually from the airframe structure before fastening the panel to the structure.
- In the alternative, the reamer could be brought to the panel while it is still mounted on the airframe and the hole enlarged. In practice, this alternative has produced poor assemblies because the thickness of the composite panel varies from the theoretical thickness across the panel (both by design and due to variations inherent to fabrication of composite parts). Moreover, the liquid shim applied to the panel may vary in thickness because of the gaps between the airframe and the panel and because of variations in how the liquid shim is applied. Thus, the operator (or numerically controlled machine programmer) does not know at what depth to stop the reamer before it engages the airframe. If the reamer is advanced too far, it creates a clearance within the metal and weakens the joint. If the reamer does not advance far enough, it leaves an interference fit in the composite and weakens the joint.
- Thus a need exists to improve the assembly of composite members to metallic structures.
- It is in view of the above problems that the present invention was developed. The invention provides improved mobile platform skin panel assemblies and methods of assembling the same.
- More particularly, the present invention provides an assembly that includes a skin panel made from a composite material and a structure made from a metal. The assembly defines a hole through the panel and the structure with a first diameter through the metal and a second diameter through the panel, which has a thickness profile known in advance. The transition between the two diameters occurs within a pre-selected tolerance from the surface of the metal that is adjacent to the panel and another pre-selected tolerance from the surface of the panel that abuts the structure. In other words, the clearance reliably extends into the metal only to the extent of the first tolerance, whereas the interference fit reliably extends into the composite only to the extent of the second tolerance. Thus, the present invention provides superior joints between composite skin panels and metallic structures. In addition, the present invention provides assemblies with a structure having a first material and a member having a second material and a fastener hole therethrough, the materials requiring the hole to have two different diameters.
- In another preferred embodiment, the present invention provides a method of assembling composite panels to metallic structures. The method includes leaving the panel on the structure while a hole, which extends through the panel and structure, is enlarged down to between a pre-selected tolerance from the surface of the panel and another pre-selected tolerance in the structure. Thus, the present invention provides a superior method of assembling composite panels to metallic structures.
- Further features and advantages of the present invention, as well as the structure and operation of various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
- The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and together with the description, serve to explain the principles of the invention. In the drawings:
-
FIG. 1 illustrates a wing assembly in accordance with the principals of the present invention; -
FIG. 2 illustrates a mechanical joint of the wing ofFIG. 1 in cross section taken along the line 2-2; -
FIG. 3 illustrates test results of mechanical joints constructed in accordance with the principles of the present invention; -
FIG. 4 illustrates an instrument for verifying the mechanical joint ofFIG. 2 ; -
FIG. 5 illustrates another instrument for verifying the mechanical joint ofFIG. 2 ; and -
FIG. 6 illustrates a method in accordance with a preferred embodiment of the present invention. - Referring to the accompanying drawings in which like reference numbers indicate like elements,
FIG. 1 illustrates an assembly including a composite panel fastened to a metallic structure in accordance with the principals of the present invention. More particularly,FIG. 1 shows awing 10 for use on a mobile platform (e.g. an aircraft) that has a structure 12 (including, for example ribs and spars) and a plurality ofskin panels 14. Thepanels 14 define the outer mold line of thewing 10 and are fastened to thestructure 12 with fasteners 16 (e.g. rivets) as shown. Also, aliquid shim 18 is applied to the inner surface of thepanels 14. When the panel is pressed against thestructure 12, theliquid shim 18 flows to fill gaps between thestructure 12 and thepanel 14. In a few isolated areas, thepanel 14 will fit directly against thestructure 12 and theliquid shim 18 will essentially flow completely out of these areas. In other areas, gaps, on the order of several thousandths of an inch, will exist where theliquid shim 18 will gather. Asealant 20 is also applied to the outer surface of thestructure 12 to prevent moisture and other environmental contaminants from reaching the joint (i.e. the region where thepanels 14 are adjacent thestructure 12 with some quantity ofliquid shim 18 andsealant 20 there between) following formation of the joint. Generally, the term “outer” refers to thepanel 14 side of the joint, whereas “inner” refers to thestructure 12 side of the joint. Further, “depth” refers to the distance from the outer surface of thepanel 14 measured generally perpendicular thereto. -
FIG. 2 illustrates the joint between thestructure 12 and thepanel 14 ofFIG. 1 in cross section. InFIG. 2 , thefastener 16 is not shown, though it fits in ahole 22. Generally within thestructure 12, thehole 22 has afirst diameter 24, whereas generally within thepanel 14, thehole 22 has asecond diameter 26. Atransition region 28 connects the portion of thehole 22 having thefirst diameter 24 and the portion having thesecond diameter 26. While atransition 28 is shown that makes an acute angle with theaxis 30 of thehole 22, step andcurvilinear transitions 28 are also within the scope of the present invention. - The
hole 22 includes anoverall depth 32 that includes afirst depth 34 defined by thefirst diameter 24 portion, asecond depth 36 defined by thesecond diameter 26 portion, and athird depth 38 defined by thetransition 28. Since thetransition 28 may be a step, thedepth 38 will henceforth be treated as being generally negligible. Similarly, the assembly 10 (e.g. the wing ofFIG. 1 ) includes anoverall thickness 40 associated with the locale of thehole 22. Theoverall thickness 40 includes athickness 42 of the panel (which is measured in advance of the hole drilling and reaming method described herein), athickness 44 of the liquid shim, athickness 46 of the sealant, and athickness 48 of the structure. Theoverall thickness 40 of the panel, theliquid shim 44, and (to an extent) thesealant 46 vary with eachhole 22 location and, in general, betweenpanels 12. Thus, theoverall thickness 40 in the locale of each of theholes 22 is not known until measured at each hole location. For the same reason, theoverall depth 32 of the holes are not known until theoverall thickness 40 is measured. Various methods exist for measuring the overall thickness 40 (and therefore the overall depth 32) including sonar and laser-based measurements. - Also,
FIG. 2 shows two tolerances associated with thehole 22 including afirst tolerance 50 and asecond tolerance 52. Thetolerance 50 begins at the inner surface of thepanel 14, extends into thepanel 14 therefrom, and defines the allowable depth to which thefirst diameter 24 portion of thehole 22 may extend into thepanel 14. Similarly, thetolerance 52 begins at the outer surface of thestructure 12, extends into thestructure 12 therefrom, and defines the depth to which thesecond diameter 26 portion of thehole 22 may extend into thestructure 12. Between thetolerances 50 and 52 avariable thickness 54 portion of the joint exists defined by the local variations in theliquid shim 18 and thesealant 20. - As mentioned previously, the
thickness 42 of thepanel 14 also varies. The variations in thethickness 42 of the panel(s) arise from the complexity of thecomposite panels 14 and the design and manufacturing requirements, or preferences, for a given panel. For instance, the number of plies (e.g. carbon epoxy plies) in the panel typically varies with location on thepanel 14. Also, manual lay-up methods and autoclave cure cycles are likely to cause further deviations from the theoretical thickness of thepanel 14. To account for these variations, the following data may be loaded into a database for a numerically controlled machine prior to performing the drilling and reaming operations described for the present embodiment: a hole identification number, a hole location on the panel, and theactual panel 14thickness 42. The methods discussed herein may also be performed manually, although automated machining is preferred. Whether the machining is performed manually or automatically, the machining parameters (e.g. drill feeds and speeds) can be changed as the tool(s) progress through the various layers of the assembly based on the stack-up information and the theoretical and actual thicknesses associated with a given hole identification number. As a result, it is possible to machine at the optimum rate for each material in the assembly and, thereby, reduce the cycle time for each hole. In particular, the machining speed may increase as progress is made through the softer materials (e.g. composites and aluminum) as compared to the speed preferred for the harder materials (e.g. titanium). - In accordance with the principals of the present invention, the
variable thickness 54 region is defined by materials (theliquid shim 18 and the sealant 20) for which neither an interference fit, nor a clearance, with the fastener 16 (seeFIG. 1 ) is preferred. That is to say that theliquid shim 18 and thesealant 20 will allow for either an interference fit or a clearance with thefastener 16. Accordingly, thetransition 28 may occur anywhere within the portion of the joint defined by the combination of thetolerances variable thickness 54. It has been found, in experimental operation, that thesecond diameter 26 portion of thehole 22 can be enlarged to thesecond diameter 26 without exceeding eithertolerance variable thickness 54 portion to advantage, as illustrated inFIG. 3 . - More particularly,
FIG. 3 shows the results of experimental holes produced in accordance with the present invention. In particular,FIG. 3A shows a realistic worst-case example of a joint between astructure 112 and acomposite panel 114. In this realistic worst-case scenario, only a small gap (of up to about 0.005 inches containing liquid shim 118) exists between thestructure 112 and thepanel 114 because almost all of the liquid shim was forced from between thestructure 112 and thepanel 114. Thus, the variable thicknesses employed to advantage by the present invention are at a minimum. Because experience has shown that the application of thesealant 120 is generally uniform, the present discussion will assume that the sealant is typically about 0.0056 inches thick and generally uniform. It will be understood, though, that the sealant thickness can vary. Further, thestructure 112 could vary in thickness, although thestructure 112 usually has a uniform thickness. However, in operation, whether thestructure 112 is of uniform thickness, or not, has no bearing on the quality of joints constructed in accordance with the principles of the present invention. - In the example shown by
FIG. 3A , the joint includes a ⅜″composite panel 114 and a ⅜″aluminum structure 112. Thehole 122 was drilled through the joint with a bit to produce the interferencefit diameter 124.Tolerances 150 and 152, of 0.010 inches each, were selected for the joint based on good engineering practice to prevent delamination of thepanel 114 and to create a satisfactory interference fit with thestructure 112. Next, the hole was reamed (from the panel side of the joint with thepanel 114 remaining on the structure 112) to enlarge the portion of thehole 122 in thepanel 120 to theclearance diameter 126. The reamer was allowed to advance into the panel 120 a distance equal to the measured thickness of thepanel 114 and liquid shim 118 and then withdrawn. Thehole 122 was thereafter inspected to determine where thetransition 128 actually occurred with respect to the inner surface of thepanel 114 and the outer surface of thestructure 112. The process was repeated for the remainder of theholes 122 desired for securely fastening thepanel 114 to thestructure 112. - The results showed that the
average transition 128 occurred within the liquid shim 118 in accordance with the principals of the present invention. That is to say, thetransition 128 lies within the variable thickness of the liquid shim 118 where the joint requires neither a clearance nor an interference fit. The process was also shown to possess a Cpk (process capability index) of 1.45 that is satisfactory for most applications, even here in the realistic worst-case example. -
FIG. 3B shows a more typical joint. Here, the liquid shim 118 (gap) is about 0.10 inches thick. The resultingaverage transition 128 again fell within the variable thickness of the liquid shim 118, thereby creating a satisfactory joint. The Cpk of the process operating on a typical joint was found to be about 2.05 and more than adequate to ensure the quality of the joint. In all cases, the depth of the reaming operation possessed a standard deviation of about 0.0028 inches using otherwise conventional drilling and reaming techniques. - For purposes of demonstration, an abnormal situation, wherein little (or no) liquid shim (gap) exists in the joint at the locale of the
hole 122 was also tested, as shown byFIG. 3C . The resultingtransition 128 occurred at a depth 0.0012 inches into thecomposite panel 114, well within the 0.010inch tolerance 150. With a standard deviation of 0.0028 and a Cpk of about 0.86 the vast majority of thetransitions 128 were found to be within thetolerance 150 in thepanel 112, or in thesealant 120. Afew transitions 128 were found to lie just outside of thetolerance 150. Given the number ofholes 122 employed per joint, the factors of safety utilized, and the availability of inspection tools for theholes 122, the worst-case scenario ofFIG. 3C also produces a satisfactory joint. Of course, controlling the drilling and reaming subprocesses to a smaller standard deviation will eliminate the existence of even thosefew transitions 128 that lie outside of thetolerance 150. In summary of the current embodiment, the present invention provides suitable joints even in the worst-case scenario involving no liquid shim 118 at aparticular hole 122 location in the joint. - Moreover, because the
panel 114 and thestructure 112 remain generally adjacent each after the application of the liquid shim 118 and thesealant 120, no manufacturing debris, or other contaminants, will be found in the joint. Thus, the overall joint is stronger than provided by previous methods of assembly. Moreover, the drilling and reaming may be performed by using the same conventional 6-degree of freedom robot that can remain stationary relative to theaxis 130 of the hole 122 (except as it traverse the axis 130). Thus, eccentricity of theclearance diameter 126 portion of the hole 122 (with respect to theinterference diameter 124 portion) is significantly reduced over that of previous processes. For the joints illustrated byFIG. 3 , the vast majority ofholes 122 had an eccentricity of less than about 0.0013 inches, thereby yielding improved fit between the fastener and thepanel 114 andstructure 112 assembly. The “one-up” method of the present embodiment is, thus, particularly well suited to applications wherein thepanels 114 are sealed, or bonded, to thestructure 112 and thereafter left in place for the remainder of the aircraft assembly. Of course, the term “one up” refers to one of the advantages of the present invention in that thepanel 114 may be lifted “up” into place on the structure 112 (or otherwise moved into place) only once with no subsequent disassembly required. - In the alternative to the one-up method, the present invention may also be employed where no sealant, or bonding agent, is applied between the
panel 14 and the structure. For instance, thepanel 114 may be clamped to thestructure 112, an initial one-diameter hole drilled, and the hole may then be enlarged through thepanel 114. Thereafter, thepanel 114 may be unclamped from thestructure 112 and, if desired, removed for de-burring and other operations prior to subsequent assembly operations. - With respect to
FIG. 4 , a pair ofinstruments holes instruments instrument 200 includes a boroscope eyepiece at the proximal end (not shown) and amirror 202 at the distal end. The distal end is shown inserted in thehole 222 and further includes a pair of diametricallyopposed apertures 204, anindex mark 206, and a flatdistal end 208. The flatdistal end 308 is adapted to engage thetransition 228 as shown. Thus, when the flatdistal end 208 engages thetransition 228 theinstrument 200 is held in a fixed position relative to thetransition 228. Preferably the outside diameter (of at least a portion) of, the distal end is the same as the clearance diameter 226, thereby further facilitating holding theinstrument 200 in fixed relationship to thetransition 228. Themirror 202 is positioned so that it allows a user looking through the eyepiece to see out through theaperture 204 and inspect the side of thehole 222 in the vicinity of thetransition 228. In particular, theindex mark 206 is also viewable by the user and set (inside the distal end of the instrument 200) at a distance from the distal end equal to the tolerance 252 associated with the structure 212. Thus, as the user views the side of thehole 222, viamirror 202, the user can judge whether theindex mark 206 is deeper than the outside surface of the structure 212. If so, theclearance diameter 126 portion penetrates too deeply into thestructure 112 indicating anunacceptable hole 222. Such a situation is illustrated inFIG. 4B . In contrast,FIG. 4A shows ahole 222 wherein theindex mark 206 is at the outer surface of thestructure 222. Thus,FIG. 4A illustrates anacceptable hole 222. Accordingly, theinstrument 200 is referred to as a “too deep”gage 200. -
FIGS. 4C and 4D illustrate the corresponding “too shallow”gage 300 in ahole 322 that is acceptable (FIG. 4C ) and in an unacceptable hole 322 (FIG. 3D ). The differences between the “too deep”gage 200 and the “too shallow”gage 300 include the presence of astep 308 on the sides of the distal end and the location of theindex mark 306. Thestep 308 is adapted to engage thetransition 328 and generally corresponds in shape to thetransition 328. Thus, theindex mark 306 may be positioned at a distance equal to the tolerance 350 associated with the panel 314 from thestep 308 as shown. A user may view theindex mark 306 and the side of thehole 322 via themirror 302 to judge whether any of the liquid shim 318, sealant 320, or structure 312 is visible between theindex mark 306 and the distal end. If so, thehole 322 is deep enough (i.e. is within or deeper than the tolerance 350). If not, then thetransition 328 is too shallow (i.e. the clearance diameter 326 portion of thehole 322 does not extend far enough through the panel 320 to produce a satisfactory joint). - While the exemplary fastener holes previously discussed were generally orientated perpendicularly to the mating surfaces of the
structure 12 and panel 14 (seeFIG. 2 ), the present invention is not thereby limited. Rather, in a preferred embodiment, a joint with a “ramped” pair of mating surfaces is provided. That is to say that the axis 30 (seeFIG. 2 ) of the hole is orientated at an acute angle with respect to the mating surfaces. In the present embodiment, thedepth 36 of theclearance diameter 26 portion of thehole 22 is measured along theaxis 30 of thehole 22. Thus, the intersection of theaxis 30 with the plane defining the end of theclearance diameter 26 portion lies within theacceptable depth range 56. Rampedholes 22 are inspected by, for example, rotating the “too deep/too shallow”gage 400 in thehole 22 until the views through the pair of diametricallyopposed apertures 404 are the same. If both views are neither too deep, nor too shallow, thehole 22 is considered acceptable. - Lighting may also be provided internal to the
instruments instruments hole 222 to determine whether any chips or cuttings were caught between the outer pitch of the drill bit (and reamer) and the sides of thehole 322 by turning the instrument while traversing the axis of thehole 322. Thus, the composite panels 220 and 320 may be inspected for internal machining damage that would otherwise be hidden. -
FIG. 5 shows a combined “too deep/too shallow”instrument 400. Theinstrument 400 differs from theinstruments instrument 400 includes both of the index marks 406 and the step 408. In particular, theindex mark 406′ is positioned a distance from the step 408 equal to the tolerance 452 associated with thestructure 412. Thus, it indicates whether the hole 422 is too deep. Theindex mark 406′, on the other hand, is positioned a distance equal to the clearance 450 associated with thepanel 414 from the distal end, thereby indicating whether the transition is too shallow. Accordingly, the onetool 400 may be used to simultaneously determine whether the hole 422 is deep enough and whether the hole 422 is shallow enough (i.e. within an acceptable range of depth). - In another preferred embodiment, the present invention provides a dial indicator for inspecting the depth of the transitions. The dial indicator includes a plunger operatively connected to a depth dial gage. Further, the end of the plunger is adapted to engage the transition of a hole, thereby enabling the inspection. To inspect a hole, the indicator is zeroed by fully depressing the plunger against a hard surface. Then the plunger is inserted into the hole and allowed (by a biasing member such as a spring) to extend to the depth at which it stops. Generally, the depth at which the plunger stops indicates the location of the transition. However, debris in the hole may cause the dial indicator to indicate a transition depth shallower than the true transition depth. Also, erosion (particularly of the liquid shim and sealant) caused by chips being caught between the drill bit, or reamer, during the machining of the hole, may allow the plunger to extend beyond the true transition, thereby indicating a transition depth larger than the true transition depth. Accordingly the boroscope based
instruments - With reference now to
FIG. 6 , a method in accordance with yet another preferred embodiment is illustrated. As shown, themethod 500 includes laying up a plurality of composite panels and subsequently curing them inoperation 502. Usually in parallel withoperation 502, an airframe is fabricated (or assembled) as inoperation 504. Liquid shim is then applied to the cured panels. Before the liquid shim cures, the panels are pressed against the airframe to cause the liquid shim to fill the gaps there between. Seeoperation 506. The liquid shim is allowed to cure. Before final assembly of the panels to the airframe,operation 508 applies sealant to the airframe. Thereafter, the panels are mounted (with jigs or other support equipment) to the airframe as inoperation 510. Holes having a diameter that will cause an interference fit with the fasteners are drilled through the panels and through the structure at pre-selected locations. Seeoperation 512. While leaving the panels on the airframe (as in operation 514) the holes are then reamed to the larger clearance diameter to a depth that is pre-selected to cause an acceptable joint inoperation 516. While many types of tools may be employed to enlarge the hole, either step or flat-bottom reamers are employed in preferred embodiments of the present invention. Depending on the tool selected, the set-up values (e.g. step reamer lengths—to the step and the total length) are measured in advance and included in the machining program to enable the machine to ream the hole to the specified depth (e.g. to the bottom of the flat reamer or to the step of the step reamer). Of course, the overall thickness of the panel(s) is known or measured before pre-selecting the depth of the enlargement. Atreference 518, the holes are then inspected to determine whether the diameter transitions are within the acceptable ranges (neither too deep, nor, too shallow) with, for example, the instruments provided by the present invention. Fasteners are inserted into the holes and the panels are fastened to the structure as shown atoperation 520. Thus, the superior joints discussed herein may be assembled by use of the present embodiment. - In view of the foregoing, it will be seen that the several advantages of the invention are achieved and attained. In particular, satisfactory joints are provided with the panels remaining on the airframe once placed thereon. Thus, the present invention reduces the cost of assembling aircraft. For the same reason, the present invention provides joints having superior mechanical properties (e.g. strength, fit, noise or rattling because of poor “fit up”). Additionally, the present invention provides improved inspection tools over those previously available.
- The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
- As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. For example, whereas the foregoing discussion involved composite members being assembled to metallic structures, the present invention is not limited thereby. Rather, any assembly with materials requiring having fastener holes with two different diameters is within the scope of the present invention (e.g. titanium and aluminum). Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
Claims (29)
1. A method of manufacturing a mobile platform, the mobile platform including a structure and a plurality of members assembled to the structure, the members each having a first and a second surface with a thickness defined there between that varies with a location on each member and which varies between members, the method comprising:
leaving a member with a varied thickness on the structure in such a manner that the second surface is generally adjacent to the structure;
advancing a tool through the member in a direction generally from the first surface toward the second surface; and
stopping the advance before the tool advances into the structure by more than about a first pre-selected tolerance.
2. The method according to claim 1 , the stopping further comprising being after the tool advances to within about a second pre-selected tolerance of the second surface.
3. The method according to claim 2 , wherein the first and the second pre-selected tolerances are the same.
4. The method according to claim 1 , further comprising inspecting the path of the tool to determine where the tool stopped advancing.
5. The method according to claim 4 , the inspecting further comprising using a dial indicator adapted to engage a feature in the member formed by the tool at about the time the tool stopped advancing.
6. The method according to claim 4 , the inspecting further comprising using a boroscope to view engage a feature in the member formed by the tool at about the time the tool stopped advancing.
7. The method according to claim 6 , the using the boroscope further comprising determining whether the tool stopped before advancing into the structure by more than about the first pre-selected tolerance.
8. The method according to claim 1 , wherein the structure is an airframe and the member is a wing skin panel.
9. The method according to claim 1 , further comprising receiving the varied thickness.
10. The method according to claim 1 , the advancing further comprising using the varied thickness to guide a numerically controlled machine.
11. The method according to claim 1 , further comprising drilling a hole through the structure and member.
12. The method according to claim 11 , the advancing further comprising a reaming of the hole.
13. The method according to claim 12 , further comprising fastening the member to the structure with a fastener placed in the hole, the fastener to have an interference fit with the structure and a clearance with the member when the fastener is in the hole.
14. The method according to claim 1 , wherein the structure includes a metallic material and the member includes a composite material.
15. The method according to claim 1 , wherein the direction of advance forms an acute angle with respect to an orientation of the second surface.
16. The method according to claim 1 , further comprising applying liquid shim to the member, the liquid shim forming at least a portion of the second surface and defining at least a portion of the varied thickness.
17. The method according to claim 1 , further comprising applying a sealant to the structure to seal the structure and the member.
18. The method according to claim 1 , further comprising changing a parameter associated with the tool while advancing the tool.
19. An assembly for a mobile platform comprising:
a structure;
at least one fastener, and
at least one member, each member having a first and a second surface with a thickness defined there between that varies with a location on each member and which varies between members, the at least one member fastened to the structure by the at least one fastener in such a manner that the second surface is generally adjacent to the structure, the assembly defining at least one hole with a first diameter generally within the structure and a second diameter generally within the member, the second diameter extending to between a first pre-selected tolerance into the structure and to within a second pre-selected tolerance from the second surface into the member.
20. The assembly according to claim 19 , wherein the first and the second pre-selected tolerances are the same.
21. The assembly according to claim 19 , wherein the structure is an airframe and the member is a wing skin panel. thickness.
22. The assembly according to claim 19 , wherein the first diameter causes an interference fit between the structure and the fastener and the second diameter causes a clearance between the member and the fastener.
23. The assembly according to claim 19 , wherein the structure includes a metallic material and the member includes a composite material.
24. The assembly according to claim 19 , wherein an axis of the hole forms an acute angle with respect to an orientation of the second surface.
25. The assembly according to claim 19 , further comprising a liquid shim defining at least a portion of the second surface and defining at least a portion of the varied thickness.
26. The assembly according to claim 19 , further comprising a sealant between the structure and the member.
27. The assembly according to claim 19 , wherein the extension of the second diameters of the at least one holes defines a standard deviation of less than about 0.0028″ (twenty eight ten thousandths of an inch) in the presence of the varied thicknesses.
28. The assembly according to claim 19 wherein the hole is orientated at an acute angle with respect to at least one of the structure and the at least one member.
29. A boroscope for inspecting assemblies including a structure, at least one fastener, and at least one member, each member having a first and a second surface with a thickness defined there between that varies with a location on each member and which varies between members, the at least one member fastened to the structure by the at least one fastener in such a manner that the second surface is generally adjacent to the structure, the assembly defining at least one hole with a first diameter generally within the structure and a second diameter generally within the member, the second diameter extending to between a first pre-selected tolerance into the structure and to within a second pre-selected tolerance from the second surface into the member, the boroscope comprising:
a body including a proximal and a distal end, the distal end adapted to engage the first diameter and the second diameter;
at least one index mark on the body and spaced apart by at least one of the first and second tolerances; and
a mirror positioned in such a manner so as to allow a user to view the at least one index mark and the first and the second diameters if the second diameter extends to between the first pre-selected tolerance into the structure and to within the second pre-selected tolerance from the second surface into the member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/890,619 US20060010689A1 (en) | 2004-07-14 | 2004-07-14 | Automated drill process for two-diameter holes in multi-layer variable thickness composite materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/890,619 US20060010689A1 (en) | 2004-07-14 | 2004-07-14 | Automated drill process for two-diameter holes in multi-layer variable thickness composite materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060010689A1 true US20060010689A1 (en) | 2006-01-19 |
Family
ID=35597877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/890,619 Abandoned US20060010689A1 (en) | 2004-07-14 | 2004-07-14 | Automated drill process for two-diameter holes in multi-layer variable thickness composite materials |
Country Status (1)
Country | Link |
---|---|
US (1) | US20060010689A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120276362A1 (en) * | 2011-04-28 | 2012-11-01 | Sikorsky Aircraft Corporation | Fay surface sealant application |
CN103879566A (en) * | 2012-12-21 | 2014-06-25 | 埃姆普里萨有限公司 | Process for joining aircraft structural components |
US20140360003A1 (en) * | 2008-09-19 | 2014-12-11 | The Boeing Company | Electromagnetic clamping method |
US20160350017A1 (en) * | 2010-03-25 | 2016-12-01 | International Business Machines Corporation | File index, metadata storage, and file system management for magnetic tape |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3082650A (en) * | 1960-09-12 | 1963-03-26 | Young Harry Russell | Depth control mechanism for drilling machines |
US3708937A (en) * | 1970-09-28 | 1973-01-09 | Kidde & Co Walter | Trapezoidal telescoping crane boom |
US3742584A (en) * | 1972-07-27 | 1973-07-03 | Mcdonald Douglas Corp | Method of installing tapered fasteners having a high percent of contact surface |
US4003168A (en) * | 1975-06-27 | 1977-01-18 | Walter Kidde & Company, Inc. | Crane boom of trapezoidal boom sections having reinforcing rings |
US4712950A (en) * | 1985-12-10 | 1987-12-15 | Reynolds Robert L | Drilling fixture and work holder |
US5010658A (en) * | 1988-11-22 | 1991-04-30 | Ltv Aerospace And Defense Company | Hole profile gaging systems |
US5277526A (en) * | 1990-08-09 | 1994-01-11 | Jobs S.P.A. | Apparatus with floating tool for drilling, boring, flaring and the like at a set depth using jigs |
US5325177A (en) * | 1992-10-29 | 1994-06-28 | Environmental Research Institute Of Michigan | Optical, interferometric hole gauge |
US5560102A (en) * | 1992-10-13 | 1996-10-01 | The Boeing Company | Panel and fuselage assembly |
US5646538A (en) * | 1995-06-13 | 1997-07-08 | Measurement Systems, Inc. | Method and apparatus for fastener hole inspection with a capacitive probe |
US5772916A (en) * | 1996-10-15 | 1998-06-30 | Liberty Technologies, Inc. | Phosphor screen, method of producing the same, and method for preparing a phosphor powder for producing a phosphor screen |
US5888032A (en) * | 1996-09-13 | 1999-03-30 | Cooper Technologies Company | Paddle fitting tool |
US5934631A (en) * | 1996-08-19 | 1999-08-10 | Thomas & Betts Corporation | Hanger bar assembly |
US5996145A (en) * | 1997-10-15 | 1999-12-07 | Harry A. Taylor | Adjustable bed frame system |
US6314630B1 (en) * | 1996-03-22 | 2001-11-13 | The Boeing Company | Determinant wing assembly |
US6357101B1 (en) * | 2000-03-09 | 2002-03-19 | The Boeing Company | Method for installing fasteners in a workpiece |
US6408517B1 (en) * | 1999-06-26 | 2002-06-25 | Airbus Deutschland Gmbh | Method and apparatus for assembling a three-dimensional structural component |
US6551226B1 (en) * | 2000-09-28 | 2003-04-22 | Hoist Fitness Systems | Adjustment apparatus for exercise machine |
US6612970B2 (en) * | 2001-11-13 | 2003-09-02 | John Forcillo | Adjustable stationary exercise bicycle |
US6905291B2 (en) * | 2002-05-30 | 2005-06-14 | The Boeing Company | Apparatus and method for drilling holes and optionally inserting fasteners |
US20050224655A1 (en) * | 2003-12-04 | 2005-10-13 | Dominique Guittard | Method for making a laminated structure and aircraft provided with such a structure |
US7016052B2 (en) * | 2001-09-28 | 2006-03-21 | The Boeing Company | Apparatus for measuring characteristics of a hole and associated method |
US20060117547A1 (en) * | 2004-12-08 | 2006-06-08 | The Boeing Company | Integral clamping-and-bucking apparatus for utilizing a constant force and installing rivet fasteners in a sheet metal joint |
US7065897B2 (en) * | 2004-11-02 | 2006-06-27 | The Boeing Company | Fastener grip length selector |
US20060179637A1 (en) * | 2005-01-19 | 2006-08-17 | Harald Schueler | Longitudinal seam-structure assembly of aircraft fuselage |
-
2004
- 2004-07-14 US US10/890,619 patent/US20060010689A1/en not_active Abandoned
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3082650A (en) * | 1960-09-12 | 1963-03-26 | Young Harry Russell | Depth control mechanism for drilling machines |
US3708937A (en) * | 1970-09-28 | 1973-01-09 | Kidde & Co Walter | Trapezoidal telescoping crane boom |
US3742584A (en) * | 1972-07-27 | 1973-07-03 | Mcdonald Douglas Corp | Method of installing tapered fasteners having a high percent of contact surface |
US4003168A (en) * | 1975-06-27 | 1977-01-18 | Walter Kidde & Company, Inc. | Crane boom of trapezoidal boom sections having reinforcing rings |
US4712950A (en) * | 1985-12-10 | 1987-12-15 | Reynolds Robert L | Drilling fixture and work holder |
US5010658A (en) * | 1988-11-22 | 1991-04-30 | Ltv Aerospace And Defense Company | Hole profile gaging systems |
US5277526A (en) * | 1990-08-09 | 1994-01-11 | Jobs S.P.A. | Apparatus with floating tool for drilling, boring, flaring and the like at a set depth using jigs |
US5560102A (en) * | 1992-10-13 | 1996-10-01 | The Boeing Company | Panel and fuselage assembly |
US5586391A (en) * | 1992-10-13 | 1996-12-24 | The Boeing Company | Method of making airplane fuselage |
US5694690A (en) * | 1992-10-13 | 1997-12-09 | The Boeing Company | Method of making large airplane structures |
US5325177A (en) * | 1992-10-29 | 1994-06-28 | Environmental Research Institute Of Michigan | Optical, interferometric hole gauge |
US5646538A (en) * | 1995-06-13 | 1997-07-08 | Measurement Systems, Inc. | Method and apparatus for fastener hole inspection with a capacitive probe |
US6314630B1 (en) * | 1996-03-22 | 2001-11-13 | The Boeing Company | Determinant wing assembly |
US5934631A (en) * | 1996-08-19 | 1999-08-10 | Thomas & Betts Corporation | Hanger bar assembly |
US5888032A (en) * | 1996-09-13 | 1999-03-30 | Cooper Technologies Company | Paddle fitting tool |
US5772916A (en) * | 1996-10-15 | 1998-06-30 | Liberty Technologies, Inc. | Phosphor screen, method of producing the same, and method for preparing a phosphor powder for producing a phosphor screen |
US5996145A (en) * | 1997-10-15 | 1999-12-07 | Harry A. Taylor | Adjustable bed frame system |
US6408517B1 (en) * | 1999-06-26 | 2002-06-25 | Airbus Deutschland Gmbh | Method and apparatus for assembling a three-dimensional structural component |
US6357101B1 (en) * | 2000-03-09 | 2002-03-19 | The Boeing Company | Method for installing fasteners in a workpiece |
US6551226B1 (en) * | 2000-09-28 | 2003-04-22 | Hoist Fitness Systems | Adjustment apparatus for exercise machine |
US7016052B2 (en) * | 2001-09-28 | 2006-03-21 | The Boeing Company | Apparatus for measuring characteristics of a hole and associated method |
US6612970B2 (en) * | 2001-11-13 | 2003-09-02 | John Forcillo | Adjustable stationary exercise bicycle |
US6905291B2 (en) * | 2002-05-30 | 2005-06-14 | The Boeing Company | Apparatus and method for drilling holes and optionally inserting fasteners |
US20050224655A1 (en) * | 2003-12-04 | 2005-10-13 | Dominique Guittard | Method for making a laminated structure and aircraft provided with such a structure |
US7065897B2 (en) * | 2004-11-02 | 2006-06-27 | The Boeing Company | Fastener grip length selector |
US20060117547A1 (en) * | 2004-12-08 | 2006-06-08 | The Boeing Company | Integral clamping-and-bucking apparatus for utilizing a constant force and installing rivet fasteners in a sheet metal joint |
US20060179637A1 (en) * | 2005-01-19 | 2006-08-17 | Harald Schueler | Longitudinal seam-structure assembly of aircraft fuselage |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140360003A1 (en) * | 2008-09-19 | 2014-12-11 | The Boeing Company | Electromagnetic clamping method |
US9021704B2 (en) * | 2008-09-19 | 2015-05-05 | The Boeing Company | Electromagnetic clamping method |
US20160350017A1 (en) * | 2010-03-25 | 2016-12-01 | International Business Machines Corporation | File index, metadata storage, and file system management for magnetic tape |
US20120276362A1 (en) * | 2011-04-28 | 2012-11-01 | Sikorsky Aircraft Corporation | Fay surface sealant application |
CN103879566A (en) * | 2012-12-21 | 2014-06-25 | 埃姆普里萨有限公司 | Process for joining aircraft structural components |
US20140173879A1 (en) * | 2012-12-21 | 2014-06-26 | Ita - Instituto Tecnologico De Aeronautica | Process for joining aircraft structural components |
US9102019B2 (en) * | 2012-12-21 | 2015-08-11 | Embraer S.A. | Process for joining aircraft structural components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | An investigation of drilling high-strength CFRP composites using specialized drills | |
JP5111068B2 (en) | Method for producing perforated fiber reinforced composite | |
US8398342B2 (en) | Workpiece vibration reduction | |
US20060236765A1 (en) | Method for the mechanical characterization of a metallic material | |
US6773211B2 (en) | Orbital drilling cutting tool | |
CA2568278A1 (en) | Method of connecting a metallic bolt to a plastic workpiece | |
US7083365B2 (en) | Adjustable drilling apparatus and associated method | |
EP3118698A1 (en) | Machine tool control & measurement system | |
US20060010689A1 (en) | Automated drill process for two-diameter holes in multi-layer variable thickness composite materials | |
JP2008540144A (en) | One-shot drilling tips for sandwich panels, etc. | |
GB2548245A (en) | One-sided fastener assembly and methods and systems for installing the same | |
US10078041B2 (en) | Flatwise material coupon | |
US8454281B2 (en) | Chamfer tool | |
Haider et al. | Design, Fabrication, and Analysis of a Precision Drilling Jig for Waste Reduction: A Low-cost Solution | |
US8388277B2 (en) | Internal chamfering device and method | |
US7942614B2 (en) | Method and apparatus for self-aligning swivel foot power feed drill | |
JP2010247281A (en) | Method of perforating fiber reinforced resin composite laminate and method of assembling fiber reinforced resin composite laminate having through holes formed using the perforation method and assembly member | |
Carvajal et al. | Research study of factors affecting difference between hole diameters in hybrid metal-composite drilling | |
US7434383B2 (en) | Bypass duct boss repair technology | |
Krall et al. | Avoidance of drill cap formation in CFRP-titanium stack materials by using vibration assisted drilling with defined coupling of the oscillation | |
Fernández-Pérez et al. | Composite Fiber Reinforced Plastic one-shoot drilling: Quality inspection assessment and tool wear evaluation | |
Beuscart et al. | Effect of cutting conditions on surface integrity when robotic drilling of Aluminum 6082-GFRP stacks | |
Paleen et al. | Hole drilling in polymer-matrix composites | |
Dastin | Joining and machining techniques | |
Fernandes | Intelligent automated drilling and reaming of carbon composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOEING COMPANY, THE, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SALOUR, ALI;GRZINA, DONALD J.;BARCLAY, ROBERT M., JR.;AND OTHERS;REEL/FRAME:015574/0888 Effective date: 20040713 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |