US20060005480A1 - Compression molded door assembly - Google Patents
Compression molded door assembly Download PDFInfo
- Publication number
- US20060005480A1 US20060005480A1 US11/227,558 US22755805A US2006005480A1 US 20060005480 A1 US20060005480 A1 US 20060005480A1 US 22755805 A US22755805 A US 22755805A US 2006005480 A1 US2006005480 A1 US 2006005480A1
- Authority
- US
- United States
- Prior art keywords
- door
- molding compound
- mold
- skin
- wood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007906 compression Methods 0.000 title claims description 14
- 230000006835 compression Effects 0.000 title claims description 14
- 238000000465 moulding Methods 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims abstract description 55
- 239000002023 wood Substances 0.000 claims description 41
- 230000007774 longterm Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000000748 compression moulding Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 claims 2
- 230000013011 mating Effects 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 37
- 239000011347 resin Substances 0.000 abstract description 37
- 239000000654 additive Substances 0.000 abstract description 32
- 239000000178 monomer Substances 0.000 abstract description 23
- 239000000463 material Substances 0.000 abstract description 22
- 229920001225 polyester resin Polymers 0.000 abstract description 16
- 239000004645 polyester resin Substances 0.000 abstract description 16
- 230000002787 reinforcement Effects 0.000 abstract description 14
- 239000000945 filler Substances 0.000 abstract description 11
- 239000011152 fibreglass Substances 0.000 description 29
- 239000003677 Sheet moulding compound Substances 0.000 description 22
- 239000002562 thickening agent Substances 0.000 description 21
- 239000003054 catalyst Substances 0.000 description 19
- 239000011162 core material Substances 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 229910000831 Steel Inorganic materials 0.000 description 18
- 239000000835 fiber Substances 0.000 description 18
- 239000010959 steel Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 14
- 239000003112 inhibitor Substances 0.000 description 13
- 239000004610 Internal Lubricant Substances 0.000 description 12
- 229920000728 polyester Polymers 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 9
- 239000000049 pigment Substances 0.000 description 7
- -1 polyurea-urethanes Polymers 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 229920001169 thermoplastic Polymers 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 229920002689 polyvinyl acetate Polymers 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000012764 mineral filler Substances 0.000 description 4
- 229920002635 polyurethane Polymers 0.000 description 4
- 239000004814 polyurethane Substances 0.000 description 4
- 229920006337 unsaturated polyester resin Polymers 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 3
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 description 2
- BTNYBNHUZOZYTA-ODZAUARKSA-N (z)-but-2-enedioic acid;propane-1,2-diol Chemical class CC(O)CO.OC(=O)\C=C/C(O)=O BTNYBNHUZOZYTA-ODZAUARKSA-N 0.000 description 2
- IMYCVFRTNVMHAD-UHFFFAOYSA-N 1,1-bis(2-methylbutan-2-ylperoxy)cyclohexane Chemical compound CCC(C)(C)OOC1(OOC(C)(C)CC)CCCCC1 IMYCVFRTNVMHAD-UHFFFAOYSA-N 0.000 description 2
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 2
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 description 2
- RFSCGDQQLKVJEJ-UHFFFAOYSA-N 2-methylbutan-2-yl benzenecarboperoxoate Chemical compound CCC(C)(C)OOC(=O)C1=CC=CC=C1 RFSCGDQQLKVJEJ-UHFFFAOYSA-N 0.000 description 2
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- UOCJDOLVGGIYIQ-PBFPGSCMSA-N cefatrizine Chemical group S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](N)C=2C=CC(O)=CC=2)CC=1CSC=1C=NNN=1 UOCJDOLVGGIYIQ-PBFPGSCMSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- HARQWLDROVMFJE-UHFFFAOYSA-N ethyl 3,3-bis(tert-butylperoxy)butanoate Chemical compound CCOC(=O)CC(C)(OOC(C)(C)C)OOC(C)(C)C HARQWLDROVMFJE-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 150000002432 hydroperoxides Chemical class 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- BLKRGXCGFRXRNQ-SNAWJCMRSA-N (z)-3-carbonoperoxoyl-4,4-dimethylpent-2-enoic acid Chemical compound OC(=O)/C=C(C(C)(C)C)\C(=O)OO BLKRGXCGFRXRNQ-SNAWJCMRSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- WDIXVQTZULGQNI-UHFFFAOYSA-N 2-ethyl-2-(2-methylbutan-2-ylperoxy)hexanoic acid Chemical compound CCCCC(CC)(C(O)=O)OOC(C)(C)CC WDIXVQTZULGQNI-UHFFFAOYSA-N 0.000 description 1
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- AQKYLAIZOGOPAW-UHFFFAOYSA-N 2-methylbutan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CCC(C)(C)OOC(=O)C(C)(C)C AQKYLAIZOGOPAW-UHFFFAOYSA-N 0.000 description 1
- ZIDNXYVJSYJXPE-UHFFFAOYSA-N 2-methylbutan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CCC(C)(C)OOC(=O)CCCCCC(C)(C)C ZIDNXYVJSYJXPE-UHFFFAOYSA-N 0.000 description 1
- FSGAMPVWQZPGJF-UHFFFAOYSA-N 2-methylbutan-2-yl ethaneperoxoate Chemical compound CCC(C)(C)OOC(C)=O FSGAMPVWQZPGJF-UHFFFAOYSA-N 0.000 description 1
- WFAUFYAGXAXBEG-UHFFFAOYSA-N 2-phenylpropan-2-yl 4,4-dimethylpentaneperoxoate Chemical compound CC(C)(C)CCC(=O)OOC(C)(C)C1=CC=CC=C1 WFAUFYAGXAXBEG-UHFFFAOYSA-N 0.000 description 1
- VCLRGKCSNCNOCW-UHFFFAOYSA-N 2-phenylpropan-2-yl decaneperoxoate Chemical compound CCCCCCCCCC(=O)OOC(C)(C)C1=CC=CC=C1 VCLRGKCSNCNOCW-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 239000004412 Bulk moulding compound Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 235000010005 Catalpa ovata Nutrition 0.000 description 1
- 240000004528 Catalpa ovata Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- APEMGLZKXOPJJJ-UHFFFAOYSA-N [6-(2-ethylhexanoylperoxy)-6-methylheptan-3-yl] 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(CC)CCC(C)(C)OOC(=O)C(CC)CCCC APEMGLZKXOPJJJ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Natural products CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229940095564 anhydrous calcium sulfate Drugs 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 description 1
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- QZYRMODBFHTNHF-UHFFFAOYSA-N ditert-butyl benzene-1,2-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1C(=O)OOC(C)(C)C QZYRMODBFHTNHF-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- QWVBGCWRHHXMRM-UHFFFAOYSA-N hexadecoxycarbonyloxy hexadecyl carbonate Chemical compound CCCCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCCCC QWVBGCWRHHXMRM-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000004413 injection moulding compound Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002976 peresters Chemical class 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000162 poly(ureaurethane) Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/70—Door leaves
- E06B3/82—Flush doors, i.e. with completely flat surface
- E06B3/822—Flush doors, i.e. with completely flat surface with an internal foursided frame
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/003—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C5/00—Processes for producing special ornamental bodies
- B44C5/04—Ornamental plaques, e.g. decorative panels, decorative veneers
- B44C5/0453—Ornamental plaques, e.g. decorative panels, decorative veneers produced by processes involving moulding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/06—Unsaturated polyesters
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/70—Door leaves
- E06B3/7001—Coverings therefor; Door leaves imitating traditional raised panel doors, e.g. engraved or embossed surfaces, with trim strips applied to the surfaces
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B3/00—Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
- E06B3/70—Door leaves
- E06B3/72—Door leaves consisting of frame and panels, e.g. of raised panel type
- E06B3/78—Door leaves consisting of frame and panels, e.g. of raised panel type with panels of plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
- B29C2043/023—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2311/00—Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
- B29K2311/14—Wood, e.g. woodboard or fibreboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/724—Doors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/772—Articles characterised by their shape and not otherwise provided for
Definitions
- the present invention is directed to a door member, and more specifically, to a door member having compression molded fiberglass door skins.
- Door members have been manufactured from solid wood slabs for many years.
- solid wood door members have many disadvantages. For instance, solid wood door members can experience significant dimensional changes with variations in temperature and humidity. This can result in cracking and splitting. Also, maintenance of finishes is crucial to preventing degradation of the wood materials. In response, many consumers began using doors manufactured from more durable and dimensionally stable materials.
- Steel doors which superseded wood doors in the market place, hold the majority share of the market, due mostly in part to their low cost relative to wood doors.
- Steel doors also have the advantage over doors made of solid and laminated wood materials of having greater insulation efficiency.
- Steel doors however, have many undesirable characteristics. For instance, steel doors dent readily during construction and homeowner use. Moreover, the surfaces of the steel doors rust, especially when in service at houses in relative close proximity to salt water, and feel cold to the touch during cold weather conditions.
- Fiberglass door members comprising fiberglass reinforced compression molded skins have recently become a door member product that has acquired consumer acceptance. Manufacture of these door members is known in the art; for example, U.S. Pat. Nos. 4,550,540; 4,720,951; and 5,537,789, which are incorporated herein by reference.
- Fiberglass door members typically comprise a door-shaped wooden frame member, a polymeric foam-type core positioned within the frame member, a first fiberglass reinforced compression molded door skin secured to a first side of the frame member, and a second fiberglass reinforced compression molded door skin secured to a second side, opposite the first side, of the frame member.
- the fiberglass reinforced compression molded door skins are prepared from a molding compound.
- the fiberglass door members compare favorably to wood material doors in that they are less expensive than wood material doors. Moreover, fiberglass door members overcome the cracking, splitting, delaminating veneers and poor insulating efficiency associated with wood doors. Furthermore, these fiberglass door members compare favorably to steel doors in that they resist the denting, rusting and do not have the cold feel associated with steel doors. However, these fiberglass door members have, up until now, not been able to be made to have an exterior surface as smooth as steel doors or sanded wood doors.
- Steel door exterior surfaces are relatively smooth and produce the appearance of a smooth exterior surface when painted.
- Wood doors while having relatively coarse exterior surfaces, are sandable, before being painted, to produce the appearance of a smooth exterior surface when painted.
- the molded door skins of the prior art fiberglass door members have been molded to have exterior surfaces which have a very coarse wood grain pattern to simulate the appearance of a wood door when stained.
- these prior art fiberglass door members when painted, have the appearance of a painted, unsanded, relatively coarse wood door member.
- the present invention is a door member comprising a frame having a first side and a second side, opposite the first side, a core positioned within the frame, and a molded skin attached to the frame.
- the skin is prepared from a molding compound which, when molded, has a shrinkage of between about ⁇ 0.0003 to about +0.0015.
- the molding compound comprises a resin system comprising a curable polyester resin, a co-curable unsaturated monomer, and at least two low profile additives.
- the molding compound further includes at least about 30 percent by weight, based on the weight of the molding compound, of filler material, and less than about 35 weight percent, based on the weight of the molding compound, of fibrous reinforcement.
- An object of the present invention is to provide a fiberglass door member that has a smooth enough surface to simulate steel and wood door members when painted.
- Another object of the present invention is to provide compression molded fiberglass door skins having a relatively low shrinkage when molded.
- FIG. 1 is a front elevational view of a door assembly according to the present invention
- FIG. 2 is a side elevational view of the door assembly of the present invention
- FIG. 3 is a cross-sectional view taken along line 3 - 3 of FIG. 2 showing the frame of the present invention with the core positioned therein;
- FIG. 4 illustrates the sanding pattern of a conventional multi-panel wood door.
- a door member 10 is illustrated.
- the door member is a fiberglass entry way door.
- Other door members 10 include, but are not limited to, sidelights, combination entryway door and sidelights, door light frames, door frame, sills and other fiberglass structural members.
- the door 10 includes a core 12 positioned within a frame 14 .
- the core 12 is preferably an inserted core or a core formed in-situ.
- the core 12 can be made of a variety of materials depending on the application.
- inserted cores can include continuous or discontinuous compressed mineral board, compressed inorganic fillers with binders, compressed organic fillers with binders, compressed organic and inorganic blends with binders or in-situ formed binder; molded or shaped thermoplastics such as expanded polystyrene, foamed polyvinyl chloride, or foamed or expanded polyolefins; molded or shaped thermosets such as flexible or rigid, solid or foamed polyurethanes, polyurea-urethanes, polyureas, polyisocyanurates, and phenolics; blow molded shells; or honeycomb inserts comprised of organic fibers, organic pulps, thermoplastics, and thermosets; preforms derived from either air-laid or vacuum-laid mats of cellulosic fiber, glass fiber, thermoplastic fiber, or thermoset fiber or woven mats or veil of the same materials where a binder or resin has been applied or injected to shape a core; and blends or
- In-situ formed cores include cores developed from reaction injection molding with or without reinforcement of thermosets such as polyurethanes, polyureaurethanes, polyisocyanurates, and phenolics; gas injection of a thermoplastic, ceramic, or thermoset; activation of in-situ blowing agents or foaming of material introduced into the shell; mechanical tension applied to melted or softened thermoplastic or thermoset materials; or blends and combinations of these in-situ cores.
- the choice of a core material is constrained by ⁇ 10% dimensional change in the range of ⁇ 40° C. to 95° C. with ⁇ 5% preferred.
- the core 12 is an in-situ core and is made of polyurethane.
- the frame 14 includes a first stile 16 and a second stile 18 .
- the stiles 16 and 18 are parallel to one another.
- the stiles 16 and 18 are positioned in a perpendicular relationship to a first rail 20 and a second rail 22 , parallel to, and spaced apart from, the first rail 20 .
- the first and second rails 20 and 22 respectively, extend between and connect the stiles 16 and 18 .
- the frame 14 in FIG. 3 has a rectangular geometric configuration. However, it should be understood that the frame 14 can be arranged in a variety of geometric configurations depending upon the desired application.
- the stiles 16 and 18 and rails 20 and 22 are preferably made of wood but could be made of some other suitable material.
- One of the stiles 16 and 18 , and preferably, the first stile 16 could be manufactured to add weight to the door 10 to provide the door 10 with a closing momentum which makes a person closing the door to believe the door to be substantial or “solid”.
- the stile 16 preferably has a width in the range of from about 2.5 cm to 16 cm.
- the stile 16 can also be a hollow channel of pultruded or extruded reinforced plastic, a metal hollow channel, a partially or totally metal reinforced channel made of a material other than metal, or a compressed mineral stile depending on the application.
- the door 10 includes a first molded skin 24 secured to a first side of the frame 14 and a second molded skin 26 secured to a second side of the frame.
- the skins 24 and 26 of the present invention preferably have widths between about 0.75 m and about 1.07 m, lengths preferably between about 1.95 m and about 2.45 m, and an average thickness between about 1.0 mm and about 2.5 mm and are novel in that, when painted, simulate the appearance of painted steel or sanded wood doors.
- sanded wood doors typically contain a fine lines characteristic of sanding with sandpaper, for example sandpaper having grit sizes of 40-150.
- Door 10 shown in FIG. 4 incorporates fine textured sanding pattern aesthetically similar to a real wood multi-panel door which has been sanded smooth with sandpaper in a conventional manner.
- the texture of the surface of the skins 24 and 26 is preferably essentially smooth, such that they can attain a high gloss finish (25-35 units) when painted.
- the texture of the skins 24 and 26 can be made by a variety of casting, machining, polishing, blasting and deposition processes. These casting processes include silicone molds, epoxy molds, metal molds from sandcasting, metallic shell on a mandrel, electroless metallic disposition on a mandrel and cold isostatic pressing using any of the above texture transfer techniques to create the textured surface for the mandrel.
- the skins 24 and 26 can be formed with the preferably essentially smooth texture by many molding techniques including resin transfer molding, vacuum assisted resin intrusion, rotational molding, low and high pressure injection molding, as well as low and high pressure compression molding, with high pressure compression molding being preferred.
- the door skins 24 and 26 can be larger than the frame 14 . This allows for the door 10 to be cut squarely, rebated or beveled as required by the user of the door.
- the door skins 24 and 26 of the present invention are an improvement over prior art door skins in that they have a much smoother surface than prior art door skins so that, when painted, they have the appearance of a painted steel or sanded wood door.
- the door skins 24 and 26 should be made using a SMC which can attain a long term 8 i number under about 250 and/or an orange peel Loria® number above about 7.5 as determined by a Loria® surface analyzer.
- a Loria® surface analyzer measures the surface smoothness of flat objects.
- the Loria® surface analyzer reflects a laser beam off the surface of a test plaque which has been molded in a mold in which the show surface had been highly polished to a mirror finish.
- the plaque is typically about 304.8 mm ⁇ 304.8 mm.
- the reflected beam is projected onto a reflective screen.
- the image is then picked up off the screen by a high-resolution video camera.
- the laser beam is moved across the surface in a series of parallel lines.
- the area of the surface in which the laser beam is moved across is an area which is sufficient to achieve a true average of the surface smoothness of the molded plaque, and is typically about 279.44 mm ⁇ 279.44 mm.
- the images of these lines are then analyzed by the Loria® surface analyzer for smoothness.
- the Loria® surface analyzer then calculates the long term Loria® number and the orange peel Loria® number for the tested plaque.
- the skins 24 and 26 of the present invention preferably have a long term Loria® number of between about 40 to about 200, more preferably between about 60 to about 120, and most preferably of about 100. Moreover, the skins 24 and 26 of the present invention preferably have an orange peel Loria® number of between 8.0 to about 10.0, and most preferably of about 9.0.
- the present invention achieves the above, and other, goals by providing a molding compound for the door skins 24 and 26 which, when molded, has a shrinkage of about ⁇ 0.0003 to about +0.0015 preferably, about ⁇ 0.0002 to about +0.0004, and most preferably about +0.0002.
- Shrinkage is defined as the shrinkage or expansion of a cured part as it is compared to the mold it was molded in.
- Shrinkage values are obtainable by molding flat plaques, preferably flat plaques being about 3.2 mm thick with a dimension of about 304.8 mm ⁇ 304.8 mm.
- the molded part and the mold are measured at room temperature.
- the molded plaques are allowed to set at least about one day before measuring. Each plaque is measured in four locations, two in the transverse and two in the longitudinal direction.
- the molding compounds of the present invention includes sheet molding compounds, bulk (or dough) molding compounds, kneading molding compound, thick molding compounds, and injection molding compounds typically called ZMC.
- the molding compound of the present invention is a sheet molding compound.
- the sheet molding compound of the present invention preferably comprises a resin system-catalyst component, a thickener component and a fiber reinforcement component.
- the resin system-catalyst component and the thickener component are preferably combined first to form a paste.
- the fiber reinforcement component is then added to the paste to form the sheet molding compound.
- the resin system-catalyst component preferably comprises a resin system, a cure catalyst, a filler material, and an internal lubricant.
- the resin system-catalyst component may preferably also include a cure inhibitor, additional monomer, and an accelerator.
- the thickener component preferably includes chemical thickeners to adjust the theological properties of the sheet molding compound.
- the thickener component may further include a monomer, an internal lubricant, a cure inhibitor and a pigment.
- a filler material means that minimally one filler material is present in the sheet molding compound with two or more filler materials being optionally present in the sheet molding compound.
- weight percent as used herein with respect to a component of the sheet molding compound, it is meant the total weight of the component and not the weight percent solid of the component, unless otherwise specified.
- the molding compound of the present invention preferably comprises from about 16.0 to about 33.5 weight percent of the resin system, based on the weight of the molding compound, and more preferably, from about 21.0 to about 29.0 weight percent.
- the resin system minimally comprises a curable unsaturated polyester resin, a co-curable unsaturated monomer and at least two low profile additive.
- the resin system comprises from about 40 to about 75 weight percent solids, based on the weight of the resin system, and more preferably, from about 48 to about 65 weight percent solids, and most preferably about 55 weight percent solids.
- Curable unsaturated polyester resins are well known to those skilled in the art, and are generally prepared in a non-limiting sense, by esterification or transesterification of one or more unsaturated dicarboxylic acids or reactive derivatives thereof with one or more aliphatic or cycloaliphatic diols. Saturated dicarboxylic acids, aromatic dicarboxylic acids, or their reactive derivatives may be used in conjunction with the unsaturated dicarboxylic acid(s) to lower the crosslink density. Curable polyester resins are available commercially, and examples of such are disclosed in U.S. Pat. Nos.
- the curable unsaturated polyester resins may be a high reactivity polyester resin.
- suitable high reactivity polyester resins include, but are not limited to, high reactivity orthophthalic polyester resins, high reactivity isophthalic polyester resins, and high reactivity dicyclopentadiene-modified (DCPD) polyester resins.
- a particularly preferred curable unsaturated high reactivity polyester resin is a dicyclopentadiene-modified propylene glycol-maleate polyester resin.
- Co-curable unsaturated monomers are also well known to those skilled in the art, and include, for example, the various alkylacrylates and alkylmethacrylates as well as vinyltoluene ⁇ -methylstyrene, p-methylstyrene, and styrene.
- co-curing it is meant that the monomer contains reactive unsaturation capable of reacting with itself and/or the unsaturated sites of the curable polyester under the curing conditions. Additional co-curable monomers are identified in the above-referenced patents.
- a particularly preferred co-curable monomer is styrene.
- Low profile additives may be defined as relatively polar thermoplastic polymeric materials which, when added to sheet molding compositions, are believed to encourage the formation of numerous microvoids. Such additives are believed to become wholly or partially immiscible with the resin matrix during cure under compression molding conditions, resulting in a multi-phasic polymer system.
- the immiscibility of the low profile additives may increase the volume of the curing mass, offsetting the volume reduction of the curing and crosslinking unsaturated components.
- the different phases appear to exhibit different degrees of contraction upon cooling. As the compression molded skins cool prior to and after their removal from the mold, the different phases are believed to contract at different rates, which is believed to cause numerous microvoids to be created.
- Low profile additives are well known to those skilled in the sheet molding composition art.
- Low profile additives are generally relatively polar thermoplastic polymers. While the mechanism of microvoid formation is not known with certainty, it is believed that during the cure of the curable polyester and co-curable monomer to form a thermoset structure, a microgel phase is formed from the curing/crosslinking of the unsaturated components which is at least partially incompatible with the low profile additive, which begins to phase-separate. The phase separation is believed to cause an increase in volume of the composition which partially or wholly offsets the shrinkage which results from curing of the polyester/co-curable monomer.
- the curing polyester forms a matrix which at least partially surrounds the low profile additive phase.
- microvoids Upon cooling, the differences in volume contraction between the two phases is believed to assist in the formation of microvoids.
- the presence of such microvoids may be observed by microscopic inspection of the surface, and by the porosity which portions of the surface exhibit with respect to absorbance of liquids, which otherwise would be minimal.
- suitable low profile additives include, but are not limited to, polyvinyl acetate, modified polyvinyl acetate, saturated polyester, modified saturated polyester, polymethyl methacrylate, polyurethanes, and styrenic block copolymer—modified rubber.
- Particularly preferred low profile additives are saturated polyesters and polyvinyl acetates, and more preferably saturated glycol-C 2 to C 6 dicarboxylic acid polyesters and modified polyvinyl acetates.
- a preferred resin system is available from Alpha/Owens Corning, of Valpairaso, Ind., under the produce designation E-4295 and comprises a high reactivity dicyclopentadiene-modified propylene glycol-maleate polyester, co-curable styrene monomer, and low profile additives which comprise at least a saturated glycol-C 2 to C 6 dicarboxylic acid polyester and a modified polyvinyl acetate.
- Low shrinkage additives are generally less effective than low profile additives. They are believed to function by increased phase segregation and immiscibility with respect to the molding resin matrix. Low shrinkage additives are believed to assist in the formation of discontinuous islands of material which modify the shrinkage properties of the molded products. However, they generally do not generate microvoids in the molded product. While the use of low shrinkage additives has been used in molding compounds used to manufacture prior art door skins, low shrinkage additives are not used in the most preferred embodiments of the present invention. However, such additives may be used with alternative molding systems, for example sheet molding compounds based on different base resins. Additional low profile additives, low shrinkage additives, and other additives may be found in U.S. application Ser. No. 09/366,137, incorporated herein by reference.
- the molding compound of the present invention preferably comprises from about 0.2 to about 0.9 weight percent of the cure catalyst, based on the weight of the molding compound, and more preferably, from about 0.35 to about 0.65 weight percent.
- the cure catalyst is selected from a list that includes, but is not limited to, the following:
- the preferred cure catalysts are t-butyl perbenzoate; t-amyl perbenzoate; 1,5-dimethyl 2,5-di(ethylhexanoylperoxy)heaxane; t-butylperoxy-2-ethylhexanoate; OO-t-butyl-O-isopropyl monopercarbonate; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane; 1,1-di(t-butylperoxy) 3,3,5-trimethylcyclohexane; 1,1-di(t-butylperoxy)cyclohexane; ethyl-3,3-di(t-butylperoxy)butyrate; 1,1-di(t-amylperoxy)cyclohexane; and 2,2-di-t-amylperoxy propane or combinations thereof.
- the molding compound of the present invention preferably comprises from about 30.0 to about 70.0 weight percent of filler, based on the weight of the molding compound, and more preferably, from about 40.0 to about 65.0 weight percent and even more preferably, from about 45.0 to about 59.0 weight percent.
- Fillers are principally materials for occupying space, but may contribute to the mechanical, functional or aesthetic properties of the molded article or door. Suitable fillers include, but are not limited to, calcium carbonate; magnesium carbonate; aluminum trihydrate; anhydrous calcium sulfate; gypsum; kaolin clays; barium sulfate; nepheline syenite; ground silicas; wollastonite; saw dust; excelsior; minerals with aspect ratio of 4 or less; hollow glass or ceramic microspheres; ground agricultural wastes; mixtures of any or all of these as well as many others known in the art, including fillers which have been treated with coupling agent or low profile agent coatings.
- the most preferred filler is calcium carbonate having average particle size of 3-8 ⁇ m, preferably about 5 ⁇ m.
- the resin system-catalyst component of the molding compound preferably includes any internal lubricant contemplated by one skilled in the molding compound art in an amount of from about 0.5 to about 2.3 weight percent, based on the weight of the molding compound.
- Cure inhibitors may be employed to retard the polymerization of the unsaturated polyester resin in the sheet molding compound. If cure inhibitors are employed in the resin system-catalyst component, the molding compound of the present invention preferably comprise no more than about 0.3 weight percent of cure inhibitors in the resin-system catalyst component, based on the weight of the molding compound, and more preferably, from about 0.01 to 0.2 weight percent. Suitable cure inhibitors include, but are not limited to,
- the additional monomer is separate from the co-curable monomer in the resin system, and, if used in the resin system-catalyst component, is preferably present in an amount less than about 7.0 weight percent, based on the weight of the molding compound.
- Suitable monomers include, but are not limited to, the monomers useable as the co-curable unsaturated monomer in the resin system.
- Accelerators may optionally be used to help reduce cure times. Accelerators, when used, act as additional classes of cure catalysts for the unsaturated polyesters. Suitable compounds useable as accelerators include, but are not limited to, cobalt compounds such as cobalt naphthenate and octanoate.
- the thickener component of the molding compound preferably comprises from about 0.2 to about 0.9 weight percent of a chemical thickener, based on the weight of the molding compound. Any suitable chemical thickener contemplated by one skilled in the molding compound art may be used.
- the thickener component of the molding compound may also contain other known molding compound additives including, but not limited to, pigment, monomer, cure inhibitor and internal lubricant.
- the pigment may be any pigment contemplated by one skilled in the molding compound art. If pigment is used, it is preferred that the pigment be present in the molding compound in an amount of about 5 weight percent or less, based on the weight of the molding compound.
- the list of monomers useable in the thickener component includes, but is not limited to, the monomers useable in the resin system component. If monomer is used in the thickener component of the molding compound, it is preferred that the monomer in the thickener component be present in an amount of about 3 weight percent or less, based on the weight of the molding compound.
- the internal lubricant may be any internal lubricant contemplated by one skilled in the molding compound art, and is preferably present in the thickener component in an amount of about 1.3 weight percent or less, based on the weight of the molding compound.
- the molding compound of the present invention preferably comprises no more than about 0.3 weight percent of cure inhibitors in the thickener component, based on the weight of the molding compound.
- the molding compound of the present invention preferably comprises from about 15.0 to about 35.0 weight percent of fiber reinforcement, based on the weight of the molding compound, and more preferably, from about 18.0 to about 27.0 weight percent, and even more preferably, from about 19 to about 22 weight percent.
- the fiber reinforcement is approximately 2.5 cm long +/ ⁇ 1 cm.
- the longer length of the fiber reinforcement differentiates sheet molding compound from the bulk molding compounds and ZMC, and provides the stronger mechanical properties relative to the comparable formulation of these two other compounds.
- the fiber reinforcement is selected from a list including, but not limited to, fiberglass; carbon fiber; aramid fiber; lignocellulosic fibers; agricultural fibers; natural and synthetic textile fibers; olefinic fibers, including oriented olefinic fibers; mineral reinforcements with aspect ratios in excess of about 4; or mixtures of any or all of these reinforcements.
- Fiberglass is the preferred fiber reinforcement, and is most preferable about 2.5 cm long chopped 23C fiberglass fiber such as is available from CertainTeed, Corp.
- E-4295 low profile resin system comprising a polyester resin, low profile
- the resin system is mixed, by techniques known in the art, with the mineral filler, cure catalyst, internal lubricant and cure inhibitor being mixed in a low shear Ross mixer.
- the resin system is mixed first with the cure catalyst, with the internal lubricant being added to the mixer next, followed by the mineral filler.
- the mixture is transferred to a high shear dynamic mixer, such as a Shar mixer or a Finn and Fram mixer.
- the thickener component is preferably prepared in a separate mixer and is then transferred to the high shear dynamic mixer for blending with the resin system-catalyst component.
- a presently preferred embodiment employs a similar resin system and is processed similarly, except that during the molding process, vacuum is applied while the resin is still flowable, to reduce blisters, and hence scrap.
- the resin system consists of 17.69 parts S 903-300, an inhibited resin formulation containing a low profile additive, and containing the same DCPD polyester base resin as E-4295, available from AOC, Guelph, Ontario; 7.02 parts T181 saturated polyester low profile additive; 0.37 parts t-amylperoxybenzoate cure catalyst; 0.62 parts internal lubricant; and 49.41 parts mineral filler.
- the thickener component is the same as in Table 1, but used in an amount of 2.89 parts. This thickener component is available from AOC as G 7304W.
- the glass fiber reinforcement is 22 parts PPG 5509 glass fiber available from PPG in Shelby, N.C.
- the entire sheet molding compound sheet is compacted, thereby, enhancing the mixing of fiberglass and resin; allowed to maturate for about 2 days in special styrene transfer resistant wrapping; and molded in a match compression mold at approximately 148° C.-160° C. for about 70 seconds at approximately 3.5-10.3 MPa of pressure to yield a door skin having a thickness of between about 1.0 mm and about 2.5 mm; a width of between about 0.75 m and about 1.07 m; and a length of between about 1.95 m and about 2.45 m.
- Assembly of door 10 of the present invention is completed by securing, in any suitable manner, and preferably with an adhesive, the first door skin 24 to a first side of a frame 14 housing a core 12 , and the second skin 26 to a second side of the frame.
- the combined thickness of the door skins 24 and 26 , core 12 and frame 14 ranges is preferably from about 1.375-2.5 inches.
- Example 2 is a mixture prepared according to the sheet molding compound in Example 1.
- Comparative Example A is prepared from a sheet molding compound comprising a resin system having a polyester resin, two low shrinkage additives and no low profile additives.
- Comparative Example B is prepared for a sheet molding compound having a polyester resin, one low shrinkage additive, and only one low profile additive.
- the polyester resin in Example 1 is different from the polyester resin in Comparative Example A, but is the same as the polyester resin in Comparative Example B.
- the low profile additive in Comparative Example B is the same as a low profile additive in Example 1.
- the plaques were molded to be planar and have an average thickness of about 3.2 mm and dimensions of about 304.8 mm ⁇ 304.8 mm.
- a check fixture with dial indicators was made to check the plaques.
- a calibration gauge was used to zero the fixture to the size of the mold.
- the molded plaques were allowed to set at least one day before being measured. Each plaque was measured in four locations, two in the transverse and two in the longitudinal direction. Each dial reading was divided by the length of the plaque to get the shrinkage value.
- Table 2 displays the shrinkage for each of the plaques. TABLE 2 Cured Sheet Molding Compound Plaque Shrinkage Example 2 ⁇ 0.0002 Comparative Example A ⁇ 0.0007 Comparative Example B ⁇ 0.0004
- the surfaces of the plaques were analyzed by a Loria® surface analyzer.
- the plaques were molded in a flat mold in which the show surface had been highly polished to a mirror finish.
- the Loria® surface analyzer reflected a laser beam off the surface of the object.
- the laser beam was moved across the surface of the plaques in a series of parallel lines over an area of about 279.4 mm ⁇ 279.4 mm.
- the reflected beam is projected unto a reflective screen.
- the image is then picked up off the screen by a high-resolution video camera.
- the images of these lines were then analyzed for smoothness. From this analysis, the long term Loria® number and the orange peel Loria® number were obtained. With long term Loria® number, the smaller the number, the smoother the surface.
- the long term Loria® number for Comparative Examples A and B could not be accurately obtained. This indicates that the sheet molding compounds used to make the plaques of Comparative Examples A and B produced surfaces which were too dull to enable the Loria® surface analyzer to record accurate reading.
- the Loria® surface analyzer can only attain an accurate long term Loria® number readings for samples having a long term Loria® numbers below about 250. Thus, it can be concluded that the long term Loria® number of the plaques of Comparative Examples A and B are above about 250.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A door member comprising a frame having a first side and a second side, opposite the first side, a core positioned within the frame, and a molded skin attached to the first side of the frame. The skin is prepared from a molding compound which, when molded, has a shrinkage of between about −0.0003 to about +0.0015. The molding compound comprises a resin system comprising a curable polyester resin, a co-curable unsaturated monomer, and at least two low profile additives. The molding compound also comprises at least about 30 percent by weight, based on the weight of the molding compound, of filler material, and fibrous reinforcement in an amount of less than about 35 weight percent, based on the weight of the molding compound.
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 09/116,405, filed Jul. 16, 1998, entitled “Compression Molded Door Assembly”.
- The present invention is directed to a door member, and more specifically, to a door member having compression molded fiberglass door skins.
- Door members have been manufactured from solid wood slabs for many years. However, solid wood door members have many disadvantages. For instance, solid wood door members can experience significant dimensional changes with variations in temperature and humidity. This can result in cracking and splitting. Also, maintenance of finishes is crucial to preventing degradation of the wood materials. In response, many consumers began using doors manufactured from more durable and dimensionally stable materials.
- Recent engineering changes in wood doors have made use of laminated wood materials and thin surface veneers in an attempt to overcome the disadvantages associated with solid wood door members. However, new problems with delamination of the veneers, substrate dimensional changes, as well as continuing finishing maintenance are compounded by increased costs of wood products. This has resulted in door member products that lack consumer acceptance. Thus, the market shares of solid and laminated wood entry doors have continued to decrease.
- Steel doors, which superseded wood doors in the market place, hold the majority share of the market, due mostly in part to their low cost relative to wood doors. Steel doors also have the advantage over doors made of solid and laminated wood materials of having greater insulation efficiency. Steel doors, however, have many undesirable characteristics. For instance, steel doors dent readily during construction and homeowner use. Moreover, the surfaces of the steel doors rust, especially when in service at houses in relative close proximity to salt water, and feel cold to the touch during cold weather conditions.
- Fiberglass door members comprising fiberglass reinforced compression molded skins have recently become a door member product that has acquired consumer acceptance. Manufacture of these door members is known in the art; for example, U.S. Pat. Nos. 4,550,540; 4,720,951; and 5,537,789, which are incorporated herein by reference. Fiberglass door members typically comprise a door-shaped wooden frame member, a polymeric foam-type core positioned within the frame member, a first fiberglass reinforced compression molded door skin secured to a first side of the frame member, and a second fiberglass reinforced compression molded door skin secured to a second side, opposite the first side, of the frame member. The fiberglass reinforced compression molded door skins are prepared from a molding compound.
- The fiberglass door members compare favorably to wood material doors in that they are less expensive than wood material doors. Moreover, fiberglass door members overcome the cracking, splitting, delaminating veneers and poor insulating efficiency associated with wood doors. Furthermore, these fiberglass door members compare favorably to steel doors in that they resist the denting, rusting and do not have the cold feel associated with steel doors. However, these fiberglass door members have, up until now, not been able to be made to have an exterior surface as smooth as steel doors or sanded wood doors.
- Steel door exterior surfaces are relatively smooth and produce the appearance of a smooth exterior surface when painted. Wood doors, while having relatively coarse exterior surfaces, are sandable, before being painted, to produce the appearance of a smooth exterior surface when painted. The molded door skins of the prior art fiberglass door members have been molded to have exterior surfaces which have a very coarse wood grain pattern to simulate the appearance of a wood door when stained. However, these prior art fiberglass door members, when painted, have the appearance of a painted, unsanded, relatively coarse wood door member.
- Many consumers do not find the appearance of such painted fiberglass door members aesthetically pleasing. Since, the exterior surface of a fiberglass door member cannot be sanded to produce a smooth surface, these consumers purchase wood doors or steel doors if they desire a painted door having a relatively smooth appearance. An apparent solution might seem to be to mold the door skins in a mold having smooth faces to produce door skins having smooth exterior surfaces. However, this has not proven to be a solution because the prior art molding compounds are not capable of producing a surface smooth enough to simulate painted steel or sanded wood doors, when painted, due to surface variations created in the molding process caused by shrinkage of the molded part.
- Accordingly, it is believed that if a fiberglass door member could be manufactured to simulated steel door members and sanded wood members, when painted, that certain consumer preference for steel door or wood members would shift to fiberglass door members. Thus, there is a need for a fiberglass door member that has a smooth enough surface to simulate steel and wood door members when painted.
- The present invention is a door member comprising a frame having a first side and a second side, opposite the first side, a core positioned within the frame, and a molded skin attached to the frame. The skin is prepared from a molding compound which, when molded, has a shrinkage of between about −0.0003 to about +0.0015. The molding compound comprises a resin system comprising a curable polyester resin, a co-curable unsaturated monomer, and at least two low profile additives. The molding compound further includes at least about 30 percent by weight, based on the weight of the molding compound, of filler material, and less than about 35 weight percent, based on the weight of the molding compound, of fibrous reinforcement.
- An object of the present invention is to provide a fiberglass door member that has a smooth enough surface to simulate steel and wood door members when painted.
- Another object of the present invention is to provide compression molded fiberglass door skins having a relatively low shrinkage when molded.
- These and other objects of the present invention will become more apparent from a reading of the specification in conjunction with the drawings.
-
FIG. 1 is a front elevational view of a door assembly according to the present invention; -
FIG. 2 is a side elevational view of the door assembly of the present invention; -
FIG. 3 is a cross-sectional view taken along line 3-3 ofFIG. 2 showing the frame of the present invention with the core positioned therein; and -
FIG. 4 illustrates the sanding pattern of a conventional multi-panel wood door. - The present invention will now be described in detail with reference being made to the accompanying drawings. Referring to
FIG. 1 , adoor member 10 is illustrated. In the preferred embodiments, the door member is a fiberglass entry way door.Other door members 10 include, but are not limited to, sidelights, combination entryway door and sidelights, door light frames, door frame, sills and other fiberglass structural members. - Referring to
FIGS. 1, 2 and 3, thedoor 10 includes acore 12 positioned within aframe 14. Thecore 12 is preferably an inserted core or a core formed in-situ. Thecore 12 can be made of a variety of materials depending on the application. For example, inserted cores can include continuous or discontinuous compressed mineral board, compressed inorganic fillers with binders, compressed organic fillers with binders, compressed organic and inorganic blends with binders or in-situ formed binder; molded or shaped thermoplastics such as expanded polystyrene, foamed polyvinyl chloride, or foamed or expanded polyolefins; molded or shaped thermosets such as flexible or rigid, solid or foamed polyurethanes, polyurea-urethanes, polyureas, polyisocyanurates, and phenolics; blow molded shells; or honeycomb inserts comprised of organic fibers, organic pulps, thermoplastics, and thermosets; preforms derived from either air-laid or vacuum-laid mats of cellulosic fiber, glass fiber, thermoplastic fiber, or thermoset fiber or woven mats or veil of the same materials where a binder or resin has been applied or injected to shape a core; and blends or mixtures of these various types of insertable cores. In-situ formed cores include cores developed from reaction injection molding with or without reinforcement of thermosets such as polyurethanes, polyureaurethanes, polyisocyanurates, and phenolics; gas injection of a thermoplastic, ceramic, or thermoset; activation of in-situ blowing agents or foaming of material introduced into the shell; mechanical tension applied to melted or softened thermoplastic or thermoset materials; or blends and combinations of these in-situ cores. The choice of a core material is constrained by ±10% dimensional change in the range of −40° C. to 95° C. with ±5% preferred. Most preferably, thecore 12 is an in-situ core and is made of polyurethane. - As shown in
FIG. 3 , theframe 14 includes afirst stile 16 and asecond stile 18. Thestiles stiles first rail 20 and asecond rail 22, parallel to, and spaced apart from, thefirst rail 20. The first andsecond rails stiles frame 14 inFIG. 3 has a rectangular geometric configuration. However, it should be understood that theframe 14 can be arranged in a variety of geometric configurations depending upon the desired application. - The
stiles stiles first stile 16 could be manufactured to add weight to thedoor 10 to provide thedoor 10 with a closing momentum which makes a person closing the door to believe the door to be substantial or “solid”. Thestile 16 preferably has a width in the range of from about 2.5 cm to 16 cm. Thestile 16 can also be a hollow channel of pultruded or extruded reinforced plastic, a metal hollow channel, a partially or totally metal reinforced channel made of a material other than metal, or a compressed mineral stile depending on the application. - As shown in
FIGS. 1 and 2 , thedoor 10 includes a first moldedskin 24 secured to a first side of theframe 14 and a second moldedskin 26 secured to a second side of the frame. Theskins Door 10 shown inFIG. 4 incorporates fine textured sanding pattern aesthetically similar to a real wood multi-panel door which has been sanded smooth with sandpaper in a conventional manner. - The texture of the surface of the
skins skins skins frame 14. This allows for thedoor 10 to be cut squarely, rebated or beveled as required by the user of the door. - The door skins 24 and 26 of the present invention are an improvement over prior art door skins in that they have a much smoother surface than prior art door skins so that, when painted, they have the appearance of a painted steel or sanded wood door. In order to produce a
fiberglass door member 10 which, when painted, has the appearance of painted steel or wood door members, the door skins 24 and 26 should be made using a SMC which can attain a long term 8i number under about 250 and/or an orange peel Loria® number above about 7.5 as determined by a Loria® surface analyzer. - A Loria® surface analyzer measures the surface smoothness of flat objects. The Loria® surface analyzer reflects a laser beam off the surface of a test plaque which has been molded in a mold in which the show surface had been highly polished to a mirror finish. The plaque is typically about 304.8 mm×304.8 mm. The reflected beam is projected onto a reflective screen. The image is then picked up off the screen by a high-resolution video camera. The laser beam is moved across the surface in a series of parallel lines. The area of the surface in which the laser beam is moved across is an area which is sufficient to achieve a true average of the surface smoothness of the molded plaque, and is typically about 279.44 mm×279.44 mm. The images of these lines are then analyzed by the Loria® surface analyzer for smoothness. The Loria® surface analyzer then calculates the long term Loria® number and the orange peel Loria® number for the tested plaque.
- The
skins skins - The present invention achieves the above, and other, goals by providing a molding compound for the door skins 24 and 26 which, when molded, has a shrinkage of about −0.0003 to about +0.0015 preferably, about −0.0002 to about +0.0004, and most preferably about +0.0002. Shrinkage is defined as the shrinkage or expansion of a cured part as it is compared to the mold it was molded in. Shrinkage values are obtainable by molding flat plaques, preferably flat plaques being about 3.2 mm thick with a dimension of about 304.8 mm×304.8 mm. The molded part and the mold are measured at room temperature. The molded plaques are allowed to set at least about one day before measuring. Each plaque is measured in four locations, two in the transverse and two in the longitudinal direction. Each measurement is divided by the length of the plaque to get the shrinkage value. Positive measurements yield an expansion reading. Negative measurements yield a shrinkage reading. Shrinkage values are unitless since the units cancel and the same reading is obtained whether it is in./in. or mm/mm.
- The molding compounds of the present invention includes sheet molding compounds, bulk (or dough) molding compounds, kneading molding compound, thick molding compounds, and injection molding compounds typically called ZMC.
- Preferably, the molding compound of the present invention is a sheet molding compound. The sheet molding compound of the present invention preferably comprises a resin system-catalyst component, a thickener component and a fiber reinforcement component. Generally, the resin system-catalyst component and the thickener component are preferably combined first to form a paste. The fiber reinforcement component is then added to the paste to form the sheet molding compound.
- The resin system-catalyst component preferably comprises a resin system, a cure catalyst, a filler material, and an internal lubricant. The resin system-catalyst component may preferably also include a cure inhibitor, additional monomer, and an accelerator.
- The thickener component preferably includes chemical thickeners to adjust the theological properties of the sheet molding compound. The thickener component may further include a monomer, an internal lubricant, a cure inhibitor and a pigment.
- By the terms “a” and “an” as used herein with respect to a component, or class of components, of the sheet molding compound, it is meant “one or more”. For example, the term “a filler material” means that minimally one filler material is present in the sheet molding compound with two or more filler materials being optionally present in the sheet molding compound. Also, by the term “weight percent” as used herein with respect to a component of the sheet molding compound, it is meant the total weight of the component and not the weight percent solid of the component, unless otherwise specified.
- The molding compound of the present invention preferably comprises from about 16.0 to about 33.5 weight percent of the resin system, based on the weight of the molding compound, and more preferably, from about 21.0 to about 29.0 weight percent.
- The resin system minimally comprises a curable unsaturated polyester resin, a co-curable unsaturated monomer and at least two low profile additive.
- The resin system comprises from about 40 to about 75 weight percent solids, based on the weight of the resin system, and more preferably, from about 48 to about 65 weight percent solids, and most preferably about 55 weight percent solids.
- Curable unsaturated polyester resins are well known to those skilled in the art, and are generally prepared in a non-limiting sense, by esterification or transesterification of one or more unsaturated dicarboxylic acids or reactive derivatives thereof with one or more aliphatic or cycloaliphatic diols. Saturated dicarboxylic acids, aromatic dicarboxylic acids, or their reactive derivatives may be used in conjunction with the unsaturated dicarboxylic acid(s) to lower the crosslink density. Curable polyester resins are available commercially, and examples of such are disclosed in U.S. Pat. Nos. 3,969,560; 4,172,059; 4,491,642; and 4,626,570, which are herein incorporated by reference, and in copending application Ser. No. 09/366,137 entitled “Improved Insulated Door Assembly With Low Thermal Deflection”, also incorporated herein by reference.
- The curable unsaturated polyester resins may be a high reactivity polyester resin. Examples of suitable high reactivity polyester resins include, but are not limited to, high reactivity orthophthalic polyester resins, high reactivity isophthalic polyester resins, and high reactivity dicyclopentadiene-modified (DCPD) polyester resins. A particularly preferred curable unsaturated high reactivity polyester resin is a dicyclopentadiene-modified propylene glycol-maleate polyester resin.
- Co-curable unsaturated monomers are also well known to those skilled in the art, and include, for example, the various alkylacrylates and alkylmethacrylates as well as vinyltoluene α-methylstyrene, p-methylstyrene, and styrene. By the term “co-curing,” it is meant that the monomer contains reactive unsaturation capable of reacting with itself and/or the unsaturated sites of the curable polyester under the curing conditions. Additional co-curable monomers are identified in the above-referenced patents. A particularly preferred co-curable monomer is styrene.
- Low profile additives may be defined as relatively polar thermoplastic polymeric materials which, when added to sheet molding compositions, are believed to encourage the formation of numerous microvoids. Such additives are believed to become wholly or partially immiscible with the resin matrix during cure under compression molding conditions, resulting in a multi-phasic polymer system. The immiscibility of the low profile additives may increase the volume of the curing mass, offsetting the volume reduction of the curing and crosslinking unsaturated components. Moreover, the different phases appear to exhibit different degrees of contraction upon cooling. As the compression molded skins cool prior to and after their removal from the mold, the different phases are believed to contract at different rates, which is believed to cause numerous microvoids to be created.
- Low profile additives are well known to those skilled in the sheet molding composition art. Low profile additives are generally relatively polar thermoplastic polymers. While the mechanism of microvoid formation is not known with certainty, it is believed that during the cure of the curable polyester and co-curable monomer to form a thermoset structure, a microgel phase is formed from the curing/crosslinking of the unsaturated components which is at least partially incompatible with the low profile additive, which begins to phase-separate. The phase separation is believed to cause an increase in volume of the composition which partially or wholly offsets the shrinkage which results from curing of the polyester/co-curable monomer. The curing polyester forms a matrix which at least partially surrounds the low profile additive phase. Upon cooling, the differences in volume contraction between the two phases is believed to assist in the formation of microvoids. The presence of such microvoids may be observed by microscopic inspection of the surface, and by the porosity which portions of the surface exhibit with respect to absorbance of liquids, which otherwise would be minimal.
- Examples of suitable low profile additives include, but are not limited to, polyvinyl acetate, modified polyvinyl acetate, saturated polyester, modified saturated polyester, polymethyl methacrylate, polyurethanes, and styrenic block copolymer—modified rubber. Particularly preferred low profile additives are saturated polyesters and polyvinyl acetates, and more preferably saturated glycol-C2 to C6 dicarboxylic acid polyesters and modified polyvinyl acetates. A preferred resin system is available from Alpha/Owens Corning, of Valpairaso, Ind., under the produce designation E-4295 and comprises a high reactivity dicyclopentadiene-modified propylene glycol-maleate polyester, co-curable styrene monomer, and low profile additives which comprise at least a saturated glycol-C2 to C6 dicarboxylic acid polyester and a modified polyvinyl acetate.
- Low shrinkage additives are generally less effective than low profile additives. They are believed to function by increased phase segregation and immiscibility with respect to the molding resin matrix. Low shrinkage additives are believed to assist in the formation of discontinuous islands of material which modify the shrinkage properties of the molded products. However, they generally do not generate microvoids in the molded product. While the use of low shrinkage additives has been used in molding compounds used to manufacture prior art door skins, low shrinkage additives are not used in the most preferred embodiments of the present invention. However, such additives may be used with alternative molding systems, for example sheet molding compounds based on different base resins. Additional low profile additives, low shrinkage additives, and other additives may be found in U.S. application Ser. No. 09/366,137, incorporated herein by reference.
- The molding compound of the present invention preferably comprises from about 0.2 to about 0.9 weight percent of the cure catalyst, based on the weight of the molding compound, and more preferably, from about 0.35 to about 0.65 weight percent.
- The cure catalyst is selected from a list that includes, but is not limited to, the following:
-
- diacyl peroxides such as benzoyl peroxide, t-butyl perbenzoate; t-amyl perbenzoate; ketone peroxides such as mixtures of peroxides and hydroperoxides; methyl isobutyl ketone peroxide; 2,4 pentanedione peroxide; methyl ethyl ketone peroxide/perester blend;
- peroxydicarbonates such as di(n-propyl)peroxydicarbonate, di(sec-butyl)peroxydicarbonate; di(2-ethylhexyl)peroxydicarbonate; Bis(4-t-butyl-cyclohexyl) peroxydicarbonate; diisopropylperoxydicarbonate; dicetyl peroxydicarbonate;
- peroxyesters such as alpha-cumyl peroxydecanoate; alpha-cumyl peroxyneoheptanoate; t-butylperoxyneodecanoate; t-butylperoxypivalate; 1,5-dimethyl 2,5-di(2-ethylhexanoylperoxy)hexane, t-butylperoxy-2-ethylheanoate; t-butylperoxy-isobutyrate; t-butylperoxymaleic acid, OO-t-butyl-O-isopropyl monopercarbonate; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, t-butylperoxy-acetate; t-butylperoxybenzoate; di-t-butyl diperoxyphthalate; mixtures of peroxyester and peroxyketal; t-amylperoxyneodecanoate; t-amylperoxypivalate, t-amylperoxy(2-ethylhexanoate); t-amylperoxyacetate; t-amylperoxybenzoate, t-butylperoxy-2-methyl benzoate;
- diakylperoxides such as dicumyl peroxide; 2,5-dimethyl-2,5-di(t-butylperoxy)hexane; 2,5-dimethyl-2,5-di(t-butylperoxy)dexyne-3; t-butyl cumyl peroxide; a-a-bis(t-butylperoxy)diisopropylbenzene; di-t-butyl peroxide; hydroperoxides such as 2,5=dihydro-peroxy-2,5-dimethylhexane; cumene hydroperoxide; t-butyl hydroperoxide;
- peroxyketals such as 1,1-di(t-butylperoxy) 3,3,5-trimethylcyclohexane; 1,1-di(t-butylperoxy)cyclohexane; ethyl-3,3-di(t-butylperoxy) butyrate; n-butyl 4,4-bis(t-butylperoxy)valerate; cyclic peroxyketal; 1,1-di(t-amylperoxy)cyclohexane; 2,2-di-t-amylperoxy propane.
- The preferred cure catalysts are t-butyl perbenzoate; t-amyl perbenzoate; 1,5-dimethyl 2,5-di(ethylhexanoylperoxy)heaxane; t-butylperoxy-2-ethylhexanoate; OO-t-butyl-O-isopropyl monopercarbonate; 2,5-dimethyl-2,5-di(benzoylperoxy)hexane; 1,1-di(t-butylperoxy) 3,3,5-trimethylcyclohexane; 1,1-di(t-butylperoxy)cyclohexane; ethyl-3,3-di(t-butylperoxy)butyrate; 1,1-di(t-amylperoxy)cyclohexane; and 2,2-di-t-amylperoxy propane or combinations thereof.
- The molding compound of the present invention preferably comprises from about 30.0 to about 70.0 weight percent of filler, based on the weight of the molding compound, and more preferably, from about 40.0 to about 65.0 weight percent and even more preferably, from about 45.0 to about 59.0 weight percent.
- Fillers are principally materials for occupying space, but may contribute to the mechanical, functional or aesthetic properties of the molded article or door. Suitable fillers include, but are not limited to, calcium carbonate; magnesium carbonate; aluminum trihydrate; anhydrous calcium sulfate; gypsum; kaolin clays; barium sulfate; nepheline syenite; ground silicas; wollastonite; saw dust; excelsior; minerals with aspect ratio of 4 or less; hollow glass or ceramic microspheres; ground agricultural wastes; mixtures of any or all of these as well as many others known in the art, including fillers which have been treated with coupling agent or low profile agent coatings. The most preferred filler is calcium carbonate having average particle size of 3-8 μm, preferably about 5 μm.
- The resin system-catalyst component of the molding compound preferably includes any internal lubricant contemplated by one skilled in the molding compound art in an amount of from about 0.5 to about 2.3 weight percent, based on the weight of the molding compound.
- Cure inhibitors may be employed to retard the polymerization of the unsaturated polyester resin in the sheet molding compound. If cure inhibitors are employed in the resin system-catalyst component, the molding compound of the present invention preferably comprise no more than about 0.3 weight percent of cure inhibitors in the resin-system catalyst component, based on the weight of the molding compound, and more preferably, from about 0.01 to 0.2 weight percent. Suitable cure inhibitors include, but are not limited to,
-
- substituted phenolic derivatives such as hydroquinone, quinone, and para-benzoquinone; and
- quaternary ammonium salts, especially of strong bases such as trimethyl benzylammonium chloride or bromide.
In the present invention, the preferred cure inhibitor, when used, is para-benzoquinone.
- The additional monomer is separate from the co-curable monomer in the resin system, and, if used in the resin system-catalyst component, is preferably present in an amount less than about 7.0 weight percent, based on the weight of the molding compound. Suitable monomers, include, but are not limited to, the monomers useable as the co-curable unsaturated monomer in the resin system.
- Accelerators, may optionally be used to help reduce cure times. Accelerators, when used, act as additional classes of cure catalysts for the unsaturated polyesters. Suitable compounds useable as accelerators include, but are not limited to, cobalt compounds such as cobalt naphthenate and octanoate.
- The thickener component of the molding compound preferably comprises from about 0.2 to about 0.9 weight percent of a chemical thickener, based on the weight of the molding compound. Any suitable chemical thickener contemplated by one skilled in the molding compound art may be used.
- The thickener component of the molding compound may also contain other known molding compound additives including, but not limited to, pigment, monomer, cure inhibitor and internal lubricant.
- The pigment may be any pigment contemplated by one skilled in the molding compound art. If pigment is used, it is preferred that the pigment be present in the molding compound in an amount of about 5 weight percent or less, based on the weight of the molding compound.
- The list of monomers useable in the thickener component includes, but is not limited to, the monomers useable in the resin system component. If monomer is used in the thickener component of the molding compound, it is preferred that the monomer in the thickener component be present in an amount of about 3 weight percent or less, based on the weight of the molding compound.
- If an internal lubricant is used in the thickener component, the internal lubricant may be any internal lubricant contemplated by one skilled in the molding compound art, and is preferably present in the thickener component in an amount of about 1.3 weight percent or less, based on the weight of the molding compound.
- If cure inhibitors are employed in the thickener component, the molding compound of the present invention preferably comprises no more than about 0.3 weight percent of cure inhibitors in the thickener component, based on the weight of the molding compound.
- The molding compound of the present invention preferably comprises from about 15.0 to about 35.0 weight percent of fiber reinforcement, based on the weight of the molding compound, and more preferably, from about 18.0 to about 27.0 weight percent, and even more preferably, from about 19 to about 22 weight percent.
- The fiber reinforcement is approximately 2.5 cm long +/−1 cm. The longer length of the fiber reinforcement differentiates sheet molding compound from the bulk molding compounds and ZMC, and provides the stronger mechanical properties relative to the comparable formulation of these two other compounds. The fiber reinforcement is selected from a list including, but not limited to, fiberglass; carbon fiber; aramid fiber; lignocellulosic fibers; agricultural fibers; natural and synthetic textile fibers; olefinic fibers, including oriented olefinic fibers; mineral reinforcements with aspect ratios in excess of about 4; or mixtures of any or all of these reinforcements. Fiberglass is the preferred fiber reinforcement, and is most preferable about 2.5 cm long chopped 23C fiberglass fiber such as is available from CertainTeed, Corp.
- Having generally described the present invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
- A preferred molding compound of the present invention which is capable of producing door skins having thicknesses of between about 1.0 mm and about 2.5 mm; widths of between about 0.75 m and about 1.07 m; and lengths of between about 1.95 m and about 2.45 m and having a shrinkage of between about −0.0003 to about +0.0015 comprises the following:
TABLE 1 WT % OF MOLDING ITEM COMPOUND Resin System-Catalyst Component Resin system1 25.35 Mineral filler2 50.71 Cure catalyst3 0.38 Cure inhibitor4 0.05 Internal lubricant5 1.18 Thickener component Thickener6 0.38 Pigment7 1.12 Monomer8 0.28 Internal lubricant9 0.54 Cure Inhibitor4 0.01 Fiber reinforcement10 20.0
1Alpha/Owens Corning E-4295 (low profile resin system comprising a polyester resin, low profile additives, and monomer)
2Huber ® W-4 from J. M. Huber Corporation, Engineered Materials Division, of Quincy, Illinois
3t-Butylperoxybenzoate from Aztec Peroxides, Inc., of Elyria, Ohio
4Ashland Mod-E (5% PBQ) from Ashland Chemical Co., Composite Polymers Division, of Columbus, Ohio
566 wt.% Norac Coad 10 calcium stearate from The Norac Co., Inc. of Azusa, California, and 34 wt. % zinc stearate XM Powder HyDense ® of Mallinckrodt Speciality Chemicals Co., of Chesterfield, Missouri
6PG-9033 from Plasticolors, Inc., of Astabula, Ohio
7CP-10028 from Alpha/Owens Corning of Guelph, Ontario, Canada
8Vinyltoluene
920 wt. % zinc stearate from the Synthetic Products, of Cleveland, Ohio, and 80 wt. % zinc stearate XM Powder HyDense ® of Mallinckrodt Speciality Chemicals Co., of Chesterfield, Missouri
1023C from CertainTeed Corp., of Wichita Falls, Texas
- The resin system is mixed, by techniques known in the art, with the mineral filler, cure catalyst, internal lubricant and cure inhibitor being mixed in a low shear Ross mixer. Preferably, the resin system is mixed first with the cure catalyst, with the internal lubricant being added to the mixer next, followed by the mineral filler. The mixture is transferred to a high shear dynamic mixer, such as a Shar mixer or a Finn and Fram mixer. The thickener component is preferably prepared in a separate mixer and is then transferred to the high shear dynamic mixer for blending with the resin system-catalyst component.
- A presently preferred embodiment employs a similar resin system and is processed similarly, except that during the molding process, vacuum is applied while the resin is still flowable, to reduce blisters, and hence scrap. The resin system consists of 17.69 parts S 903-300, an inhibited resin formulation containing a low profile additive, and containing the same DCPD polyester base resin as E-4295, available from AOC, Guelph, Ontario; 7.02 parts T181 saturated polyester low profile additive; 0.37 parts t-amylperoxybenzoate cure catalyst; 0.62 parts internal lubricant; and 49.41 parts mineral filler. The thickener component is the same as in Table 1, but used in an amount of 2.89 parts. This thickener component is available from AOC as G 7304W. The glass fiber reinforcement is 22 parts PPG 5509 glass fiber available from PPG in Shelby, N.C.
- The preparation of sheets of sheet molding compound is known in the art. For example, Shannon and Denton describe a method of making molding compounds in U.S. Pat. No. 4,105,623, which is incorporated by reference. The mixture is removed from the high shear dynamic mixer and supplied under pressure to a manifold that applies the paste to a traveling sheet of plastic transport film. Fiberglass roving is chopped to approximately 2.5 cm +/−1 cm lengths and sprinkled, in an essentially uniform manner, over the mixture as it continues to travel on the plastic transport film. A balancing layer of the mixture is applied from a second manifold in order to sandwich the chopped fiberglass layer. The balancing layer is covered by a plastic covering film forming a sheet molding compound sheet. The entire sheet molding compound sheet is compacted, thereby, enhancing the mixing of fiberglass and resin; allowed to maturate for about 2 days in special styrene transfer resistant wrapping; and molded in a match compression mold at approximately 148° C.-160° C. for about 70 seconds at approximately 3.5-10.3 MPa of pressure to yield a door skin having a thickness of between about 1.0 mm and about 2.5 mm; a width of between about 0.75 m and about 1.07 m; and a length of between about 1.95 m and about 2.45 m.
- Assembly of
door 10 of the present invention is completed by securing, in any suitable manner, and preferably with an adhesive, thefirst door skin 24 to a first side of aframe 14 housing acore 12, and thesecond skin 26 to a second side of the frame. The combined thickness of the door skins 24 and 26,core 12 andframe 14 ranges is preferably from about 1.375-2.5 inches. - Example 2 is a mixture prepared according to the sheet molding compound in Example 1. Comparative Example A is prepared from a sheet molding compound comprising a resin system having a polyester resin, two low shrinkage additives and no low profile additives. Comparative Example B is prepared for a sheet molding compound having a polyester resin, one low shrinkage additive, and only one low profile additive. The polyester resin in Example 1 is different from the polyester resin in Comparative Example A, but is the same as the polyester resin in Comparative Example B. The low profile additive in Comparative Example B is the same as a low profile additive in Example 1.
- The shrinkage of cured plaques of the sheet molding compounds of Example 2 and Comparative Examples A and B, as compared to the mold they were molded in, was measured at room temperature. The plaques were molded to be planar and have an average thickness of about 3.2 mm and dimensions of about 304.8 mm×304.8 mm. A check fixture with dial indicators was made to check the plaques. A calibration gauge was used to zero the fixture to the size of the mold. The molded plaques were allowed to set at least one day before being measured. Each plaque was measured in four locations, two in the transverse and two in the longitudinal direction. Each dial reading was divided by the length of the plaque to get the shrinkage value. Table 2 displays the shrinkage for each of the plaques.
TABLE 2 Cured Sheet Molding Compound Plaque Shrinkage Example 2 −0.0002 Comparative Example A −0.0007 Comparative Example B −0.0004 - The surfaces of the plaques were analyzed by a Loria® surface analyzer. The plaques were molded in a flat mold in which the show surface had been highly polished to a mirror finish. The Loria® surface analyzer reflected a laser beam off the surface of the object. The laser beam was moved across the surface of the plaques in a series of parallel lines over an area of about 279.4 mm×279.4 mm. The reflected beam is projected unto a reflective screen. The image is then picked up off the screen by a high-resolution video camera. The images of these lines were then analyzed for smoothness. From this analysis, the long term Loria® number and the orange peel Loria® number were obtained. With long term Loria® number, the smaller the number, the smoother the surface. With orange peel Loria® number, the scale is 0-10, with 10 being the smoothest surface. Table 3 displays the long term and orange peel Loria® number for each of the plaques.
TABLE 3 Comparative Comparative Property Example 2 Example A Example B Long Term Loria ® 119 I.A. I.A. Number Orange Peel Loria ® 8.2 7.5 6.3 Number
I.A. indicates that an accurate reading could not be attained.
- The long term Loria® number for Comparative Examples A and B could not be accurately obtained. This indicates that the sheet molding compounds used to make the plaques of Comparative Examples A and B produced surfaces which were too dull to enable the Loria® surface analyzer to record accurate reading. The Loria® surface analyzer can only attain an accurate long term Loria® number readings for samples having a long term Loria® numbers below about 250. Thus, it can be concluded that the long term Loria® number of the plaques of Comparative Examples A and B are above about 250.
- While the best modes for carrying out the invention have been described in detail, those familiar with the art to which the invention relates will appreciate other ways of carrying out the invention defined by the following claims.
Claims (4)
1. A door skin for use in construction of a door assembly, the door skin comprising:
a generally flat compression molded panel having a paintable exposed outer surface and an opposed inner surface, the panel outer surface defining a textured pattern which simulates a wood multi-panel door having rails, stiles, panels and simulated joints which have been sanded smooth, the textured pattern of each of the simulated rails, stiles and panels simulating a sanded surface having a series of fine grooves equivalent to those formed by sanding a wood surface on a real wood multi-panel door.
2. The door skin of claim 1 wherein the fine grooves of the simulated sanded surface are anesthetically equivalent to those formed by conventional sandpaper, with the grooves being aligned in a direction consistent with a conventional sanding pattern of a real wood multi-panel door.
3. The door skin of claim 1 wherein the compression molded panel is formed of a molding compound capable of producing, in a polished flat plaque mold, a compression molded skin exhibiting a long term Loria number of less than about 250.
4. A method of forming a door skin for use in construction of a door assembly, the method comprising:
providing an inner and outer mold pair for compression molding a door skin, the outer mold providing a negative image of a door skin outer surface having a textured pattern which simulates a wood multi-panel door having rails, stiles, panels and simulated joints between mating stiles and rails, the textured pattern of each of the simulated rails, stiles and panels simulating a sanded surface having a plurality of fine grooves as would be formed by sanding a wood surface with sandpaper;
preheating the mold pair;
charging the mold with a suitable amount of molding compound capable of producing, in a polished flat plaque mold, a compression molded skin exhibiting a long term Loria number of less than about 250;
closing the mold and applying pressure for a time sufficient to allow the molding compound to cure; and
removing a cured door skin from the mold, wherein the resulting door skin has a paintable outer textured surface which aesthetically resembles a real wood multi-panel door which has been sanded smooth.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/227,558 US20060005480A1 (en) | 1998-07-16 | 2005-09-15 | Compression molded door assembly |
US12/635,979 US20100089001A1 (en) | 1998-07-16 | 2009-12-11 | Compression molded door assembly |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/116,405 US6092343A (en) | 1998-07-16 | 1998-07-16 | Compression molded door assembly |
US46057799A | 1999-12-14 | 1999-12-14 | |
US10/403,795 US6952903B2 (en) | 1998-07-16 | 2003-03-31 | Compression molded door assembly |
US11/227,558 US20060005480A1 (en) | 1998-07-16 | 2005-09-15 | Compression molded door assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/403,795 Division US6952903B2 (en) | 1998-07-16 | 2003-03-31 | Compression molded door assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/635,979 Continuation US20100089001A1 (en) | 1998-07-16 | 2009-12-11 | Compression molded door assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060005480A1 true US20060005480A1 (en) | 2006-01-12 |
Family
ID=29714601
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/403,795 Expired - Lifetime US6952903B2 (en) | 1998-07-16 | 2003-03-31 | Compression molded door assembly |
US11/227,558 Abandoned US20060005480A1 (en) | 1998-07-16 | 2005-09-15 | Compression molded door assembly |
US12/635,979 Abandoned US20100089001A1 (en) | 1998-07-16 | 2009-12-11 | Compression molded door assembly |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/403,795 Expired - Lifetime US6952903B2 (en) | 1998-07-16 | 2003-03-31 | Compression molded door assembly |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/635,979 Abandoned US20100089001A1 (en) | 1998-07-16 | 2009-12-11 | Compression molded door assembly |
Country Status (1)
Country | Link |
---|---|
US (3) | US6952903B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100089001A1 (en) * | 1998-07-16 | 2010-04-15 | Therma-Tru Corp. | Compression molded door assembly |
WO2013142430A1 (en) * | 2012-03-20 | 2013-09-26 | Unimin Corporation | Mineral based fillers used as a substitute for wood fillers in simulated wood products and simulated wood products containing the same |
US20170298636A1 (en) * | 2007-03-15 | 2017-10-19 | Concrete Log Systems, Inc. | Simulated Log Siding |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040035070A1 (en) * | 2002-06-21 | 2004-02-26 | Chen Kuei Yung Wang | Economical impact resistant compression molded door |
US7185468B2 (en) | 2002-10-31 | 2007-03-06 | Jeld-Wen, Inc. | Multi-layered fire door and method for making the same |
US7137232B2 (en) | 2002-11-12 | 2006-11-21 | Masonite Corporation | Universal door skin blank and door produced therefrom |
EP1567742B1 (en) * | 2002-11-12 | 2012-01-04 | Masonite Corporation | A door skin, method of manufacturing a door produced therewith, and door produced therefrom |
US7367166B2 (en) * | 2003-01-17 | 2008-05-06 | Masonite Corporation | Door skin, a method of etching a plate, and an etched plate formed therefrom |
US6988342B2 (en) | 2003-01-17 | 2006-01-24 | Masonite Corporation | Door skin, a method of etching a plate for forming a wood grain pattern in the door skin, and an etched plate formed therefrom |
US7959817B2 (en) * | 2004-01-09 | 2011-06-14 | Masonite Corporation | Door skin, a method of etching a plate, and an etched plate formed therefrom |
US20050066594A1 (en) * | 2003-09-30 | 2005-03-31 | Stavenjord Walter Karl | Casing system |
US20050248047A1 (en) * | 2004-04-29 | 2005-11-10 | Manish Gupta | Compression molding method and apparatus suitable for making door facings |
US9884438B2 (en) * | 2004-09-23 | 2018-02-06 | Masonite Corporation | Impact resistant door facing, method of forming impact resistant door facing, and door formed therewith |
EP1885983A2 (en) * | 2005-05-23 | 2008-02-13 | Masonite Corporation | Polymeric door facing with textured interior surface, and method of forming same |
US8646233B2 (en) | 2005-10-05 | 2014-02-11 | Edward Fimbel, Iii | Carved solid face door having a window formed therein and methods of fabrication |
US8561368B2 (en) * | 2005-10-05 | 2013-10-22 | Edward Fimbel, Iii | Carved solid face door and method of fabrication |
BE1016875A5 (en) * | 2005-12-23 | 2007-08-07 | Flooring Ind Ltd | FLOOR PANEL AND METHOD FOR MANUFACTURING SUCH FLOOR PANEL. |
ATE532936T1 (en) * | 2006-05-30 | 2011-11-15 | Nanya Plastics Corp | PIGMENTED DOOR |
CA2657772A1 (en) * | 2006-07-21 | 2008-01-24 | Masonite Corporation | Nano-composite door facings, and related door assemblies and methods |
EP1935603B1 (en) * | 2006-12-21 | 2011-02-09 | LSSD UK Limited | Methods of forming a door skin |
US20090072464A1 (en) * | 2007-09-18 | 2009-03-19 | Alon Ben Ishai | Double-sided cutting board |
US8574678B2 (en) * | 2007-10-16 | 2013-11-05 | Dallaire Industries Ltd. | Method of texturing synthetic material extrusions |
US8468773B2 (en) * | 2008-04-21 | 2013-06-25 | Edward Fimbel, Iii | Carved solid face doors having a raised panel design and methods of fabrication |
US20100101165A1 (en) * | 2008-10-28 | 2010-04-29 | Therma-Tru Corp. | Low-density filled polyurethane foam |
USD621065S1 (en) * | 2009-11-09 | 2010-08-03 | Provia Door, Inc. | Door |
USD621064S1 (en) * | 2009-11-09 | 2010-08-03 | Provia Door, Inc. | Door |
US20110314762A1 (en) * | 2010-06-28 | 2011-12-29 | Provia Door, Inc. | Impact resistant door and method of manufacturing |
US20120272616A1 (en) * | 2011-04-29 | 2012-11-01 | Lucas Iii William Henry | Systems and methods for making flush architectural doors using post-consumer materials |
US20130025216A1 (en) * | 2011-07-26 | 2013-01-31 | Gip International, Ltd | Laminate flooring product with enhanced visual and tribological properties |
CN102619443A (en) * | 2012-04-28 | 2012-08-01 | 秦皇岛美威家居制品有限公司 | Mixed material door with solid wood skin adhered to surface of integral fiberglass-reinforced composite material door skin |
AU2013100831A4 (en) * | 2013-06-14 | 2013-07-25 | Inter-Join Pty. Ltd | High Performance Door |
US9744801B2 (en) * | 2014-05-09 | 2017-08-29 | Masonite Corporation | Door skin, a method of etching a plate for forming a wood grain pattern in the door skin, and an etched plate formed therefrom |
CN104712231B (en) * | 2015-02-16 | 2017-03-15 | 朱守国 | A kind of suit doors |
EP3235997B1 (en) * | 2016-04-19 | 2019-02-13 | Eduard Rieger | Wall element |
CN105888477A (en) * | 2016-06-07 | 2016-08-24 | 广西广邑门业有限公司 | Steel door panel achieving color line door flower splicing |
CN106246068B (en) * | 2016-08-31 | 2019-04-30 | 江山欧派门业股份有限公司 | The solid wood composite enameled door and its preparation process of PVC substitution priming paint technique |
US20180345604A1 (en) | 2017-06-02 | 2018-12-06 | Arris Composites Llc | Aligned fiber reinforced molding |
NL2030461B1 (en) * | 2022-01-07 | 2023-07-12 | Champion Link Int Corp | Decorative panel and method for producing a panel |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969560A (en) * | 1972-03-13 | 1976-07-13 | Rohm And Haas Company | Copolymers of monounsaturated or diunsaturated polyesters with vinyl monomers |
US4105623A (en) * | 1976-12-17 | 1978-08-08 | Owens-Corning Fiberglas Corporation | Method of making molding compounds and materials made thereby |
US4172059A (en) * | 1978-02-08 | 1979-10-23 | Union Carbide Corporation | Low shrinking thermosetting molding compositions having reduced initial viscosity |
US4485590A (en) * | 1983-01-24 | 1984-12-04 | Owens-Corning Fiberglas Corporation | Door and frame molded of fibrous mineral material |
US4491642A (en) * | 1982-09-20 | 1985-01-01 | Union Carbide Corporation | Uniformly pigmented, low shrinking polyester molding compositions |
US4550540A (en) * | 1983-01-07 | 1985-11-05 | Therma-Tru Corp. | Compression molded door assembly |
US4579613A (en) * | 1984-05-01 | 1986-04-01 | Fernand Belanger | Method for manufacturing of a molded door |
US4702961A (en) * | 1983-12-22 | 1987-10-27 | Ausimont, U.S.A., Inc. | Method of melt processing and article made of a stabilized copolymer of vinyl chloride and chlorotrifluoroethylene |
US4755557A (en) * | 1986-06-19 | 1988-07-05 | Union Carbide Corporation | Fiber reinforced molding compositions providing improved surface characteristics |
US4794129A (en) * | 1987-03-11 | 1988-12-27 | Ici Americas Inc. | Reaction injection molding compositions |
US4967513A (en) * | 1987-05-27 | 1990-11-06 | Hh Patent Aps | Belt sanding machine |
US5001000A (en) * | 1988-09-26 | 1991-03-19 | E. I. Du Pont De Nemours And Company | Process for forming a composite structure of thermoplastic polymer and sheet molding compound |
US5075059A (en) * | 1990-06-22 | 1991-12-24 | Pease Industries, Inc. | Method for forming panel door with simulated wood grains |
US5084494A (en) * | 1982-11-12 | 1992-01-28 | Mcdougal John R | Polyester resin and reinforcement composite materials |
US5175970A (en) * | 1990-06-22 | 1993-01-05 | Pease Industries, Inc. | Molded panel door with integral raised trim |
US5236976A (en) * | 1991-02-11 | 1993-08-17 | Reichhold Chemicals, Inc. | Polyester resin molding composition |
US5239799A (en) * | 1991-08-28 | 1993-08-31 | The Stanley Works | Insulated door with synthetic resin skins |
US5268400A (en) * | 1990-07-19 | 1993-12-07 | The Budd Company | Flexible sheet molding compound and method of making the same |
US5306773A (en) * | 1991-12-31 | 1994-04-26 | Reichhold Chemicals, Inc. | Moldable resin composition |
US5395866A (en) * | 1993-06-18 | 1995-03-07 | Interplastic Corporation | Modified acrylic unsaturated polyester resin |
US5537789A (en) * | 1994-07-14 | 1996-07-23 | Therma-Tru Corp. | Compression molded door assembly |
US5676899A (en) * | 1990-12-07 | 1997-10-14 | Mrozinski; John B. | Process for producing articles from synthetic resins having wood appearance |
US6092343A (en) * | 1998-07-16 | 2000-07-25 | Therma-Tru Corporation | Compression molded door assembly |
US6952903B2 (en) * | 1998-07-16 | 2005-10-11 | Tt Technologies, Inc. | Compression molded door assembly |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3402520A (en) * | 1966-12-23 | 1968-09-24 | Home Comfort Products Co | Panel with foamed-in-place core |
US4626570A (en) * | 1984-06-29 | 1986-12-02 | Union Carbide Corporation | Low shrinking thermosetting polyester resin compositions and a process for the preparation thereof |
US4720951A (en) * | 1986-03-24 | 1988-01-26 | Therma-Tru Corp. | Frame assembly for doors, windows and the like |
US5202366A (en) * | 1988-07-20 | 1993-04-13 | Union Carbide Chemicals & Plastics Technology Corporation | Crosslinkable polyester compositions with improved properties |
US5074087A (en) * | 1990-10-10 | 1991-12-24 | Pease Industries, Inc. | Doors of composite construction |
US5142835A (en) * | 1990-10-12 | 1992-09-01 | Taylor Building Products Company | Reaction injection molded door assembly |
US5385963A (en) * | 1992-01-30 | 1995-01-31 | Gencorp Inc. | Unsaturated polyester-modified flexible copolymers for use in sheet molding compositions |
US5521232A (en) * | 1994-07-28 | 1996-05-28 | Ashland Inc. | Molding composition and process for low pressure molding of composite parts |
US5756554A (en) * | 1996-02-02 | 1998-05-26 | Ashland Inc. | Low profile additives for polyester resin systems based on asymmetric glycols and aromatic diacids |
US5934040A (en) * | 1996-11-04 | 1999-08-10 | Chen; Kuei Yung Wang | Pigmented compression molded skins/doors and method of manufacture |
US5932314A (en) * | 1997-09-02 | 1999-08-03 | Therma-Tru Corporation | Insulated door assembly with low thermal deflection |
US6226958B1 (en) * | 1997-09-02 | 2001-05-08 | Therma-Tru Corporation | Insulated door assembly with low thermal deflection |
US5880180A (en) * | 1997-09-26 | 1999-03-09 | Ashland Inc. | Aldimine surface quality enhancers |
US7026043B2 (en) * | 2001-10-12 | 2006-04-11 | Owens Corning Composites Sprl | Sheet molding compound having improved surface characteristics |
-
2003
- 2003-03-31 US US10/403,795 patent/US6952903B2/en not_active Expired - Lifetime
-
2005
- 2005-09-15 US US11/227,558 patent/US20060005480A1/en not_active Abandoned
-
2009
- 2009-12-11 US US12/635,979 patent/US20100089001A1/en not_active Abandoned
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969560A (en) * | 1972-03-13 | 1976-07-13 | Rohm And Haas Company | Copolymers of monounsaturated or diunsaturated polyesters with vinyl monomers |
US4105623A (en) * | 1976-12-17 | 1978-08-08 | Owens-Corning Fiberglas Corporation | Method of making molding compounds and materials made thereby |
US4172059A (en) * | 1978-02-08 | 1979-10-23 | Union Carbide Corporation | Low shrinking thermosetting molding compositions having reduced initial viscosity |
US4491642A (en) * | 1982-09-20 | 1985-01-01 | Union Carbide Corporation | Uniformly pigmented, low shrinking polyester molding compositions |
US5084494A (en) * | 1982-11-12 | 1992-01-28 | Mcdougal John R | Polyester resin and reinforcement composite materials |
US4550540A (en) * | 1983-01-07 | 1985-11-05 | Therma-Tru Corp. | Compression molded door assembly |
US4485590A (en) * | 1983-01-24 | 1984-12-04 | Owens-Corning Fiberglas Corporation | Door and frame molded of fibrous mineral material |
US4702961A (en) * | 1983-12-22 | 1987-10-27 | Ausimont, U.S.A., Inc. | Method of melt processing and article made of a stabilized copolymer of vinyl chloride and chlorotrifluoroethylene |
US4579613A (en) * | 1984-05-01 | 1986-04-01 | Fernand Belanger | Method for manufacturing of a molded door |
US4755557A (en) * | 1986-06-19 | 1988-07-05 | Union Carbide Corporation | Fiber reinforced molding compositions providing improved surface characteristics |
US4794129A (en) * | 1987-03-11 | 1988-12-27 | Ici Americas Inc. | Reaction injection molding compositions |
US4967513A (en) * | 1987-05-27 | 1990-11-06 | Hh Patent Aps | Belt sanding machine |
US5001000A (en) * | 1988-09-26 | 1991-03-19 | E. I. Du Pont De Nemours And Company | Process for forming a composite structure of thermoplastic polymer and sheet molding compound |
US5075059A (en) * | 1990-06-22 | 1991-12-24 | Pease Industries, Inc. | Method for forming panel door with simulated wood grains |
US5175970A (en) * | 1990-06-22 | 1993-01-05 | Pease Industries, Inc. | Molded panel door with integral raised trim |
US5268400A (en) * | 1990-07-19 | 1993-12-07 | The Budd Company | Flexible sheet molding compound and method of making the same |
US5676899A (en) * | 1990-12-07 | 1997-10-14 | Mrozinski; John B. | Process for producing articles from synthetic resins having wood appearance |
US5236976A (en) * | 1991-02-11 | 1993-08-17 | Reichhold Chemicals, Inc. | Polyester resin molding composition |
US5239799A (en) * | 1991-08-28 | 1993-08-31 | The Stanley Works | Insulated door with synthetic resin skins |
US5306773A (en) * | 1991-12-31 | 1994-04-26 | Reichhold Chemicals, Inc. | Moldable resin composition |
US5395866A (en) * | 1993-06-18 | 1995-03-07 | Interplastic Corporation | Modified acrylic unsaturated polyester resin |
US5537789A (en) * | 1994-07-14 | 1996-07-23 | Therma-Tru Corp. | Compression molded door assembly |
US6092343A (en) * | 1998-07-16 | 2000-07-25 | Therma-Tru Corporation | Compression molded door assembly |
US6952903B2 (en) * | 1998-07-16 | 2005-10-11 | Tt Technologies, Inc. | Compression molded door assembly |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100089001A1 (en) * | 1998-07-16 | 2010-04-15 | Therma-Tru Corp. | Compression molded door assembly |
US20170298636A1 (en) * | 2007-03-15 | 2017-10-19 | Concrete Log Systems, Inc. | Simulated Log Siding |
WO2013142430A1 (en) * | 2012-03-20 | 2013-09-26 | Unimin Corporation | Mineral based fillers used as a substitute for wood fillers in simulated wood products and simulated wood products containing the same |
US9085671B2 (en) | 2012-03-20 | 2015-07-21 | Unimin Corporation | Mineral based fillers used as a substitute for wood fillers in simulated wood products and simulated wood products containing the same |
Also Published As
Publication number | Publication date |
---|---|
US6952903B2 (en) | 2005-10-11 |
US20030226328A1 (en) | 2003-12-11 |
US20100089001A1 (en) | 2010-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6952903B2 (en) | Compression molded door assembly | |
US6487824B1 (en) | Compression molded door assembly | |
EP0770007B1 (en) | Compression molded door assembly | |
US6740279B2 (en) | Insulated door assembly with low thermal deflection | |
US2855021A (en) | Process for producing plates, sheels and shaped elements | |
AU621884B2 (en) | Foam composite and method of forming same | |
US5239799A (en) | Insulated door with synthetic resin skins | |
US20070110979A1 (en) | Fiber-reinforced composite fire door | |
CN104669645A (en) | Method Of Forming Composite Products By Pressure, Related Products And Apparatus | |
EP1618273A2 (en) | Doors and methods of producing same | |
GB2464541A (en) | Laminate of porous material, curable material and veneer | |
MX2013007368A (en) | Method of making annealed door skins and composite door assemblies, and related articles. | |
US6972100B2 (en) | Method and system for providing articles with rigid foamed cementitious cores | |
US20030057594A1 (en) | Method of making a sheet of building material | |
AU2003203706B2 (en) | Entry Way Door Members | |
JP2009544870A (en) | Nanocomposite door exterior material, door structure, and manufacturing method | |
RU1460U1 (en) | PANEL WITH DECORATIVE COATING FROM POLYMERIC COMPOSITE MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THERMA-TRU CORP., OHIO Free format text: MERGER;ASSIGNOR:TT TECHNOLOGIES INC.;REEL/FRAME:020403/0797 Effective date: 20071226 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |