US20050274619A1 - Modified electroplating solution components in a low-acid electrolyte solution - Google Patents
Modified electroplating solution components in a low-acid electrolyte solution Download PDFInfo
- Publication number
- US20050274619A1 US20050274619A1 US11/207,305 US20730505A US2005274619A1 US 20050274619 A1 US20050274619 A1 US 20050274619A1 US 20730505 A US20730505 A US 20730505A US 2005274619 A1 US2005274619 A1 US 2005274619A1
- Authority
- US
- United States
- Prior art keywords
- concentration
- leveler
- suppressor
- low
- electroplating solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
Definitions
- Embodiments of the invention relate generally to the field of electroplating integrated substrates and more particularly to methods for reducing defects by adjusting electroplating solution components in a high-acid electrolyte solution.
- a semiconductor wafer is deposited with a conductive metal to provide interconnects between the integrated components.
- Aluminum deposition may be used for this purpose. Copper has recently been found to offer distinct advantages over aluminum as a conductive plating for an integrated circuit substrate. Copper is more conductive than aluminum and can be plated into much smaller features (e.g., trenches and vias) having high aspect ratios. This is an important advantage given the trend toward smaller features. Moreover, the deposition process for aluminum is more costly and complex, requiring thermal processing within a vacuum, whereas electroplating can be used to effect copper plating of semiconductor wafers.
- FIG. 1A illustrates the drawbacks of conformal electroplating for surfaces having small features in accordance with the prior art.
- the substrate 100 has a number of features labeled 105 A- 105 D that may be trenches or vias.
- a copper layer 110 is formed on substrate 100 using electroplating.
- Using conformal electroplating may cause holes (voids) 106 , as shown in features 105 A and 105 C, or seams 107 , as shown in features 105 B and 105 D, to form over the features. This problem is more pronounced for smaller features and higher aspect ratios.
- a suppressant and accelerator are added to the electroplating bath to suppress copper plating outside the features (in the field regions 115 ) while accelerating copper deposition at the bottom of the features.
- the accelerator allows the copper plating to grow faster from within the features, filling the features from the bottom up to avoid the formation of holes and seams in the copper plating. Electroplating using the accelerator is known as bottom-up superfill or momentum electroplating.
- FIG. 1B illustrates WID thickness variations in the copper plating due to momentum electroplating in accordance with the prior art.
- substrate 120 has a number of features labeled 125 A- 125 D that may be trenches or vias.
- a copper layer 130 is formed on substrate 120 using electroplating. Using momentum electroplating while avoiding holes and seams causes a WID thickness variation 135 over each feature.
- WID thickness variations typically range from 100-250 nm.
- defects on the copper plating include wetting-related defects and copper protrusions.
- Wetting-related defects include, for example, “pit” or “crater” defects, which are holes in the copper plating that extends to the seed layer. The unplated area of the wafer will be destroyed in subsequent processing, so substrates having such defects in their copper plating may be discarded.
- Copper protrusions are bumps resulting from high-growth copper grains in the seed layer that are replicated on the plating surface.
- the copper protrusions are typically 20-50 nm in diameter and protrude from the plating surface approximately 50-500 nm.
- FIG. 2 illustrates a typical low-acid/high copper electroplating solution in accordance with the prior art. As shown in FIG.
- the electroplating solution has a number of inorganic components (e.g., acid, copper, and chloride) and a number of organic components (e.g., accelerator, leveler, and suppressor).
- This typical prior solution is known as a low-acid/high copper electrolyte solution by comparison to the acid concentrations of previous electroplating solutions that use considerably more acid.
- a low-acid electroplating solution has a sulfuric acid concentration of less than 20 g/l and more typically about 10 g/l.
- the various components and concentrations for the solution were developed over time for various electroplating processes. With the continuing trend toward smaller feature size, higher aspect ratios, and seed scaling, the concentrations of various components of the prior art electroplating solution may not be ideal for such applications.
- FIG. 1A illustrates the drawbacks of conformal electroplating for surfaces having small features in accordance with the prior art
- FIG. 1B illustrates WID thickness variations in the copper plating due to momentum electroplating in accordance with the prior art
- FIG. 2 illustrates a typical low-acid electroplating solution in accordance with the prior art
- FIG. 3 illustrates the relationship between the leveler concentration and within die thickness variation in accordance with one embodiment of the invention
- FIG. 4 illustrates the relationship between suppressor concentration, in conjunction with a leveler concentration of approximately 12 milliliters per liter (“ml/l”), and the occurrence of in-film defects in the electroplating in accordance with one embodiment of the invention
- FIG. 5 illustrates a process in which component concentrations for a low-acid electroplating solution are determined in accordance with one embodiment of the present invention.
- Embodiments of the invention provide methods for reducing electroplating defects by varying the concentration of components in a low-acid electroplating solution.
- the concentration of leveler is increased, resulting in a decrease in WID thickness variations.
- the concentration of suppressant is increased resulting in reduced occurrence of protrusions and wetting-related defects.
- Various alternative embodiments include an increased concentration of leveler together with varying concentrations of other components, as well as varying other portions of the electroplating process to further reduce defects.
- the prior art electroplating solution also typically includes a leveler concentration of approximately 8 ml/l.
- leveler serves to reduce stress-related voiding defects.
- the prior art concentration of leveler i.e., 8 ml/l
- the prior art concentration of leveler has no discernible effect upon WID thickness variation.
- increased leveler concentration from 8-12 ml/l reduces the WID thickness variation.
- FIG. 3 illustrates the relationship between the leveler concentration and within die thickness variation in accordance with one embodiment of the invention. As shown in FIG. 3 , the WID thickness variation decreases from approximately 12,000 Angstroms, with a leveler concentration below 4 ml/l, to approximately 2000 Angstroms for a leveler concentration above 12 ml/l.
- the leveler concentration cannot be increased beyond a certain point without causing increased gap fill problems due to an overabundance of carbon in the electroplating solution.
- the degree to which the leveler concentration can be increased without experiencing deficient gap fill is dependent upon the type and amount of the electroplating metal. Experimentally it is determined that, for a low-acid (hence high copper) electroplating solution, a leveler concentration of 15-20 ml/l will substantially reduce WID thickness variation without causing gap fill problems.
- the prior art electroplating solution includes a suppressor concentration of approximately 3.3 ml/l.
- the suppressor is used in gap fill in conjunction with the accelerator to accelerate copper deposition at the bottom of the features while suppressing copper plating outside the features.
- the suppressor also acts as a surfactant to lower the surface tension and provide better electroplating.
- FIG. 4 illustrates the relationship between suppressor concentration, in conjunction with a leveler concentration of approximately 12 ml/l, and the occurrence of in-film defects in the electroplating in accordance with one embodiment of the invention.
- the occurrence of in-film defects decreases from approximately 900 with a suppressor level of 1 ml/l to approximately 100 for a suppressor concentration of 6 m/l.
- FIG. 5 illustrates a process in which component concentrations for a low-acid electroplating solution are determined in accordance with one embodiment of the present invention.
- Process 500 shown in FIG. 5 , begins at operation 505 in which the concentration of acid is determined.
- a decrease in acid concentration is accompanied by an increase in the concentration of the conductive metal (e.g., copper). This is because both the acid and the copper contribute to the conductivity of the electroplating solution; therefore, to maintain conductivity in a low-acid bath, an increase in copper in the solution is required.
- the concentration of sulfuric acid is approximately 10 g/l and the concentration of copper is approximately 40 g/l.
- the concentration of leveler is determined.
- increased leveler concentration decreases WID thickness variation.
- Leveler concentration may be determined to reduce the WID thickness variation to a specified value. Such specified value may be selected based upon the requirements of the plating planarization processes.
- the amount and type of conductive metal is considered in determining the concentration of leveler.
- the leveler concentration is determined to be greater than 12 ml/l. For one embodiment, the leveler concentration is approximately 15 ml/l.
- the concentration of suppressor is determined.
- the suppressor concentration is determined by considering the concentration of leveler to substantially reduce defects while maintaining WID thickness variations below a specified value.
- the suppressor concentration is determined to be within the range of 3.3 ml/1-6.0 ml/l in conjunction with a leveler concentration within the range of 8 ml/l-12 ml/l.
- the combined concentration of leveler and suppressor is limited by poor gap fill (occurrence of voids and seams) resulting from an excess of carbon in the solution. That is, the leveler and suppressor concentrations are determined as a maximum that will still affect proper (acceptable) gap-fill.
- concentrations of other electroplating solution components are determined.
- the concentration of chloride may be increased to catalyze the suppressor.
- the chloride concentration is determined as a minimum that will catalyze the suppressor to provide acceptable gap-fill.
- the feature size and aspect ratio are considered in determining the chloride concentration.
- the chloride concentration is within the range of 50 milligrams per liter (“mg/l”)-65 mg/l.
- the concentrations of leveler and suppressor are considered in determining the concentration of accelerator.
- the accelerator like the leveler and the suppressor, is an organic component.
- the accelerator concentration is reduced to allow a maximum concentration of leveler and suppressor.
- the accelerator concentration is approximately 1 ml/l for an electroplating solution having a leveler concentration of approximately 12 ml/l and a suppressor concentration of approximately 6 ml/l.
- the feature size and aspect ratio are considered in determining the accelerator concentration.
- embodiments of the invention may consist of less than all of the operations of process 500 .
- one embodiment of the invention consists of determining an increased level of suppressor to reduce defects.
- Embodiments of the invention provide methods for reducing electroplating defects by varying the concentration of leveler and suppressor in a low-acid electroplating solution.
- the feature size may be considered in determining such concentrations.
- various portions of the electroplating process, including electroplating current waveform, may also be considered in adjusting the concentration of solution components.
- the temperature of the electroplating solution is elevated above 22° C. to increase electromigration resistance.
- the temperature of the electroplating solution is preferably within the range of 22° C.-30° C.
- the wafer could be any suitable material, including semiconductors and ceramics.
- the electroplate may be any suitable material, including alloys of copper and sliver or gold, or multilayers of such materials.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
An embodiment of the invention provides a method for reducing within die thickness variations by modifying the concentration of components of a low-acid electroplating solution. For one embodiment, the leveler concentration is increased sufficiently to reduce within die thickness variations to a specified value. For one embodiment of the invention, the leveler and suppressor are increased to reduce within die thickness variations and substantially reduce a plurality of electroplating defects. In such an embodiment the combined concentration of leveler and suppressor is determined to maintain adequate gap fill.
Description
- This is a Divisional Application of Ser. No. 10/682,276 filed Oct. 8, 2003, which is presently pending.
- This application is related to copending U.S. Application No. Unassigned, filed on Oct. 8, 2003, entitled “MODIFIED ELECTROPLATING SOLUTION COMPONENTS IN A HIGH-ACID ELECTROLYTE SOLUTION”.
- Embodiments of the invention relate generally to the field of electroplating integrated substrates and more particularly to methods for reducing defects by adjusting electroplating solution components in a high-acid electrolyte solution.
- During the manufacture of integrated circuits, a semiconductor wafer is deposited with a conductive metal to provide interconnects between the integrated components. Aluminum deposition may be used for this purpose. Copper has recently been found to offer distinct advantages over aluminum as a conductive plating for an integrated circuit substrate. Copper is more conductive than aluminum and can be plated into much smaller features (e.g., trenches and vias) having high aspect ratios. This is an important advantage given the trend toward smaller features. Moreover, the deposition process for aluminum is more costly and complex, requiring thermal processing within a vacuum, whereas electroplating can be used to effect copper plating of semiconductor wafers.
- The use of copper plating, however, is not without drawbacks. Two related drawbacks are the problems of proper gap fill and within die (“WID”) thickness variation of the copper plating.
- Prior to plating, the semiconductor wafer is patterned with vias and trenches that form the interconnects. With typical conformal electroplating, the electroplate metal will grow at a similar rate over the entire surface being plated. If the surface is not flat, the metal will follow the contours of the surface. Conformal electroplating is not suitable for surfaces having small features, as it tends to result in poor gap fill. That is, such electroplating leaves a seam or hole inside the feature at the end of the plating.
FIG. 1A illustrates the drawbacks of conformal electroplating for surfaces having small features in accordance with the prior art. As shown inFIG. 1A , thesubstrate 100 has a number of features labeled 105A-105D that may be trenches or vias. Acopper layer 110 is formed onsubstrate 100 using electroplating. Using conformal electroplating may cause holes (voids) 106, as shown infeatures seams 107, as shown infeatures - To address the problem of poor gap fill (i.e., seams and voids in the copper plating), a suppressant and accelerator are added to the electroplating bath to suppress copper plating outside the features (in the field regions 115) while accelerating copper deposition at the bottom of the features. The accelerator allows the copper plating to grow faster from within the features, filling the features from the bottom up to avoid the formation of holes and seams in the copper plating. Electroplating using the accelerator is known as bottom-up superfill or momentum electroplating. While the use of accelerator can improve gap fill (i.e., reduce the occurrence of voids and seams), because the copper plating continues to grow at a faster rate over the features even after filling the features, a “hump” may be formed over the features, causing a with-in-die WID thickness variation. WID thickness variation is the step height difference between the copper plating area over a feature region and the copper plating area over a field region.
FIG. 1B illustrates WID thickness variations in the copper plating due to momentum electroplating in accordance with the prior art. As shown inFIG. 1B ,substrate 120 has a number of features labeled 125A-125D that may be trenches or vias. Acopper layer 130 is formed onsubstrate 120 using electroplating. Using momentum electroplating while avoiding holes and seams causes aWID thickness variation 135 over each feature. WID thickness variations typically range from 100-250 nm. - Another drawback of electroplating is the problem of defects on the copper plating. These defects include wetting-related defects and copper protrusions. Wetting-related defects include, for example, “pit” or “crater” defects, which are holes in the copper plating that extends to the seed layer. The unplated area of the wafer will be destroyed in subsequent processing, so substrates having such defects in their copper plating may be discarded. Copper protrusions are bumps resulting from high-growth copper grains in the seed layer that are replicated on the plating surface. The copper protrusions are typically 20-50 nm in diameter and protrude from the plating surface approximately 50-500 nm.
- Typical prior art electroplating solutions contain sulfuric acid with a concentration of approximately 175 grams per liter (“g/l”). This relatively high acid concentration provides high conductivity but can lead to difficulties for larger wafer sizes. For larger wafers (e.g., 12″), the resistance of the wafer and seed layer increases from the edge to the center, which may cause a greater electroplating at the edge of the wafer. This problem is exacerbated when seed layer resistance increases as seed layer thickness is scaled down to aide in gap fill in small features. This problem, known as terminal effect, has led to a trend toward low-acid electroplating solutions.
FIG. 2 illustrates a typical low-acid/high copper electroplating solution in accordance with the prior art. As shown inFIG. 2 , the electroplating solution has a number of inorganic components (e.g., acid, copper, and chloride) and a number of organic components (e.g., accelerator, leveler, and suppressor). This typical prior solution is known as a low-acid/high copper electrolyte solution by comparison to the acid concentrations of previous electroplating solutions that use considerably more acid. Generally a low-acid electroplating solution has a sulfuric acid concentration of less than 20 g/l and more typically about 10 g/l. With the exception of the decrease in the acid concentration and an increase in the copper concentration as discussed above, the various components and concentrations for the solution were developed over time for various electroplating processes. With the continuing trend toward smaller feature size, higher aspect ratios, and seed scaling, the concentrations of various components of the prior art electroplating solution may not be ideal for such applications. - The invention may be best understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
-
FIG. 1A illustrates the drawbacks of conformal electroplating for surfaces having small features in accordance with the prior art; -
FIG. 1B illustrates WID thickness variations in the copper plating due to momentum electroplating in accordance with the prior art; -
FIG. 2 illustrates a typical low-acid electroplating solution in accordance with the prior art; -
FIG. 3 illustrates the relationship between the leveler concentration and within die thickness variation in accordance with one embodiment of the invention; -
FIG. 4 illustrates the relationship between suppressor concentration, in conjunction with a leveler concentration of approximately 12 milliliters per liter (“ml/l”), and the occurrence of in-film defects in the electroplating in accordance with one embodiment of the invention; -
FIG. 5 illustrates a process in which component concentrations for a low-acid electroplating solution are determined in accordance with one embodiment of the present invention. - Embodiments of the invention provide methods for reducing electroplating defects by varying the concentration of components in a low-acid electroplating solution. For one embodiment, the concentration of leveler is increased, resulting in a decrease in WID thickness variations. In an alternative embodiment, the concentration of suppressant is increased resulting in reduced occurrence of protrusions and wetting-related defects. Various alternative embodiments include an increased concentration of leveler together with varying concentrations of other components, as well as varying other portions of the electroplating process to further reduce defects.
- In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known techniques have not been shown in detail in order not to obscure the understanding of this description.
- Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
- Moreover, inventive aspects lie in less than all features of a single disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
- The prior art electroplating solution also typically includes a leveler concentration of approximately 8 ml/l. In the prior art electroplating solution, leveler serves to reduce stress-related voiding defects. The prior art concentration of leveler (i.e., 8 ml/l) has no discernible effect upon WID thickness variation. Experimentally, increased leveler concentration from 8-12 ml/l reduces the WID thickness variation.
FIG. 3 illustrates the relationship between the leveler concentration and within die thickness variation in accordance with one embodiment of the invention. As shown inFIG. 3 , the WID thickness variation decreases from approximately 12,000 Angstroms, with a leveler concentration below 4 ml/l, to approximately 2000 Angstroms for a leveler concentration above 12 ml/l. However, the leveler concentration cannot be increased beyond a certain point without causing increased gap fill problems due to an overabundance of carbon in the electroplating solution. The degree to which the leveler concentration can be increased without experiencing deficient gap fill is dependent upon the type and amount of the electroplating metal. Experimentally it is determined that, for a low-acid (hence high copper) electroplating solution, a leveler concentration of 15-20 ml/l will substantially reduce WID thickness variation without causing gap fill problems. - As discussed above, the prior art electroplating solution includes a suppressor concentration of approximately 3.3 ml/l. The suppressor is used in gap fill in conjunction with the accelerator to accelerate copper deposition at the bottom of the features while suppressing copper plating outside the features. The suppressor also acts as a surfactant to lower the surface tension and provide better electroplating.
- As with the high-acid electroplating solution, defect levels are a strong function of suppressor. However, as with the leveler, the concentration cannot be increased beyond a certain point without a detrimental affect on gap fill. Moreover, because leveler and suppressor are both organic components, the concentration of both have to be considered in maintaining the carbon level of the electroplating solution sufficiently low so as to provide adequate gap fill. That is, the concentrations of leveler and suppressor should be determined in respect to one another. Experimentally, for a low-acid electroplating solution, a substantial reduction in WID thickness variation and defects is achieved with a suppressor level in the range of 3.3 ml/1-6 ml/l in conjunction with a leveler concentration in the range of 8 ml/l-12 ml.
FIG. 4 illustrates the relationship between suppressor concentration, in conjunction with a leveler concentration of approximately 12 ml/l, and the occurrence of in-film defects in the electroplating in accordance with one embodiment of the invention. As shown inFIG. 4 , the occurrence of in-film defects decreases from approximately 900 with a suppressor level of 1 ml/l to approximately 100 for a suppressor concentration of 6 m/l. -
FIG. 5 illustrates a process in which component concentrations for a low-acid electroplating solution are determined in accordance with one embodiment of the present invention.Process 500, shown inFIG. 5 , begins atoperation 505 in which the concentration of acid is determined. For one embodiment, a decrease in acid concentration is accompanied by an increase in the concentration of the conductive metal (e.g., copper). This is because both the acid and the copper contribute to the conductivity of the electroplating solution; therefore, to maintain conductivity in a low-acid bath, an increase in copper in the solution is required. For one embodiment, the concentration of sulfuric acid is approximately 10 g/l and the concentration of copper is approximately 40 g/l. - At
operation 510 the concentration of leveler is determined. In general, increased leveler concentration decreases WID thickness variation. Leveler concentration may be determined to reduce the WID thickness variation to a specified value. Such specified value may be selected based upon the requirements of the plating planarization processes. In an alternative embodiment, the amount and type of conductive metal is considered in determining the concentration of leveler. In accordance with one embodiment of the invention, the leveler concentration is determined to be greater than 12 ml/l. For one embodiment, the leveler concentration is approximately 15 ml/l. - At
operation 515, the concentration of suppressor is determined. In accordance with one embodiment of the invention, the suppressor concentration is determined by considering the concentration of leveler to substantially reduce defects while maintaining WID thickness variations below a specified value. For one embodiment, the suppressor concentration is determined to be within the range of 3.3 ml/1-6.0 ml/l in conjunction with a leveler concentration within the range of 8 ml/l-12 ml/l. For one embodiment, the combined concentration of leveler and suppressor is limited by poor gap fill (occurrence of voids and seams) resulting from an excess of carbon in the solution. That is, the leveler and suppressor concentrations are determined as a maximum that will still affect proper (acceptable) gap-fill. - At
operation 520 concentrations of other electroplating solution components (e.g., chloride and accelerator) are determined. As with a high-acid electroplating solution, the concentration of chloride may be increased to catalyze the suppressor. For one embodiment, the chloride concentration is determined as a minimum that will catalyze the suppressor to provide acceptable gap-fill. For one embodiment, the feature size and aspect ratio are considered in determining the chloride concentration. For one embodiment, the chloride concentration is within the range of 50 milligrams per liter (“mg/l”)-65 mg/l. - For one embodiment, the concentrations of leveler and suppressor are considered in determining the concentration of accelerator. The accelerator, like the leveler and the suppressor, is an organic component. For one embodiment, the accelerator concentration is reduced to allow a maximum concentration of leveler and suppressor. For one embodiment, the accelerator concentration is approximately 1 ml/l for an electroplating solution having a leveler concentration of approximately 12 ml/l and a suppressor concentration of approximately 6 ml/l. For one embodiment, the feature size and aspect ratio are considered in determining the accelerator concentration.
- It will be appreciated that embodiments of the invention may consist of less than all of the operations of
process 500. For example, one embodiment of the invention consists of determining an increased level of suppressor to reduce defects. - Embodiments of the invention provide methods for reducing electroplating defects by varying the concentration of leveler and suppressor in a low-acid electroplating solution. In one embodiment, the feature size may be considered in determining such concentrations. In alternative embodiments, various portions of the electroplating process, including electroplating current waveform, may also be considered in adjusting the concentration of solution components. In one embodiment, the temperature of the electroplating solution is elevated above 22° C. to increase electromigration resistance. For such an embodiment, the temperature of the electroplating solution is preferably within the range of 22° C.-30° C.
- While embodiments of the invention have been described as applicable to wafers having relatively small feature sizes (i.e., less than 0.1 um), alternative embodiments of the invention are applicable to other feature sizes, larger or smaller. For example, wafers having larger features but, with relatively high aspect ratios, would benefit from embodiments of the invention.
- Moreover, embodiments of the invention have been described in reference to an electroplating process using a copper electroplate and a silicon wafer. In alternative embodiments, the wafer could be any suitable material, including semiconductors and ceramics. Likewise, the electroplate may be any suitable material, including alloys of copper and sliver or gold, or multilayers of such materials.
- While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
Claims (17)
1-8. (canceled)
9. A low-acid electroplating solution comprising:
a sulfuric acid having a concentration of less than 175 g/l;
a conductive metal, the concentration of the conductive metal based upon the concentration of the sulfuric acid;
a leveler having a concentration based upon the concentration of the sulfuric acid and the conductive metal; and
a suppressor having a concentration based upon the concentration of the leveler.
10. The low-acid electroplating solution of claim 9 wherein the concentration of sulfuric acid is approximately 10 g/l, the conductive metal is copper and the concentration of copper is approximately 17.5 g/l, the concentration of leveler is within the range 4 ml/l-12 ml/l, and the concentration of suppressor is within the range 1 ml/l-6.0 ml/l.
11. The low-acid electroplating solution of claim 10 further comprising:
a chloride having a concentration within the range 50 mg/1-65 mg/l; and
an accelerator having a concentration within the range 1 ml/l-3.3 ml/l.
12. The low-acid electroplating solution of claim 11 wherein the concentration of leveler is approximately 12 ml/l, the concentration of suppressor is approximately 6 ml/l, the concentration of chloride is approximately 50 mg/l, and the concentration of accelerator is approximately 1.0 ml/l.
13. The low-acid electroplating solution of claim 12 wherein the chloride concentration and the accelerator concentration are determined based upon one or more characteristics of a substrate.
14. The low-acid electroplating solution of claim 13 wherein the one or more characteristics of the substrate include feature size and feature aspect ratio.
15. An apparatus comprising:
a substrate having one or more features formed thereon; and
a layer of conductive metal formed on the substrate by electroplating the substrate using a low-acid electroplating solution, the low-acid electroplating solution including a leveler, a concentration of the leveler sufficient to reduce a within die thickness variation to a specified value.
16. The apparatus of claim 15 wherein the conductive metal is copper and the concentration of the leveler is within the range 4 ml/l-12 ml/l.
17. The apparatus of claim 15 wherein the substrate is silicon and the conductive metal is a metal selected from the group consisting essentially of copper, silver, gold, and alloys thereof.
18. The apparatus of claim 15 wherein at least one of the plurality of features has a sub-micron dimension and a high aspect ratio.
19. The apparatus of claim 15 wherein the low-acid electroplating solution further includes a suppressor, a concentration of the suppressor based upon the concentration of leveler, sufficient to substantially reduce a plurality of electroplating defects.
20. The apparatus of claim 19 wherein the low-acid electroplating solution includes a combined concentration of leveler and suppressor that is determined to be below a specified value.
21. The apparatus of claim 20 wherein the concentration of suppressor is within the range 1 ml/l-6 ml/l.
22. The apparatus of claim 19 wherein the plurality of electroplating defects includes protrusion defects, bare test wafer defects, and pit defects.
23. The apparatus of claim 22 wherein the low-acid electroplating solution includes a chloride, a concentration of the chloride based upon the concentration of the suppressor, and an accelerator, a concentration of the accelerator based upon the concentration of the leveler and the suppressor.
24. The apparatus of claim 22 wherein chloride concentration and the accelerator concentration are based upon a size and an aspect ratio of one or more of the features.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/207,305 US20050274619A1 (en) | 2003-10-08 | 2005-08-19 | Modified electroplating solution components in a low-acid electrolyte solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/682,276 US7371311B2 (en) | 2003-10-08 | 2003-10-08 | Modified electroplating solution components in a low-acid electrolyte solution |
US11/207,305 US20050274619A1 (en) | 2003-10-08 | 2005-08-19 | Modified electroplating solution components in a low-acid electrolyte solution |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/682,276 Division US7371311B2 (en) | 2003-10-08 | 2003-10-08 | Modified electroplating solution components in a low-acid electrolyte solution |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050274619A1 true US20050274619A1 (en) | 2005-12-15 |
Family
ID=34422481
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/682,276 Expired - Lifetime US7371311B2 (en) | 2003-10-08 | 2003-10-08 | Modified electroplating solution components in a low-acid electrolyte solution |
US11/207,305 Abandoned US20050274619A1 (en) | 2003-10-08 | 2005-08-19 | Modified electroplating solution components in a low-acid electrolyte solution |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/682,276 Expired - Lifetime US7371311B2 (en) | 2003-10-08 | 2003-10-08 | Modified electroplating solution components in a low-acid electrolyte solution |
Country Status (1)
Country | Link |
---|---|
US (2) | US7371311B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7338585B2 (en) * | 2006-05-17 | 2008-03-04 | Intel Corporation | Electroplating chemistries and methods of forming interconnections |
US7905994B2 (en) | 2007-10-03 | 2011-03-15 | Moses Lake Industries, Inc. | Substrate holder and electroplating system |
US8262894B2 (en) | 2009-04-30 | 2012-09-11 | Moses Lake Industries, Inc. | High speed copper plating bath |
WO2013095433A1 (en) | 2011-12-21 | 2013-06-27 | Intel Corporation | Electroless filled conductive structures |
US11018025B2 (en) * | 2015-07-31 | 2021-05-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution lines having stacking vias |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112964A1 (en) * | 2000-07-12 | 2002-08-22 | Applied Materials, Inc. | Process window for gap-fill on very high aspect ratio structures using additives in low acid copper baths |
US6649038B2 (en) * | 2000-10-13 | 2003-11-18 | Shipley Company, L.L.C. | Electroplating method |
US6808611B2 (en) * | 2002-06-27 | 2004-10-26 | Applied Materials, Inc. | Methods in electroanalytical techniques to analyze organic components in plating baths |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0270084A (en) * | 1988-09-06 | 1990-03-08 | C Uyemura & Co Ltd | Gold plating bath and method |
US6946065B1 (en) * | 1998-10-26 | 2005-09-20 | Novellus Systems, Inc. | Process for electroplating metal into microscopic recessed features |
US6793796B2 (en) * | 1998-10-26 | 2004-09-21 | Novellus Systems, Inc. | Electroplating process for avoiding defects in metal features of integrated circuit devices |
US6921551B2 (en) * | 2000-08-10 | 2005-07-26 | Asm Nutool, Inc. | Plating method and apparatus for controlling deposition on predetermined portions of a workpiece |
DE60336539D1 (en) * | 2002-12-20 | 2011-05-12 | Shipley Co Llc | Method for electroplating with reversed pulse current |
US20050016857A1 (en) * | 2003-07-24 | 2005-01-27 | Applied Materials, Inc. | Stabilization of additives concentration in electroplating baths for interconnect formation |
-
2003
- 2003-10-08 US US10/682,276 patent/US7371311B2/en not_active Expired - Lifetime
-
2005
- 2005-08-19 US US11/207,305 patent/US20050274619A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020112964A1 (en) * | 2000-07-12 | 2002-08-22 | Applied Materials, Inc. | Process window for gap-fill on very high aspect ratio structures using additives in low acid copper baths |
US6649038B2 (en) * | 2000-10-13 | 2003-11-18 | Shipley Company, L.L.C. | Electroplating method |
US6808611B2 (en) * | 2002-06-27 | 2004-10-26 | Applied Materials, Inc. | Methods in electroanalytical techniques to analyze organic components in plating baths |
Also Published As
Publication number | Publication date |
---|---|
US20050077181A1 (en) | 2005-04-14 |
US7371311B2 (en) | 2008-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6290833B1 (en) | Method for electrolytically depositing copper on a semiconductor workpiece | |
US6806186B2 (en) | Submicron metallization using electrochemical deposition | |
US6884335B2 (en) | Electroplating using DC current interruption and variable rotation rate | |
US6932892B2 (en) | Apparatus and method for electrolytically depositing copper on a semiconductor workpiece | |
US6368961B1 (en) | Graded compound seed layers for semiconductors | |
US7968455B2 (en) | Copper deposition for filling features in manufacture of microelectronic devices | |
US7381643B2 (en) | Wiring structure forming method and semiconductor device | |
EP1201790B1 (en) | Seed layer | |
US20050045485A1 (en) | Method to improve copper electrochemical deposition | |
JP4637989B2 (en) | Method for forming semiconductor wiring film | |
US20050077180A1 (en) | Modified electroplating solution components in a high-acid electrolyte solution | |
US7371311B2 (en) | Modified electroplating solution components in a low-acid electrolyte solution | |
US20030111354A1 (en) | Electroplating solution for copper thin film | |
EP1125007B1 (en) | Submicron metallization using electrochemical deposition | |
US20060006071A1 (en) | Method for improving electroplating in sub-0.1um interconnects by adjusting immersion conditions | |
US20030146102A1 (en) | Method for forming copper interconnects | |
US20060091018A1 (en) | Methods for reducing protrusions and within die thickness variations on plated thin film | |
US20080110759A1 (en) | Self Terminating Overburden Free Plating (STOP) Of Metals On Patterned Wafers | |
JP2002275684A (en) | Seed layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |