US20050266504A1 - Methods for diagnosing and treating Alzheimers disease and Parkinson's disease - Google Patents
Methods for diagnosing and treating Alzheimers disease and Parkinson's disease Download PDFInfo
- Publication number
- US20050266504A1 US20050266504A1 US11/147,022 US14702205A US2005266504A1 US 20050266504 A1 US20050266504 A1 US 20050266504A1 US 14702205 A US14702205 A US 14702205A US 2005266504 A1 US2005266504 A1 US 2005266504A1
- Authority
- US
- United States
- Prior art keywords
- semaphorin
- substance
- disease
- canceled
- sema3a
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000024827 Alzheimer disease Diseases 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 103
- 208000018737 Parkinson disease Diseases 0.000 title claims abstract description 19
- 239000000126 substance Substances 0.000 claims abstract description 95
- 102000014105 Semaphorin Human genes 0.000 claims abstract description 48
- 108050003978 Semaphorin Proteins 0.000 claims abstract description 48
- 238000011282 treatment Methods 0.000 claims abstract description 43
- 230000002265 prevention Effects 0.000 claims abstract description 29
- 108010090319 Semaphorin-3A Proteins 0.000 claims description 211
- 102000013008 Semaphorin-3A Human genes 0.000 claims description 201
- 230000000694 effects Effects 0.000 claims description 94
- 210000002569 neuron Anatomy 0.000 claims description 84
- 210000004027 cell Anatomy 0.000 claims description 79
- 102100024426 Dihydropyrimidinase-related protein 2 Human genes 0.000 claims description 56
- 108010022822 collapsin response mediator protein-2 Proteins 0.000 claims description 56
- 241001465754 Metazoa Species 0.000 claims description 49
- 238000012360 testing method Methods 0.000 claims description 44
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 38
- 210000001320 hippocampus Anatomy 0.000 claims description 35
- 201000010099 disease Diseases 0.000 claims description 29
- 108090000772 Neuropilin-1 Proteins 0.000 claims description 28
- 210000003523 substantia nigra Anatomy 0.000 claims description 22
- 230000027455 binding Effects 0.000 claims description 18
- 238000009739 binding Methods 0.000 claims description 18
- 230000009261 transgenic effect Effects 0.000 claims description 17
- 230000002401 inhibitory effect Effects 0.000 claims description 16
- 238000001727 in vivo Methods 0.000 claims description 15
- 210000000020 growth cone Anatomy 0.000 claims description 14
- 210000001103 thalamus Anatomy 0.000 claims description 14
- 101001067189 Homo sapiens Plexin-A1 Proteins 0.000 claims description 13
- 102100034382 Plexin-A1 Human genes 0.000 claims description 13
- 230000011664 signaling Effects 0.000 claims description 13
- 101001067187 Homo sapiens Plexin-A2 Proteins 0.000 claims description 11
- 102100034381 Plexin-A2 Human genes 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 11
- 108091000080 Phosphotransferase Proteins 0.000 claims description 9
- 239000005557 antagonist Substances 0.000 claims description 9
- 102000020233 phosphotransferase Human genes 0.000 claims description 9
- 230000006907 apoptotic process Effects 0.000 claims description 8
- 210000005036 nerve Anatomy 0.000 claims description 8
- 230000026731 phosphorylation Effects 0.000 claims description 8
- 238000006366 phosphorylation reaction Methods 0.000 claims description 8
- 101000632261 Homo sapiens Semaphorin-3A Proteins 0.000 claims description 7
- 230000005764 inhibitory process Effects 0.000 claims description 6
- 102000057183 human SEMA3A Human genes 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000006654 negative regulation of apoptotic process Effects 0.000 claims description 3
- 102000029749 Microtubule Human genes 0.000 claims description 2
- 108091022875 Microtubule Proteins 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 210000004688 microtubule Anatomy 0.000 claims description 2
- 102100028379 Methionine aminopeptidase 1 Human genes 0.000 claims 1
- 101710161855 Methionine aminopeptidase 1 Proteins 0.000 claims 1
- 102100028762 Neuropilin-1 Human genes 0.000 claims 1
- 102100028492 Neuropilin-2 Human genes 0.000 claims 1
- 108090000770 Neuropilin-2 Proteins 0.000 claims 1
- 208000035269 cancer or benign tumor Diseases 0.000 claims 1
- 238000006384 oligomerization reaction Methods 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 45
- 239000012636 effector Substances 0.000 abstract description 22
- 108090000623 proteins and genes Proteins 0.000 description 96
- 102000004169 proteins and genes Human genes 0.000 description 83
- 235000018102 proteins Nutrition 0.000 description 79
- 150000007523 nucleic acids Chemical class 0.000 description 39
- 102000039446 nucleic acids Human genes 0.000 description 38
- 108020004707 nucleic acids Proteins 0.000 description 38
- 210000004556 brain Anatomy 0.000 description 33
- 238000003556 assay Methods 0.000 description 31
- 102000004866 Microtubule-associated protein 1B Human genes 0.000 description 30
- 108090001040 Microtubule-associated protein 1B Proteins 0.000 description 30
- 108090000765 processed proteins & peptides Proteins 0.000 description 29
- 230000035508 accumulation Effects 0.000 description 28
- 238000009825 accumulation Methods 0.000 description 28
- 102000004207 Neuropilin-1 Human genes 0.000 description 27
- 101100042271 Mus musculus Sema3b gene Proteins 0.000 description 24
- 238000001262 western blot Methods 0.000 description 23
- 241000282414 Homo sapiens Species 0.000 description 22
- 150000001413 amino acids Chemical group 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 18
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 17
- 239000002773 nucleotide Substances 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- 238000002372 labelling Methods 0.000 description 16
- 108020004999 messenger RNA Proteins 0.000 description 16
- 230000004770 neurodegeneration Effects 0.000 description 16
- 125000003729 nucleotide group Chemical group 0.000 description 16
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 16
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 16
- 108020003175 receptors Proteins 0.000 description 16
- 102000005962 receptors Human genes 0.000 description 16
- 238000012216 screening Methods 0.000 description 16
- 239000003814 drug Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 239000012472 biological sample Substances 0.000 description 14
- 230000001537 neural effect Effects 0.000 description 14
- 229940079593 drug Drugs 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- 238000009396 hybridization Methods 0.000 description 13
- 239000000499 gel Substances 0.000 description 12
- 238000003018 immunoassay Methods 0.000 description 12
- 210000001259 mesencephalon Anatomy 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 239000000306 component Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 206010012289 Dementia Diseases 0.000 description 10
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 10
- 230000000692 anti-sense effect Effects 0.000 description 10
- 239000011324 bead Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- -1 Plexins A1 and A2 Proteins 0.000 description 9
- 101150058540 RAC1 gene Proteins 0.000 description 9
- 102100022122 Ras-related C3 botulinum toxin substrate 1 Human genes 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 9
- 229940024606 amino acid Drugs 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 230000019491 signal transduction Effects 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 102000013498 tau Proteins Human genes 0.000 description 9
- 108010026424 tau Proteins Proteins 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- 210000003169 central nervous system Anatomy 0.000 description 8
- 230000000971 hippocampal effect Effects 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 241000283973 Oryctolagus cuniculus Species 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 229960002685 biotin Drugs 0.000 description 7
- 239000011616 biotin Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 7
- 208000035475 disorder Diseases 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 102000013415 peroxidase activity proteins Human genes 0.000 description 7
- 108040007629 peroxidase activity proteins Proteins 0.000 description 7
- 230000002797 proteolythic effect Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 102000003802 alpha-Synuclein Human genes 0.000 description 6
- 108090000185 alpha-Synuclein Proteins 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 230000001575 pathological effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 230000000392 somatic effect Effects 0.000 description 6
- 210000003594 spinal ganglia Anatomy 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 230000003827 upregulation Effects 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 5
- 241001573498 Compacta Species 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 108700008625 Reporter Genes Proteins 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 230000007850 degeneration Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 229960003638 dopamine Drugs 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 229960001484 edetic acid Drugs 0.000 description 5
- 238000003365 immunocytochemistry Methods 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 230000000750 progressive effect Effects 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000006947 Histones Human genes 0.000 description 4
- 108010033040 Histones Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 108010085220 Multiprotein Complexes Proteins 0.000 description 4
- 102000007474 Multiprotein Complexes Human genes 0.000 description 4
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 210000003050 axon Anatomy 0.000 description 4
- 230000003376 axonal effect Effects 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000005056 cell body Anatomy 0.000 description 4
- 210000001947 dentate gyrus Anatomy 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 210000001577 neostriatum Anatomy 0.000 description 4
- 210000000653 nervous system Anatomy 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 108091005981 phosphorylated proteins Proteins 0.000 description 4
- 235000004252 protein component Nutrition 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 230000002889 sympathetic effect Effects 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 102000053171 Glial Fibrillary Acidic Human genes 0.000 description 3
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 208000009829 Lewy Body Disease Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 3
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 102000004243 Tubulin Human genes 0.000 description 3
- 108090000704 Tubulin Proteins 0.000 description 3
- 230000001078 anti-cholinergic effect Effects 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 3
- 238000003782 apoptosis assay Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000011888 autopsy Methods 0.000 description 3
- 210000004227 basal ganglia Anatomy 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008045 co-localization Effects 0.000 description 3
- 230000019771 cognition Effects 0.000 description 3
- 239000003398 denaturant Substances 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- XWAIAVWHZJNZQQ-UHFFFAOYSA-N donepezil hydrochloride Chemical compound [H+].[Cl-].O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 XWAIAVWHZJNZQQ-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 3
- 210000004295 hippocampal neuron Anatomy 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000011503 in vivo imaging Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 230000009871 nonspecific binding Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000005522 programmed cell death Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 210000000278 spinal cord Anatomy 0.000 description 3
- 238000004885 tandem mass spectrometry Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 2
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 108010001478 Bacitracin Proteins 0.000 description 2
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108010076667 Caspases Proteins 0.000 description 2
- 102000011727 Caspases Human genes 0.000 description 2
- 102000015554 Dopamine receptor Human genes 0.000 description 2
- 108050004812 Dopamine receptor Proteins 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 201000002832 Lewy body dementia Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229910020700 Na3VO4 Inorganic materials 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 208000027089 Parkinsonian disease Diseases 0.000 description 2
- 206010034010 Parkinsonism Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108010001441 Phosphopeptides Proteins 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 208000028017 Psychotic disease Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 102000042463 Rho family Human genes 0.000 description 2
- 108091078243 Rho family Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 102100027974 Semaphorin-3A Human genes 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 108050009621 Synapsin Proteins 0.000 description 2
- 102000001435 Synapsin Human genes 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 229960004405 aprotinin Drugs 0.000 description 2
- 230000037444 atrophy Effects 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 229960003071 bacitracin Drugs 0.000 description 2
- 229930184125 bacitracin Natural products 0.000 description 2
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 210000005013 brain tissue Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000002838 chemorepellent Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 238000007428 craniotomy Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229960003135 donepezil hydrochloride Drugs 0.000 description 2
- 210000005064 dopaminergic neuron Anatomy 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000009650 gentamicin protection assay Methods 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 102000058223 human VEGFA Human genes 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000006882 induction of apoptosis Effects 0.000 description 2
- 230000010661 induction of programmed cell death Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000030214 innervation Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 210000004199 lateral thalamic nuclei Anatomy 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 210000004558 lewy body Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001455 metallic ions Chemical class 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000002241 neurite Anatomy 0.000 description 2
- 230000000626 neurodegenerative effect Effects 0.000 description 2
- 230000006576 neuronal survival Effects 0.000 description 2
- 210000004179 neuropil Anatomy 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 238000007899 nucleic acid hybridization Methods 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 238000010827 pathological analysis Methods 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000000861 pro-apoptotic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000001176 projection neuron Anatomy 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 210000002637 putamen Anatomy 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000007441 retrograde transport Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000003987 synaptic disruption Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960001685 tacrine Drugs 0.000 description 2
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 2
- 210000002071 ventral thalamic nuclei Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 108010078523 APP717 Proteins 0.000 description 1
- 208000000187 Abnormal Reflex Diseases 0.000 description 1
- 102100034320 Alpha-centractin Human genes 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 1
- 108010060159 Apolipoprotein E4 Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 1
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 1
- 101100495352 Candida albicans CDR4 gene Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102000011068 Cdc42 Human genes 0.000 description 1
- 108050001278 Cdc42 Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 101710172503 Chemokine-binding protein Proteins 0.000 description 1
- 206010009346 Clonus Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010010305 Confusional state Diseases 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 1
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241001269524 Dura Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 206010015727 Extensor plantar response Diseases 0.000 description 1
- 208000001308 Fasciculation Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 101100042266 Gallus gallus SEMA3A gene Proteins 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 101000919320 Homo sapiens Adapter molecule crk Proteins 0.000 description 1
- 101001057318 Homo sapiens Microtubule-associated protein 1B Proteins 0.000 description 1
- 101000577540 Homo sapiens Neuropilin-1 Proteins 0.000 description 1
- 101000654674 Homo sapiens Semaphorin-6A Proteins 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical group CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 206010026749 Mania Diseases 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 208000008238 Muscle Spasticity Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 102000016349 Myosin Light Chains Human genes 0.000 description 1
- 108010067385 Myosin Light Chains Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 102100022036 Presenilin-2 Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 101710138270 PspA protein Proteins 0.000 description 1
- 101000632269 Rattus norvegicus Semaphorin-3A Proteins 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- FTALBRSUTCGOEG-UHFFFAOYSA-N Riluzole Chemical compound C1=C(OC(F)(F)F)C=C2SC(N)=NC2=C1 FTALBRSUTCGOEG-UHFFFAOYSA-N 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- 241000282695 Saimiri Species 0.000 description 1
- 102100032795 Semaphorin-6A Human genes 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108091000117 Tyrosine 3-Monooxygenase Proteins 0.000 description 1
- 102000048218 Tyrosine 3-monooxygenases Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000011731 Vacuolar Proton-Translocating ATPases Human genes 0.000 description 1
- 108010037026 Vacuolar Proton-Translocating ATPases Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical group CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 210000003766 afferent neuron Anatomy 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 210000002226 anterior horn cell Anatomy 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 230000005756 apoptotic signaling Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229940039856 aricept Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004009 axon guidance Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229940092732 belladonna alkaloid Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 208000036815 beta tubulin Diseases 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- GERIGMSHTUAXSI-UHFFFAOYSA-N bis(8-methyl-8-azabicyclo[3.2.1]octan-3-yl) 4-phenyl-2,3-dihydro-1h-naphthalene-1,4-dicarboxylate Chemical compound CN1C(C2)CCC1CC2OC(=O)C(C1=CC=CC=C11)CCC1(C(=O)OC1CC2CCC(N2C)C1)C1=CC=CC=C1 GERIGMSHTUAXSI-UHFFFAOYSA-N 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 210000001159 caudate nucleus Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 108010022011 centractin Proteins 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003609 chemorepellent Effects 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 229960002327 chloral hydrate Drugs 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007278 cognition impairment Effects 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 208000004209 confusion Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000002089 crippling effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 230000010454 developmental mechanism Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- LRPQMNYCTSPGCX-UHFFFAOYSA-N dimethyl pimelimidate Chemical compound COC(=N)CCCCCC(=N)OC LRPQMNYCTSPGCX-UHFFFAOYSA-N 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Natural products O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 229940108366 exelon Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000012817 gel-diffusion technique Methods 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 230000035931 haemagglutination Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 108010052344 histone H1 kinase Proteins 0.000 description 1
- 102000046742 human MAP1B Human genes 0.000 description 1
- 102000050920 human NRP1 Human genes 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- ZUFVXZVXEJHHBN-UHFFFAOYSA-N hydron;1,2,3,4-tetrahydroacridin-9-amine;chloride Chemical compound [Cl-].C1=CC=C2C([NH3+])=C(CCCC3)C3=NC2=C1 ZUFVXZVXEJHHBN-UHFFFAOYSA-N 0.000 description 1
- 206010020745 hyperreflexia Diseases 0.000 description 1
- 230000035859 hyperreflexia Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000000951 immunodiffusion Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000002991 immunohistochemical analysis Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003017 in situ immunoassay Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000003674 kinase activity assay Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000002197 limbic effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 231100000875 loss of motor control Toxicity 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 206010027175 memory impairment Diseases 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 229930182817 methionine Chemical group 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 201000000585 muscular atrophy Diseases 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000032405 negative regulation of neuron apoptotic process Effects 0.000 description 1
- 230000001423 neocortical effect Effects 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000005155 neural progenitor cell Anatomy 0.000 description 1
- 230000001722 neurochemical effect Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 230000007996 neuronal plasticity Effects 0.000 description 1
- 230000005015 neuronal process Effects 0.000 description 1
- 230000007171 neuropathology Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 210000001769 parahippocampal gyrus Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003566 phosphorylation assay Methods 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 102000002022 plexin Human genes 0.000 description 1
- 108050009312 plexin Proteins 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000011886 postmortem examination Methods 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000000977 primary visual cortex Anatomy 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 238000013197 protein A assay Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 210000001243 pseudopodia Anatomy 0.000 description 1
- 210000002763 pyramidal cell Anatomy 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000003571 reporter gene assay Methods 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 102000000568 rho-Associated Kinases Human genes 0.000 description 1
- 108010041788 rho-Associated Kinases Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 229960004181 riluzole Drugs 0.000 description 1
- 210000003497 sciatic nerve Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical compound C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 1
- 229960003946 selegiline Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 208000018198 spasticity Diseases 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000010245 stereological analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000002739 subcortical effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960003565 tacrine hydrochloride Drugs 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 210000004062 tegmentum mesencephali Anatomy 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 210000003478 temporal lobe Anatomy 0.000 description 1
- 101150065190 term gene Proteins 0.000 description 1
- 230000000542 thalamic effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 229960001814 trypan blue Drugs 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 235000002374 tyrosine Nutrition 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000004474 valine Chemical group 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 230000021542 voluntary musculoskeletal movement Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/77—Internalization into the cell
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2814—Dementia; Cognitive disorders
- G01N2800/2821—Alzheimer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2835—Movement disorders, e.g. Parkinson, Huntington, Tourette
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/827—Proteins from mammals or birds
- Y10S530/839—Nerves; brain
Definitions
- the present invention relates to a method for diagnosing Alzheimer's disease and Parkinson's disease in a subject by analyzing the expression of Semaphorin 3 and downstream effectors. It also provides a method for identifying a substance useful in the prevention or treatment of Alzheimer's disease and Parkinson's disease, and a method of using such substance in the treatment of Alzheimer's disease and Parkinson's disease.
- Axonal guidance occurs through the complex interplay of chemoattractant and chemorepellant factors that are capable of either guiding the growth cone toward an appropriate target or repelling a growth cone by causing it to collapse, such that innervation of inappropriate targets does not occur.
- One molecular mechanism responsible for such growth cone repulsion is signaling by semaphorins (Mark et al., Cell Tissues Res. 1997; 290(2): 2661-8; Raper, Curr. Opin Neurobiol, 2000; 10(1): 88-94).
- Semaphorins play a central role in mediating neuronal plasticity during embryonic development by acting as repulsive axonal guidance signals inducing collapse of growth cones (Puschel, Eur J Neurosci 1996; 8:1317-1321; Raper, Curr Opin Neurobiol 2000; 10:88-94).
- Semaphorin 3A As either a cell surface or secreted protein, Semaphorin 3A (Sema 3A) mediated by the intracellular effector, collapsin response mediator protein (CRMP), Quin et al., J Neurobiol 1999; 41(1): 158-64; Wang et al., J Neurosci 1996; 16(19): 6197-207), produces repulsive guidance by the reversible collapse of growth cones.
- CRMP collapsin response mediator protein
- An important element of the effects of Sema3A signaling is the role that it may play in regulating the neuronal population in the developing nervous system, matching afferent innervation to target requirements, resulting in programmed cell death of afferent neurons.
- the chemorepulsive effects of Sema3A are transduced by a receptor complex containing the transmembrane proteins Neuropilin-1 and Plexin A1 or A2 (Takahashi et al., Cell 1999; 99:59-69; Rohm et al., Mech Dev 2000; 93:95-104), and the intracellular effector molecule collapsin response mediator protein 2 (CRMP-2) (Wang and Strittmatter, J Neurosci 1996; 16:6197-6207).
- CRMP-2 intracellular effector molecule collapsin response mediator protein 2
- AD and PD are characterized by intracellular deposits of hyperphosphorylated tau, a microtubule-associated protein that is responsible for the formation of neurofibrillary tangles.
- hyperphosphorylated tau a microtubule-associated protein that is responsible for the formation of neurofibrillary tangles.
- analysis of apoptosis-related changes including DNA fragmentation demonstrated that the expression of p38 was unrelated to activation of an apoptotic cascade.
- AD Alzheimer's Disease
- Alois Alzheimer 1907 when he described a disease of the cerebral cortex in a 51-year-old woman suffering from an inexorably progressive dementing disorder.
- NFTs neurofibrillary tangles
- AD Alzheimer's disease
- Parkinson's disease is a chronic nervous disease characterized by fine, slowly spreading tremors, rigidity, and a characteristic gait. Although the onset of PD may be abrupt, it generally occurs gradually. The initial symptom is often a fine tremor beginning in either a hand or a foot which may spread until it involves all of the members. The duration of PD is indefinite, and recovery rarely if ever occurs. A psychotic confusional state may be seen in the later stages of PD, which is a common and significant source of morbidity.
- L-dopamine has historically been the medication of choice in treating PD, and there are rarely any failures with L-dopamine therapy in the early years of treatment. Unfortunately, this response is not sustainable. Most patients regress after long-term usage of L-dopamine; in fact, in some the benefits of treatment wane as the disease progresses.
- Toxic side effects to the central nervous system include mental changes, such as confusion, agitation, hallucinosis, hallucinations, delusions, depression, mania and excessive sleeping.
- the symptoms may be related to activation of dopamine receptors in non-striatal regions, particularly the cortical and limbic structures.
- Elderly patients and patients with cortical Lewy body disease or concomitant AD are extremely sensitive to small doses of L-dopamine.
- all patients with PD regardless of age, can develop psychosis if they take excess amounts of L-dopamine as a means to overcome “off” periods. This is difficult to remedy, as reducing the dosage of L-dopamine may lessen its beneficial influence on motor function.
- anticholinergic drugs Prior to the introduction of L-dopamine, anticholinergic drugs had been the conventional treatment of mild Parkinsonism since the discovery of belladonna alkaloids in the mid-nineteenth century. However, these drugs have a propensity for exacerbating dementia. Nevertheless, since anticholinergic drugs are known to ameliorate rigidity in the early stages of the disease, the conventionally skilled neurologist would instinctively believe that a procholineric drug might worsen rigidity, as central cholinergic activity appears to be important for memory function in PD. Unfortunately, patients receiving anticholinergic drugs for Parkinsonism may experience reversible cognitive deficits so severe as to mimic AD. Identical memory disturbances have been produced by administration of atropine to patients with either AD or PD with dementia.
- the substantia nigra lies in the midbrain immediately dorsal to the cerebral peduncles.
- the substantia nigra is thought to be the lesion site in PD or paralysis agitans.
- the mechanism of neurodegeneration of substantia nigra neurons in PD is unknown.
- the most consistent pathological finding in PD is degeneration of the melanin-containing cells in the pars compacta (another part is called the pars reticulata) of the substantia nigra (melanin is an inert by-product of the synthesis of dopamine).
- cells within the nigra produce dopamine normally.
- This substance passes, via axoplasmic flow, to the nerve terminals in the striatum (caudate nucleus and putamen), where it is released as a transmitter. It is the absence of this transmitter that produces the crippling disorder. It is believed that the cellular apparatus associated with programmed cell death and apoptosis may play a key role in the neurodegenerative cascade. Although this is a significant prospect, the mechanisms that lead to the induction of programmed cell death pathways are unclear. A hypothesis presented herein identifies the reactivation of embryonic developmental mechanisms in the adult central nervous system with the induction of programmed cell death.
- ALS Amyotrophic lateral sclerosis
- Lou Gehrig's disease is a progressive, fatal neurological disease affecting as many as 20,000 Americans with 5,000 new cases occurring in the United States each year.
- the disorder belongs to a class of disorders known as motor neuron diseases.
- ALS occurs when specific nerve cells in the brain and spinal cord that control voluntary movement gradually degenerate. Both the brain and spinal cord lose the ability to initiate and send messages to the muscles in the body. The muscles, which are unable to function, gradually atrophy and twitch.
- ALS manifests itself in different ways, depending on which muscles weaken first. Symptoms may include tripping and falling, loss of motor control in hands and arms, difficulty speaking, swallowing and/or breathing, persistent fatigue, and twitching and cramping, sometimes quite severely. Eventually, when the muscles in the diaphragm and chest wall become too weak, patients require a ventilator to breathe. Most people with ALS die from respiratory failure, usually 3 to 5 years after being diagnosed; however, some people survive 10 or more years after diagnosis. ALS strikes in mid-life. Men are about one-and-a-half times more likely to the disease than women.
- the present invention also is based on the discovery of a Semaphorin 3 pathway as a target for diagnosis, prevention and treatment of AD and PD.
- the present invention thus contemplates a method for diagnosing AD and PD in a subject, which method comprises assessing the level of expression, accumulation or activity of Sema3A, or members of the Sema3A downstream signaling complex, in a test subject, and comparing it to the level of expression, accumulation or activity of Sema3A, or Sema3A effectors, in a control subject, wherein an increase of expression, accumulation or activity of Sema3A or signaling complex members in the test subject compared to the control subject is indicative of AD or PD disease in the test subject.
- This method is particularly useful for early diagnosis of AD and PD, preferably when the test subject is asymptomatic for AD or PD.
- This method may also involve examining co-expression of abnormally phosphorylated proteins specific to each disease i.e., phosphorylated tau and phosphorylated ⁇ -synuclein for AD.
- the method may be performed in vitro by assessing the level of expression, accumulation or activity of Sema3A in a biological sample, such as blood, serum, cerebrospinal fluid (CSF), or neuronal tissue.
- a biological sample such as blood, serum, cerebrospinal fluid (CSF), or neuronal tissue.
- the level of expression or accumulation of Sema3A may be assessed preferably by determining the quantity of Sema3A protein present in the biological sample, or alternatively by assaying the quantity of mRNA present in the biological sample that encodes Sema3A.
- the determination of the quantity of Semaphorin 3A protein present in the biological sample is effected by an immunoassay using an antibody directed against Sema3A.
- an immunoassay involve contacting the biological sample with a detectably labeled antibody which is directed against Sema3A under conditions and time sufficient to allow the formation of complexes between the antibody and Sema3A potentially present in the biological sample. Then, one proceeds to detect and measure the level of formation of these complexes.
- the level of activity of Sema3A is assessed by determining the level of expression or activity of an effector protein downstream the Semaphorin 3A pathway, such as an effector selected from the group consisting of MAP1B, CRMP-2, Plexins A1 and A2, Neuropilin 1 and Rac1.
- an effector protein downstream the Semaphorin 3A pathway such as an effector selected from the group consisting of MAP1B, CRMP-2, Plexins A1 and A2, Neuropilin 1 and Rac1.
- the biological sample is contacted with a second antibody directed against a downstream effector of Sema3A, either together with the anti-Sema3A antibody, or sequentially (i.e., before or after).
- the present invention further contemplates a method for identifying a substance useful in the prevention or treatment of AD or PD, which method comprises determining the effect of the substance on a biological activity of Sema3A, wherein an inhibitory effect is indicative of a substance useful in the prevention or treatment of AD or PD.
- This method may be performed in vitro, or in vivo by administering the substance to an animal that shows a level of Sema3A protein superior to a control animal.
- the determination of the effect of the substance on the biological activity of Sema3A proceeds by contacting a test cell with the substance and Sema3A under conditions wherein addition of Sema3A alone induces apoptosis of the cell.
- the cell used in the initial step may be of any appropriate type, and is preferably a neuronal cell.
- the determination of the effect of the substance on the biological activity of Sema3A involves contacting a test neuronal cell with the substance and Sema3A under conditions wherein addition of Sema3A alone induces withdrawal of the nerve growth cone. This is followed by observing the effect of the addition of the substance and Sema3A on the test cell, in comparison with the effect of addition of Sema3A alone on a control cell, wherein inhibition of withdrawal of the nerve growth cone in the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD.
- the determination of the effect of the substance on the biological of Sema3A comprises determining the effect of the substance on the binding or activation of Sema3A receptor by Sema3A, wherein an antagonist effect indicates that the substance is useful in the prevention or treatment of AD or PD.
- a further subject of the present invention is a method for the prevention or treatment of AD or PD, which method comprises administering to a patient in need of such treatment an effective amount of a substance that inhibits Sema3A expression, accumulation or activity, which a pharmaceutically acceptable carrier.
- this inhibitory substance may be an antibody directed against Sema3A, or an antisense nucleic acid specific for Sema3A mRNA, or the mRNA of one of the downstream effectors in the Sema3A signaling pathway.
- the above embodiments may also apply to other neurodegenerative diseases, or conditions where neurons are damaged or injured, such as ALS and stroke.
- FIGS. 1A-1I show Semaphorin 3A (Sema 3A) immunoglobulin of the hippocampus tissue of CDR0 (Clinical Dementia Score), early AD and CDR5 cases with cresol violet counter stain.
- FIG. 1A Photomontage of anti-Sema 3A immunoglobulin of an 82 year-old CDR0 case comprising hippocampus subfields CA2/3 and CA1. Arrows indicate transitions between CA3, CA2 and CA1.
- FIG. 1B higher magnification of CA1 at CA2 border (area indicated by box, FIG. 1A ). Note lightly labeled neurons.
- FIG. 1C cubiculum of this case, neurons are unlabeled.
- FIG. 1A Semaphorin 3A immunoglobulin of the hippocampus tissue of CDR0 (Clinical Dementia Score), early AD and CDR5 cases with cresol violet counter stain.
- FIG. 1A Photomontage of anti-Sema 3A immunoglobul
- FIG. 1D Sema 3A immunoglobulin of a 64 year-old AD case; arrows indicate transitions as in FIG. 1A .
- FIG. 1E CA1 (box, FIG. 1D ) neurons are all intensely labeled.
- FIG. 1F cubiculum of the same case, a number of neurons demonstrate Sema 3A immunoreactivity.
- FIG. 1G Photomontage of an 86 year-old CDR 5 case; arrows indicate transitions as in FIG. 1A .
- CA1 proximal to CA2 (box, FIG. 1G ) demonstrates intense immunolabeling of large, vesicular, intra- and extracellular profiles ( FIG. 1H ).
- FIGS. 2 A-D show Sema 3A immunolabeling of hippocampus and thalamus tissue derived from cognitively normal, age matched cases acquired from the Mount Sinai AD research center, isolated from a patient with PD.
- FIG. 2A demonstrates the dendritic form of Sema 3A wherein Sema 3A coats the dendrites in the hippocampus and is not seen in a perikaryal distribution.
- FIG. 2B shows the internalized form of Sema 3A in the hippocampus.
- FIG. 2C demonstrates the dendritic form of Sema 3A in the lateral dorsal nucleus of the thalamus.
- FIG. 2D demonstrates the dendritic form of Sema 3A in the ventral nuclear group of the thalamus.
- FIGS. 3 A-B show Sema 3A immunolabeling of PD ( FIG. 3A ) and control ( FIG. 3B ) substantia nigra as detected by the PP172 MAP1B-specific antibody. Both the somatic (arrows) and dendritic (arrowheads) immunolabeling of melanized neurons are shown. Antigen is visualized by blue-gray SG chromophore (20 ⁇ magnification); the dark area represents neuromelanin. Somatic immunolabeling indicates a dense granular region of immunoreactivity confined to the region immediately adjacent to the nucleus (perikaryal labeling), without any labeling of the dendritic arbor. In comparison, the dendritic pattern of labeling is distributed along the surfaces of the dendritic arbor with a less intense, frequently faint labeling on the membrane surrounding the cell body.
- FIGS. 4 A-B show Sema 3A immunolabeling of PD and substantia nigra with the PP172 antibody (40 ⁇ magnification).
- FIG. 5 shows immunolabeling of PD specimens with an antibody that recognizes activated p38. Antigen is visualized by blue-gray SG chromophore-the dark area represents neuromelanin (60 ⁇ magnification).
- AD and PD To address the need in the art for more effective treatments for AD and PD, the mechanisms of neurodegeneration in AD and PD from the perspective of axonal guidance dysregulation in vulnerable hippocampal neurons was examined.
- the present invention advantageously establishes that accumulation of Semaphorin 3A (Sema 3A) is enhanced during AD and PD, and that vulnerable neurons bind and internalize the active form of this protein.
- the invention is in part based on the surprising discovery that during progression of AD and PD, active Sema 3A signaling complexes are assembled in vulnerable neurons, and these complexes mediate the collapse, degeneration, and apoptosis of these cells.
- AD Alzheimer's disease
- AD encompasses all forms of the disease, including sporadic AD, ApoE4-related AD, other mutant APP forms of AD (e.g., mutations at APP717, which are the most common APP mutations), mutant PS1 forms of familial AD (FAD) (see, WO 96/34099), mutant PS2 forms of FAD (see, WO 97/27296), and alpha-2-macroglobulin-polymorphism-related AD.
- FAD familial AD
- WO 97/27296 mutant PS2 forms of FAD
- PD Parkinson's disease
- CNS central nervous system
- PD central nervous system
- CNS central nervous system
- striatum consisting of the caudate and putamen nuclei, whose neurons bear dopamine receptors.
- This projection of neurons is just one component of the complex network of interconnections among the deep gray-matter structures known as the basal ganglia.
- Neurochemical or structural pathologic conditions affecting the basal ganglia result in diseases of motor control, classified as movement disorders.
- the “substantia nigra” refers to a midbrain structure, is considered part of the basal ganglia complex due to its close ties with the striatum.
- the pars compacta is a cell—rich region that in humans is composed of large pigmented neurons. In some animals (for example, humans and squirrel monkeys) the large nigral neurons exhibit a characteristic black pigmentation; hence the origin of the structure's name (“black substance”).
- ALS Amyotrophic lateral sclerosis
- ALS refers to a disorder of the anterior horn cells of the spinal cord and the motor cranial nuclei that leads to progressive muscle weakness and atrophy. Involvement of both upper and lower motor neurons is characteristic. Patients develop variable hyperreflexia, clonus, spasticity, extensor plantar responses, and limb or tongue fasciculations. ALS is also referred to as Lou Gehrig's disease.
- the subject to whom the diagnostic or therapeutic applications of the invention are directed may be any human or animal, more particularly a mammal, preferably a human, primate or a rodent, but including, without limitation, monkeys, dogs, cats, horses, cows, pigs, sheep, goats, rabbits, guinea pigs, hamsters, mice and rats.
- the human subject is still asymptomatic for AD or PD, or only shows early symptoms of the disease.
- AD and PD are abnormally phosphorylated proteins specific to each disease i.e., phosphorylated tau for AD and phosphorylated ⁇ -synuclein for AD.
- Semaphorin 3A protein or “Sema3A protein” encompasses the Semaphorin protein of human origin, which has an amino acid sequence available on Swissprot database (access number for the Semaphorin 3A precursor: Q14563). It also encompasses function-conservative variants and homologous proteins thereof, more particularly proteins originating from different species.
- Semaphorin 3A nucleic acid or “Sema3A nucleic acid” refers to a polynucleotide that encodes a Semaphorin 3A protein as above described.
- the nucleotide sequence encoding the human Semaphorin 3A protein is available on GenBank (Accession Number NM006080).
- a “Semaphorin 3A gene” or “Sema3A gene” is used herein to refer to a portion of a DNA molecule that includes a Sema3A polypeptide coding sequence operatively associated with expression control sequences.
- a gene includes both transcribed and untranscribed regions.
- the transcribed region may include introns, which are spliced out of the mRNA, and 5′- and 3′-untranslated (UTR) sequences, along with protein coding sequences.
- the gene can be a genomic or partial genomic sequence, in that it contains one or more introns.
- the term gene may refer to a cDNA molecule (i.e., the coding sequence lacking introns).
- Semaphorin 3A gene or “Semaphorin 3A nucleic acid” encompass sequence-conservative variants and function-conservative variants, as well as homologous sequences, such as allelic variants or species variants (orthologs).
- Neuropilin-1 refers to a neuronal cell surface semaphorin 3 receptor glycoprotein important for axonal guidance in developing peripheral nervous system efferents. Neuropilin-1 also has been identified as a vascular endothelial growth factor (VEGF) receptor on endothelial cells. Exemplary nucleotide and amino acid sequences for human Neuropilin-1 can be found in GenBank (Accession No. XM — 165547). Neuropilin-1 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- VEGF vascular endothelial growth factor
- Plexin A1 and “Plexin A2” refer to cell surface proteins that bind to Neuropilin-1 to form functional Semaphorin receptor complexes.
- Exemplary nucleotide and amino acid sequences for human Plexins A1 and A2 can be found in GenBank (Accession Nos. XM — 051261 and XM — 114030, respectively).
- Plexin A1 and Plexin A2 also include sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- MAP1B Microtubule-Associated Protein 1B
- DRG dorsal root ganglion
- MAP1B also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- MAP1B also includes phosphorylated and unphosphorylated forms of the protein.
- CRMP-2 Collapsing response mediator protein-2
- GenBank Accession No. U83278
- CRMP-2 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- p38 refers to members of the MAPK family that are activated by a variety of environmental stresses and inflammatory cytokines. Stress signals are delivered to this cascade by members of small GTPases of the Rho family (Rac, Rho, Cdc42). Exemplary nucleotide and amino acid sequences for human p38 can be found in GenBank (Accession No. AF261073). As one of ordinary skill in the art would appreciate, p38 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs. p38 also includes phosphorylated and unphosphorylated forms of the protein.
- Rh1 is a Rho-family GTPase that is involved in inducing actin cytoskeletal remodeling at designated sites in the cell cortex.
- Exemplary nucleotide and amino acid sequences for human Rac1 can be found in GenBank (Accession No. AF498964).
- Rac1 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- Neuropilin-1, Plexins A1/A2, MAP1B, CRMP-2, p38 and Rac1 are collectively referred to herein as “downstream effectors.”
- polypeptide and protein may be used herein interchangeably to refer to the gene product (or corresponding synthetic product) of a Semaphorin 3A gene.
- protein may also refer specifically to the polypeptide as expressed in cells.
- Sequence-conservative variants of a polynucleotide sequence are those in which a change of one or more nucleotides in a given codon position results in no alteration in the amino acid encoded at that position.
- “Function-conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like).
- Amino acids with similar properties are well known in the art. For example, arginine, histidine and lysine are hydrophilic-basic amino acids and may be interchangeable. Similarly, isoleucine, a hydrophobic amino acid, may be replaced with leucine, methionine or valine.
- Amino acids other than those indicated as conserved may differ in a protein or enzyme so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm.
- a “function-conservative variant” also includes a polypeptide or enzyme which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein or enzyme to which it is compared.
- homologous in all its grammatical forms and spelling variations refers to the relationship between proteins that possess a “common evolutionary origin,” including proteins from superfamilies (e.g., the immunoglobulin superfamily) and homologous proteins from different species (e.g., myosin light chain, etc.) (Reeck et al., Cell 50:667, 1987). Such proteins (and their encoding genes) have sequence homology, as reflected by their sequence similarity, whether in terms of percent similarity or the presence of specific residues or motifs at conserved positions.
- a specific type of homolog is an ortholog, which refers to the corresponding (or coding sequence or gene product in another species (e.g., equine hemoglobin is an ortholog of human hemoglobin).
- sequence similarity in all its grammatical forms refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin (see Reeck et al., supra).
- sequence similarity when modified with an adverb such as “highly,” may refer to sequence similarity and may or may not relate to a common evolutionary origin.
- two DNA sequences are “substantially homologous” or “substantially similar” when at least about 80%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences, as determined by sequence comparison algorithms, such as BLAST, FASTA, DNA Strider, etc.
- sequence comparison algorithms such as BLAST, FASTA, DNA Strider, etc.
- An example of such a sequence is an allelic or species variant of the Sema3A gene.
- Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system.
- two amino acid sequences are “substantially homologous” or “substantially similar” when greater than 80% of the amino acids are identical, or greater than about 90% are similar (functionally identical).
- the similar or homologous sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin) pileup program, or any of the programs described above (BLAST, FASTA, etc.).
- a nucleic acid molecule is “hybridizable” to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al.). The conditions of temperature and ionic strength determine the “stringency” of the hybridization.
- low stringency hybridization conditions corresponding to a T m (melting temperature) of 55 ⁇ C.
- T m melting temperature
- Moderate stringency hybridization conditions correspond to a higher T m
- moderate salt and denaturant concentrations e.g., 40% formamide
- High stringency hybridization conditions correspond to the highest T m , under conditions of high concentrations of salt and denaturants, e.g., 50% formamide, 5 ⁇ or 6 ⁇ SCC.
- SCC is a 0.15M NaCl, 0.015M Na-citrate.
- Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible.
- the appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of T m for hybrids of nucleic acids having those sequences.
- the relative stability (corresponding to higher T m ) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA.
- a minimum length for a hybridizable nucleic acid is at least about 10 nucleotides; preferably at least about 15 nucleotides; and more preferably the length is at least about 20 nucleotides.
- standard hybridization conditions refers to a T m of 55° C., and utilizes conditions as set forth above.
- the T m is 60° C.; in a more preferred embodiment, the T m is 65° C.
- “high stringency” refers to hybridization and/or washing conditions at 68° C. in 0.2 ⁇ SSC, at 42° C. in 50% formamide, 4 ⁇ SSC, or under conditions that afford levels of hybridization equivalent to those observed under either of these two conditions.
- Semaphorin of class 3 belongs to the Semaphorin family that comprises several molecules that exert cell-type specific effects on a wide variety of central and peripheral axons. These molecules are described in U.S. Pat. No. 5,639,856 and are reviewed in Pasterkamp et al., Brain Research Reviews, 200, 35: 36-54, as well as in Nakamura et al., Journal of Neurobiology 2000; 44:219-229; Tamagnone et al., P. M. Comoglio, 2000;10:377-383; Roskies et al., Neuron 1998; 21:936-936; and Yu et al., Neuron 1999; 22:11-14.
- Sema3A is also known as C-Collapsin-1, Coll-1, human Sema III, mouse SemD, rat Sema III, Sema-Z1a (Semaphorin Nomenclature Committee, Cell 1999; 97:551-552). It is a secreted chemorepellent that is highly expressed in developing entorhinal and neocortical areas, but only weakly expressed in developing hippocampus (Chedotal, et al. Development 1998; 125: 4313-23).
- Sema3A expression refers to the production of Sema3A protein, or mRNA that encodes Sema3A, regardless of the cell type from which it was transcribed.
- Sema3A may be produced by a first cell type but may accumulate in a second cell type, tissue, or biological fluid.
- the present invention also encompasses the mere accumulation of Sema3A, which refers to the accumulation of the protein or the mRNA.
- a “Sema3A activity” or “Sema3A biological activity” is a functional property shown by the wild-type Sema3A protein in vivo. This includes a pro-apoptotic activity, more particularly on neuronal cells, or the ability of inducing withdrawal of nerve growth cone.
- neuronal cell means neurons or any cell of the nervous system that are committed to develop into a neuron. Any type of neuronal cell may be used to assay the activity of Sema3A, such as sensory neuronal cells, sympathetic neurons or Dorsal Root Ganglion neurons (DRG). Neuronal progenitor cells may be used as well.
- DRG Dorsal Root Ganglion neurons
- Sema3A activity also encompasses the binding of Sema3A to its receptor and/or activation thereof.
- the Sema3A activity may be assessed by any standard method well-known by one skilled in the art, as described below:
- Collapse assay Growth cone collapse assays are described in Luo et al., Cell 1993; 75:217-227, as well as in Gagliardini et al., Molecular and Cellular Neuroscience 1999; 14:301-316, or in the International patent application WO 01/18173.
- neuronal cells such as E18 mouse DRG neurons or sympathetic neurons, are allowed to extend neurites in an appropriate medium.
- Sema3A is then added to the cells, for about 35-45 minutes at 37° C.
- the cultures are fixed in 4% paraformaldehyde in PBS containing 10% sucrose. The tips of neurites without lamellipodia or filopodia are scored as being collapsed.
- the pro-apoptotic effect of a protein such as Sema3A may be assayed by treating neuronal cells with serial dilutions of the protein in the presence of trophic factors, and determining the percentage of neuronal survival before and after treatment, as described for example in Deckwerth et al., Dev. Biol. 1994; 165:63-72 or Eckenstein et al., Neuron 1990; 4:623-631. For example, cultures are incubated with additives for 24 hours before fixation, staining with a dye, and photography using an epifluorescence microscope. TUNEL staining may be performed with the ApopTag Plus kit (Talron, Israel) according to the manufacturer's protocol.
- nuclei especially in the form of pycnotic nuclei, may be visualized by using nuclear dye such as propidium iodide (that reveals clumped DNA).
- nuclear dye such as propidium iodide (that reveals clumped DNA).
- DNA laddering may be analyzed by Southern Blot techniques, or modifications in the gene expression of pro- or anti-apoptotic proteins such as Bcl, Bcx, or caspases, also may be analyzed.
- diagnosis refers to the identification of the disease (i.e., AD or PD) at any stage of its development, and also includes the determination of predisposition of a subject to develop the disease. In a preferred embodiment of the invention, diagnosis of AD or PD in a subject occurs prior to the manifestation of symptoms. Subjects with a higher risk of developing the disease are of particular concern.
- the diagnostic method of the invention also allows confirmation of AD or PD in a subject suspected of having AD or PD.
- the method of the invention comprises assessing the level of expression, accumulation or activity of Sema3A in a test subject and comparing it to the level of expression, accumulation or activity of Sema3A in a control subject (i.e., a subject not having or pre-disposed to developing the disease).
- a control subject i.e., a subject not having or pre-disposed to developing the disease.
- An increase of expression, accumulation or activity of Sema3A in the test subject compared to the control subject is indicative of AD or PD in the test subject.
- the diagnostic methods of the invention may preferably be performed in vitro, in a biological sample of a test subject, which is compared to a control sample.
- a “biological sample” is any body tissue or fluid likely to contain Sema3A protein or mRNA or down-stream effectors thereof. Such samples preferably include blood or a blood component (serum, plasma), as well as cerebrospinal fluid (CSF).
- samples preferably include blood or a blood component (serum, plasma), as well as cerebrospinal fluid (CSF).
- kits for detecting Sema3A protein or nucleic acids can be conveniently provided in a kit form.
- a Sema3A detector e.g., a detectable antibody (which may be directly labeled or which may be detected with a secondary labeled reagent), or a nucleic acid probe or a primer pair.
- the determination of the level of expression, or accumulation of Sema3A encompasses the use of nucleic acid sequences such as specific oligonucleotides to detect the presence of mRNA that encodes Sema3A nucleic acid in a biological sample.
- hybridization probes in solution hybridizations and in embodiments employing solid-phase procedures.
- the test nucleic acid is adsorbed or otherwise affixed to a selected matrix or surface.
- the fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes.
- one skilled in the art may use oligonucleotide primers in an amplification technique, such as a reverse-PCR (“reverse polymerase chain reaction”), to specifically amplify the target mRNA potentially present in the biological sample.
- a reverse-PCR reverse polymerase chain reaction
- oligonucleotide refers to a nucleic acid, generally of at least 10, preferably at least 15, and more preferably at least 20 nucleotides, preferably no more than 100 nucleotides, that is hybridizable to an mRNA molecule that encodes Sema3A gene. Oligonucleotides can be labeled, e.g., with 32 P-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. Generally, oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesizer. Accordingly, oligonucleotides can be prepared with non-naturally occurring phosphoester analog bonds, such as thioester bonds, etc.
- Sema3A As an alternative to analyzing Sema3A nucleic acids, one can evaluate Sema3A on the basis of protein expression, or accumulation.
- Sema3A is detected by immunoassay.
- immunoassay For example, Western blotting permits detection of the presence or absence of Sema3A.
- Other immunoassay formats can also be used in place of Western blotting, as described below for the production of antibodies.
- ELISA assay One of these is ELISA assay.
- an antibody against Sema3A or epitopic fragment thereof is immobilized onto a selected surface, for example, a surface capable of binding proteins such as the wells of a polystyrene microtiter plate.
- a non-specific protein such as bovine serum albumin (BSA)
- BSA bovine serum albumin
- This step may involve diluting the sample with diluents, such as solutions of BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween.
- diluents such as solutions of BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween.
- BGG bovine gamma globulin
- PBS phosphate buffered saline
- Tween phosphate buffered saline
- the second antibody may have an associated activity such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate. Quantitation may then be achieved by measuring the degree of color generation using, for example, a visible spectra spectrophotometer.
- the secondary antibody is conjugated to an enzyme such as peroxidase and the protein is detected by the addition of a soluble chromophore peroxidase substrate such as tetramethylbenzidine followed by 1 M sulfuric acid.
- a soluble chromophore peroxidase substrate such as tetramethylbenzidine followed by 1 M sulfuric acid.
- the test protein concentration is determined by comparison with standard curves.
- a biochemical assay can be used to detect expression or accumulation of Sema3A, e.g., by the presence or absence of a band by polyacrylamide gel electrophoresis; by the presence or absence of a chromatographic peak using any of the various methods of high performance liquid chromatography, including reverse phase, ion exchange, and gel permeation; by the presence or absence of Sema3A in analytical capillary electrophoresis chromatography, or any other quantitative or qualitative biochemical technique known in the art.
- the immunoassays discussed above involve using antibodies directed against the Sema3A protein or fragments thereof.
- the production of such antibodies is described below.
- Antibodies that specifically bind to Sema3A include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and those within Fab expression libraries.
- polyclonal antibodies to Sema3A polypeptides or derivatives or analogs thereof may be used for the production of polyclonal antibodies to Sema3A polypeptides or derivatives or analogs thereof.
- various host animals can be immunized by injection with the antigenic polypeptide, including but not limited to rabbits (described infra) mice, rats, sheep, and goats.
- any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (Nature 256:495-497, 1975), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 1983; 4:72; Cote et al., Proc. Natl. Acad. Sci. U.S.A.
- monoclonal antibodies can be produced in germ-free animals (International Patent Publication No. WO 89/12690).
- Antibody fragments which contain the idiotype of the antibody molecule can be generated by known techniques.
- such fragments include but are not limited to: the F(ab′) 2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab′ fragments which can be generated by reducing the disulfide bridges of the F(ab′) 2 fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.
- Screening for the desired antibody can be accomplished by numerous techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc.
- radioimmunoassay e.g., ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ
- antibody binding is detected by detecting a label on the primary antibody.
- the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody.
- the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- the activity of Sema3A may be indirectly assayed by evaluating the level of expression, accumulation or activity of down-stream effectors of Sema3A such as MAP1B, CRMP-2, Rac1, or Plexins A1 and A2, and Neuropilin 1.
- MAP1B, CRMP-2, Rac1 are the preferred targets. Most of these effectors are reviewed in Goshima et al., Jpn. J. Pharmacol., 2000, 82:273-279, which is hereby incorporated by reference herein.
- Kinases of about 40-44 kDa and 110-120 kDa detected by SDS-PAGE in association with Sema3A in AD patients, as shown in Example 1, may useful targets as well.
- nucleic acid-based assays or protein-based assays as described above may be readily adapted for indirect screening.
- the level of activity of proteins such as MAP1B, CRMP-2, or Plexin A1 may be assessed by determining the level of phosphorylation of the proteins, which is indicative of their activated state.
- Phosphorylation Assays The levels of phosphorylation of proteins can be assessed by various methods, including immunoassays or radiolabeling.
- phosphorylation state of a protein is assessed by utilizing a binding partner, which should preferably be highly specific for the phosphoepitope on the target protein.
- the binding partner is an antibody that has been generated against a unique epitope of the substrate.
- the binding partner is specific for the phosphorylated form of the target protein.
- the detection procedure used to assess the phosphorylation state of the protein may, for example, employ an antibody or a peptide that recognizes and binds to phosphorylated serines, threonines or tyrosines.
- the detection antibody is preferably a polyclonal antibody to maximize the signal, but may also be specific monoclonal antibodies which have been optimized for signal generation.
- immunoassays may be replaced by the detection of radiolabeled phosphate according to a standard technique. This involves incubating cells with the test substances and radiolabeled phosphate, lysing the cells, separating cellular protein components of the lysate using as SDS-polyacrylamide gel (SDS-PAGE) technique, in either one or two dimensions, and detecting the presence of phosphorylated proteins by exposing X-ray film.
- SDS-PAGE SDS-polyacrylamide gel
- the phosphorylation of a protein may also be conveniently detected by migration on an electrophoresis gel followed by immunodetection, i.e., Western blotting, to determine whether a shift of the molecular weight of the protein occurs; a phosphorylated protein being heavier than the corresponding non-phosphorylated form.
- immunodetection i.e., Western blotting
- Sema3A expression, accumulation or activity may be preferably performed in vitro, since Sema3A is a secreted protein that can be easily detected in any biological sample such as blood or CSF.
- In vitro assays can be performed for down-stream effectors as well, insofar as they can be detected in such biological samples.
- in vivo diagnostic method can then be contemplated.
- In vivo diagnostics especially refers to in vivo imaging methods, which permit the detection of a labeled probe or antibody that specifically hybridizes or binds Sema3A mRNA or protein, respectively, in the subject's brain.
- Such methods include magnetic resonance spectroscopy, positron-emission tomography (PET) and single photon emission tomography (SPECT).
- PET positron-emission tomography
- SPECT single photon emission tomography
- the type of detection instrument available is a major factor in selecting a given label. For instance, radioactive isotopes and paramagnetic isotopes are particularly suitable for in vivo imaging. The type of instrument used will guide the selection of the radionuclide.
- a radionuclide may be bound to an antibody either directly or indirectly by using an intermediary functional group.
- Intermediary functional groups which are often used to bind radioisotopes which exist as metallic ions to antibody include diethylenetriaminepentaacetic acid (DTPA) and ethylene diaminetetracetic acid (EDTA).
- Examples of metallic ions suitable as radioactive isotopes include 99 mTc, 123 I, 131 I , 111 In, 97 Ru, 67 Cu, 67 Ga, 125 I, 68 Ga, 72 As, 89 Zr, and 201 Tl.
- Examples of paramagnetic isotopes, particularly useful in Magnetic Resonance Imaging (“MRI”), include 157 Gd, 55 Mn, 162 Dy, 52 Cr, and 56 Fe.
- the present invention further contemplates a screening method for identifying lead compounds that exhibit an inhibitory activity towards a Sema3A signaling complex. According to the invention, such compounds are useful in the prevention or treatment of AD or PD.
- a “lead compound” is a test substance which has been shown to exhibit an inhibitory activity towards a Sema3A signaling complex.
- test substance or “test compound” is a chemically defined compound or mixture of substances (as in the case of a natural extract or tissue culture supernatant), whose ability to inhibit Sema3A activity may be defined by various assays
- Test compounds may be screened from large libraries of synthetic or natural substances. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based substances. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (NC), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means (Blondelle et al., TIBTech 1996, 14:60).
- Inhibitors of Sema3A activity encompass direct inhibitors of Sema3A, as well as inhibitors of down-stream effectors of Sema3A, such as MAP1B, CRMP-2, Rac1, Plexins A1 and A2, or Neuropilin 1.
- Sema3A inhibitor may be easily adapted to identify inhibitors that target Sema3A effectors.
- the screening method of the invention comprises (a) contacting a cell with the test substance and Sema3A under conditions wherein addition of Sema3A alone induces apoptosis of the cell; and (b) observing the effect of addition of the test substance and Sema3A to the cell, in comparison with the effect of addition of Sema3A alone to a control cell, wherein inhibition of apoptosis of the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD or PD.
- the cell may advantageously be a neuronal cell. This assay may be performed for example as described above, (see “Neuronal survival assays”).
- the screening method of the invention comprises (a) contacting a neuronal cell with the test substance and Sema3A under conditions wherein addition of Sema3A alone induces withdrawal of the nerve growth cone; and (b) observing the effect of the addition of the test substance and Sema3A to the cell, in comparison with the effect of addition of Sema3A alone to a control cell, wherein inhibition of withdrawal of the nerve grown cone in the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD.
- this assay may be performed for example as described above (“Collapse assay”).
- the screening method of the invention comprises determining the effect of the test substance on the binding or activation of Sema3A receptor by Sema3A, wherein an antagonist effect of the test substance indicates that the substance is useful in the prevention or treatment of AD or PD.
- This antagonist effect may be determined by an in vitro method using a recombinant Sema3A-reporter gene promoter activity system.
- Reporter genes for use in the invention encode detectable proteins, include, but are by no means limited to, chloramphenicol transferase (CAT), ⁇ -galactosidase ( ⁇ -gal), luciferase, green fluorescent protein (GFP) and derivatives thereof, yellow fluorescent protein and derivatives thereof, alkaline phosphatase, other enzymes that can be adapted to produce a detectable product, and other gene products that can be detected, e.g., immunologically (by immunoassay).
- CAT chloramphenicol transferase
- ⁇ -gal ⁇ -galactosidase
- GFP green fluorescent protein
- alkaline phosphatase other enzymes that can be adapted to produce a detectable product
- other gene products that can be detected, e.g., immunologically (by immunoassay).
- An antagonist screen according to the invention involves detecting expression of the reporter gene by the host cell when contacted with a test substance. If there is no change in expression of the reporter gene, the test substance is not an effective antagonist. If reporter gene expression is reduced or eliminated, the test substance has inhibited Sema3A-mediated gene expression, and is thus a candidate for development of an AD or PD therapeutic.
- the reporter gene assay system described here may be used in a high-throughput primary screen for antagonists, or it may be used as a secondary functional screen for candidate compounds identified by a different primary screen, e.g., a binding assay screen that identifies substances that modulate Sema3A transcription activity.
- Potential drugs may be identified by screening in high-throughput assays, including without limitation cell-based or cell-free assays. It will be appreciated by those skilled in the art that different types of assays can be used to detect different types of agents. Several methods of automated assays have been developed in recent years so as to permit screening of tens of thousands of compounds in a short period of time (see, e.g., U.S. Pat. Nos. 5,585,277, 5,679,582, and 6,020,141). Such high-throughput screening methods are particularly preferred. Alternatively, simple reporter-gene based cell assays such as the one described here are also highly desirable.
- Intact cells or whole animals expressing a gene encoding Sema3A can be used in screening methods to identify candidate drugs or lead compounds.
- a permanent cell line is established.
- cells are transiently programmed to express a Sema3A gene by introduction of appropriate DNA or mRNA.
- Identification of candidate compounds can be achieved using any suitable assay, including without limitation (i) assays that measure selective binding of test substances to Sema3A (ii) assays that measure the ability of a test substance to modify (i.e., inhibit) a measurable activity or function of Sema3A and (iii) assays that measure the ability of a substance to modify (i.e., inhibit) the transcriptional activity of sequences derived from the promoter (i.e., regulatory) regions of the Sema3A gene.
- Useful substances are typically those that bind to Sema3A or disrupt the association of Sema3A with its receptor (e.g., Neuropilin 1/Plexins complexes, see WO 99/04263 or WO 01/18173).
- Alternatively useful substances may be screened for their ability to block processing or secretion of Sema3A, especially by interfering with Sema3A cleavage site.
- the inhibitory effect of the substance is determined in vivo, by administering the substance to an animal that shows a level of Sema3A protein greater than that of a control animal.
- an animal that shows a level of Sema3A protein greater than that of a control animal.
- rats and mice, as well as rabbits are most frequently employed, particularly for laboratory studies, any animal can be employed in the practice of the invention.
- This animal may be a transgenic animal that overexpresses Sema3A.
- This transgenic animal may be considered as a model animal for AD or PD. The production of such transgenic animal is described in further detail below.
- transgenic Animals usually refers to animal whose germ line and somatic cells contain the transgene of interest, i.e., Sema3A gene.
- transient transgenic animals can be created by the ex vivo or in vivo introduction of an expression vector that encodes Sema3A.
- Preferred expression vectors are viral vectors, such as lentiviruses, retroviruses, herpes viruses, adenoviruses, adeno-associated viruses, vaccinia virus, baculovirus, alphavirus, influenza virus, and other recombinant viruses with desirable cellular tropism.
- a gene encoding Sema3A can be introduced in vivo using a viral vector or through direct introduction of DNA.
- Expression in targeted tissues can be effected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both.
- Targeted gene delivery is described in PCT Publication WO 95/28494.
- transgenic animals are contemplated for use in the present invention, e.g., to evaluate the effect of a test substance on Sema3A expression, accumulation or activity.
- Animals overexpressing Sema3A may be produced by introducing a Sema3A gene in an endogenous locus. This can be achieved by homologous recombination, transposition (Westphal and Leder, Curr Biol 1997; 7:530), using mutant recombination sites (Araki et al., Nucleic Acids Res 1997; 25:868) or PCR (Zhang and Henderson, Biotechniques 1988; 25:784). See also, Coffman, Semin. Nephrol. 1997; 17:404; Esther et al., Lab. Invest. 1996; 74:953; Murakami et al., Blood Press. 1996; Suppl. 2:36.
- the DNA is at least about 1 kilobase (kb) in length and preferably 3-4 kb in length, thereby providing sufficient complementary sequence for recombination when the construct is introduced.
- Transgenic constructs can be introduced into the genomic DNA of the ES cells, into the male pronucleus of a fertilized oocyte by microinjection, or by any methods known in the art, e.g., as described in U.S. Pat. Nos. 4,736,866 and 4,870,009, and by Hogan et al., Transgenic Animals: A Laboratory Manual, 1986, Cold Spring Harbor.
- a transgenic founder animal can be used to breed other transgenic animals; alternatively, a transgenic founder may be cloned to produce other transgenic animals.
- the animal that shows a level of Sema3A protein superior to a control animal is merely an animal to which Sema3A protein has been administered. Micro-injections of the protein into certain areas of the brain of the animal are more particularly contemplated within the present invention and described herein.
- the animals are administered with the substance to be tested by any convenient route, for example by systemic injection, pumps for long-term exposure, or direct intracerebral injection. These animals may be included in a behavior study, so as to determine the effect of the substance on the cognitive behavior of the animals for instance.
- a biopsy or anatomical evaluation of animal brain tissue may also be performed, or a sample of blood or CSF may be collected, to perform in vitro assays as described above.
- the present invention further provides a method for the prevention or treatment of AD, which method comprises inhibiting Sema3A expression, accumulation or activity in a subject or patient.
- the method for the prevention or treatment of AD or PD comprises administering to a patient in need of such treatment an effective amount or a substance that inhibits Sema3A expression, accumulation or activity, which a pharmaceutically acceptable carrier.
- a “subject” or “patient” is a human or an animal likely to develop AD or PD, more particularly a mammal, preferably a human, rodent or primate, as described above in connection with diagnostic applications.
- prevention refers to the prevention of the onset of AD or PD, which means to prophylactically interfere with a pathological mechanism that results in the disease.
- a pathological mechanism can be an increase of Sema3A expression, or accumulation.
- the patient may be a subject that has an increased risk of developing the disease.
- AD such subject may have a genetic predisposition to developing an amyloidosis, such as a person from a family that has members with familial AD (FAD).
- FAD familial AD
- someone in his or her seventh or eighth decade is at greater risk for age-related AD.
- treatment means to therapeutically intervene in the development or pathology of a disease in a subject showing a symptom of this disease.
- these symptoms can include development of dementia, memory defects, and the like in the fifth and sixth decade.
- terapéuticaally effective amount is used herein to mean an amount or dose sufficient to decrease the level of Sema3A activity e.g., by about 10%, preferably by about 50%, and more preferably by about 90% percent.
- a therapeutically effective amount can ameliorate or present a clinically significant deficit in the activity, function and effects of Sema3A.
- a therapeutically effective amount is sufficient to cause an improvement in a clinically significant condition in the subject to which it is administered.
- Sema3A expression The inhibition of Sema3A expression, accumulation or activity may be achieved by various methods, as described hereafter.
- the inhibition may be directed against Sema3A protein or against any of its down-stream effectors, such as MAP1B, CRMP-2, Rac1, Plexins A1 and A2 or Neuropilin-1.
- MAP1B Sema3A protein
- CRMP-2 Reactive CAM protein
- Rac1 Hermanent CAM protein
- Plexins A1 and A2 Activated CAM-1
- Neuropilin-1 a down-stream effectors
- the methods discussed below may be easily adapted to perform the latter embodiment.
- the inhibitory substance may be a substance that is known or has been identified to compete with Sema3A for binding to its receptor.
- Vascular Endothelial Growth Factor—165 (VEGF-165), shown to compete with Sema3A for binding to Neuropilin-1 (NRP-1), is more particularly encompassed (Soker et al., Cell 1998; 92:735-745; Bagnard et al., The Journal of Neuroscience 2000; 10: 332-3341).
- this inhibitory substance may be a candidate drug as identified by the screening methods discussed above.
- Selected inhibitory agents may be modified to enhance efficacy, stability, pharmaceutical compatibility, and the like.
- peptide antagonists may be modified in a variety of ways, e.g. to enhance their proteolytic stability.
- Structural identification of an agent also may be used to identify, generate, or screen additional agents.
- the inhibitory substance may be an antibody that is directed against Sema3A.
- Antibodies that block the activity of Sema3A may be produced and selected according to any standard method well-known by one skilled in the art, such as those described above in the context of diagnostic applications.
- the substance that inhibits the Sema3A protein is an antisense nucleic acid specific for Sema3A mRNA.
- An “antisense nucleic acid” is a single stranded nucleic acid molecule which, on hybridizing under cytoplasmic conditions with complementary bases in an RNA or DNA molecule, inhibits translation or transcription. If the RNA is a messenger RNA transcript, the antisense nucleic acid is a countertranscript or mRNA-interfering complementary nucleic acid. “Antisense” broadly includes RNA-RNA interactions, RNA-DNA interactions, ribozymes and RNase-H mediated arrest.
- Antisense nucleic acid molecules can be encoded by a recombinant gene for expression in a cell (e.g., U.S. Pat. No. 5,814,500; U.S. Pat. No. 5,811,234), or alternatively they can be prepared synthetically (e.g., U.S. Pat. No. 5,780,607).
- the substance that inhibits Sema3A may also be an antisense nucleic acid specific for a downstream effector in the Sema3A signaling pathway. Antisense therapy is discussed in more detail below.
- the substance that inhibits Sema3A activity is advantageously formulated in a pharmaceutical composition, with a pharmaceutically acceptable carrier. This substance may be then called active ingredient, or therapeutic agent, against AD or PD.
- the concentration or amount of the active ingredient depends on the desired dosage and administration regimen, as discussed below. Suitable dose ranges may include from about 1 mg/kg to about 100 mg/kg of body weight per day.
- the pharmaceutical compositions may also include other biologically active substances in combination with the Sema3A inhibitory agents.
- Such substances include but are not limited to donepezil hydrochloride (Aricept®), rivastigamine tartrate (Exelon®), galantamine (Reminyl®), tacrine (Cognex®), and non-steroidal anti-inflammatory drugs (NSAIDs).
- phrases “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the substance is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions.
- Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- a composition comprising “A” (where “A” is a single protein, DNA molecule, vector, recombinant host cell, etc.) is substantially free of “B” (where “B” comprises one or more contaminating proteins, DNA molecules, vectors, etc.) when at least about 75% by weight of the proteins, DNA, vectors (depending on the category of species to which A and B belong) in the composition is “A”.
- “A” comprises at least about 90% by weight of the A+B species in the composition, most preferably at least about 99% by weight. It is also preferred that a composition, which is substantially free of contamination, contain only a single molecular weight species having the activity or characteristic of the species of interest.
- the pharmaceutical composition of the invention can be introduced parenterally, transmucosally, e.g., orally (per os), nasally, rectally, or transdermally.
- Parental routes include intravenous, intra-arteriole, intramuscular, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial administration.
- compositions may be added to a retained physiological fluid such as blood or synovial fluid.
- a retained physiological fluid such as blood or synovial fluid.
- CNS Central Nervous System
- a variety of techniques are available for promoting transfer of the therapeutic across the blood brain barrier including disruption by surgery or injection, co-administration of drugs which transiently open adhesion contact between CNS vasculature endothelial cells, and co-administration of substances which facilitate translocation through such cells.
- the active ingredient can be delivered in a vesicle, in particular a liposome (see Langer, Science 1990; 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss: New York 1989 pp. 353-365; Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).
- a liposome see Langer, Science 1990; 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss: New York 1989 pp. 353-365; Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).
- the therapeutic substance can be delivered in a controlled release formulation.
- a polypeptide may be administered using intravenous infusion with a continuous pump, in a polymer matrix such as poly-lactic/glutamic acid (PLGA), a pellet containing a mixture of cholesterol and the active ingredient (SilasticRTM; Dow Corning, Midland, Mich.; see U.S. Pat. No. 5,554,601) implanted subcutaneously, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
- PLGA poly-lactic/glutamic acid
- SilasticRTM Dow Corning, Midland, Mich.
- vectors comprising a sequence encoding an antisense nucleic acid according to the invention may be administered by any known methods, including methods used for gene therapy that are available in the art. Exemplary methods are described below. For general reviews of the methods of gene therapy, see, Goldspiel et al., Clinical Pharmacy 1993, 12:488-505; Wu and Wu, Biotherapy 1991, 3:87-95; Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 1993, 32:573-596; Mulligan, Science 1993, 260:926-932; and Morgan and Anderson, Ann. Rev. Biochem. 1993, 62:191-217; May, TIBTECH 1993, 11:155-215.
- a vector is used in which the coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for expression of the construct from a nucleic acid molecule that has integrated into the genome (Koller and Smithies, Proc. Natl. Acad. Sci. USA 1989, 86:8932-8935; Zijlstra et al., Nature 1989, 342:435-438).
- Delivery of the vector into a patient may be either direct, in which case the patient is directly exposed to the vector or a delivery complex, or indirect, in which case, cells are first transformed with the vector in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo and ex vivo gene therapy.
- the vector is directly administered in vivo, where it enters the cells of the organism and mediates expression of the construct.
- This can be accomplished by any of numerous methods known in the art and discussed above, e.g., by constructing it as part of an appropriate expression vector and administering it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see, U.S. Pat. No.
- a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation, or cationic 12-mer peptides, e.g., derived from antennapedia, that can be used to transfer therapeutic DNA into cells (Mi et al., Mol. Therapy 2000, 2:339-47).
- the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publication Nos. WO 92/06180, WO 92/22635, WO 92/20316 and WO 93/14188).
- a rabbit polyclonal antibody was generated against the phosphorylated peptide PP172 (IYSYQWMALT*PVVKC-SEQ ID NO: 1; asterisk indicates phosphorylated residue) according to methods well known in the art.
- Non-phosphospecific antibodies were depleted by column chromatography using same peptide lacking phosphate (P172).
- Specific antibodies then were affinity purified by column chromatography using the phosphorylated peptide.
- the antibodies were bound to protein A-agarose, washed, then coupled covalently to the column with dimethyl pimelimidate. The column washed with several volumes of buffer A prior to use.
- the lysate was pre-incubated with protein A-agarose bead (lacking antibody) to absorb non-specific binding proteins. Following removal of these beads, the lysate was incubated overnight with protein A-agarose beads coupled to PP172 antibody at 4° C. while gently mixing). The next day the beads were collected by centrifugation, then transferred to a column and washed with several volumes of buffer A. Proteins were eluted from the beads with 1 mg/ml PP172 peptide.
- Eluted proteins were resolved by SDS-PAGE, and either stained with Coomassie blue or processed for Western blot with PP172 antibody using standard methods. Proteins stained by Coomassie blue were excised from the gels and washed with 50% acetonitrile. Nine independent gel regions were excised and sequence analysis was performed at the Harvard Microchemistry Facility, by microcapillary reverse-phase HPLC nano-electrospray tandem mass spectrometry (mLC/MS/MS) on a Finnigan LCQ quadrupole ion trap mass spectrometer. The method provides high sensitivity ( ⁇ 10 fentomole) but does not allow an estimation of the relative abundance of the peptides.
- mLC/MS/MS microcapillary reverse-phase HPLC nano-electrospray tandem mass spectrometry
- MS/MS spectra fragmentation spectra
- Framentation spectra were correlated with known sequences using an algorithm (Sequest; Eng, et al., Am. Soc. Mass Spectrom 1994, 5:976-989) and programs developed in the Harvard Microchemistry Facility (Chittum, et al., Biochemistry 1998, 37:10866-70).
- a polyacryamide gel was co-polymerized with histone H1, and PP172 antibody affinity-purified protein complexes were resolved and renatured by SDS-PAGE through this gel.
- an in situ assay for histone H1 kinase activity was performed as described (Carter, in Current Protocols in Molecular Biology, F. M. Ausubel, et al., Eds., John Wiley and sons, New York, 1998, pp. 18.7.1-18.7.22). The gel was then dried and phosphorylated histone H1 was detected by autoradiography.
- CRMP-2 and Sema3A Protein complexes were immunoaffinity purified with PP172 antibody as described above from hippocampal samples derived from patients with no evidence of disease or from patients with overt AD. Complexes were resolved by SDS-PAGE and silver stained. Bands visualized in Coomassie blue stained gels were identified by mass spectroscopy as CRMP-2.
- the samples described above also were analyzed by Western blot with an antibody to Sema3A (Santa Cruz; antibody H300).
- an antibody to Sema3A Santa Cruz; antibody H300.
- total homogenates of normal aged human hippocampus and thalamus were evaluated for the presence of Sema3A using the H300 antibody.
- a rabbit polyclonal antibody was generated against a synthetic phosphorylated peptide containing the sequence surrounding a proline directed kinase site on cyclin-dependent kinase 4 (peptide 172 [P172]; phosphorylated peptide 172 [PP172]; Matsuoka, et al., Molecular and Cellular Biology 1994, 14:7265-75).
- the antibody was affinity-purified and depleted so that it bound exclusively the phosphorylated form of the peptide.
- hippocampal samples from patients with advanced AD were obtained at autopsy, homogenized, and immunoaffinity purified. Bound antigens were eluted from the columns using the phosphopeptide antigen (PP172).
- CRMP-2 (p. f.) 50 CRMP-2 (p. f.) 49 CRMP-2 (p. f.); ⁇ -tubulin;. ⁇ -tubulin; Vacuolar H+-ATPase 42 Actin; ⁇ -centractin; GFAP; Tau protein; Synapsin IIa; Synapsin IIb; CRMP-2 (p. f.) Abbreviations: MAP1B, microtubule-associated protein 1B; CRMP-2, collapsin response mediator protein-2; GFAP, glial fibrillary acidic protein; and p. f., proteolytic fragment (smaller than full length protein).
- CRMP-2 is abundant in this complex, although whether it is bound to phosphorylated MAP1B or another protein component is not clear from these studies.
- Members of the CRMP family have been shown to form homotypic and heterotypic tetramers (Wang, et al., J. Neurosci. 1996, 16:6197-207); hence, the abundance of CRMP-2 in the immunoaffinity purified protein complex may be disproportionate to its binding partner(s).
- CRMP-2 may interaction with tubulin and/or microtubules (Gu and Ihara, J. Biol. Chem. 2000, 275:17917-20).
- Immunoaffinity purified CRMP-2 from PC12 cells has been shown to be associated with a kinase activity that phosphorylates coprecipitating 190 kDa, 125 kDa (a proteolytic fragment of the 190 kDa protein), 65 kDa (phosphorylated CRMP-2), and 35 kDa proteins (Kamata et al., Molecular Brain Research 1998, 54:219-36).
- CRMP-2 Members of the CRMP family, such as CRMP-2, have been shown to be involved in transduction of signals from Sema3A (Goshima, et al., Nature 1995, 376:509-14; Nakamura, et al., Neuron 1998, 21:1093-100). Since this protein is a major component of the PP172 antibody affinity purified protein complex, Western blot analyses were performed to determine whether the transmembrane Sema3A receptor components also present.
- the receptor for Sema3A consists of at least two associated transmembrane proteins: Neuropilin-1 and Plexin A1/A2 (Takahashi et al., Cell 1999, 99:59-69; Yu and Kolodkin, Neuron 1979, 22:11-4; Rohm, et al., Mechanisms of Development 2000, 93:95-104). Since the transmembrane domain of Neuropilin-1 is not required for association with Plexin A1/A2 and the generation of an active complex, signal transduction from the complex is thought to be mediated by the Plexin(s), which have a tyrosine kinase activity associated with their cytoplasmic domain (Tamagnone and Comoglio, Trends Cell. Biol.
- Sema3A requires Plexin A1/A2 and Neuropilin-1 to signal growth cone collapse (Takahashi et al., Cell 1999, 99:59-69; Yu and Kolodkin, Neuron 1999, 22:11-4; Rohm, et al., Mechanisms of Development 2000, 93:95-104).
- Western blot analysis detected both Plexin A1 and A2 in the PP172 antibody immunoaffinity purified transduction complex from patients with advanced AD.
- Neuropilin-1 was not detected in the PP172 immunoprecipitated complexes by Western blot using two commercially available antibodies (Santa Cruz Biotechnology) and a polyclonal anti-serum.
- the antibodies are not high affinity or do not have high specificity for Neuropilin-1; 2) Neuropilin-1 is part of the receptor complex on the cell surface, but after internalization is cycled out of the complex independently of the Plexins; 3) An unidentified functional homolog of Neuropilin-1 is expressed in the brains of AD patients; or 4) During affinity purification of the complex, the epitope(s) are removed from Neuropilin-1 by proteolysis.
- the H300 antibody also recognizes purified, recombinantly expressed Sema3A (data not shown).
- the antibody detected Sema3A migrating at approximately 90 kDa, the molecular mass of the active form of the secreted protein (Adams, et al., EMBO J. 1997, 16:6077-86).
- these data indicate that the complexes from AD patients contain the active form of the Sema3A ligand and have recruited CRMP-2, features of a functional signaling complex.
- AD and age matched control cases were derived from the Mount Sinai Alzheimer's Disease Research Center (ADRC) Brain Bank. All cases have been characterized for cognitive status by a clinical dementia rating (CDR) at a maximum time interval of one year prior to death.
- CDR clinical dementia rating
- the clinical testing results in a clinical dementia rating score for each individual. This score ranges from CDR0: cognitively normal; CDR0.5 questionable; CDR1, mild; CDR2, moderate; CDR3, severe; CDR4, profound; CDR5, terminal.
- the brains of individuals participating in the ADRC are removed at minimal post-mortem intervals and hemisected in the mid-sagittal plane, one half is fixed in 4% paraformaldehyde and on half is sub-dissected into brain regions, snap frozen and stored at ⁇ 70° C.
- Post mortem intervals range from a minimum of 180 minutes to 24 hours. Cases are received in the Mount Sinai Neuropathology Research Laboratory after a whole-brain fixation interval of two to three weeks. Hippocampal blocks are dissected from the temporal lobe, washed, equilibrated in 30% sucrose and sectioned at 50 ⁇ M.
- Immunocytochemistry is performed on floating sections using an antibody that recognizes a phosphorylated form of microtubule associated protein, PP172 at 1:40,000 dilution prepared under contract by New England Biolabs, an antibody raised against a peptide specific to human Sema3A (epitope corresponding to amino acids 103-402 mapping to the conserved extracellular semaphorin domain of SEMA 3A of human origin) commercially available from Santa Cruz Biotechnology at 1:500, and an antibody that recognizes abnormally phosphorylated MAP tau that occurs in AD at 1:5,000.
- Frozen tissues are transported on dry ice and stored at ⁇ 70° C. until processed. From the frozen hippocampal block the hippocampal formation consisting of dentate gyrus, hippocampus proper and subiculum are dissected while remaining frozen and processed for biochemical studies.
- CDR clinical dementia rating
- Example 1 The demonstration of an association between PP172 and CRMP-2 discussed in Example 1 implied that human Sema 3A (hSema 3A) could be associated with the immunoprecipitated complex as well.
- Some CDR0 cases demonstrated a more intense immunolabeling of the CA3 neurons but such labeling was confined to CA3 and ended abruptly at the CA1 border.
- FIGS. 1D to 1 F the numbers of labeled neurons increased and were found throughout CA1 and subiculum.
- FIGS. 1G to 1 I the hSEMA 3A immunolabeling took on a vesicular appearance both within CA1 neurons as well as in the neuropil surrounding the remaining CA1 neurons.
- the hSema3A protein can assume two distinct morphological distributions associated with the neuronal populations of either the hippocampus or thalamus: a “dendritic” form ( FIG. 2A ) in which the Sema3A immunoreactivity coats the surfaces of the dendrites of the hippocampus and is not seen in a perikaryal distribution, and an internalized form ( FIG. 2B ) in which there is dense granular perinuclear immunoreactivity in the absence of dendritic labeling. Since the dendritic labeling is identified in the thalamus in a dendritic distribution in the lateral dorsal nucleus ( FIG.
- the molecular weight seen in the thalamus is exclusively the size known to be the unprocessed pro-protein (120 kDa), it appears that the active, 95 kDa form is that which is seen internalized in the hippocampus and the 120 kDa pro-protein form is the dendritic form, the only form identified in the thalamus.
- phospho-MAP1B and hSEMA 3A appear as colocalized markers in an intimate intraneuronal relationship in CA1 and subiculum; the two hippocampal fields most highly vulnerable to AD related neurodegeneration.
- Phospho-MAP1B and hSEMA 3A appear together at the earliest stages of AD in CA1 at the CA3 border, and progress to a presence within large numbers of neurons throughout CA1 and subiculum.
- CRMP-2 and an unknown kinase activity capable of phosphorylating histone H1 are also present, forming an activated signal transduction complex.
- hSEMA 3A and phospho-MAP1B in neurons both without and with neurofibrillary tangles implies that the formation of the signal transduction complex is a primary and transient phenomenon.
- Abnormally phosphorylated tau, a major component of NFTs is present within neurons at early stages of the neurodegenerative process (Buee-Scherrer, et al., Brain Res. Mol. Brain Res. 1991, 39(1-2):79-88) and persists well past the demise of the neuron, forming extracellular or ghost tangles.
- the presence of phospho-MAP1B and hSEMA 3A in neurons without NFTs implies that the complex forms before the appearance of NFTs.
- the colocalization of elements of the complex in direct apposition to PHF-tau provides evidence that the kinase component of the complex phosphorylates tau, generating PHF-tau that persists past the loss of morphological evidence of PP172 and hSEMA 3A.
- a second morphological distribution of Sema3A associated with the cell membranes of the dendritic arbor of neurons in the human hippocampus. This distribution is termed the “dendritic” form as contrasted with the “somatic” or perikaryal distribution initially identified. The dendritic distribution has also been identified in the human thalamus, in the absence of the intense perikaryal somatic accumulation seen in the AD hippocampus.
- the dendritic distribution identified in the thalamus is associated only with the 125 kDa immunoreactive Sema3A bands on Western blot of thalamus, where the active, 95 kDa form is absent, leading to the conclusion that the dendritic form is the 125 kDa membrane associated pro-protein form of Sema3A identified by Adams et al., EMBO J 1997 16(20): 6077-86.
- both the 95 and 125 kDa forms are present, implying that the somatic form is the 95 kDa active form used by investigators described above to induce apoptosis in neuronal culture.
- Sema3A signaling is the event that initiates the neurodegenerative cascade, therefore, the most informative procedure is to co-localize Sema3A with the putative downstream effectors to determine the relative expression of phospho-MAP1B, phospho-p38 and ⁇ -synuclein in association with Sema3A.
- Tissues were derived from patients at the Mt. Sinai Alzheimer's Disease Research Center and Jewish Home Project, who have been extensively characterized both clinically and pathologically. Although this facility is dedicated to the investigation of AD, specimens of cortex, substantia nigra and other subcortical regions of PD, Incidental Lewy Body Disease and PD/AD disease overlap cases are available. All donated specimens in this repository are brain-banked; one hemisphere is dissected and frozen and one is fixed in paraformaldehyde. The midbrain and hippocampus were routinely processed from all cases received in the laboratory for stereological analysis.
- the midbrain and hippocampus were carefully dissected from the fixed hemisphere as separate blocks encompassing the entire structures.
- the midbrain was dissected with a transverse cut, rostrally at the level of the mammilary bodies and caudally at the upper pons ensuring the entire structure is available for study.
- Brainstems were further blocked into 3.2 mm slabs and alternate slabs were cryoprotected and serial sectioned at 100 ⁇ M.
- the resulting 32 sections were stored in storage solution (a mixture of glycerol and ethylene glycol in phosphate buffered saline) and held at ⁇ 20° C.
- midbrain substantia nigra specimens are obtained from brains of patients with pathological diagnosis of PD, including Lewy body formation and incontinent melanin, and from age matched control cases, and transported frozen to the laboratory.
- CRMP-2 antibodies are not commercially available and immunoassays for CRMP-2 levels will require generation of antibodies detecting CRMP-2.
- a hemagglutinin-tagged fusion protein has been generated from a CRMP-2 clone (Wang et al., J Neurosci 1996; 16(19): 6197-207). This protein will be used for production of rabbit polyclonal antibodies.
- Sections of substantia nigra were incubated overnight with primary anti-Sema 3A antibody H300 (Santa Cruz) at a 1:500 dilution or with primary antibody PP172 at a 1:40,000 dilution as described above, followed by incubation with a biotinylated secondary antibody raised against the immunoglobulins of the species in which the primary antibody was raised, e.g., anti-Sema H300 was raised in rabbit, the secondary antibody is a biotinylated anti-rabbit IgG raised in goat. Visualization occurred by blue-gray SG chromophore, no counterstain.
- Double labeling of tissues for Sema 3A and Map1B, Sema 3A and -synuclein, and Sema 3A and p38, will be performed sequentially with the first primary incubated overnight and developed through chromophore treatment the following day. After development, unreacted peroxidase is exhausted by 3% peroxide in methanol and unbound biotin is blocked with Vector avidin-biotin blocking kit. The second antibody will then be processed in the same manner. If two primary antibodies raised in the same species are used, an additional blocking step with normal serum, binding any remaining antibody will be used. To ensure specificity, controls reversing the order of the primaries and omitting the second primary with an alternative secondary antibody/alkaline phosphatase/substrate system will be used. This control should be negative for immunolabeling.
- Stereology Stereology is performed using an Olympus Bx61 microscope equipped with MicroBrightField Stereo Investigator. Specifically, the fractionator and optical dissector techniques integral to this software will be applied. Objects of interest in each disector are counted according to the criteria of inclusion or exclusion of the dissector. From the consideration of the fraction of the total volume of the substantia nigra sampled the total number of neurons positive for a marker or combination of markers is calculated (West et al., Anat Record 1991; 231:482-497).
- Midbrain substantia nigra specimen samples are pulverized over liquid nitrogen and dissolved in buffer A (50 mM HEPES, pH 7.4, 50 mM NaCl; 10 mM EDTA; 0.5% Triton X-100) supplemented with 100 ⁇ g/ml leupeptin, 10 ⁇ g/ml bacitracin, 100 ⁇ g/ml aprotinin, 100 ⁇ g/ml bis-benzamide, 1 mM Na3VO 4 , and 10 mM a-glycerophosphate. Dissolved tissue is extracted by gentle shaking for 1 hour (4 ⁇ C), and then clarified by centrifugation (30,000 ⁇ g). Centrifuge step is repeated and the supernatant is recovered.
- buffer A 50 mM HEPES, pH 7.4, 50 mM NaCl; 10 mM EDTA; 0.5% Triton X-100
- the midbrain lysate is pre-incubated with protein A agarose beads (lacking anti-body) to pre-absorb non-specific binding proteins. After removal of the beads, the lysate is incubated overnight with protein A-agarose beads coupled to PP172 antibody at 4 ⁇ C. with gentle mixing. The next day, the beads are collected and washed with several volumes of buffer A. Proteins are eluted from the beads with 1 mg/ml PP172 peptide. Eluted proteins are resolved by SDS-PAGE, and either stained with Coomassie blue or process for Western blotting using antibodies specific for Semaphorin, CRMP-2, Neuropilin-1, PlexinA1 and A2, and p38.
- Midbrain homogenates that are not pre-immunoprecipated with the PP172 antibody will also be analyzed by Western blotting for the above-mentioned proteins. If necessary, protein microsequence analysis will be performed by the Harvard Microchemistry Facility.
- Rat Brain Injections Animals are briefly restrained for anesthesia, and anesthesia is induced by i.p. injection of chloral hydrate (400 mg/kg). Animals are placed in a Kopf stereotaxic surgery apparatus. A 1-2 mm craniotomy is made with a surgical burr at a point above the left substantia nigra (+2.9 mm A-P, +2.1 mm L from intra-aural 0, ⁇ 7.5 mm from dura). A 26G Hamilton syringe needle is then introduced into the left substantia nigra and 50 or 500 ng in 500 nL of selected protein(s) is introduced into the substantia nigra. The needle will remain in place for five minutes to allow the pressure to equilibrate.
- Topical analgesic is administered and the animals allowed to recover. Animals will survive for one week and are sacrificed by overdose of carbon dioxide and decapitated. The brain is rapidly removed and fixed in 4% paraformaldehyde for further analysis. Three different agents, will be evaluated, semaphorin alone, semaphorin combined with CRMP-2 at a 1:1 weight ratio and CRMP-2 alone with endpoints of one week. Midbrain sections will be immunolabeled for tyrosine hydroxylase for dopaminergic neurons and studied by stereological assay of numbers of surviving neurons.
- FIG. 3A demonstrates immunolabeling of a PD case in which both the soma and dendrites of melanized neurons are immunolabeled (i.e., somatic and dendritic staining).
- FIG. 3B shows the absence of labeling in the control sample.
- the intracellular effectors of the semaphorin pathway will be examined for complex assembly with Sema3A and upregulation, similar to that demonstrated above for AD.
- Currently archived for examination are samples from six cases with pathological diagnosis of PD, two cases of PD/diffuse Lewy body disease, and two AD/PD overlap cases. Frozen substantia nigra from the midbrain of five PD cases and five controls will be separately assayed by Western blot and pooled for immunoprecipitation and further analysis.
- Sema 3A can directly cause substantia nigra neurodegeneration
- Sema 3A, Sema 3A in combination with CRMP-2 at a 1:1 weight ratio, or CRMP-2 alone will be injected into the brains of anesthetized rats. After one week, the rats will be sacrificed and their brains examined for neurodegeneration.
- Sema3A, phosphorylated MAP1B, and p38 inclusions specific to neurons in patients with PD will strongly suggest that a common intracellular apoptotic pathway is activated in response to a common insult in PD and AD. It is hypothesized that the insult that initiates this cascade is the conversion of the pro-protein 125 kDa form of Sema3A to the active form, its retrograde transport to the cell body and its activation of a signal transduction pathway comprising, at a minimum, Plexins, CRMP-2 and MAP1B. In the hippocampus, the neurons expressing the greatest level of the dendritic form of Sema3A were those located in the subiculum.
- This area in known to be the major target of hippocampal subfield CA1, and therefore an area from which retrograde transport of Sema3A would readily take place.
- PD the relationship of target neurons to those pathologically affected is less clear. It is hypothesized that either the striatum, the preferential target of the substantia nigra compacta neurons, or the substantia nigra reticulata, an adjacent region with extensive interconnections, is the region expressing the pro-protein 125 kDa form of Sema3A. Events upstream of the activation of the Sema3A pathway are less certain.
- Sema is an axon guidance molecule, it is likely that the initiation of this pathway involves synaptic disruption with the ensuing necessity of axons to reestablish synaptic contact to function normally. Such synaptic disruption is known to be one of the earliest changes seen in AD.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Neurology (AREA)
- Food Science & Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Neurosurgery (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present invention relates to a method for diagnosing Alzheimer's disease and Parkinson's disease in a subject by analyzing the expression of Semaphorin 3 and downstream effectors. It also provides a method for identifying a substance useful in the prevention or treatment of Alzheimer's disease and Parkinson's disease, and a method of using such substance in the treatment of Alzheimer's disease and Parkinson's disease.
Description
- This application is a divisional of U.S. application Ser. No. 10/200,001, filed Jul. 19, 2002, which claims priority from U.S. Provisional Patent application Ser. No. 60/306,827, filed Jul. 20, 2001, the disclosures of which are incorporated herein by reference in their entirety.
- The present invention relates to a method for diagnosing Alzheimer's disease and Parkinson's disease in a subject by analyzing the expression of Semaphorin 3 and downstream effectors. It also provides a method for identifying a substance useful in the prevention or treatment of Alzheimer's disease and Parkinson's disease, and a method of using such substance in the treatment of Alzheimer's disease and Parkinson's disease.
- Axonal guidance occurs through the complex interplay of chemoattractant and chemorepellant factors that are capable of either guiding the growth cone toward an appropriate target or repelling a growth cone by causing it to collapse, such that innervation of inappropriate targets does not occur. One molecular mechanism responsible for such growth cone repulsion is signaling by semaphorins (Mark et al., Cell Tissues Res. 1997; 290(2): 2661-8; Raper, Curr. Opin Neurobiol, 2000; 10(1): 88-94). Semaphorins play a central role in mediating neuronal plasticity during embryonic development by acting as repulsive axonal guidance signals inducing collapse of growth cones (Puschel, Eur J Neurosci 1996; 8:1317-1321; Raper, Curr Opin Neurobiol 2000; 10:88-94).
- As either a cell surface or secreted protein, Semaphorin 3A (Sema 3A) mediated by the intracellular effector, collapsin response mediator protein (CRMP), Quin et al., J Neurobiol 1999; 41(1): 158-64; Wang et al., J Neurosci 1996; 16(19): 6197-207), produces repulsive guidance by the reversible collapse of growth cones. An important element of the effects of Sema3A signaling is the role that it may play in regulating the neuronal population in the developing nervous system, matching afferent innervation to target requirements, resulting in programmed cell death of afferent neurons. It has been demonstrated in neural progenitor cells (Bagnard et al., J Neurosci 2001; 21(10): 3332-41), sensory (Gagliardini and Fankhauser, Mol Cell Neurosci 1999; 14:301-316), sympathetic, and cerebellar granule neurons (Shirvan et al., J Neurochemistry 1999; 73:961-71), known to express Sema3A in the developing nervous system, that administration of Sema3A in culture induces morphological and biochemical evidence of programmed cell death and apoptosis, resulting in neurodegeneration. A critical aspect of the studies by Shirvan and co-workers is the use of the model of dopamine induced oxidative stress, in which they identified the upregulation of both Semaphorin and CRMP-2, coincident with the induction of apoptosis in sympathetic neuronal cultures.
- The chemorepulsive effects of Sema3A are transduced by a receptor complex containing the transmembrane proteins Neuropilin-1 and Plexin A1 or A2 (Takahashi et al., Cell 1999; 99:59-69; Rohm et al., Mech Dev 2000; 93:95-104), and the intracellular effector molecule collapsin response mediator protein 2 (CRMP-2) (Wang and Strittmatter, J Neurosci 1996; 16:6197-6207). Microinjection of the chick CRMP-2 homolog, CRM62, neutralizing antibodies into chick dorsal root ganglion has been shown to block chicken Sema3A-induced growth cone collapse, suggesting a direct role for CRMP-2 in Sema3A signaling cascades (Goshima et al., Nature 1995; 376:509-14).
- The expression of phosphorylated p38, a downstream kinase of the mitogen-activated extracellular signal-regulated protein kinase, has also been examined in AD (Ferrer et al., J Neural Transam 2001; 108(12):1397-1415; Atorzi et al., J Neuropathol Exp Neurol 2001; 60(12):1190-97) and PD (Ferrer et al., J Neural Transm 2001; 108(120:1383-96). Immunohistochemical analysis revealed strong staining of phosphorylated p38 in about 50-70% of neurons with neurofibrillary tangles, and neuronal or glial cells that contained tau-positive deposits in both AD and PD. Both AD and PD are characterized by intracellular deposits of hyperphosphorylated tau, a microtubule-associated protein that is responsible for the formation of neurofibrillary tangles. However, in both AD and PD, analysis of apoptosis-related changes including DNA fragmentation, demonstrated that the expression of p38 was unrelated to activation of an apoptotic cascade.
- Alzheimer's Disease (“AD”) is a dementing disorder characterized by progressive impairments in memory and cognition. It typically occurs in later life, and is associated with a multiplicity of structural, chemical and functional abnormalities involving brain regions concerned with cognition and memory. This form of dementia was first reported by Alois Alzheimer in 1907 when he described a disease of the cerebral cortex in a 51-year-old woman suffering from an inexorably progressive dementing disorder. Although other forms of dementia had been well characterized at the time of Alzheimer's clinical report, his patient was clinically and pathologically unusual, because of her relatively young age and the presence of the then newly described intra-cellular inclusions which have subsequently come to be known as neurofibrillary tangles (NFTs). In recognition of this unique combination of clinical and pathological features, the term “Alzheimer's Disease (AD)” subsequently came into common usage.
- In spite of the many research investigations and diverse studies undertaken to date, present clinical evaluations still cannot establish an unequivocal diagnosis of AD. To the contrary, the only presently known means for positively proving and demonstrating AD in a patient can only be achieved by a brain biopsy or a postmortem examination to assess and determine the presence of NFTs and senile (amyloid) plaques in brain tissue.
- Instead, a set of psychological criteria for the diagnosis of probable AD has been described, and includes the presence of a dementia syndrome with defects in two or more areas of cognition, and progressive worsening of memory and other cognitive function over time. However, by the time these psychological changes may be observed, significant irreversible neuronal damage has already occurred.
- It is therefore clear that there has been and remains today a long standing need for an accurate and reliable test to diagnose AD in a living human subject before the disease has manifested far enough to produce psychological changes, thereby allowing earlier and more effective therapeutic intervention.
- Furthermore, only a limited number of pharmacological agents heretofore have been identified as effective in treating symptoms of AD in a person suffering therefrom. The most prominent of these today are tacrine and donepezil hydrochloride, which are cholinesterase inhibitors active in the brain. These drugs do not slow the progress of the disease. Furthermore no compound has been established as effective in blocking the development or progression of AD although a number of compounds, including estrogen, ibuprofen, selegiline, are thought to possibly have this capability and are being investigated for therapeutic use for this purpose.
- Parkinson's disease (“PD”) is a chronic nervous disease characterized by fine, slowly spreading tremors, rigidity, and a characteristic gait. Although the onset of PD may be abrupt, it generally occurs gradually. The initial symptom is often a fine tremor beginning in either a hand or a foot which may spread until it involves all of the members. The duration of PD is indefinite, and recovery rarely if ever occurs. A psychotic confusional state may be seen in the later stages of PD, which is a common and significant source of morbidity.
- L-dopamine has historically been the medication of choice in treating PD, and there are rarely any failures with L-dopamine therapy in the early years of treatment. Unfortunately, this response is not sustainable. Most patients regress after long-term usage of L-dopamine; in fact, in some the benefits of treatment wane as the disease progresses.
- Several common types of central nervous system dysfunction and peripheral side effects are associated with administration of L-dopamine. Toxic side effects to the central nervous system include mental changes, such as confusion, agitation, hallucinosis, hallucinations, delusions, depression, mania and excessive sleeping. The symptoms may be related to activation of dopamine receptors in non-striatal regions, particularly the cortical and limbic structures. Elderly patients and patients with cortical Lewy body disease or concomitant AD are extremely sensitive to small doses of L-dopamine. Moreover, all patients with PD, regardless of age, can develop psychosis if they take excess amounts of L-dopamine as a means to overcome “off” periods. This is difficult to remedy, as reducing the dosage of L-dopamine may lessen its beneficial influence on motor function.
- Prior to the introduction of L-dopamine, anticholinergic drugs had been the conventional treatment of mild Parkinsonism since the discovery of belladonna alkaloids in the mid-nineteenth century. However, these drugs have a propensity for exacerbating dementia. Nevertheless, since anticholinergic drugs are known to ameliorate rigidity in the early stages of the disease, the conventionally skilled neurologist would instinctively believe that a procholineric drug might worsen rigidity, as central cholinergic activity appears to be important for memory function in PD. Unfortunately, patients receiving anticholinergic drugs for Parkinsonism may experience reversible cognitive deficits so severe as to mimic AD. Identical memory disturbances have been produced by administration of atropine to patients with either AD or PD with dementia.
- The substantia nigra lies in the midbrain immediately dorsal to the cerebral peduncles. The substantia nigra is thought to be the lesion site in PD or paralysis agitans. The mechanism of neurodegeneration of substantia nigra neurons in PD is unknown. The most consistent pathological finding in PD is degeneration of the melanin-containing cells in the pars compacta (another part is called the pars reticulata) of the substantia nigra (melanin is an inert by-product of the synthesis of dopamine). As mentioned above, cells within the nigra produce dopamine normally. This substance passes, via axoplasmic flow, to the nerve terminals in the striatum (caudate nucleus and putamen), where it is released as a transmitter. It is the absence of this transmitter that produces the crippling disorder. It is believed that the cellular apparatus associated with programmed cell death and apoptosis may play a key role in the neurodegenerative cascade. Although this is a significant prospect, the mechanisms that lead to the induction of programmed cell death pathways are unclear. A hypothesis presented herein identifies the reactivation of embryonic developmental mechanisms in the adult central nervous system with the induction of programmed cell death.
- Amyotrophic lateral sclerosis (“ALS”), also called Lou Gehrig's disease, is a progressive, fatal neurological disease affecting as many as 20,000 Americans with 5,000 new cases occurring in the United States each year. The disorder belongs to a class of disorders known as motor neuron diseases. ALS occurs when specific nerve cells in the brain and spinal cord that control voluntary movement gradually degenerate. Both the brain and spinal cord lose the ability to initiate and send messages to the muscles in the body. The muscles, which are unable to function, gradually atrophy and twitch.
- ALS manifests itself in different ways, depending on which muscles weaken first. Symptoms may include tripping and falling, loss of motor control in hands and arms, difficulty speaking, swallowing and/or breathing, persistent fatigue, and twitching and cramping, sometimes quite severely. Eventually, when the muscles in the diaphragm and chest wall become too weak, patients require a ventilator to breathe. Most people with ALS die from respiratory failure, usually 3 to 5 years after being diagnosed; however, some people survive 10 or more years after diagnosis. ALS strikes in mid-life. Men are about one-and-a-half times more likely to the disease than women.
- There is no cure for ALS, nor is there a proven therapy that will prevent or reverse the course of the disorder. The Food and Drug Administration (FDA) recently approved riluzole, the first drug that has been shown to prolong the survival of ALS patients. Patients may also receive supportive treatments that address some of their symptoms.
- Thus, there is a need in the art of more effective treatments for neurodegenerative diseases such as AD, PD, and ALS.
- The present invention also is based on the discovery of a Semaphorin 3 pathway as a target for diagnosis, prevention and treatment of AD and PD.
- The present invention thus contemplates a method for diagnosing AD and PD in a subject, which method comprises assessing the level of expression, accumulation or activity of Sema3A, or members of the Sema3A downstream signaling complex, in a test subject, and comparing it to the level of expression, accumulation or activity of Sema3A, or Sema3A effectors, in a control subject, wherein an increase of expression, accumulation or activity of Sema3A or signaling complex members in the test subject compared to the control subject is indicative of AD or PD disease in the test subject. This method is particularly useful for early diagnosis of AD and PD, preferably when the test subject is asymptomatic for AD or PD. This method may also involve examining co-expression of abnormally phosphorylated proteins specific to each disease i.e., phosphorylated tau and phosphorylated α-synuclein for AD.
- The method may be performed in vitro by assessing the level of expression, accumulation or activity of Sema3A in a biological sample, such as blood, serum, cerebrospinal fluid (CSF), or neuronal tissue.
- The level of expression or accumulation of Sema3A may be assessed preferably by determining the quantity of Sema3A protein present in the biological sample, or alternatively by assaying the quantity of mRNA present in the biological sample that encodes Sema3A.
- In a preferred embodiment, the determination of the quantity of Semaphorin 3A protein present in the biological sample is effected by an immunoassay using an antibody directed against Sema3A. Such an immunoassay involve contacting the biological sample with a detectably labeled antibody which is directed against Sema3A under conditions and time sufficient to allow the formation of complexes between the antibody and Sema3A potentially present in the biological sample. Then, one proceeds to detect and measure the level of formation of these complexes.
- In another embodiment the level of activity of Sema3A is assessed by determining the level of expression or activity of an effector protein downstream the Semaphorin 3A pathway, such as an effector selected from the group consisting of MAP1B, CRMP-2, Plexins A1 and A2, Neuropilin 1 and Rac1. In a variation of the immunoassay described supra, the biological sample is contacted with a second antibody directed against a downstream effector of Sema3A, either together with the anti-Sema3A antibody, or sequentially (i.e., before or after).
- The present invention further contemplates a method for identifying a substance useful in the prevention or treatment of AD or PD, which method comprises determining the effect of the substance on a biological activity of Sema3A, wherein an inhibitory effect is indicative of a substance useful in the prevention or treatment of AD or PD.
- This method may be performed in vitro, or in vivo by administering the substance to an animal that shows a level of Sema3A protein superior to a control animal.
- In one embodiment of this screening method, the determination of the effect of the substance on the biological activity of Sema3A proceeds by contacting a test cell with the substance and Sema3A under conditions wherein addition of Sema3A alone induces apoptosis of the cell. One then observes the effect of addition of the substance and Sema3A on the cell, in comparison with the effect of addition of Sema3A alone on a control cell, wherein inhibition of apoptosis of the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD or PD.
- The cell used in the initial step may be of any appropriate type, and is preferably a neuronal cell.
- In another embodiment of this screening method, the determination of the effect of the substance on the biological activity of Sema3A involves contacting a test neuronal cell with the substance and Sema3A under conditions wherein addition of Sema3A alone induces withdrawal of the nerve growth cone. This is followed by observing the effect of the addition of the substance and Sema3A on the test cell, in comparison with the effect of addition of Sema3A alone on a control cell, wherein inhibition of withdrawal of the nerve growth cone in the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD.
- In still another embodiment of this screening method, the determination of the effect of the substance on the biological of Sema3A comprises determining the effect of the substance on the binding or activation of Sema3A receptor by Sema3A, wherein an antagonist effect indicates that the substance is useful in the prevention or treatment of AD or PD.
- A further subject of the present invention is a method for the prevention or treatment of AD or PD, which method comprises administering to a patient in need of such treatment an effective amount of a substance that inhibits Sema3A expression, accumulation or activity, which a pharmaceutically acceptable carrier. For example this inhibitory substance may be an antibody directed against Sema3A, or an antisense nucleic acid specific for Sema3A mRNA, or the mRNA of one of the downstream effectors in the Sema3A signaling pathway.
- The above embodiments may also apply to other neurodegenerative diseases, or conditions where neurons are damaged or injured, such as ALS and stroke.
-
FIGS. 1A-1I show Semaphorin 3A (Sema 3A) immunoglobulin of the hippocampus tissue of CDR0 (Clinical Dementia Score), early AD and CDR5 cases with cresol violet counter stain.FIG. 1A : Photomontage of anti-Sema 3A immunoglobulin of an 82 year-old CDR0 case comprising hippocampus subfields CA2/3 and CA1. Arrows indicate transitions between CA3, CA2 and CA1.FIG. 1B : higher magnification of CA1 at CA2 border (area indicated by box,FIG. 1A ). Note lightly labeled neurons.FIG. 1C : cubiculum of this case, neurons are unlabeled.FIG. 1D : Sema 3A immunoglobulin of a 64 year-old AD case; arrows indicate transitions as inFIG. 1A .FIG. 1E : CA1 (box,FIG. 1D ) neurons are all intensely labeled.FIG. 1F : cubiculum of the same case, a number of neurons demonstrate Sema 3A immunoreactivity.FIG. 1G : Photomontage of an 86 year-old CDR 5 case; arrows indicate transitions as inFIG. 1A . CA1 proximal to CA2 (box,FIG. 1G ) demonstrates intense immunolabeling of large, vesicular, intra- and extracellular profiles (FIG. 1H ). Much of the remainder of CA1 appears unlabeled; in this severe AD case the majority of neurons in this region have been lost.FIG. 1I : in the subiculum of this case many neurons are heavily labeled by anti Sema 3A. Also note extracellular labeling. Scale: A, D, G, bar=250 μM; B, C, E, F, H, I, bar=50 □m. - FIGS. 2A-D show Sema 3A immunolabeling of hippocampus and thalamus tissue derived from cognitively normal, age matched cases acquired from the Mount Sinai AD research center, isolated from a patient with PD.
FIG. 2A demonstrates the dendritic form of Sema 3A wherein Sema 3A coats the dendrites in the hippocampus and is not seen in a perikaryal distribution.FIG. 2B shows the internalized form of Sema 3A in the hippocampus.FIG. 2C demonstrates the dendritic form of Sema 3A in the lateral dorsal nucleus of the thalamus.FIG. 2D demonstrates the dendritic form of Sema 3A in the ventral nuclear group of the thalamus. - FIGS. 3A-B show Sema 3A immunolabeling of PD (
FIG. 3A ) and control (FIG. 3B ) substantia nigra as detected by the PP172 MAP1B-specific antibody. Both the somatic (arrows) and dendritic (arrowheads) immunolabeling of melanized neurons are shown. Antigen is visualized by blue-gray SG chromophore (20× magnification); the dark area represents neuromelanin. Somatic immunolabeling indicates a dense granular region of immunoreactivity confined to the region immediately adjacent to the nucleus (perikaryal labeling), without any labeling of the dendritic arbor. In comparison, the dendritic pattern of labeling is distributed along the surfaces of the dendritic arbor with a less intense, frequently faint labeling on the membrane surrounding the cell body. - FIGS. 4A-B show Sema 3A immunolabeling of PD and substantia nigra with the PP172 antibody (40× magnification).
-
FIG. 5 shows immunolabeling of PD specimens with an antibody that recognizes activated p38. Antigen is visualized by blue-gray SG chromophore-the dark area represents neuromelanin (60× magnification). - To address the need in the art for more effective treatments for AD and PD, the mechanisms of neurodegeneration in AD and PD from the perspective of axonal guidance dysregulation in vulnerable hippocampal neurons was examined.
- The present invention advantageously establishes that accumulation of Semaphorin 3A (Sema 3A) is enhanced during AD and PD, and that vulnerable neurons bind and internalize the active form of this protein. The invention is in part based on the surprising discovery that during progression of AD and PD, active Sema 3A signaling complexes are assembled in vulnerable neurons, and these complexes mediate the collapse, degeneration, and apoptosis of these cells.
- These data provide the first evidence that Semaphorin 3A plays a major role in the development of AD and PD, and that the Semaphorin 3A pathway represents a new target for diagnosis, prevention and treatment of AD and PD. In addition, these results are suggestive of applicability to other neurodegenerative diseases involving degeneration or injury of neurons, such as amyotrophic lateral sclerosis or stroke.
- As used herein the term “Alzheimer's disease” (AD) encompasses all forms of the disease, including sporadic AD, ApoE4-related AD, other mutant APP forms of AD (e.g., mutations at APP717, which are the most common APP mutations), mutant PS1 forms of familial AD (FAD) (see, WO 96/34099), mutant PS2 forms of FAD (see, WO 97/27296), and alpha-2-macroglobulin-polymorphism-related AD.
- As used herein, the term “Parkinson's disease” (PD) refers to a progressive disorder of the central nervous system (CNS), is caused by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. These neurons normally project to the striatum, consisting of the caudate and putamen nuclei, whose neurons bear dopamine receptors. This projection of neurons is just one component of the complex network of interconnections among the deep gray-matter structures known as the basal ganglia. Neurochemical or structural pathologic conditions affecting the basal ganglia result in diseases of motor control, classified as movement disorders.
- The “substantia nigra” refers to a midbrain structure, is considered part of the basal ganglia complex due to its close ties with the striatum. Classically it has been divided into two components: the pars compacta (SNc), and the pars reticulata (SNr). The pars compacta is a cell—rich region that in humans is composed of large pigmented neurons. In some animals (for example, humans and squirrel monkeys) the large nigral neurons exhibit a characteristic black pigmentation; hence the origin of the structure's name (“black substance”).
- “Amyotrophic lateral sclerosis (ALS)” refers to a disorder of the anterior horn cells of the spinal cord and the motor cranial nuclei that leads to progressive muscle weakness and atrophy. Involvement of both upper and lower motor neurons is characteristic. Patients develop variable hyperreflexia, clonus, spasticity, extensor plantar responses, and limb or tongue fasciculations. ALS is also referred to as Lou Gehrig's disease.
- The subject to whom the diagnostic or therapeutic applications of the invention are directed may be any human or animal, more particularly a mammal, preferably a human, primate or a rodent, but including, without limitation, monkeys, dogs, cats, horses, cows, pigs, sheep, goats, rabbits, guinea pigs, hamsters, mice and rats.
- In a preferred embodiment of the present invention, the human subject is still asymptomatic for AD or PD, or only shows early symptoms of the disease. To facilitate differential diagnosis between AD and PD in an asymptomatic patient, one would examine the sample for the presence of other abnormally phosphorylated proteins specific to each disease i.e., phosphorylated tau for AD and phosphorylated α-synuclein for AD.
- The term “Semaphorin 3A protein” or “Sema3A protein” encompasses the Semaphorin protein of human origin, which has an amino acid sequence available on Swissprot database (access number for the Semaphorin 3A precursor: Q14563). It also encompasses function-conservative variants and homologous proteins thereof, more particularly proteins originating from different species.
- As used herein the term “Semaphorin 3A nucleic acid” or “Sema3A nucleic acid” refers to a polynucleotide that encodes a Semaphorin 3A protein as above described. The nucleotide sequence encoding the human Semaphorin 3A protein is available on GenBank (Accession Number NM006080).
- A “Semaphorin 3A gene” or “Sema3A gene” is used herein to refer to a portion of a DNA molecule that includes a Sema3A polypeptide coding sequence operatively associated with expression control sequences. Thus, a gene includes both transcribed and untranscribed regions. The transcribed region may include introns, which are spliced out of the mRNA, and 5′- and 3′-untranslated (UTR) sequences, along with protein coding sequences. In one embodiment, the gene can be a genomic or partial genomic sequence, in that it contains one or more introns. In another embodiment, the term gene may refer to a cDNA molecule (i.e., the coding sequence lacking introns).
- The terms “Semaphorin 3A gene” or “Semaphorin 3A nucleic acid” encompass sequence-conservative variants and function-conservative variants, as well as homologous sequences, such as allelic variants or species variants (orthologs).
- “Neuropilin-1” refers to a neuronal cell surface semaphorin 3 receptor glycoprotein important for axonal guidance in developing peripheral nervous system efferents. Neuropilin-1 also has been identified as a vascular endothelial growth factor (VEGF) receptor on endothelial cells. Exemplary nucleotide and amino acid sequences for human Neuropilin-1 can be found in GenBank (Accession No. XM—165547). Neuropilin-1 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- “Plexin A1” and “Plexin A2” refer to cell surface proteins that bind to Neuropilin-1 to form functional Semaphorin receptor complexes. Exemplary nucleotide and amino acid sequences for human Plexins A1 and A2 can be found in GenBank (Accession Nos. XM—051261 and XM—114030, respectively). As one of ordinary skill in the art would appreciate, Plexin A1 and Plexin A2 also include sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- “Microtubule-Associated Protein 1B (MAP1B)” refers to the earliest microtubule-associated protein expressed in the developing nervous system. MAP1B remains high in adult dorsal root ganglion (DRG) neurons and sciatic nerve axons. Exemplary nucleotide and amino acid sequences for human MAP1B can be found in GenBank (Accession No. L06237). As one of ordinary skill in the art would appreciate, MAP1B also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs. MAP1B also includes phosphorylated and unphosphorylated forms of the protein.
- “Collapsing response mediator protein-2 (CRMP-2)” refers to a major Rho-kinase substrate in the brain. CRMP-2 is enriched in the growing axons of cultured hippocampal neurons. Exemplary nucleotide and amino acid sequences for CRMP-2 can be found in GenBank (Accession No. U83278). As one of ordinary skill in the art would appreciate, CRMP-2 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- “p38” refers to members of the MAPK family that are activated by a variety of environmental stresses and inflammatory cytokines. Stress signals are delivered to this cascade by members of small GTPases of the Rho family (Rac, Rho, Cdc42). Exemplary nucleotide and amino acid sequences for human p38 can be found in GenBank (Accession No. AF261073). As one of ordinary skill in the art would appreciate, p38 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs. p38 also includes phosphorylated and unphosphorylated forms of the protein.
- “Rac1” is a Rho-family GTPase that is involved in inducing actin cytoskeletal remodeling at designated sites in the cell cortex. Exemplary nucleotide and amino acid sequences for human Rac1 can be found in GenBank (Accession No. AF498964). As one of ordinary skill in the art would appreciate, Rac1 also includes sequence-conservative variants, function-conservative variants, and homologs, particularly orthologs.
- Neuropilin-1, Plexins A1/A2, MAP1B, CRMP-2, p38 and Rac1 are collectively referred to herein as “downstream effectors.”
- In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (herein “Sambrook et al., 1989”); DNA Cloning: A Practical Approach, Volumes I and II (D. N. Glover ed. 1985); Oligonucleotide Synthesis (M. J. Gait ed. 1984); Nucleic Acid Hybridization [B. D. Hames & S. J. Higgins eds. (1985)]; Transcription And Translation [B. D. Hames & S. J. Higgins, eds. (1984)]; Animal Cell Culture [R. I. Freshney, ed. (1986)]; Immobilized Cells And Enzymes [IRL Press, (1986)]; B. Perbal, A Practical Guide To Molecular Cloning (1984); F. M. Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (1994).
- The terms “polypeptide” and “protein” may be used herein interchangeably to refer to the gene product (or corresponding synthetic product) of a Semaphorin 3A gene. The term “protein” may also refer specifically to the polypeptide as expressed in cells.
- “Sequence-conservative variants” of a polynucleotide sequence are those in which a change of one or more nucleotides in a given codon position results in no alteration in the amino acid encoded at that position.
- “Function-conservative variants” are those in which a given amino acid residue in a protein or enzyme has been changed without altering the overall conformation and function of the polypeptide, including, but not limited to, replacement of an amino acid with one having similar properties (such as, for example, polarity, hydrogen bonding potential, acidic, basic, hydrophobic, aromatic, and the like). Amino acids with similar properties are well known in the art. For example, arginine, histidine and lysine are hydrophilic-basic amino acids and may be interchangeable. Similarly, isoleucine, a hydrophobic amino acid, may be replaced with leucine, methionine or valine. Such changes are expected to have little or no effect on the apparent molecular weight or isoelectric point of the protein or polypeptide. Amino acids other than those indicated as conserved may differ in a protein or enzyme so that the percent protein or amino acid sequence similarity between any two proteins of similar function may vary and may be, for example, from 70% to 99% as determined according to an alignment scheme such as by the Cluster Method, wherein similarity is based on the MEGALIGN algorithm. A “function-conservative variant” also includes a polypeptide or enzyme which has at least 60% amino acid identity as determined by BLAST or FASTA algorithms, preferably at least 75%, most preferably at least 85%, and even more preferably at least 90%, and which has the same or substantially similar properties or functions as the native or parent protein or enzyme to which it is compared.
- As used herein, the term “homologous” in all its grammatical forms and spelling variations refers to the relationship between proteins that possess a “common evolutionary origin,” including proteins from superfamilies (e.g., the immunoglobulin superfamily) and homologous proteins from different species (e.g., myosin light chain, etc.) (Reeck et al., Cell 50:667, 1987). Such proteins (and their encoding genes) have sequence homology, as reflected by their sequence similarity, whether in terms of percent similarity or the presence of specific residues or motifs at conserved positions. A specific type of homolog is an ortholog, which refers to the corresponding (or coding sequence or gene product in another species (e.g., equine hemoglobin is an ortholog of human hemoglobin).
- Accordingly, the term “sequence similarity” in all its grammatical forms refers to the degree of identity or correspondence between nucleic acid or amino acid sequences of proteins that may or may not share a common evolutionary origin (see Reeck et al., supra). However, in common usage and in the instant application, the term “homologous,” when modified with an adverb such as “highly,” may refer to sequence similarity and may or may not relate to a common evolutionary origin.
- In a specific embodiment, two DNA sequences are “substantially homologous” or “substantially similar” when at least about 80%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences, as determined by sequence comparison algorithms, such as BLAST, FASTA, DNA Strider, etc. An example of such a sequence is an allelic or species variant of the Sema3A gene. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system.
- Similarly, in a particular embodiment, two amino acid sequences are “substantially homologous” or “substantially similar” when greater than 80% of the amino acids are identical, or greater than about 90% are similar (functionally identical). Preferably, the similar or homologous sequences are identified by alignment using, for example, the GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin) pileup program, or any of the programs described above (BLAST, FASTA, etc.).
- A nucleic acid molecule is “hybridizable” to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook et al.). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. For preliminary screening for homologous nucleic acids, low stringency hybridization conditions, corresponding to a Tm (melting temperature) of 55□ C., can be used, under conditions of low salt and denaturant concentrations, e.g., 5×SSC, 0.1% SDS, 0.25% milk, and no formamide; or 30% formamide, 5×SSC, 0.5% SDS). Moderate stringency hybridization conditions correspond to a higher Tm, under conditions of moderate salt and denaturant concentrations, e.g., 40% formamide, with 5× or 6×SCC. High stringency hybridization conditions correspond to the highest Tm, under conditions of high concentrations of salt and denaturants, e.g., 50% formamide, 5× or 6×SCC. SCC is a 0.15M NaCl, 0.015M Na-citrate. Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see Sambrook et al., supra, 9.50-9.51). For hybridization with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook et al., supra, 11.7-11.8). A minimum length for a hybridizable nucleic acid is at least about 10 nucleotides; preferably at least about 15 nucleotides; and more preferably the length is at least about 20 nucleotides.
- In a specific embodiment, the term “standard hybridization conditions” refers to a Tm of 55° C., and utilizes conditions as set forth above. In a preferred embodiment, the Tm is 60° C.; in a more preferred embodiment, the Tm is 65° C. In a specific embodiment, “high stringency” refers to hybridization and/or washing conditions at 68° C. in 0.2×SSC, at 42° C. in 50% formamide, 4×SSC, or under conditions that afford levels of hybridization equivalent to those observed under either of these two conditions.
- Semaphorin of class 3 belongs to the Semaphorin family that comprises several molecules that exert cell-type specific effects on a wide variety of central and peripheral axons. These molecules are described in U.S. Pat. No. 5,639,856 and are reviewed in Pasterkamp et al., Brain Research Reviews, 200, 35: 36-54, as well as in Nakamura et al., Journal of Neurobiology 2000; 44:219-229; Tamagnone et al., P. M. Comoglio, 2000;10:377-383; Roskies et al., Neuron 1998; 21:936-936; and Yu et al., Neuron 1999; 22:11-14.
- More particularly Semaphorin 3A, referred to as Sema3A herein, is also known as C-Collapsin-1, Coll-1, human Sema III, mouse SemD, rat Sema III, Sema-Z1a (Semaphorin Nomenclature Committee, Cell 1999; 97:551-552). It is a secreted chemorepellent that is highly expressed in developing entorhinal and neocortical areas, but only weakly expressed in developing hippocampus (Chedotal, et al. Development 1998; 125: 4313-23).
- As used herein, the term “Sema3A expression” refers to the production of Sema3A protein, or mRNA that encodes Sema3A, regardless of the cell type from which it was transcribed. In particular Sema3A may be produced by a first cell type but may accumulate in a second cell type, tissue, or biological fluid. For that reason, the present invention also encompasses the mere accumulation of Sema3A, which refers to the accumulation of the protein or the mRNA.
- A “Sema3A activity” or “Sema3A biological activity” is a functional property shown by the wild-type Sema3A protein in vivo. This includes a pro-apoptotic activity, more particularly on neuronal cells, or the ability of inducing withdrawal of nerve growth cone.
- As used herein, the term “neuronal cell” means neurons or any cell of the nervous system that are committed to develop into a neuron. Any type of neuronal cell may be used to assay the activity of Sema3A, such as sensory neuronal cells, sympathetic neurons or Dorsal Root Ganglion neurons (DRG). Neuronal progenitor cells may be used as well.
- Sema3A activity also encompasses the binding of Sema3A to its receptor and/or activation thereof.
- The Sema3A activity may be assessed by any standard method well-known by one skilled in the art, as described below:
- Collapse assay. Growth cone collapse assays are described in Luo et al., Cell 1993; 75:217-227, as well as in Gagliardini et al., Molecular and Cellular Neuroscience 1999; 14:301-316, or in the International patent application WO 01/18173. In brief, neuronal cells, such as E18 mouse DRG neurons or sympathetic neurons, are allowed to extend neurites in an appropriate medium. Sema3A is then added to the cells, for about 35-45 minutes at 37° C. The cultures are fixed in 4% paraformaldehyde in PBS containing 10% sucrose. The tips of neurites without lamellipodia or filopodia are scored as being collapsed.
- Neuron survival assays. The pro-apoptotic effect of a protein such as Sema3A may be assayed by treating neuronal cells with serial dilutions of the protein in the presence of trophic factors, and determining the percentage of neuronal survival before and after treatment, as described for example in Deckwerth et al., Dev. Biol. 1994; 165:63-72 or Eckenstein et al., Neuron 1990; 4:623-631. For example, cultures are incubated with additives for 24 hours before fixation, staining with a dye, and photography using an epifluorescence microscope. TUNEL staining may be performed with the ApopTag Plus kit (Talron, Israel) according to the manufacturer's protocol. Other methods, such as the fluorescent MTT assay and trypan-blue exclusion assay described in Zilkha-Falb et al., Cell. Mol. Neurobiol. 1997; 17:101-118, also may be useful. Alternatively, nuclei, especially in the form of pycnotic nuclei, may be visualized by using nuclear dye such as propidium iodide (that reveals clumped DNA). In addition, DNA laddering may be analyzed by Southern Blot techniques, or modifications in the gene expression of pro- or anti-apoptotic proteins such as Bcl, Bcx, or caspases, also may be analyzed.
- As used herein, the term “diagnosis” refers to the identification of the disease (i.e., AD or PD) at any stage of its development, and also includes the determination of predisposition of a subject to develop the disease. In a preferred embodiment of the invention, diagnosis of AD or PD in a subject occurs prior to the manifestation of symptoms. Subjects with a higher risk of developing the disease are of particular concern. The diagnostic method of the invention also allows confirmation of AD or PD in a subject suspected of having AD or PD.
- The method of the invention comprises assessing the level of expression, accumulation or activity of Sema3A in a test subject and comparing it to the level of expression, accumulation or activity of Sema3A in a control subject (i.e., a subject not having or pre-disposed to developing the disease). An increase of expression, accumulation or activity of Sema3A in the test subject compared to the control subject is indicative of AD or PD in the test subject.
- The diagnostic methods of the invention may preferably be performed in vitro, in a biological sample of a test subject, which is compared to a control sample.
- A “biological sample” is any body tissue or fluid likely to contain Sema3A protein or mRNA or down-stream effectors thereof. Such samples preferably include blood or a blood component (serum, plasma), as well as cerebrospinal fluid (CSF).
- The components for detecting Sema3A protein or nucleic acids can be conveniently provided in a kit form. In its simplest embodiment, such a kit provides a Sema3A detector, e.g., a detectable antibody (which may be directly labeled or which may be detected with a secondary labeled reagent), or a nucleic acid probe or a primer pair.
- In one embodiment, the determination of the level of expression, or accumulation of Sema3A encompasses the use of nucleic acid sequences such as specific oligonucleotides to detect the presence of mRNA that encodes Sema3A nucleic acid in a biological sample.
- For that purpose, one skilled in the art may use hybridization probes in solution hybridizations and in embodiments employing solid-phase procedures. In embodiments involving solid-phase procedures, the test nucleic acid is adsorbed or otherwise affixed to a selected matrix or surface. The fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes.
- In another embodiment, one skilled in the art may use oligonucleotide primers in an amplification technique, such as a reverse-PCR (“reverse polymerase chain reaction”), to specifically amplify the target mRNA potentially present in the biological sample.
- As used herein, the term “oligonucleotide” refers to a nucleic acid, generally of at least 10, preferably at least 15, and more preferably at least 20 nucleotides, preferably no more than 100 nucleotides, that is hybridizable to an mRNA molecule that encodes Sema3A gene. Oligonucleotides can be labeled, e.g., with 32P-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. Generally, oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesizer. Accordingly, oligonucleotides can be prepared with non-naturally occurring phosphoester analog bonds, such as thioester bonds, etc.
- As an alternative to analyzing Sema3A nucleic acids, one can evaluate Sema3A on the basis of protein expression, or accumulation.
- In a preferred embodiment, Sema3A is detected by immunoassay. For example, Western blotting permits detection of the presence or absence of Sema3A. Other immunoassay formats can also be used in place of Western blotting, as described below for the production of antibodies. One of these is ELISA assay.
- In ELISA assays, an antibody against Sema3A or epitopic fragment thereof is immobilized onto a selected surface, for example, a surface capable of binding proteins such as the wells of a polystyrene microtiter plate. After washing to remove incompletely adsorbed polypeptides, a non-specific protein, such as bovine serum albumin (BSA), is added to block the nonspecific adsorption sites on the immobilizing surface and thus reduce the background caused by nonspecific bindings of antisera onto the surface. The immobilizing surface is then contacted with a test sample, and evaluated for immune complex (antigen/antibody) formation. This step may involve diluting the sample with diluents, such as solutions of BSA, bovine gamma globulin (BGG) and/or phosphate buffered saline (PBS)/Tween. The sample is then incubated for about 2 to 4 hours, at temperatures in the range of about 25° to 37° C. Following incubation, the sample-contacted surface is washed to remove non-bound material. The washing procedure may involve washing with a solution, such as PBS/Tween or borate buffer. Following washing, immunocomplex formation may be determined and quantitated by subjecting the immunocomplex to a second antibody specific for Sema3A, which recognizes a different epitope on the protein. To provide detecting means, the second antibody may have an associated activity such as an enzymatic activity that will generate, for example, a color development upon incubating with an appropriate chromogenic substrate. Quantitation may then be achieved by measuring the degree of color generation using, for example, a visible spectra spectrophotometer.
- Typically the secondary antibody is conjugated to an enzyme such as peroxidase and the protein is detected by the addition of a soluble chromophore peroxidase substrate such as tetramethylbenzidine followed by 1 M sulfuric acid. The test protein concentration is determined by comparison with standard curves.
- These protocols are detailed in Current Protocols in Molecular Biology, V. 2 Ch. 11 and Antibodies, a Laboratory Manual, Ed Harlow, David Lane, Cold Spring Harbor Laboratory 1988, pp 579-593.
- Alternatively, a biochemical assay can be used to detect expression or accumulation of Sema3A, e.g., by the presence or absence of a band by polyacrylamide gel electrophoresis; by the presence or absence of a chromatographic peak using any of the various methods of high performance liquid chromatography, including reverse phase, ion exchange, and gel permeation; by the presence or absence of Sema3A in analytical capillary electrophoresis chromatography, or any other quantitative or qualitative biochemical technique known in the art.
- The immunoassays discussed above involve using antibodies directed against the Sema3A protein or fragments thereof. The production of such antibodies is described below.
- Antibodies that specifically bind to Sema3A include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments, and those within Fab expression libraries.
- Various procedures known in the art may be used for the production of polyclonal antibodies to Sema3A polypeptides or derivatives or analogs thereof. For the production of antibodies, various host animals can be immunized by injection with the antigenic polypeptide, including but not limited to rabbits (described infra) mice, rats, sheep, and goats.
- For preparation of monoclonal antibodies directed toward the Sema3A polypeptides, any technique that provides for the production of antibody molecules by continuous cell lines in culture may be used. These include but are not limited to the hybridoma technique originally developed by Kohler and Milstein (Nature 256:495-497, 1975), as well as the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 1983; 4:72; Cote et al., Proc. Natl. Acad. Sci. U.S.A. 1983;80:2026-2030), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. 1985, pp. 77-96). In an additional embodiment of the invention, monoclonal antibodies can be produced in germ-free animals (International Patent Publication No. WO 89/12690).
- According to the invention, techniques described for the production of single chain antibodies (U.S. Pat. Nos. 5,476,786 and 5,132,405 to Huston; U.S. Pat. No. 4,946,778) can be adapted to produce the Sema3A polypeptide-specific single chain antibodies. Indeed, these genes can be delivered for expression in vivo. An additional embodiment of the invention utilizes the techniques described for the construction of Fab expression libraries (Huse et al., Science 1989; 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity for a Sema3A polypeptide, or its derivatives, or analogs.
- Antibody fragments which contain the idiotype of the antibody molecule (anti-idiotypic antibodies) can be generated by known techniques. For example, such fragments include but are not limited to: the F(ab′)2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab′ fragments which can be generated by reducing the disulfide bridges of the F(ab′)2 fragment, and the Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.
- Screening for the desired antibody can be accomplished by numerous techniques known in the art, e.g., radioimmunoassay, ELISA (enzyme-linked immunosorbant assay), “sandwich” immunoassays, immunoradiometric assays, gel diffusion precipitin reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
- The activity of Sema3A may be indirectly assayed by evaluating the level of expression, accumulation or activity of down-stream effectors of Sema3A such as MAP1B, CRMP-2, Rac1, or Plexins A1 and A2, and Neuropilin 1. MAP1B, CRMP-2, Rac1 are the preferred targets. Most of these effectors are reviewed in Goshima et al., Jpn. J. Pharmacol., 2000, 82:273-279, which is hereby incorporated by reference herein.
- Kinases of about 40-44 kDa and 110-120 kDa detected by SDS-PAGE in association with Sema3A in AD patients, as shown in Example 1, may useful targets as well.
- The nucleic acid-based assays or protein-based assays as described above may be readily adapted for indirect screening. Alternatively, the level of activity of proteins such as MAP1B, CRMP-2, or Plexin A1 may be assessed by determining the level of phosphorylation of the proteins, which is indicative of their activated state.
- Phosphorylation Assays. The levels of phosphorylation of proteins can be assessed by various methods, including immunoassays or radiolabeling.
- In a preferred embodiment, phosphorylation state of a protein is assessed by utilizing a binding partner, which should preferably be highly specific for the phosphoepitope on the target protein. In preferred embodiment, the binding partner is an antibody that has been generated against a unique epitope of the substrate. In an alternative embodiment, the binding partner is specific for the phosphorylated form of the target protein. The detection procedure used to assess the phosphorylation state of the protein may, for example, employ an antibody or a peptide that recognizes and binds to phosphorylated serines, threonines or tyrosines. The detection antibody is preferably a polyclonal antibody to maximize the signal, but may also be specific monoclonal antibodies which have been optimized for signal generation.
- Alternatively, immunoassays may be replaced by the detection of radiolabeled phosphate according to a standard technique. This involves incubating cells with the test substances and radiolabeled phosphate, lysing the cells, separating cellular protein components of the lysate using as SDS-polyacrylamide gel (SDS-PAGE) technique, in either one or two dimensions, and detecting the presence of phosphorylated proteins by exposing X-ray film.
- The phosphorylation of a protein may also be conveniently detected by migration on an electrophoresis gel followed by immunodetection, i.e., Western blotting, to determine whether a shift of the molecular weight of the protein occurs; a phosphorylated protein being heavier than the corresponding non-phosphorylated form.
- The direct assays of Sema3A expression, accumulation or activity may be preferably performed in vitro, since Sema3A is a secreted protein that can be easily detected in any biological sample such as blood or CSF.
- In vitro assays can be performed for down-stream effectors as well, insofar as they can be detected in such biological samples.
- Alternatively, and especially when the targeted protein or mRNA cannot be easily detected by collecting a biological sample such as blood or CSF, but only possibly by a brain biopsy for instance, or when such protein or mRNA is in too small amounts for in vitro assay sensibility, in vivo diagnostic method can then be contemplated.
- In vivo diagnostics especially refers to in vivo imaging methods, which permit the detection of a labeled probe or antibody that specifically hybridizes or binds Sema3A mRNA or protein, respectively, in the subject's brain. Such methods include magnetic resonance spectroscopy, positron-emission tomography (PET) and single photon emission tomography (SPECT). For purposes of in vivo imaging, the type of detection instrument available is a major factor in selecting a given label. For instance, radioactive isotopes and paramagnetic isotopes are particularly suitable for in vivo imaging. The type of instrument used will guide the selection of the radionuclide. For instance, the decay parameters of a chosen radionuclide chosen must be detectable by the selected instrument. However, any conventional method for visualizing diagnostic imaging can be utilized in accordance with this invention. In one embodiment, a radionuclide may be bound to an antibody either directly or indirectly by using an intermediary functional group. Intermediary functional groups which are often used to bind radioisotopes which exist as metallic ions to antibody include diethylenetriaminepentaacetic acid (DTPA) and ethylene diaminetetracetic acid (EDTA). Examples of metallic ions suitable as radioactive isotopes include 99mTc, 123I, 131I , 111In, 97Ru, 67Cu, 67Ga, 125I, 68Ga, 72As, 89Zr, and 201Tl. Examples of paramagnetic isotopes, particularly useful in Magnetic Resonance Imaging (“MRI”), include 157Gd, 55Mn, 162Dy, 52Cr, and 56Fe.
- The present invention further contemplates a screening method for identifying lead compounds that exhibit an inhibitory activity towards a Sema3A signaling complex. According to the invention, such compounds are useful in the prevention or treatment of AD or PD.
- A “lead compound” is a test substance which has been shown to exhibit an inhibitory activity towards a Sema3A signaling complex.
- A “test substance” or “test compound” is a chemically defined compound or mixture of substances (as in the case of a natural extract or tissue culture supernatant), whose ability to inhibit Sema3A activity may be defined by various assays
- Test compounds may be screened from large libraries of synthetic or natural substances. Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based substances. Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.). A rare chemical library is available from Aldrich (Milwaukee, Wis.). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (NC), or are readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means (Blondelle et al., TIBTech 1996, 14:60).
- Inhibitors of Sema3A activity encompass direct inhibitors of Sema3A, as well as inhibitors of down-stream effectors of Sema3A, such as MAP1B, CRMP-2, Rac1, Plexins A1 and A2, or Neuropilin 1.
- The methods described below with regard to the identification of Sema3A inhibitor may be easily adapted to identify inhibitors that target Sema3A effectors.
- In one embodiment, the screening method of the invention comprises (a) contacting a cell with the test substance and Sema3A under conditions wherein addition of Sema3A alone induces apoptosis of the cell; and (b) observing the effect of addition of the test substance and Sema3A to the cell, in comparison with the effect of addition of Sema3A alone to a control cell, wherein inhibition of apoptosis of the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD or PD. The cell may advantageously be a neuronal cell. This assay may be performed for example as described above, (see “Neuronal survival assays”).
- In another embodiment, the screening method of the invention comprises (a) contacting a neuronal cell with the test substance and Sema3A under conditions wherein addition of Sema3A alone induces withdrawal of the nerve growth cone; and (b) observing the effect of the addition of the test substance and Sema3A to the cell, in comparison with the effect of addition of Sema3A alone to a control cell, wherein inhibition of withdrawal of the nerve grown cone in the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of AD. Here again, this assay may be performed for example as described above (“Collapse assay”).
- In still another embodiment, the screening method of the invention comprises determining the effect of the test substance on the binding or activation of Sema3A receptor by Sema3A, wherein an antagonist effect of the test substance indicates that the substance is useful in the prevention or treatment of AD or PD.
- This antagonist effect may be determined by an in vitro method using a recombinant Sema3A-reporter gene promoter activity system.
- Reporter genes for use in the invention encode detectable proteins, include, but are by no means limited to, chloramphenicol transferase (CAT), β-galactosidase (β-gal), luciferase, green fluorescent protein (GFP) and derivatives thereof, yellow fluorescent protein and derivatives thereof, alkaline phosphatase, other enzymes that can be adapted to produce a detectable product, and other gene products that can be detected, e.g., immunologically (by immunoassay).
- An antagonist screen according to the invention involves detecting expression of the reporter gene by the host cell when contacted with a test substance. If there is no change in expression of the reporter gene, the test substance is not an effective antagonist. If reporter gene expression is reduced or eliminated, the test substance has inhibited Sema3A-mediated gene expression, and is thus a candidate for development of an AD or PD therapeutic.
- The reporter gene assay system described here may be used in a high-throughput primary screen for antagonists, or it may be used as a secondary functional screen for candidate compounds identified by a different primary screen, e.g., a binding assay screen that identifies substances that modulate Sema3A transcription activity.
- Potential drugs may be identified by screening in high-throughput assays, including without limitation cell-based or cell-free assays. It will be appreciated by those skilled in the art that different types of assays can be used to detect different types of agents. Several methods of automated assays have been developed in recent years so as to permit screening of tens of thousands of compounds in a short period of time (see, e.g., U.S. Pat. Nos. 5,585,277, 5,679,582, and 6,020,141). Such high-throughput screening methods are particularly preferred. Alternatively, simple reporter-gene based cell assays such as the one described here are also highly desirable.
- Intact cells or whole animals expressing a gene encoding Sema3A can be used in screening methods to identify candidate drugs or lead compounds.
- In one series of embodiments, a permanent cell line is established. Alternatively, cells are transiently programmed to express a Sema3A gene by introduction of appropriate DNA or mRNA.
- Identification of candidate compounds can be achieved using any suitable assay, including without limitation (i) assays that measure selective binding of test substances to Sema3A (ii) assays that measure the ability of a test substance to modify (i.e., inhibit) a measurable activity or function of Sema3A and (iii) assays that measure the ability of a substance to modify (i.e., inhibit) the transcriptional activity of sequences derived from the promoter (i.e., regulatory) regions of the Sema3A gene.
- Useful substances are typically those that bind to Sema3A or disrupt the association of Sema3A with its receptor (e.g., Neuropilin 1/Plexins complexes, see WO 99/04263 or WO 01/18173).
- Alternatively useful substances may be screened for their ability to block processing or secretion of Sema3A, especially by interfering with Sema3A cleavage site.
- In a specific embodiment of the screening method of the invention, the inhibitory effect of the substance is determined in vivo, by administering the substance to an animal that shows a level of Sema3A protein greater than that of a control animal. Although rats and mice, as well as rabbits, are most frequently employed, particularly for laboratory studies, any animal can be employed in the practice of the invention.
- This animal may be a transgenic animal that overexpresses Sema3A. This transgenic animal may be considered as a model animal for AD or PD. The production of such transgenic animal is described in further detail below.
- Transgenic Animals. The term “transgenic” usually refers to animal whose germ line and somatic cells contain the transgene of interest, i.e., Sema3A gene. However, transient transgenic animals can be created by the ex vivo or in vivo introduction of an expression vector that encodes Sema3A. Preferred expression vectors are viral vectors, such as lentiviruses, retroviruses, herpes viruses, adenoviruses, adeno-associated viruses, vaccinia virus, baculovirus, alphavirus, influenza virus, and other recombinant viruses with desirable cellular tropism. Thus, a gene encoding Sema3A can be introduced in vivo using a viral vector or through direct introduction of DNA. Expression in targeted tissues can be effected by targeting the transgenic vector to specific cells, such as with a viral vector or a receptor ligand, or by using a tissue-specific promoter, or both. Targeted gene delivery is described in PCT Publication WO 95/28494.
- Both types of “transgenic” animals are contemplated for use in the present invention, e.g., to evaluate the effect of a test substance on Sema3A expression, accumulation or activity.
- Animals overexpressing Sema3A may be produced by introducing a Sema3A gene in an endogenous locus. This can be achieved by homologous recombination, transposition (Westphal and Leder, Curr Biol 1997; 7:530), using mutant recombination sites (Araki et al., Nucleic Acids Res 1997; 25:868) or PCR (Zhang and Henderson, Biotechniques 1988; 25:784). See also, Coffman, Semin. Nephrol. 1997; 17:404; Esther et al., Lab. Invest. 1996; 74:953; Murakami et al., Blood Press. 1996; Suppl. 2:36.
- Generally, for homologous recombination, the DNA is at least about 1 kilobase (kb) in length and preferably 3-4 kb in length, thereby providing sufficient complementary sequence for recombination when the construct is introduced. Transgenic constructs can be introduced into the genomic DNA of the ES cells, into the male pronucleus of a fertilized oocyte by microinjection, or by any methods known in the art, e.g., as described in U.S. Pat. Nos. 4,736,866 and 4,870,009, and by Hogan et al., Transgenic Animals: A Laboratory Manual, 1986, Cold Spring Harbor. A transgenic founder animal can be used to breed other transgenic animals; alternatively, a transgenic founder may be cloned to produce other transgenic animals.
- Wild-Type Animals. In another embodiment, the animal that shows a level of Sema3A protein superior to a control animal is merely an animal to which Sema3A protein has been administered. Micro-injections of the protein into certain areas of the brain of the animal are more particularly contemplated within the present invention and described herein.
- The animals (regardless they are transgenic or not) are administered with the substance to be tested by any convenient route, for example by systemic injection, pumps for long-term exposure, or direct intracerebral injection. These animals may be included in a behavior study, so as to determine the effect of the substance on the cognitive behavior of the animals for instance. A biopsy or anatomical evaluation of animal brain tissue may also be performed, or a sample of blood or CSF may be collected, to perform in vitro assays as described above.
- The present invention further provides a method for the prevention or treatment of AD, which method comprises inhibiting Sema3A expression, accumulation or activity in a subject or patient.
- The method for the prevention or treatment of AD or PD comprises administering to a patient in need of such treatment an effective amount or a substance that inhibits Sema3A expression, accumulation or activity, which a pharmaceutically acceptable carrier.
- A “subject” or “patient” is a human or an animal likely to develop AD or PD, more particularly a mammal, preferably a human, rodent or primate, as described above in connection with diagnostic applications.
- The term “prevention” refers to the prevention of the onset of AD or PD, which means to prophylactically interfere with a pathological mechanism that results in the disease. In the context of the present invention, such a pathological mechanism can be an increase of Sema3A expression, or accumulation. The patient may be a subject that has an increased risk of developing the disease. For example, for AD, such subject may have a genetic predisposition to developing an amyloidosis, such as a person from a family that has members with familial AD (FAD). Alternatively, someone in his or her seventh or eighth decade is at greater risk for age-related AD.
- The term “treatment” means to therapeutically intervene in the development or pathology of a disease in a subject showing a symptom of this disease. In the context of the present invention, these symptoms can include development of dementia, memory defects, and the like in the fifth and sixth decade.
- Both prevention and treatment of AD or PD are facilitated by the neuroprotective property of the substances that inhibit Sema3A expression, accumulation or activity, especially on vulnerable neurons.
- The term “therapeutically effective amount” is used herein to mean an amount or dose sufficient to decrease the level of Sema3A activity e.g., by about 10%, preferably by about 50%, and more preferably by about 90% percent. Preferably, a therapeutically effective amount can ameliorate or present a clinically significant deficit in the activity, function and effects of Sema3A. Alternatively, a therapeutically effective amount is sufficient to cause an improvement in a clinically significant condition in the subject to which it is administered.
- The inhibition of Sema3A expression, accumulation or activity may be achieved by various methods, as described hereafter.
- In one embodiment, the inhibition may be directed against Sema3A protein or against any of its down-stream effectors, such as MAP1B, CRMP-2, Rac1, Plexins A1 and A2 or Neuropilin-1. The methods discussed below may be easily adapted to perform the latter embodiment.
- In another embodiment, the inhibitory substance may be a substance that is known or has been identified to compete with Sema3A for binding to its receptor. Vascular Endothelial Growth Factor—165 (VEGF-165), shown to compete with Sema3A for binding to Neuropilin-1 (NRP-1), is more particularly encompassed (Soker et al., Cell 1998; 92:735-745; Bagnard et al., The Journal of Neuroscience 2000; 10: 332-3341).
- Alternatively, this inhibitory substance may be a candidate drug as identified by the screening methods discussed above.
- Selected inhibitory agents may be modified to enhance efficacy, stability, pharmaceutical compatibility, and the like. For example, where peptide antagonists are identified, they may be modified in a variety of ways, e.g. to enhance their proteolytic stability. Structural identification of an agent also may be used to identify, generate, or screen additional agents.
- The inhibitory substance may be an antibody that is directed against Sema3A. Antibodies that block the activity of Sema3A may be produced and selected according to any standard method well-known by one skilled in the art, such as those described above in the context of diagnostic applications.
- In another embodiment, the substance that inhibits the Sema3A protein is an antisense nucleic acid specific for Sema3A mRNA. An “antisense nucleic acid” is a single stranded nucleic acid molecule which, on hybridizing under cytoplasmic conditions with complementary bases in an RNA or DNA molecule, inhibits translation or transcription. If the RNA is a messenger RNA transcript, the antisense nucleic acid is a countertranscript or mRNA-interfering complementary nucleic acid. “Antisense” broadly includes RNA-RNA interactions, RNA-DNA interactions, ribozymes and RNase-H mediated arrest. Antisense nucleic acid molecules can be encoded by a recombinant gene for expression in a cell (e.g., U.S. Pat. No. 5,814,500; U.S. Pat. No. 5,811,234), or alternatively they can be prepared synthetically (e.g., U.S. Pat. No. 5,780,607). The substance that inhibits Sema3A may also be an antisense nucleic acid specific for a downstream effector in the Sema3A signaling pathway. Antisense therapy is discussed in more detail below.
- The substance that inhibits Sema3A activity is advantageously formulated in a pharmaceutical composition, with a pharmaceutically acceptable carrier. This substance may be then called active ingredient, or therapeutic agent, against AD or PD.
- The concentration or amount of the active ingredient depends on the desired dosage and administration regimen, as discussed below. Suitable dose ranges may include from about 1 mg/kg to about 100 mg/kg of body weight per day.
- The pharmaceutical compositions may also include other biologically active substances in combination with the Sema3A inhibitory agents. Such substances include but are not limited to donepezil hydrochloride (Aricept®), rivastigamine tartrate (Exelon®), galantamine (Reminyl®), tacrine (Cognex®), and non-steroidal anti-inflammatory drugs (NSAIDs).
- The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human. Preferably, as used herein, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the substance is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- A composition comprising “A” (where “A” is a single protein, DNA molecule, vector, recombinant host cell, etc.) is substantially free of “B” (where “B” comprises one or more contaminating proteins, DNA molecules, vectors, etc.) when at least about 75% by weight of the proteins, DNA, vectors (depending on the category of species to which A and B belong) in the composition is “A”. Preferably, “A” comprises at least about 90% by weight of the A+B species in the composition, most preferably at least about 99% by weight. It is also preferred that a composition, which is substantially free of contamination, contain only a single molecular weight species having the activity or characteristic of the species of interest.
- According to the invention, the pharmaceutical composition of the invention can be introduced parenterally, transmucosally, e.g., orally (per os), nasally, rectally, or transdermally. Parental routes include intravenous, intra-arteriole, intramuscular, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial administration.
- The pharmaceutical compositions may be added to a retained physiological fluid such as blood or synovial fluid. For CNS (Central Nervous System) administration, a variety of techniques are available for promoting transfer of the therapeutic across the blood brain barrier including disruption by surgery or injection, co-administration of drugs which transiently open adhesion contact between CNS vasculature endothelial cells, and co-administration of substances which facilitate translocation through such cells.
- In another embodiment, the active ingredient can be delivered in a vesicle, in particular a liposome (see Langer, Science 1990; 249:1527-1533; Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss: New York 1989 pp. 353-365; Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).
- In yet another embodiment, the therapeutic substance can be delivered in a controlled release formulation. For example, a polypeptide may be administered using intravenous infusion with a continuous pump, in a polymer matrix such as poly-lactic/glutamic acid (PLGA), a pellet containing a mixture of cholesterol and the active ingredient (SilasticR™; Dow Corning, Midland, Mich.; see U.S. Pat. No. 5,554,601) implanted subcutaneously, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
- Antisense Therapy. In another embodiment, vectors comprising a sequence encoding an antisense nucleic acid according to the invention may be administered by any known methods, including methods used for gene therapy that are available in the art. Exemplary methods are described below. For general reviews of the methods of gene therapy, see, Goldspiel et al., Clinical Pharmacy 1993, 12:488-505; Wu and Wu, Biotherapy 1991, 3:87-95; Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 1993, 32:573-596; Mulligan, Science 1993, 260:926-932; and Morgan and Anderson, Ann. Rev. Biochem. 1993, 62:191-217; May, TIBTECH 1993, 11:155-215. Methods commonly known in the art of recombinant DNA technology that can be used are described in Ausubel et al., (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY; Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY; and in Chapters 12 and 13, Dracopoli et al., (eds.), 1994, Current Protocols in Human Genetics, John Wiley & Sons, NY.
- In one embodiment, a vector is used in which the coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for expression of the construct from a nucleic acid molecule that has integrated into the genome (Koller and Smithies, Proc. Natl. Acad. Sci. USA 1989, 86:8932-8935; Zijlstra et al., Nature 1989, 342:435-438).
- Delivery of the vector into a patient may be either direct, in which case the patient is directly exposed to the vector or a delivery complex, or indirect, in which case, cells are first transformed with the vector in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo and ex vivo gene therapy.
- In a specific embodiment, the vector is directly administered in vivo, where it enters the cells of the organism and mediates expression of the construct. This can be accomplished by any of numerous methods known in the art and discussed above, e.g., by constructing it as part of an appropriate expression vector and administering it so that it becomes intracellular, e.g., by infection using a defective or attenuated retroviral or other viral vector (see, U.S. Pat. No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont); or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in biopolymers (e.g., poly-1-4-N-acetylglucosamine polysaccharide; see, U.S. Pat. No. 5,635,493), encapsulation in liposomes, microparticles, or microcapsules; by administering it in linkage to a peptide or other ligand known to enter the nucleus; or by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 1987, 62:4429-4432), etc. In another embodiment, a nucleic acid-ligand complex can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation, or cationic 12-mer peptides, e.g., derived from antennapedia, that can be used to transfer therapeutic DNA into cells (Mi et al., Mol. Therapy 2000, 2:339-47). In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publication Nos. WO 92/06180, WO 92/22635, WO 92/20316 and WO 93/14188).
- The present invention is also described by means of particular examples. However, the use of such examples anywhere in the specification is illustrative only and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to any particular preferred embodiments described herein. Indeed, many modifications and variations of the invention will be apparent to those skilled in the art upon reading this specification and can be made without departing from its spirit and scope. The invention is therefore to be limited only by the terms of the appended claims, along with the full scope of equivalents to which the claims are entitled.
- Immunoaffinity purification of a multiprotein complex. Hippocampal fields were isolated from brain of patients with overt AD (CDR3-5) at autopsy, and frozen. Samples from 6 cases were pulverized in liquid nitrogen and dissolved in buffer A (50 mM HEPES [pH 7.4]; 50 mM NaCl; 10 mM EDTA; 0.5% Triton X-100) supplemented with 100 μg/ml leupeptin, 10 μg/ml bacitracin, 100 μg/ml aprotinin, 100 μg/ml bis-benzamide, 1 mM Na3VO4, and 10 mM .-glycerophosphate. Dissolved tissue was extracted by gentle shaking for 1 hour at 4° C., then clarified by centrifugation (30,000×g). Centrifuge step was repeated and the supernatant was recovered.
- A rabbit polyclonal antibody was generated against the phosphorylated peptide PP172 (IYSYQWMALT*PVVKC-SEQ ID NO: 1; asterisk indicates phosphorylated residue) according to methods well known in the art. Non-phosphospecific antibodies were depleted by column chromatography using same peptide lacking phosphate (P172). Specific antibodies then were affinity purified by column chromatography using the phosphorylated peptide. The antibodies were bound to protein A-agarose, washed, then coupled covalently to the column with dimethyl pimelimidate. The column washed with several volumes of buffer A prior to use.
- The lysate was pre-incubated with protein A-agarose bead (lacking antibody) to absorb non-specific binding proteins. Following removal of these beads, the lysate was incubated overnight with protein A-agarose beads coupled to PP172 antibody at 4° C. while gently mixing). The next day the beads were collected by centrifugation, then transferred to a column and washed with several volumes of buffer A. Proteins were eluted from the beads with 1 mg/ml PP172 peptide.
- Eluted proteins were resolved by SDS-PAGE, and either stained with Coomassie blue or processed for Western blot with PP172 antibody using standard methods. Proteins stained by Coomassie blue were excised from the gels and washed with 50% acetonitrile. Nine independent gel regions were excised and sequence analysis was performed at the Harvard Microchemistry Facility, by microcapillary reverse-phase HPLC nano-electrospray tandem mass spectrometry (mLC/MS/MS) on a Finnigan LCQ quadrupole ion trap mass spectrometer. The method provides high sensitivity (<10 fentomole) but does not allow an estimation of the relative abundance of the peptides. The MS/MS spectra (fragmentation spectra) were correlated with known sequences using an algorithm (Sequest; Eng, et al., Am. Soc. Mass Spectrom 1994, 5:976-989) and programs developed in the Harvard Microchemistry Facility (Chittum, et al., Biochemistry 1998, 37:10866-70).
- Kinase activity assay and immunoaffinity purification. The multiprotein complexes isolated above were incubated with 10 μCi γ32P-ATP in Buffer A supplemented with 25 mM MgCl2 (final concentration of ATP, 50 μM). Reactions were stopped after 30 minutes (37° C.) by the addition of EDTA to 50 mM. Samples were resolved by SDS-PAGE and visualized by autoradiography (exposure times of 12 and 48 hours are shown). Bands migrating at 190, 125, and 65 kDa that are phosphorylated were observed. The apparent masses of these bands correspond to those previously observed to be phosphorylated in vitro in samples immunoaffinity purified from neurons using a CRMP-2 antibody (Kamata, et al., Molecular Brain Research 1998, 54:219-36).
- A polyacryamide gel was co-polymerized with histone H1, and PP172 antibody affinity-purified protein complexes were resolved and renatured by SDS-PAGE through this gel. Next, an in situ assay for histone H1 kinase activity was performed as described (Carter, in Current Protocols in Molecular Biology, F. M. Ausubel, et al., Eds., John Wiley and sons, New York, 1998, pp. 18.7.1-18.7.22). The gel was then dried and phosphorylated histone H1 was detected by autoradiography.
- Western blot analysis of PP172 antibody immunoaffinity-purified protein complexes was performed. The multiprotein complex immunoaffinity-purified by PP172 antibody was resolved by SDS-PAGE, transferred to a nitrocellulose membrane, and analyzed by Western blot with antibodies against Plexin A1 (A1) and Plexin A2 (A2), purchased from Santa Cruz Biotechnology.
- Detection of CRMP-2 and Sema3A. Protein complexes were immunoaffinity purified with PP172 antibody as described above from hippocampal samples derived from patients with no evidence of disease or from patients with overt AD. Complexes were resolved by SDS-PAGE and silver stained. Bands visualized in Coomassie blue stained gels were identified by mass spectroscopy as CRMP-2.
- The samples described above also were analyzed by Western blot with an antibody to Sema3A (Santa Cruz; antibody H300). In addition, total homogenates of normal aged human hippocampus and thalamus were evaluated for the presence of Sema3A using the H300 antibody.
- A rabbit polyclonal antibody was generated against a synthetic phosphorylated peptide containing the sequence surrounding a proline directed kinase site on cyclin-dependent kinase 4 (peptide 172 [P172]; phosphorylated peptide 172 [PP172]; Matsuoka, et al., Molecular and Cellular Biology 1994, 14:7265-75). The antibody was affinity-purified and depleted so that it bound exclusively the phosphorylated form of the peptide. To determine the identity of the neuronal antigen recognized by PP172 antibody, hippocampal samples from patients with advanced AD were obtained at autopsy, homogenized, and immunoaffinity purified. Bound antigens were eluted from the columns using the phosphopeptide antigen (PP172).
- A multi-protein complex was eluted from the immunoaffinity columns by competition with PP172 peptide, was resolved by SDS-PAGE, and stained with Coomassie Blue. Several of the protein components of this complex that were detected by Coomassie Blue stain were extracted from the gels and identified by peptide digestion and nuclear magnetic resonance (NMR) analysis (Table 1).
TABLE 1 Mass Spectroscopic Identification of Components in a Multiprotein Complex Immunoaffinity Purified from Hippocampus of Patients with AD Migration Rate (kDa): Peptides: 125 MAP1B (p. f.) 62 MAP1B (p. f.) 60 CRMP-2 59 CRMP-2 56 CRMP-2(p. f.) 54 CRMP-2 (p. f.) 50 CRMP-2 (p. f.) 49 CRMP-2 (p. f.); α-tubulin;.β-tubulin; Vacuolar H+-ATPase 42 Actin; α-centractin; GFAP; Tau protein; Synapsin IIa; Synapsin IIb; CRMP-2 (p. f.)
Abbreviations:
MAP1B, microtubule-associated protein 1B;
CRMP-2, collapsin response mediator protein-2;
GFAP, glial fibrillary acidic protein; and
p. f., proteolytic fragment (smaller than full length protein).
- As shown in Table 1, in addition to an abundance of CRMP-2, several other polypeptides were detected in the complex. To determine which component(s) were bound by PP172 antibody, Western blot analysis was performed on the eluted complex. The antibody bound several bands, two of which were identified by mass spectroscopy. The larger of these bands migrates at approximately 120 kDa, and was identified as a proteolytic fragment of MAP1B. In addition, another band that bound PP172 antibody and migrated slightly slower than the major CRMP-2 band (approximately 60 kDa) was also identified as a proteolytic fragment of MAP1B. Careful alignment of the PP172 antibody Western blot with a Coomassie stained gel ran in parallel revealed that the antibody bound the slower migrating MAP1B fragment but did not bind the major CRMP-2 band. Together, these data indicate that PP172 binds the MAP1B component of the complex. Incubation of antibody with phosphopeptide or digestion of the proteins on the nitrocellulose membrane with bacterial alkaline phosphatase prior to Western blot analysis virtually eliminated antibody binding, suggesting that the MAP1B epitope(s) bound by PP172 antibody are phosphorylated.
- The other immunoaffinity purified proteins detected by Coomassie stain did not bind PP172 antibody in Western blot analysis, and therefore must be directly or indirectly associated with MAP1B through a multiprotein complex. CRMP-2 is abundant in this complex, although whether it is bound to phosphorylated MAP1B or another protein component is not clear from these studies. Members of the CRMP family have been shown to form homotypic and heterotypic tetramers (Wang, et al., J. Neurosci. 1996, 16:6197-207); hence, the abundance of CRMP-2 in the immunoaffinity purified protein complex may be disproportionate to its binding partner(s). In addition, evidence has been reported that CRMP-2 may interaction with tubulin and/or microtubules (Gu and Ihara, J. Biol. Chem. 2000, 275:17917-20). Immunoaffinity purified CRMP-2 from PC12 cells has been shown to be associated with a kinase activity that phosphorylates coprecipitating 190 kDa, 125 kDa (a proteolytic fragment of the 190 kDa protein), 65 kDa (phosphorylated CRMP-2), and 35 kDa proteins (Kamata et al., Molecular Brain Research 1998, 54:219-36). Similarly, incubation of the PP172 antibody immunoaffinity purified complex with γ32P-ATP and MgCl2 resulted in phosphorylation of 190 kDa, 125 kDa, and 65 kDa bands. In PC12 cells, phosphorylation of these proteins is enhanced two to three-fold by treatment of the cells with nerve growth factor (NGF; Kamata, et al., Molecular Brain Research 1998, 54:219-36), suggesting a role in signal transduction. In order to determine the positions of associated kinases, PP172 antibody immunoaffinity complexes were resolved by SDS-PAGE and analyzed in situ for kinase activity using histone H1 as a substrate. The migration positions of two potential kinase activities were identified at 40-44 kDa and 110-120 kDa.
- Members of the CRMP family, such as CRMP-2, have been shown to be involved in transduction of signals from Sema3A (Goshima, et al., Nature 1995, 376:509-14; Nakamura, et al., Neuron 1998, 21:1093-100). Since this protein is a major component of the PP172 antibody affinity purified protein complex, Western blot analyses were performed to determine whether the transmembrane Sema3A receptor components also present. The receptor for Sema3A consists of at least two associated transmembrane proteins: Neuropilin-1 and Plexin A1/A2 (Takahashi et al., Cell 1999, 99:59-69; Yu and Kolodkin, Neuron 1979, 22:11-4; Rohm, et al., Mechanisms of Development 2000, 93:95-104). Since the transmembrane domain of Neuropilin-1 is not required for association with Plexin A1/A2 and the generation of an active complex, signal transduction from the complex is thought to be mediated by the Plexin(s), which have a tyrosine kinase activity associated with their cytoplasmic domain (Tamagnone and Comoglio, Trends Cell. Biol. 2000, 10:377-83). Although other semaphorins can use plexins alone as their receptors, Sema3A requires Plexin A1/A2 and Neuropilin-1 to signal growth cone collapse (Takahashi et al., Cell 1999, 99:59-69; Yu and Kolodkin, Neuron 1999, 22:11-4; Rohm, et al., Mechanisms of Development 2000, 93:95-104). Western blot analysis detected both Plexin A1 and A2 in the PP172 antibody immunoaffinity purified transduction complex from patients with advanced AD.
- Surprisingly, intact Neuropilin-1 was not detected in the PP172 immunoprecipitated complexes by Western blot using two commercially available antibodies (Santa Cruz Biotechnology) and a polyclonal anti-serum. There are several possible explanations for this: 1) The antibodies are not high affinity or do not have high specificity for Neuropilin-1; 2) Neuropilin-1 is part of the receptor complex on the cell surface, but after internalization is cycled out of the complex independently of the Plexins; 3) An unidentified functional homolog of Neuropilin-1 is expressed in the brains of AD patients; or 4) During affinity purification of the complex, the epitope(s) are removed from Neuropilin-1 by proteolysis. In support of the latter possibility, experiments from other laboratories have shown that the activity of the Neuropilin-1/Plexin A1 receptor complex is maintained using a deletion mutant lacking the Neuropilin-1 transmembrane domain (Nakamura, et al., Neuron 1998, 21:1093-100). In addition, the inventors have detected in some Western blots a 55 kDa band that binds Neuropilin-1 antibody, and it is possible that this represents a proteolytic fragment that is functionally sufficient to mediate Sema3A binding in the PP172 antibody immunoaffinity purified complexes. Consistent with this interpretation, preliminary immunohistochemical studies have detected Neuropilin-1 staining in the hippocampus of disease-free and AD patients.
- Further experiments were performed to compare the protein components of immunoaffinity purified complexes from AD brains with those purified from age-matched brains without disease. Hippocampal samples collected at autopsy were homogenized, and immunoaffinity purified with PP172 antibody. Equivalent quantities of total immunoprecipitated protein from AD brains and brains without disease were analyzed by SDS-PAGE and silver stain. The most prominent difference between the silver stain profiles was in the intensity of the bands identified by mass spectrometry as CRMP-2 and proteolytic fragments of CRMP-2.
- Western blot analysis of the antibody P172 immunoaffinity purified complexes revealed a strong signal for Sema3A in the samples isolated from AD patients. The protein recognized by the Santa Cruz H300 antibody was identified as human Sema3A. Western blots of total homogenates of normal aged human hippocampus and thalamus reveal bands consistent with that reported in the literature (data not shown). The band at 90 kDa in hippocampus (H) represents the active, secreted form of the human Sema3a protein as reported in the literature. The bands at 120 kDa in both hippocampus and thalamus represent the uncleaved, inactive, membrane associated protein and the higher molecular weight proteins at 160 kDa represent posttranslational processing forms of the protein. In addition, the H300 antibody also recognizes purified, recombinantly expressed Sema3A (data not shown). The antibody detected Sema3A migrating at approximately 90 kDa, the molecular mass of the active form of the secreted protein (Adams, et al., EMBO J. 1997, 16:6077-86). Together, these data indicate that the complexes from AD patients contain the active form of the Sema3A ligand and have recruited CRMP-2, features of a functional signaling complex.
- Isolation and preparation of samples. AD and age matched control cases were derived from the Mount Sinai Alzheimer's Disease Research Center (ADRC) Brain Bank. All cases have been characterized for cognitive status by a clinical dementia rating (CDR) at a maximum time interval of one year prior to death. The clinical testing results in a clinical dementia rating score for each individual. This score ranges from CDR0: cognitively normal; CDR0.5 questionable; CDR1, mild; CDR2, moderate; CDR3, severe; CDR4, profound; CDR5, terminal. Ten CDR0 cases: mean age at death 77.9±10.7 yr (s.d.), post mortem interval (pmi): 289.4±103.4 min; 5 CDR0.5 cases, mean age 80.6±10.1 yr, pmi 869.4±1310 min (1 case pmi 3485 min); 19 CDR 1-3 cases, mean age 87.9±8.84 yr, pmi 421.8±406.2 min; 15 CDR 5 cases, mean age 83±11.8 yr, pmi 336.9±178.7 min.
- The brains of individuals participating in the ADRC are removed at minimal post-mortem intervals and hemisected in the mid-sagittal plane, one half is fixed in 4% paraformaldehyde and on half is sub-dissected into brain regions, snap frozen and stored at −70° C. Post mortem intervals range from a minimum of 180 minutes to 24 hours. Cases are received in the Mount Sinai Neuropathology Research Laboratory after a whole-brain fixation interval of two to three weeks. Hippocampal blocks are dissected from the temporal lobe, washed, equilibrated in 30% sucrose and sectioned at 50 μM.
- Immunocytochemistry. Immunocytochemistry is performed on floating sections using an antibody that recognizes a phosphorylated form of microtubule associated protein, PP172 at 1:40,000 dilution prepared under contract by New England Biolabs, an antibody raised against a peptide specific to human Sema3A (epitope corresponding to amino acids 103-402 mapping to the conserved extracellular semaphorin domain of SEMA 3A of human origin) commercially available from Santa Cruz Biotechnology at 1:500, and an antibody that recognizes abnormally phosphorylated MAP tau that occurs in AD at 1:5,000. Between the primary labels, excess biotin was blocked with Vector Avidin-Biotin blocking kit (Vector, Burlingame Calif.) and unreacted peroxidase was removed by treatment with 1% hydrogen peroxide. Biotinylated secondary antibodies (Vector) of the appropriate species were followed by Vector elite avidin biotin peroxidase. Peroxidase substrate chromophores used were diaminobenzidine (DAB) and Vector SG.
- Frozen tissues are transported on dry ice and stored at −70° C. until processed. From the frozen hippocampal block the hippocampal formation consisting of dentate gyrus, hippocampus proper and subiculum are dissected while remaining frozen and processed for biochemical studies.
- In cognitively normal individuals, PP172 immunolabeling of a phosphorylated MAP1B epitope was seen rarely, as described above. Where immunolabeling was evident, it occurred within neurons at the CA3/CA1 border, as single or multiple discrete perikaryal puncta, as well as appearing in isolated neurons in CA1 and subiculum. In these cases immunolabeling was never seen in the dentate gyrus (DG) or CA3.
- With increasing severity of clinical dementia rating (CDR) score the numbers of neurons demonstrating immunoreactivity increased dramatically. In addition the numbers and size of granules increased and the granules took on a vesicular morphology rather than that of discrete puncta. In the most severely affected cases, in addition to the large vesicular structures, immunoreactivity was found spread across the neuropil of the pyramidal neuron layer of CA1, no longer confined only to identifiable neuronal profiles. In these severe of AD cases, PP172 labeling of CA3 and DG was seen in just a small number of neurons.
- To determine if the presence of the PP172 immunoreactivity was a generalized phenomenon or was confined to the hippocampal formation, sections of parahippocampal gyrus, superior temporal gyrus and primary visual cortex of CDR5 cases were immunolabeled with the PP172 antibody. In each of these three areas, labeling similar to that seen in CA1 and subiculum was seen. In STG such labeling could be seen in both deep and superficial layers while in V1 the labeling was primarily confined to infragranular layers.
- To examine the relationship between the upregulation of PP172 and neurofibrillary tangles, sections were double labeled with PP172 and AD2 (Buee-Scherrer, et al., Brain Res. Mol. Brain Res. 1996, 39(1-2):79-88) an antibody that recognizes abnormally phosphorylated, paired helical filament associated tau (PHF-tau). In a large number of neuronal profiles colocalization of PP172 with AD2 was seen. In some neurons the direct apposition of PP172 and AD2 immunoreactivity was seen.
- The demonstration of an association between PP172 and CRMP-2 discussed in Example 1 implied that human Sema 3A (hSema 3A) could be associated with the immunoprecipitated complex as well. Immunolabeling of AD cases and age matched cognitively normal cases with an antibody generated against a peptide fragment specific to hSEMA 3A (Santa Cruz Biotechnology) demonstrated the presence in CDR0 cases of hSEMA 3A in CA3 at the CA3/CA1 border, confined to a relatively small population of pyramidal neurons, and displaying a faint to moderate density of immunoreactivity (
FIGS. 1A to 1C). Some CDR0 cases demonstrated a more intense immunolabeling of the CA3 neurons but such labeling was confined to CA3 and ended abruptly at the CA1 border. - With progression of disease the immunolabeling became more intense, the numbers of labeled neurons increased and were found throughout CA1 and subiculum (
FIGS. 1D to 1F). In the most advanced cases of AD (FIGS. 1G to 1I) the hSEMA 3A immunolabeling took on a vesicular appearance both within CA1 neurons as well as in the neuropil surrounding the remaining CA1 neurons. - To establish the relationship between the presence of semaphorin immunoreactivity and neurofibrillary degeneration, double labeling studies combining anti-hSEMA 3A and AD2 immunolabeling were performed. Many neurons within CA1 and subiculum were double labeled with others showing immunoreactivity for only one or the other of the markers.
- To determine the relationship between the presence of semaphorin immunoreactivity and that of PP172, double labeling studies combining the anti-hSEMA 3A antibody and PP172 were performed. In these cases both markers were present in many neurons. In 5 μM paraffin sections the hSEMA 3A immunoreactivity was present filling a portion of the perinuclear soma while granules of PP172 immunoreactivity were present within the pool of hSEMA 3 immunoreactivity.
- It was also demonstrated that the hSema3A protein can assume two distinct morphological distributions associated with the neuronal populations of either the hippocampus or thalamus: a “dendritic” form (
FIG. 2A ) in which the Sema3A immunoreactivity coats the surfaces of the dendrites of the hippocampus and is not seen in a perikaryal distribution, and an internalized form (FIG. 2B ) in which there is dense granular perinuclear immunoreactivity in the absence of dendritic labeling. Since the dendritic labeling is identified in the thalamus in a dendritic distribution in the lateral dorsal nucleus (FIG. 2C ), but not in a perikaryal distribution in either this small thalamic nucleus or in the ventral nuclear group (FIG. 2E ), and the molecular weight seen in the thalamus is exclusively the size known to be the unprocessed pro-protein (120 kDa), it appears that the active, 95 kDa form is that which is seen internalized in the hippocampus and the 120 kDa pro-protein form is the dendritic form, the only form identified in the thalamus. - The data presented here provide powerful evidence that the accumulation of hSEMA 3A, CRMP-2 and phospho-MAP1B in an activated signal transduction complex is a central event leading to neurodegeneration in AD.
- In AD, phospho-MAP1B and hSEMA 3A appear as colocalized markers in an intimate intraneuronal relationship in CA1 and subiculum; the two hippocampal fields most highly vulnerable to AD related neurodegeneration. Phospho-MAP1B and hSEMA 3A appear together at the earliest stages of AD in CA1 at the CA3 border, and progress to a presence within large numbers of neurons throughout CA1 and subiculum. In addition to these two components, CRMP-2 and an unknown kinase activity capable of phosphorylating histone H1 are also present, forming an activated signal transduction complex.
- The appearance of hSEMA 3A and phospho-MAP1B in neurons both without and with neurofibrillary tangles implies that the formation of the signal transduction complex is a primary and transient phenomenon. Abnormally phosphorylated tau, a major component of NFTs is present within neurons at early stages of the neurodegenerative process (Buee-Scherrer, et al., Brain Res. Mol. Brain Res. 1991, 39(1-2):79-88) and persists well past the demise of the neuron, forming extracellular or ghost tangles. The presence of phospho-MAP1B and hSEMA 3A in neurons without NFTs implies that the complex forms before the appearance of NFTs. The colocalization of elements of the complex in direct apposition to PHF-tau provides evidence that the kinase component of the complex phosphorylates tau, generating PHF-tau that persists past the loss of morphological evidence of PP172 and hSEMA 3A.
- The appearance of both phospho-MAP1B and hSEMA 3A as immunoreactivity spread across the pyramidal cell layer of CA1 and not specifically localized to neuronal profiles implies that the complex may be released from neurons, possibly to be taken up by neighboring neuronal processes whereupon they may be capable of initiating the neurodegenerative process in a second order of neurons. Such a scheme makes it possible to explain the well-described spread of neurodegeneration among the association cortices with direct connectivity to the hippocampal formation (Braak, et al., Eur. Neurol. 1993, 33(6):403-8).
- In addition, identified herein is a second morphological distribution of Sema3A, associated with the cell membranes of the dendritic arbor of neurons in the human hippocampus. This distribution is termed the “dendritic” form as contrasted with the “somatic” or perikaryal distribution initially identified. The dendritic distribution has also been identified in the human thalamus, in the absence of the intense perikaryal somatic accumulation seen in the AD hippocampus. The dendritic distribution identified in the thalamus is associated only with the 125 kDa immunoreactive Sema3A bands on Western blot of thalamus, where the active, 95 kDa form is absent, leading to the conclusion that the dendritic form is the 125 kDa membrane associated pro-protein form of Sema3A identified by Adams et al., EMBO J 1997 16(20): 6077-86. In the hippocampus, both the 95 and 125 kDa forms are present, implying that the somatic form is the 95 kDa active form used by investigators described above to induce apoptosis in neuronal culture.
- Analytical approach. Melanized neurons and single and double-labeled neurons are counted and expressed as total numbers, and percentages of melanized neurons for each case. tissue sections for Sema3A and Map1B, Sema3A and p38, and Sema3A and -synuclein will be double-labeled. The hypothesis is that Sema3A signaling is the event that initiates the neurodegenerative cascade, therefore, the most informative procedure is to co-localize Sema3A with the putative downstream effectors to determine the relative expression of phospho-MAP1B, phospho-p38 and α-synuclein in association with Sema3A. Although the proposed sample size is relatively small it is anticipated that as disease progresses, as quantified by increasing neuronal loss, there will be a greater recruitment of the downstream markers, phospho-MAP1B and phospho-p38 and α-synuclein positive inclusions. Linear regressions correlating melanized neuron number and expression of pathological markers will be calculated.
- Isolation and preparation of samples. Tissues were derived from patients at the Mt. Sinai Alzheimer's Disease Research Center and Jewish Home Project, who have been extensively characterized both clinically and pathologically. Although this facility is dedicated to the investigation of AD, specimens of cortex, substantia nigra and other subcortical regions of PD, Incidental Lewy Body Disease and PD/AD disease overlap cases are available. All donated specimens in this repository are brain-banked; one hemisphere is dissected and frozen and one is fixed in paraformaldehyde. The midbrain and hippocampus were routinely processed from all cases received in the laboratory for stereological analysis. The midbrain and hippocampus were carefully dissected from the fixed hemisphere as separate blocks encompassing the entire structures. The midbrain was dissected with a transverse cut, rostrally at the level of the mammilary bodies and caudally at the upper pons ensuring the entire structure is available for study. Brainstems were further blocked into 3.2 mm slabs and alternate slabs were cryoprotected and serial sectioned at 100 μM. The resulting 32 sections were stored in storage solution (a mixture of glycerol and ethylene glycol in phosphate buffered saline) and held at −20° C.
- For immunoprecipitation, midbrain substantia nigra specimens are obtained from brains of patients with pathological diagnosis of PD, including Lewy body formation and incontinent melanin, and from age matched control cases, and transported frozen to the laboratory.
- Immunocytochemistry. The following antibodies are used: Sema3A, Neuropilin-1, Plexin A1 and A2 (Santa Cruz Biotechnology, Santa Cruz, Calif.), phospho-p38 (Cell Signaling Technology, Beverly, Mass.), MAP1B (antibody MPM2, Upstate Biotechnology, Lake Placid, N.Y.) (in addition to PP172) and α-synuclein (Chemicon, Temecula, Calif.). CRMP-2 antibodies are not commercially available and immunoassays for CRMP-2 levels will require generation of antibodies detecting CRMP-2. A hemagglutinin-tagged fusion protein has been generated from a CRMP-2 clone (Wang et al., J Neurosci 1996; 16(19): 6197-207). This protein will be used for production of rabbit polyclonal antibodies.
- Sections of substantia nigra were incubated overnight with primary anti-Sema 3A antibody H300 (Santa Cruz) at a 1:500 dilution or with primary antibody PP172 at a 1:40,000 dilution as described above, followed by incubation with a biotinylated secondary antibody raised against the immunoglobulins of the species in which the primary antibody was raised, e.g., anti-Sema H300 was raised in rabbit, the secondary antibody is a biotinylated anti-rabbit IgG raised in goat. Visualization occurred by blue-gray SG chromophore, no counterstain.
- For staining for Neuorpilin-1, Plexin A1 and A2, MAP1B, CCR2, phospho-p38 and -synuclein, floating sections were incubated in the primary antibody overnight at room temperature, followed by incubation with a biotinylated secondary antibody of the appropriate species, followed by treatment with substrates avidin-biotin peroxidase and chromophore. A number of chromophores easily distinguishable from neuromelanin are available such as Vector SG (blue-gray shown herein), VIP (purple), etc. Double labeling of tissues for Sema 3A and Map1B, Sema 3A and -synuclein, and Sema 3A and p38, will be performed sequentially with the first primary incubated overnight and developed through chromophore treatment the following day. After development, unreacted peroxidase is exhausted by 3% peroxide in methanol and unbound biotin is blocked with Vector avidin-biotin blocking kit. The second antibody will then be processed in the same manner. If two primary antibodies raised in the same species are used, an additional blocking step with normal serum, binding any remaining antibody will be used. To ensure specificity, controls reversing the order of the primaries and omitting the second primary with an alternative secondary antibody/alkaline phosphatase/substrate system will be used. This control should be negative for immunolabeling.
- Stereology. Stereology is performed using an Olympus Bx61 microscope equipped with MicroBrightField Stereo Investigator. Specifically, the fractionator and optical dissector techniques integral to this software will be applied. Objects of interest in each disector are counted according to the criteria of inclusion or exclusion of the dissector. From the consideration of the fraction of the total volume of the substantia nigra sampled the total number of neurons positive for a marker or combination of markers is calculated (West et al., Anat Record 1991; 231:482-497).
- Immunoprecipitation and Western blotting. Midbrain substantia nigra specimen samples are pulverized over liquid nitrogen and dissolved in buffer A (50 mM HEPES, pH 7.4, 50 mM NaCl; 10 mM EDTA; 0.5% Triton X-100) supplemented with 100 μg/ml leupeptin, 10 μg/ml bacitracin, 100 μg/ml aprotinin, 100 μg/ml bis-benzamide, 1 mM Na3VO4, and 10 mM a-glycerophosphate. Dissolved tissue is extracted by gentle shaking for 1 hour (4□ C), and then clarified by centrifugation (30,000×g). Centrifuge step is repeated and the supernatant is recovered.
- The midbrain lysate is pre-incubated with protein A agarose beads (lacking anti-body) to pre-absorb non-specific binding proteins. After removal of the beads, the lysate is incubated overnight with protein A-agarose beads coupled to PP172 antibody at 4□ C. with gentle mixing. The next day, the beads are collected and washed with several volumes of buffer A. Proteins are eluted from the beads with 1 mg/ml PP172 peptide. Eluted proteins are resolved by SDS-PAGE, and either stained with Coomassie blue or process for Western blotting using antibodies specific for Semaphorin, CRMP-2, Neuropilin-1, PlexinA1 and A2, and p38. Midbrain homogenates that are not pre-immunoprecipated with the PP172 antibody will also be analyzed by Western blotting for the above-mentioned proteins. If necessary, protein microsequence analysis will be performed by the Harvard Microchemistry Facility.
- Rat Brain Injections. Animals are briefly restrained for anesthesia, and anesthesia is induced by i.p. injection of chloral hydrate (400 mg/kg). Animals are placed in a Kopf stereotaxic surgery apparatus. A 1-2 mm craniotomy is made with a surgical burr at a point above the left substantia nigra (+2.9 mm A-P, +2.1 mm L from intra-aural 0, −7.5 mm from dura). A 26G Hamilton syringe needle is then introduced into the left substantia nigra and 50 or 500 ng in 500 nL of selected protein(s) is introduced into the substantia nigra. The needle will remain in place for five minutes to allow the pressure to equilibrate. The needle is then withdrawn, the craniotomy closed with bone wax and the skin sutured with nylon. Topical analgesic is administered and the animals allowed to recover. Animals will survive for one week and are sacrificed by overdose of carbon dioxide and decapitated. The brain is rapidly removed and fixed in 4% paraformaldehyde for further analysis. Three different agents, will be evaluated, semaphorin alone, semaphorin combined with CRMP-2 at a 1:1 weight ratio and CRMP-2 alone with endpoints of one week. Midbrain sections will be immunolabeled for tyrosine hydroxylase for dopaminergic neurons and studied by stereological assay of numbers of surviving neurons.
- Initially supporting the hypothesis that upregulation of Semaphorin and CRMP-2 are coincident with the induction of apoptosis of neurons, these results demonstrate a striking accumulation of Sema3A in substantia nigra pars compacta (SNc) melanized neurons, compared with an absence of Sema3A in age-matched controls (
FIG. 3 ).FIG. 3A demonstrates immunolabeling of a PD case in which both the soma and dendrites of melanized neurons are immunolabeled (i.e., somatic and dendritic staining).FIG. 3B shows the absence of labeling in the control sample. - In addition, punctate inclusions immunolabeled by PP172 were identified in the degenerating SNc of PD, similar to results observed in AD (
FIG. 4 ) PP172 also recognized ovoid structures with the unambiguous morphology of Lewy bodies (FIG. 4B ). Such inclusions are not seen in age-matched controls (FIG. 4A ). - Further, the activated p38 kinase was seen as punctate inclusions within SNc neurons while absent from age-matched controls (
FIG. 5 ), confirming the observations of Ferrer et al. (Ferrer et al., J Neural Transm 2001; 108:1383-96). These data corroborate the demonstration of a link among dopamine induced oxidative stress, Sema3A and CRMP-2 upregulation, and p38 and caspase activation shown by Junn and Mouradian, who showed the activation of p38 and apoptotic signaling following a dopamine challenge of SH-SY5Y neuroblastoma cells (Junn and Mouradian, J Neurochem 2001; 78:374-83). - For further investigation, the intracellular effectors of the semaphorin pathway will be examined for complex assembly with Sema3A and upregulation, similar to that demonstrated above for AD. Currently archived for examination are samples from six cases with pathological diagnosis of PD, two cases of PD/diffuse Lewy body disease, and two AD/PD overlap cases. Frozen substantia nigra from the midbrain of five PD cases and five controls will be separately assayed by Western blot and pooled for immunoprecipitation and further analysis.
- Although the sample size is small, it is anticipated that as the disease progresses, correlating with increased neuronal loss, there will be a greater recruitment of the downstream markers phospho-MAP1B and phospho-p38 and α-synuclein positive inclusions. It is also anticipated that an increase in the colocalization of Sema3A with downstream effectors will correlate with the progression of the disease. Control cases may give indications of these paramaters in the earliest stages of PD as well. These studies will test the hypothesis that the upregulation of Sema3A precedes the expression of MAP1B, p38 and -synuclein positive inclusions and neuronal loss.
- To test the hypothesis that Sema 3A can directly cause substantia nigra neurodegeneration, Sema 3A, Sema 3A in combination with CRMP-2 at a 1:1 weight ratio, or CRMP-2 alone will be injected into the brains of anesthetized rats. After one week, the rats will be sacrificed and their brains examined for neurodegeneration.
- The accumulation of Sema3A, phosphorylated MAP1B, and p38 inclusions specific to neurons in patients with PD, will strongly suggest that a common intracellular apoptotic pathway is activated in response to a common insult in PD and AD. It is hypothesized that the insult that initiates this cascade is the conversion of the pro-protein 125 kDa form of Sema3A to the active form, its retrograde transport to the cell body and its activation of a signal transduction pathway comprising, at a minimum, Plexins, CRMP-2 and MAP1B. In the hippocampus, the neurons expressing the greatest level of the dendritic form of Sema3A were those located in the subiculum. This area in known to be the major target of hippocampal subfield CA1, and therefore an area from which retrograde transport of Sema3A would readily take place. In PD the relationship of target neurons to those pathologically affected is less clear. It is hypothesized that either the striatum, the preferential target of the substantia nigra compacta neurons, or the substantia nigra reticulata, an adjacent region with extensive interconnections, is the region expressing the pro-protein 125 kDa form of Sema3A. Events upstream of the activation of the Sema3A pathway are less certain. Since Sema is an axon guidance molecule, it is likely that the initiation of this pathway involves synaptic disruption with the ensuing necessity of axons to reestablish synaptic contact to function normally. Such synaptic disruption is known to be one of the earliest changes seen in AD.
- The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
- It is further to be understood that all values are approximate, and are provided for description.
- Patents, patent applications, publications, product descriptions, and protocols are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties for all purposes.
Claims (45)
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. A method for identifying a substance useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease, which method comprises determining the effect of the substance on an activity of a class 3 Semaphorin, wherein an inhibitory effect is indicative of a substance useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease.
20. The method according to claim 19 , wherein the member of the class 3 Semaphorin is Semaphorin 3A.
21. The method according to claim 20 , wherein the Semaphorin 3A is human Semaphorin 3A.
22. The method according to claim 19 , wherein determining the effect of the substance on the activity of Semaphorin 3 comprises:
(a) contacting a test cell with the substance and Semaphorin 3 under conditions wherein addition of Semaphorin 3A alone induces apoptosis of the cell; and
(b) observing the effect of addition of the substance and Semaphorin 3 on the cell, in comparison with the effect of addition of Semaphorin 3 alone to a control cell, wherein inhibition of apoptosis of the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of Alzheimer' disease or Parkinson's disease.
23. The method according to claim 22 , wherein the cell used in step (a) is a neuronal cell.
24. The method according to claim 23 , wherein the neuronal cell is located within the hippocampus, substantia nigra, thalamus, or a neoplasm.
25. A method for identifying a substance useful in the prevention or treatment of Alzheimer's disease, which method comprises determining the effect of the substance on an activity of a class 3 Semaphorin, wherein an inhibitory effect is indicative of a substance useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease, and wherein determining the effect of the substance on the activity of the class 3 Semaphorin comprises:
(a) contacting a test neuronal cell with the substance and the class 3 Semaphorin under conditions wherein addition of the class 3 Semaphorin alone induces withdrawal, retraction or collapse of the nerve growth cone; and
(b) observing the effect of the addition of the substance and the class 3 Semaphorin on the test cell, in comparison with the effect of addition of the class 3 Semaphorin alone or to a control cell, wherein inhibition of withdrawal, retraction, or collapse of the nerve growth cone in the test cell compared to the control cell is indicative of a substance useful in the prevention or treatment of Alzheimer's disease.
26. The method according to claim 19 , wherein determining the effect of the substance on the activity of a class 3 Semaphorin comprises determining the effect of the substance on the binding or activation of a class 3 Semaphorin receptor by the class 3 Semaphorin, wherein an antagonist effect indicates that the substance is useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease.
27. The method according to claim 19 , wherein the inhibitory effect of the substance is determined in vivo, by administering the substance to an animal that shows a level of the class 3 Semaphorin protein superior to that in a control animal.
28. The method according to claim 19 , wherein the animal is a transgenic animal that overexpresses the class 3 Semaphorin.
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. The method according to claim 25 , wherein the member of the class 3 Semaphorin is Semaphorin 3A.
36. The method according to claim 35 , wherein the Semaphorin 3A is human Semaphorin 3A.
37. The method according to claim 25 wherein determining the effect of the substance on the activity of a class 3 Semaphorin comprises determining the effect of the substance on the binding or activation of a class 3 Semaphorin receptor by the class 3 Semaphorin, wherein an antagonist effect indicates that the substance is useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease.
38. The method according to claim 25 , wherein the inhibitory effect of the substance is determined in vivo, by administering the substance to an animal that shows a level of the class 3 Semaphorin protein superior to that in a control animal.
39. The method according to claim 25 , wherein the animal is a transgenic animal that overexpresses the class 3 Semaphorin.
40. A method for identifying a substance useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease, which method comprises determining the effect of the substance on an activity of a member of a class 3 Semaphorin signaling complex, wherein an inhibitory effect is indicative of a substance useful in the prevention or treatment of Alzheimer's disease or Parkinson's disease.
41. The method according to claim 40 , wherein the member of the class 3 Semaphorin signaling complex is Semaphorin 3A.
42. The method according to claim 25 , wherein the member of the class 3 Semaphorin signaling complex is selected from the group consisting of microtubule assembly (MAP 1 B), tau, collapsin response mediator protein 2 (CRMP 2), Neuropilin 1, Neuropilin 2, Plexin A1, and Plexin A2.
43. The method of claim 42 , wherein activity is regulated by phosphorylation.
44. The method of claim 42 , wherein the activity is kinase activity.
45. The method of claim 42 , wherein the activity is oligomerization.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/147,022 US20050266504A1 (en) | 2001-07-20 | 2005-08-10 | Methods for diagnosing and treating Alzheimers disease and Parkinson's disease |
US12/353,196 US7888066B2 (en) | 2001-07-20 | 2009-01-13 | Methods for identifying substances for the treatment of Alzheimer's disease |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30682701P | 2001-07-20 | 2001-07-20 | |
US10/200,001 US20030032070A1 (en) | 2001-07-20 | 2002-07-19 | Methods for diagnosing and treating alzheimer's disease and parkinson's disease |
US11/147,022 US20050266504A1 (en) | 2001-07-20 | 2005-08-10 | Methods for diagnosing and treating Alzheimers disease and Parkinson's disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/200,001 Division US20030032070A1 (en) | 2001-07-20 | 2002-07-19 | Methods for diagnosing and treating alzheimer's disease and parkinson's disease |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/353,196 Continuation US7888066B2 (en) | 2001-07-20 | 2009-01-13 | Methods for identifying substances for the treatment of Alzheimer's disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050266504A1 true US20050266504A1 (en) | 2005-12-01 |
Family
ID=23187033
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/200,001 Abandoned US20030032070A1 (en) | 2001-07-20 | 2002-07-19 | Methods for diagnosing and treating alzheimer's disease and parkinson's disease |
US11/147,022 Abandoned US20050266504A1 (en) | 2001-07-20 | 2005-08-10 | Methods for diagnosing and treating Alzheimers disease and Parkinson's disease |
US12/353,196 Expired - Fee Related US7888066B2 (en) | 2001-07-20 | 2009-01-13 | Methods for identifying substances for the treatment of Alzheimer's disease |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/200,001 Abandoned US20030032070A1 (en) | 2001-07-20 | 2002-07-19 | Methods for diagnosing and treating alzheimer's disease and parkinson's disease |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/353,196 Expired - Fee Related US7888066B2 (en) | 2001-07-20 | 2009-01-13 | Methods for identifying substances for the treatment of Alzheimer's disease |
Country Status (5)
Country | Link |
---|---|
US (3) | US20030032070A1 (en) |
EP (1) | EP1418834A4 (en) |
AU (1) | AU2002319615A1 (en) |
CA (1) | CA2493718A1 (en) |
WO (1) | WO2003007803A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100099609A1 (en) * | 2008-07-28 | 2010-04-22 | Buck Institute For Age Research | eAPP AND DERIVATIVES FOR TREATMENT OF ALZHEIMER'S DISEASE |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10041478A1 (en) * | 2000-08-24 | 2002-03-14 | Sanol Arznei Schwarz Gmbh | New pharmaceutical composition |
US7879621B2 (en) * | 2003-05-08 | 2011-02-01 | Phynexus, Inc. | Open channel solid phase extraction systems and methods |
DE10361258A1 (en) | 2003-12-24 | 2005-07-28 | Schwarz Pharma Ag | Use of substituted 2-aminotetralins for the preventive treatment of Parkinson's disease |
EP1711632A4 (en) * | 2004-01-19 | 2009-03-11 | Technion Res & Dev Foundation | Diagnostic test for parkinson's disease |
DE102004014841B4 (en) | 2004-03-24 | 2006-07-06 | Schwarz Pharma Ag | Use of rotigotine for the treatment and prevention of Parkinson-Plus syndrome |
GB0419124D0 (en) * | 2004-08-27 | 2004-09-29 | Proteome Sciences Plc | Methods and compositions relating to Alzheimer's disease |
FI20041340A0 (en) * | 2004-10-15 | 2004-10-15 | Jurilab Ltd Oy | Procedure and test package for detecting the risk of a sudden heart attack |
FR2876913A1 (en) * | 2004-10-22 | 2006-04-28 | Centre Nat Rech Scient | MODULATION OF SYNAPTIC TRANSMISSION BY SEMAPHORINS AND ITS APPLICATIONS |
WO2007140973A1 (en) * | 2006-06-06 | 2007-12-13 | F. Hoffmann-La Roche Ag | Cytoskeleton protein as biomarker for alzheimer’s disease |
WO2009151625A1 (en) * | 2008-06-13 | 2009-12-17 | Teva Pharmaceutical Industries, Ltd. | Rasagiline for parkinson's disease modification |
CA2785431A1 (en) * | 2009-07-16 | 2011-01-20 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Cleaved and phosphorylated crmp2 as blood marker of inflammatory diseases of the central nervous system |
WO2011066284A1 (en) * | 2009-11-25 | 2011-06-03 | The University Of North Carolina At Chapel Hill | Methods and compositions for the treatment of immune disorders |
ES2728854T3 (en) | 2013-02-06 | 2019-10-29 | Univ Yokohama City | Anti-semaforin 3A antibody and treatment of Alzheimer's disease and inflammatory immune diseases using the same |
US20150265559A1 (en) * | 2014-03-19 | 2015-09-24 | Kaohsiung Chang Gung Memorial Hospital of the C.G.M.F. | Benzoates for use in treating dementia |
KR101768446B1 (en) | 2014-03-21 | 2017-08-17 | 애니젠 주식회사 | Novel Exenatide Analogs and Uses thereof |
KR20240125991A (en) * | 2014-09-05 | 2024-08-20 | 알에스이엠, 리미티드 파트너쉽 | Compositions and methods for treating and preventing inflammation |
KR101854529B1 (en) * | 2015-10-27 | 2018-05-04 | (주) 팬젠 | Antibodies cross-reactive to Human and Mouse Sema3A and Uses thereof |
US10604572B2 (en) | 2015-10-27 | 2020-03-31 | Samsung Life Public Welfare Foundation | Antibody to human and mouse Sema3A and use thereof |
WO2017074013A1 (en) * | 2015-10-27 | 2017-05-04 | 사회복지법인 삼성생명공익재단 | Antibody to be cross-linked to human and mouse sema3a, and use thereof |
US10640777B2 (en) | 2015-10-27 | 2020-05-05 | Samsung Life Public Welfare Foundation | Antibody to human and mouse SEMA3A and use thereof |
US10604571B2 (en) | 2015-10-27 | 2020-03-31 | Samsung Life Public Welfare Foundation | Antibody to human and mouse SEMA3A and use thereof |
CN109925510A (en) * | 2019-04-11 | 2019-06-25 | 北京卓凯生物技术有限公司 | Application of the Rac1 activity inhibitor in the drug of preparation treatment Alzheimer disease |
CN113398244B (en) * | 2021-05-28 | 2023-07-07 | 南方医科大学 | A preparation for treating Parkinson's disease and its application |
KR102778076B1 (en) * | 2022-06-30 | 2025-03-12 | 광주과학기술원 | Method for Early Diagnosis and Staging of Alzheimer's Disease and Screening Cerebral Amyloid Deposition Using Phosphorylated Peptide Derived from Alzheimer's Disease Related Protein |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5416197A (en) * | 1993-10-15 | 1995-05-16 | Trustees Of The University Of Pennsylvania | Antibodies which bind human collapsin |
US5639856A (en) * | 1993-09-13 | 1997-06-17 | The Regents Of The University Of California | Semaphorin gene family |
US6054293A (en) * | 1997-07-08 | 2000-04-25 | The Regents Of The University Of California | Semaphorin receptors |
US20010049432A1 (en) * | 1999-12-06 | 2001-12-06 | Holloway James L. | Human semaphorin ZSMF-16 |
US6335170B1 (en) * | 1999-02-22 | 2002-01-01 | Torben F. Orntoft | Gene expression in bladder tumors |
US6428965B1 (en) * | 1997-07-17 | 2002-08-06 | The Johns Hopkins University | Screening assays for the interaction of semaphorins and neuropilins |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6030810A (en) * | 1997-02-26 | 2000-02-29 | Delgado; Stephen Gregory | Cloned tetrodotoxin-sensitive sodium channel α-subunit and a splice variant thereof |
WO2001018173A2 (en) * | 1999-09-10 | 2001-03-15 | The Trustees Of The University Of Pennsylvania | Dominant negative neuropilin-1 |
-
2002
- 2002-07-19 US US10/200,001 patent/US20030032070A1/en not_active Abandoned
- 2002-07-19 AU AU2002319615A patent/AU2002319615A1/en not_active Abandoned
- 2002-07-19 CA CA002493718A patent/CA2493718A1/en not_active Abandoned
- 2002-07-19 WO PCT/US2002/023142 patent/WO2003007803A2/en not_active Application Discontinuation
- 2002-07-19 EP EP02750216A patent/EP1418834A4/en not_active Withdrawn
-
2005
- 2005-08-10 US US11/147,022 patent/US20050266504A1/en not_active Abandoned
-
2009
- 2009-01-13 US US12/353,196 patent/US7888066B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5639856A (en) * | 1993-09-13 | 1997-06-17 | The Regents Of The University Of California | Semaphorin gene family |
US5416197A (en) * | 1993-10-15 | 1995-05-16 | Trustees Of The University Of Pennsylvania | Antibodies which bind human collapsin |
US6054293A (en) * | 1997-07-08 | 2000-04-25 | The Regents Of The University Of California | Semaphorin receptors |
US6428965B1 (en) * | 1997-07-17 | 2002-08-06 | The Johns Hopkins University | Screening assays for the interaction of semaphorins and neuropilins |
US6335170B1 (en) * | 1999-02-22 | 2002-01-01 | Torben F. Orntoft | Gene expression in bladder tumors |
US20010049432A1 (en) * | 1999-12-06 | 2001-12-06 | Holloway James L. | Human semaphorin ZSMF-16 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100099609A1 (en) * | 2008-07-28 | 2010-04-22 | Buck Institute For Age Research | eAPP AND DERIVATIVES FOR TREATMENT OF ALZHEIMER'S DISEASE |
Also Published As
Publication number | Publication date |
---|---|
AU2002319615A1 (en) | 2003-03-03 |
WO2003007803A3 (en) | 2003-12-04 |
US20090136990A1 (en) | 2009-05-28 |
US20030032070A1 (en) | 2003-02-13 |
CA2493718A1 (en) | 2003-01-30 |
EP1418834A2 (en) | 2004-05-19 |
US7888066B2 (en) | 2011-02-15 |
EP1418834A4 (en) | 2007-04-04 |
WO2003007803A2 (en) | 2003-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7888066B2 (en) | Methods for identifying substances for the treatment of Alzheimer's disease | |
DE69533623T2 (en) | METHOD FOR SUPPORTING DIAGNOSIS OF ALZHEIMER'S DISEASE BY MEASUREMENT OF AMYLOID BETA PEPTIDES (X MORE THAN OR OR 41) AND TAU | |
Card et al. | Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system | |
US11932908B2 (en) | Compositions and methods for diagnosis and treatment of epilepsy | |
US5270165A (en) | Method of diagnosis of amyloidoses | |
CA2118243C (en) | Methods and compositions for monitoring cellular processing of .beta.-amyloid precursor protein | |
EP0667959B1 (en) | Methods for identifying inhibitors of the production of beta-amyloid peptide | |
Horsburgh et al. | β‐Amyloid (Aβ) 42 (43), Aβ42, Aβ40 and apoE immunostaining of plaques in fatal head injury | |
US5536639A (en) | Methods for detecting calpain activation by detection of calpain activated spectrin breakdown products | |
Mukaetova-Ladinska et al. | Lewy Body Variant of Alzheimer′ s Disease: Selective Neocortical Loss of t‐SNARE Proteins and Loss of MAP2 and α‐Synuclein in Medial Temporal Lobe | |
Fujimoto et al. | Generation of dystrophin short product-specific tag-insertion mouse: distinct Dp71 glycoprotein complexes at inhibitory postsynapse and glia limitans | |
US7695903B2 (en) | Low-density lipoprotein receptor related protein-1 (LRP-1)in clearance of alzheimer's amyloid-beta peptide from the central nervous system | |
JP2004504366A (en) | HO-1 suppressor as diagnostic and prognostic test for dementia disease | |
US11360102B2 (en) | Biomarkers for the early detection of Parkinson's disease | |
US20220098289A1 (en) | Therapeutic target and monoclonal antibodies against it for the diagnosis and treatment of alzheimer's disease | |
JP2005522222A (en) | Diagnostic and therapeutic uses of ATP-binding cassette genes and proteins for neurodegenerative diseases | |
JP2005531305A (en) | Diagnostic and therapeutic uses of steroidogenic acute regulatory proteins for neurodegenerative diseases | |
Horsburgh et al. | B-Amyloid (AB) 42 (43), 42, AB40 and apoE immunostaining of plaques in fatal head injury. | |
AU2008200489B2 (en) | Methods and compositions for the detection of soluble beta-amyloid peptide | |
Pannaccione et al. | Doctorate School in Molecular Medicine Doctorate Program in Neuroscience Coordinator: Prof Lucio Annunziato XXVIII Cycle | |
US20060024305A1 (en) | Camp-regulated phosphoprotein for diagnostic and therapeutic use in neurodegenerative diseases | |
JP2007532610A (en) | Diagnostic and therapeutic uses of KCNC1 for neurodegenerative diseases | |
AU2004203875A1 (en) | Methods and compositions for the detection of soluble beta-amyloid peptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI;REEL/FRAME:039276/0235 Effective date: 20160503 |
|
AS | Assignment |
Owner name: NIH-DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI;REEL/FRAME:042990/0476 Effective date: 20170531 |