US20050263198A1 - Fluid coupling - Google Patents
Fluid coupling Download PDFInfo
- Publication number
- US20050263198A1 US20050263198A1 US11/141,384 US14138405A US2005263198A1 US 20050263198 A1 US20050263198 A1 US 20050263198A1 US 14138405 A US14138405 A US 14138405A US 2005263198 A1 US2005263198 A1 US 2005263198A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- fluid coupling
- pulsation
- bellows
- rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 161
- 230000008878 coupling Effects 0.000 title claims abstract description 86
- 238000010168 coupling process Methods 0.000 title claims abstract description 86
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 86
- 230000010349 pulsation Effects 0.000 claims abstract description 95
- 239000006096 absorbing agent Substances 0.000 claims abstract description 61
- 229920005989 resin Polymers 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 33
- 229920001971 elastomer Polymers 0.000 claims description 32
- 238000013016 damping Methods 0.000 claims description 14
- 239000000446 fuel Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920005992 thermoplastic resin Polymers 0.000 description 6
- 238000003466 welding Methods 0.000 description 5
- 229920000299 Nylon 12 Polymers 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 229920001021 polysulfide Polymers 0.000 description 3
- 239000005077 polysulfide Substances 0.000 description 3
- 150000008117 polysulfides Polymers 0.000 description 3
- 229930182556 Polyacetal Natural products 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M37/00—Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
- F02M37/0011—Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
- F02M37/0041—Means for damping pressure pulsations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/04—Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/04—Devices damping pulsations or vibrations in fluids
- F16L55/045—Devices damping pulsations or vibrations in fluids specially adapted to prevent or minimise the effects of water hammer
- F16L55/05—Buffers therefor
- F16L55/052—Pneumatic reservoirs
- F16L55/053—Pneumatic reservoirs the gas in the reservoir being separated from the fluid in the pipe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- the present invention generally relates to a fluid coupling, and more particularly, to a fluid coupling for use in a fuel supply system of a vehicle.
- Japanese Patent Application Publication No. H09(1997)-195885 discloses a fuel supply system of a fuel returnless type.
- a fluid coupling includes: a body formed with a fluid channel; and a pulsation absorber provided in the fluid channel, and arranged to deform in a same direction as fluid to flow in the fluid channel pulsates, and thereby to absorb pulsation of the fluid.
- FIG. 1 is a sectional view showing a fluid coupling according to an embodiment of the present invention.
- FIG. 2 is a sectional view showing a fluid coupling according to another embodiment of the present invention.
- FIG. 3 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- FIG. 4 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- FIG. 5 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- FIG. 6 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- FIG. 7 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- FIG. 8 is a sectional view showing a fluid coupling according to still another embodiment of the present invention.
- FIG. 9 is a sectional view showing a pulsation absorber applicable to the fluid coupling of FIG. 8 , according to still another embodiment of the present invention.
- FIG. 10 is a diagram showing a fuel supply system of a return type.
- FIG. 11 is a diagram showing a fuel supply system of a returnless (non-return) type.
- FIG. 10 is a diagram showing a fuel supply system of a return type.
- fuel is supplied from a fuel tank (not shown in FIG. 10 ) via an underfloor supply line 101 and a supply tube 102 to a delivery pipe 103 .
- the fuel is supplied from delivery pipe 103 to fuel injectors 104 of each cylinder.
- Delivery pipe 103 is equipped with a pressure regulator 105 .
- Pressure regulator 105 maintains constant pressure in delivery pipe 103 by returning surplus fuel via a return tube 106 and an underfloor return line 107 to the fuel tank.
- FIG. 11 is a diagram showing a fuel supply system of a returnless (non-return) type.
- fuel is supplied from a fuel tank (not shown in FIG. 11 ) via underfloor supply line 101 and supply tube 102 to delivery pipe 103 . Then, the fuel is supplied from delivery pipe 103 to fuel injectors 104 .
- Delivery pipe 103 is equipped with a pulsation damper 108 . Pulsation damper 108 damps pulsation, and noise of pulsation, of the fuel which originate from a discharging action of a fuel pump or a fuel injection action of fuel injectors 104 .
- fluid couplings or quick connectors 110 are each provided between supply line 101 and supply tube 102 , between supply tube 102 and delivery pipe 103 , between pressure regulator 105 and return tube 106 , and between return tube 106 and return line 107 .
- fluid couplings 110 are each provided between supply line 101 and supply tube 102 , and between supply tube 102 and delivery pipe 103 .
- each of fluid couplings 110 straight type or elbow type, is made of metal and/or resin, and includes one or two O rings in a joining portion.
- the fuel supply system of the returnless type requires an attaching portion, such as a flange, for joining pulsation damper 108 to delivery pipe 103 , and an arrangement for sealing the joining part.
- the fuel supply system of the returnless type may have a complex structure, and cannot easily be reduced in cost. Besides, such fuel supply system of the returnless type cannot easily be laid out in a small space in an engine room.
- FIG. 1 is a sectional view showing a fluid coupling A 1 according to an embodiment of the present invention.
- fluid couplings or quick connectors
- Each of fluid couplings (or quick connectors) of the following embodiments is applicable to joint between supply tube 102 (a resin tube T) and delivery pipe 103 (a metal pipe P) in the fuel supply system of the returnless type of FIG. 11 .
- the fluid couplings are not limited to the following embodiments in positioning and detailed structure, and may be applicable as modifications and variations of such embodiments.
- Fluid coupling A 1 of FIG. 1 is a straight type, and includes one or first joining portion J 1 , and the other or second joining portion J 2 provided integrally with first joining portion J 1 .
- First joining portion J 1 and second joining portion J 2 form a body of fluid coupling A 1 .
- First joining portion J 1 includes two O rings 1 and a back-up ring 2 .
- O rings 1 and back-up ring 2 are attached to an inside surface of first joining portion J 1 .
- Second joining portion J 2 includes a projecting portion 3 . Projecting portion 3 for retaining a tube is formed on an outer circumference of second joining portion J 2 .
- Metal pipe P delivery pipe
- resin tube T supply tube
- first joining portion J 1 and second joining portion J 2 are connected with first joining portion J 1 and second joining portion J 2 , respectively, in an assembled state.
- metal pipe P together with a spacer 4 is fit into first joining portion J 1
- resin tube T is fit over second joining portion J 2 .
- the body of fluid coupling A 1 is formed by material resistant to fuel.
- the body of fluid coupling A 1 is formed by material composed mainly of a resin selected from a group consisting of polyamide, polyolefin, polysulfide, fluorocarbon resin, polyester, polyacetal and polyketone.
- the body of fluid coupling A 1 is formed with a fluid channel 5 extending through the body of fluid coupling A 1 .
- Fluid coupling A 1 includes a support 6 , and a pulsation absorber provided in fluid channel 5 .
- the pulsation absorber of this embodiment is a bellows 7 .
- support 6 is fixed in fluid channel 5
- bellows 7 is supported by support 6 .
- Pulsation absorber or bellows 7 is arranged to deform in a same direction as fluid to flow in fluid channel 5 pulsates, and thereby absorb the pulsation of the fluid.
- a part or first part of fluid channel 5 at which bellows 7 is provided has a section smaller than a section of other part or second part of fluid channel 5 .
- Support 6 is formed by material of the same kind as the material forming the body of fluid coupling A 1 .
- support 6 is formed by material composed mainly of glass fiber reinforced polyamide 12 .
- Support 6 is formed with at least one opening to pass the fluid through the opening.
- Support 6 is fixed to the body of fluid coupling A 1 by rotary welding.
- Bellows 7 is formed by resin or rubber.
- bellows 7 is formed by polyamide 12 , and molded by blow molding. Bellows 7 is joined to support 6 air-tightly by welding, and is arranged to act as an air spring.
- bellows 7 may be formed by a thermoplastic resin, such as a polyamide-based thermoplastic resin, a polyolefin-based thermoplastic resin, a fluorocarbon-based thermoplastic resin, a polyester-based thermoplastic resin, or a polysulfide-based thermoplastic resin.
- Bellows 7 may also be formed by a thermoplastic elastomer, or a rubber, such as a fluorocarbon-based rubber, a nitrile-based rubber, or an acrylic-based rubber.
- pulsation absorber or bellows 7 is provided in fluid channel 5 , and is arranged to deform in the same direction as the pulsation of the fluid to flow in fluid channel 5 , and thereby absorb the pulsation of the fluid effectively.
- pulsation absorber or bellows 7 confronts a propagation direction of the pulsation of the fluid, in an assembled state in the fuel supply system or fluid delivery system.
- fluid coupling A 1 of this embodiment includes pulsation absorber or bellows 7 provided in fluid channel 5 .
- fluid coupling A 1 of this embodiment does not require an additional space for a pulsation absorber.
- pulsation absorber or bellows 7 is arranged to act as air spring. Therefore, fluid coupling A 1 has a simple structure having a small size and a small number of elements, and is capable of damping the pulsation of the fluid occurring in the fuel supply system.
- the fuel supply system of the returnless type of FIG. 11 can have a structure without pulsation damper 108 , and thus can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room.
- pulsation absorber or bellows 7 of fluid coupling A 1 of this embodiment is formed by resin or rubber.
- bellows 7 is light in weight and low in cost, and has a property of deforming efficiently to absorb the pulsation of the fluid effectively. Additionally, since resin or rubber exhibits an excellent formability, bellows 7 can be formed easily to have a desired spring constant.
- support 6 of fluid coupling A 1 of this embodiment is fixed to the body of fluid coupling A 1 by rotary welding, and bellows 7 is joined to support 6 by welding.
- these elements can be joined to one another easily and securely without using joining parts. Therefore, the structure of fluid coupling A 1 can be further simplified and reduced in weight.
- fluid coupling A 1 of this embodiment may be applicable between supply line 101 and supply tube 102 in the fuel supply system of the returnless type of FIG. 11 .
- supply line 101 may be connected with first joining portion J 1 , and bellows 7 can absorb pulsation of the fuel which originates from the discharging action of the fuel pump.
- fluid coupling A 1 of this embodiment is formed with fluid channel 5 , and the section of the part of fluid channel 5 at which bellows 7 is provided is smaller than the section of the other part of fluid channel 5 .
- the thus-narrowed part of fluid channel 5 acts as an orifice, and thereby is capable of reducing the propagation of the pulsation of the fuel.
- FIG. 2 is a sectional view showing a fluid coupling A 2 according to another embodiment of the present invention. Elements in FIG. 2 that are identical or equivalent to the elements shown in FIG. 1 are indicated by the same reference marks, and may not be described in detail in this part of description.
- Fluid coupling A 2 of FIG. 2 is an elbow type, and includes first joining portion J 1 , and second joining portion J 2 provided integrally with first joining portion J 1 .
- Second joining portion J 2 is arranged substantially orthogonal to first joining portion J 1 so that first joining portion J 1 and second joining portion J 2 form an elbow portion.
- Fluid coupling A 2 also includes an extension portion E extending from the elbow portion coaxially with first joining portion J 1 .
- Extension portion E has an open end opening in the coaxial direction or opposite direction from the elbow portion, and includes a support 11 , and a pulsation absorber arranged to absorb pulsation of fluid to flow in fluid channel 5 in an assembled state.
- Support 11 of this embodiment is a plate member formed by glass fiber reinforced polyamide 12 .
- the pulsation absorber of this embodiment is attached to support 11 , and support 11 is fixed to the open end of extension portion E by rotary welding so as to block up the open end of extension portion E.
- the pulsation absorber of this embodiment includes bellows 7 and an elastic member.
- Bellows 7 of this embodiment is formed by resin or rubber, as in the foregoing embodiment.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment is a molded member 12 formed by resin or rubber. Molded member 12 of this embodiment is made of fluoro rubber compression-molded in a cylindrical form, and is provided coaxially with bellows 7 .
- molded member 12 may be made of rubber of various types, such as nitrile rubber, acrylic rubber, silicone rubber, fluorinated silicone rubber, hydrin rubber, urethane rubber, ethylene-propylene rubber, or butyl rubber. Molded member 12 may also be made of resin of various types, such as polyolefin, polysulfide, fluorocarbon resin, polyester, polyacetal, polyketone, polyvinyl chloride, or thermoplastic elastomer.
- the pulsation absorber is composed of bellows 7 and molded member 12 arranged to act respectively as air spring and a rubber spring by deforming springily or elastically, or expanding and contracting together. Additionally, bellows 7 and molded member 12 each formed by resin or rubber exhibit high damping effects. Therefore, the pulsation absorber of this embodiment can absorb the pulsation of the fluid highly effectively even when pressure of the fluid is relatively high.
- the pulsation absorber of this embodiment is composed of bellows 7 and molded member 12 each formed by resin or rubber, the pulsation absorber can be formed to have a desired spring constant with an increased degree of freedom, and thereby can adapt to various intensities of pressure and pressure pulsation in the fluid.
- fluid coupling A 2 of this embodiment has a simple structure having a small size and a small number of elements, as in the foregoing embodiment, and the fuel supply system adopting fluid coupling A 2 of this embodiment can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room.
- FIG. 3 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 3 includes bellows 7 and an elastic member.
- Bellows 7 is formed by resin or rubber.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment includes a hollow-molded member 13 . Hollow-molded member 13 is formed by resin or rubber in a bellows form.
- FIG. 4 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 4 includes bellows 7 and an elastic member.
- Bellows 7 is formed by resin or rubber.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment includes a foam-molded member 14 .
- Foam-molded member 14 is formed by resin or rubber containing numerous bubbles, and shaped in a cylindrical form.
- FIG. 5 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 5 includes bellows 7 and an elastic member.
- Bellows 7 is formed by resin or rubber.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment includes molded member 12 . Molded member 12 is formed by resin or rubber in a cylindrical form.
- Support 11 of this embodiment is formed with an air hole 11 a exposing an inside part of bellows 7 to open air. When bellows 7 undergoes load of the pulsation of the fluid, bellows 7 takes air in and out of the inside part via air hole 11 a. Therefore, the pulsation absorber of this embodiment can obtain increased damper effects.
- FIG. 6 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 6 includes bellows 7 and an elastic member.
- Bellows 7 is formed by resin or rubber.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment includes a molded member 15 and a coil spring 16 . Molded member 15 is formed by resin or rubber in a thin cylindrical form. Coil spring 16 is disposed concentrically outside molded member 15 .
- FIG. 7 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 7 includes bellows 7 and an elastic member.
- Bellows 7 is formed by resin or rubber.
- the elastic member of this embodiment is provided inside bellows 7 , and is arranged to deform springily or elastically, or expand and contract, together with bellows 7 .
- the elastic member of this embodiment includes a composite-molded member 17 .
- Composite-molded member 17 includes coil spring 16 insert-molded in resin or rubber.
- the pulsation absorbers of FIGS. 3 ⁇ 7 are applicable to fluid couplings A 1 and A 2 of FIGS. 1 and 2 , and are capable of obtain similar effects and advantages as in the foregoing embodiments.
- the pulsation absorber composed of bellows 7 and at least one of the molded members and the coil spring can be formed to have a desired spring constant with a further increased degree of freedom.
- the pulsation absorbers of FIGS. 3 and 5 ⁇ 7 may use a foam-molded member as shown in FIG. 4 in place of each of the molded members of FIGS. 3 and 5 ⁇ 7 .
- the pulsation absorbers can obtain a desired spring constant by varying foaming rates of the foam-molded member.
- each of the molded members may be impregnated with fluid such as oil, and thereby can be formed to have an adjusted ability to absorb the pulsation while being prevented from deterioration.
- air hole 11 a of support 11 of FIG. 5 is applicable to the foregoing embodiments and the following embodiments.
- FIG. 8 is a sectional view showing a fluid coupling A 3 according to still another embodiment of the present invention. Elements in FIG. 8 that are identical or equivalent to the elements shown in FIGS. 1 and 2 are indicated by the same reference marks, and may not be described in detail in this part of description.
- Fluid coupling A 3 of FIG. 8 is a straight type, and includes first joining portion J 1 , and second joining portion J 2 provided integrally with first joining portion J 1 .
- the body of fluid coupling A 3 is formed integrally with a damping chamber F.
- Damping chamber F is located at a middle part of the body and branches off from fluid channel 5 .
- Fluid coupling A 3 of this embodiment includes pulsation absorber disposed in damping chamber F, and arranged to absorb pulsation of fluid to flow in fluid channel 5 in an assembled state.
- the pulsation absorber of this embodiment is bellows 7 .
- Damping chamber F communicates with fluid channel 5 via a communicating passage 8 , and is formed with an open end opening in opposite direction from communicating passage 8 .
- Communicating passage 8 is formed narrower than fluid channel 5 , or is formed to have an internal sectional size smaller than fluid channel 5 .
- Bellows 7 is attached to support 11 , and support 11 is fixed to the open end of damping chamber F, as in the foregoing embodiment.
- fluid coupling A 3 of this embodiment is arranged to absorb the pulsation of the fluid effectively by bellows 7 deforming, or expanding and contracting, springily or elastically, and damping chamber F acting as a Helmholtz resonating chamber.
- Damping chamber F branches off perpendicularly from fluid channel 5 , and pulsation absorber or bellows 7 is disposed in thus-branched damping chamber F.
- the pulsation absorber of this embodiment does not hamper the flow of the fluid, and therefore can avoid pressure loss of the fluid.
- fluid coupling A 3 of this embodiment has a simple structure having a small size and a small number of elements, as in the foregoing embodiments, and the fuel supply system adopting fluid coupling A 3 of this embodiment can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room.
- the pulsation absorbers of FIGS. 2 ⁇ 7 are applicable to fluid coupling A 3 of FIG. 8 .
- FIG. 9 is a sectional view showing a pulsation absorber applicable to fluid coupling A 3 of FIG. 8 , according to still another embodiment of the present invention.
- the pulsation absorber of FIG. 9 includes a diaphragm 18 and an elastic member.
- Diaphragm 18 is formed by resin or rubber, and is positioned to partition damping chamber F.
- the elastic member of this embodiment is arranged to deform springily or elastically, or expand and contract, in conjunction with deformation of diaphragm 18 .
- the elastic member of this embodiment is a coil spring 19 provided between diaphragm 18 and support 11 .
- the fluid coupling adopting the pulsation absorber of this embodiment can obtain similar effects and advantages as in the foregoing embodiments.
- the pulsation absorber of FIG. 9 is applicable to fluid coupling A 2 of FIG. 2 of the elbow type.
- the pulsation absorber of this embodiment may adopt each of the elastic members of FIGS. 2 ⁇ 7 in place of coil spring 19 of FIG. 9 .
- Diaphragm 18 and the elastic member (molded member) may be formed integrally from identical material by integral molding. Thereby, the fluid coupling can have a structure with a small number of elements, and can be reduced in cost.
- the fluid coupling includes: means ( 5 ) for passing fluid; and means ( 7 ; 7 , 12 ; 7 , 13 ; 7 , 14 ; 7 , 15 , 16 ; 7 , 17 , 16 ; 18 , 19 ) for absorbing pulsation of the fluid by deforming in a same direction as the fluid pulsates.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Pipe Accessories (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
A pulsation absorber is provided in a fluid channel formed in a body of a fluid coupling. Fluid flows through the fluid channel in an assembled state. The pulsation absorber is arranged to deform in a same direction as the fluid to flow in the fluid channel pulsates. The pulsation absorber thereby absorbs pulsation of the fluid.
Description
- The present invention generally relates to a fluid coupling, and more particularly, to a fluid coupling for use in a fuel supply system of a vehicle.
- Japanese Patent Application Publication No. H09(1997)-195885 discloses a fuel supply system of a fuel returnless type.
- It is an object of the present invention to provide a fluid coupling capable of damping pulsation of fluid effectively, while using a limited space and being small in size and low in cost.
- According to one aspect of the present invention, a fluid coupling includes: a body formed with a fluid channel; and a pulsation absorber provided in the fluid channel, and arranged to deform in a same direction as fluid to flow in the fluid channel pulsates, and thereby to absorb pulsation of the fluid.
- The other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
-
FIG. 1 is a sectional view showing a fluid coupling according to an embodiment of the present invention. -
FIG. 2 is a sectional view showing a fluid coupling according to another embodiment of the present invention. -
FIG. 3 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. -
FIG. 4 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. -
FIG. 5 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. -
FIG. 6 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. -
FIG. 7 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. -
FIG. 8 is a sectional view showing a fluid coupling according to still another embodiment of the present invention. -
FIG. 9 is a sectional view showing a pulsation absorber applicable to the fluid coupling ofFIG. 8 , according to still another embodiment of the present invention. -
FIG. 10 is a diagram showing a fuel supply system of a return type. -
FIG. 11 is a diagram showing a fuel supply system of a returnless (non-return) type. - First, in order to facilitate understanding of the present invention, a description will be given of fuel supply systems for a vehicle.
FIG. 10 is a diagram showing a fuel supply system of a return type. In this fuel supply system, fuel is supplied from a fuel tank (not shown inFIG. 10 ) via anunderfloor supply line 101 and asupply tube 102 to adelivery pipe 103. Then, the fuel is supplied fromdelivery pipe 103 tofuel injectors 104 of each cylinder.Delivery pipe 103 is equipped with apressure regulator 105.Pressure regulator 105 maintains constant pressure indelivery pipe 103 by returning surplus fuel via areturn tube 106 and anunderfloor return line 107 to the fuel tank. -
FIG. 11 is a diagram showing a fuel supply system of a returnless (non-return) type. In this fuel supply system, fuel is supplied from a fuel tank (not shown inFIG. 11 ) viaunderfloor supply line 101 andsupply tube 102 todelivery pipe 103. Then, the fuel is supplied fromdelivery pipe 103 tofuel injectors 104.Delivery pipe 103 is equipped with apulsation damper 108. Pulsation damper 108 damps pulsation, and noise of pulsation, of the fuel which originate from a discharging action of a fuel pump or a fuel injection action offuel injectors 104. - In the fuel supply system of
FIG. 10 , fluid couplings orquick connectors 110 are each provided betweensupply line 101 andsupply tube 102, betweensupply tube 102 anddelivery pipe 103, betweenpressure regulator 105 andreturn tube 106, and betweenreturn tube 106 andreturn line 107. In the fuel supply system ofFIG. 11 ,fluid couplings 110 are each provided betweensupply line 101 andsupply tube 102, and betweensupply tube 102 anddelivery pipe 103. Generally, each offluid couplings 110, straight type or elbow type, is made of metal and/or resin, and includes one or two O rings in a joining portion. - Recently, improvements have been required for vehicles to be reduced further in weight and cost. Therefore, such vehicles have employed an increasing number of fuel supply systems of the returnless type which has a smaller number of elements than the return type.
- However, in the fuel supply system of the returnless type, pulsation of the fuel is likely to occur on the part of
delivery pipe 103, compared with the return type. For this reason,delivery pipe 103 of the returnless type is equipped withpulsation damper 108. Therefore, the fuel supply system of the returnless type requires an attaching portion, such as a flange, for joiningpulsation damper 108 todelivery pipe 103, and an arrangement for sealing the joining part. Thus, the fuel supply system of the returnless type may have a complex structure, and cannot easily be reduced in cost. Besides, such fuel supply system of the returnless type cannot easily be laid out in a small space in an engine room. -
FIG. 1 is a sectional view showing a fluid coupling A1 according to an embodiment of the present invention. Each of fluid couplings (or quick connectors) of the following embodiments is applicable to joint between supply tube 102 (a resin tube T) and delivery pipe 103 (a metal pipe P) in the fuel supply system of the returnless type ofFIG. 11 . However, the fluid couplings are not limited to the following embodiments in positioning and detailed structure, and may be applicable as modifications and variations of such embodiments. - Fluid coupling A1 of
FIG. 1 is a straight type, and includes one or first joining portion J1, and the other or second joining portion J2 provided integrally with first joining portion J1. First joining portion J1 and second joining portion J2 form a body of fluid coupling A1. First joining portion J1 includes twoO rings 1 and a back-upring 2.O rings 1 and back-upring 2 are attached to an inside surface of first joining portion J1. Second joining portion J2 includes a projectingportion 3. Projectingportion 3 for retaining a tube is formed on an outer circumference of second joining portion J2. Metal pipe P (delivery pipe) and resin tube T (supply tube) are connected with first joining portion J1 and second joining portion J2, respectively, in an assembled state. Specifically, metal pipe P together with aspacer 4 is fit into first joining portion J1, and resin tube T is fit over second joining portion J2. Fuel which is fluid flows through fluid coupling A1 in the assembled state. - The body of fluid coupling A1 is formed by material resistant to fuel. In this example, the body of fluid coupling A1 is formed by material composed mainly of a resin selected from a group consisting of polyamide, polyolefin, polysulfide, fluorocarbon resin, polyester, polyacetal and polyketone.
- The body of fluid coupling A1 is formed with a
fluid channel 5 extending through the body of fluid coupling A1. Fluid coupling A1 includes asupport 6, and a pulsation absorber provided influid channel 5. The pulsation absorber of this embodiment is abellows 7. Specifically,support 6 is fixed influid channel 5, andbellows 7 is supported bysupport 6. Pulsation absorber orbellows 7 is arranged to deform in a same direction as fluid to flow influid channel 5 pulsates, and thereby absorb the pulsation of the fluid. A part or first part offluid channel 5 at whichbellows 7 is provided has a section smaller than a section of other part or second part offluid channel 5. -
Support 6 is formed by material of the same kind as the material forming the body of fluid coupling A1. In this example,support 6 is formed by material composed mainly of glass fiber reinforcedpolyamide 12.Support 6 is formed with at least one opening to pass the fluid through the opening.Support 6 is fixed to the body of fluid coupling A1 by rotary welding. -
Bellows 7 is formed by resin or rubber. In this example, bellows 7 is formed bypolyamide 12, and molded by blow molding.Bellows 7 is joined to support 6 air-tightly by welding, and is arranged to act as an air spring. Besides the above-mentionedpolyamide 12, bellows 7 may be formed by a thermoplastic resin, such as a polyamide-based thermoplastic resin, a polyolefin-based thermoplastic resin, a fluorocarbon-based thermoplastic resin, a polyester-based thermoplastic resin, or a polysulfide-based thermoplastic resin.Bellows 7 may also be formed by a thermoplastic elastomer, or a rubber, such as a fluorocarbon-based rubber, a nitrile-based rubber, or an acrylic-based rubber. - In fluid coupling A1 of this embodiment, pulsation absorber or bellows 7 is provided in
fluid channel 5, and is arranged to deform in the same direction as the pulsation of the fluid to flow influid channel 5, and thereby absorb the pulsation of the fluid effectively. Thus, pulsation absorber or bellows 7 confronts a propagation direction of the pulsation of the fluid, in an assembled state in the fuel supply system or fluid delivery system. Specifically, in the fuel supply system, when the fuel is supplied from the fuel tank to metal pipe P, and pulsation of the fuel originating from the fuel injection action offuel injectors 104 occurs on the part of metal pipe P, bellows 7 confronting the propagation direction of the pulsation deforms springily or elastically, or expand and contract, to absorb the pulsation of the fuel effectively. - Thus, fluid coupling A1 of this embodiment includes pulsation absorber or bellows 7 provided in
fluid channel 5. Hence, fluid coupling A1 of this embodiment does not require an additional space for a pulsation absorber. Influid channel 5, pulsation absorber or bellows 7 is arranged to act as air spring. Therefore, fluid coupling A1 has a simple structure having a small size and a small number of elements, and is capable of damping the pulsation of the fluid occurring in the fuel supply system. With fluid coupling A1 of this embodiment, the fuel supply system of the returnless type ofFIG. 11 can have a structure withoutpulsation damper 108, and thus can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room. - Besides, pulsation absorber or bellows 7 of fluid coupling A1 of this embodiment is formed by resin or rubber. Thus, bellows 7 is light in weight and low in cost, and has a property of deforming efficiently to absorb the pulsation of the fluid effectively. Additionally, since resin or rubber exhibits an excellent formability, bellows 7 can be formed easily to have a desired spring constant.
- Further,
support 6 of fluid coupling A1 of this embodiment is fixed to the body of fluid coupling A1 by rotary welding, and bellows 7 is joined to support 6 by welding. Thus, these elements can be joined to one another easily and securely without using joining parts. Therefore, the structure of fluid coupling A1 can be further simplified and reduced in weight. - Besides, fluid coupling A1 of this embodiment may be applicable between
supply line 101 andsupply tube 102 in the fuel supply system of the returnless type ofFIG. 11 . In this case,supply line 101 may be connected with first joining portion J1, and bellows 7 can absorb pulsation of the fuel which originates from the discharging action of the fuel pump. - Further, fluid coupling A1 of this embodiment is formed with
fluid channel 5, and the section of the part offluid channel 5 at which bellows 7 is provided is smaller than the section of the other part offluid channel 5. The thus-narrowed part offluid channel 5 acts as an orifice, and thereby is capable of reducing the propagation of the pulsation of the fuel. -
FIG. 2 is a sectional view showing a fluid coupling A2 according to another embodiment of the present invention. Elements inFIG. 2 that are identical or equivalent to the elements shown inFIG. 1 are indicated by the same reference marks, and may not be described in detail in this part of description. - Fluid coupling A2 of
FIG. 2 is an elbow type, and includes first joining portion J1, and second joining portion J2 provided integrally with first joining portion J1. Second joining portion J2 is arranged substantially orthogonal to first joining portion J1 so that first joining portion J1 and second joining portion J2 form an elbow portion. Fluid coupling A2 also includes an extension portion E extending from the elbow portion coaxially with first joining portion J1. Extension portion E has an open end opening in the coaxial direction or opposite direction from the elbow portion, and includes asupport 11, and a pulsation absorber arranged to absorb pulsation of fluid to flow influid channel 5 in an assembled state. -
Support 11 of this embodiment is a plate member formed by glass fiber reinforcedpolyamide 12. The pulsation absorber of this embodiment is attached to support 11, andsupport 11 is fixed to the open end of extension portion E by rotary welding so as to block up the open end of extension portion E. - The pulsation absorber of this embodiment includes
bellows 7 and an elastic member.Bellows 7 of this embodiment is formed by resin or rubber, as in the foregoing embodiment. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment is a moldedmember 12 formed by resin or rubber. Moldedmember 12 of this embodiment is made of fluoro rubber compression-molded in a cylindrical form, and is provided coaxially withbellows 7. - Besides the above-mentioned fluoro rubber, molded
member 12 may be made of rubber of various types, such as nitrile rubber, acrylic rubber, silicone rubber, fluorinated silicone rubber, hydrin rubber, urethane rubber, ethylene-propylene rubber, or butyl rubber. Moldedmember 12 may also be made of resin of various types, such as polyolefin, polysulfide, fluorocarbon resin, polyester, polyacetal, polyketone, polyvinyl chloride, or thermoplastic elastomer. - Thus, in fluid coupling A2 of this embodiment, the pulsation absorber is composed of
bellows 7 and moldedmember 12 arranged to act respectively as air spring and a rubber spring by deforming springily or elastically, or expanding and contracting together. Additionally, bellows 7 and moldedmember 12 each formed by resin or rubber exhibit high damping effects. Therefore, the pulsation absorber of this embodiment can absorb the pulsation of the fluid highly effectively even when pressure of the fluid is relatively high. - Besides, since the pulsation absorber of this embodiment is composed of
bellows 7 and moldedmember 12 each formed by resin or rubber, the pulsation absorber can be formed to have a desired spring constant with an increased degree of freedom, and thereby can adapt to various intensities of pressure and pressure pulsation in the fluid. Additionally, fluid coupling A2 of this embodiment has a simple structure having a small size and a small number of elements, as in the foregoing embodiment, and the fuel supply system adopting fluid coupling A2 of this embodiment can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room. -
FIG. 3 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. The pulsation absorber ofFIG. 3 includesbellows 7 and an elastic member.Bellows 7 is formed by resin or rubber. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment includes a hollow-moldedmember 13. Hollow-moldedmember 13 is formed by resin or rubber in a bellows form. -
FIG. 4 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. The pulsation absorber ofFIG. 4 includesbellows 7 and an elastic member.Bellows 7 is formed by resin or rubber. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment includes a foam-moldedmember 14. Foam-moldedmember 14 is formed by resin or rubber containing numerous bubbles, and shaped in a cylindrical form. -
FIG. 5 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. The pulsation absorber ofFIG. 5 includesbellows 7 and an elastic member.Bellows 7 is formed by resin or rubber. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment includes moldedmember 12. Moldedmember 12 is formed by resin or rubber in a cylindrical form.Support 11 of this embodiment is formed with anair hole 11 a exposing an inside part ofbellows 7 to open air. When bellows 7 undergoes load of the pulsation of the fluid, bellows 7 takes air in and out of the inside part viaair hole 11 a. Therefore, the pulsation absorber of this embodiment can obtain increased damper effects. -
FIG. 6 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. The pulsation absorber ofFIG. 6 includesbellows 7 and an elastic member.Bellows 7 is formed by resin or rubber. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment includes a molded member 15 and acoil spring 16. Molded member 15 is formed by resin or rubber in a thin cylindrical form.Coil spring 16 is disposed concentrically outside molded member 15. -
FIG. 7 is a sectional view showing a pulsation absorber applicable to the fluid coupling, according to still another embodiment of the present invention. The pulsation absorber ofFIG. 7 includesbellows 7 and an elastic member.Bellows 7 is formed by resin or rubber. The elastic member of this embodiment is provided inside bellows 7, and is arranged to deform springily or elastically, or expand and contract, together withbellows 7. The elastic member of this embodiment includes a composite-moldedmember 17. Composite-moldedmember 17 includescoil spring 16 insert-molded in resin or rubber. - The pulsation absorbers of FIGS. 3˜7 are applicable to fluid couplings A1 and A2 of
FIGS. 1 and 2 , and are capable of obtain similar effects and advantages as in the foregoing embodiments. Especially, the pulsation absorber composed ofbellows 7 and at least one of the molded members and the coil spring can be formed to have a desired spring constant with a further increased degree of freedom. - The pulsation absorbers of
FIGS. 3 and 5 ˜7 may use a foam-molded member as shown inFIG. 4 in place of each of the molded members ofFIGS. 3 and 5 ˜7. In each case, the pulsation absorbers can obtain a desired spring constant by varying foaming rates of the foam-molded member. Besides, each of the molded members may be impregnated with fluid such as oil, and thereby can be formed to have an adjusted ability to absorb the pulsation while being prevented from deterioration. Additionally,air hole 11 a ofsupport 11 ofFIG. 5 is applicable to the foregoing embodiments and the following embodiments. -
FIG. 8 is a sectional view showing a fluid coupling A3 according to still another embodiment of the present invention. Elements inFIG. 8 that are identical or equivalent to the elements shown inFIGS. 1 and 2 are indicated by the same reference marks, and may not be described in detail in this part of description. - Fluid coupling A3 of
FIG. 8 is a straight type, and includes first joining portion J1, and second joining portion J2 provided integrally with first joining portion J1. The body of fluid coupling A3 is formed integrally with a damping chamber F. Damping chamber F is located at a middle part of the body and branches off fromfluid channel 5. Fluid coupling A3 of this embodiment includes pulsation absorber disposed in damping chamber F, and arranged to absorb pulsation of fluid to flow influid channel 5 in an assembled state. The pulsation absorber of this embodiment is bellows 7. - Damping chamber F communicates with
fluid channel 5 via a communicatingpassage 8, and is formed with an open end opening in opposite direction from communicatingpassage 8. Communicatingpassage 8 is formed narrower thanfluid channel 5, or is formed to have an internal sectional size smaller thanfluid channel 5.Bellows 7 is attached to support 11, andsupport 11 is fixed to the open end of damping chamber F, as in the foregoing embodiment. - Thus, fluid coupling A3 of this embodiment is arranged to absorb the pulsation of the fluid effectively by
bellows 7 deforming, or expanding and contracting, springily or elastically, and damping chamber F acting as a Helmholtz resonating chamber. Damping chamber F branches off perpendicularly fromfluid channel 5, and pulsation absorber or bellows 7 is disposed in thus-branched damping chamber F. Thus, the pulsation absorber of this embodiment does not hamper the flow of the fluid, and therefore can avoid pressure loss of the fluid. - Additionally, fluid coupling A3 of this embodiment has a simple structure having a small size and a small number of elements, as in the foregoing embodiments, and the fuel supply system adopting fluid coupling A3 of this embodiment can be reduced in weight and cost, and can be easily laid out in a limited space in an engine room. Besides, the pulsation absorbers of FIGS. 2˜7 are applicable to fluid coupling A3 of
FIG. 8 . -
FIG. 9 is a sectional view showing a pulsation absorber applicable to fluid coupling A3 ofFIG. 8 , according to still another embodiment of the present invention. The pulsation absorber ofFIG. 9 includes adiaphragm 18 and an elastic member.Diaphragm 18 is formed by resin or rubber, and is positioned to partition damping chamber F. The elastic member of this embodiment is arranged to deform springily or elastically, or expand and contract, in conjunction with deformation ofdiaphragm 18. The elastic member of this embodiment is acoil spring 19 provided betweendiaphragm 18 andsupport 11. - The fluid coupling adopting the pulsation absorber of this embodiment can obtain similar effects and advantages as in the foregoing embodiments. The pulsation absorber of
FIG. 9 is applicable to fluid coupling A2 ofFIG. 2 of the elbow type. The pulsation absorber of this embodiment may adopt each of the elastic members of FIGS. 2˜7 in place ofcoil spring 19 ofFIG. 9 .Diaphragm 18 and the elastic member (molded member) may be formed integrally from identical material by integral molding. Thereby, the fluid coupling can have a structure with a small number of elements, and can be reduced in cost. - According to another aspect of the present invention, the fluid coupling includes: means (5) for passing fluid; and means (7; 7, 12; 7, 13; 7, 14; 7, 15, 16; 7, 17, 16; 18, 19) for absorbing pulsation of the fluid by deforming in a same direction as the fluid pulsates.
- This application is based on a prior Japanese Patent Application No. 2004-163141 filed on Jun. 1, 2004. The entire contents of this Japanese Patent Application No. 2004-163141 are hereby incorporated by reference.
- Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art in light of the above teachings. The scope of the invention is defined with reference to the following claims.
Claims (17)
1. A fluid coupling comprising:
a body formed with a fluid channel; and
a pulsation absorber provided in the fluid channel, and arranged to deform in a same direction as fluid to flow in the fluid channel pulsates, and thereby to absorb pulsation of the fluid.
2. The fluid coupling as claimed in claim 1 , wherein the pulsation absorber is provided at a first part of the fluid channel, and the first part of the fluid channel has a section smaller than a section of a second part of the fluid channel.
3. A fluid coupling comprising:
a pulsation absorber provided in a fluid channel, and arranged to absorb pulsation of fluid to flow in the fluid channel, the pulsation absorber including:
a bellows formed by resin or rubber; and
an elastic member provided inside the bellows, including a molded member formed by resin or rubber, and arranged to deform elastically together with the bellows.
4. A fluid coupling comprising:
a body formed with a fluid channel of a straight type, and a damping chamber branching off from the fluid channel; and
a pulsation absorber provided in the damping chamber, and arranged to absorb pulsation of fluid to flow in the fluid channel.
5. The fluid coupling as claimed in claim 4 , wherein the pulsation absorber includes a diaphragm formed by resin or rubber, and an elastic member arranged to deform elastically in conjunction with deformation of the diaphragm.
6. The fluid coupling as claimed in claim 1 , wherein the pulsation absorber includes a bellows formed by resin or rubber.
7. The fluid coupling as claimed in claim 6 , wherein the pulsation absorber includes an elastic member provided inside the bellows, and arranged to deform elastically together with the bellows.
8. The fluid coupling as claimed in claim 7 , wherein the elastic member includes at least one of a molded member formed by resin or rubber and a coil spring.
9. The fluid coupling as claimed in claim 3 , wherein the molded member is resin or rubber containing numerous bubbles.
10. The fluid coupling as claimed in claim 8 , further comprising a support fixed in the fluid channel, wherein the pulsation absorber is supported by the support.
11. The fluid coupling as claimed in claim 3 , wherein the fluid coupling is an elbow type including an elbow portion and an extension portion extending from the elbow portion, the extension portion having an open end opening in opposite direction from the elbow portion; and the fluid coupling further comprises a support fixed to the open end of the extension portion, wherein the pulsation absorber is supported by the support in the extension portion.
12. The fluid coupling as claimed in claim 11 , wherein the support is formed with an air hole arranged to expose an inside part of the bellows to open air.
13. The fluid coupling as claimed in claim 3 , wherein the molded member is formed in a cylindrical form, and is provided coaxially with the bellows.
14. The fluid coupling as claimed in claim 3 , wherein the molded member is a hollow-molded member formed in a bellows form.
15. The fluid coupling as claimed in claim 3 , wherein the molded member is formed in a thin cylindrical form; and the elastic member further includes a coil spring disposed concentrically outside the molded member.
16. The fluid coupling as claimed in claim 3 , wherein the molded member is a composite-molded member including a coil spring insert-molded in the resin or rubber forming the molded member.
17. A fluid coupling comprising:
means for passing fluid; and
means for absorbing pulsation of the fluid by deforming in a same direction as the fluid pulsates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/941,310 US7665484B2 (en) | 2004-06-01 | 2007-11-16 | Fluid coupling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-163141 | 2004-06-01 | ||
JP2004163141A JP4641387B2 (en) | 2004-06-01 | 2004-06-01 | Fluid coupling |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/941,310 Division US7665484B2 (en) | 2004-06-01 | 2007-11-16 | Fluid coupling |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050263198A1 true US20050263198A1 (en) | 2005-12-01 |
Family
ID=34937105
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/141,384 Abandoned US20050263198A1 (en) | 2004-06-01 | 2005-06-01 | Fluid coupling |
US11/941,310 Expired - Fee Related US7665484B2 (en) | 2004-06-01 | 2007-11-16 | Fluid coupling |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/941,310 Expired - Fee Related US7665484B2 (en) | 2004-06-01 | 2007-11-16 | Fluid coupling |
Country Status (4)
Country | Link |
---|---|
US (2) | US20050263198A1 (en) |
EP (1) | EP1602820A3 (en) |
JP (1) | JP4641387B2 (en) |
CN (1) | CN100582546C (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080178846A1 (en) * | 2007-01-31 | 2008-07-31 | Kawasaki Jukogyo Kabushiki Kaisha | Engine for a vehicle and vehicle equipped with an engine |
US20100071792A1 (en) * | 2007-01-25 | 2010-03-25 | Herbert Baltes | Pressure tank, in particular hydraulic accumulator |
US20100178184A1 (en) * | 2009-01-09 | 2010-07-15 | Simmons Tom M | Bellows plungers having one or more helically extending features, pumps including such bellows plungers, and related methods |
US20100178182A1 (en) * | 2009-01-09 | 2010-07-15 | Simmons Tom M | Helical bellows, pump including same and method of bellows fabrication |
US7866300B2 (en) * | 2006-06-13 | 2011-01-11 | Robert Bosch Gmbh | Device for injecting fuel into the combustion chamber of an internal combustion engine |
US20130220470A1 (en) * | 2012-02-29 | 2013-08-29 | Ti Automotive (Fuldabruck) Gmbh | Connector with pressure equalization |
CN108138723A (en) * | 2015-09-23 | 2018-06-08 | 罗伯特·博世有限公司 | For the pressure pulsation damper and fuel injection system of fuel injection system |
US20190367176A1 (en) * | 2016-12-19 | 2019-12-05 | Safran Aircraft Engines | Accumulator on a fuel line of an aircraft |
US10731784B2 (en) * | 2017-12-01 | 2020-08-04 | Safran Aircraft Engines | Accumulator integrated into a fuel line |
FR3098867A1 (en) | 2019-07-19 | 2021-01-22 | Psa Automobiles Sa | QUICK CONNECTOR FOR MOTOR VEHICLE FUEL WITH PULSATION DAMPER |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5528838B2 (en) * | 2010-02-05 | 2014-06-25 | 本田技研工業株式会社 | Connector for fuel piping |
DE102010030627A1 (en) * | 2010-06-29 | 2011-12-29 | Robert Bosch Gmbh | Pulsation damper element for a fluid pump and associated fluid pump |
JP5781076B2 (en) | 2010-08-25 | 2015-09-16 | ダイキン工業株式会社 | hose |
CN103068907B (en) * | 2010-08-25 | 2015-07-22 | 大金工业株式会社 | Fluoro rubber molding with complex shape |
DE102010040612A1 (en) * | 2010-09-13 | 2012-03-15 | Siemens Aktiengesellschaft | Hydraulic temperature compensator and hydraulic lift transmitter |
JP5559438B2 (en) | 2012-01-20 | 2014-07-23 | 喜▲臨▼▲門▼家具股▲分▼有限公司 | Gas spring with adjustable elasticity |
US20140041635A1 (en) * | 2012-08-09 | 2014-02-13 | GM Global Technology Operations LLC | Fuel rail connector |
JP5595457B2 (en) * | 2012-09-05 | 2014-09-24 | 東海ゴム工業株式会社 | connector |
CN103410644B (en) * | 2013-07-10 | 2015-10-28 | 奇瑞汽车股份有限公司 | A kind of fuel damper and apply the oil passage connection structure of this buffer |
US9874074B2 (en) * | 2013-10-17 | 2018-01-23 | Baker Hughes, A Ge Company, Llc | Water tight and gas tight flexible fluid compensation bellow |
FR3012849B1 (en) * | 2013-11-04 | 2018-06-01 | Nobel Plastiques | DAMPING DEVICE FOR PULSATIONS. |
US9617958B2 (en) | 2013-12-09 | 2017-04-11 | Dayco Ip Holdings, Llc | Noise attenuation unit for engine systems |
KR20150102529A (en) * | 2014-02-28 | 2015-09-07 | 한온시스템 주식회사 | A discharge port connector of a compressor |
EP3148852B1 (en) | 2014-05-30 | 2021-03-24 | Dayco IP Holdings, LLC | Vacuum creation system having an ejector, pneumatic control valve and optionally an aspirator |
CN104329533A (en) * | 2014-09-28 | 2015-02-04 | 无锡金顶石油管材配件制造有限公司 | Turbo buffering petroleum pipeline |
JP2016075310A (en) * | 2014-10-03 | 2016-05-12 | 住友理工株式会社 | Connector and method of manufacturing the same |
JP6243834B2 (en) * | 2014-12-22 | 2017-12-06 | ヤンマー株式会社 | Fuel supply device for internal combustion engine |
GB201520677D0 (en) * | 2015-11-24 | 2016-01-06 | Delphi Internat Operations Luxembourg S À R L | High pressure fuel pump |
CN105443909A (en) * | 2015-12-03 | 2016-03-30 | 重庆互通管道技术设备有限公司 | Damping bent pipe |
US10064314B2 (en) | 2015-12-21 | 2018-08-28 | Dell Products, L.P. | Runtime service of liquid cooled servers operating under positive hydraulic pressure without impacting component performance |
US10146231B2 (en) | 2015-12-21 | 2018-12-04 | Dell Products, L.P. | Liquid flow control based upon energy balance and fan speed for controlling exhaust air temperature |
US10206312B2 (en) | 2015-12-21 | 2019-02-12 | Dell Products, L.P. | Liquid cooled rack information handling system having storage drive carrier for leak containment and vibration mitigation |
US9839164B2 (en) | 2015-12-21 | 2017-12-05 | Dell Products, L.P. | Rack information handling system having modular liquid distribution (MLD) conduits |
US9795065B2 (en) * | 2015-12-21 | 2017-10-17 | Dell Products, L.P. | Integrated air-spring for hydraulic force damping of a rigid liquid cooling subsystem |
US10010013B2 (en) | 2015-12-21 | 2018-06-26 | Dell Products, L.P. | Scalable rack-mount air-to-liquid heat exchanger |
US10156873B2 (en) | 2015-12-21 | 2018-12-18 | Dell Products, L.P. | Information handling system having fluid manifold with embedded heat exchanger system |
FR3057034A1 (en) * | 2016-10-03 | 2018-04-06 | Peugeot Citroen Automobiles Sa | DAMPING DEVICE FOR PULSATION OF A FUEL CIRCUIT |
IT201600108035A1 (en) * | 2016-10-26 | 2018-04-26 | Hutchinson Srl | Damper for a fluid line, in particular a fuel line for an internal combustion engine |
CN108071533B (en) * | 2016-11-15 | 2022-08-12 | 福特环球技术公司 | Fuel pressure pulse damping device and fuel system |
CN108678878A (en) * | 2018-08-07 | 2018-10-19 | 天津开发区天盈企业有限公司 | A kind of oil pipe pipe nipple |
US11525465B2 (en) * | 2018-09-24 | 2022-12-13 | Indius Medical Technologies Private Limited | Miniature pressure compensating device |
JP7300299B2 (en) * | 2019-04-03 | 2023-06-29 | 株式会社十川ゴム | Faucet damper structure, faucet provided with faucet damper structure, and method for reducing sound in faucet |
CN111140722B (en) * | 2019-05-07 | 2022-04-12 | 杭州精进科技有限公司 | Fluid conveying system and fluid pulse absorption device |
CH716345B1 (en) * | 2019-06-24 | 2023-02-28 | Schlumpf Innovations Gmbh | pulsation dampener. |
US11692537B2 (en) | 2021-01-11 | 2023-07-04 | Comet-ME Ltd. | Method and system for damping flow pulsation |
DE102021113244A1 (en) * | 2021-05-21 | 2022-11-24 | Naber Holding Gmbh & Co. Kg | Downdraft Element and Arrangement |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2829669A (en) * | 1956-06-13 | 1958-04-08 | Anthony J Luzynski | Antiknock fitting |
US2904077A (en) * | 1955-11-28 | 1959-09-15 | Rheinstahl Siegener Eisenbahnb | Shock absorbers |
US3076479A (en) * | 1960-11-02 | 1963-02-05 | Ottung Kai | Expansion means for self-contained liquid circulating systems |
US3237715A (en) * | 1959-09-15 | 1966-03-01 | Joseph J Mascuch | Flexible hose structures |
US3534884A (en) * | 1968-07-01 | 1970-10-20 | Goodyear Tire & Rubber | Pressurizable container and method of preparation |
US4177023A (en) * | 1975-02-25 | 1979-12-04 | Toyota Jidosha Kogyo Kabushiki Kaisha | Pneumatic system for smoothing discharge pressure from air |
US4527580A (en) * | 1983-11-25 | 1985-07-09 | Sundstrand Corporation | Volume control device |
US4903486A (en) * | 1987-12-01 | 1990-02-27 | Larry K. Goodman | Performance responsive muffler for internal combustion engines |
US4996962A (en) * | 1988-12-28 | 1991-03-05 | Usui Kokusai Sangyo Kaisha Ltd. | Fuel delivery rail assembly |
US5638868A (en) * | 1996-06-05 | 1997-06-17 | Valcor Engineering | Accumulator |
US5740837A (en) * | 1996-11-05 | 1998-04-21 | Chiang; Swea Tong | Means for automatically regulating water pressure in water pipe |
US5845621A (en) * | 1997-06-19 | 1998-12-08 | Siemens Automotive Corporation | Bellows pressure pulsation damper |
US5954031A (en) * | 1996-01-16 | 1999-09-21 | Toyota Jidosha Kabushiki Kaisha | Fuel delivery apparatus in V-type engine |
US6076557A (en) * | 1998-06-12 | 2000-06-20 | Senior Engineering Investments Ag | Thin wall, high pressure, volume compensator |
US6098663A (en) * | 1998-04-15 | 2000-08-08 | Larsen; Richard R. | High impact bellows |
US6390132B1 (en) * | 2000-12-07 | 2002-05-21 | Caterpillar Inc. | Fluid stream pulse damper |
US6412476B1 (en) * | 2000-08-02 | 2002-07-02 | Ford Global Tech., Inc. | Fuel system |
US6672286B2 (en) * | 2001-12-14 | 2004-01-06 | Siemens Automotive Corporation | Corrugated fuel rail damper |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3001268A (en) * | 1958-04-02 | 1961-09-26 | Greer Hydraulics Inc | Method of assembling pressure accumulator |
US3159182A (en) * | 1963-09-11 | 1964-12-01 | Melville F Peters | Bellows sealing and securing device |
US3714964A (en) * | 1968-10-24 | 1973-02-06 | Factory Mutual Res Corp | Double rate flow controller |
DE3152860A1 (en) * | 1981-05-14 | 1983-07-14 | Robert Bosch Gmbh, 7000 Stuttgart | Damper element |
JPS5872795A (en) | 1981-10-23 | 1983-04-30 | 日産自動車株式会社 | Pressure pulsation removing device for fuel piping |
CN85102290B (en) | 1985-04-01 | 1987-12-23 | 西安交通大学 | Travelling wave energy storage vibration absorber |
CN88210181U (en) | 1988-02-13 | 1988-11-02 | 赵振勇 | Anticorrosive pressure sensor |
JPH02286995A (en) | 1989-04-27 | 1990-11-27 | Hitachi Metals Ltd | Pressure container |
CN2092622U (en) | 1991-05-07 | 1992-01-08 | 深圳四方机械电子有限公司 | Shock absorber for hydraulic pipelines |
DE4318553C2 (en) * | 1993-06-04 | 1995-05-18 | Daimler Benz Ag | Adaptive hydropneumatic pulsation damper |
JPH07239160A (en) | 1994-02-28 | 1995-09-12 | Sanyo Electric Co Ltd | Pressure buffering device |
JPH084615A (en) * | 1994-06-21 | 1996-01-09 | Toyota Motor Corp | Pressure pulsation decreasing damper |
US5415201A (en) * | 1994-06-27 | 1995-05-16 | The United States Of America As Represented By The Secretary Of The Navy | Multi-stage fluid flow control device |
JPH08261097A (en) | 1995-03-24 | 1996-10-08 | Toyoda Gosei Co Ltd | Fuel pressure pulsation damper |
JPH08261098A (en) * | 1995-03-24 | 1996-10-08 | Toyoda Gosei Co Ltd | Fuel pressure pulsation damper |
JP3206361B2 (en) * | 1995-04-13 | 2001-09-10 | 三菱自動車工業株式会社 | Fuel supply device |
JP3750754B2 (en) * | 1996-05-14 | 2006-03-01 | 株式会社デンソー | Fuel supply device for internal combustion engine |
CN2293822Y (en) | 1997-05-23 | 1998-10-07 | 杨德林 | Pulsation resistant pressure gage |
JP2000073907A (en) | 1998-09-02 | 2000-03-07 | Aisan Ind Co Ltd | Fuel distribution device for internal combustion engine |
JP2000213434A (en) * | 1999-01-20 | 2000-08-02 | Toyoda Gosei Co Ltd | Fuel pressure regulating device |
US6405994B1 (en) * | 2000-12-22 | 2002-06-18 | Taiwan Semiconductor Manufacturing Co., Ltd | Flow control valve incorporating an inflatable bag |
CN1348059A (en) | 2001-11-27 | 2002-05-08 | 董乃强 | Environment protecting power economizer for diesel oil internal combustion engine |
JP2004137977A (en) * | 2002-10-18 | 2004-05-13 | Usui Kokusai Sangyo Kaisha Ltd | Pulsing reduction system of fuel pipe system |
CN2591383Y (en) | 2002-12-24 | 2003-12-10 | 廖换彩 | In-pipe water hammer arrester |
-
2004
- 2004-06-01 JP JP2004163141A patent/JP4641387B2/en not_active Expired - Fee Related
-
2005
- 2005-05-31 EP EP05011758A patent/EP1602820A3/en not_active Withdrawn
- 2005-06-01 CN CN200510073189A patent/CN100582546C/en not_active Expired - Fee Related
- 2005-06-01 US US11/141,384 patent/US20050263198A1/en not_active Abandoned
-
2007
- 2007-11-16 US US11/941,310 patent/US7665484B2/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2904077A (en) * | 1955-11-28 | 1959-09-15 | Rheinstahl Siegener Eisenbahnb | Shock absorbers |
US2829669A (en) * | 1956-06-13 | 1958-04-08 | Anthony J Luzynski | Antiknock fitting |
US3237715A (en) * | 1959-09-15 | 1966-03-01 | Joseph J Mascuch | Flexible hose structures |
US3076479A (en) * | 1960-11-02 | 1963-02-05 | Ottung Kai | Expansion means for self-contained liquid circulating systems |
US3534884A (en) * | 1968-07-01 | 1970-10-20 | Goodyear Tire & Rubber | Pressurizable container and method of preparation |
US4177023A (en) * | 1975-02-25 | 1979-12-04 | Toyota Jidosha Kogyo Kabushiki Kaisha | Pneumatic system for smoothing discharge pressure from air |
US4527580A (en) * | 1983-11-25 | 1985-07-09 | Sundstrand Corporation | Volume control device |
US4903486A (en) * | 1987-12-01 | 1990-02-27 | Larry K. Goodman | Performance responsive muffler for internal combustion engines |
US4996962A (en) * | 1988-12-28 | 1991-03-05 | Usui Kokusai Sangyo Kaisha Ltd. | Fuel delivery rail assembly |
US5954031A (en) * | 1996-01-16 | 1999-09-21 | Toyota Jidosha Kabushiki Kaisha | Fuel delivery apparatus in V-type engine |
US5638868A (en) * | 1996-06-05 | 1997-06-17 | Valcor Engineering | Accumulator |
US5740837A (en) * | 1996-11-05 | 1998-04-21 | Chiang; Swea Tong | Means for automatically regulating water pressure in water pipe |
US5845621A (en) * | 1997-06-19 | 1998-12-08 | Siemens Automotive Corporation | Bellows pressure pulsation damper |
US6098663A (en) * | 1998-04-15 | 2000-08-08 | Larsen; Richard R. | High impact bellows |
US6076557A (en) * | 1998-06-12 | 2000-06-20 | Senior Engineering Investments Ag | Thin wall, high pressure, volume compensator |
US6412476B1 (en) * | 2000-08-02 | 2002-07-02 | Ford Global Tech., Inc. | Fuel system |
US6390132B1 (en) * | 2000-12-07 | 2002-05-21 | Caterpillar Inc. | Fluid stream pulse damper |
US6672286B2 (en) * | 2001-12-14 | 2004-01-06 | Siemens Automotive Corporation | Corrugated fuel rail damper |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7866300B2 (en) * | 2006-06-13 | 2011-01-11 | Robert Bosch Gmbh | Device for injecting fuel into the combustion chamber of an internal combustion engine |
US20100071792A1 (en) * | 2007-01-25 | 2010-03-25 | Herbert Baltes | Pressure tank, in particular hydraulic accumulator |
US8418726B2 (en) * | 2007-01-25 | 2013-04-16 | Hydac Technology Gmbh | Pressure tank, in particular hydraulic accumulator |
US7647917B2 (en) * | 2007-01-31 | 2010-01-19 | Kawasaki Jukogyo Kabushiki Kaisha | Engine for a vehicle and vehicle equipped with an engine |
US20080178846A1 (en) * | 2007-01-31 | 2008-07-31 | Kawasaki Jukogyo Kabushiki Kaisha | Engine for a vehicle and vehicle equipped with an engine |
US20100178184A1 (en) * | 2009-01-09 | 2010-07-15 | Simmons Tom M | Bellows plungers having one or more helically extending features, pumps including such bellows plungers, and related methods |
US20100178182A1 (en) * | 2009-01-09 | 2010-07-15 | Simmons Tom M | Helical bellows, pump including same and method of bellows fabrication |
US8636484B2 (en) | 2009-01-09 | 2014-01-28 | Tom M. Simmons | Bellows plungers having one or more helically extending features, pumps including such bellows plungers, and related methods |
US20130220470A1 (en) * | 2012-02-29 | 2013-08-29 | Ti Automotive (Fuldabruck) Gmbh | Connector with pressure equalization |
US8757668B2 (en) * | 2012-02-29 | 2014-06-24 | Ti Automotive (Fuldabruck) Gmbh | Connector with pressure equalization |
CN108138723A (en) * | 2015-09-23 | 2018-06-08 | 罗伯特·博世有限公司 | For the pressure pulsation damper and fuel injection system of fuel injection system |
US20190367176A1 (en) * | 2016-12-19 | 2019-12-05 | Safran Aircraft Engines | Accumulator on a fuel line of an aircraft |
US11691751B2 (en) * | 2016-12-19 | 2023-07-04 | Safran Aircraft Engines | Accumulator on a fuel line of an aircraft |
US10731784B2 (en) * | 2017-12-01 | 2020-08-04 | Safran Aircraft Engines | Accumulator integrated into a fuel line |
FR3098867A1 (en) | 2019-07-19 | 2021-01-22 | Psa Automobiles Sa | QUICK CONNECTOR FOR MOTOR VEHICLE FUEL WITH PULSATION DAMPER |
Also Published As
Publication number | Publication date |
---|---|
EP1602820A2 (en) | 2005-12-07 |
US20080067805A1 (en) | 2008-03-20 |
US7665484B2 (en) | 2010-02-23 |
CN1704637A (en) | 2005-12-07 |
EP1602820A3 (en) | 2011-09-28 |
CN100582546C (en) | 2010-01-20 |
JP2005344547A (en) | 2005-12-15 |
JP4641387B2 (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7665484B2 (en) | Fluid coupling | |
US6948479B1 (en) | Inline pulsation damper system | |
US6397884B1 (en) | Connection structure and valved connection member | |
US5248168A (en) | Flexible quick disconnect coupling with vibration absorbing member | |
EP0886066A1 (en) | Bellows pressure pulsation damper | |
JP2002505401A (en) | Fuel supply system for internal combustion engine | |
KR100246981B1 (en) | Filler tube connection structure of fuel tank | |
CN109863296B (en) | Damper for a fluid line, in particular a fuel line for an internal combustion engine | |
US11092123B2 (en) | Connector | |
JP5595457B2 (en) | connector | |
US20070222129A1 (en) | Apparatus for isolating vibration | |
JP5056838B2 (en) | Fluid coupling | |
JP5528838B2 (en) | Connector for fuel piping | |
JPH08326622A (en) | Fuel pressure pulsative motion attenuation device | |
JPH11294294A (en) | Fuel delivery pipe | |
JPH08261097A (en) | Fuel pressure pulsation damper | |
JP2004183812A (en) | Hydraulic coupling | |
JP2021004643A (en) | Joint | |
JPH09257186A (en) | Joint for pipe with orifice | |
US20200173409A1 (en) | Damper for a liquid line, in particular a fuel line for an internal combustion engine | |
JP2018119432A (en) | Attachment structure of fuel system component | |
JP4148861B2 (en) | Fuel delivery pipe | |
JP4236799B2 (en) | Fuel supply piping | |
JP2008057388A (en) | Vaporized fuel distribution member | |
KR20190067019A (en) | Damper structure and apparatus for supplying fuel of LPG liquid injection vehicle having the damper structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NISSAN MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAMADA, SEIJI;KUMAGAI, HIROSHI;REEL/FRAME:016634/0200 Effective date: 20050509 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |