+

US20050250654A1 - Compressor lubricant compositions - Google Patents

Compressor lubricant compositions Download PDF

Info

Publication number
US20050250654A1
US20050250654A1 US10/669,720 US66972003A US2005250654A1 US 20050250654 A1 US20050250654 A1 US 20050250654A1 US 66972003 A US66972003 A US 66972003A US 2005250654 A1 US2005250654 A1 US 2005250654A1
Authority
US
United States
Prior art keywords
lubricant composition
composition according
total weight
polyalkyleneglycol
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/669,720
Inventor
Steven Randles
Robert George Thomson
Mitchel Corner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Assigned to IMPERIAL CHEMICAL INDUSTRIES PLC reassignment IMPERIAL CHEMICAL INDUSTRIES PLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CORNER, MITCHELL, THOMPSON, ROBERT IAN GEORGE, RANDLES, STEVEN JAMES
Publication of US20050250654A1 publication Critical patent/US20050250654A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/14Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring containing at least 2 hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/32Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/42Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/76Esters containing free hydroxy or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • C10M133/46Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/122Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • C10M2209/1055Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/106Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only
    • C10M2209/1065Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing four carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/107Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106
    • C10M2209/1075Polyethers, i.e. containing di- or higher polyoxyalkylene groups of two or more specified different alkylene oxides covered by groups C10M2209/104 - C10M2209/106 used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • C10M2209/1085Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/109Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified
    • C10M2209/1095Polyethers, i.e. containing di- or higher polyoxyalkylene groups esterified used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/067Polyaryl amine alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/068Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings having amino groups bound to polycyclic aromatic ring systems, i.e. systems with three or more condensed rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/042Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/045Siloxanes with specific structure containing silicon-to-hydroxyl bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/046Siloxanes with specific structure containing silicon-oxygen-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/048Siloxanes with specific structure containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses

Definitions

  • the invention relates to lubricant compositions for use in gas compressors, especially sliding-vane rotary compressors.
  • hydrocarbon gases include compressed natural gas, landfill gas, biogas, digester gas and wellhead gas.
  • the compressors used in such applications require lubrication to reduce friction and wear and to provide, in some designs, a sealing effect.
  • Many of the gases, depending upon their sources, contain significant quantities of impurities that can lead to aggressive environments within which the compressors have to work. For example, hydrocarbon gases frequently contain up to 20% of hydrogen sulphide and/or up to 50% carbon dioxide.
  • Compressors used to compress gases include screw, reciprocating, scroll and sliding-vane rotary compressors.
  • Lubricants used to lubricate such compressors include mineral oils, white oil, poly a olefins (PAOs) and polyalkyleneglycols (PAGs).
  • PAGs polyalkyleneglycols
  • synthetic lubricants such as PAGs have been used successfully in screw and reciprocating compressors, their use in scroll and sliding vane rotary compressors have not been successful. This is probably due to the higher loads experienced in such compressors, especially sliding-vane rotary compressors in which high loads are experienced at the tips of the vanes and especially along the sides of the vanes as they reciprocate in their guide slots. These problems are exacerbated by acidic impurities in hydrocarbon gases causing corrosion.
  • the lubricant has been typically a mineral oil.
  • An alternative lubricant that has been used, but only with certain hydrocarbons, is a poly a olefin lubricant
  • a lubricant composition for use in a sliding-vane rotary vane compressor comprises:
  • Polyalkyleneglycols and their preparation are described in Synthetic Lubricants and High-Performance Functional 2 nd Edition Edited by Leslie R Rudnick and Ronald L Shubkin, 1999, 0-8247-0194-1). Particular reference is made to Part I, Section 6 of that publication.
  • Preferred polyalkyleneglycols according to the invention have a molecular weight such that the kinematic viscosity of the polyalkyleneglycol is at least 10 cSt, more preferably 12 cSt, at the operating temperatures and pressures of the compressor.
  • preferred polyalkyleneglycols according to the invention have a kinematic viscosity of at least 10 cSt, more preferably 12 cSt at 100° C.
  • Preferred polyalkyleneglycols according to the invention have an EO:PO ratio between 2:1 and 1:2, more preferably between 1.5: 1 and 1:1.5, but especially 1:1. Furthermore, preferred polyalkyleneglycols according to the invention have been initiated with methanol or butanol.
  • Preferred polyalkyleneglycols have a viscosity index of at least 150 and, more especially, at least 200. Preferred compositions according to the invention do not have a viscosity improver present therein.
  • Preferred polyalkyleneglycols have a pour point of less than ⁇ 10° C. more preferably less than ⁇ 20° C. and particularly less than ⁇ 30° C.
  • Preferred polyalkyleneglycols have an acid number of less than 0.2 mgKOH/g.
  • the lubricant composition comprises 0.1% to 5%, more especially 0.5% to 2.5%, based on total weight of the composition of the antiwear additive.
  • Preferred antiwear additives are selected from phosphates, phosphites, thiophosphates, thiophosphites, dithiocarbomates, amine phosphates and amine phosphates and mixtures thereof.
  • suitable antiwear additives include tricresyl phosphate, aliphatic amine salt of phosphoric acid monohexyl ester, tri iso nonyl phenyl phosphite and triphenyl phosphorothionate.
  • the lubricant composition comprises 0.5% to 2.5% based on total weight the composition of the antioxidant.
  • Preferred antioxidants are selected from high temperature antioxidants, for example ashless aminic antioxidants alkylated phenyl napthylamine, alkylated diphenyl amine, polymerized hydroxyquinolines, iminodibenzyl and medium temperature antioxidants, for example gallates, sterically hindered phenolic and diphenolic antioxidants, and mixtures thereof.
  • suitable high temperature antioxidants include p,p-dioctyldiphenylamine, octyl phenyl napthylamine, polymerised 1,2-dihydro-2,2,4-trimetylquinoline.
  • suitable medium temperature antioxidants include 6-t-butylphenol, 2,6-dibutylphenol and 4-methyl-2,6-di-t-butylphenol, 2,6-di-t-butyl-alpha-dimethylamino-p-cresol, propyl gallate and 4,4′-methylene-bis(1,1-dimethyl-ethyl)-phenol.
  • Metal passivators when present in the lubricant composition to protect metal surfaces exposed to the gases that are being compressed.
  • the metals used in the construction of compressors include copper and white metals, e.g. zinc, aluminium etc, and alloys thereof and other metal alloys including lead-containing alloys.
  • the lubricant composition comprises 0.05% to 0.5% based on total weight the composition of a metal passivator.
  • suitable metal passivators include gallates, imidazole, benzimidazole, pyrazole, benzotriazole, tolutriazole, tolutriazole, 2-methyl benzimidazole, 3,5-dimethyl pyrazole and methylene bis-benzotriazole and mixtures thereof.
  • the lubricant composition comprises 0.1% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of an ashless anticorrosion additive.
  • suitable ashless anticorrosion additives includes amine napthalene sulphonates, amine phosphates, alkenyl succinic half ester, organic poycarboxylic acids and mixtures thereof.
  • amine napthalene sulphonates include amine napthalene sulphonates, amine phosphates, alkenyl succinic half ester, organic poycarboxylic acids and mixtures thereof.
  • the lubricant composition comprises 0.05% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of a vapour-phase anticorrosion additive.
  • a vapour-phase anticorrosion additive 0.05% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of a vapour-phase anticorrosion additive.
  • vapour-phase anticorrosion agents include dicarboxylic acids, silicones, siloxanes, silanes, silicates and volatile amines and mixtures thereof.
  • the dicarboxylic acids are C 7 or higher acids for example docecanedioc acid;
  • the Si-containing compounds include decamethycyclopentasiloxane, dimethylsiloxane pentamer, trimethylsilyl (2,6-di(trimethylsiloxy)phenyl) methanoate, triethoxy (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl) silane and tetraethyl silicate;
  • volatile amines include primary amines, tripropylamine and ethyl-di-2-ethylhexylamine.
  • Lubricant compositions according to the invention may also comprise one or more other lubricant additives of known functionality at levels between 0.0001 and 20%, more preferably between 0.01 and 10% more especially between 0.01 and 5%.
  • Suitable additives include extreme pressure agents, acid scavengers, foaming agents, anti-foaming agents, stabilisers, surfactants, lubricity improvers or oiliness agents and friction modifiers.
  • a sliding-vane rotary vane compressor of a lubricant composition comprising:
  • a method of lubricating a rotary vane compressor comprises utilising a lubricant composition comprising:
  • a sliding-vane rotary compressor charged with a lubricant composition comprising: a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
  • a polyalkyleneglycol base oil component said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
  • a lubricant composition for use in a sliding-vane rotary vane compressor comprising:
  • Preferred lubricant compositions according to the invention consist essentially of said polyalkyleneglycol base oil component and additives.
  • Preferred lubricant compositions according to the invention have an acid number of less than 0.5 mgKOH/g.
  • Lubricant compositions according to the invention provide good lubrication in sliding-vane rotary compressors with a variety of gases.
  • the polyalkyleneglycol has a relatively low solubility in the gases but has the ability to absorb water.
  • the low gas solubility ensures, along with the specified additives, that there is sufficient lubricant composition present to lubricate the sliding vanes and their tips and to provide a seal at the vane tips between the high and low pressure sides of each vane.
  • the ability of lubricant compositions according to the invention to absorb water that condenses from the gas as the compressor cools down as compared to any water remaining free in the compressor means that corrosion of metal components by the water is minimised or prevented.
  • Some gases, such as hydrocarbon gases, tend to be particularly wet giving rise to significant quantities of water condensing in the system to accumulate in the compressor sump.
  • the lubricant composition of the invention forms a single phase with water over the normal operating temperature of the compressor.
  • the absorbed water following start up of the compressor, does not affect the efficacy of the lubricant composition, the single phase of lubricant composition and water being pumped through the system to lubricate it.
  • the absorbed water volatilises out of the lubricant composition and is swept out of the compressor by the gas flow there through.
  • Lubricant compositions according to the invention also have the advantage of working in compressors used for pumping a variety of gases including hydrocarbon gases and air. Thus, it offers major logistical advantages in that compressor manufacturers only need stock one grade of lubricant avoiding issues of separate storage tanks for multiple grades, potentially filling compressors with the wrong lubricant etc.
  • a booster machine compresses air or gas from a pressure above atmospheric to a still higher pressure.
  • Booster machines have many uses, especially in oil and gas fields and related industries. Examples of gas boosting are the feeding of wellhead gas to pipelines or of natural gas to gas turbines. In these latter applications, the compressor is used to supply gas at the flow rate and pressure needed for continuous operation of the turbine. Even small amounts of petroleum-based lubricants carried over in the gas to the turbine may produce carbonaceous deposits in the gas inlet nozzles of the turbine restricting flow and causing flameout. The low carry over, high thermal stability and clean burning capabilities of lubricant compositions according to the invention make them particularly suited for this role. In such applications, the compression of the gas may be either single- or multistage, depending upon the pressure differentials, horsepower, and the analysis of the gas.
  • FIG. 1 shows a diametrical section through of a sliding-vane rotary compressor
  • FIG. 2 is a graphical representation of the results obtained in Example 2.
  • FIG. 3 is a graphical representation of the results obtained in Example 3.
  • FIG. 4 is a graphical representation of the results obtained in Example 5.
  • the sliding-vane rotary compressor 10 has housing 12 having a cylindrical bore 14 .
  • the low-pressure side of the compressor 10 has a gas inlet 16 leading into the bore 14 .
  • a high-pressure gas outlet 18 extends from the bore 14 at a location circumferentially remote from the gas inlet 16 .
  • a rotor 20 is mounted in the bore 14 for rotation about an axis, the axis being offset from the axis of the bore 14 such that the rotor 20 is in sliding contact with the bore 14 between the outlet 18 and the inlet 16 in the direction of rotation of the rotor 20 .
  • the rotor 20 has slots 22 that are equi-circumferentially spaced around its periphery.
  • the slots 22 extend tangentially to a circle centred on the axis of the rotor 20 but of diameter smaller than the rotor 20 whereby the slots 22 are inclined relative to the rotor 20 in the direction of rotation thereof.
  • Each slot 22 has a vane 24 mounted in it; the vanes 24 each being able to slide in its slot 22 under the influence of centrifugal force outwardly relative to the rotor 20 to engage the bore 14 .
  • the rotation of the rotor 20 causes the vanes 24 to be forced into engagement with the bore 14 and define between adjacent vanes 24 a variable gas compression volume 26 .
  • Gas entering the gas compression volumes 26 through the inlet 16 is compressed as the vanes sweep through the bore 14 , the volumes 26 decreasing in volume as the vanes 24 approach the outlet 18 .
  • a lubricant composition is present in the compressor 10 to lubricate the sides of the vanes 22 as they slide in the slots 22 .
  • the lubricant composition also lubricants and provides a satisfactory seal between the high and low pressure sides each vane 22
  • Lubricant compositions (Samples 1 and 2) according to the invention has as a base oil component a butanol-initiated polyalkylene glycol having an EO:PO ratio of 1:1 and has the additives shown in Table 1.
  • TABLE 1 Sample 1 Sample 2 0.5% 1% tricresyl phosphate, an antiwear additive. 0.05% 0.05% Irgalube 349 available from Ciba-Geigy, an antiwear and anticorrossion additive consisting of aliphatic amine salt of phophoric acid monohexyl ester.
  • Samples 1 and 2 have the properties shown in Table 2. TABLE 2 Properties Test Sample 1 Sample 2 Viscosity (cSt) at 40° C. ASTM D-445 83.3 82-84 Viscosity (cSt) at 100° C. ASTM D-445 16.0 Viscosity Index ASTM D-2270 206 Pour Point (° C.) ASTM D-97 ⁇ 38 Flash Point C)C (° C.) ASTM D-92 261 Acid Value (mgKOH/g) ASTM D-974 0.33 Copper Corrosion ASTM D-130/94 Pass - 1A Steel Corrosion ASTM D-665A Pass - No corrosion 4 Ball Wear Scar (mm) ASTM D-2783 0.73
  • Sample 3 a commercially available mineral oil formulation used in sliding-vane rotary compressors available under the trade name Hydrovane 2000 from Compair Hydrovane
  • Sample 4 a commercially available phthalate ester formulation used in sliding-vane rotary compressors available under the trade name Compair CS300 from Compair—tested.
  • the test was done by first measuring the viscosity of the neat samples. Then the viscosity of the samples following exposure to heptane was measured. The samples were exposed to heptane by pouring 40mls of the sample into a measuring cylinder and adding 4 mls, i.e.
  • heptane 10%, of heptane into the cylinder.
  • the sample and the heptane were stirred together for 5 minutes and then left to separate for one hour.
  • the heptane layer that separated from the sample was then removed and the viscosity of the sample determined.
  • the test was repeated with fresh quantities of the samples and added amounts of heptane at levels of 8 mls, i.e. 20%, 12 mls, ie 30%, and 16 mls, i.e. 40%.
  • the viscosity of each of the tested samples was measured using the ASTM D445 method at 40° C.
  • Compressed dry nitrogen was passed in sequence through the tubes containing Samples 1 and 4 and through the respective tubes containing water at a rate of 1 litre/hour. The test was carried out at 175° C. for 168 hours.
  • the samples were tested for kinematic viscosity @ 40° C. and Acid Value (Neutralisation number) and were then compared to the initially-measured values of those parameters for evaluation of the performance of the lubricant compositions.
  • the acid value measurement was a combination of acid values of both the Samples 1 and 4 and the respective water samples associated therewith to allow for the fact that low molecular weight acid from the decomposition of the lubricant compositions were volatilised from the Samples 1 and 4.
  • Compair-Hydrovane air compressors were charged with lubricant compositions of Samples 1, 3 and 4 and Samples 5 and 6 which were respectively a PAO available from Mobil and phthalate ester formulation used in sliding-vane rotary compressors available under the trade name Compair CS500 from Compair.
  • the compressors were run continuously apart from being stopped at intervals to allow sampling of the lubricant compositions.
  • the samples of the compositions were analysed for iron content, the amount of iron content being indicative of wear in the compressors.
  • the results are plotted in FIG. 4 .
  • the normal oil change interval for mineral oil is indicated on the graph as 2000 hours. Although the graph only goes up to 2500 hours, the tests were in fact run for a total of 4000 hours before being stopped.
  • Sample 1 in accordance with the invention, performed significantly better than the lubricant compositions normally used for this application.
  • compressors used in well-head applications including those involving aggressive (sour) gas compositions, have exceeded 8000 hours service.
  • compressors have exceeded 10000 hours service.
  • Lubricant compositions according to the invention permit the lubricant in a compressor to be changed at the compressor service intervals, e.g. one year, rather than at an oil service interval of say 2000 hours that was necessary using existing lubricant compositions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

A lubricant composition for use in a sliding-vane rotary vane compressor has a polyalkyleneglycol base oil component and includes antiwear additives, antioxidants and metal passivators and, optionally, anticorrosion agents and vapour phase anticorrosion agents. The polyalkyleneglycol base oil component is a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3, preferably between 1.5:1 and 1:1.5, and having been initiated with a compound having five carbon atoms or less.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application is a continuation application based on International Application No. PCT/GB02/01073, filed Mar. 8, 2002, which designates the United States. This application, in its entirety, is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to lubricant compositions for use in gas compressors, especially sliding-vane rotary compressors.
  • BACKGROUND OF THE INVENTION
  • It is necessary to compress air, carbon dioxide, hydrogen, helium and hydrocarbon gases either for direct use or for transport either in tanks or through pipelines in many applications. Such hydrocarbon gases include compressed natural gas, landfill gas, biogas, digester gas and wellhead gas. The compressors used in such applications, in having moving parts, require lubrication to reduce friction and wear and to provide, in some designs, a sealing effect. Many of the gases, depending upon their sources, contain significant quantities of impurities that can lead to aggressive environments within which the compressors have to work. For example, hydrocarbon gases frequently contain up to 20% of hydrogen sulphide and/or up to 50% carbon dioxide.
  • Compressors used to compress gases include screw, reciprocating, scroll and sliding-vane rotary compressors. Lubricants used to lubricate such compressors include mineral oils, white oil, poly a olefins (PAOs) and polyalkyleneglycols (PAGs). Although synthetic lubricants such as PAGs have been used successfully in screw and reciprocating compressors, their use in scroll and sliding vane rotary compressors have not been successful. This is probably due to the higher loads experienced in such compressors, especially sliding-vane rotary compressors in which high loads are experienced at the tips of the vanes and especially along the sides of the vanes as they reciprocate in their guide slots. These problems are exacerbated by acidic impurities in hydrocarbon gases causing corrosion.
  • In respect of sliding-vane rotary compressors, the lubricant has been typically a mineral oil. However, owing to dilution of the lubricant by the gas being compressed, especially in the case of hydrocarbon gases, the effectiveness of lubrication is limited and the compressor life is relatively short, e.g. 2000 hours. An alternative lubricant that has been used, but only with certain hydrocarbons, is a poly a olefin lubricant
  • Clearly, logistically it would be advantageous to have a lubricant composition capable of being used in compressors for a variety of gas applications.
  • It is an object of the present invention to provide a lubricant composition suitable for use in sliding-vane rotary compressors.
  • According to the present invention, a lubricant composition for use in a sliding-vane rotary vane compressor comprises:
      • a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
      • b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
      • c) 0.05% to 5% based on total weight the composition of an antioxidant;
      • d) 0% to 1% based on total weight the composition of a metal passivator;
      • e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
      • f) 0% to 2% based on total weight the composition of a vapour phase anticorrosion agent.
  • Polyalkyleneglycols and their preparation are described in Synthetic Lubricants and High-Performance Functional 2nd Edition Edited by Leslie R Rudnick and Ronald L Shubkin, 1999, 0-8247-0194-1). Particular reference is made to Part I, Section 6 of that publication.
  • Preferred polyalkyleneglycols according to the invention have a molecular weight such that the kinematic viscosity of the polyalkyleneglycol is at least 10 cSt, more preferably 12 cSt, at the operating temperatures and pressures of the compressor. In particular, preferred polyalkyleneglycols according to the invention have a kinematic viscosity of at least 10 cSt, more preferably 12 cSt at 100° C.
  • Preferred polyalkyleneglycols according to the invention have an EO:PO ratio between 2:1 and 1:2, more preferably between 1.5: 1 and 1:1.5, but especially 1:1. Furthermore, preferred polyalkyleneglycols according to the invention have been initiated with methanol or butanol.
  • Preferred polyalkyleneglycols have a viscosity index of at least 150 and, more especially, at least 200. Preferred compositions according to the invention do not have a viscosity improver present therein.
  • Preferred polyalkyleneglycols have a pour point of less than −10° C. more preferably less than −20° C. and particularly less than −30° C.
  • Preferred polyalkyleneglycols have an acid number of less than 0.2 mgKOH/g.
  • Preferably, the lubricant composition comprises 0.1% to 5%, more especially 0.5% to 2.5%, based on total weight of the composition of the antiwear additive.
  • Preferred antiwear additives are selected from phosphates, phosphites, thiophosphates, thiophosphites, dithiocarbomates, amine phosphates and amine phosphates and mixtures thereof. Examples of suitable antiwear additives include tricresyl phosphate, aliphatic amine salt of phosphoric acid monohexyl ester, tri iso nonyl phenyl phosphite and triphenyl phosphorothionate.
  • Preferably, the lubricant composition comprises 0.5% to 2.5% based on total weight the composition of the antioxidant.
  • Preferred antioxidants are selected from high temperature antioxidants, for example ashless aminic antioxidants alkylated phenyl napthylamine, alkylated diphenyl amine, polymerized hydroxyquinolines, iminodibenzyl and medium temperature antioxidants, for example gallates, sterically hindered phenolic and diphenolic antioxidants, and mixtures thereof. Examples of suitable high temperature antioxidants include p,p-dioctyldiphenylamine, octyl phenyl napthylamine, polymerised 1,2-dihydro-2,2,4-trimetylquinoline. Examples of suitable medium temperature antioxidants include 6-t-butylphenol, 2,6-dibutylphenol and 4-methyl-2,6-di-t-butylphenol, 2,6-di-t-butyl-alpha-dimethylamino-p-cresol, propyl gallate and 4,4′-methylene-bis(1,1-dimethyl-ethyl)-phenol.
  • Metal passivators when present in the lubricant composition to protect metal surfaces exposed to the gases that are being compressed. The metals used in the construction of compressors include copper and white metals, e.g. zinc, aluminium etc, and alloys thereof and other metal alloys including lead-containing alloys.
  • Preferably, the lubricant composition comprises 0.05% to 0.5% based on total weight the composition of a metal passivator. Examples of suitable metal passivators include gallates, imidazole, benzimidazole, pyrazole, benzotriazole, tolutriazole, tolutriazole, 2-methyl benzimidazole, 3,5-dimethyl pyrazole and methylene bis-benzotriazole and mixtures thereof.
  • Preferably, in the absence of other measures, such as material selection, to prevent corrosion, the lubricant composition comprises 0.1% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of an ashless anticorrosion additive. Example of suitable ashless anticorrosion additives includes amine napthalene sulphonates, amine phosphates, alkenyl succinic half ester, organic poycarboxylic acids and mixtures thereof. In particular ethylene diamine dinonylnapthalene sulphonate, diethylenetriamine dinonylnapthalene sulphonate andaliphatic amine salt of phosphoric acid monohexyl ester and mixtures thereof.
  • Preferably, in the absence of other measures, such as material selection, to prevent corrosion, and particularly for gas applications that contain acidic impurities (sour gas) the lubricant composition comprises 0.05% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of a vapour-phase anticorrosion additive. Although parts of the compressor are submerged under the lubricant composition, there are parts of the compressor and associated pipe-work etc that are exposed to the gases and any aggressive impurities they carry. Vapour-phase anticorrosion agents are volatilised from the lubricant composition at the operating temperatures of the compressor and coat other exposed surfaces to protect them from attack. Examples of suitable vapour-phase anticorrosion agents include dicarboxylic acids, silicones, siloxanes, silanes, silicates and volatile amines and mixtures thereof. In particular, the dicarboxylic acids are C7 or higher acids for example docecanedioc acid; and the Si-containing compounds include decamethycyclopentasiloxane, dimethylsiloxane pentamer, trimethylsilyl (2,6-di(trimethylsiloxy)phenyl) methanoate, triethoxy (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl) silane and tetraethyl silicate; and volatile amines include primary amines, tripropylamine and ethyl-di-2-ethylhexylamine.
  • Lubricant compositions according to the invention may also comprise one or more other lubricant additives of known functionality at levels between 0.0001 and 20%, more preferably between 0.01 and 10% more especially between 0.01 and 5%. Suitable additives include extreme pressure agents, acid scavengers, foaming agents, anti-foaming agents, stabilisers, surfactants, lubricity improvers or oiliness agents and friction modifiers.
  • According to another aspect of the invention, the use in a sliding-vane rotary vane compressor of a lubricant composition comprising:
      • a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
      • b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
      • c) 0.05% to 5% based on total weight the composition of an antioxidant;
      • d) 0% to 1% based on total weight the composition of a metal passivator;
      • e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
      • f) 0% to 2% based on total weight the composition of a vapour-phase anticorrosion agent.
  • According to yet another aspect of the invention, a method of lubricating a rotary vane compressor comprises utilising a lubricant composition comprising:
      • a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
      • b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
      • c) 0.05% to 5% based on total weight the composition of an antioxidant;
      • d) 0% to 1% based on total weight the composition of a metal passivator;
      • e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
      • f) 0% to 2% based on total weight the composition of a vapour-phase anticorrosion agent
  • According to a further aspect of the invention, a sliding-vane rotary compressor charged with a lubricant composition comprising: a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
  • b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
  • c) 0.05% to 5% based on total weight the composition of an antioxidant;
  • d) 0% to 1% based on total weight the composition of a metal passivator;
  • e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
  • f) 0% to 2% based on total weight the composition of a vapour-phase anticorrosion additive.
  • In a particularly preferred embodiment of the invention, there is provide a lubricant composition for use in a sliding-vane rotary vane compressor comprising:
      • a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 1.5:1 and 1:1.5 and having been initiated by methanol or butanol and having a kinematic viscosity of at least 12 cSt at 100° C.;
      • b) 0.1% to 5% based on total weight of the composition of an antiwear additive;
      • c) 0.5% to 2.5% based on total weight the composition of an antioxidant;
      • d) 0.1% to 0.5% based on total weight the composition of a metal passivator;
      • e) 0% to 2% based on total weight the composition of an anticorrosion additive; and
      • f) 0% to 0.5% based on total weight the composition of a vapour-phase anticorrosion additive.
  • Preferred lubricant compositions according to the invention consist essentially of said polyalkyleneglycol base oil component and additives.
  • Preferred lubricant compositions according to the invention have an acid number of less than 0.5 mgKOH/g.
  • Lubricant compositions according to the invention provide good lubrication in sliding-vane rotary compressors with a variety of gases. In particular, the polyalkyleneglycol has a relatively low solubility in the gases but has the ability to absorb water. The low gas solubility ensures, along with the specified additives, that there is sufficient lubricant composition present to lubricate the sliding vanes and their tips and to provide a seal at the vane tips between the high and low pressure sides of each vane.
  • As sliding-vane compressors may have significant down time, the ability of lubricant compositions according to the invention to absorb water that condenses from the gas as the compressor cools down as compared to any water remaining free in the compressor means that corrosion of metal components by the water is minimised or prevented. Some gases, such as hydrocarbon gases, tend to be particularly wet giving rise to significant quantities of water condensing in the system to accumulate in the compressor sump. The lubricant composition of the invention forms a single phase with water over the normal operating temperature of the compressor. The absorbed water, following start up of the compressor, does not affect the efficacy of the lubricant composition, the single phase of lubricant composition and water being pumped through the system to lubricate it. As the compressor heats up to operating temperature, the absorbed water volatilises out of the lubricant composition and is swept out of the compressor by the gas flow there through.
  • This is in contrast to mineral oil and PAO lubricants that are immiscible with water and, therefore, allow free water to accumulate in the compressor giving rise to corrosion problems, especially in acidic environments, and to problems of water instead of lubricant being pumped from the sump through the system on start up of the compressor, the water not being effective in lubricating the compressor.
  • Lubricant compositions according to the invention also have the advantage of working in compressors used for pumping a variety of gases including hydrocarbon gases and air. Thus, it offers major logistical advantages in that compressor manufacturers only need stock one grade of lubricant avoiding issues of separate storage tanks for multiple grades, potentially filling compressors with the wrong lubricant etc.
  • The low cost of maintenance of sliding-vane compressors make them particularly useful in gas-boosting applications, particularly for micro-turbine applications.
  • A booster machine compresses air or gas from a pressure above atmospheric to a still higher pressure. Booster machines have many uses, especially in oil and gas fields and related industries. Examples of gas boosting are the feeding of wellhead gas to pipelines or of natural gas to gas turbines. In these latter applications, the compressor is used to supply gas at the flow rate and pressure needed for continuous operation of the turbine. Even small amounts of petroleum-based lubricants carried over in the gas to the turbine may produce carbonaceous deposits in the gas inlet nozzles of the turbine restricting flow and causing flameout. The low carry over, high thermal stability and clean burning capabilities of lubricant compositions according to the invention make them particularly suited for this role. In such applications, the compression of the gas may be either single- or multistage, depending upon the pressure differentials, horsepower, and the analysis of the gas.
  • The invention will now be described further by way of example only with reference to the accompanying drawings and the following Examples.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a diametrical section through of a sliding-vane rotary compressor; and
  • FIG. 2 is a graphical representation of the results obtained in Example 2;
  • FIG. 3 is a graphical representation of the results obtained in Example 3; and
  • FIG. 4 is a graphical representation of the results obtained in Example 5.
  • DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, the sliding-vane rotary compressor 10 has housing 12 having a cylindrical bore 14. The low-pressure side of the compressor 10 has a gas inlet 16 leading into the bore 14. A high-pressure gas outlet 18 extends from the bore 14 at a location circumferentially remote from the gas inlet 16. A rotor 20 is mounted in the bore 14 for rotation about an axis, the axis being offset from the axis of the bore 14 such that the rotor 20 is in sliding contact with the bore 14 between the outlet 18 and the inlet 16 in the direction of rotation of the rotor 20.
  • The rotor 20 has slots 22 that are equi-circumferentially spaced around its periphery. The slots 22 extend tangentially to a circle centred on the axis of the rotor 20 but of diameter smaller than the rotor 20 whereby the slots 22 are inclined relative to the rotor 20 in the direction of rotation thereof. Each slot 22 has a vane 24 mounted in it; the vanes 24 each being able to slide in its slot 22 under the influence of centrifugal force outwardly relative to the rotor 20 to engage the bore 14.
  • In operation, the rotation of the rotor 20 causes the vanes 24 to be forced into engagement with the bore 14 and define between adjacent vanes 24 a variable gas compression volume 26. Gas entering the gas compression volumes 26 through the inlet 16 is compressed as the vanes sweep through the bore 14, the volumes 26 decreasing in volume as the vanes 24 approach the outlet 18.
  • A lubricant composition is present in the compressor 10 to lubricate the sides of the vanes 22 as they slide in the slots 22. The lubricant composition also lubricants and provides a satisfactory seal between the high and low pressure sides each vane 22
  • EXAMPLE 1
  • Lubricant compositions (Samples 1 and 2) according to the invention has as a base oil component a butanol-initiated polyalkylene glycol having an EO:PO ratio of 1:1 and has the additives shown in Table 1.
    TABLE 1
    Sample 1 Sample 2
    0.5%   1% tricresyl phosphate, an antiwear additive.
    0.05%  0.05%  Irgalube 349 available from Ciba-Geigy, an
    antiwear and anticorrossion additive consisting
    of aliphatic amine salt of phophoric acid
    monohexyl ester.
    0.3% Oloa 233FA available from Chevron, a
    dicarboxylic acid anticorrosion additive
    10 ppm Tego 793 available from Goldschmidt, an
    antifoam additive consisting of a modified
    poyether-polysiloxane
    0.3% Irgacor L12, available from Ciba, an alkenyl
    succinic acid half ester antioxidant additive.
    0.5% Vanlube RD available from Vanderbilt, an
    antioxidant additive consisting of polymerised
    1,2-dihydro-2,2,4-trimetylquinoline
    0.5% 3,5-dibutyl-4-hydroxytoluene, an antioxidant.
    0.5% Ethanox 702 available from Albemarle, an
    antioxidant additive consisting essentially of
    4,4′-methylene-bis(1,1-dimethyl-ethyl)-phenol

    All % shown in the table are weight % based on the total composition.
  • Samples 1 and 2 have the properties shown in Table 2.
    TABLE 2
    Properties Test Sample 1 Sample 2
    Viscosity (cSt) at 40° C. ASTM D-445 83.3 82-84
    Viscosity (cSt) at 100° C. ASTM D-445 16.0
    Viscosity Index ASTM D-2270 206
    Pour Point (° C.) ASTM D-97 −38
    Flash Point C)C (° C.) ASTM D-92 261
    Acid Value (mgKOH/g) ASTM D-974 0.33
    Copper Corrosion ASTM D-130/94 Pass - 1A
    Steel Corrosion ASTM D-665A Pass - No
    corrosion
    4 Ball Wear Scar (mm) ASTM D-2783 0.73
  • EXAMPLE 2
  • The effect of a hydrocarbon, e.g. heptane, on the viscosity of Sample 1 and of comparative samples, namely Sample 3—a commercially available mineral oil formulation used in sliding-vane rotary compressors available under the trade name Hydrovane 2000 from Compair Hydrovane—and Sample 4—a commercially available phthalate ester formulation used in sliding-vane rotary compressors available under the trade name Compair CS300 from Compair—tested. The test was done by first measuring the viscosity of the neat samples. Then the viscosity of the samples following exposure to heptane was measured. The samples were exposed to heptane by pouring 40mls of the sample into a measuring cylinder and adding 4 mls, i.e. 10%, of heptane into the cylinder. The sample and the heptane were stirred together for 5 minutes and then left to separate for one hour. The heptane layer that separated from the sample was then removed and the viscosity of the sample determined. The test was repeated with fresh quantities of the samples and added amounts of heptane at levels of 8 mls, i.e. 20%, 12 mls, ie 30%, and 16 mls, i.e. 40%.
  • The viscosity of each of the tested samples was measured using the ASTM D445 method at 40° C.
  • The results are shown in Table 3 and are shown in graphical form in FIG. 2. As can be seen, the viscosity of Sample 1 remains significantly higher at high hydrocarbon loading as compared to the viscosity of the commercially- available Samples 3 and 4 and, consequently, the lubricity effect of Sample 1 will be higher than that of Samples 3 and 4 under those high loading conditions.
    TABLE 3
    Amount of Heptane Sample 1 Sample 3 Sample 4
    0 81 130.52 100.8
    10% 36.6 43.9 24.3
    20% 18.9 19.5 9.61
    30% 18.9 9.91 4.69
    40% 18.9 5.79 2.45
  • EXAMPLE 3
  • The ability of Samples 1 and 3 to resist removal from metal surfaces was by hydrocarbon was tested. In order to determine the comparative resistance of lubricants to be washed off by liquid heptanes a simple laboratory method has been developed. Five numbered steel plates, per sample, are washed thoroughly in white spirit and acetone, and then hung up until dry. Each plate is weighed to four decimal places with out being touched. The clean, dry plates are immersed into the sample, up to a marked line and hung up again. After an hour, they were re-weighed. From the results, the mass of lubricant left on the plates after each wash can be calculated and a graph plotted. The coupon was then dipped into heptane, removed and, after one hour, re-weighed. This was repeated four times. The process was repeated with a fresh coupon-using Sample 2.
  • The results are shown in Table 4 and are shown in graphical form in FIG. 3. As can be seen, the amount of Sample 1 and hence the thickness of the remaining lubricant composition on the coupon is significantly higher than for Sample 3. This is particularly important at start up of a compressor, especially if it has been standing unused for some time. The retention of a film of lubricant composition ensures the surfaces to be lubricated are lubricated and not metal to metal contact.
    TABLE 4
    Sample 1 Sample 3
    No. of Times Weight of Oil Weight of Oil
    Dipped on Coupon (g) on Coupon (g)
    0 0.1175 0.1042
    1 0.0442 0.0361
    2 0.0357 0.0223
    3 0.0325 0.0167
    4 0.03 0.01
    5 0.025 0.005
  • EXAMPLE 4
  • To check the potential of lubricant compositions for thermal decomposition under operating conditions, equal quantities of Samples 1 and 4 were placed in glass tubes within an aluminium-heating block. A steel coupon (76 mm by 13 mm by 3 mm in size) was placed in each tube containing Samples 1 and 4. The glass tubes were connected via silicone tubing to respective similar tubes containing distilled water that were situated outside the heating block. The function of the water in the absorption tubes was to absorb any decomposition product volatilised from the samples of lubricant composition.
  • Compressed dry nitrogen was passed in sequence through the tubes containing Samples 1 and 4 and through the respective tubes containing water at a rate of 1 litre/hour. The test was carried out at 175° C. for 168 hours.
  • After the test duration, the samples were tested for kinematic viscosity @ 40° C. and Acid Value (Neutralisation number) and were then compared to the initially-measured values of those parameters for evaluation of the performance of the lubricant compositions. The acid value measurement was a combination of acid values of both the Samples 1 and 4 and the respective water samples associated therewith to allow for the fact that low molecular weight acid from the decomposition of the lubricant compositions were volatilised from the Samples 1 and 4.
  • The results are shown in:
    TABLE 5
    Lubricant Sample 1 Sample 4
    Viscosity at 40° C. 79.3 100.8
    In cSt
    % Change in viscosity at end 0.9 4.2
    of test
    Initial Acid Value in 0.32 0.09
    mgKOH/g
    Change in Acid Value in 0.02 0.49
    mgKOH/g

    Sample 1 has a much lower change in viscosity and acid value as compared to Sample 4.
  • EXAMPLE 5
  • Compair-Hydrovane air compressors were charged with lubricant compositions of Samples 1, 3 and 4 and Samples 5 and 6 which were respectively a PAO available from Mobil and phthalate ester formulation used in sliding-vane rotary compressors available under the trade name Compair CS500 from Compair. The compressors were run continuously apart from being stopped at intervals to allow sampling of the lubricant compositions. The samples of the compositions were analysed for iron content, the amount of iron content being indicative of wear in the compressors. The results are plotted in FIG. 4. The normal oil change interval for mineral oil is indicated on the graph as 2000 hours. Although the graph only goes up to 2500 hours, the tests were in fact run for a total of 4000 hours before being stopped.
  • As can be seen from FIG. 4, Sample 1, in accordance with the invention, performed significantly better than the lubricant compositions normally used for this application.
  • EXAMPLE 6
  • In field tests using a lubricant composition having a specification based on Sample 1, compressors used in well-head applications, including those involving aggressive (sour) gas compositions, have exceeded 8000 hours service. Similarly, in microturbine applications, compressors have exceeded 10000 hours service.
  • Lubricant compositions according to the invention permit the lubricant in a compressor to be changed at the compressor service intervals, e.g. one year, rather than at an oil service interval of say 2000 hours that was necessary using existing lubricant compositions.

Claims (27)

1. A lubricant composition for use in a sliding-vane rotary vane compressor comprising:
a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 3:1 and 1:3 and having been initiated with a compound having five carbon atoms or less;
b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
c) 0.05% to 5% based on total weight the composition of an antioxidant;
d) 0% to 1% based on total weight the composition of a metal passivator;
e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
f) 0% to 2% based on total weight the composition of a vapour phase anticorrosion agent.
2. A lubricant composition according to claim 1, in which the polyalkyleneglycol base oil component has a molecular weight such that the kinematic viscosity of the polyalkyleneglycol is at least 10 cSt, more preferably 12 cSt, at the operating temperatures and pressures of the compressor.
3. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has a kinematic viscosity of at least 10 cSt, more preferably 12 cSt at 100° C.
4. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has an EO:PO ratio between 2:1 and 1:2, more preferably between 1.5:1 and 1:1.5, but especially 1:1.
5. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has been initiated with methanol or butanol.
6. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has a viscosity index of at least 150 and, more especially, at least 200.
7. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has a pour point of less then −10° C. more preferably less than −20° C. and particularly less than −30° C.
8. A lubricant composition according to claim 1 or claim 2, in which the polyalkyleneglycol base oil component has an acid number of less than 0.2 mgKOH/g.
9. A lubricant composition according to claim 1 or claim 2, which is substantially free of viscosity improvers.
10. A lubricant composition according to claim 1 or claim 2, which comprises 0.1% to 5%, more especially 0.5% to 2.5%, based on total weight of the composition of the antiwear additive.
11. A lubricant composition according to claim 1 or claim 2, in which the antiwear additive is selected from phosphates, phosphites, thiophosphates, thiophosphites, dithiocarbomates, amine phosphates and amine phosphates and mixtures thereof.
12. A lubricant composition according to claim 1 or claim 2, which comprise 0.5% to 2.5% based on total weight the composition of the antioxidant.
13. A lubricant composition according to claim 1, in which the antioxidant is selected from high temperature antioxidants and low temperature antioxidants and mixtures thereof.
14. A lubricant composition according to claim 13, in which the high temperature antioxidant is selected from ashless aminic antioxidants alkylated phenyl naphthylamine, alkylated diphenyl amine, polymerized hydroxyquinolines, iminodibenzyl or mixtures thereof.
15. A lubricant composition according to claim 13, in which the low temperature antioxidant is selected from gallates, sterically hindered phenolic and diphenolic antioxidant or mixtures thereof.
16. A lubricant composition according to claim 1 or claim 2, which comprises 0.1% to 0.5% based on total weight the composition of the metal passivator.
17. A lubricant composition according to claim 1 or claim 2, in which the metal passivator is selected from gallates, imidazole, benzimidazole, pyrazole, benzotriazole, tolutriazole, tolutriazole, 2-methyl benzimidazole, 3,5-dimethyl pyrazole, methylene bis-benzotriazole or mixtures thereof.
18. A lubricant composition according to claim 1 or claim 2, which comprises 0.1% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of the anticorrosion additive.
19. A lubricant composition according to claim 1 or claim 2, in which the anticorrosion additive is an ashless anticorrosion additive.
20. A lubricant composition according to claim 1 or claim 2, in which the anticorrosion additive is selected from amine naphthalene sulphonates, amine phosphates, alkenyl succinic half ester, organic polycarboxylic acids or mixtures thereof.
21. A lubricant composition according to claim 1 or claim 2, which comprises 0.05% to 2%, more especially 0.1% to 0.5%, based on total weight the composition of the vapour-phase anticorrosion additive.
22. A lubricant composition according to claim 1 or claim 2, in which the vapour-phase anticorrosion additive is selected from dicarboxylic acids, silicones, siloxanes, silanes, silicates, volatile amines or mixtures thereof.
23. A lubricant composition according to claim 1 or claim 2 which has an acid number of less than 0.5mgKOH/g.
24. A lubricant composition for use in a sliding-vane rotary vane compressor comprising:
a) a polyalkyleneglycol base oil component, said polyalkyleneglycol comprising a random copolymer of ethylene oxide (EO) and propylene oxide (PO) having an EO:PO ratio between 1.5:1 and 1:1.5 and having been initiated by methanol or butanol and having a kinematic viscosity of at least 12 cSt at 100° C.;
b) 0.01% to 10% based on total weight of the composition of an antiwear additive;
c) 0.05% to 5% based on total weight the composition of an antioxidant;
d) 0.1% to 1% based on total weight the composition of a metal passivator,
e) 0% to 2% based on total weight the composition of an anticorrosion agent; and
f) 0% to 2% based on total weight the composition of a vapour phase anticorrosion agent.
25. The use in a sliding-vane rotary vane compressor of a lubricant composition as defined in claim 1 or claim 24.
26. A method of lubricating a rotary vane compressor comprises utilising a lubricant composition as defined in claim 1 or claim 24.
27. A sliding-vane rotary compressor charged with a lubricant composition as defined in claim 1 or claim 24.
US10/669,720 2001-03-26 2003-09-25 Compressor lubricant compositions Abandoned US20050250654A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0107502.7 2001-03-26
GBGB0107502.7A GB0107502D0 (en) 2001-03-26 2001-03-26 Lubricant compositions
PCT/GB2002/001073 WO2002077135A1 (en) 2001-03-26 2002-03-08 Compressor lubricant compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/001073 Continuation WO2002077135A1 (en) 2001-03-26 2002-03-08 Compressor lubricant compositions

Publications (1)

Publication Number Publication Date
US20050250654A1 true US20050250654A1 (en) 2005-11-10

Family

ID=9911554

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/669,720 Abandoned US20050250654A1 (en) 2001-03-26 2003-09-25 Compressor lubricant compositions

Country Status (5)

Country Link
US (1) US20050250654A1 (en)
EP (1) EP1373444A1 (en)
JP (1) JP2004524414A (en)
GB (1) GB0107502D0 (en)
WO (1) WO2002077135A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004606A1 (en) * 2005-07-01 2007-01-04 Enbio Industries, Inc. Environmentally compatible hydraulic fluid
US20100204075A1 (en) * 2005-07-01 2010-08-12 Enbio Industries, Inc. Environmentally compatible hydraulic fluid
WO2012129056A1 (en) * 2011-03-23 2012-09-27 Dow Global Technologies Llc Polyalkylene glycol based heat transfer fluids and monofluid engine oils
US20130270049A1 (en) * 2012-03-23 2013-10-17 Basf Se Fluid composition for a vibration dampener
CN103842814A (en) * 2011-10-07 2014-06-04 国际壳牌研究有限公司 Method of easily identifying lubricating oils, identification kit and lubricating oils that can be easily identified
US20150051130A1 (en) * 2013-08-15 2015-02-19 John D. Blizzard Heat pump additive providing enhanced efficiency
WO2018054534A1 (en) * 2016-09-21 2018-03-29 Klüber Lubrication München Se & Co. Kg Use of lubricants on the basis of water-soluble, high-viscosity polyethylene glycols
US11421178B2 (en) 2018-10-17 2022-08-23 Idemitsu Kosan Co., Ltd. Lubricating oil composition for air compressors, air compressor lubricating method, and air compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732386B2 (en) * 2005-10-25 2010-06-08 Chevron U.S.A. Inc. Rust inhibitor for highly paraffinic lubricating base oil
EP2142624B1 (en) 2007-04-25 2017-09-06 Dow Global Technologies LLC Lubricant blend composition
RU2744972C2 (en) * 2016-06-02 2021-03-17 Басф Се Lubricant composition
CN109804054B (en) * 2016-09-23 2022-04-05 巴斯夫欧洲公司 Lubricant composition
CN111575090A (en) * 2020-05-15 2020-08-25 中国石油化工股份有限公司 Air compressor oil composition and application thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267064A (en) * 1978-10-25 1981-05-12 Nippon Oil Company, Ltd. Refrigeration lubricating oil compositions
US4755316A (en) * 1987-10-23 1988-07-05 Allied-Signal Inc. Refrigeration lubricants
US5156759A (en) * 1991-05-13 1992-10-20 Texaco Inc. High temperature compressor oil
US5370812A (en) * 1993-06-28 1994-12-06 Union Carbide Chemicals & Plastics Technology Corporation Lubricant compositions for refrigerators comprising polyalkylene glycol and a hydrocarbon solvent
US5413728A (en) * 1992-09-03 1995-05-09 Rhein Chemie Rheinau Gmbh Process for operating a compressor heat pump or a compressor refrigeration system in which ammonia is used as the refrigerant
US5543068A (en) * 1988-04-08 1996-08-06 Japan Energy Corporation Lubricating oils for flon compressors, compositions adapted for flon compressors and composed of mixtures of said lubricating oils and flon, and process for lubricating flon compressor by using said lubricating oils
US5595678A (en) * 1994-08-30 1997-01-21 Cpi Engineering Services, Inc. Lubricant composition for ammonia refrigerants used in compression refrigeration systems
US5651257A (en) * 1992-11-27 1997-07-29 Japan Energy Corporation & Mayekawa Manufacturing Co. Ltd. Working fluid composition and method for lubricating ammonia refrigerating machine
US5688433A (en) * 1992-11-27 1997-11-18 Japan Energy Corporation Ammonia refrigerating machine, working fluid composition and method
US5711896A (en) * 1993-11-05 1998-01-27 Japan Energy Corporation Polyoxyalkylene glycol lubricating oils, working fluid compositions and methods of lubricating
US5957676A (en) * 1996-06-19 1999-09-28 Atlas Copco Airpower Naamloze Vennootschap Rotary compressor with water miscible lubricant
US6127324A (en) * 1999-02-19 2000-10-03 The Lubrizol Corporation Lubricating composition containing a blend of a polyalkylene glycol and an alkyl aromatic and process of lubricating
US6568195B2 (en) * 2000-01-12 2003-05-27 Asahi Denka Kogyo K.K. Ammonia refrigerating apparatus
US6656891B1 (en) * 1998-05-13 2003-12-02 Idemitsu Kosan Co., Ltd. Refrigerating machine oil composition
US6875730B2 (en) * 2000-01-21 2005-04-05 Asahi Denka Kogyo K.K. Lubricant for refrigerating machine employing ammonia refrigerant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851144A (en) * 1989-01-10 1989-07-25 The Dow Chemical Company Lubricants for refrigeration compressors
US4971712A (en) * 1989-06-02 1990-11-20 E. I. Du Pont De Nemours And Company Compositions for compression refrigeration and methods of using them
DE69004083D1 (en) * 1990-06-08 1993-11-25 Ethyl Petroleum Additives Ltd Polyalkylene glycol lubricant compositions.
KR100318110B1 (en) * 1993-03-25 2002-07-31 아사히 덴카 고교 가부시키가이샤 Refrigerant lubricants and refrigerant compositions using them
DE4404804A1 (en) * 1994-02-16 1995-08-17 Hoechst Ag Use of poly:oxyalkylene glycol(s)
TW340870B (en) * 1995-04-07 1998-09-21 Nippon Nogen Co Ltd Lubricating oil additive, lubricating oil and working fluid for refrigerators
JP2000104085A (en) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimetyl ether as refrigerant

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267064A (en) * 1978-10-25 1981-05-12 Nippon Oil Company, Ltd. Refrigeration lubricating oil compositions
US4755316A (en) * 1987-10-23 1988-07-05 Allied-Signal Inc. Refrigeration lubricants
US5543068A (en) * 1988-04-08 1996-08-06 Japan Energy Corporation Lubricating oils for flon compressors, compositions adapted for flon compressors and composed of mixtures of said lubricating oils and flon, and process for lubricating flon compressor by using said lubricating oils
US5156759A (en) * 1991-05-13 1992-10-20 Texaco Inc. High temperature compressor oil
US5413728A (en) * 1992-09-03 1995-05-09 Rhein Chemie Rheinau Gmbh Process for operating a compressor heat pump or a compressor refrigeration system in which ammonia is used as the refrigerant
US5688433A (en) * 1992-11-27 1997-11-18 Japan Energy Corporation Ammonia refrigerating machine, working fluid composition and method
US5651257A (en) * 1992-11-27 1997-07-29 Japan Energy Corporation & Mayekawa Manufacturing Co. Ltd. Working fluid composition and method for lubricating ammonia refrigerating machine
US5370812A (en) * 1993-06-28 1994-12-06 Union Carbide Chemicals & Plastics Technology Corporation Lubricant compositions for refrigerators comprising polyalkylene glycol and a hydrocarbon solvent
US5711896A (en) * 1993-11-05 1998-01-27 Japan Energy Corporation Polyoxyalkylene glycol lubricating oils, working fluid compositions and methods of lubricating
US5595678A (en) * 1994-08-30 1997-01-21 Cpi Engineering Services, Inc. Lubricant composition for ammonia refrigerants used in compression refrigeration systems
US5957676A (en) * 1996-06-19 1999-09-28 Atlas Copco Airpower Naamloze Vennootschap Rotary compressor with water miscible lubricant
US6656891B1 (en) * 1998-05-13 2003-12-02 Idemitsu Kosan Co., Ltd. Refrigerating machine oil composition
US6127324A (en) * 1999-02-19 2000-10-03 The Lubrizol Corporation Lubricating composition containing a blend of a polyalkylene glycol and an alkyl aromatic and process of lubricating
US6568195B2 (en) * 2000-01-12 2003-05-27 Asahi Denka Kogyo K.K. Ammonia refrigerating apparatus
US6875730B2 (en) * 2000-01-21 2005-04-05 Asahi Denka Kogyo K.K. Lubricant for refrigerating machine employing ammonia refrigerant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004606A1 (en) * 2005-07-01 2007-01-04 Enbio Industries, Inc. Environmentally compatible hydraulic fluid
US7741259B2 (en) * 2005-07-01 2010-06-22 Enbio Industries, Inc. Environmentally compatible hydraulic fluid
US20100204075A1 (en) * 2005-07-01 2010-08-12 Enbio Industries, Inc. Environmentally compatible hydraulic fluid
WO2012129056A1 (en) * 2011-03-23 2012-09-27 Dow Global Technologies Llc Polyalkylene glycol based heat transfer fluids and monofluid engine oils
CN103842814A (en) * 2011-10-07 2014-06-04 国际壳牌研究有限公司 Method of easily identifying lubricating oils, identification kit and lubricating oils that can be easily identified
US20130270049A1 (en) * 2012-03-23 2013-10-17 Basf Se Fluid composition for a vibration dampener
US9051530B2 (en) * 2012-03-23 2015-06-09 Basf Se Fluid composition for a vibration dampener
US20150051130A1 (en) * 2013-08-15 2015-02-19 John D. Blizzard Heat pump additive providing enhanced efficiency
WO2018054534A1 (en) * 2016-09-21 2018-03-29 Klüber Lubrication München Se & Co. Kg Use of lubricants on the basis of water-soluble, high-viscosity polyethylene glycols
US10995295B2 (en) 2016-09-21 2021-05-04 Klüber Lubrication München Se & Co. Kg Use of lubricants on the basis of water-soluble, high viscosity polyglycols
US11421178B2 (en) 2018-10-17 2022-08-23 Idemitsu Kosan Co., Ltd. Lubricating oil composition for air compressors, air compressor lubricating method, and air compressor

Also Published As

Publication number Publication date
WO2002077135A1 (en) 2002-10-03
GB0107502D0 (en) 2001-05-16
JP2004524414A (en) 2004-08-12
EP1373444A1 (en) 2004-01-02

Similar Documents

Publication Publication Date Title
RU2199576C2 (en) Lubricating oil for compression-type refrigerating plants and cooling apparatus
US6189322B1 (en) Refrigerant-circulating system, and refrigerant compressor and refrigeration cycle employing the refrigerant compressor
KR100339693B1 (en) Refrigeration Units & Lubricants
US20050250654A1 (en) Compressor lubricant compositions
US8163680B2 (en) Method of demulsing a natural gas dehydrator
JP4919813B2 (en) Highly efficient polyalkylene glycol lubricant for use in worm gears
US5957676A (en) Rotary compressor with water miscible lubricant
JP4885533B2 (en) Refrigerator oil composition, compressor for refrigeration machine and refrigeration apparatus using the same
US8476210B2 (en) Composition for compressor working fluid for applications with soluble gas or gas condensates
EP2075316B1 (en) Lubricant for compression refrigerating machine
KR100927754B1 (en) Lubricant Compositions Containing Blends of Polyol Esters and Alkylbenzenes
KR20140029419A (en) Lubricant compositions comprising polylkylene glycol diether with low noack volatility
CN111575084B (en) Synthetic water-resistant long-life vacuum pump oil and preparation method thereof
JPH0328297A (en) Lubricant composition
JP5122740B2 (en) Refrigerator oil composition
CN111662760B (en) Screw compressor oil and preparation method thereof
CN111575082B (en) Compressor oil for new energy vehicle-mounted sliding vane type air compressor and preparation method thereof
Rudnick Additives for industrial lubricant applications
JPH11323365A (en) Hydraulic oil
CN112111316B (en) Refrigerating machine oil, working fluid composition and compressor
DK1856233T3 (en) USING AN ADDITIVE FOR NOISE REDUCTION IN A COOLING SYSTEM
US11421178B2 (en) Lubricating oil composition for air compressors, air compressor lubricating method, and air compressor
EP3754000B1 (en) Lubricating oil composition
Hum et al. | Compressor Lubricants
Lubricants et al. P₁V₁= P₂V₂

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPERIAL CHEMICAL INDUSTRIES PLC, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RANDLES, STEVEN JAMES;THOMPSON, ROBERT IAN GEORGE;CORNER, MITCHELL;REEL/FRAME:014552/0140;SIGNING DATES FROM 20030915 TO 20030922

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载