US20050236629A1 - Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same - Google Patents
Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same Download PDFInfo
- Publication number
- US20050236629A1 US20050236629A1 US11/101,176 US10117605A US2005236629A1 US 20050236629 A1 US20050236629 A1 US 20050236629A1 US 10117605 A US10117605 A US 10117605A US 2005236629 A1 US2005236629 A1 US 2005236629A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- auxiliary electrode
- emitting diode
- light emitting
- organic light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010410 layer Substances 0.000 claims abstract description 64
- 239000012044 organic layer Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 16
- 239000004020 conductor Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 238000002310 reflectometry Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229920001621 AMOLED Polymers 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229910016048 MoW Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/824—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80522—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/122—Pixel-defining structures or layers, e.g. banks
Definitions
- the present invention relates to an organic light-emitting diode (OLED) display and a method of fabricating the same. More particularly, the present invention relates to a top emission OLED display using an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode such that the top emission OLED display may be large-sized and a method of fabricating the same.
- OLED organic light-emitting diode
- a conventional top emission active matrix organic light-emitting diode (AMOLED) display uses a transparent cathode electrode in order to emit light toward a sealing substrate.
- Shoji Terada et al. introduced a method of forming an auxiliary electrode for preventing a voltage drop of an upper electrode on a pixel-defining layer 285 in “54.5L: Late-News Paper: A 24-inch AM-OLED Display with XGA Resolution by Novel Seamless Tiling Technology,” SID Symposium Digest 34, 1463 (2003).
- FIG. 1 is a partial cross-sectional view of a conventional top emission OLED display, showing only a portion corresponding to a thin film transistor, a pixel electrode, and a capacitor.
- a passivation layer 170 is formed on the entire surface of the insulating substrate 100 .
- a lower electrode 180 i.e., a pixel electrode, is formed on the passivation layer 170 as an anode electrode of an electroluminescent (EL) device connected to one of the source and drain electrodes 161 and 165 , for example, the drain electrode 165 , through a via hole 175 .
- a pixel defining layer 185 having an opening 189 which exposes a portion of the lower electrode 180 is formed.
- An organic layer 190 is formed on the lower electrode 180 in the opening 189 .
- an auxiliary electrode 193 for preventing a voltage drop of an upper electrode is formed on the pixel defining layer 185 , and an upper electrode 195 serving as a cathode electrode is formed on the entire surface of the insulating substrate 100 .
- the present invention therefore, solves aforementioned problems associated with conventional displays by providing an organic light emitting diode (OLED) display using an auxiliary electrode to prevent or reduce a voltage drop of an upper electrode.
- OLED organic light emitting diode
- the upper electrode may be electrically connected to the auxiliary electrode through at least one side of the auxiliary electrode.
- the lower electrode and the auxiliary electrode may be made of a conductive material having a work function larger than that of a material of the upper electrode.
- the lower electrode and the auxiliary electrode may be made of a single layer or a multilayer.
- the lower electrode and the auxiliary electrode may be thicker than the organic layer and may each have a thickness of at least 3,000 ⁇ .
- the auxiliary electrode may be arranged in a linear pattern.
- the auxiliary electrode may be arranged in a grid pattern.
- the auxiliary electrode may be connected to a cathode inlet terminal of a pad portion.
- a top surface of the auxiliary electrode may have a length which is greater than or equal to that of a bottom surface of the auxiliary electrode.
- the length of the top surface of the auxiliary electrode may have a range from a value equal to the length of the bottom surface of the auxiliary electrode to a sum of twice the thickness of the auxiliary electrode and the length of the bottom surface of the auxiliary electrode.
- a method of fabricating an OLED display includes: concurrently forming an auxiliary electrode and a lower electrode on an insulating substrate including a thin film transistor, the lower electrode being electrically connected to the thin film transistor; forming a pixel defining layer on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode; forming an organic layer on the portion of the lower electrode exposed by the opening; and forming an upper electrode on an entire surface of the insulating substrate, the upper electrode being electrically connected to the auxiliary electrode.
- an OLED display includes: a lower electrode formed on an insulating substrate having a thin film transistor, the lower electrode being electrically connected to the thin film transistor; an auxiliary electrode formed on the insulating substrate, the auxiliary electrode having an edge with a taper angle greater than 90°; a pixel defining layer formed on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode; an organic layer formed on the portion of the lower electrode exposed by the opening; and an upper electrode formed on an entire surface of the insulating substrate and electrically connected to the auxiliary electrode.
- FIG. 1 is a partial cross-sectional view illustrating a conventional top emission organic light emitting diode (OLED) display
- FIG. 2 is a partial cross-sectional view illustrating a top emission OLED display according to a first exemplary embodiment of the present invention
- FIGS. 3A to 3 C are partial cross-sectional views illustrating a process of forming a top emission OLED display according to the first exemplary embodiment of the present invention
- FIG. 4 is a partial cross-sectional view illustrating an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention.
- FIGS. 5A to 5 D are partial plan views that illustrate an OLED display with an auxiliary electrode according to an exemplary embodiment of the present invention.
- FIG. 2 is a partial cross-sectional view that illustrates a top emission organic light emitting diode (OLED) display according to a first exemplary embodiment of the present invention, partially showing R, G, and B unit pixels of the top emission OLED display.
- OLED organic light emitting diode
- an active matrix organic light emitting diode (AMOLED) display includes a lower electrode 220 electrically connected to source and drain electrodes 211 and 215 of a thin film transistor on an insulating substrate 200 per each R, G, and B pixel, and an auxiliary electrode 223 for preventing or reducing a voltage drop of an upper electrode.
- the auxiliary electrodes 223 are formed between the lower electrodes 220 of the R, G, and B pixels and on the same layer as the lower electrodes 220 .
- the AMOLED display includes a pixel defining layer 230 formed only on an edge of the lower electrode 220 other than the auxiliary electrode 223 to be separated by each R, G, and B pixel and to form an opening 235 that exposes a portion of the lower electrode 220 .
- the AMOLED display includes an organic layer 240 formed on the lower electrode 220 exposed by the opening 235 and the pixel defining layer 230 .
- the organic layer 240 is not formed on at least one side of the auxiliary electrode 223 .
- the AMOLED display includes an upper electrode 250 formed on the entire surface of the insulating substrate 200 and electrically connected to at least one side of the auxiliary electrode 223 .
- FIGS. 3A to 3 C are partial cross-sectional views which illustrate a process of forming a top emission OLED display according to an exemplary embodiment of the present invention, partially showing a capacitor C, a thin film transistor, and an electroluminescent (EL) device connected to the thin film transistor.
- EL electroluminescent
- an active layer 320 including source and drain regions 321 and 325 per each R, G, and B pixel is formed on an insulating substrate 300 , on which a buffer layer 310 is formed.
- a gate insulating layer 330 is formed on the insulating substrate 300 (i.e., on the buffer layer 310 ), and then a conductive material is deposited and patterned to form a gate electrode 341 and a lower electrode 347 of the capacitor.
- an interlayer insulating layer 350 is formed, and contact holes 351 and 355 that expose portions of the source and drain regions 321 and 325 , respectively, are formed.
- a conductive material such as MoW is deposited and patterned to form source and drain electrodes 361 and 365 that are electrically connected to the source and drain regions 321 and 325 through the contact holes 351 and 355 , respectively, and an upper electrode 367 of the capacitor connected to one of the source electrode 361 and the drain electrode 365 , for example, the source electrode 361 , thereby forming the thin film transistor and the capacitor.
- a passivation layer 370 is formed on the entire surface of the insulating substrate 300 (i.e., on the interlayer insulating layer 350 ), and a via-hole 375 that exposes one of the source and drain electrodes 361 and 365 , for example, the drain electrode 365 , is formed.
- a lower electrode 380 i.e., an island-shaped pixel electrode, which is electrically connected to the drain electrode 365 through the via hole 375 , is formed and, at the same time, an auxiliary electrode 383 for preventing or reducing a voltage drop of the upper electrode to be formed hereafter is formed between the lower electrodes 380 of R, G, and B pixels.
- the lower electrode 380 and the auxiliary electrode 383 should be provided with at least one edge having a taper angle of 90° or more. That is, at least one edge should be reverse tapered such that the organic layer may be separated by the auxiliary electrode 383 while forming the organic layer hereafter.
- the auxiliary electrode 383 and the lower electrode 380 should be made of a conductive material having a work function larger than that of an upper electrode material to be formed in the following process.
- the auxiliary electrode 383 and the lower electrode 380 should be made of Al, Mo, MoW, Ti, Ag/ITO, Ag/Mow, MoW/Al(Nd)/ITO, or a material that may be used as a reflecting layer or an anode electrode having low specific resistance in order to reduce or minimize a voltage drop of a cathode electrode and high reflectivity in order to increase reflectivity of an organic layer to be formed in the following process.
- the lower electrode 380 and the auxiliary electrode 383 may be made of a single layer or a multilayer.
- the lower electrode 380 and the auxiliary electrode 383 should be formed to be sufficiently thicker than the organic layer to be formed hereafter.
- the auxiliary electrode 383 may be formed to have a thickness of 3,000 ⁇ or more.
- a pixel defining layer 385 with an opening 389 that exposes a portion of the lower electrode 380 is formed.
- the pixel defining layer 385 should not be formed on the auxiliary electrode 383 , and should be formed only on an edge of the lower electrode 380 .
- an organic layer 390 is formed on the opening 389 .
- the organic layer 390 is formed on the portion of the lower electrode exposed by the opening 389 .
- the organic layer 390 may be composed of a plurality of layers depending upon functions thereof.
- the organic layer 390 has a multi-layered structure including a light-emitting layer, and at least one among a hole injection layer (HIL), a hole transport layer (HTL), a hole blocking layer (HBL), an electron transport layer (ETL) and an electron injection layer (EIL).
- HIL hole injection layer
- HTL hole transport layer
- HBL hole blocking layer
- ETL electron transport layer
- EIL electron injection layer
- the organic layer 390 is formed on the entire surface of the insulating substrate 300 (with other layers therebetween) and is not formed on at least one side of the auxiliary electrode 383 .
- the pixel defining layer 385 is formed at a predetermined acute angle such that the organic layer 390 may be deposited on the pixel defining layer 385 , however, the auxiliary electrode 383 has a reversely tapered structure in which the taper angle of at least one edge is 90° or more and is formed to be sufficiently thicker than the organic layer 390 .
- an upper electrode 395 that serves as a cathode electrode is formed on the entire surface of the insulating substrate 300 (with other layers therebetween).
- the upper electrode 395 has a double-layered structure of a semitransparent metal layer and a transparent conductive layer, wherein the semitransparent metal layer is formed by thinly depositing a metal material having a low work function and the transparent conductive layer is formed by thickly depositing a transparent conductive material such as ITO and IZO.
- the upper electrode 395 is electrically connected to at least one side of the auxiliary electrode 383 .
- the upper electrode 395 is electrically connected to at least one side of the auxiliary electrode 383 , it is possible to prevent or reduce the voltage drop of the upper electrode 395 .
- FIG. 4 is a partial cross-sectional view of an OLED, partially illustrating only an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention.
- an auxiliary electrode 410 for preventing or reducing a voltage drop of an upper electrode should be provided with at least one edge having a taper angle ⁇ of 90° or more.
- the taper angle may be 90° to 135°. That is, at least one edge has a reversely tapered structure.
- the organic layer is not cut on the side of the auxiliary electrode 410 and may go over the auxiliary electrode 410 while forming the organic layer.
- the taper angle ⁇ of the edge of the auxiliary electrode 410 is 135° or more, the length b of the bottom surface of the auxiliary electrode 410 is much shorter than the length a of the top surface thereof so that the auxiliary electrode 410 may collapse. Also, when the OLED is driven, stress and strong electric field is generated above the edges of the auxiliary electrode 410 .
- auxiliary electrode 410 has a trapezoidal section
- the length of the top surface of the auxiliary electrode 410 is a
- the length of the bottom surface thereof is b
- the thickness of the auxiliary electrode 410 is h
- an angle obtained by subtracting 90° from an alternate angle of the taper angle ⁇ of the edge of the auxiliary electrode 410 is ⁇ ′
- the following relationship is established between the length a of the top surface of the auxiliary electrode 410 and the length b of the bottom surface thereof.
- the length a of the top surface of the auxiliary electrode 410 should be b ⁇ a ⁇ b+2h.
- the length a of the top surface of the auxiliary electrode 410 should be greater than or equal to the length b of the bottom surface thereof and less than or equal to the sum of twice the thickness h of the auxiliary electrode 410 and the length b of the bottom surface thereof.
- FIGS. 5A to 5 D are partial plan views that illustrate an OLED display with an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention.
- an auxiliary electrode 520 for preventing or reducing a voltage drop of an upper electrode is connected to an inlet terminal 510 of a pad portion of an insulating substrate 500 .
- the auxiliary electrode 520 has a grid form, and a lower electrode 530 , i.e., a pixel electrode, is formed in an island shape in each grid of the auxiliary electrode 520 .
- a lower electrode 530 i.e., a pixel electrode
- each lower electrode 530 It can be seen in FIG. 5B that a via-hole 540 is formed on each lower electrode 530 .
- the island-shaped lower electrodes 530 are arranged as a matrix of rows and columns and an auxiliary electrode 520 ′ is arranged as lines between the adjacent lower electrodes 530 arranged in a column direction.
- an auxiliary electrode 520 ′′ is arranged in a row direction between the adjacent island-shaped lower electrodes 530 arranged as a matrix of rows and columns.
- the auxiliary electrode for preventing or reducing the voltage drop of the upper electrode may be formed to prevent or reduce the voltage drop of the cathode electrode and to thus provide an OLED display that is capable of preventing or reducing non-uniformity of brightness and/or image characteristics.
- a cathode bus line may be formed without an additional mask process.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
- This application claims priority to and the benefit of Korean Patent Application No. 10-2004-0023900, filed Apr. 7, 2004, and Korean Patent Application No. 10-2004-0024016, filed Apr. 8, 2004, the entire contents of both of which are incorporated herein by reference.
- 1. Field of the Invention
- The present invention relates to an organic light-emitting diode (OLED) display and a method of fabricating the same. More particularly, the present invention relates to a top emission OLED display using an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode such that the top emission OLED display may be large-sized and a method of fabricating the same.
- 2. Description of the Related Art
- A conventional top emission active matrix organic light-emitting diode (AMOLED) display uses a transparent cathode electrode in order to emit light toward a sealing substrate.
- In general, a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO) is mainly used as the transparent cathode electrode. However, in order to function as the cathode electrode, a metal material having a low work function is thinly deposited on one side of the transparent conductive layer that comes in contact with an organic layer to form a semitransparent metal layer, and then the ITO or IZO is thickly deposited on the semitransparent metal layer.
- In the above process, since the ITO or IZO layer is formed after the organic layer is formed, the ITO or IZO layer should be formed by a low temperature deposition method in order to minimize damage of the organic layer due to heat or plasma. When the low temperature deposition method is used, however, the quality of the ITO or IZO layer is deteriorated and its specific resistance is increased.
- When the specific resistance of the cathode electrode is increased, voltage differences are generated between near regions and far regions from a portion where a power source is input due to a voltage drop depending on positions of the pixels rather than uniformly applying a cathode voltage to all pixels. As a result, non-uniformity of brightness and image characteristics may be generated and power consumption may increase.
- Also, due to the voltage drop, it is difficult to apply to a middle-sized or large-sized top emission AMOLED display.
- In order to solve the above problem, Shoji Terada et al. introduced a method of forming an auxiliary electrode for preventing a voltage drop of an upper electrode on a pixel-defining layer 285 in “54.5L: Late-News Paper: A 24-inch AM-OLED Display with XGA Resolution by Novel Seamless Tiling Technology,” SID Symposium Digest 34, 1463 (2003).
- A conventional top emission OLED display will now be described with reference to the attached drawings.
-
FIG. 1 is a partial cross-sectional view of a conventional top emission OLED display, showing only a portion corresponding to a thin film transistor, a pixel electrode, and a capacitor. - Referring to
FIG. 1 , abuffer layer 110 is formed on aninsulating substrate 100. Anactive layer 120 including source anddrain regions buffer layer 110. Agate electrode 141 and alower electrode 147 of a capacitor are formed on a gate-insulatinglayer 130. Formed on aninterlayer insulating layer 150 are source anddrain electrodes drain regions contact holes upper electrode 167 of the capacitor connected to one of the source anddrain electrodes source electrode 161. - A
passivation layer 170 is formed on the entire surface of theinsulating substrate 100. Alower electrode 180, i.e., a pixel electrode, is formed on thepassivation layer 170 as an anode electrode of an electroluminescent (EL) device connected to one of the source anddrain electrodes drain electrode 165, through avia hole 175. Apixel defining layer 185 having anopening 189 which exposes a portion of thelower electrode 180 is formed. Anorganic layer 190 is formed on thelower electrode 180 in theopening 189. Then, anauxiliary electrode 193 for preventing a voltage drop of an upper electrode is formed on thepixel defining layer 185, and anupper electrode 195 serving as a cathode electrode is formed on the entire surface of theinsulating substrate 100. - However, according to the above method, in a process of forming the
auxiliary electrode 193, when a semitransparent metal layer used as theauxiliary electrode 193 is deposited and patterned on thepixel defining layer 185, theorganic layer 190 may be damaged. Also, a masking process should be added to form theauxiliary electrode 193, which leads to the complication of the process. - The present invention, therefore, solves aforementioned problems associated with conventional displays by providing an organic light emitting diode (OLED) display using an auxiliary electrode to prevent or reduce a voltage drop of an upper electrode.
- In exemplary embodiments of the present invention, a top emission OLED display capable of preventing or reducing a voltage drop of an upper electrode improves brightness and image characteristics such that the top emission OLED display can be large-sized.
- According to an exemplary embodiment of the present invention, an OLED display includes: a lower electrode formed on a layer on an insulating substrate having a thin film transistor, the lower electrode being electrically connected to the thin film transistor; an auxiliary electrode formed on the same layer as the lower electrode; a pixel defining layer formed on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode; an organic layer formed on the portion of the lower electrode exposed by the opening; and an upper electrode formed on an entire surface of the insulating substrate and electrically connected to the auxiliary electrode.
- An edge of the auxiliary electrode may have a taper angle of at least 90°. The edge of the auxiliary electrode may have a taper angle between 90° and 135°. The auxiliary electrode may prevent or reduce a voltage drop of the upper electrode.
- The upper electrode may be electrically connected to the auxiliary electrode through at least one side of the auxiliary electrode.
- The lower electrode and the auxiliary electrode may be made of a conductive material having a work function larger than that of a material of the upper electrode.
- The lower electrode and the auxiliary electrode may be made of a material having low specific resistance and high reflectivity.
- The lower electrode and the auxiliary electrode may be made of a single layer or a multilayer.
- The lower electrode and the auxiliary electrode may be made of Al, Mo, MoW, Ti, Ag/ITO, Ag/Mow, or MoW/Al(Nd)/ITO.
- The lower electrode and the auxiliary electrode may be thicker than the organic layer and may each have a thickness of at least 3,000 Å.
- The auxiliary electrode may be arranged in a linear pattern.
- The auxiliary electrode may be arranged in a grid pattern.
- The auxiliary electrode may be connected to a cathode inlet terminal of a pad portion.
- A top surface of the auxiliary electrode may have a length which is greater than or equal to that of a bottom surface of the auxiliary electrode.
- The length of the top surface of the auxiliary electrode may have a range from a value equal to the length of the bottom surface of the auxiliary electrode to a sum of twice the thickness of the auxiliary electrode and the length of the bottom surface of the auxiliary electrode.
- According to another exemplary embodiment of the present invention, a method of fabricating an OLED display includes: concurrently forming an auxiliary electrode and a lower electrode on an insulating substrate including a thin film transistor, the lower electrode being electrically connected to the thin film transistor; forming a pixel defining layer on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode; forming an organic layer on the portion of the lower electrode exposed by the opening; and forming an upper electrode on an entire surface of the insulating substrate, the upper electrode being electrically connected to the auxiliary electrode.
- According to yet another exemplary embodiment of the present invention, an OLED display includes: a lower electrode formed on an insulating substrate having a thin film transistor, the lower electrode being electrically connected to the thin film transistor; an auxiliary electrode formed on the insulating substrate, the auxiliary electrode having an edge with a taper angle greater than 90°; a pixel defining layer formed on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode; an organic layer formed on the portion of the lower electrode exposed by the opening; and an upper electrode formed on an entire surface of the insulating substrate and electrically connected to the auxiliary electrode.
- The above and other features of the present invention will be described in reference to certain exemplary embodiments thereof with reference to the attached drawings in which:
-
FIG. 1 is a partial cross-sectional view illustrating a conventional top emission organic light emitting diode (OLED) display; -
FIG. 2 is a partial cross-sectional view illustrating a top emission OLED display according to a first exemplary embodiment of the present invention; -
FIGS. 3A to 3C are partial cross-sectional views illustrating a process of forming a top emission OLED display according to the first exemplary embodiment of the present invention; -
FIG. 4 is a partial cross-sectional view illustrating an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention; and -
FIGS. 5A to 5D are partial plan views that illustrate an OLED display with an auxiliary electrode according to an exemplary embodiment of the present invention. - The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain exemplary embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Like reference numerals refer to like elements throughout the specification. Also, when a layer is described as being formed on a substrate in this specification, the layer may be formed directly on the substrate, or it may be formed on the substrate with one or more other layers that are formed therebetween.
-
FIG. 2 is a partial cross-sectional view that illustrates a top emission organic light emitting diode (OLED) display according to a first exemplary embodiment of the present invention, partially showing R, G, and B unit pixels of the top emission OLED display. - Referring to
FIG. 2 , an active matrix organic light emitting diode (AMOLED) display according to the first exemplary embodiment of the present invention includes alower electrode 220 electrically connected to source and drainelectrodes substrate 200 per each R, G, and B pixel, and anauxiliary electrode 223 for preventing or reducing a voltage drop of an upper electrode. Theauxiliary electrodes 223 are formed between thelower electrodes 220 of the R, G, and B pixels and on the same layer as thelower electrodes 220. - Also, the AMOLED display includes a
pixel defining layer 230 formed only on an edge of thelower electrode 220 other than theauxiliary electrode 223 to be separated by each R, G, and B pixel and to form anopening 235 that exposes a portion of thelower electrode 220. - Also, the AMOLED display includes an
organic layer 240 formed on thelower electrode 220 exposed by theopening 235 and thepixel defining layer 230. Theorganic layer 240 is not formed on at least one side of theauxiliary electrode 223. - Also, the AMOLED display includes an
upper electrode 250 formed on the entire surface of the insulatingsubstrate 200 and electrically connected to at least one side of theauxiliary electrode 223. -
FIGS. 3A to 3C are partial cross-sectional views which illustrate a process of forming a top emission OLED display according to an exemplary embodiment of the present invention, partially showing a capacitor C, a thin film transistor, and an electroluminescent (EL) device connected to the thin film transistor. - Referring to
FIG. 3A , anactive layer 320 including source and drainregions substrate 300, on which abuffer layer 310 is formed. - After forming the
active layer 320, agate insulating layer 330 is formed on the insulating substrate 300 (i.e., on the buffer layer 310), and then a conductive material is deposited and patterned to form agate electrode 341 and alower electrode 347 of the capacitor. - Then, an
interlayer insulating layer 350 is formed, and contactholes regions - After forming the contact holes 351 and 355, a conductive material such as MoW is deposited and patterned to form source and drain
electrodes regions upper electrode 367 of the capacitor connected to one of thesource electrode 361 and thedrain electrode 365, for example, thesource electrode 361, thereby forming the thin film transistor and the capacitor. - After forming the source and drain
electrodes upper electrode 367 of the capacitor, apassivation layer 370 is formed on the entire surface of the insulating substrate 300 (i.e., on the interlayer insulating layer 350), and a via-hole 375 that exposes one of the source and drainelectrodes drain electrode 365, is formed. - A
lower electrode 380, i.e., an island-shaped pixel electrode, which is electrically connected to thedrain electrode 365 through the viahole 375, is formed and, at the same time, anauxiliary electrode 383 for preventing or reducing a voltage drop of the upper electrode to be formed hereafter is formed between thelower electrodes 380 of R, G, and B pixels. - At this time, the
lower electrode 380 and theauxiliary electrode 383 should be provided with at least one edge having a taper angle of 90° or more. That is, at least one edge should be reverse tapered such that the organic layer may be separated by theauxiliary electrode 383 while forming the organic layer hereafter. - The
auxiliary electrode 383 and thelower electrode 380 should be made of a conductive material having a work function larger than that of an upper electrode material to be formed in the following process. By way of example, theauxiliary electrode 383 and thelower electrode 380 should be made of Al, Mo, MoW, Ti, Ag/ITO, Ag/Mow, MoW/Al(Nd)/ITO, or a material that may be used as a reflecting layer or an anode electrode having low specific resistance in order to reduce or minimize a voltage drop of a cathode electrode and high reflectivity in order to increase reflectivity of an organic layer to be formed in the following process. Also, thelower electrode 380 and theauxiliary electrode 383 may be made of a single layer or a multilayer. Also, thelower electrode 380 and theauxiliary electrode 383 should be formed to be sufficiently thicker than the organic layer to be formed hereafter. By way of example, theauxiliary electrode 383 may be formed to have a thickness of 3,000 Å or more. - Referring to
FIG. 3B , apixel defining layer 385 with anopening 389 that exposes a portion of thelower electrode 380 is formed. At this time, thepixel defining layer 385 should not be formed on theauxiliary electrode 383, and should be formed only on an edge of thelower electrode 380. - After forming the
pixel defining layer 385, anorganic layer 390 is formed on theopening 389. In other words, theorganic layer 390 is formed on the portion of the lower electrode exposed by theopening 389. Theorganic layer 390 may be composed of a plurality of layers depending upon functions thereof. In general, theorganic layer 390 has a multi-layered structure including a light-emitting layer, and at least one among a hole injection layer (HIL), a hole transport layer (HTL), a hole blocking layer (HBL), an electron transport layer (ETL) and an electron injection layer (EIL). - At this time, the
organic layer 390 is formed on the entire surface of the insulating substrate 300 (with other layers therebetween) and is not formed on at least one side of theauxiliary electrode 383. This is because thepixel defining layer 385 is formed at a predetermined acute angle such that theorganic layer 390 may be deposited on thepixel defining layer 385, however, theauxiliary electrode 383 has a reversely tapered structure in which the taper angle of at least one edge is 90° or more and is formed to be sufficiently thicker than theorganic layer 390. - Referring to
FIG. 3C , anupper electrode 395 that serves as a cathode electrode is formed on the entire surface of the insulating substrate 300 (with other layers therebetween). At this time, theupper electrode 395 has a double-layered structure of a semitransparent metal layer and a transparent conductive layer, wherein the semitransparent metal layer is formed by thinly depositing a metal material having a low work function and the transparent conductive layer is formed by thickly depositing a transparent conductive material such as ITO and IZO. - Since the
organic layer 390 is not formed on at least one side of theauxiliary electrode 383, theupper electrode 395 is electrically connected to at least one side of theauxiliary electrode 383. Thus, since theupper electrode 395 is electrically connected to at least one side of theauxiliary electrode 383, it is possible to prevent or reduce the voltage drop of theupper electrode 395. -
FIG. 4 is a partial cross-sectional view of an OLED, partially illustrating only an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention. - Referring to
FIG. 4 , anauxiliary electrode 410 for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention should be provided with at least one edge having a taper angle α of 90° or more. By way of example, the taper angle may be 90° to 135°. That is, at least one edge has a reversely tapered structure. - This is because, when the taper angle α of the edge of the
auxiliary electrode 410 is less than 90°, the organic layer is not cut on the side of theauxiliary electrode 410 and may go over theauxiliary electrode 410 while forming the organic layer. - Also, when the taper angle α of the edge of the
auxiliary electrode 410 is 135° or more, the length b of the bottom surface of theauxiliary electrode 410 is much shorter than the length a of the top surface thereof so that theauxiliary electrode 410 may collapse. Also, when the OLED is driven, stress and strong electric field is generated above the edges of theauxiliary electrode 410. - In the case the
auxiliary electrode 410 has a trapezoidal section, when the length of the top surface of theauxiliary electrode 410 is a, the length of the bottom surface thereof is b, the thickness of theauxiliary electrode 410 is h, and an angle obtained by subtracting 90° from an alternate angle of the taper angle α of the edge of theauxiliary electrode 410 is α′, the following relationship is established between the length a of the top surface of theauxiliary electrode 410 and the length b of the bottom surface thereof.
b+htanα′≦a≦b+2htanα′(0°≦α′≦45°) Equation 1 - Since α′ is 0° to 45°, the length a of the top surface of the
auxiliary electrode 410 should be b≦a≦b+2h. - That is, the length a of the top surface of the
auxiliary electrode 410 should be greater than or equal to the length b of the bottom surface thereof and less than or equal to the sum of twice the thickness h of theauxiliary electrode 410 and the length b of the bottom surface thereof. -
FIGS. 5A to 5D are partial plan views that illustrate an OLED display with an auxiliary electrode for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention. - Referring to
FIG. 5A , anauxiliary electrode 520 for preventing or reducing a voltage drop of an upper electrode according to an exemplary embodiment of the present invention is connected to aninlet terminal 510 of a pad portion of an insulatingsubstrate 500. - Referring to
FIG. 5B , theauxiliary electrode 520 has a grid form, and alower electrode 530, i.e., a pixel electrode, is formed in an island shape in each grid of theauxiliary electrode 520. When theauxiliary electrode 520 has the grid form, it is also possible to reduce a voltage drop of a cathode electrode. - It can be seen in
FIG. 5B that a via-hole 540 is formed on eachlower electrode 530. - Referring to
FIG. 5C , the island-shapedlower electrodes 530 are arranged as a matrix of rows and columns and anauxiliary electrode 520′ is arranged as lines between the adjacentlower electrodes 530 arranged in a column direction. - Referring to
FIG. 5D , anauxiliary electrode 520″ is arranged in a row direction between the adjacent island-shapedlower electrodes 530 arranged as a matrix of rows and columns. - As described above, according to the exemplary embodiment of the present invention, since the auxiliary electrode for preventing or reducing the voltage drop of the upper electrode and the lower electrode are concurrently formed, the auxiliary electrode for preventing or reducing the voltage drop of the upper electrode may be formed to prevent or reduce a voltage drop of the cathode electrode without an additional mask process. Also, it is possible to manufacture a middle-sized or large-sized OLED display by preventing or reducing the voltage drop of the cathode electrode.
- As described above, according to the present invention, the auxiliary electrode for preventing or reducing the voltage drop of the upper electrode may be formed to prevent or reduce the voltage drop of the cathode electrode and to thus provide an OLED display that is capable of preventing or reducing non-uniformity of brightness and/or image characteristics.
- Also, since the auxiliary electrode for preventing or reducing the voltage drop of the upper electrode and the lower electrode are concurrently formed, a cathode bus line may be formed without an additional mask process.
- Also, it is possible to provide an OLED display with low power consumption by preventing or reducing the voltage drop of the cathode electrode.
- Although the present invention has been described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that a variety of modifications and variations may be made to the present invention without departing from the spirit or scope of the present invention defined in the appended claims, and their equivalents.
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/195,355 US7947519B2 (en) | 2004-04-07 | 2008-08-20 | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040023900A KR100590259B1 (en) | 2004-04-07 | 2004-04-07 | A front light emitting organic electroluminescent display device and a method of manufacturing the same using an auxiliary electrode to prevent the voltage drop of the upper electrode |
KR2004-23900 | 2004-04-07 | ||
KR1020040024016A KR100647599B1 (en) | 2004-04-08 | 2004-04-08 | Organic electroluminescent display and manufacturing method thereof |
KR2004-24016 | 2004-04-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/195,355 Division US7947519B2 (en) | 2004-04-07 | 2008-08-20 | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050236629A1 true US20050236629A1 (en) | 2005-10-27 |
US7427783B2 US7427783B2 (en) | 2008-09-23 |
Family
ID=35135545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/101,176 Expired - Fee Related US7427783B2 (en) | 2004-04-07 | 2005-04-06 | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode |
US12/195,355 Expired - Fee Related US7947519B2 (en) | 2004-04-07 | 2008-08-20 | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/195,355 Expired - Fee Related US7947519B2 (en) | 2004-04-07 | 2008-08-20 | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
US (2) | US7427783B2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050077816A1 (en) * | 2003-09-19 | 2005-04-14 | Hirokazu Yamada | Organic light emitting device, manufacturing method thereof, and display unit |
US20070096633A1 (en) * | 2005-11-03 | 2007-05-03 | Lee Keun-Soo | Flat panel display apparatus |
US20070096614A1 (en) * | 2005-11-02 | 2007-05-03 | Hyun-Eok Shin | Organic light emitting display device and method of fabricating the same |
US20070114920A1 (en) * | 2005-11-22 | 2007-05-24 | Hyun-Soo Shin | Organic thin film transistor, method of manufacturing the same, and flat display apparatus comprising the same |
US20090309493A1 (en) * | 2008-06-12 | 2009-12-17 | Chang-Su Seo | Organic light emitting display and its method of fabrication |
US20100090205A1 (en) * | 2007-01-29 | 2010-04-15 | Canon Kabushiki Kaisha | Active matrix display apparatus |
US20100127264A1 (en) * | 2008-11-26 | 2010-05-27 | Hyun-Chol Bang | Organic light emitting display and method of manufacturing the same |
US20110215330A1 (en) * | 2005-11-02 | 2011-09-08 | Hyun-Eok Shin | Organic light-emitting display device and method of fabricating the same |
US20110215329A1 (en) * | 2010-03-05 | 2011-09-08 | Samsung Mobile Display Co., Ltd. | Organic light-emitting display device |
US20140197391A1 (en) * | 2011-06-09 | 2014-07-17 | Pioneer Corporation | Organic electroluminescent panel and method for producing the same |
WO2015165184A1 (en) * | 2014-04-30 | 2015-11-05 | 京东方科技集团股份有限公司 | Amoled array substrate and manufacturing method and display device |
US20160104859A1 (en) * | 2014-10-08 | 2016-04-14 | Samsung Display Co., Ltd. | Organic light emitting diode display |
US20160233458A1 (en) * | 2013-12-31 | 2016-08-11 | Boe Technology Group Co., Ltd. | Organic light emitting display panel and display apparatus |
US9614016B2 (en) | 2013-11-21 | 2017-04-04 | Samsung Display Co., Ltd. | Organic light-emitting diode (OLED) display and method of manufacturing the same |
US20170155077A1 (en) * | 2015-05-06 | 2017-06-01 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Flexible oled and manufacture method thereof |
CN106935594A (en) * | 2015-12-31 | 2017-07-07 | 乐金显示有限公司 | Organic light-emitting display device |
CN107170900A (en) * | 2017-05-12 | 2017-09-15 | 京东方科技集团股份有限公司 | Oled substrate and preparation method thereof, display device |
WO2018064830A1 (en) * | 2016-10-09 | 2018-04-12 | Boe Technology Group Co., Ltd. | Organic light emitting diode display panel, display apparatus having the same, and fabricating method thereof |
CN108511502A (en) * | 2018-05-11 | 2018-09-07 | 京东方科技集团股份有限公司 | A kind of array substrate, the preparation method of display panel, display device and array substrate |
CN109742106A (en) * | 2019-01-03 | 2019-05-10 | 重庆京东方显示技术有限公司 | Display panel and preparation method thereof, display device |
US10297656B2 (en) | 2015-11-23 | 2019-05-21 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
CN109887954A (en) * | 2017-11-30 | 2019-06-14 | 乐金显示有限公司 | Organic Light Emitting Diode Display |
CN110459561A (en) * | 2019-07-26 | 2019-11-15 | 武汉华星光电半导体显示技术有限公司 | A kind of array substrate and OLED display |
CN110610971A (en) * | 2019-09-16 | 2019-12-24 | 云谷(固安)科技有限公司 | Electronic device and control method of electronic device |
CN110890406A (en) * | 2019-11-28 | 2020-03-17 | 京东方科技集团股份有限公司 | Organic light-emitting display back plate, manufacturing method thereof and display device |
CN110993643A (en) * | 2019-11-05 | 2020-04-10 | 深圳市华星光电半导体显示技术有限公司 | OLED display panel |
US10916613B1 (en) | 2019-07-26 | 2021-02-09 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Array substrate and OLED display device |
WO2021082061A1 (en) * | 2019-10-29 | 2021-05-06 | 深圳市华星光电半导体显示技术有限公司 | Display panel and preparation method therefor |
US20210159289A1 (en) * | 2019-05-22 | 2021-05-27 | Hefei Xinsheng Optoelectronics Technology Co., Ltd. | Display substrate, method for manufacturing display substrate and display device |
WO2021164132A1 (en) * | 2020-02-17 | 2021-08-26 | 武汉华星光电半导体显示技术有限公司 | Organic light-emitting diode display and manufacturing method therefor |
JP2021168312A (en) * | 2017-03-03 | 2021-10-21 | パイオニア株式会社 | Light-emitting device |
US20220131044A1 (en) * | 2020-10-23 | 2022-04-28 | Boe Technology Group Co., Ltd. | Driving backplane, display panel and display apparatus |
WO2023173313A1 (en) * | 2022-03-16 | 2023-09-21 | 京东方科技集团股份有限公司 | Display substrate and manufacturing method therefor, and display apparatus |
US12279499B2 (en) | 2015-11-23 | 2025-04-15 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200803606A (en) * | 2006-06-13 | 2008-01-01 | Itc Inc Ltd | The fabrication of full color OLED panel using micro-cavity structure |
US7985609B2 (en) * | 2006-11-17 | 2011-07-26 | Canon Kabushiki Kaisha | Light-emitting apparatus and production method thereof |
US20080150421A1 (en) * | 2006-12-21 | 2008-06-26 | Canon Kabushiki Kaisha | Organic light-emitting apparatus |
KR100830318B1 (en) * | 2007-04-12 | 2008-05-16 | 삼성에스디아이 주식회사 | Light emitting display device and manufacturing method thereof |
KR101048987B1 (en) * | 2009-12-10 | 2011-07-12 | 삼성모바일디스플레이주식회사 | Flat panel display and manufacturing method thereof |
KR101314428B1 (en) * | 2010-12-30 | 2013-10-04 | 주식회사 엘지화학 | Electrode and electronic device comprising the same |
KR20120092019A (en) * | 2011-02-09 | 2012-08-20 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device |
US9059427B2 (en) | 2012-09-11 | 2015-06-16 | Apple Inc. | Device and method for top emitting AMOLED |
US9502653B2 (en) | 2013-12-25 | 2016-11-22 | Ignis Innovation Inc. | Electrode contacts |
US10355061B2 (en) * | 2015-06-30 | 2019-07-16 | Lg Display Co., Ltd. | Organic light emitting display device |
CN108496260B (en) | 2015-10-26 | 2020-05-19 | Oti照明公司 | Method for patterning a surface overlayer and device comprising a patterned overlayer |
CN118215323A (en) | 2016-12-02 | 2024-06-18 | Oti照明公司 | Device comprising a conductive coating disposed over an emission region and method thereof |
CN116583131A (en) | 2017-04-26 | 2023-08-11 | Oti照明公司 | Method for patterning a coating on a surface and apparatus comprising the patterned coating |
KR20240113977A (en) | 2017-05-17 | 2024-07-23 | 오티아이 루미오닉스 인크. | Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating |
US11751415B2 (en) | 2018-02-02 | 2023-09-05 | Oti Lumionics Inc. | Materials for forming a nucleation-inhibiting coating and devices incorporating same |
KR20210006912A (en) | 2018-05-07 | 2021-01-19 | 오티아이 루미오닉스 인크. | Method of providing auxiliary electrode and apparatus comprising auxiliary electrode |
US12167634B2 (en) | 2018-11-23 | 2024-12-10 | Oti Lumionics Inc. | Optoelectronic device including a light transmissive region |
CN113785411B (en) | 2019-03-07 | 2023-04-11 | Oti照明公司 | Material for forming nucleation inhibiting coatings and apparatus incorporating the same |
WO2020212953A1 (en) | 2019-04-18 | 2020-10-22 | Oti Lumionics Inc. | Materials for forming a nucleation-inhibiting coating and devices incorporating the same |
KR20220017918A (en) | 2019-05-08 | 2022-02-14 | 오티아이 루미오닉스 인크. | Material for forming nucleation inhibiting coating and device comprising same |
US11832473B2 (en) | 2019-06-26 | 2023-11-28 | Oti Lumionics Inc. | Optoelectronic device including light transmissive regions, with light diffraction characteristics |
CN114097102B (en) | 2019-06-26 | 2023-11-03 | Oti照明公司 | Optoelectronic device comprising a light transmissive region having light diffraction features |
WO2021028800A1 (en) | 2019-08-09 | 2021-02-18 | Oti Lumionics Inc. | Opto-electronic device including an auxiliary electrode and a partition |
US11985841B2 (en) | 2020-12-07 | 2024-05-14 | Oti Lumionics Inc. | Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating |
KR20220147180A (en) | 2021-04-26 | 2022-11-03 | 삼성디스플레이 주식회사 | Display device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768257B1 (en) * | 1999-10-28 | 2004-07-27 | Sony Corporation | Display apparatus with ribs having conductive material |
US20040160170A1 (en) * | 2002-12-11 | 2004-08-19 | Chiyoko Sato | Display apparatus and method of manufacturing the same |
US6798132B2 (en) * | 2001-04-23 | 2004-09-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing the same |
US6900470B2 (en) * | 2001-04-20 | 2005-05-31 | Kabushiki Kaisha Toshiba | Display device and method of manufacturing the same |
US6917160B2 (en) * | 2002-09-19 | 2005-07-12 | Samsung Sdi Co., Ltd. | Organic electroluminescent display and method of manufacturing the same |
US6933672B2 (en) * | 2000-02-16 | 2005-08-23 | Idemitsu Kosan Co., Ltd. | Actively driven organic EL device and manufacturing method thereof |
US7098069B2 (en) * | 2002-01-24 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of preparing the same and device for fabricating the same |
US7173373B2 (en) * | 2003-09-19 | 2007-02-06 | Sony Corporation | Organic light emitting device, manufacturing method thereof, and display unit |
-
2005
- 2005-04-06 US US11/101,176 patent/US7427783B2/en not_active Expired - Fee Related
-
2008
- 2008-08-20 US US12/195,355 patent/US7947519B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768257B1 (en) * | 1999-10-28 | 2004-07-27 | Sony Corporation | Display apparatus with ribs having conductive material |
US6933672B2 (en) * | 2000-02-16 | 2005-08-23 | Idemitsu Kosan Co., Ltd. | Actively driven organic EL device and manufacturing method thereof |
US6900470B2 (en) * | 2001-04-20 | 2005-05-31 | Kabushiki Kaisha Toshiba | Display device and method of manufacturing the same |
US6798132B2 (en) * | 2001-04-23 | 2004-09-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of manufacturing the same |
US7098069B2 (en) * | 2002-01-24 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of preparing the same and device for fabricating the same |
US6917160B2 (en) * | 2002-09-19 | 2005-07-12 | Samsung Sdi Co., Ltd. | Organic electroluminescent display and method of manufacturing the same |
US20040160170A1 (en) * | 2002-12-11 | 2004-08-19 | Chiyoko Sato | Display apparatus and method of manufacturing the same |
US7173373B2 (en) * | 2003-09-19 | 2007-02-06 | Sony Corporation | Organic light emitting device, manufacturing method thereof, and display unit |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173373B2 (en) * | 2003-09-19 | 2007-02-06 | Sony Corporation | Organic light emitting device, manufacturing method thereof, and display unit |
US20050077816A1 (en) * | 2003-09-19 | 2005-04-14 | Hirokazu Yamada | Organic light emitting device, manufacturing method thereof, and display unit |
US20110215330A1 (en) * | 2005-11-02 | 2011-09-08 | Hyun-Eok Shin | Organic light-emitting display device and method of fabricating the same |
US20070096614A1 (en) * | 2005-11-02 | 2007-05-03 | Hyun-Eok Shin | Organic light emitting display device and method of fabricating the same |
US8604688B2 (en) | 2005-11-02 | 2013-12-10 | Samsung Display Co., Ltd. | Organic light-emitting display device and method of fabricating the same |
US7800296B2 (en) * | 2005-11-02 | 2010-09-21 | Samsung Mobile Display Co., Ltd. | Organic light emitting display device and method of fabricating the same |
US20070096633A1 (en) * | 2005-11-03 | 2007-05-03 | Lee Keun-Soo | Flat panel display apparatus |
US8222809B2 (en) | 2005-11-03 | 2012-07-17 | Samsung Mobile Display Co., Ltd. | Flat panel display apparatus |
US20070114920A1 (en) * | 2005-11-22 | 2007-05-24 | Hyun-Soo Shin | Organic thin film transistor, method of manufacturing the same, and flat display apparatus comprising the same |
US7728511B2 (en) | 2005-11-22 | 2010-06-01 | Samsung Mobile Display Co., Ltd. | Organic thin film transistor, method of manufacturing the same, and flat display apparatus comprising the same |
US8507910B2 (en) * | 2007-01-29 | 2013-08-13 | Canon Kabushiki Kaisha | Active matrix display apparatus |
US20100090205A1 (en) * | 2007-01-29 | 2010-04-15 | Canon Kabushiki Kaisha | Active matrix display apparatus |
US8004180B2 (en) | 2008-06-12 | 2011-08-23 | Samsung Mobile Display Co., Ltd. | Organic light emitting display and its method of fabrication |
US20090309493A1 (en) * | 2008-06-12 | 2009-12-17 | Chang-Su Seo | Organic light emitting display and its method of fabrication |
US20100127264A1 (en) * | 2008-11-26 | 2010-05-27 | Hyun-Chol Bang | Organic light emitting display and method of manufacturing the same |
US8318521B2 (en) | 2008-11-26 | 2012-11-27 | Samsung Display Co., Ltd. | Organic light emitting display and method of manufacturing the same |
US8188473B2 (en) * | 2008-11-26 | 2012-05-29 | Samsung Mobile Display Co., Ltd. | Organic light emitting display |
US8629463B2 (en) | 2010-03-05 | 2014-01-14 | Samsung Display Co., Ltd. | Organic light-emitting display device |
US20110215329A1 (en) * | 2010-03-05 | 2011-09-08 | Samsung Mobile Display Co., Ltd. | Organic light-emitting display device |
US20140197391A1 (en) * | 2011-06-09 | 2014-07-17 | Pioneer Corporation | Organic electroluminescent panel and method for producing the same |
US9029848B2 (en) * | 2011-06-09 | 2015-05-12 | Pioneer Corporation | Organic electroluminescent panel and method for producing the same |
US9614016B2 (en) | 2013-11-21 | 2017-04-04 | Samsung Display Co., Ltd. | Organic light-emitting diode (OLED) display and method of manufacturing the same |
US9978994B2 (en) * | 2013-12-31 | 2018-05-22 | Boe Technology Group Co., Ltd. | Organic light emitting display panel and display apparatus |
US20160233458A1 (en) * | 2013-12-31 | 2016-08-11 | Boe Technology Group Co., Ltd. | Organic light emitting display panel and display apparatus |
US9691834B2 (en) | 2014-04-30 | 2017-06-27 | Boe Technology Group Co., Ltd. | AMOLED array substrate, producing method thereof and display apparatus |
WO2015165184A1 (en) * | 2014-04-30 | 2015-11-05 | 京东方科技集团股份有限公司 | Amoled array substrate and manufacturing method and display device |
US20160104859A1 (en) * | 2014-10-08 | 2016-04-14 | Samsung Display Co., Ltd. | Organic light emitting diode display |
US20170155077A1 (en) * | 2015-05-06 | 2017-06-01 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Flexible oled and manufacture method thereof |
US9859521B2 (en) * | 2015-05-06 | 2018-01-02 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Flexible OLED and manufacture method thereof |
US12279499B2 (en) | 2015-11-23 | 2025-04-15 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
US11430860B2 (en) | 2015-11-23 | 2022-08-30 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
US10297656B2 (en) | 2015-11-23 | 2019-05-21 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
US10950683B2 (en) | 2015-11-23 | 2021-03-16 | Samsung Display Co., Ltd. | Organic light-emitting diode display and method of manufacturing the same |
CN106935594A (en) * | 2015-12-31 | 2017-07-07 | 乐金显示有限公司 | Organic light-emitting display device |
WO2018064830A1 (en) * | 2016-10-09 | 2018-04-12 | Boe Technology Group Co., Ltd. | Organic light emitting diode display panel, display apparatus having the same, and fabricating method thereof |
JP7232876B2 (en) | 2017-03-03 | 2023-03-03 | パイオニア株式会社 | light emitting device |
JP2021168312A (en) * | 2017-03-03 | 2021-10-21 | パイオニア株式会社 | Light-emitting device |
US10396135B2 (en) | 2017-05-12 | 2019-08-27 | Boe Technology Group Co., Ltd. | OLED substrate and manufacturing method thereof, and display device |
CN107170900A (en) * | 2017-05-12 | 2017-09-15 | 京东方科技集团股份有限公司 | Oled substrate and preparation method thereof, display device |
US11374070B2 (en) | 2017-05-12 | 2022-06-28 | Boe Technology Group Co., Ltd. | Organic light emitting diode display panel and apparatus having a connecting electrode in an electrode connecting region |
CN109887954A (en) * | 2017-11-30 | 2019-06-14 | 乐金显示有限公司 | Organic Light Emitting Diode Display |
WO2019214572A1 (en) * | 2018-05-11 | 2019-11-14 | 京东方科技集团股份有限公司 | Array substrate, display panel, display device, and method for manufacturing array substrate |
US11239293B2 (en) | 2018-05-11 | 2022-02-01 | Boe Technology Group Co., Ltd. | Array substrate, display panel, display device and method for preparing array substrate |
CN108511502A (en) * | 2018-05-11 | 2018-09-07 | 京东方科技集团股份有限公司 | A kind of array substrate, the preparation method of display panel, display device and array substrate |
CN109742106A (en) * | 2019-01-03 | 2019-05-10 | 重庆京东方显示技术有限公司 | Display panel and preparation method thereof, display device |
US20210159289A1 (en) * | 2019-05-22 | 2021-05-27 | Hefei Xinsheng Optoelectronics Technology Co., Ltd. | Display substrate, method for manufacturing display substrate and display device |
CN110459561A (en) * | 2019-07-26 | 2019-11-15 | 武汉华星光电半导体显示技术有限公司 | A kind of array substrate and OLED display |
US10916613B1 (en) | 2019-07-26 | 2021-02-09 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Array substrate and OLED display device |
CN110610971A (en) * | 2019-09-16 | 2019-12-24 | 云谷(固安)科技有限公司 | Electronic device and control method of electronic device |
WO2021082061A1 (en) * | 2019-10-29 | 2021-05-06 | 深圳市华星光电半导体显示技术有限公司 | Display panel and preparation method therefor |
US12010875B2 (en) | 2019-10-29 | 2024-06-11 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Display panel having cathode layer electrically connected to auxiliary cathode layer and manufacturing method thereof |
CN110993643A (en) * | 2019-11-05 | 2020-04-10 | 深圳市华星光电半导体显示技术有限公司 | OLED display panel |
WO2021088195A1 (en) * | 2019-11-05 | 2021-05-14 | 深圳市华星光电半导体显示技术有限公司 | Oled display panel |
CN110890406A (en) * | 2019-11-28 | 2020-03-17 | 京东方科技集团股份有限公司 | Organic light-emitting display back plate, manufacturing method thereof and display device |
US12004380B2 (en) | 2020-02-17 | 2024-06-04 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Organic light-emitting diode display device and manufacturing method thereof |
WO2021164132A1 (en) * | 2020-02-17 | 2021-08-26 | 武汉华星光电半导体显示技术有限公司 | Organic light-emitting diode display and manufacturing method therefor |
US20220131044A1 (en) * | 2020-10-23 | 2022-04-28 | Boe Technology Group Co., Ltd. | Driving backplane, display panel and display apparatus |
US12266738B2 (en) * | 2020-10-23 | 2025-04-01 | Boe Technology Group Co., Ltd. | Driving backplane, display panel and display apparatus |
WO2023173313A1 (en) * | 2022-03-16 | 2023-09-21 | 京东方科技集团股份有限公司 | Display substrate and manufacturing method therefor, and display apparatus |
Also Published As
Publication number | Publication date |
---|---|
US7947519B2 (en) | 2011-05-24 |
US20080311692A1 (en) | 2008-12-18 |
US7427783B2 (en) | 2008-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7427783B2 (en) | Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode | |
KR101920766B1 (en) | Method of fabricating the organic light emitting device | |
US7492096B2 (en) | Flat panel display device capable of reducing or preventing a voltage drop and method of fabricating the same | |
KR102578834B1 (en) | Organic Light Emitting Display Device | |
KR101649225B1 (en) | Organic Light Emitting Display Device and Method for fabricating the same | |
US7576354B2 (en) | Organic light emitting diode display and method of fabricating the same | |
US20060255725A1 (en) | Organic light emitting display device and fabricating method of the same | |
KR100651936B1 (en) | Top emission organic EL element and method of manufacturing the same | |
CN1722924B (en) | Electroluminescence display device | |
JP2004165067A (en) | Organic electroluminescent panel | |
KR20110035049A (en) | Organic electroluminescent device and manufacturing method thereof | |
EP3316312B1 (en) | Display device having emitting areas | |
CN112715056B (en) | Display device and method for manufacturing display device | |
KR100590259B1 (en) | A front light emitting organic electroluminescent display device and a method of manufacturing the same using an auxiliary electrode to prevent the voltage drop of the upper electrode | |
KR20110015757A (en) | Organic light emitting display device and manufacturing method | |
KR100552966B1 (en) | A front light emitting organic electroluminescent display device and a method of manufacturing the same using an auxiliary electrode to prevent the voltage drop of the upper electrode | |
KR102355605B1 (en) | Organic Light Emitting Diode Display Device and Method of Fabricating the Same | |
US20230345802A1 (en) | Organic electroluminescence display device and method of manufacturing the same | |
KR100778443B1 (en) | Organic light emitting display | |
JP7126140B2 (en) | Organic EL display device | |
US20240040818A1 (en) | Display device and method for manufacturing thereof | |
US20240215357A1 (en) | Display device | |
WO2021199189A1 (en) | Display device and method for manufacturing same | |
KR100739645B1 (en) | Organic light emitting display | |
KR100786847B1 (en) | Organic electroluminescent display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, KWAN-HEE;KIM, EUN-AH;SEO, CHANG-SU;AND OTHERS;REEL/FRAME:016463/0378 Effective date: 20050411 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG SDI CO., LTD.;REEL/FRAME:021973/0313 Effective date: 20081210 Owner name: SAMSUNG MOBILE DISPLAY CO., LTD.,KOREA, REPUBLIC O Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG SDI CO., LTD.;REEL/FRAME:021973/0313 Effective date: 20081210 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028840/0224 Effective date: 20120702 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160923 |