US20050232865A1 - Contrast agents - Google Patents
Contrast agents Download PDFInfo
- Publication number
- US20050232865A1 US20050232865A1 US11/055,543 US5554305A US2005232865A1 US 20050232865 A1 US20050232865 A1 US 20050232865A1 US 5554305 A US5554305 A US 5554305A US 2005232865 A1 US2005232865 A1 US 2005232865A1
- Authority
- US
- United States
- Prior art keywords
- protein
- crosslinking
- gas
- groups
- contrast agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002872 contrast media Substances 0.000 title claims abstract description 20
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 42
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 42
- 238000002604 ultrasonography Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 44
- 238000002360 preparation method Methods 0.000 claims description 33
- 238000004132 cross linking Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 15
- 108010088751 Albumins Proteins 0.000 claims description 14
- 102000009027 Albumins Human genes 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 11
- 239000003431 cross linking reagent Substances 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- -1 carbonate ester Chemical class 0.000 claims description 6
- 238000005538 encapsulation Methods 0.000 claims description 6
- 125000000962 organic group Chemical group 0.000 claims description 6
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 5
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 5
- 125000000524 functional group Chemical group 0.000 claims description 5
- 238000000527 sonication Methods 0.000 claims description 5
- 108010010803 Gelatin Proteins 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 239000008273 gelatin Substances 0.000 claims description 3
- 229920000159 gelatin Polymers 0.000 claims description 3
- 235000019322 gelatine Nutrition 0.000 claims description 3
- 235000011852 gelatine desserts Nutrition 0.000 claims description 3
- 125000005647 linker group Chemical group 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims description 2
- 125000003172 aldehyde group Chemical group 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 150000008064 anhydrides Chemical class 0.000 claims description 2
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 150000003949 imides Chemical class 0.000 claims description 2
- 150000002466 imines Chemical class 0.000 claims description 2
- 239000003495 polar organic solvent Substances 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- 102000006395 Globulins Human genes 0.000 claims 1
- 108010044091 Globulins Proteins 0.000 claims 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims 1
- 239000002961 echo contrast media Substances 0.000 abstract description 9
- 238000012800 visualization Methods 0.000 abstract description 4
- 230000008030 elimination Effects 0.000 abstract description 3
- 238000003379 elimination reaction Methods 0.000 abstract description 3
- 238000001727 in vivo Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229930195733 hydrocarbon Natural products 0.000 abstract description 2
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 2
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 abstract description 2
- 229960000909 sulfur hexafluoride Drugs 0.000 abstract description 2
- 239000004215 Carbon black (E152) Substances 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 66
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 54
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 44
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 44
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 36
- UIIMBOGNXHQVGW-UHFFFAOYSA-M sodium bicarbonate Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 239000000047 product Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 26
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 22
- 239000011541 reaction mixture Substances 0.000 description 22
- 239000002904 solvent Substances 0.000 description 22
- 238000005160 1H NMR spectroscopy Methods 0.000 description 20
- 229920006395 saturated elastomer Polymers 0.000 description 18
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 18
- 235000017557 sodium bicarbonate Nutrition 0.000 description 18
- 239000000725 suspension Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 239000012299 nitrogen atmosphere Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000012074 organic phase Substances 0.000 description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 229960004132 diethyl ether Drugs 0.000 description 12
- 239000004005 microsphere Substances 0.000 description 12
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 239000008363 phosphate buffer Substances 0.000 description 7
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000002592 echocardiography Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 4
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 4
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- JYWJULGYGOLCGW-UHFFFAOYSA-N chloromethyl chloroformate Chemical compound ClCOC(Cl)=O JYWJULGYGOLCGW-UHFFFAOYSA-N 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 239000012259 ether extract Substances 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000003019 stabilising effect Effects 0.000 description 3
- WYQOOMJEZFZWKA-UHFFFAOYSA-N undec-10-enoyloxymethyl undec-10-enoate Chemical compound C=CCCCCCCCCC(=O)OCOC(=O)CCCCCCCCC=C WYQOOMJEZFZWKA-UHFFFAOYSA-N 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- NGVKJLANQIGMME-UHFFFAOYSA-N 10,11-dihydroxyundecanoyloxymethyl 10,11-dihydroxyundecanoate Chemical compound OCC(O)CCCCCCCCC(=O)OCOC(=O)CCCCCCCCC(O)CO NGVKJLANQIGMME-UHFFFAOYSA-N 0.000 description 2
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 2
- XSLPOBDNBROPEF-UHFFFAOYSA-N 2-(1-chloroethoxycarbonyloxy)ethyl 2-methylprop-2-enoate Chemical compound CC(Cl)OC(=O)OCCOC(=O)C(C)=C XSLPOBDNBROPEF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- VAPQAGMSICPBKJ-UHFFFAOYSA-N 2-nitroacridine Chemical compound C1=CC=CC2=CC3=CC([N+](=O)[O-])=CC=C3N=C21 VAPQAGMSICPBKJ-UHFFFAOYSA-N 0.000 description 2
- QYDMMTAPHLKXNJ-UHFFFAOYSA-N 3,3-dimethoxypropanoyloxymethyl 3,3-dimethoxypropanoate Chemical compound COC(OC)CC(=O)OCOC(=O)CC(OC)OC QYDMMTAPHLKXNJ-UHFFFAOYSA-N 0.000 description 2
- NHBRVKCGMLPLOL-UHFFFAOYSA-N 3-oxopropanoyloxymethyl 3-oxopropanoate Chemical compound O=CCC(=O)OCOC(=O)CC=O NHBRVKCGMLPLOL-UHFFFAOYSA-N 0.000 description 2
- IFCYVXWEZHVRJN-UHFFFAOYSA-N 4-(1-chloroethoxycarbonyloxy)butyl prop-2-enoate Chemical compound CC(Cl)OC(=O)OCCCCOC(=O)C=C IFCYVXWEZHVRJN-UHFFFAOYSA-N 0.000 description 2
- UKCKFCBVFCSCGF-UHFFFAOYSA-N 4-(chloromethoxycarbonyloxy)butyl prop-2-enoate Chemical compound ClCOC(=O)OCCCCOC(=O)C=C UKCKFCBVFCSCGF-UHFFFAOYSA-N 0.000 description 2
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 2
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940067597 azelate Drugs 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical class [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 229910000024 caesium carbonate Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000003508 chemical denaturation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- QOPVNWQGBQYBBP-UHFFFAOYSA-N chloroethyl chloroformate Chemical compound CC(Cl)OC(Cl)=O QOPVNWQGBQYBBP-UHFFFAOYSA-N 0.000 description 2
- WBLIXGSTEMXDSM-UHFFFAOYSA-N chloromethane Chemical compound Cl[CH2] WBLIXGSTEMXDSM-UHFFFAOYSA-N 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- JQWHASGSAFIOCM-UHFFFAOYSA-M sodium periodate Chemical compound [Na+].[O-]I(=O)(=O)=O JQWHASGSAFIOCM-UHFFFAOYSA-M 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- PNVPNXKRAUBJGW-UHFFFAOYSA-N (2-chloroacetyl) 2-chloroacetate Chemical compound ClCC(=O)OC(=O)CCl PNVPNXKRAUBJGW-UHFFFAOYSA-N 0.000 description 1
- GNOGSIKEZLRRKT-UHFFFAOYSA-N (2-chloroacetyl)oxymethyl 2-chloroacetate Chemical compound ClCC(=O)OCOC(=O)CCl GNOGSIKEZLRRKT-UHFFFAOYSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- RKCKZGMMUHYUBZ-UHFFFAOYSA-N 10-oxodecanoyloxymethyl 10-oxodecanoate Chemical compound O=CCCCCCCCCC(=O)OCOC(=O)CCCCCCCCC=O RKCKZGMMUHYUBZ-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- GXAODDSUFOEQCB-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxymethoxycarbonyloxy)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC(=O)OCOC(=O)C(C)=C GXAODDSUFOEQCB-UHFFFAOYSA-N 0.000 description 1
- CXDFMFWYUSAAJL-UHFFFAOYSA-N 2-[1-(2-methylprop-2-enoyloxy)ethoxycarbonyloxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)OC(=O)OCCOC(=O)C(C)=C CXDFMFWYUSAAJL-UHFFFAOYSA-N 0.000 description 1
- YPBLIAFTJUUVKY-UHFFFAOYSA-N 2-[2-(chloromethoxycarbonyloxy)ethoxy]ethyl chloromethyl carbonate Chemical compound ClCOC(=O)OCCOCCOC(=O)OCCl YPBLIAFTJUUVKY-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- ZHESMCIWZWYNLC-UHFFFAOYSA-N 2-methylprop-2-enoyloxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCOC(=O)C(C)=C ZHESMCIWZWYNLC-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- ANQBHOLHRHLQDA-UHFFFAOYSA-N 3-methoxyprop-2-enoyloxymethyl 3-methoxyprop-2-enoate Chemical compound COC=CC(=O)OCOC(=O)C=COC ANQBHOLHRHLQDA-UHFFFAOYSA-N 0.000 description 1
- OAKURXIZZOAYBC-UHFFFAOYSA-N 3-oxopropanoic acid Chemical compound OC(=O)CC=O OAKURXIZZOAYBC-UHFFFAOYSA-N 0.000 description 1
- JLFYPMYFFZMXEQ-UHFFFAOYSA-N 4-(1-prop-2-enoyloxyethoxycarbonyloxy)butyl prop-2-enoate Chemical compound C=CC(=O)OC(C)OC(=O)OCCCCOC(=O)C=C JLFYPMYFFZMXEQ-UHFFFAOYSA-N 0.000 description 1
- ODUTZNVTSOAHCJ-UHFFFAOYSA-N 4-(prop-2-enoyloxymethoxycarbonyloxy)butyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)OCOC(=O)C=C ODUTZNVTSOAHCJ-UHFFFAOYSA-N 0.000 description 1
- VOPUZGJLKBMEJU-UHFFFAOYSA-N 4-oxopentanoyloxymethyl 4-oxopentanoate Chemical compound CC(=O)CCC(=O)OCOC(=O)CCC(C)=O VOPUZGJLKBMEJU-UHFFFAOYSA-N 0.000 description 1
- RXDCEWXZFJMEKZ-UHFFFAOYSA-N 9-[[8-carboxy-2-(2,5-dioxopyrrolidin-1-yl)octanoyl]oxymethoxy]-8-(2,5-dioxopyrrolidin-1-yl)-9-oxononanoic acid Chemical compound C1CC(=O)N(C1=O)C(CCCCCCC(=O)O)C(=O)OCOC(=O)C(CCCCCCC(=O)O)N2C(=O)CCC2=O RXDCEWXZFJMEKZ-UHFFFAOYSA-N 0.000 description 1
- 108010056388 Albunex Proteins 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000006612 Kolbe reaction Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- ATTZFSUZZUNHBP-UHFFFAOYSA-N Piperonyl sulfoxide Chemical compound CCCCCCCCS(=O)C(C)CC1=CC=C2OCOC2=C1 ATTZFSUZZUNHBP-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920001963 Synthetic biodegradable polymer Polymers 0.000 description 1
- LONQTZORWVBHMK-UHFFFAOYSA-N [N].NN Chemical compound [N].NN LONQTZORWVBHMK-UHFFFAOYSA-N 0.000 description 1
- RWRLATOXHKXRDR-UHFFFAOYSA-L [Na+].[Na+].O=C1CCC(=O)N1C(CCCCCCC([O-])=O)(S(O)(=O)=O)C(=O)OCOC(=O)C(CCCCCCC([O-])=O)(S(=O)(=O)O)N1C(=O)CCC1=O Chemical compound [Na+].[Na+].O=C1CCC(=O)N1C(CCCCCCC([O-])=O)(S(O)(=O)=O)C(=O)OCOC(=O)C(CCCCCCC([O-])=O)(S(=O)(=O)O)N1C(=O)CCC1=O RWRLATOXHKXRDR-UHFFFAOYSA-L 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- JINBYESILADKFW-UHFFFAOYSA-N aminomalonic acid Chemical class OC(=O)C(N)C(O)=O JINBYESILADKFW-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- SDQBQRZQQSJDEN-UHFFFAOYSA-N but-2-enoyloxymethyl but-2-enoate Chemical compound CC=CC(=O)OCOC(=O)C=CC SDQBQRZQQSJDEN-UHFFFAOYSA-N 0.000 description 1
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- MMCOUVMKNAHQOY-UHFFFAOYSA-N carbonoperoxoic acid Chemical compound OOC(O)=O MMCOUVMKNAHQOY-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000013155 cardiography Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- LWFYKABWZJNCHN-UHFFFAOYSA-M cesium;3,3-dimethoxypropanoate Chemical compound [Cs+].COC(OC)CC([O-])=O LWFYKABWZJNCHN-UHFFFAOYSA-M 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- CVASMYWHWRNWOX-UHFFFAOYSA-N chloro methyl carbonate Chemical compound COC(=O)OCl CVASMYWHWRNWOX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229940039231 contrast media Drugs 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- FCZCIXQGZOUIDN-UHFFFAOYSA-N ethyl 2-diethoxyphosphinothioyloxyacetate Chemical compound CCOC(=O)COP(=S)(OCC)OCC FCZCIXQGZOUIDN-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007925 intracardiac injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000005905 mesyloxy group Chemical group 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical group [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 125000006237 oxymethylenoxy group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- VCMJVSZXCUOEIK-UHFFFAOYSA-N pent-4-enoyloxymethyl pent-4-enoate Chemical compound C=CCCC(=O)OCOC(=O)CCC=C VCMJVSZXCUOEIK-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000771 poly (alkylcyanoacrylate) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- LLLCSBYSPJHDJX-UHFFFAOYSA-M potassium;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O LLLCSBYSPJHDJX-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- UQMZDGOZAWEVRF-UHFFFAOYSA-N prop-2-enoyloxymethyl prop-2-enoate Chemical compound C=CC(=O)OCOC(=O)C=C UQMZDGOZAWEVRF-UHFFFAOYSA-N 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- IARLBMZSSJJOCU-UHFFFAOYSA-N sodium;1-oxidopyrrolidine-2,5-dione Chemical compound [Na+].[O-]N1C(=O)CCC1=O IARLBMZSSJJOCU-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 125000005424 tosyloxy group Chemical group S(=O)(=O)(C1=CC=C(C)C=C1)O* 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/225—Microparticles, microcapsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/22—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
- A61K49/222—Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
- A61K49/223—Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/96—Esters of carbonic or haloformic acids
Definitions
- This invention relates to novel contrast agents, more particularly to new gas-containing or gas-generating contrast agents of use in diagnostic ultrasonic imaging.
- ultrasonic imaging comprises a potentially valuable diagnostic tool, for example, in studies of the vascular system, particularly in cardiography, and of tissue microvasculature.
- contrast agents has been proposed to enhance the acoustic images so obtained, including suspensions of solid particles, emulsified liquid droplets, gas bubbles and encapsulated gases or liquids. It is generally accepted that low density contrast agents which are easily compressible are particularly efficient in terms of the acoustic backscatter they generate, and considerable interest has therefore been shown in the preparation of gas-containing and gas-generating systems.
- WO 80/02365 discloses the use of gelatin encapsulated gas microbubbles for enhancing ultrasonic images. Such microbubbles do not, however, exhibit adequate stability at the dimensions preferred for use in echocardiography (1-10 ⁇ m) in view of the extreme thinness of the encapsulating coating.
- EP-A-0327490 discloses, inter alia, ultrasonic contrast agents comprising a microparticulate synthetic biodegradable polymer (e.g. a polyester of a hydroxy carbonic acid, a polyalkyl cyanoacrylate, a polyamino acid, a polyamide, a polyacrylated saccharine or a polyorthoester) containing a gas or volatile fluid (i.e. having a boiling point below 60° C.) in free or bonded form.
- Emulsifiers may be employed as stabilisers in the preparation of such agents, but such emulsifiers do not chemically interact with the polymer.
- U.S. Pat. No. 4,774,958 discloses the use of microbubble dispersions stabilised by encapsulation in denatured protein, e.g. human serum albumin (HSA).
- HSA human serum albumin
- Such systems permit the production of microbubble systems having a size of e.g. 2-5 ⁇ m but still do not permit efficient visualisation of the left heart and myocardium.
- the only protein-based ultrasound contrast agent under commercial development consists of a suspension of gas-filled albumin, Albunex®, prepared by sonication of a solution of albumin.
- Circulation 80S 349 (1989), Segar at al. in Clin.Res. 37, 294 (1989), Heidenreich et al. in Circulation 80S, 370 (1989), Reiser et al. in Circulation 80S, 370 (1989), Heidenreich et al. in Circulation 80S, 566 (1989), Shandas et al. in Circulation 82, 95 (1990), Geny et al. in Circulation 82, 95 (1990), Ten-Cate et al. in Eur Heart J. 19, 389 (1989), Feinstein et al. in Echocardiography 6, 27 (1989), Zotz et al. in Eur Heart J. 11, 261 (1990), Ten-cate et al.
- any contrast agent should be rapidly eliminated from the subject in a short term after use, e.g. preferably having a half life of not more than 48 hours.
- Crosslinking by glutaraldehyde or formaldehyde may not always be effective in providing an adequate balance between stability during ultrasound visualisation and rapid elimination.
- the protein itself being human serum albumin, is not rapidly degraded by vascular enzymes and reagents such as glutaraldehyde do not form readily biodegradable bonds with the protein.
- the present invention is based on the concept of crosslinking the protein shells of microbubbles to introduce biodegradable linking groups, thus providing ultrasound contrast agents with adequate stability for the duration of ultrasound visualisation but sufficient biodegradability to permit rapid elimination subsequently.
- ultrasound contrast agents comprising microbubbles of gas or a gas precursor encapsulated in a shell of protein crosslinked with biodegradable crosslinking groupings.
- Biodegradable linkages which may be used include amide, imide, imine, ester, anhydride, acetal, carbamate, carbonate, carbonate ester and disulphide groups. At least one such group should preferably be present in the crosslinking grouping. In general, any esters will be biodegradable particularly those containing the grouping —CO.O— or —O.CO.O—.
- One particularly useful class of biodegradable ester groupings has the structure —(Y) n .CO.O.C(R 1 R 2 ).O.CO.(Z) n — (where Y and Z, which may be the same or different, are —O—, —S— or —NR 3 —; the symbols n, which may be the same or different, are zero or 1; R 1 and R 2 , which may be the same or different, are hydrogen atoms or carbon-attached monovalent groups or together represent a carbon-attached divalent organic group; and R 3 is a hydrogen atom or an organic group. Y and Z are preferably —O—. Such groups generally degrade to eliminate a compound R 1 R 2 CO and either form carboxyl groups on the residue or, in the case of carbonate esters, may eliminate carbon dioxide to form hydroxyl groups on the residue.
- R 1 , R 2 and R 3 may each be a hydrocarbyl or heterocyclic group, for example having 1-20 carbon atoms, e.g. an alkyl or alkenyl group (preferably having up to 10 carbon atoms), a cycloalkyl group (preferably having up to 10 carbon atoms), an aralkyl group (preferably having up to 20 carbon atoms), an acyl group (preferably having up to 20 carbon atoms) or a heterocyclic group having up to 20 carbon atoms and one or more heteroatoms selected from O, S and N; such a hydrocarbyl or heterocyclic grouping may carry one or more functional groups such as halogen atoms or groups of the formulae —NR 4 R 5 , —CONR 4 R 5 , —OR 6 , —SR 6 and —COOR 7 , where R 4 and R 5 , which may be the same or different, are hydrogen atoms, acyl groups or hydrocarbyl groups as defined for R 1 and R 2
- the protein component can be any protein or derivative thereof including polyamino acids.
- Albumin, gelatin and ⁇ -globulin are representative compounds.
- the protein, for instance albumin can be obtained from biological sources, for example from human or animal blood, or produced by a lower organism using recombinant technology. A typical method for preparation of human serum albumin by fermentation is described in WO 9002808 (Delta Biotechnology Ltd.).
- microbubble ultrasound contrast agents in which a gas or a gas precursor is encapsulated in a protein which is crosslinked with biodegradable crosslinking groups.
- the crosslinking of the protein can be effected before, during or after encapsulation. It is preferred to encapsulate, e.g. by forming microbubbles, first and to effect crosslinking subsequently.
- the crosslinking agent may be a compound of the formula (I) A 1 -X-A 2 (I) where X is a linking group containing one or more biodegradable linkages and the groups A 1 and A 2 , which may be the same or different, are functional groups reactive with proteins.
- the group X may carry further groups reactive with proteins to provide an even greater degree of crosslinking.
- the group X should have a chain length of not more than 30 atoms.
- the group X may thus be of the form —R 8 -E-R 9 — where R 8 and R 9 , which may be the same or different, are divalent organic groups, for example alkylene or alkylidene groups having 1-12 carbon atoms, which may carry groups reactive with proteins and/or further inert groups, and the group E is an ester grouping, for example of the formula —O.CO—, —O.CO.O— or —(Y) n .CO.O.C(R 1 R 2 ).O.CO.(Z) n - as defined above.
- Crosslinking agents of the formula A 1 .R 8 .(Y) n .CO.O.C(R 1 R 2 ).O.CO.(Z) n .R 9 .A 2 where A 1 , A 2 , R 1 , R 2 , R 8 , R 9 , n, Y and Z have the above meanings may be prepared by reaction of an acid of the formula A 1 .R 8 .(Y) n .CO.OH or a form thereof in which A 1 and any other reactive groups are protected (or a functional derivative thereof) with a compound of the formula L 1 .C(R 1 R 2 ).L 2 where L 1 is a leaving group such as a halogen atom or mesyloxy or tosyloxy and L 2 is a group as defined for L 1 (giving a symmetrical di-ester) or a group of the formula —O.CO.(Z) n .R 9 .A 2 or a protected form thereof, if necessary followed by de
- the functional derivative of the acid may for example be a salt, e.g. the potassium salt.
- the reaction will normally be carried out in solution, for example in a polar solvent such as dimethylformamide.
- Protecting groups for A 1 and A 2 may be those conventional in the art.
- Preferred protecting groups for aldehydes include acetals, e.g. cyclic acetals such as dioxolan.
- the compound L 1 .C(R 1 R 2 ).O.Co.(Z) n .R 9 . A 2 may be prepared from R 1 R 2 .CO by reaction with a compound of the formula Hal.CO.(Z) n .R 9 .A 2 (where Hal represents a halogen atom) in the presence of a base such as pyridine.
- the groups A 1 and A 2 may be activated carboxyl groups, such as N-hydroxysuccinimidyl groups (especially water solubility-enhanced sulphonated N-hydroxysuccinimidyl derivatives), imidoesters, halo-nitroaryl groups, nitrene precursor groups such as azidophenyl, carbene precursor groups, ketone groups, isothiocyanate groups etc.
- carboxyl groups such as N-hydroxysuccinimidyl groups (especially water solubility-enhanced sulphonated N-hydroxysuccinimidyl derivatives), imidoesters, halo-nitroaryl groups, nitrene precursor groups such as azidophenyl, carbene precursor groups, ketone groups, isothiocyanate groups etc.
- any biocompatible gas maybe employed in the contrast agents of the invention, for example air, nitrogen, oxygen, hydrogen, nitrous oxide, carbon dioxide, helium, argon, sulphur hexafluoride and low molecular weight optionally fluorinated hydrocarbons such as methane, acetylene or carbon tetrafluoride.
- the gas maybe free within the microbubble or may be trapped or entrained within a containing substance.
- gas as used herein includes any substance in the gaseous form at 37° C.
- Gas precursors include carbonates and bicarbonates, e.g. sodium or ammonium bicarbonate and aminomalonate esters.
- microbubbles having an average size of 0.1-10 ⁇ m, e.g. 1-7 ⁇ m.
- Substantially larger bubbles e.g. with average sizes of up to 500 ⁇ m, may however be useful in other applications, for example gastrointestinal imaging or investigations of the uterus or Fallopian tubes.
- the microbubbles may be stabilised by incorporation of particulate material together with the encapsulated gas.
- Such particles include, for example, silica and iron oxide.
- the preferred particle size for such stabilising particles is in the range 1 to 500 nm, depending on the size of the microbubbles.
- the particles should be such that they are only partially wetted by the fluid medium used to disperse the micelles, i.e. the contact angle between the material of the particles and the fluid should be about 90 degrees.
- the stabilising particles may carry functional groups which will interact with the protein to form covalent or other linkages.
- Colloidal silica particles may have a particle size in the range 5-50 nm and may carry silanol groups on the surface which are capable of interaction with the protein by hydrogen bonding or by forming covalent bond.
- the protein may stabilize the gas or gas precursor by forming a monolayer at the interface between the liquid medium and the gas or gas precursor system, or by forming vesicles consisting of one or more bilayers containing the gas or gas precursor.
- the stabilisation of the system by monolayers or the formation of the vesicles may be activated, as fully described in the literature, by sonication or even shaking of the protein material mixture in the appropriate medium, or the vesicles may be formed by any conventional liposome/vesicle-forming principle.
- the stabilized microbubbles may be dried or freeze-dried or the non-aqueous phase may be evaporated.
- the resulting dried system may be resuspended in any physiological acceptable solvent such a saline or phosphate buffer, optionally using a suspending or emulsifying agent.
- a gas entrapped system may be obtained by using a gas precursor or the gas itself may be entrapped.
- the gas may be entrapped into the amphiphile mixture simply by vigorously shaking the mixture in the presence of air,. i.e. creating a gas-in-liquid emulsion as described in U.S. Pat. No. 4,684,479.
- Another well established method, described i.e. in U.S. Pat. No. 4,774,958 for creating a gas-containing bubble is by sonication of the mixture in the presence of air.
- Another well known method is passing the gas through a syringe into the mixture of the protein and the liquid. As described in U.S. Pat. No.
- the microgas-emulsion may be created by using an apparatus for introducing gas rapidly into a fast-flowing liquid. A region of low pressure is created in a liquid containing the protein material. The gas is then introduced to the region of low pressure and the gas-in-liquid system is obtained by pumping the liquid through the system.
- electrolysis By using the principle of electrolysis it is possible to generate the gas to be entrapped directly in a container containing the protein material.
- the electrolytes necessary for the electrolysis may even help to further stabilize the protein material.
- An aqueous solution containing electrolytes may generate hydrogen gas at the cathode and oxygen at the anode.
- the electrodes may be separated by a salt bridge.
- On adding hydrazine nitrogen gas may be generated at the anode.
- the Kolbe reaction one may also generate CO 2 from carboxylic acids using electrolysis.
- microbubbles may be obtained by forming liposomes or vesicles consisting of one or more bilayers. These vesicles may be formed at elevated pressure conditions in such a way that the gas is entrapped in the vesicles.
- encapsulation is effected by agitation or sonication of the protein in an aqueous medium to yield a protein foam which is dried and thereafter suspended in a solution of the crosslinking agent in a polar organic solvent (e.g. a sulphoxide such as dimethyl sulphoxide) which is capable of wetting the protein foam.
- a polar organic solvent e.g. a sulphoxide such as dimethyl sulphoxide
- the preparation of the starting material, the dioxolan-protected aldehyde methyl ⁇ -formylacetate, is described by T. Hosokawa et al. J. Org. Chem. Soc. 52, (1987) 1758-1764.
- the protected aldehyde (6.0 g, 3.75 mmol) is treated with a mixture of 2N aqueous potassium hydroxide and tetrahydrofuran 20:80 (v/v) at reflux for 8 hours.
- the pH is adjusted to 8 using diluted HCl, and the mixture is evaporated to dryness.
- the solid is mixed with 100 ml freshly distilled and dried dimethylformamide, and after 30 minutes at 60° C. the undissolved material is filtered off.
- Diiodomethane (150 ⁇ l, 1.87 mmol) is added dropwise during 5 minutes to the solution at 60° C. as described in WO 89/00988 page 13 (NYCOMED AS).
- the precipitate is removed by filtration after stirring for 4 days, and the solvent removed at reduced pressure.
- the dioxolan protection is removed as described by P. A. Grieco et al. J. Am. Chem. Soc. 99, (1977) 5773-5780—the residue is dissolved in tetrahydrofuran (60 ml), 5% aqueous HCl (20 ml) is added and the mixture is stirred for 20 hours at ambient temperature. The reaction mixture is evaporated to dryness under reduced pressure to yield the title compound.
- a solution of potassium hydroxide (1.00 M, 40.00 ml) is added to methacrylic acid (3.44 g, 40.00 mmol) at 0° C. and the solution freeze dried for 16 hours.
- Dry dimethylformamide (230 ml) is added and the suspension heated to 60° C. under a dry nitrogen atmosphere.
- Diiodomethane (1.61 ml, 20.00 mmol) is added in two portions during 10 min. and the reaction mixture left for 4 days at 60° C.
- the solvent is removed under reduced pressure (0.05 mm Hg), before diethyl ether (140 ml), saturated aqueous sodium hydrogen carbonate (50 ml) and water (50 ml) are added.
- This product may be used in accordance with the invention, for example to crosslink acrylamide polymers.
- a solution of potassium hydroxide (1.00 M, 40.00 ml) is added to acrylic acid (2.88 g, 40.00 mmol) at 0° C. and the solution freeze dried for 16 hours.
- Dry dimethylformamide (200 ml) is added and the suspension heated to 60° C. under a dry nitrogen atmosphere.
- Diiodomethane (1.61 ml, 20.00 mmol) is added in two portions during 10 min. and the reaction mixture left for 4 days at 60° C.
- the solvent is removed under reduced pressure (0.05 mm Hg), before diethyl ether (140 ml), saturated aqueous sodium hydrogen carbonate (50 ml) and water (50 ml) are added.
- a solution of potassium hydroxide (1.00 M, 5.00 ml) is added to methacrylic acid (0.43 g, 5.00 mmol) at 0° C. and the solution freeze dried during 16 hours. Dry dimethylformamide (50 ml) is added and to the resulting suspension is added chloromethyl (2-methacryloyloxy)ethyl carbonate (1.11 g, 5.00 mmol). 18-Crown-6 (0.066 g, 0.25 mmol) is added as a catalyst and the reaction left under a dry nitrogen atmosphere. After 24 hours at 20° C. and 6 days at 4° C. the solvent is removed under reduced pressure (0.05 mm Hg) and diethyl ether (30 ml) and water (20 ml) added.
- 1-Chloroethyl 2-methacryloyloxyethyl carbonate (1.183 g, 5.00 mmol) prepared as described in Preparation 8 is added to a suspension of freeze dried potassium methacrylate (0.683 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N 2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml).
- Chloromethyl 4-acryloyloxybutyl carbonate (1.183 g, 5.00 mmol) prepared as described in Preparation 9 is added to a suspension of freeze dried potassium acrylate (0.606 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N 2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml). After separating the phases the aqueous layer is extracted with dichloromethane (3 ⁇ 30 ml) and the combined organic phase washed with saturated aqueous sodium hydrogen carbonate (50 ml).
- 1-Chloroethyl 4-acryloyloxybutyl carbonate (1.253 g, 5.00 mmol) prepared as described in Preparation 10 is added to a suspension of freeze dried potassium acrylate (0.606 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N 2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml). After separating the phases the aqueous layer is extracted with dichloromethane (3 ⁇ 30 ml) and the combined organic phase washed with saturated aqueous sodium hydrogen carbonate (50 ml).
- Methylene bis(10-undecenoate) (8.8 g, 25 mmol) prepared as described in (a) above is added under an N 2 atmosphere to methylene chloride and cooled to 0° C.
- Metachloroperbenzoic acid 55% (15.75 g, 50 mmol) is added to methylene chloride (150 ml) and the organic layer is separated and dried (MgSO 4 ).
- the metachloroperbenzoic acid is then added dropwise to the diester. After completed addition the temperature is increased to 25° C. After 5 hours the reaction is complete.
- the mixture is washed with saturated aqueous sodium sulphite (75 ml) and saturated aqueous sodium hydrogen carbonate (2 ⁇ 75 ml).
- Metachloroperbenzoic acid (15.68 g, 55%, 50 mmol) is dissolved in methylene chloride (200 ml). Water is separated and the organic layer is dried (MgSO 4 ). The resulting metachloroperbenzoic acid solution is added dropwise to methylene bis(4-pentenoate) (4.10 g, 19 mmol) dissolved in methylene chloride (50 ml). The mixture is stirred at ambient temperature under nitrogen for 12 hrs, whereafter the reaction mixture is washed with saturated aqueous sodium bicarbonate solution (50 ml), water (50 ml), dried (MgSO 4 ) and evaporated to give 3.61 g (78%) of the title compound as a crystalline product.
- N-Methylmorpholine-N-oxide (13.5 g, 11 mmol) and methylene bis(10-undecenoate) from Preparation 15(b) (19 g, 5 mmol) were dissolved in 400 ml of a mixture of tetrahydrofuran and water (3:1 v/v).
- a catalytic amount of osmium tetroxide was added, and the solution stirred at ambient temperature for 20 hours. TLC indicated complete consumption of the starting material. Excess sodium hydrogen sulphite and sodium chloride were then added to the reaction mixture.
- Gas-filled albumin microspheres are prepared according to EP-A-0359 246 and resuspended to homogeneity by gentle rolling on a vial roller.
- the vial is centrifuged upside down at 170 ⁇ g for 5 min.
- the resulting suspension is centrifuged as in point 4, and the microspheres are resuspended in the phosphate buffer to a final concentration of about 5 ⁇ 10 8 particles per ml.
- crosslinker methylene bis( ⁇ -formylacetate), prepared as described in Preparation 1 is added to the suspension, and the crosslinking reaction is allowed to proceed for the desired time (usually 30-60 min) under gentle rolling.
- Tris-HCl-buffer pH 8.8 is added to a final concentration of 0.25 M, and the suspension is rolled gently for 10 min.
- the vial is centrifuged as in point 4, and the solution underneath the microsphere layer is removed as in point 5.
- microspheres are resuspended in phosphate buffer (same volume as final volume in point 9), and the suspension is rolled for 10 min.
- the resulting suspension is centrifuged as in point 4, and the microspheres are resuspended in the phosphate buffer to a final concentration of about 5 ⁇ 10 8 particles per ml.
- Example 1 The procedure of Example 1 is repeated using crosslinking agents prepared as described in Preparations 2-22, except that dimethyl suplhoxide is used in place of phosphate buffer in the processing of the gas-filled albumin microspheres according to steps 3-7 and the crosslinking agent is added in step 8 as a solution in dimethyl sulphoxide.
- the number and size distribution of the products are determined by Coulter counter analysis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Radiology & Medical Imaging (AREA)
- Acoustics & Sound (AREA)
- Biochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Glass Compositions (AREA)
- Organic Insulating Materials (AREA)
- Materials For Medical Uses (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Electroluminescent Light Sources (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Steroid Compounds (AREA)
- Semiconductor Lasers (AREA)
Abstract
The invention relates to ultrasound contrast agents comprising vesicles comprising a protein capable of formation of gas-containing vesicles, wherein the vesicles contain gas which comprises sulphur hexafluoride or a low molecular weight fluorinated hydrocarbon. These contrast agents exhibit stability in vivo upon administration so as to permit ultrasound visualization while allowing rapid subsequent elimination from the system.
Description
- This invention relates to novel contrast agents, more particularly to new gas-containing or gas-generating contrast agents of use in diagnostic ultrasonic imaging.
- It is well known that ultrasonic imaging comprises a potentially valuable diagnostic tool, for example, in studies of the vascular system, particularly in cardiography, and of tissue microvasculature. A variety of contrast agents has been proposed to enhance the acoustic images so obtained, including suspensions of solid particles, emulsified liquid droplets, gas bubbles and encapsulated gases or liquids. It is generally accepted that low density contrast agents which are easily compressible are particularly efficient in terms of the acoustic backscatter they generate, and considerable interest has therefore been shown in the preparation of gas-containing and gas-generating systems.
- Initial studies involving free gas bubbles generated in vivo by intracardiac injection of physiologically acceptable substances have demonstrated the potential efficiency of such bubbles as contrast agents in echocardiography; such techniques are severely limited in practice, however, by the short lifetime of the free bubbles. Interest has accordingly been shown in methods of stabilising gas bubbles for echocardiography and other ultrasonic studies, for example using emulsifiers, oils, thickeners or sugars.
- WO 80/02365 discloses the use of gelatin encapsulated gas microbubbles for enhancing ultrasonic images. Such microbubbles do not, however, exhibit adequate stability at the dimensions preferred for use in echocardiography (1-10 μm) in view of the extreme thinness of the encapsulating coating.
- EP-A-0327490 discloses, inter alia, ultrasonic contrast agents comprising a microparticulate synthetic biodegradable polymer (e.g. a polyester of a hydroxy carbonic acid, a polyalkyl cyanoacrylate, a polyamino acid, a polyamide, a polyacrylated saccharine or a polyorthoester) containing a gas or volatile fluid (i.e. having a boiling point below 60° C.) in free or bonded form. Emulsifiers may be employed as stabilisers in the preparation of such agents, but such emulsifiers do not chemically interact with the polymer.
- U.S. Pat. No. 4,774,958 discloses the use of microbubble dispersions stabilised by encapsulation in denatured protein, e.g. human serum albumin (HSA). Such systems permit the production of microbubble systems having a size of e.g. 2-5 μm but still do not permit efficient visualisation of the left heart and myocardium.
- Other ultrasound contrast agents using proteins as encapsulating agents have been described in the literature, for example in EP 0359 246 (Molecular Biosystems), U.S. Pat. No. 4,832,941 (Max-Planck Gessellschaft), U.S. Pat. No. 4,844,882 (Molecular Biosystems), WO 84/02838 (Feinstein), U.S. Pat. No. 4,572,203 (Feinstein), EP 0077 752 (Schering), U.S. Pat. No. 4,747,610 (The Regents of the University of California), WO 80/02365 (Rasor), U.S. Pat. No. 4,774,958 (Feinstein), U.S. Pat. No. 4,718,433 (Feinstein), EP 0224 934 (Feinstein).
- The only protein-based ultrasound contrast agent under commercial development consists of a suspension of gas-filled albumin, Albunex®, prepared by sonication of a solution of albumin.
- Albumin based ultrasound contrast agents are described in the following publications:
- Feinstein et al. in Circulation 78S, 565 (1988), Reisner et al. in Circulation 78S, 565 (1988), Dick et al. in Circulation 78S, 565 (1988), Armstrong et al. in Circulation 78S, 565 (1988), Desir et al. in Circulation 78S, 566 (1988), Heidenreich et al. in Circulation 78S, 566 (1988), Keller et al. in Circulation 78S, 567 (1988), Barnhart et al. in Contrast Media Research (1989), Silverman et al. in Circulation 80S, 369 (1989), Silverman et al. in Circulation 80S, 349 (1989), Segar at al. in Clin.Res. 37, 294 (1989), Heidenreich et al. in Circulation 80S, 370 (1989), Reiser et al. in Circulation 80S, 370 (1989), Heidenreich et al. in Circulation 80S, 566 (1989), Shandas et al. in Circulation 82, 95 (1990), Geny et al. in Circulation 82, 95 (1990), Ten-Cate et al. in Eur Heart J. 19, 389 (1989), Feinstein et al. in Echocardiography 6, 27 (1989), Zotz et al. in Eur Heart J. 11, 261 (1990), Ten-cate et al. in Eur Heart J. 11, 261 (1990), Barnhart et al. in Invest Radiol 25S, 162 (1990), Keller et al. in J. Am Soc Echo 2, 48 (1989), Bleeker et al. in J. Acoust Soc Am 87, 1792 (1990), Feinstein et al. in J. Am. Coll. Cardiol 16, 316 (1990), Kaul et al. in J. Am Coll. Cardiol 15, 195 (1990), Bleeker et al in J. Ultrasound Med 9, 461 (1990), Hilpert et al. in Radiology 173, 361 (1989), and Shapiro et al. in J. Am. Coll. 16, 1603 (1990).
- However, as indicated above, ultrasound contrast agents based on gas-filled protein microspheres are unstable in vivo, and there is room for improvement of such products. Segar et al. have, in Advances in Echocardiography (Sep. 21-22-1989), concluded that batch, mixing pressure, mixing time and medium all affect the left atrium contrast with such protein based products.
- Feinstein et al. have in J. Am. Coll. Cardiol 16, 316 (1990) published that irrespective of dose group, a cavity opacification with albumin microspheres was seen in the right ventricle in 88% of the injections and in the left ventricle in 63% of the injections. Shandas et al. have in Circulation 82, 95 (1990) raised questions about the pressure related stability of gas filled albumin microspheres and Shapiro et al. have recently published in J. Am. Coll. Cardiol 16, 1603 (1990) lack of ultrasound myocardial contrast enhancement after administration of sonicated albumin.
- Feinstein has in EP 0224 934 on page 4,8 and claim 9, U.S. Pat. No. 4,718,433 columns 3 and 5 and U.S. Pat. No. 4,774,958 columns 3 and 5 suggested chemical denaturation to stabilize albumin gas bubbles:
-
- “The microbubbles formed from 5% albumin may, in the alternative, be stabilized to form a commercially, clinically usable contrast agent by treatment with various chemical agents which chemically denature, or “fix”, the protein, and derivatives thereof. Chemical denaturation of the protein (or derivatives) may be accomplished by either binding the protein with a protein-reactive aldehyde, such as glutaraldehyde. For the latter procedure of stabilizing the invented microbubble contrast agent, the microbubbles may be reacted with 0.25 grams of 50% aqueous glutaraldehyde per gram of protein at pH 4.5 for 6 hours. The treated contrast agent is then gently and extensively washed to remove as much of the unreacted glutaraldehyde as possible.”
- Various denaturing chemicals or cross linking agents for proteins have been described in the literature. (See for example Methods Enzymol 172, 584 (1989) and Chemical Reagents for Protein Modification, Volume II, page 123, CRC Press Inc.)
- However it is important that any contrast agent should be rapidly eliminated from the subject in a short term after use, e.g. preferably having a half life of not more than 48 hours. Crosslinking by glutaraldehyde or formaldehyde may not always be effective in providing an adequate balance between stability during ultrasound visualisation and rapid elimination. The protein itself, being human serum albumin, is not rapidly degraded by vascular enzymes and reagents such as glutaraldehyde do not form readily biodegradable bonds with the protein.
- The present invention is based on the concept of crosslinking the protein shells of microbubbles to introduce biodegradable linking groups, thus providing ultrasound contrast agents with adequate stability for the duration of ultrasound visualisation but sufficient biodegradability to permit rapid elimination subsequently.
- According to the present invention, therefore, we provide ultrasound contrast agents comprising microbubbles of gas or a gas precursor encapsulated in a shell of protein crosslinked with biodegradable crosslinking groupings.
- Biodegradable linkages which may be used include amide, imide, imine, ester, anhydride, acetal, carbamate, carbonate, carbonate ester and disulphide groups. At least one such group should preferably be present in the crosslinking grouping. In general, any esters will be biodegradable particularly those containing the grouping —CO.O— or —O.CO.O—. One particularly useful class of biodegradable ester groupings has the structure
—(Y)n.CO.O.C(R1R2).O.CO.(Z)n—
(where Y and Z, which may be the same or different, are —O—, —S— or —NR3—; the symbols n, which may be the same or different, are zero or 1; R1 and R2, which may be the same or different, are hydrogen atoms or carbon-attached monovalent groups or together represent a carbon-attached divalent organic group; and R3 is a hydrogen atom or an organic group. Y and Z are preferably —O—. Such groups generally degrade to eliminate a compound R1R2CO and either form carboxyl groups on the residue or, in the case of carbonate esters, may eliminate carbon dioxide to form hydroxyl groups on the residue. - R1, R2 and R3 may each be a hydrocarbyl or heterocyclic group, for example having 1-20 carbon atoms, e.g. an alkyl or alkenyl group (preferably having up to 10 carbon atoms), a cycloalkyl group (preferably having up to 10 carbon atoms), an aralkyl group (preferably having up to 20 carbon atoms), an acyl group (preferably having up to 20 carbon atoms) or a heterocyclic group having up to 20 carbon atoms and one or more heteroatoms selected from O, S and N; such a hydrocarbyl or heterocyclic grouping may carry one or more functional groups such as halogen atoms or groups of the formulae —NR4R5, —CONR4R5, —OR6, —SR6 and —COOR7, where R4 and R5, which may be the same or different, are hydrogen atoms, acyl groups or hydrocarbyl groups as defined for R1 and R2; R6 is a hydrogen atom or an acyl group or a group as defined for R1 or R2 and R7 is a hydrogen atom or a group as defined for R1 or R2; where R1 and R2 represent a divalent grouping, this may for example be an alkylene or alkenylene group (preferably having up to 10 carbon atoms) which may carry one or more functional groups as defined above. In general R1 and R2 are preferably hydrogen or small groups such as C1-4 alkyl groups.
- The protein component can be any protein or derivative thereof including polyamino acids. Albumin, gelatin and γ-globulin are representative compounds. The protein, for instance albumin, can be obtained from biological sources, for example from human or animal blood, or produced by a lower organism using recombinant technology. A typical method for preparation of human serum albumin by fermentation is described in WO 9002808 (Delta Biotechnology Ltd.).
- According to a further feature of the invention, we provide a process for the preparation of microbubble ultrasound contrast agents in which a gas or a gas precursor is encapsulated in a protein which is crosslinked with biodegradable crosslinking groups.
- The crosslinking of the protein can be effected before, during or after encapsulation. It is preferred to encapsulate, e.g. by forming microbubbles, first and to effect crosslinking subsequently.
- The crosslinking agent may be a compound of the formula (I)
A1-X-A2 (I)
where X is a linking group containing one or more biodegradable linkages and the groups A1 and A2, which may be the same or different, are functional groups reactive with proteins. - The group X may carry further groups reactive with proteins to provide an even greater degree of crosslinking.
- Preferably, the group X should have a chain length of not more than 30 atoms.
- The group X may thus be of the form
—R8-E-R9—
where R8 and R9, which may be the same or different, are divalent organic groups, for example alkylene or alkylidene groups having 1-12 carbon atoms, which may carry groups reactive with proteins and/or further inert groups, and the group E is an ester grouping, for example of the formula —O.CO—, —O.CO.O— or —(Y)n.CO.O.C(R1R2).O.CO.(Z)n- as defined above. - Crosslinking agents of the formula
A1.R8.(Y)n.CO.O.C(R1R2).O.CO.(Z)n.R9.A2
where A1, A2, R1, R2, R8, R9, n, Y and Z have the above meanings may be prepared by reaction of an acid of the formula A1.R8.(Y)n.CO.OH or a form thereof in which A1 and any other reactive groups are protected (or a functional derivative thereof) with a compound of the formula L1.C(R1R2).L2 where L1 is a leaving group such as a halogen atom or mesyloxy or tosyloxy and L2 is a group as defined for L1 (giving a symmetrical di-ester) or a group of the formula —O.CO.(Z)n.R9.A2 or a protected form thereof, if necessary followed by deprotection. The functional derivative of the acid may for example be a salt, e.g. the potassium salt. The reaction will normally be carried out in solution, for example in a polar solvent such as dimethylformamide. Protecting groups for A1 and A2 may be those conventional in the art. Preferred protecting groups for aldehydes include acetals, e.g. cyclic acetals such as dioxolan. - The compound L1.C(R1R2).O.Co.(Z)n.R9. A2, where L1 is halogen, may be prepared from R1R2.CO by reaction with a compound of the formula Hal.CO.(Z)n.R9.A2 (where Hal represents a halogen atom) in the presence of a base such as pyridine.
- Apart from aldehyde groups, which are preferred, the groups A1 and A2 may be activated carboxyl groups, such as N-hydroxysuccinimidyl groups (especially water solubility-enhanced sulphonated N-hydroxysuccinimidyl derivatives), imidoesters, halo-nitroaryl groups, nitrene precursor groups such as azidophenyl, carbene precursor groups, ketone groups, isothiocyanate groups etc.
- Any biocompatible gas maybe employed in the contrast agents of the invention, for example air, nitrogen, oxygen, hydrogen, nitrous oxide, carbon dioxide, helium, argon, sulphur hexafluoride and low molecular weight optionally fluorinated hydrocarbons such as methane, acetylene or carbon tetrafluoride. The gas maybe free within the microbubble or may be trapped or entrained within a containing substance. The term “gas” as used herein includes any substance in the gaseous form at 37° C.
- Gas precursors include carbonates and bicarbonates, e.g. sodium or ammonium bicarbonate and aminomalonate esters.
- For applications in echocardiography, in order to permit free passage through the pulmonary system and to achieve resonance with the preferred imaging frequency of about 0.1-15 MHz, it may be convenient to employ microbubbles having an average size of 0.1-10 μm, e.g. 1-7 μm. Substantially larger bubbles, e.g. with average sizes of up to 500 μm, may however be useful in other applications, for example gastrointestinal imaging or investigations of the uterus or Fallopian tubes.
- As indicated above the microbubbles may be stabilised by incorporation of particulate material together with the encapsulated gas. Such particles include, for example, silica and iron oxide. The preferred particle size for such stabilising particles is in the range 1 to 500 nm, depending on the size of the microbubbles. The particles should be such that they are only partially wetted by the fluid medium used to disperse the micelles, i.e. the contact angle between the material of the particles and the fluid should be about 90 degrees.
- The stabilising particles may carry functional groups which will interact with the protein to form covalent or other linkages. Colloidal silica particles may have a particle size in the range 5-50 nm and may carry silanol groups on the surface which are capable of interaction with the protein by hydrogen bonding or by forming covalent bond.
- The protein may stabilize the gas or gas precursor by forming a monolayer at the interface between the liquid medium and the gas or gas precursor system, or by forming vesicles consisting of one or more bilayers containing the gas or gas precursor.
- The stabilisation of the system by monolayers or the formation of the vesicles may be activated, as fully described in the literature, by sonication or even shaking of the protein material mixture in the appropriate medium, or the vesicles may be formed by any conventional liposome/vesicle-forming principle.
- The stabilized microbubbles may be dried or freeze-dried or the non-aqueous phase may be evaporated. The resulting dried system may be resuspended in any physiological acceptable solvent such a saline or phosphate buffer, optionally using a suspending or emulsifying agent.
- A gas entrapped system may be obtained by using a gas precursor or the gas itself may be entrapped. The gas may be entrapped into the amphiphile mixture simply by vigorously shaking the mixture in the presence of air,. i.e. creating a gas-in-liquid emulsion as described in U.S. Pat. No. 4,684,479. Another well established method, described i.e. in U.S. Pat. No. 4,774,958 for creating a gas-containing bubble is by sonication of the mixture in the presence of air. Another well known method is passing the gas through a syringe into the mixture of the protein and the liquid. As described in U.S. Pat. No. 3,900,420 the microgas-emulsion may be created by using an apparatus for introducing gas rapidly into a fast-flowing liquid. A region of low pressure is created in a liquid containing the protein material. The gas is then introduced to the region of low pressure and the gas-in-liquid system is obtained by pumping the liquid through the system.
- By using the principle of electrolysis it is possible to generate the gas to be entrapped directly in a container containing the protein material. The electrolytes necessary for the electrolysis may even help to further stabilize the protein material. An aqueous solution containing electrolytes may generate hydrogen gas at the cathode and oxygen at the anode. The electrodes may be separated by a salt bridge. On adding hydrazine nitrogen gas may be generated at the anode. Using the Kolbe reaction, one may also generate CO2 from carboxylic acids using electrolysis.
- As described above, microbubbles may be obtained by forming liposomes or vesicles consisting of one or more bilayers. These vesicles may be formed at elevated pressure conditions in such a way that the gas is entrapped in the vesicles.
- In one procedure according to the invention, encapsulation is effected by agitation or sonication of the protein in an aqueous medium to yield a protein foam which is dried and thereafter suspended in a solution of the crosslinking agent in a polar organic solvent (e.g. a sulphoxide such as dimethyl sulphoxide) which is capable of wetting the protein foam.
- The following Examples are given by way of illustration only:
- The preparation of the starting material, the dioxolan-protected aldehyde methyl α-formylacetate, is described by T. Hosokawa et al. J. Org. Chem. Soc. 52, (1987) 1758-1764. The protected aldehyde (6.0 g, 3.75 mmol) is treated with a mixture of 2N aqueous potassium hydroxide and tetrahydrofuran 20:80 (v/v) at reflux for 8 hours. The pH is adjusted to 8 using diluted HCl, and the mixture is evaporated to dryness. The solid is mixed with 100 ml freshly distilled and dried dimethylformamide, and after 30 minutes at 60° C. the undissolved material is filtered off. Diiodomethane (150 μl, 1.87 mmol) is added dropwise during 5 minutes to the solution at 60° C. as described in WO 89/00988 page 13 (NYCOMED AS). The precipitate is removed by filtration after stirring for 4 days, and the solvent removed at reduced pressure. The dioxolan protection is removed as described by P. A. Grieco et al. J. Am. Chem. Soc. 99, (1977) 5773-5780—the residue is dissolved in tetrahydrofuran (60 ml), 5% aqueous HCl (20 ml) is added and the mixture is stirred for 20 hours at ambient temperature. The reaction mixture is evaporated to dryness under reduced pressure to yield the title compound.
- A solution of potassium hydroxide (1.00 M, 40.00 ml) is added to methacrylic acid (3.44 g, 40.00 mmol) at 0° C. and the solution freeze dried for 16 hours. Dry dimethylformamide (230 ml) is added and the suspension heated to 60° C. under a dry nitrogen atmosphere. Diiodomethane (1.61 ml, 20.00 mmol) is added in two portions during 10 min. and the reaction mixture left for 4 days at 60° C. The solvent is removed under reduced pressure (0.05 mm Hg), before diethyl ether (140 ml), saturated aqueous sodium hydrogen carbonate (50 ml) and water (50 ml) are added. The aqueous layer is extracted with diethyl ether (6×60 ml) and the combined ether extracts washed with water (4×50 ml), dried (MgSO4), and evaporated to give 2.63 g (72%) of the title compound. 1H NMR (60 MHz, CDCl3): δ 1.97 (2×CH3, m), 5.63 (2×H—C═, m), 5.88 (CH2, s), 6.18 (2×H—C═, m). IR (film, c=−1): 2987 (w), 2962 (w), 2930 (w), 1732 (str), 1638 (w), 1454 (w), 1315 (w), 1295 (w), 1158 (w), 1100 (str), 1012 (m), 989 (m). This product may be used in accordance with the invention, for example to crosslink acrylamide polymers.
- A solution of potassium hydroxide (1.00 M, 40.00 ml) is added to acrylic acid (2.88 g, 40.00 mmol) at 0° C. and the solution freeze dried for 16 hours. Dry dimethylformamide (200 ml) is added and the suspension heated to 60° C. under a dry nitrogen atmosphere. Diiodomethane (1.61 ml, 20.00 mmol) is added in two portions during 10 min. and the reaction mixture left for 4 days at 60° C. The solvent is removed under reduced pressure (0.05 mm Hg), before diethyl ether (140 ml), saturated aqueous sodium hydrogen carbonate (50 ml) and water (50 ml) are added. The aqueous layer is extracted with diethyl ether (6×60 ml) and the combined ether extracts washed with water (4×50 ml), dried (MgSO4), and evaporated to give 1.06 g (34%) of the title compound. 1H NMR (60 MHz, CDCl3): δ 5.81-6.61 (2×CH2=CH—, m), 5.84 (CH2, s). This product may be used in accordance with the invention, for example to crosslink acrylic acid and methyl acrylate polymers.
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of chloromethyl chloroformate (0.89 ml, 11.00 mmol) and 2-hydroxyethyl methacrylate (1.22 ml, 10.00 mmol) in dichloromethane (12 ml) at 0° C. under a dry nitrogen atmosphere. After 21 hours at 20° C. the reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure (10 mm Hg) to give 1.97 g (88%) of the title compound. 1H NMR (60 MHz, CDCl3): δ 1.88 (CH3, d, J=2 Hz), 4.35 (O—CH2—CH2—O, m), 5.47 (H—C═, m), 5.63 (CH2—Cl, s), 6.00 (H—C═, m)
- A solution of potassium hydroxide (1.00 M, 5.00 ml) is added to methacrylic acid (0.43 g, 5.00 mmol) at 0° C. and the solution freeze dried during 16 hours. Dry dimethylformamide (50 ml) is added and to the resulting suspension is added chloromethyl (2-methacryloyloxy)ethyl carbonate (1.11 g, 5.00 mmol). 18-Crown-6 (0.066 g, 0.25 mmol) is added as a catalyst and the reaction left under a dry nitrogen atmosphere. After 24 hours at 20° C. and 6 days at 4° C. the solvent is removed under reduced pressure (0.05 mm Hg) and diethyl ether (30 ml) and water (20 ml) added. The aqueous layer is extracted with diethyl ether (3×20 ml) and the combined ether extracts washed with water (20 ml), dried (MgSO4) and evaporated to give 1.26 g (93%) of the title compound. 1H NMR (60 MHz, CDCl3): δ 1.97 (2×CH3, m), 4.38 (O—CH2—CH2—O, m), 5.53 (2×H—C═, m), 5.77 (CH2, s), 6.07 (2×H—C═, m).
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of chloromethyl chloroformate (1.32 ml, 14.83 mmol) and ethylene glycol (0.28 ml, 5.00 mmol) in dichloromethane (10 ml) at 7° C. with good stirring under a dry N2 atmosphere. After 15 min. at 7° C. and 6 hours at 20° C. the reaction mixture is transferred to a separating funnel with the aid of dichloromethane (10 ml). The reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure to give 1.12 g (90%) of the title product. 1H NMR (300 MHz, CDCl3): δ 4.48 (s, O—CH2CH2—O), 5.75 (s, 2×Cl—CH2—O). 13C NMR (75 MHz, CDCl3): δ 65.8 (O—CH2CH2—O), 72.2 (2×Cl—CH2—O), 153.0 (2×C═O)
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of chloromethyl chloroformate (1.32 ml, 14.83 mmol) and diethylene glycol (0.47 ml, 5.00 mmol) in dichloromethane (10 ml) at 7° C. with good stirring under a dry N2 atmosphere. After 10 min. at 7° C. and 6 hours at 20° C. the reaction mixture is transferred to a separating funnel with the aid of dichloromethane (10 ml). The reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure (10 mm Hg) to give 1.26 g (86%) title product. 1H NMR (300 MHz, CDCl3): δ 3.72 (m, 2×CH2—O), 4.34 (m, 2×CH2—O—C═O), 5.71 (s, 2×Cl—CH2—O). 13C NMR (75 MHz, CDCl3): δ 67.6 (2×CH2—C═), 68.5 (2×CH2—O—C═O), 72.1 (2×Cl—CH2—O), 153.2 (2×C═O).
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of 1-chloroethyl chloroformate (1.20 ml, 11.00 mmol) and 2-hydroxyethyl methacrylate (1.22 ml, 10.00 mmol) in dichloromethane (12 ml) at 3° C. under a dry N2 atmosphere. After 15 min. at 3° C. and 17 hours at 20° C. the reaction mixture is transferred to a separating funnel with the aid of dichloromethane (10 ml). The reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (2×10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure to give 1.76 g (74%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.85 (3 H, d, J=6 Hz, CH 3—CH), 1.96 (3 H,d, J=2 Hz, CH3—C═), 5.55 (1 H, m, CH═), 6.10 (1 H, m, CH═), 6.38 (1 H, k, J=6 Hz, CH—CH3).
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of chloromethyl chloroformate (0.98 ml, 11.00 mmol) and 4-hydroxybutyl acrylate (1.38 ml, 10.00 mmol) in dichloromethane (12 ml) at 3° C. under a dry N2 atmosphere. After 15 min. at 3° C. and 17 hours at 20° C. the reaction mixture is transferred to a separating funnel with the aid of dichloromethane (10 ml). The reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (2×10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure to give 1.76 g (74%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.82 (4 H, m, CH2—CH2), 4.27 (4 H, m, 2×CH2—O), 5.77 (2 H, s, Cl—CH2—O), 5.8-6.7 (3 H, m, CH═CH2).
- Pyridine (0.89 ml, 11.00 mmol) is added dropwise to a solution of 1-chloroethyl chloroformate (1.20 ml, 11.00 mmol) and 4-hydroxybutyl acrylate (1.38 ml, 10.00 mmol) in dichloromethane (12 ml) at 3° C. under a dry N2 atmosphere. After 15 min. at 3° C. and 17 hours at 20° C. the reaction mixture is transferred to a separating funnel with the aid of dichloromethane (10 ml). The reaction mixture is washed with hydrochloric acid (1.00 M, 10 ml), saturated aqueous sodium hydrogen carbonate (10 ml) and water (2×10 ml). The organic phase is dried (MgSO4) and the solvent evaporated under reduced pressure to give 2.26 g (90%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.80 (4 H, m, CH2—CH2), 1.86 (3 H, d, J=5 Hz, CH3), 4.24 (4 H, m, 2×CH2—O), 5.7-6.6 (4 H, m, CH═CH2 and CH)
- 1-Chloroethyl 2-methacryloyloxyethyl carbonate (1.183 g, 5.00 mmol) prepared as described in Preparation 8 is added to a suspension of freeze dried potassium methacrylate (0.683 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml). After separating the phases the aqueous layer is extracted with dichloromethane (3×30 ml) and the combined organic phase washed with saturated aqueous sodium hydrogen carbonate (50 ml). The organic phase is dried (MgSO4) and the solvent removed under reduced pressure to give 1.10 g (77%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.63 (3 H, d, J=5 Hz, CH 3—CH), 1.98 (6 H, s, 2×CH3), 4.42 (4 H, s, O—CH2—CH2—O), 5.62 (2 H, m, CH═), 6.15 (2 H, m, CH═), 6.84 (1 H, k, J=5 Hz, CH—CH3).
- Chloromethyl 4-acryloyloxybutyl carbonate (1.183 g, 5.00 mmol) prepared as described in Preparation 9 is added to a suspension of freeze dried potassium acrylate (0.606 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml). After separating the phases the aqueous layer is extracted with dichloromethane (3×30 ml) and the combined organic phase washed with saturated aqueous sodium hydrogen carbonate (50 ml). The organic phase is dried (MgSO4) and the solvent removed under reduced pressure to give 1.24 g (91%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.82 (4 H, m, CH2—CH2), 4.23 (4 H, m, 2×CH2—O), 5.88 (2 H, s, O—CH2—O), 5.7-6.8 (6 H, 2×CH═CH2)
- 1-Chloroethyl 4-acryloyloxybutyl carbonate (1.253 g, 5.00 mmol) prepared as described in Preparation 10 is added to a suspension of freeze dried potassium acrylate (0.606 g, 5.50 mmol) and 18-crown-6 (0.066 g, 0.25 mmol) in dimethylformamide (50 ml) under a dry N2 atmosphere. After 5 days at 20° C. the solvent is removed under reduced pressure and the residue dissolved by adding dichloromethane (60 ml) and water (30 ml). After separating the phases the aqueous layer is extracted with dichloromethane (3×30 ml) and the combined organic phase washed with saturated aqueous sodium hydrogen carbonate (50 ml). The organic phase is dried (MgSO4) and the solvent removed under reduced pressure to give 1.28 g (89%) of the title product. 1H NMR (60 MHz, CDCl3): δ 1.58 (3 H, d, J=5 Hz, CH 3—CH), 1.80 (4 H, m, CH2—CH2), 4.24 (4 H, m, 2×CH2—O), 5.7-6.7 (6 H, m, 2×CH═CH2), 6.87 (1 H, k, J=5 Hz, CH—CH3).
- Cesium 3,3-dimethoxypropionate (19.95 g, 75 mmol) is added to dry DMF (1000 ml). Diiodomethane (10.04 g, 37.5 mmol) is added to the suspension and the reaction mixture is stirred for 2 days at 60° C. under a dry N2 atmosphere. DMF is removed under reduced pressure (0.01 mmHg). Diethyl ether (500 ml) is added to the residue, which is then washed with saturated aqueous sodium hydrogen carbonate (250 ml). The aqueous layer is extracted with diethyl ether (5×75 ml). The combined ether extracts are washed with water (2×100 ml), dried (MgSO4) and evaporated to give 7.1 g (72%) product. 1H NMR (300 MHz, CDCl3): δ 2.61 (CH2, d), 3.26 (CH3, s).
- Methylene bis(3,3-dimethoxypropionate) (14.01 g, 50 mmol) prepared as described in (a) above and a catalytic amount of p-toluene sulfonic acid is added to toluene (250 ml). The methanol is removed by warming the reaction under an N2 atmosphere. When the reaction is complete the toluene is distilled off under reduced pressure. Diethyl ether (250 ml) is added and the mixture is washed with saturated aqueous sodium hydrogen carbonate (5×50 ml) and water (3×50 ml). The organic layer is dried (MgSO4) before evaporation to give 8.52 g (79%) product. 1H NMR (300 MHz, CDCl3): δ 3.65 (2×CH3, s), 5.2 (2×CH, d), 5.8 (O—CH2—O), 7.65 (2×CH2, d).
- 10-Undecylenic acid (12.75 g, 75 mmol) is dissolved in 100 ml water. Cesium carbonate (13.04 g, 40 mmol) is added to the mixture. The water is removed under reduced pressure and the salt dried for 2 hours in vacuo. The cesium salt is mixed with 150 ml DMF and diiodomethane is added to the solution. The reaction is stirred for 3 days at 60° C. under an N2 atmosphere. DMF is then removed under reduced pressure. The residue is purified through silica gel with hexane/ ethyl acetate (8:2) as eluant. The solvent is evaporated to give 7.18 g (54%) product. 1H NMR (300 MHz, CDCl3): δ 1.2-1.4 (10×CH2, m), 1.6 (2×CH2, m), 2.0 (2×CH2, m), 2.19 (2×CH2, t), 4.9 (2×H2C═, m), 5.88 (O—CH2—O, s), 5.9 (2×HC═, m). 13C NMR (300 MHz, CDCl3): δ 24.92-33.98 (8×CH2), 79.04 (O—CH2—O), 114.18 (═CH2), 139.11 (═CH), 172.48 (C═O).
- Methylene bis(10-undecenoate) (8.8 g, 25 mmol) prepared as described in (a) above is added under an N2 atmosphere to methylene chloride and cooled to 0° C. Metachloroperbenzoic acid 55% (15.75 g, 50 mmol) is added to methylene chloride (150 ml) and the organic layer is separated and dried (MgSO4). The metachloroperbenzoic acid is then added dropwise to the diester. After completed addition the temperature is increased to 25° C. After 5 hours the reaction is complete. The mixture is washed with saturated aqueous sodium sulphite (75 ml) and saturated aqueous sodium hydrogen carbonate (2×75 ml). The organic layer is purified on neutral aluminium oxide. The solvent is removed under reduced pressure to yield 8.45 g (82%) product. 1H NMR (300 MHz, CDCl3): δ 1.2-1.7 (14×CH2, m), 2.35 (2×CH2CO, t), 2.45 (2×CH,q), 2.75 (2×CH,q), 2.90 (2×CH,m), 5.75 (O—CH2—O). 13C NMR (300 MHz, CDCl3): δ 24.58 (CH2), 25.99 (CH2), 28.94 (CH2), 29.09 (CH2), 29.32 (2×CH2), 32.45 (CH2), 33.92 (CH2), 47.06 (CH2—O), 52.36 (CH—O), 79.06 (O—CH2—O), 172.2 (C═O).
- Metachloroperbenzoic acid (15.68 g, 55%, 50 mmol) is dissolved in methylene chloride (200 ml). Water is separated and the organic layer is dried (MgSO4). The resulting metachloroperbenzoic acid solution is added dropwise to methylene bis(4-pentenoate) (4.10 g, 19 mmol) dissolved in methylene chloride (50 ml). The mixture is stirred at ambient temperature under nitrogen for 12 hrs, whereafter the reaction mixture is washed with saturated aqueous sodium bicarbonate solution (50 ml), water (50 ml), dried (MgSO4) and evaporated to give 3.61 g (78%) of the title compound as a crystalline product. 1H NMR (300 MHz, CDCl3): δ 1.70-1.85 (2×CH,m), 1.95-2.10 (2×CH,m), 2.50-2.55 (2×CH, 2×CH2,m), 2.75 (2×CH,t), 3.0 (2×CH,m), 5.8 (O—CH2—O, s). 13C NMR (75 MHz, CDCl3): δ 27 (2×CH2), 30 (2×CH2), 47 (2×CH2), 51 (2×CH), 79.8 (O—CH2—O), 171.8 (2×C═O)
- Vinylacetic acid (4.3 g, 50 mmol) is added to an aqueous cesium carbonate solution (50 ml). The mixture is stirred for 5 min. and then evaporated, and the residue is dried under vacuum for 2 hrs. The resulting cesium salt and diiodomethane are added to dimethylformamide (200 ml) and the mixture is stirred for 24 hrs. at 50° C. under nitrogen, whereafter the dimethylformamide is removed under reduced pressure. The residue is dissolved in diethyl ether (100 ml) and washed with saturated aqueous sodium bicarbonate (25 ml) and water (25 ml). The organic layer is dried (MgSO4) and evaporated to give 1.32 g (29%) product. 1H NMR (300 MHz, CDCl3): δ 1.9 (2×H2,m), 5.8-5.9 (2×CH,m), 5.9 (OCH2O, s), 7.0-7.1 (2×CH,m)
- Chloroacetic anhydride (12.75 g, 75 mmol), paraformaldehyde (2.25 g, 75 mmol) and conc. sulfuric acid (15 drops) are added to methylene chloride (15 ml). The mixture is stirred for 24 hrs. at 50° C. under nitrogen, whereafter the reaction mixture is extracted with saturated aqueous potassium carbonate until carbon dioxide emission ends. The organic layer is dried (MgSO4), evaporated to dryness and the residue is distilled (80° C., 0.15 mmHg) to yield 10.2 g (57%) product. 1H NMR (200 MHz, CDCl3): δ 4.1 (2×CH2Cl,s), 5.9 (CH2,s). 13C NMR (200 MHz, CDCl3): δ 41.1 (CH2Cl), 81.4 (O—CH2—O), 166.4 (CO)
- 4-Oxopentanoic acid (11.6 g, 100 mmol) is dissolved in acetonitrile (70 ml), and 1,8-diazabicyclo[5.4.0]undec-7-ene (15.25 g, 100 mmol) diluted with acetonitrile (30 ml) is added. Diiodomethane (13.4 g, 50 mmol) is added in one batch, and the reaction mixture is refluxed under a nitrogen atmosphere. After 2 hours, gas chromatography indicates full consumption of diiodomethane. The solvent is removed in vacuo and the residual brown oil is transferred to a separation funnel with ethyl acetate (200 ml) and water (75 ml). The organic phase is washed with 1M sodium bicarbonate (25 ml) and water (3×25 ml), dried over MgSO4, and the solvent is removed in vacuo to yield the title compound (10 g). 1H NMR: δ 2.19 (2×CH2, s), 2.760-2.804 (2×CH2, t), 2.600-2.645 (2×CH2, t), 5.735 (CH2 bridge, s)
- 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (1.49 g, 7.71 mmol) was added in portions to a stirred solution of methylene bis(hydrogen azelate) from Example 25 (1.00 g, 2.57 mmol) and N-hydroxysuccinimide (0.89 g, 7.71 mmol) in dry dimethylformamide at ambient temperature. After 20 hours stirring, the reaction mixture was poured into ice-water and the product precipitated as an oil. The colourless oil was dissolved in diethylether (50 ml), washed with water (3×10 ml) and dried over MgSO4. The solvent was removed under reduced pressure and hexane (5 ml) was added to the oily product. After seven days storage at 4° C. the oil had crystallized to a white, waxy solid. Yield: 1.50 g (69%). m.p.: 45-47° C. 13C NMR (75 MHz, CDCl3) δ: 24.42, 24.46, 25.59, 28.48, 28.63, 30.85, 33.82, 79.61, 168.6, 169.30, 172.34.
- Methylene bis(hydrogen azelate) (0.38 g, 1 mmol), N-hydroxysuccinimide sodium salt (0.48 g, 2.2 mmol) and dicyclohexylcarbodiimide (0.45 g, 2.2. mmol) were dissolved in dimethylformamide (10 ml). The suspension was stirred overnight at room temperature under an atmosphere of nitrogen. The reaction mixture was filtered and purified by reversed phase chromatography (RP-8) with water/acetonitrile (1:1) as eluant to give the title compound.
- N-Methylmorpholine-N-oxide (13.5 g, 11 mmol) and methylene bis(10-undecenoate) from Preparation 15(b) (19 g, 5 mmol) were dissolved in 400 ml of a mixture of tetrahydrofuran and water (3:1 v/v). A catalytic amount of osmium tetroxide was added, and the solution stirred at ambient temperature for 20 hours. TLC indicated complete consumption of the starting material. Excess sodium hydrogen sulphite and sodium chloride were then added to the reaction mixture. The product was extracted from the resulting mixture with ethyl acetate (400 ml) and the water phase was washed with ethyl acetate (3×50 ml). The combined organic phases were dried and evaporated, and the product recrystallised from tetrahydrofuran to yield 14.5 g (68%) of the product as a white solid. 13C NMR (45 MHz) CD3OD: δ 24.6-34.0 (16×CH2), 66.6 (2×CH2OH), 72.3 (2×CHOH), 79.2 (O—CH2—O), 174.0 (2×C═O)
- Methylene bis(10,11-dihydroxyundecanoate) (2.24 g, 5 mmol) was dissolved in 150 ml tetrahydrfuran. Sodium metaperiodate (2.06 g, 10 mmol) was dissolved in 150 ml water and added dropwise to the tetrahydrofuran solution. TLC indicated full consumption of the diol after 60 minutes, whereupon sodium chloride was added to the reaction mixture until the two phases separated. The water phase was extracted with diethyl ether (3×50 ml). The combined organic phases was dried with magnesium sulphate and evaporated to give the title product as an oil, 1.43 g (74%). 13C NMR (45 MHz) CDCl3: δ 21.9-43.9 (16×CH2), 79.1 (O—CH2—O), 173.0 (2×C═O), 202.6 (2×CHO).
- 1. Gas-filled albumin microspheres are prepared according to EP-A-0359 246 and resuspended to homogeneity by gentle rolling on a vial roller.
- 2. 25 ml of the suspension are poured into a 25 ml separating funnel and left for 30 min. The bottom 20 ml are discarded.
- 3. To the remaining 5 ml is added 20 ml of a phosphate buffer (20 mM NaPO4, pH 7.0), and the resulting suspension is transferred to a vial with a cap septum.
- 4. The vial is centrifuged upside down at 170×g for 5 min.
- 5. The solution underneath the microsphere layer is withdrawn using a syringe, and the microspheres are resuspended in 25 ml of the phosphate buffer by 10 min of gentle rolling.
- 6. Points 4 and 5 are repeated twice.
- 7. The resulting suspension is centrifuged as in point 4, and the microspheres are resuspended in the phosphate buffer to a final concentration of about 5×108 particles per ml.
- 8. The crosslinker methylene bis(α-formylacetate), prepared as described in Preparation 1, is added to the suspension, and the crosslinking reaction is allowed to proceed for the desired time (usually 30-60 min) under gentle rolling.
- 9. 1.5 M Tris-HCl-buffer (pH 8.8) is added to a final concentration of 0.25 M, and the suspension is rolled gently for 10 min.
- 10. The vial is centrifuged as in point 4, and the solution underneath the microsphere layer is removed as in point 5.
- 11. The microspheres are resuspended in phosphate buffer (same volume as final volume in point 9), and the suspension is rolled for 10 min.
- 12. Points 10 and 11 are repeated twice.
- 13. The resulting suspension is centrifuged as in point 4, and the microspheres are resuspended in the phosphate buffer to a final concentration of about 5×108 particles per ml.
- 14. This final suspension of crosslinked gas/albumin microspheres is stored at 4° C.
- The procedure of Example 1 is repeated using crosslinking agents prepared as described in Preparations 2-22, except that dimethyl suplhoxide is used in place of phosphate buffer in the processing of the gas-filled albumin microspheres according to steps 3-7 and the crosslinking agent is added in step 8 as a solution in dimethyl sulphoxide.
- The number and size distribution of the products are determined by Coulter counter analysis.
Claims (12)
1. Contrast agents for use in diagnostic ultrasound studies comprising microbubbles of gas or a gas precursor encapsulated in a protein shell characterised in that the said protein is crosslinked with crosslinking groupings containing biodegradable linkages.
2. Contrast agents as claimed in claim 1 wherein the crosslinking groupings contain biodegradable linkages selected from amide, imide, imine, ester, anhydride, acetal, carbamate, carbonate, carbonate ester and disulphide groups.
3. Contrast agents as claimed in claim 2 wherein the crosslinking groups contain biodegradable linkages of formula
—(Y)n—CO—O—C(R1R2)—O—CO—(Z)n—
(where Y and Z, which may be the same or different, are —O—, —S— or —NR3—; R1 and R2, which may be the same or different, are hydrogen atoms or carbon-attached monovalent organic groups or together represent a carbon-attached divalent organic group; R3 is a hydrogen atom or an organic group; and the symbols n, which may be the same or different, are zero or 1).
4. Contrast agents as claimed in any of the preceding claims wherein the protein is albumin, gelatin or globulin.
5. Contrast agents as claimed in claim 4 wherein the protein is human serum albumin.
6. Contrast agents as claimed in any of the preceding claims further containing an inorganic particulate stabiliser.
7. A process for the preparation of a contrast agent as claimed in claim 1 which comprises encapsulating a gas or gas precursor in a protein and crosslinking the protein with crosslinking groups containing biodegradable linkages before, during or after said encapsulation.
8. A process as claimed in claim 7 wherein crosslinking is effected after encapsulation.
9. A process as claimed in claim 7 or claim 8 wherein crosslinking is effected using a crosslinking agent of formula (I)
A1-X-A2 (I)
(where X is a linking group containing one or more biodegradable linkages as defined in claim 2 or claim 3 and A1 and A2, which may be the same or different, are functional groups reactive with proteins).
10. A process as claimed in claim 9 in which A1 and A2 are both aldehyde groups.
11. A process as claimed in any of claims 8 to 10 wherein encapsulation is effected by agitation or sonication of the protein in an aqueous medium to yield a protein foam which is dried and thereafter suspended in a solution of the crosslinking agent in a polar organic solvent
12. A process as claimed in claim 11 in which the crosslinking agent is a compound of formula (I) as defined in claim 9 in which A1 and A2 are both O-linked sulphonated N-hydroxysuccinimidyl residues.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/055,543 US20050232865A1 (en) | 1991-03-28 | 2005-02-10 | Contrast agents |
US11/448,601 US20070003485A1 (en) | 1991-03-28 | 2006-06-06 | Contrast agents |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9106686.0 | 1991-03-28 | ||
GB919106686A GB9106686D0 (en) | 1991-03-28 | 1991-03-28 | Improvements in or relating to contrast agents |
US08119218 US5529766C1 (en) | 1991-03-28 | 1993-10-29 | Contrast agents |
US46240495A | 1995-06-05 | 1995-06-05 | |
US84064697A | 1997-08-25 | 1997-08-25 | |
US11404598A | 1998-07-13 | 1998-07-13 | |
US26056199A | 1999-03-02 | 1999-03-02 | |
US40610099A | 1999-09-27 | 1999-09-27 | |
US10/071,863 US20030031629A1 (en) | 1991-03-28 | 2002-02-08 | Contrast agents |
US10/640,504 US20040131549A1 (en) | 1991-03-28 | 2003-08-13 | Contrast agents |
US82044804A | 2004-04-07 | 2004-04-07 | |
US11/055,543 US20050232865A1 (en) | 1991-03-28 | 2005-02-10 | Contrast agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US82044804A Continuation | 1991-03-28 | 2004-04-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/448,601 Continuation US20070003485A1 (en) | 1991-03-28 | 2006-06-06 | Contrast agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050232865A1 true US20050232865A1 (en) | 2005-10-20 |
Family
ID=10692392
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08119218 Expired - Lifetime US5529766C1 (en) | 1991-03-28 | 1993-10-29 | Contrast agents |
US10/071,863 Abandoned US20030031629A1 (en) | 1991-03-28 | 2002-02-08 | Contrast agents |
US10/640,504 Abandoned US20040131549A1 (en) | 1991-03-28 | 2003-08-13 | Contrast agents |
US11/055,543 Abandoned US20050232865A1 (en) | 1991-03-28 | 2005-02-10 | Contrast agents |
US11/448,601 Abandoned US20070003485A1 (en) | 1991-03-28 | 2006-06-06 | Contrast agents |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08119218 Expired - Lifetime US5529766C1 (en) | 1991-03-28 | 1993-10-29 | Contrast agents |
US10/071,863 Abandoned US20030031629A1 (en) | 1991-03-28 | 2002-02-08 | Contrast agents |
US10/640,504 Abandoned US20040131549A1 (en) | 1991-03-28 | 2003-08-13 | Contrast agents |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/448,601 Abandoned US20070003485A1 (en) | 1991-03-28 | 2006-06-06 | Contrast agents |
Country Status (18)
Country | Link |
---|---|
US (5) | US5529766C1 (en) |
EP (2) | EP0576521B2 (en) |
JP (2) | JP3739783B2 (en) |
AT (1) | ATE157547T1 (en) |
AU (2) | AU663488B2 (en) |
BR (1) | BR1100808A (en) |
CA (1) | CA2107107C (en) |
DE (1) | DE69222037T3 (en) |
DK (1) | DK0576521T4 (en) |
ES (1) | ES2106857T5 (en) |
FI (1) | FI118887B (en) |
GB (1) | GB9106686D0 (en) |
GR (1) | GR3025333T3 (en) |
HK (1) | HK1002624A1 (en) |
IE (1) | IE980188A1 (en) |
NO (1) | NO307448B1 (en) |
SG (1) | SG47687A1 (en) |
WO (1) | WO1992017213A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040121003A1 (en) * | 2002-12-19 | 2004-06-24 | Acusphere, Inc. | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
Families Citing this family (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146657A (en) | 1989-12-22 | 2000-11-14 | Imarx Pharmaceutical Corp. | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
US20020150539A1 (en) | 1989-12-22 | 2002-10-17 | Unger Evan C. | Ultrasound imaging and treatment |
US6088613A (en) | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
US5705187A (en) | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
US5469854A (en) | 1989-12-22 | 1995-11-28 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US5776429A (en) | 1989-12-22 | 1998-07-07 | Imarx Pharmaceutical Corp. | Method of preparing gas-filled microspheres using a lyophilized lipids |
US5773024A (en) | 1989-12-22 | 1998-06-30 | Imarx Pharmaceutical Corp. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US5922304A (en) | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
US5580575A (en) | 1989-12-22 | 1996-12-03 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US6001335A (en) | 1989-12-22 | 1999-12-14 | Imarx Pharmaceutical Corp. | Contrasting agents for ultrasonic imaging and methods for preparing the same |
US6551576B1 (en) | 1989-12-22 | 2003-04-22 | Bristol-Myers Squibb Medical Imaging, Inc. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US5305757A (en) | 1989-12-22 | 1994-04-26 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5656211A (en) | 1989-12-22 | 1997-08-12 | Imarx Pharmaceutical Corp. | Apparatus and method for making gas-filled vesicles of optimal size |
US5733572A (en) | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US5542935A (en) | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US20010024638A1 (en) * | 1992-11-02 | 2001-09-27 | Michel Schneider | Stable microbubble suspensions as enhancement agents for ultrasound echography and dry formulations thereof |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
US6989141B2 (en) * | 1990-05-18 | 2006-01-24 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US7083778B2 (en) | 1991-05-03 | 2006-08-01 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US20040208826A1 (en) * | 1990-04-02 | 2004-10-21 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
IN172208B (en) | 1990-04-02 | 1993-05-01 | Sint Sa | |
USRE39146E1 (en) | 1990-04-02 | 2006-06-27 | Bracco International B.V. | Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof |
US6613306B1 (en) | 1990-04-02 | 2003-09-02 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
US20030194376A1 (en) * | 1990-05-18 | 2003-10-16 | Bracco International B.V. | Ultrasound contrast agents and methods of making and using them |
AU636481B2 (en) * | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
GB9106686D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5874062A (en) | 1991-04-05 | 1999-02-23 | Imarx Pharmaceutical Corp. | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
GB9107628D0 (en) | 1991-04-10 | 1991-05-29 | Moonbrook Limited | Preparation of diagnostic agents |
US5993805A (en) * | 1991-04-10 | 1999-11-30 | Quadrant Healthcare (Uk) Limited | Spray-dried microparticles and their use as therapeutic vehicles |
AU679428C (en) * | 1991-09-17 | 2006-07-13 | Ge Healthcare As | Gaseous ultrasound contrast media and method for selecting gases for use as ultrasound contrast media |
MX9205298A (en) * | 1991-09-17 | 1993-05-01 | Steven Carl Quay | GASEOUS ULTRASOUND CONTRASTING MEDIA AND METHOD FOR SELECTING GASES TO BE USED AS ULTRASOUND CONTRASTING MEDIA |
US5409688A (en) * | 1991-09-17 | 1995-04-25 | Sonus Pharmaceuticals, Inc. | Gaseous ultrasound contrast media |
US6723303B1 (en) | 1991-09-17 | 2004-04-20 | Amersham Health, As | Ultrasound contrast agents including protein stabilized microspheres of perfluoropropane, perfluorobutane or perfluoropentane |
US6875420B1 (en) | 1991-09-17 | 2005-04-05 | Amersham Health As | Method of ultrasound imaging |
GB9200388D0 (en) * | 1992-01-09 | 1992-02-26 | Nycomed As | Improvements in or relating to contrast agents |
IL104084A (en) * | 1992-01-24 | 1996-09-12 | Bracco Int Bv | Long-lasting aqueous suspensions of pressure-resistant gas-filled microvesicles their preparation and contrast agents consisting of them |
US5674468A (en) * | 1992-03-06 | 1997-10-07 | Nycomed Imaging As | Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons |
BR9306044A (en) * | 1992-03-06 | 1997-11-18 | Nycomed Imaging | Contrast agent use the same processes to generate enhanced images of a human or non-human animal body and to prepare a contrast agent |
US6383470B1 (en) | 1992-09-26 | 2002-05-07 | Thomas Fritzsch | Microparticle preparations made of biodegradable copolymers |
DE4232755A1 (en) * | 1992-09-26 | 1994-03-31 | Schering Ag | Microparticle preparations made from biodegradable copolymers |
GB9221329D0 (en) * | 1992-10-10 | 1992-11-25 | Delta Biotechnology Ltd | Preparation of further diagnostic agents |
US5558855A (en) * | 1993-01-25 | 1996-09-24 | Sonus Pharmaceuticals | Phase shift colloids as ultrasound contrast agents |
IL108416A (en) | 1993-01-25 | 1998-10-30 | Sonus Pharma Inc | Phase shift colloids as ultrasound contrast agents |
HUT72323A (en) * | 1993-01-25 | 1996-04-29 | Sonus Pharma Inc | Phase shift colloids as ultrasound contrast agents |
ES2219646T5 (en) * | 1993-02-22 | 2008-11-01 | Abraxis Bioscience, Inc. | METHODS FOR THE IN VIVO ADMINISTRATION OF BIOLOGICAL COMPOUNDS AND USEFUL COMPOSITIONS FOR THE SAME. |
US5362478A (en) * | 1993-03-26 | 1994-11-08 | Vivorx Pharmaceuticals, Inc. | Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell |
US5716597A (en) * | 1993-06-04 | 1998-02-10 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
US5855865A (en) * | 1993-07-02 | 1999-01-05 | Molecular Biosystems, Inc. | Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas |
US5798091A (en) | 1993-07-30 | 1998-08-25 | Alliance Pharmaceutical Corp. | Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement |
GB9318288D0 (en) * | 1993-09-03 | 1993-10-20 | Nycomed Imaging As | Improvements in or relating to contrast agents |
JPH09502191A (en) * | 1993-09-09 | 1997-03-04 | シエーリング アクチエンゲゼルシヤフト | Fine particles containing active substance and gas |
US7083572B2 (en) | 1993-11-30 | 2006-08-01 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
KR100295173B1 (en) * | 1993-12-15 | 2001-09-17 | 엔. 토모브 | Gas Mixtures Useful as Ultrasonic Contrast Media |
AU2432795A (en) * | 1994-05-03 | 1995-11-29 | Molecular Biosystems, Inc. | Composition for ultrasonically quantitating myocardial perfusion |
US5736121A (en) | 1994-05-23 | 1998-04-07 | Imarx Pharmaceutical Corp. | Stabilized homogenous suspensions as computed tomography contrast agents |
US5562893A (en) * | 1994-08-02 | 1996-10-08 | Molecular Biosystems, Inc. | Gas-filled microspheres with fluorine-containing shells |
US5730955A (en) * | 1994-08-02 | 1998-03-24 | Molecular Biosystems, Inc. | Process for making gas-filled microspheres containing a liquid hydrophobic barrier |
US5965109A (en) * | 1994-08-02 | 1999-10-12 | Molecular Biosystems, Inc. | Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier |
GB9417941D0 (en) * | 1994-09-06 | 1994-10-26 | Nycomed Imaging As | Improvements in or relating to contrast agents |
US5540909A (en) | 1994-09-28 | 1996-07-30 | Alliance Pharmaceutical Corp. | Harmonic ultrasound imaging with microbubbles |
GB9423419D0 (en) | 1994-11-19 | 1995-01-11 | Andaris Ltd | Preparation of hollow microcapsules |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
IL116328A (en) * | 1994-12-16 | 1999-09-22 | Bracco Research Sa | Frozen suspension of gas microbubbles in frozen aqueous carrier for use as contrast agent in ultrasonic imaging |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5997898A (en) | 1995-06-06 | 1999-12-07 | Imarx Pharmaceutical Corp. | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US5820850A (en) * | 1995-06-07 | 1998-10-13 | Molecular Biosystems, Inc. | Gas-filled amino acid block co-polymer microspheres useful as ultrasound contrast agents |
US5897851A (en) * | 1995-06-07 | 1999-04-27 | Sonus Pharmaceuticals, Inc. | Nucleation and activation of a liquid-in-liquid emulsion for use in ultrasound imaging |
US6231834B1 (en) | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6033645A (en) | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6139819A (en) | 1995-06-07 | 2000-10-31 | Imarx Pharmaceutical Corp. | Targeted contrast agents for diagnostic and therapeutic use |
US5611344A (en) * | 1996-03-05 | 1997-03-18 | Acusphere, Inc. | Microencapsulated fluorinated gases for use as imaging agents |
WO1997032609A2 (en) * | 1996-03-05 | 1997-09-12 | Acusphere, Inc. | Microencapsulated fluorinated gases for use as imaging agents |
AU736301B2 (en) | 1996-05-01 | 2001-07-26 | Imarx Therapeutics, Inc. | Methods for delivering compounds into a cell |
US5976501A (en) * | 1996-06-07 | 1999-11-02 | Molecular Biosystems, Inc. | Use of pressure resistant protein microspheres encapsulating gases as ultrasonic imaging agents for vascular perfusion |
US5837221A (en) * | 1996-07-29 | 1998-11-17 | Acusphere, Inc. | Polymer-lipid microencapsulated gases for use as imaging agents |
WO1998007410A1 (en) * | 1996-08-19 | 1998-02-26 | Vivorx Pharmaceuticals, Inc. | Methods for the production of protein particles useful for delivery of pharmacological agents |
EP1683517A1 (en) * | 1996-08-19 | 2006-07-26 | American Bioscience, Inc. | Methods for the production of protein particles useful for delivery of pharmacological agents |
GB9617811D0 (en) * | 1996-08-27 | 1996-10-09 | Nycomed Imaging As | Improvements in or relating to contrast agents |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
US6017310A (en) * | 1996-09-07 | 2000-01-25 | Andaris Limited | Use of hollow microcapsules |
US5846517A (en) | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
DE69737915T2 (en) | 1996-09-11 | 2008-03-13 | Bristol-Myers Squibb Medical Imaging, Inc. | Method of diagnostic imaging of the kidney region using a contrast agent and a vasodilator |
US6083484A (en) * | 1996-10-17 | 2000-07-04 | Molecular Biosystems, Inc. | Microparticles stabilized by polynuclear chromium complexes and their use as ultrasound contrast agents |
US6068600A (en) * | 1996-12-06 | 2000-05-30 | Quadrant Healthcare (Uk) Limited | Use of hollow microcapsules |
US6120751A (en) | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
US6143276A (en) | 1997-03-21 | 2000-11-07 | Imarx Pharmaceutical Corp. | Methods for delivering bioactive agents to regions of elevated temperatures |
US6090800A (en) | 1997-05-06 | 2000-07-18 | Imarx Pharmaceutical Corp. | Lipid soluble steroid prodrugs |
US6537246B1 (en) | 1997-06-18 | 2003-03-25 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
GB9708246D0 (en) | 1997-04-24 | 1997-06-18 | Nycomed Imaging As | Improvements in or relating to ultrasound imaging |
US7452551B1 (en) | 2000-10-30 | 2008-11-18 | Imarx Therapeutics, Inc. | Targeted compositions for diagnostic and therapeutic use |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
US6123923A (en) | 1997-12-18 | 2000-09-26 | Imarx Pharmaceutical Corp. | Optoacoustic contrast agents and methods for their use |
US20010003580A1 (en) | 1998-01-14 | 2001-06-14 | Poh K. Hui | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
EP1289565B1 (en) | 2000-06-02 | 2015-04-22 | Bracco Suisse SA | Compounds for targeting endothelial cells |
DE60223239T2 (en) * | 2001-04-06 | 2008-08-14 | Bracco Research S.A. | Device for measuring local physical parameters in a liquid-filled cavity |
AU2002356758A1 (en) * | 2001-12-21 | 2003-07-09 | Unilever N.V. | Protein coated gas microbubbles |
US7211240B2 (en) * | 2002-03-01 | 2007-05-01 | Bracco International B.V. | Multivalent constructs for therapeutic and diagnostic applications |
US7261876B2 (en) | 2002-03-01 | 2007-08-28 | Bracco International Bv | Multivalent constructs for therapeutic and diagnostic applications |
WO2004065621A1 (en) | 2002-03-01 | 2004-08-05 | Dyax Corp. | Kdr and vegf/kdr binding peptides and their use in diagnosis and therapy |
US7794693B2 (en) | 2002-03-01 | 2010-09-14 | Bracco International B.V. | Targeting vector-phospholipid conjugates |
ES2398393T3 (en) | 2002-03-01 | 2013-03-15 | Dyax Corp. | KDR and VEGF / KDR binding peptides and their use in diagnosis and therapy |
US8623822B2 (en) | 2002-03-01 | 2014-01-07 | Bracco Suisse Sa | KDR and VEGF/KDR binding peptides and their use in diagnosis and therapy |
SE0200931D0 (en) * | 2002-03-27 | 2002-03-27 | Aga Ab Pupl | Monitoring marker |
KR101280760B1 (en) | 2002-11-29 | 2013-07-05 | 지이 헬스케어 에이에스 | Ultrasonic contrast material |
US20050214859A1 (en) | 2003-03-03 | 2005-09-29 | Dyax Corp. | Peptides that specifically bind HGF receptor (cMet) and uses thereof |
CA2554239C (en) | 2004-01-20 | 2015-05-12 | Sunnybrook And Women's College Health Sciences Centre | High frequency ultrasound imaging using contrast agents |
GB0403406D0 (en) * | 2004-02-17 | 2004-03-24 | Biotransys Ltd | Preparation of carriers for drug delivery and other therapeutic applications |
US8012457B2 (en) | 2004-06-04 | 2011-09-06 | Acusphere, Inc. | Ultrasound contrast agent dosage formulation |
US20070258907A1 (en) * | 2006-04-24 | 2007-11-08 | Davis Mark E | Polymer-coated paramagnetic particles |
GB0811856D0 (en) | 2008-06-27 | 2008-07-30 | Ucl Business Plc | Magnetic microbubbles, methods of preparing them and their uses |
US10383687B2 (en) | 2010-02-05 | 2019-08-20 | Koninklijke Philips N.V. | Combined ablation and ultrasound imaging |
WO2012136813A2 (en) | 2011-04-07 | 2012-10-11 | Universitetet I Oslo | Agents for medical radar diagnosis |
Family Cites Families (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3968203A (en) * | 1965-10-01 | 1976-07-06 | Jerome G. Spitzer | Aerosol astringent composition |
US3557294A (en) * | 1967-10-12 | 1971-01-19 | Allied Chem | Fluorinated ethers as inhalation convulsants |
US3663687A (en) * | 1968-06-26 | 1972-05-16 | Minnesota Mining & Mfg | Biodegradable parenteral microspherules |
US3720761A (en) * | 1968-10-14 | 1973-03-13 | W Hunter | Injectable radio-pharmaceutical scanning agent and preparation |
US3650831A (en) * | 1969-03-10 | 1972-03-21 | Armour Dial Inc | Method of cleaning surfaces |
US3832457A (en) * | 1969-06-20 | 1974-08-27 | Rikagaku Kenkyusho | Ferrite contrast media with metallic oxides |
US3900420A (en) * | 1970-05-18 | 1975-08-19 | Felix Sebba | Microgas emulsions and method of forming same |
US4027007A (en) * | 1970-12-09 | 1977-05-31 | Colgate-Palmolive Company | Antiperspirants formulated with borax |
JPS49103693A (en) * | 1973-02-02 | 1974-10-01 | ||
US4107288A (en) * | 1974-09-18 | 1978-08-15 | Pharmaceutical Society Of Victoria | Injectable compositions, nanoparticles useful therein, and process of manufacturing same |
JPS5913521B2 (en) * | 1975-06-19 | 1984-03-30 | メイトウサンギヨウ カブシキガイシヤ | Method for producing magnetic iron oxide/dextran complex |
GB1523965A (en) * | 1976-03-19 | 1978-09-06 | Ici Ltd | Pharmaceutical compositions containing steroids |
GB1548022A (en) * | 1976-10-06 | 1979-07-04 | Wyeth John & Brother Ltd | Pharmaceutial dosage forms |
GB1571213A (en) * | 1977-01-28 | 1980-07-09 | Kainov G | Combustion chamber for gas turbine engine |
DE2965725D1 (en) * | 1978-07-19 | 1983-07-28 | Patrick Couvreur | Biodegradable nanoparticles, pharmaceutical compositions containing them and process for their preparation |
US4335094A (en) * | 1979-01-26 | 1982-06-15 | Mosbach Klaus H | Magnetic polymer particles |
US4247406A (en) * | 1979-04-23 | 1981-01-27 | Widder Kenneth J | Intravascularly-administrable, magnetically-localizable biodegradable carrier |
US4276885A (en) † | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4265251A (en) † | 1979-06-28 | 1981-05-05 | Rasor Associates, Inc. | Method of determining pressure within liquid containing vessel |
US4316391A (en) * | 1979-11-13 | 1982-02-23 | Ultra Med, Inc. | Flow rate measurement |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4657756A (en) * | 1980-11-17 | 1987-04-14 | Schering Aktiengesellschaft | Microbubble precursors and apparatus for their production and use |
US4681119A (en) * | 1980-11-17 | 1987-07-21 | Schering Aktiengesellschaft | Method of production and use of microbubble precursors |
DE3141641A1 (en) * | 1981-10-16 | 1983-04-28 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | ULTRASONIC CONTRAST AGENTS AND THEIR PRODUCTION |
EP0093757A1 (en) * | 1981-11-12 | 1983-11-16 | Ulf SCHRÖDER | Intravascularly administrable, magnetically responsive nanosphere or nanoparticle, a process for the production thereof, and the use thereof |
SE8201972L (en) * | 1982-03-29 | 1983-09-30 | Gambro Lundia Ab | MAGNETIC PORTABLE CRYSTALLIZED CARBOHYDRATED SPHERES OR PARTICLES TO BE USED TOGETHER WITH BIODOUS PREPARING MATERIALS |
US4452773A (en) * | 1982-04-05 | 1984-06-05 | Canadian Patents And Development Limited | Magnetic iron-dextran microspheres |
DE3225848A1 (en) * | 1982-07-07 | 1984-01-19 | Schering AG, 1000 Berlin und 4709 Bergkamen | PREPARATION OF CORTICOIDS FOR TOPICAL APPLICATION |
US4731239A (en) * | 1983-01-10 | 1988-03-15 | Gordon Robert T | Method for enhancing NMR imaging; and diagnostic use |
US4572203A (en) * | 1983-01-27 | 1986-02-25 | Feinstein Steven B | Contact agents for ultrasonic imaging |
US4718433A (en) † | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
US5141738A (en) * | 1983-04-15 | 1992-08-25 | Schering Aktiengesellschaft | Ultrasonic contrast medium comprising gas bubbles and solid lipophilic surfactant-containing microparticles and use thereof |
US4900540A (en) * | 1983-06-20 | 1990-02-13 | Trustees Of The University Of Massachusetts | Lipisomes containing gas for ultrasound detection |
US5618514A (en) * | 1983-12-21 | 1997-04-08 | Nycomed Imaging As | Diagnostic and contrast agent |
US5720939A (en) * | 1985-08-15 | 1998-02-24 | Nycomed Imaging As | Method of contrast enhanced magnetic resonance imaging using magnetically responsive-particles |
US5008109A (en) * | 1984-05-25 | 1991-04-16 | Vestar, Inc. | Vesicle stabilization |
US4767611A (en) * | 1984-07-03 | 1988-08-30 | Gordon Robert T | Method for affecting intracellular and extracellular electric and magnetic dipoles |
SE465907B (en) * | 1984-11-01 | 1991-11-18 | Nyegaard & Co As | DIAGNOSTIC AGENT CONTENT AND PARAMAGNETIC METAL |
EP0184899B1 (en) * | 1984-11-01 | 1990-04-18 | Nycomed As | Paramagnetic contrast agents for use in "in vivo" diagnostic methods using nmr, and their preparation |
US4663161A (en) * | 1985-04-22 | 1987-05-05 | Mannino Raphael J | Liposome methods and compositions |
US4675173A (en) * | 1985-05-08 | 1987-06-23 | Molecular Biosystems, Inc. | Method of magnetic resonance imaging of the liver and spleen |
DE3529195A1 (en) † | 1985-08-14 | 1987-02-26 | Max Planck Gesellschaft | CONTRAST AGENTS FOR ULTRASONIC EXAMINATIONS AND METHOD FOR THE PRODUCTION THEREOF |
US4684479A (en) * | 1985-08-14 | 1987-08-04 | Arrigo Joseph S D | Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures |
GB8601100D0 (en) * | 1986-01-17 | 1986-02-19 | Cosmas Damian Ltd | Drug delivery system |
US4827945A (en) * | 1986-07-03 | 1989-05-09 | Advanced Magnetics, Incorporated | Biologically degradable superparamagnetic materials for use in clinical applications |
US5069936A (en) * | 1987-06-25 | 1991-12-03 | Yen Richard C K | Manufacturing protein microspheres |
US4844882A (en) * | 1987-12-29 | 1989-07-04 | Molecular Biosystems, Inc. | Concentrated stabilized microbubble-type ultrasonic imaging agent |
IE61591B1 (en) † | 1987-12-29 | 1994-11-16 | Molecular Biosystems Inc | Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production |
US5425366A (en) * | 1988-02-05 | 1995-06-20 | Schering Aktiengesellschaft | Ultrasonic contrast agents for color Doppler imaging |
US4858208A (en) * | 1988-07-11 | 1989-08-15 | Motorola, Inc. | Apparatus and method for testing semiconductor devices |
US5730954A (en) * | 1988-08-23 | 1998-03-24 | Schering Aktiengesellschaft | Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent |
US4957656A (en) † | 1988-09-14 | 1990-09-18 | Molecular Biosystems, Inc. | Continuous sonication method for preparing protein encapsulated microbubbles |
US5542935A (en) * | 1989-12-22 | 1996-08-06 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems related applications |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US5334381A (en) * | 1989-12-22 | 1994-08-02 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5228446A (en) * | 1989-12-22 | 1993-07-20 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5088499A (en) * | 1989-12-22 | 1992-02-18 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5705187A (en) * | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
DE4004430A1 (en) * | 1990-02-09 | 1991-08-14 | Schering Ag | CONSTRUCTED POLYALDEHYDE CONSTITUENTS |
GB9003821D0 (en) † | 1990-02-20 | 1990-04-18 | Danbiosyst Uk | Diagnostic aid |
IN172208B (en) * | 1990-04-02 | 1993-05-01 | Sint Sa | |
US5445813A (en) * | 1992-11-02 | 1995-08-29 | Bracco International B.V. | Stable microbubble suspensions as enhancement agents for ultrasound echography |
AU636481B2 (en) * | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
US5420176A (en) * | 1990-06-01 | 1995-05-30 | Imarx Pharmaceutical Corp. | Contrast media for ultrasonic imaging |
US5196348A (en) * | 1990-06-11 | 1993-03-23 | Air Products And Chemicals, Inc. | Perfluoro-crown ethers in fluorine magnetic resonance spectroscopy of biopsied tissue |
PH31064A (en) * | 1990-09-07 | 1998-02-05 | Nycomed As Of Nycoveten | Polymers containing diester units. |
ES2074725T3 (en) † | 1990-10-05 | 1995-09-16 | Bracco Int Bv | METHOD FOR THE PREPARATION OF STABLE HOLLOW MICROSPHERE SUSPENSIONS FILLED WITH GAS SUITABLE FOR ULTRASONIC ECHOGRAPHY. |
DE4100470A1 (en) * | 1991-01-09 | 1992-07-16 | Byk Gulden Lomberg Chem Fab | Echo contrast agent |
JPH04255943A (en) * | 1991-02-08 | 1992-09-10 | Ricoh Co Ltd | Magneto-optical recording medium |
US5370901A (en) * | 1991-02-15 | 1994-12-06 | Bracco International B.V. | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
US5107842A (en) * | 1991-02-22 | 1992-04-28 | Molecular Biosystems, Inc. | Method of ultrasound imaging of the gastrointestinal tract |
GB9106673D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
GB9106686D0 (en) * | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
JPH06510758A (en) * | 1991-07-05 | 1994-12-01 | ニユコメド・イメージング・アクシエセルカペト | Improvements in or relating to contrast agents |
US5409688A (en) * | 1991-09-17 | 1995-04-25 | Sonus Pharmaceuticals, Inc. | Gaseous ultrasound contrast media |
GB9200387D0 (en) * | 1992-01-09 | 1992-02-26 | Nycomed As | Improvements in or relating to contrast agents |
US5648062A (en) * | 1992-01-09 | 1997-07-15 | Nycomed Imaging As | Contrast agents consisting of galactose particles |
IL104084A (en) * | 1992-01-24 | 1996-09-12 | Bracco Int Bv | Long-lasting aqueous suspensions of pressure-resistant gas-filled microvesicles their preparation and contrast agents consisting of them |
BR9306044A (en) * | 1992-03-06 | 1997-11-18 | Nycomed Imaging | Contrast agent use the same processes to generate enhanced images of a human or non-human animal body and to prepare a contrast agent |
FR2694559B1 (en) * | 1992-08-06 | 1994-10-28 | Atta | New amphiphilic derivatives of amino acids or peptides, their preparation process and their use in preparations for biomedical use. |
DK0660724T3 (en) * | 1992-09-16 | 1998-11-02 | Nycomed Imaging As | Preparations for contrast agents |
US5362478A (en) * | 1993-03-26 | 1994-11-08 | Vivorx Pharmaceuticals, Inc. | Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell |
US5716597A (en) * | 1993-06-04 | 1998-02-10 | Molecular Biosystems, Inc. | Emulsions as contrast agents and method of use |
DE69434119T3 (en) * | 1993-07-30 | 2011-05-05 | Imcor Pharmaceutical Co., San Diego | STABILIZED MICROGAS BLOWER COMPOSITIONS FOR ECHOGRAPHY |
US5730955A (en) * | 1994-08-02 | 1998-03-24 | Molecular Biosystems, Inc. | Process for making gas-filled microspheres containing a liquid hydrophobic barrier |
BR9605956A (en) * | 1995-12-13 | 1998-08-18 | Cytec Tech Corp | Process for recovering a rare earth element from an acidic solution |
-
1991
- 1991-03-28 GB GB919106686A patent/GB9106686D0/en active Pending
-
1992
- 1992-03-28 AU AU14283/92A patent/AU663488B2/en not_active Ceased
- 1992-03-28 WO PCT/EP1992/000716 patent/WO1992017213A1/en active IP Right Grant
- 1992-03-28 AT AT92907161T patent/ATE157547T1/en active
- 1992-03-28 JP JP50653692A patent/JP3739783B2/en not_active Expired - Lifetime
- 1992-03-28 DK DK92907161T patent/DK0576521T4/en active
- 1992-03-28 EP EP92907161A patent/EP0576521B2/en not_active Expired - Lifetime
- 1992-03-28 ES ES92907161T patent/ES2106857T5/en not_active Expired - Lifetime
- 1992-03-28 DE DE69222037T patent/DE69222037T3/en not_active Expired - Lifetime
- 1992-03-28 SG SG1996003739A patent/SG47687A1/en unknown
- 1992-03-28 EP EP97108350A patent/EP0807441A3/en not_active Withdrawn
- 1992-03-28 CA CA002107107A patent/CA2107107C/en not_active Expired - Lifetime
- 1992-03-30 IE IE19980188A patent/IE980188A1/en not_active IP Right Cessation
-
1993
- 1993-09-27 NO NO933432A patent/NO307448B1/en not_active IP Right Cessation
- 1993-09-27 FI FI934227A patent/FI118887B/en not_active IP Right Cessation
- 1993-10-29 US US08119218 patent/US5529766C1/en not_active Expired - Lifetime
-
1996
- 1996-01-12 AU AU40941/96A patent/AU701817B2/en not_active Expired
-
1997
- 1997-05-12 BR BR1100808-3A patent/BR1100808A/en active IP Right Grant
- 1997-11-11 GR GR970402975T patent/GR3025333T3/en unknown
-
1998
- 1998-03-02 HK HK98101614A patent/HK1002624A1/en not_active IP Right Cessation
-
2002
- 2002-02-08 US US10/071,863 patent/US20030031629A1/en not_active Abandoned
-
2003
- 2003-08-13 US US10/640,504 patent/US20040131549A1/en not_active Abandoned
-
2005
- 2005-02-10 US US11/055,543 patent/US20050232865A1/en not_active Abandoned
- 2005-08-31 JP JP2005250437A patent/JP2006045238A/en active Pending
-
2006
- 2006-06-06 US US11/448,601 patent/US20070003485A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040121003A1 (en) * | 2002-12-19 | 2004-06-24 | Acusphere, Inc. | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
US20050079138A1 (en) * | 2002-12-19 | 2005-04-14 | Chickering Donald E. | Methods for making pharmaceutical formulations comprising microparticles with improved dispersibility, suspendability or wettability |
US20060093678A1 (en) * | 2002-12-19 | 2006-05-04 | Chickering Donald E Iii | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
US20060093677A1 (en) * | 2002-12-19 | 2006-05-04 | Chickering Donald E Iii | Methods for making pharmaceutical formulations comprising deagglomerated microparticles |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0576521B1 (en) | Improvements in or relating to contrast agents | |
AU689086B2 (en) | Improvements in or relating to contrast agents | |
US6106806A (en) | Microbubble-containing contrast agents having a non-proteinaceous crosslinked or polymerised amphiphilic shell | |
US6106807A (en) | Use of methylenemalondiester derivatives for the production of gas-containing microparticles for ultrasound diagnosis, as well as media that contain said particles | |
JPS5879930A (en) | Generation of foams filled with physiologically tolerable gas for use as supersonic diagnosis contrast agent, liquid composition for stabilization, manufacture and producing kit | |
EP0586524A1 (en) | IMPROVEMENTS IN OR RELATING TO CONTRAST AGENTS. | |
WO1995021631A1 (en) | Improvements in or relating to contrast agents | |
IE921011A1 (en) | Improvements in or relating to contrast agents | |
WO1994019025A2 (en) | Contrast agents | |
Priebe et al. | us 20070014731Al | |
AU7318498A (en) | Agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GE HEALTHCARE AS,NORWAY Free format text: CHANGE OF NAME;ASSIGNORS:AMERSHAM HEALTH AS;NYCOMED IMAGING AS;REEL/FRAME:018039/0537 Effective date: 20060329 Owner name: GE HEALTHCARE AS, NORWAY Free format text: CHANGE OF NAME;ASSIGNORS:AMERSHAM HEALTH AS;NYCOMED IMAGING AS;REEL/FRAME:018039/0537 Effective date: 20060329 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |