US20050226810A1 - Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis - Google Patents
Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis Download PDFInfo
- Publication number
- US20050226810A1 US20050226810A1 US11/059,557 US5955705A US2005226810A1 US 20050226810 A1 US20050226810 A1 US 20050226810A1 US 5955705 A US5955705 A US 5955705A US 2005226810 A1 US2005226810 A1 US 2005226810A1
- Authority
- US
- United States
- Prior art keywords
- mono
- group
- residue
- alkyl
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000004032 porphyrins Chemical class 0.000 title claims abstract description 97
- 238000002428 photodynamic therapy Methods 0.000 title abstract description 31
- QGKVXWDADKTZHW-UHFFFAOYSA-N azaporphyrin Chemical class C1=C(N=2)C=CC=2C=C(N=2)C=CC=2C=C(N2)C=CC2=CC2=CNC1=N2 QGKVXWDADKTZHW-UHFFFAOYSA-N 0.000 title abstract description 25
- 238000003745 diagnosis Methods 0.000 title abstract description 8
- -1 group Chemical group 0.000 claims description 300
- 150000001875 compounds Chemical class 0.000 claims description 240
- 125000003118 aryl group Chemical group 0.000 claims description 185
- 125000000524 functional group Chemical group 0.000 claims description 137
- 125000001188 haloalkyl group Chemical group 0.000 claims description 127
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 125
- 125000000623 heterocyclic group Chemical group 0.000 claims description 124
- 125000001072 heteroaryl group Chemical group 0.000 claims description 120
- 238000000034 method Methods 0.000 claims description 115
- 210000001519 tissue Anatomy 0.000 claims description 114
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 claims description 108
- 150000001413 amino acids Chemical class 0.000 claims description 102
- 150000002500 ions Chemical class 0.000 claims description 92
- 125000000217 alkyl group Chemical group 0.000 claims description 63
- 150000001408 amides Chemical class 0.000 claims description 56
- 150000002148 esters Chemical class 0.000 claims description 54
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 52
- 229910052736 halogen Inorganic materials 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 229910021645 metal ion Inorganic materials 0.000 claims description 45
- 150000003839 salts Chemical class 0.000 claims description 41
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 40
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 38
- 201000010099 disease Diseases 0.000 claims description 33
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 31
- 125000001424 substituent group Chemical group 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 29
- 238000002560 therapeutic procedure Methods 0.000 claims description 26
- 150000002367 halogens Chemical group 0.000 claims description 25
- 230000002285 radioactive effect Effects 0.000 claims description 25
- 125000003107 substituted aryl group Chemical group 0.000 claims description 25
- 125000004429 atom Chemical group 0.000 claims description 23
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 23
- 150000001412 amines Chemical class 0.000 claims description 22
- 125000003277 amino group Chemical group 0.000 claims description 20
- 230000000536 complexating effect Effects 0.000 claims description 20
- 125000004122 cyclic group Chemical group 0.000 claims description 20
- 239000008139 complexing agent Substances 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 18
- 230000005298 paramagnetic effect Effects 0.000 claims description 18
- 125000006239 protecting group Chemical group 0.000 claims description 18
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 17
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 17
- 230000001225 therapeutic effect Effects 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 15
- 150000001767 cationic compounds Chemical class 0.000 claims description 15
- 230000005292 diamagnetic effect Effects 0.000 claims description 15
- 150000002892 organic cations Chemical class 0.000 claims description 15
- 125000000962 organic group Chemical group 0.000 claims description 15
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 claims description 14
- 150000001450 anions Chemical class 0.000 claims description 14
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 claims description 14
- 229910001411 inorganic cation Inorganic materials 0.000 claims description 14
- 229920000570 polyether Polymers 0.000 claims description 14
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 12
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 claims description 12
- 125000000539 amino acid group Chemical group 0.000 claims description 12
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 12
- 150000002170 ethers Chemical class 0.000 claims description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 125000000304 alkynyl group Chemical group 0.000 claims description 11
- 210000001367 artery Anatomy 0.000 claims description 11
- 125000004104 aryloxy group Chemical group 0.000 claims description 11
- 150000004820 halides Chemical class 0.000 claims description 11
- 125000005842 heteroatom Chemical group 0.000 claims description 11
- 230000007935 neutral effect Effects 0.000 claims description 11
- 125000003342 alkenyl group Chemical group 0.000 claims description 10
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 claims description 10
- 125000005199 aryl carbonyloxy group Chemical group 0.000 claims description 10
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 claims description 10
- 125000005200 aryloxy carbonyloxy group Chemical group 0.000 claims description 10
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims description 10
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate group Chemical group [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims description 10
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 10
- 125000002462 isocyano group Chemical group *[N+]#[C-] 0.000 claims description 10
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 claims description 10
- 125000000018 nitroso group Chemical group N(=O)* 0.000 claims description 10
- 125000005017 substituted alkenyl group Chemical group 0.000 claims description 10
- 125000004426 substituted alkynyl group Chemical group 0.000 claims description 10
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 10
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 10
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M thiocyanate group Chemical group [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 claims description 10
- 210000000748 cardiovascular system Anatomy 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 230000002124 endocrine Effects 0.000 claims description 8
- 210000005096 hematological system Anatomy 0.000 claims description 8
- 210000000987 immune system Anatomy 0.000 claims description 8
- 230000001926 lymphatic effect Effects 0.000 claims description 8
- 230000005291 magnetic effect Effects 0.000 claims description 8
- 210000000865 mononuclear phagocyte system Anatomy 0.000 claims description 8
- 210000000653 nervous system Anatomy 0.000 claims description 8
- 230000002685 pulmonary effect Effects 0.000 claims description 8
- 210000004994 reproductive system Anatomy 0.000 claims description 8
- 230000002485 urinary effect Effects 0.000 claims description 8
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 7
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001728 carbonyl compounds Chemical class 0.000 claims description 4
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 3
- 229910006069 SO3H Inorganic materials 0.000 claims description 3
- 125000001589 carboacyl group Chemical group 0.000 claims description 3
- 210000005095 gastrointestinal system Anatomy 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 2
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 2
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 2
- 201000001320 Atherosclerosis Diseases 0.000 claims 24
- 208000037803 restenosis Diseases 0.000 claims 24
- 230000001678 irradiating effect Effects 0.000 claims 18
- 238000002059 diagnostic imaging Methods 0.000 claims 12
- 230000004797 therapeutic response Effects 0.000 claims 12
- 238000002679 ablation Methods 0.000 claims 6
- 238000001514 detection method Methods 0.000 claims 6
- 230000005670 electromagnetic radiation Effects 0.000 claims 6
- 238000006722 reduction reaction Methods 0.000 claims 6
- 238000001228 spectrum Methods 0.000 claims 6
- 230000006641 stabilisation Effects 0.000 claims 6
- 238000011105 stabilization Methods 0.000 claims 6
- 238000002604 ultrasonography Methods 0.000 claims 6
- 210000005166 vasculature Anatomy 0.000 claims 6
- 210000003462 vein Anatomy 0.000 claims 6
- 230000002496 gastric effect Effects 0.000 claims 5
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims 2
- 101150020251 NR13 gene Proteins 0.000 claims 1
- 239000008177 pharmaceutical agent Substances 0.000 abstract description 6
- 229940024606 amino acid Drugs 0.000 description 98
- 235000001014 amino acid Nutrition 0.000 description 98
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 93
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 84
- 239000000243 solution Substances 0.000 description 57
- 239000003504 photosensitizing agent Substances 0.000 description 43
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 42
- 0 [1*]C1=C2/C=C3/C(C)=C(C)C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[1*]C1=C2/C=C3/C(C)=C([2*])C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[1*]C1=C2/C=C3/C(C)=C([2*])C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[2*]C1=C(C)/C2=C/C3=C(C)C(C)=C4/C=C5/C(C)=C(CCC)C6=N5C5(N43)N3C(=C6)C(CCC)=C(C)/C3=C/C1=N25 Chemical compound [1*]C1=C2/C=C3/C(C)=C(C)C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[1*]C1=C2/C=C3/C(C)=C([2*])C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[1*]C1=C2/C=C3/C(C)=C([2*])C4=N3C35N2C(=C1C)/C=C1/C(C)=C(CCC)C(=N13)C=C1C(CCC)=C(C)/C(=C/4)N15.[2*]C1=C(C)/C2=C/C3=C(C)C(C)=C4/C=C5/C(C)=C(CCC)C6=N5C5(N43)N3C(=C6)C(CCC)=C(C)/C3=C/C1=N25 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- 125000005843 halogen group Chemical group 0.000 description 30
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- 239000000203 mixture Substances 0.000 description 25
- 239000002253 acid Substances 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 24
- 239000007983 Tris buffer Substances 0.000 description 23
- 239000003446 ligand Substances 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000002904 solvent Substances 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- 229910052757 nitrogen Chemical group 0.000 description 19
- 229910052725 zinc Inorganic materials 0.000 description 19
- 239000011701 zinc Substances 0.000 description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 17
- 230000009102 absorption Effects 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 16
- 150000002739 metals Chemical class 0.000 description 15
- 238000001914 filtration Methods 0.000 description 13
- 238000002390 rotary evaporation Methods 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 125000005647 linker group Chemical group 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- BZVNQJMWJJOFFB-QMMISXSQSA-N (5e,6e)-5,6-bis(phenylhydrazinylidene)hexane-1,2,3,4-tetrol Chemical compound C=1C=CC=CC=1N/N=C(/C(O)C(O)C(O)CO)\C=N\NC1=CC=CC=C1 BZVNQJMWJJOFFB-QMMISXSQSA-N 0.000 description 11
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-fructofuranose Chemical compound OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 11
- 239000003480 eluent Substances 0.000 description 11
- MEANOSLIBWSCIT-UHFFFAOYSA-K gadolinium trichloride Chemical compound Cl[Gd](Cl)Cl MEANOSLIBWSCIT-UHFFFAOYSA-K 0.000 description 11
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 125000000753 cycloalkyl group Chemical group 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- 229960000583 acetic acid Drugs 0.000 description 8
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- LPTITAGPBXDDGR-LJIZCISZSA-N [(2r,3r,4s,5r,6r)-3,4,5,6-tetraacetyloxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@@H]1OC(C)=O LPTITAGPBXDDGR-LJIZCISZSA-N 0.000 description 6
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008033 biological extinction Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 125000002950 monocyclic group Chemical group 0.000 description 6
- 230000002107 myocardial effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 125000002943 quinolinyl group Chemical class N1=C(C=CC2=CC=CC=C12)* 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229960003284 iron Drugs 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 229950003776 protoporphyrin Drugs 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 125000000547 substituted alkyl group Chemical group 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 5
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 4
- UJKPHYRXOLRVJJ-MLSVHJFASA-N CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C Chemical class CC(O)C1=C(C)/C2=C/C3=N/C(=C\C4=C(CCC(O)=O)C(C)=C(N4)/C=C4\N=C(\C=C\1/N\2)C(C)=C4C(C)O)/C(CCC(O)=O)=C3C UJKPHYRXOLRVJJ-MLSVHJFASA-N 0.000 description 4
- KSFOVUSSGSKXFI-GAQDCDSVSA-N CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O Chemical compound CC1=C/2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C(=C\2)/C(C=C)=C5C)C(C=C)=C4C)C(C)=C3CCC(O)=O)=C1CCC(O)=O KSFOVUSSGSKXFI-GAQDCDSVSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 4
- 239000005715 Fructose Substances 0.000 description 4
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 125000003282 alkyl amino group Chemical group 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 239000003429 antifungal agent Substances 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical class C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 4
- 125000002619 bicyclic group Chemical group 0.000 description 4
- 238000009739 binding Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000002526 effect on cardiovascular system Effects 0.000 description 4
- 125000004185 ester group Chemical group 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 150000007529 inorganic bases Chemical class 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 150000007530 organic bases Chemical class 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000012453 solvate Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- PNNNRSAQSRJVSB-UHFFFAOYSA-N 2,3,4,5-tetrahydroxyhexanal Chemical compound CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 3
- SIEXFRDYNDREBM-UHFFFAOYSA-N 2-[[2-[7-carboxy-3-(2-carboxyethyl)-17-ethenyl-12-ethyl-2,8,13,18-tetramethyl-2,3,23,24-tetrahydroporphyrin-5-yl]acetyl]amino]butanedioic acid Chemical compound N1C2=C(C)C(C=C)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1C(O)=O)=NC1=C(CC(=O)NC(CC(O)=O)C(O)=O)C(C(CCC(O)=O)C1C)=NC1=C2 SIEXFRDYNDREBM-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 3
- JGQGDUURWUDSDW-UHFFFAOYSA-N N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=NN=C1C=C1C=CC4=N1 Chemical class N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=NN=C1C=C1C=CC4=N1 JGQGDUURWUDSDW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 229960003121 arginine Drugs 0.000 description 3
- 235000009697 arginine Nutrition 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000002872 contrast media Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000032 diagnostic agent Substances 0.000 description 3
- 229940039227 diagnostic agent Drugs 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 229960003569 hematoporphyrin Drugs 0.000 description 3
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- WIQKYZYFTAEWBF-UHFFFAOYSA-L motexafin lutetium hydrate Chemical compound O.[Lu+3].CC([O-])=O.CC([O-])=O.C1=C([N-]2)C(CC)=C(CC)C2=CC(C(=C2C)CCCO)=NC2=CN=C2C=C(OCCOCCOCCOC)C(OCCOCCOCCOC)=CC2=NC=C2C(C)=C(CCCO)C1=N2 WIQKYZYFTAEWBF-UHFFFAOYSA-L 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 125000001791 phenazinyl group Chemical class C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 3
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 3
- 125000001644 phenoxazinyl group Chemical class C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229940109328 photofrin Drugs 0.000 description 3
- 230000002165 photosensitisation Effects 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 125000004076 pyridyl group Chemical group 0.000 description 3
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- YKENVNAJIQUGKU-UHFFFAOYSA-N tetraazaporphin Chemical group C=1C(C=N2)=NC2=NC(NN2)=NC2=CC(C=C2)=NC2=CC2=NC=1C=C2 YKENVNAJIQUGKU-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- ZYGZAHUNAGVTEC-YBTJCZCISA-N (3r,4s,5r,6r)-2,3,4,5-tetramethoxy-6-(methoxymethyl)oxane Chemical compound COC[C@H]1OC(OC)[C@H](OC)[C@@H](OC)[C@@H]1OC ZYGZAHUNAGVTEC-YBTJCZCISA-N 0.000 description 2
- TVNJKAZMPQNGGE-UHFFFAOYSA-N 1,2,3-benzoselenadiazole Chemical compound C1=CC=C2[se]N=NC2=C1 TVNJKAZMPQNGGE-UHFFFAOYSA-N 0.000 description 2
- SLLFVLKNXABYGI-UHFFFAOYSA-N 1,2,3-benzoxadiazole Chemical class C1=CC=C2ON=NC2=C1 SLLFVLKNXABYGI-UHFFFAOYSA-N 0.000 description 2
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical class C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 2
- IVCGJOSPVGENCT-UHFFFAOYSA-N 1h-pyrrolo[2,3-f]quinoline Chemical class N1=CC=CC2=C(NC=C3)C3=CC=C21 IVCGJOSPVGENCT-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VXISDLXPDHAQEK-UHFFFAOYSA-N 23h-porphyrin-2,3,5,7,8,21-hexacarboxylic acid Chemical compound N1C(C=C2N=C(C=C3N(C(=C4C(O)=O)C(C(O)=O)=C3C(O)=O)C(O)=O)C=C2)=CC=C1C=C1C(C(=O)O)=C(C(O)=O)C4=N1 VXISDLXPDHAQEK-UHFFFAOYSA-N 0.000 description 2
- VAJVGAQAYOAJQI-UHFFFAOYSA-N 3-[18-(2-carboxylatoethyl)-3,8,13,17-tetramethyl-22,23-dihydroporphyrin-21,24-diium-2-yl]propanoate Chemical compound N1C(C=C2C(C)=CC(N2)=CC=2C(=C(CCC(O)=O)C(=C3)N=2)C)=CC(C)=C1C=C1C(C)=C(CCC(O)=O)C3=N1 VAJVGAQAYOAJQI-UHFFFAOYSA-N 0.000 description 2
- OLXZPDWKRNYJJZ-UHFFFAOYSA-N 5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(CO)O1 OLXZPDWKRNYJJZ-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HKMTVMBEALTRRR-UHFFFAOYSA-N Benzo[a]fluorene Chemical class C1=CC=CC2=C3CC4=CC=CC=C4C3=CC=C21 HKMTVMBEALTRRR-UHFFFAOYSA-N 0.000 description 2
- KHNYNFUTFKJLDD-UHFFFAOYSA-N Benzo[j]fluoranthene Chemical class C1=CC(C=2C3=CC=CC=C3C=CC=22)=C3C2=CC=CC3=C1 KHNYNFUTFKJLDD-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 2
- 229940123150 Chelating agent Drugs 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 108010036941 Cyclosporins Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical class N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- KNYADCQFKXFMEI-UHFFFAOYSA-N [N]1C2=CC=C1C=C(N1)C=C(Cl)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 Chemical compound [N]1C2=CC=C1C=C(N1)C=C(Cl)C1=CC([N]1)=CC=C1C=C(N1)C=CC1=C2 KNYADCQFKXFMEI-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- RFSUNEUAIZKAJO-ZXXMMSQZSA-N alpha-D-fructofuranose Chemical compound OC[C@H]1O[C@@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ZXXMMSQZSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- WQZGKKKJIJFFOK-DVKNGEFBSA-N alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-DVKNGEFBSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 230000003257 anti-anginal effect Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229940124345 antianginal agent Drugs 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000000611 antibody drug conjugate Substances 0.000 description 2
- 229940049595 antibody-drug conjugate Drugs 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 229940121357 antivirals Drugs 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 229960001212 bacterial vaccine Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- JDPBLCQVGZLACA-UHFFFAOYSA-N benzo[a]perylene Chemical group C1=CC(C=2C3=CC=CC=C3C=C3C=2C2=CC=C3)=C3C2=CC=CC3=C1 JDPBLCQVGZLACA-UHFFFAOYSA-N 0.000 description 2
- TXVHTIQJNYSSKO-UHFFFAOYSA-N benzo[e]pyrene Chemical class C1=CC=C2C3=CC=CC=C3C3=CC=CC4=CC=C1C2=C34 TXVHTIQJNYSSKO-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000010836 blood and blood product Substances 0.000 description 2
- 229940125691 blood product Drugs 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229940124630 bronchodilator Drugs 0.000 description 2
- 239000000168 bronchodilator agent Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000002368 cardiac glycoside Substances 0.000 description 2
- 229940097217 cardiac glycoside Drugs 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 229930183167 cerebroside Natural products 0.000 description 2
- 150000001784 cerebrosides Chemical class 0.000 description 2
- 150000001789 chalcones Chemical class 0.000 description 2
- 235000005513 chalcones Nutrition 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 229940039231 contrast media Drugs 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229930182912 cyclosporin Natural products 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- PBTPREHATAFBEN-UHFFFAOYSA-N dipyrromethane Chemical class C=1C=CNC=1CC1=CC=CN1 PBTPREHATAFBEN-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000002934 diuretic Substances 0.000 description 2
- 229940030606 diuretics Drugs 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003527 fibrinolytic agent Substances 0.000 description 2
- 150000002219 fluoranthenes Chemical class 0.000 description 2
- 150000002220 fluorenes Chemical class 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 229910021513 gallium hydroxide Inorganic materials 0.000 description 2
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 description 2
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229940097043 glucuronic acid Drugs 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 229940025294 hemin Drugs 0.000 description 2
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 2
- 125000004857 imidazopyridinyl group Chemical class N1C(=NC2=C1C=CC=N2)* 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 150000002469 indenes Chemical class 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 125000003387 indolinyl group Chemical class N1(CCC2=CC=CC=C12)* 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 108700021021 mRNA Vaccine Proteins 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229940087646 methanolamine Drugs 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000004081 narcotic agent Substances 0.000 description 2
- 239000000842 neuromuscular blocking agent Substances 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 150000002964 pentacenes Chemical class 0.000 description 2
- MUAYUOYUCPTZSD-UHFFFAOYSA-N pentacyclo[11.6.1.02,11.03,8.016,20]icosa-1(19),2(11),3,5,7,9,12,14,16(20),17-decaene Chemical class C1=CC(C=C2)=C3C2=CC2=CC=C(C=CC=C4)C4=C2C3=C1 MUAYUOYUCPTZSD-UHFFFAOYSA-N 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 150000002979 perylenes Chemical class 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- 150000005030 phenoxathiins Chemical class 0.000 description 2
- 230000002186 photoactivation Effects 0.000 description 2
- 231100000760 phototoxic Toxicity 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003216 pyrazines Chemical class 0.000 description 2
- 150000003217 pyrazoles Chemical class 0.000 description 2
- 150000003230 pyrimidines Chemical class 0.000 description 2
- 150000003233 pyrroles Chemical class 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 125000006413 ring segment Chemical group 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 2
- 239000000932 sedative agent Substances 0.000 description 2
- 229940125723 sedative agent Drugs 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 229930002534 steroid glycoside Natural products 0.000 description 2
- 239000003270 steroid hormone Substances 0.000 description 2
- 150000008143 steroidal glycosides Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 150000003459 sulfonic acid esters Chemical class 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000003549 thiazolines Chemical class 0.000 description 2
- 229960000103 thrombolytic agent Drugs 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 2
- 229960004854 viral vaccine Drugs 0.000 description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- CUGDYSSBTWBKII-LXGUWJNJSA-N (2r,3r,4r,5s)-6-(dimethylamino)hexane-1,2,3,4,5-pentol Chemical compound CN(C)C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO CUGDYSSBTWBKII-LXGUWJNJSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZVYYAYJIGYODSD-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]gallanyloxypent-3-en-2-one Chemical compound [Ga+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O ZVYYAYJIGYODSD-LNTINUHCSA-K 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- IGERFAHWSHDDHX-UHFFFAOYSA-N 1,3-dioxanyl Chemical group [CH]1OCCCO1 IGERFAHWSHDDHX-UHFFFAOYSA-N 0.000 description 1
- JPRPJUMQRZTTED-UHFFFAOYSA-N 1,3-dioxolanyl Chemical group [CH]1OCCO1 JPRPJUMQRZTTED-UHFFFAOYSA-N 0.000 description 1
- ILWJAOPQHOZXAN-UHFFFAOYSA-N 1,3-dithianyl Chemical group [CH]1SCCCS1 ILWJAOPQHOZXAN-UHFFFAOYSA-N 0.000 description 1
- KFHQOZXAFUKFNB-UHFFFAOYSA-N 1,3-oxathiolanyl Chemical group [CH]1OCCS1 KFHQOZXAFUKFNB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- HNEGJTWNOOWEMH-UHFFFAOYSA-N 1-fluoropropane Chemical group [CH2]CCF HNEGJTWNOOWEMH-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- YKBGVTZYEHREMT-UHFFFAOYSA-N 2'-deoxyguanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(CO)O1 YKBGVTZYEHREMT-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-BIIVOSGPSA-N 2'-deoxythymidine Natural products O=C1NC(=O)C(C)=CN1[C@@H]1O[C@@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-BIIVOSGPSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- HCSBTDBGTNZOAB-UHFFFAOYSA-N 2,3-dinitrobenzoic acid Chemical class OC(=O)C1=CC=CC([N+]([O-])=O)=C1[N+]([O-])=O HCSBTDBGTNZOAB-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- RQFNYUNDFYFHBI-UHFFFAOYSA-N 2-[2-[carboxymethyl-(2-ethoxy-2-oxoethyl)amino]ethyl-[2-(2,6-dioxomorpholin-4-yl)ethyl]amino]acetic acid Chemical compound CCOC(=O)CN(CC(O)=O)CCN(CC(O)=O)CCN1CC(=O)OC(=O)C1 RQFNYUNDFYFHBI-UHFFFAOYSA-N 0.000 description 1
- XWNBJWBWXUNPQX-UHFFFAOYSA-N 2-[2-[carboxymethyl-[2-[2-[3-[18-[3-[2-[2-[carboxymethyl-[2-[carboxymethyl-[2-[carboxymethyl-(2-ethoxy-2-oxoethyl)amino]ethyl]amino]ethyl]amino]acetyl]hydrazinyl]-3-oxopropyl]-8,12-diethyl-3,8,13,17-tetramethyl-21,23-dihydro-7h-porphyrin-2-yl]propanoyl]hy Chemical compound N1C(C=C2C(CC(=N2)C=C2C(=C(CCC(=O)NNC(=O)CN(CCN(CCN(CC(O)=O)CC(=O)OCC)CC(O)=O)CC(O)=O)C(=C3)N2)C)(C)CC)=C(CC)C(C)=C1C=C1C(C)=C(CCC(=O)NNC(=O)CN(CC(O)=O)CCN(CCN(CC(=O)OCC)CC(O)=O)CC(O)=O)C3=N1 XWNBJWBWXUNPQX-UHFFFAOYSA-N 0.000 description 1
- HHLZCENAOIROSL-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound OC(=O)CN1CCNCCN(CC(O)=O)CCN(CC(O)=O)CC1 HHLZCENAOIROSL-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-GASJEMHNSA-N 2-amino-2-deoxy-D-galactopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@H](O)[C@@H]1O MSWZFWKMSRAUBD-GASJEMHNSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-PGYHGBPZSA-N 2-amino-3-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucopyranose Chemical compound OC(=O)[C@@H](C)O[C@@H]1[C@@H](N)C(O)O[C@H](CO)[C@H]1O MSFSPUZXLOGKHJ-PGYHGBPZSA-N 0.000 description 1
- 125000005999 2-bromoethyl group Chemical group 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- IKCLCGXPQILATA-UHFFFAOYSA-N 2-chlorobenzoic acid Chemical class OC(=O)C1=CC=CC=C1Cl IKCLCGXPQILATA-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical class CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- NKCPOFKWOHNOHZ-UHFFFAOYSA-N 23H-porphyrin-2,3,5,7,21-pentacarboxylic acid Chemical compound N1C(C=C2N=C(C=C3N(C(=C4C(O)=O)C(C(O)=O)=C3C(O)=O)C(O)=O)C=C2)=CC=C1C=C1C=C(C(=O)O)C4=N1 NKCPOFKWOHNOHZ-UHFFFAOYSA-N 0.000 description 1
- MHIITNFQDPFSES-UHFFFAOYSA-N 25,26,27,28-tetrazahexacyclo[16.6.1.13,6.18,11.113,16.019,24]octacosa-1(25),2,4,6,8(27),9,11,13,15,17,19,21,23-tridecaene Chemical class N1C(C=C2C3=CC=CC=C3C(C=C3NC(=C4)C=C3)=N2)=CC=C1C=C1C=CC4=N1 MHIITNFQDPFSES-UHFFFAOYSA-N 0.000 description 1
- NCAJWYASAWUEBY-UHFFFAOYSA-N 3-[20-(2-carboxyethyl)-9,14-diethyl-5,10,15,19-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(21),2,4,6(24),7,9,11,13,15,17,19-undecaen-4-yl]propanoic acid Chemical compound N1C2=C(C)C(CC)=C1C=C(N1)C(C)=C(CC)C1=CC(C(C)=C1CCC(O)=O)=NC1=CC(C(CCC(O)=O)=C1C)=NC1=C2 NCAJWYASAWUEBY-UHFFFAOYSA-N 0.000 description 1
- MOTVYDVWODTRDF-UHFFFAOYSA-N 3-[7,12,17-tris(2-carboxyethyl)-3,8,13,18-tetrakis(carboxymethyl)-21,22-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CC(O)=O)C(=CC=3C(=C(CC(O)=O)C(=C4)N=3)CCC(O)=O)N2)CCC(O)=O)=C(CC(O)=O)C(CCC(O)=O)=C1C=C1C(CC(O)=O)=C(CCC(=O)O)C4=N1 MOTVYDVWODTRDF-UHFFFAOYSA-N 0.000 description 1
- NIGVICSDLYHPTO-UHFFFAOYSA-N 3-[7,12,17-tris(2-carboxyethyl)-8,13,18-tris(carboxymethyl)-3-methyl-23,24-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(=CC=3C(=C(CCC(O)=O)C(=C4)N=3)CC(O)=O)N2)CC(O)=O)=C(CCC(O)=O)C(CC(O)=O)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 NIGVICSDLYHPTO-UHFFFAOYSA-N 0.000 description 1
- PLEQQUFEIPMIHA-UHFFFAOYSA-N 3-[8,12,18-tris(2-carboxyethyl)-3,7,13,17-tetramethyl-21,22-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(=CC=3C(=C(C)C(=C4)N=3)CCC(O)=O)N2)C)=C(C)C(CCC(O)=O)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 PLEQQUFEIPMIHA-UHFFFAOYSA-N 0.000 description 1
- XNBNKCLBGTWWSD-UHFFFAOYSA-N 3-[8,13,18-tris(2-carboxyethyl)-3,7,12,17-tetramethyl-21,24-dihydroporphyrin-2-yl]propanoic acid Chemical compound N1C(C=C2C(=C(C)C(=CC=3C(=C(CCC(O)=O)C(=C4)N=3)C)N2)CCC(O)=O)=C(CCC(O)=O)C(C)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 XNBNKCLBGTWWSD-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- UIPBLTJQRPAVLF-UHFFFAOYSA-N 4-[4,5,19,20-tetraethyl-14-(4-methoxy-4-oxobutyl)-15,20-dimethyl-2,21,22,23,24-pentazapentacyclo[16.2.1.13,6.18,11.113,16]tetracosa-2,4,6(24),7,9,11,13(22),14,16,18-decaen-10-yl]butanoic acid Chemical compound N1C(C=C2C(=C(CCCC(=O)OC)C(C=C3C(=CC(N3)=C3)CCCC(O)=O)=N2)C)=C(CC)C(CC)(C)C1N=C1C(CC)=C(CC)C3=N1 UIPBLTJQRPAVLF-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- BSYKSTCBGKQFDN-UHFFFAOYSA-N 5-bromo-3,4-diethyl-1h-pyrrole-2-carbaldehyde Chemical compound CCC1=C(Br)NC(C=O)=C1CC BSYKSTCBGKQFDN-UHFFFAOYSA-N 0.000 description 1
- JSBWQIZQJOQPFN-UHFFFAOYSA-N 6-[(2-methylpropan-2-yl)oxycarbonylamino]hexylazanium;chloride Chemical compound Cl.CC(C)(C)OC(=O)NCCCCCCN JSBWQIZQJOQPFN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical class OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- BMTAFVWTTFSTOG-UHFFFAOYSA-N Butylate Chemical compound CCSC(=O)N(CC(C)C)CC(C)C BMTAFVWTTFSTOG-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- VPTVRHANCGIKLY-UHFFFAOYSA-N CCCCCCN.N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound CCCCCCN.N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 VPTVRHANCGIKLY-UHFFFAOYSA-N 0.000 description 1
- UVMYBBJPMFOIEI-UHFFFAOYSA-N CCCCCCNCCCCCC.N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound CCCCCCNCCCCCC.N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 UVMYBBJPMFOIEI-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- QWIZNVHXZXRPDR-UHFFFAOYSA-N D-melezitose Natural products O1C(CO)C(O)C(O)C(O)C1OC1C(O)C(CO)OC1(CO)OC1OC(CO)C(O)C(O)C1O QWIZNVHXZXRPDR-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- YTBSYETUWUMLBZ-QWWZWVQMSA-N D-threose Chemical compound OC[C@@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- SBJKKFFYIZUCET-UHFFFAOYSA-N Dehydroascorbic acid Natural products OCC(O)C1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-UHFFFAOYSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 101001135770 Homo sapiens Parathyroid hormone Proteins 0.000 description 1
- 101001135995 Homo sapiens Probable peptidyl-tRNA hydrolase Proteins 0.000 description 1
- 101000904173 Homo sapiens Progonadoliberin-1 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229920000057 Mannan Polymers 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 241000238367 Mya arenaria Species 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical group CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- AJCHJNIGDOEGLJ-UHFFFAOYSA-N N1C(C=C2C(=C(C)C(C=C3C(=C(CC)C(=C4)N3)C)=N2)C(C)(C(O)=O)C(=O)OC)=C(C(C)(C(O)=O)C(=O)OC)C(C)=C1C=C1C(C)=C(CC)C4=N1 Chemical compound N1C(C=C2C(=C(C)C(C=C3C(=C(CC)C(=C4)N3)C)=N2)C(C)(C(O)=O)C(=O)OC)=C(C(C)(C(O)=O)C(=O)OC)C(C)=C1C=C1C(C)=C(CC)C4=N1 AJCHJNIGDOEGLJ-UHFFFAOYSA-N 0.000 description 1
- MQBPZGTUQWJZLO-UHFFFAOYSA-N N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=NC=C1C=C1C=CC4=N1 Chemical class N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=NC=C1C=C1C=CC4=N1 MQBPZGTUQWJZLO-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 206010029098 Neoplasm skin Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ILUJQPXNXACGAN-UHFFFAOYSA-N O-methylsalicylic acid Chemical class COC1=CC=CC=C1C(O)=O ILUJQPXNXACGAN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- IGVPBCZDHMIOJH-UHFFFAOYSA-N Phenyl butyrate Chemical class CCCC(=O)OC1=CC=CC=C1 IGVPBCZDHMIOJH-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 102100024028 Progonadoliberin-1 Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 101000996723 Sus scrofa Gonadotropin-releasing hormone receptor Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- NPRDEIDCAUHOJU-UHFFFAOYSA-N [Pt].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Pt].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 NPRDEIDCAUHOJU-UHFFFAOYSA-N 0.000 description 1
- YIYFFLYGSHJWFF-UHFFFAOYSA-N [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 Chemical compound [Zn].N1C(C=C2N=C(C=C3NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 YIYFFLYGSHJWFF-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000011360 adjunctive therapy Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003470 adrenal cortex hormone Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 150000001356 alkyl thiols Chemical class 0.000 description 1
- 229940061720 alpha hydroxy acid Drugs 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 230000003288 anthiarrhythmic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000001147 anti-toxic effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000002393 azetidinyl group Chemical group 0.000 description 1
- BHPNXACHQYJJJS-UHFFFAOYSA-N bacteriochlorin Chemical compound N1C(C=C2N=C(C=C3NC(=C4)C=C3)CC2)=CC=C1C=C1CCC4=N1 BHPNXACHQYJJJS-UHFFFAOYSA-N 0.000 description 1
- 150000008331 benzenesulfonamides Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 229960004217 benzyl alcohol Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 239000003181 biological factor Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 150000001768 cations Chemical group 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000007958 cherry flavor Substances 0.000 description 1
- SURLGNKAQXKNSP-DBLYXWCISA-N chlorin Chemical compound C\1=C/2\N/C(=C\C3=N/C(=C\C=4NC(/C=C\5/C=CC/1=N/5)=CC=4)/C=C3)/CC\2 SURLGNKAQXKNSP-DBLYXWCISA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000004035 chlorins Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 125000004230 chromenyl group Chemical group O1C(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- VORBHEGMEBOMMB-UHFFFAOYSA-N coproporphyrin i Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(=C(CCC(O)=O)C(=C4)N3)C)=N2)C)=C(CCC(O)=O)C(C)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 VORBHEGMEBOMMB-UHFFFAOYSA-N 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 125000005534 decanoate group Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000020960 dehydroascorbic acid Nutrition 0.000 description 1
- 239000011615 dehydroascorbic acid Substances 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 150000008266 deoxy sugars Chemical class 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000013154 diagnostic monitoring Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 1
- 125000005043 dihydropyranyl group Chemical group O1C(CCC=C1)* 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000003073 embolic effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- UQPHVQVXLPRNCX-UHFFFAOYSA-N erythrulose Chemical compound OCC(O)C(=O)CO UQPHVQVXLPRNCX-UHFFFAOYSA-N 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 125000006351 ethylthiomethyl group Chemical group [H]C([H])([H])C([H])([H])SC([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 150000002243 furanoses Chemical class 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 229950002441 glucurolactone Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 229940125672 glycoprotein IIb/IIIa inhibitor Drugs 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- XLXSAKCOAKORKW-UHFFFAOYSA-N gonadorelin Chemical compound C1CCC(C(=O)NCC(N)=O)N1C(=O)C(CCCN=C(N)N)NC(=O)C(CC(C)C)NC(=O)CNC(=O)C(NC(=O)C(CO)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)C(CC=1NC=NC=1)NC(=O)C1NC(=O)CC1)CC1=CC=C(O)C=C1 XLXSAKCOAKORKW-UHFFFAOYSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical class CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- KKLGDUSGQMHBPB-UHFFFAOYSA-N hex-2-ynedioic acid Chemical class OC(=O)CCC#CC(O)=O KKLGDUSGQMHBPB-UHFFFAOYSA-N 0.000 description 1
- 229960002885 histidine Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 150000002454 idoses Chemical class 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000007975 iminium salts Chemical class 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000002697 interventional radiology Methods 0.000 description 1
- 238000002608 intravascular ultrasound Methods 0.000 description 1
- 238000012977 invasive surgical procedure Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 229910052740 iodine Chemical group 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- FWBFDXIBOYYUPH-DBLYXWCISA-N isobacteriochlorin Chemical compound C1C\C2=C\C3=N\C(\C=C3)=C/C3=CC=C(N3)\C=C3\CCC(\C=C1/N2)=N3 FWBFDXIBOYYUPH-DBLYXWCISA-N 0.000 description 1
- 125000001977 isobenzofuranyl group Chemical group C=1(OC=C2C=CC=CC12)* 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical class CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940098895 maleic acid Drugs 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- LUEWUZLMQUOBSB-GFVSVBBRSA-N mannan Chemical class O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-GFVSVBBRSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QWIZNVHXZXRPDR-WSCXOGSTSA-N melezitose Chemical compound O([C@@]1(O[C@@H]([C@H]([C@@H]1O[C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O)CO)CO)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O QWIZNVHXZXRPDR-WSCXOGSTSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical class COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical class C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004593 naphthyridinyl group Chemical group N1=C(C=CC2=CC=CN=C12)* 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical class NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical class CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 230000000771 oncological effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007968 orange flavor Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- ZDOIEGHZCIVBFD-UHFFFAOYSA-N pentacarboxyporphyrin iii Chemical compound N1C(C=C2C(=C(C)C(C=C3C(=C(C)C(=C4)N3)CCC(O)=O)=N2)CCC(O)=O)=C(CC(O)=O)C(CCC(O)=O)=C1C=C1C(CCC(O)=O)=C(C)C4=N1 ZDOIEGHZCIVBFD-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 125000005327 perimidinyl group Chemical group N1C(=NC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- 125000004934 phenanthridinyl group Chemical group C1(=CC=CC2=NC=C3C=CC=CC3=C12)* 0.000 description 1
- 125000004625 phenanthrolinyl group Chemical group N1=C(C=CC2=CC=C3C=CC=NC3=C12)* 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- DYUMLJSJISTVPV-UHFFFAOYSA-N phenyl propanoate Chemical class CCC(=O)OC1=CC=CC=C1 DYUMLJSJISTVPV-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical class OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 125000001095 phosphatidyl group Chemical group 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000886 photobiology Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical class CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 150000003151 propanoic acid esters Chemical class 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- UORVCLMRJXCDCP-UHFFFAOYSA-N propynoic acid Chemical class OC(=O)C#C UORVCLMRJXCDCP-UHFFFAOYSA-N 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 125000002577 pseudohalo group Chemical group 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 150000003215 pyranoses Chemical class 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical class N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 229940076279 serotonin Drugs 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical class OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000000147 tetrahydroquinolinyl group Chemical group N1(CCCC2=CC=CC=C12)* 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000007944 thiolates Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000008648 triflates Chemical class 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- KBMBVTRWEAAZEY-UHFFFAOYSA-N trisulfane Chemical group SSS KBMBVTRWEAAZEY-UHFFFAOYSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- YTZALCGQUPRCGW-ZSFNYQMMSA-N verteporfin Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(CCC(=O)OC)=C(C)C(N3)=C3)=N2)C)=C(C=C)C(C)=C1C=C1C2=CC=C(C(=O)OC)[C@@H](C(=O)OC)[C@@]2(C)C3=N1 YTZALCGQUPRCGW-ZSFNYQMMSA-N 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 229940061392 visudyne Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- GDJZZWYLFXAGFH-UHFFFAOYSA-M xylenesulfonate group Chemical group C1(C(C=CC=C1)C)(C)S(=O)(=O)[O-] GDJZZWYLFXAGFH-UHFFFAOYSA-M 0.000 description 1
- ORZHVTYKPFFVMG-UHFFFAOYSA-N xylenol orange Chemical compound OC(=O)CN(CC(O)=O)CC1=C(O)C(C)=CC(C2(C3=CC=CC=C3S(=O)(=O)O2)C=2C=C(CN(CC(O)=O)CC(O)=O)C(O)=C(C)C=2)=C1 ORZHVTYKPFFVMG-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- 125000004933 β-carbolinyl group Chemical group C1(=NC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/545—Heterocyclic compounds
- A61K47/546—Porphyrines; Porphyrine with an expanded ring system, e.g. texaphyrine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/085—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/101—Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
- A61K49/106—Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/041—Heterocyclic compounds
- A61K51/044—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
- A61K51/0446—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K51/0451—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. phorphine derivatives, bilirubin, biliverdine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0474—Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
- A61K51/0485—Porphyrins, texaphyrins wherein the nitrogen atoms forming the central ring system complex the radioactive metal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0497—Organic compounds conjugates with a carrier being an organic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- This invention is directed to substituted porphyrin and azaporphyrin derivatives with various substituents in the 13- and 17-positions of the porphyrin skeleton suitable as pharmaceutical agents for use in photodynamic therapy, MRI diagnosis, and radiodiagnostics.
- the invention is also directed to pharmaceutical agents that contain these compounds, as well as a process for the production of these compounds and agents.
- Photodynamic therapy is a new modality for the treatment of malignancies, diseased tissue, hyperproliferating tissues, pathogens or unwanted normal tissues.
- PDT involves a localized or systemic administration of a photosensitizing compound followed by exposure of target tissue to photoactivating light.
- the photoactivating light excites the photosensitizer which, in turn, interacts with singlet oxygen causing the production of cytotoxic oxygen species.
- the interaction of the cytotoxic oxygen species with tissues in which the photosensitizer is localized causes a modification of the tissue, resulting in a desired clinical effect.
- the tissue specificity of the resultant phototoxic damage is determined largely, although not entirely, by the relative concentrations of the photosensitizer in each tissue at the time of its exposure to the photoactivating light.
- Porphyrins and azaporphyrins and their metallated derivatives belong to a family of substances that are suitable for PDT. These compounds accumulate in target tissues and absorb light in a range in which living tissue is still fairly permeable, namely between 380-680 nm. Moreover, porphyrins, azaporphyrins and their photoactive metallated derivatives exhibit high yields of the excited triplet state, a long lifetime in this state, and good energy transfer to oxygen with concomittent production of singlet oxygen. Of the porphyrins and their derivatives, several photosensitizers have been developed largely for use in oncological applications, but have also been examined in other disease areas in the PDT field in humans.
- Such photosensitizers include Photofrin (U.S. Pat. No. 4,882,234), 5-aminolevulinic acid (protoporphyrin IX precursor), SnET2, Visudyne® (Benzoporphyrin derivative), Antrin®, Optrin® (Lutetium texaphyrin) and mono-aspartyl chlorin e6 (MACE). All of these compounds were designed specifically for the treatment of solid tumors.
- these compounds were designed to have large absorptions in the 620-740 nm range so as to optimize the photoactivation of the drug with a wavelength that will penetrate to the greatest depths possible all tissue types.
- these drugs were designed to absorb outside of the blood absorption profile, thus ensuring efficient photoactivation in most tissue types.
- the excitation light source (usually diode lasers or dye lasers) has historically been matched to the far-red absorption bandwidth of the photosensitizer in order to maximize light penetration through tissues. Indeed, the present inventor believes that all the tetrapyrrolic photosensitizers used have been designed for long wavelength absorption of light (>630 nm) to address this perceived issue. Surprisingly, it has been found that short wavelength photosensitizers (with activation absorptions ⁇ 600 nm) are capable of delivering effective localized therapy to many disease indications where historically long wavelength photosensitizers (with activation absorptions >600 nm) have shown ineffective clinical outcomes. One such example is in coronary artery disease.
- photosensitizers described above have been used to treat atheromatous plaques and some are able to display some inhibition of intimal hyperplasia in animal models, many if not all have characteristics that will limit the usefulness of these drugs in a clinical setting.
- One particular concern is the half-life of the photosensitizer.
- a photosensitizer delivered systemically with a long half-life may have phototoxic side effects if exposed to direct light, within days of the procedure.
- wavelengths of light lower than 600 nm offer significant advantages in PDT because such wavelengths have penetration characteristics that deliver the PDT effect to the target sites (media and adventicia layers of the vessel) and not to myocardial tissue. Thus, effective therapy can be afforded at the target site, while deeper tissues are shielded from a PDT response by blood absorption within these tissues.
- Previously reported cardiovascular experiments performed to date on tetrapyrrolic molecules have been done at wavelengths >620 nm. Experiments that we have performed in pig arteries with new photosensitizer candidates at light activation >600 nm have resulted in unacceptable levels of damage to myocardial or cardiac muscle tissue surrounding the treatment area.
- chlorins, phthalocyanines and texaphyrin type photosensitizers in general have little absorption in the 500-600 nm regions, and thus may be suboptimal with regard to light activation at green and yellow wavelengths in cardiovascular tissues.
- protoporphyrin IX and photofrin do not display absorption maximas at 532 nm, thus they may be inefficient at absorbing treatment light at this wavelength and have very low molar extinction coefficients at 575 nm ( ⁇ 7000 cm ⁇ 1 /M ⁇ 1 ).
- long wavelength photosensitizers by design have red absorption peaks, operating room lighting in an emergency situation may cause serious photosensitivity in light exposed tissues.
- hematoporphyrin complex compounds used in diagnosis and treatment are described in patent application EP 0 355 041. While these compounds show a good concentration behavior in various target organs, the described compounds used as NMR diagnostic agents are not satisfacatory because they require a dose necessary for optimal imaging that is too close to the lethal dose. Hematoporphyrin derivatives have the drawback that they can eliminate both pseudobenzylic OH groups in the hydroxyethyl side chains.
- Sakata's porphyrin-based PDT/MRI/radiodiagnostic compounds are based on a naturally occurring asymmetrical porphyrin ring system shown in FIG. 1.
- Sakata has linked polyfunctional carboxyl groups that are capable of binding radioactive metals or MRI active metals to a) the R 1 and R 2 positions as shown via ether—alcohol linkages; and b) to positions R 4 or R 5 via ether linking units. This synthetic approach carries with it significant manufacturing problems.
- the linking of one metal chelating moiety to an asymmetrical porphyrin at R 1 or R 2 , R 3 or R 4 (where R 1 and R 2 can be vinyl, ethyl, —CH(O-lower alkanoyl)CH 3 , —CH(OR)CH 3 or —CH(O-loweralklene-OR)CH_,) generates at least two new chemical porphyrinic entities in the synthesis process if R 1 and R 2 (or R 3 and R 4 ) are the same linking moiety. This is outlined in scheme 1.
- Naturally occurring porphyrins like hematoporphyrin or protoporphyrin cannot be chemically modified such that only one position, either R 1 or R 2 , (or R 3 or R 4 ) is selectively modified to form a molecule with a single linking unit as the only product.
- R 1 or R 2 , (or R 3 or R 4 ) is selectively modified to form a molecule with a single linking unit as the only product.
- two compounds are always formed which must be separated to obtain a pure single molecule with which to link the metal chelating moiety.
- the separation of the two porphyrins is often difficult (if not impossible) and complicates both the manufacturing process and the cost of the final product. If one chooses not to separate the isomers, the isomeric components will each have their own toxicities, and pharmacokinetic and distribution profiles.
- Niedballa and Platzek's approach also has the same synthetic manufacturing problems as explained for Sakata (except when R 1 ⁇ H), i.e., multiple compounds are produced when a single linking moiety is attached to the molecule. These molecules may offer enhanced stability over Sakata's due to the use of amine linkages.
- the limitation of R 1 ⁇ H symmetry does not, however, allow for modification of this molecule with other functionality that may enhance localization or uptake in tissues or target organelle, or changes in pharmacokinetic or elimination profiles for singly linked molecules. Compounds with high water solubility are often not taken up efficiently by tumors or cells. The ability to enhance the lipophilicity of the molecule is thus very important.
- the theoretical efficacy of a photosensitizer largely correlates to the molar extinction coefficient of the photosensitizer's absorption peak and its ability to absorb light. This is due primarily to the fact that the ability of a photosensitizer to absorb incidental light is a function of the cross sectional area of the molecule's absorption profile. Hence, photosensitizers with low molar extinction coefficients capture photons less efficiently than molecules with high molar extinction coefficients and are thus less efficient.
- the present inventor has found novel metal-free or metallated functionalized phototherapeutic agents that may be used for imaging (MRI or radiodiagnostic) before or after photodynamic therapy.
- These novel phototherapeutic agents are based on tetrapyrrolic ring systems such as the porphyrins and azaporphyrins that can be covalently linked by stable linkages to metal complexing agents. These new photosensitizers are useful in short wavelength applications in photodynamic therapy.
- the present invention in one aspect provides phototherapeutic compositions of metallo-tetrapyrrolic compounds of formula I which may be used as MRI, radiodiagnostic and PDT agents:
- R 1 -R 12 can be the same or different and can be selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ either with or without a physiologically acceptable charge balancing counter ion.
- R 1 -R 7 can be the same or different and can be selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably scheduled from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ either with or without a physiologically acceptable charge balancing counter ion.
- R 1 and R 2 can be the same or different and can be selected from H, NO 2 , CN, CHO, CO-alkyl, SO 3 H, SO 3 alkyl, SO 3 alkylether, SO 3 heteroalkyl, SO 3 Na, SO 3 K, SO 2 NHalkyl, SO 2 N(alkyl) 2 , SO 2 NHheteroalkyl, SO 2 N(heteroalkyl) 2 , SO 2 NHhaloalkyl, SO 2 N(haloalkyl) 2 , SO 2 NHhaloalkylether, SO 2 N(haloalkylether) 2 , SO 2 NHalkylether, SO 2 N(haloalkylether) 2 , SO 2 NHalkylether, SO 2 N(haloalkylether) 2 , CO-haloalkyl, haloalkyl, heteroalkyl, hydroxyhaloalkyl, haloalkyl ether
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga 3+ ; Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ either with or without a physiologically acceptable charge balancing counter ion.
- R 1 -R 11 can be the same or different and can be selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that can be radioactive, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ , either with or without a physiologically acceptable charge balancing counter ion.
- R 1 -R 6 can be the same or different and can be selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , S 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ , either with or without a physiologically acceptable charge balancing counter ion.
- R 1 -R 10 can be the same or different and can be selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ either with or without a physiologically acceptable charge balancing counter ion.
- R 1 -R 4 can be the same or different and are selected from:
- M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , Sn 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ either with or without a physiologically acceptable charge balancing counter ion.
- phototherapeutic compositions of metallo-tetrapyrrolic compounds of formula IV that may be used as MRI, radiodiagnostic, or PDT agents:
- R 1 -R 8 can be the same or different and are selected from:
- M is selected from 2H or a diamagnetic or paramagnetic metal ion that can be radioactive, photoactive metals being preferably selected from Ga 3+ , Pt 2+ , Pd 2+ , S 4+ , In 3+ , Ge 4+ , Si 4+ , Al 3+ , Zn 2+ , Mg 2+ the appropriate number of physiologically acceptable charge balancing counter ions.
- the metallo-tetrapyrrolic compounds of the invention can be derived by various procedures from naturally occuring cyclic tetrapyrroles.
- the naturally occurring cyclic tetrapyrrolic molecules can have the basic ring structure of compounds I, II, III, and IV, whose substituents are outlined in Table 1, and are particularly preferred as starting materials for the synthesis of the compounds of structures I-IV.
- tetrapyrroles derived from naturally occuring ring systems that have one linking group are particularly preferred. These are shown in scheme 1.
- the tetrapyrrole is derived by the coupling of suitably substituted dipyrromethane, dipyrromethenes, biladienes, builirubins, pyrroles and functionalized aldehydes, or functionalized maleonitriles.
- the cyclic tetrapyrroles that have the basic ring structure of compounds I-IV, whose substituents are outlined in Table 2, are particularly preferred as starting materials for the synthesis of compounds of structures I-IV.
- tetrapyrrole tetrapyrrolic molecule and “porphyrin” are used here to designate compounds of the cyclic structure where four pyrrolic ring systems are linked via either carbon or nitrogen bonds.
- Compounds within the scope of the invention include porphyrins, mono-, di-, tri- and tetraazaporphyrins, and porphyrin isomers such as porphycenes, isoporphycenes, hemiporphycenes, corroles, corrphycenes, and the like.
- porphyrins Included in the first class of metallated tetrapyrrolic compounds of the invention are those of the porphyrins.
- Scheme 1 outlines an example of the synthesis of porphyrins that are derived from plants. Particularly advantageous are the porphyrins based on chloroporphyrin e6 (9), chloroporphyrin e4 (10), phylloporphyrin (11), rhodoporphyrin (7), pyrroporphyrin (8), pheoporphyrin a5 (13) and phylloerythrin (12) and compounds having similar ring systems.
- Such compounds can be synthesized with single linking groups, which can be modified according to the invention to increase their biological activity and MRI and radiodiagnostic capacity.
- the propionic esters of (2), (3), (5) and (6) can be selectively hydrolized to form carboxylic acids, which can then be linked to the metal coordinating moiety.
- the carboxylic acids can be converted to amides with a free amine linking unit, which can then be linked to the metal co-ordinating moiety.
- Porphyrin amide derivatives like (4) (R 2 ⁇ NHR 3 ) may be synthesized from phylloporphyrin such that an amine linking group is present.
- Examples include where R 2 ⁇ NHCH 2 CH 2 NH 2 , NHCH 2 CH 2 CH 2 NH 2 , NHCH 2 CH 2 NH 2 , NH(CH 2 ) 2 O(CH 2 ) 2 NH 2 and similar compounds. These amine groups can then be linked to the metal co-ordinating moiety.
- porphyrins While plant derived porphyrins are preferred as starting materials in the invention due to their abundant availability, a very large number of synthetic porphyrins are generally applicable to the invention.
- Such porphyrins can be made by synthetic methods known to those skilled in the art, via coupling of pyrrolic precursors, dipyrromethanes, dipyrromethenes and biladienes to give the required porphyrins with widely ranging functionality at both the ⁇ and meso positions.
- the synthesis of porphyrins via the coupling of pyrrolic intermediates is outlined in detail in chapters 1, 2, 3 in “The Porphyrin Handbook” Editors, K. M. Kadish, K. M. Smith, R. Guilard, Volume 1, Academic press, 2000, p.
- a second preferred class of compounds according to the invention are the mono-, di-, tri- and tetra-azaporphyrins.
- Schemes 3-7 outline the synthesis of mono-, di-, and tetra-azaporphyrins, examples of which are listed in Table 2.
- Schemes 3-7 outline synthetic routes to novel tetrapyrrolic molecules that possess a linking group with terminal amine groups. Such compounds can be linked to a metal complexing reagent (MCR) and subsequently modified to be phototherapeutic and diagnostic compounds.
- MCR metal complexing reagent
- Mono-azaporphyrins are synthesized efficiently via the coupling of dibromobiladienes with sodium azide or via the reaction of oxyporphyrins with ammonia. Copper and metal free diazaporphyrins can be obtained via the coupling of 5,5′-dibromopyrromethenes with sodium azide. Tetra-azaporphyrins are synthesized most efficiently via the treatment of substituted maleonitriles with magnesium powder or magnesium alcoxides. Such reactions are well known in the art and are outlined in detail by N. Kobayashi in “The Porphyrin Handbook,” K. M. Kadish, K. M. Smith, R. Guilard, Editors, Volume 2, Chapter 13, Academic Press, 2000, p. 301-360, the disclosure of which is hereby incorporated by reference herein.
- peripheral functionality of these compounds is important with respect to further derivatization to achieve the desired coupling to the metal complexing reagent (MCR) and the desired biological effect (both therapeutic and diagnostic).
- MCR metal complexing reagent
- desired biological effect both therapeutic and diagnostic.
- the types of peripheral functionality applicable to the invention are described in detail below. It is recognized that small changes in the peripheral functionality can have pronounced effects on the biological efficacy of the molecules as does metal co-ordination to the compounds.
- Schemes 4-7 outline synthetic routes to the novel tetrapyrrolic molecules of the invention.
- the new compounds of the invention are based on the porphyrin, mono-, di-, tri- and tetra-azaporphyrin ring systems that bear peripheral functionality on the ring system.
- Such functionality includes esters, alcohols, amides, amines, ethers, and phosphates.
- Such derivatives may also have at least one hydroxylated residue present, or an amine group with which to couple the metal co-ordination compound.
- the new porphyrins themselves may be photodynamically active as metal free analogs and therefore useful as PDT agents.
- metallated derivatives of these compounds are also of particular interest for treatment and diagnosis of disorders of the cardiovascular system, normal or abnormal conditions of the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, pulmonary system, gastrointestinal system including the liver, reproductive system, skin, immune system, cardiovascular system, urinary system, ocular system, auditory or olfactory system, where shorter wavelengths of light are necessary or advantageous to effect a desired therapy.
- Scheme 4 outlines chemistry that has been undertaken to produce photosensitizing or diagnostic agents (based on non-naturally occuring porphyrin systems and azaporphyrins) that possess pendant terminal amine moieties and is exemplary only and is not intended to limit the invention. It should be noted that the functionality and position of the N and C meso atoms can be varied to produce analogs different from those shown. Additionally, the R groups in these schemes constitute functional groups that can be symmetrically substituted and can also, if desired, be modified by techniques known to those skilled in the art based on the chemistry described herein without departing from the spirit or scope of the invention.
- the ester functionality of porphyrins or azaporphyrins can be hydrolyzed to yield both mono- and di-acid compounds. It is preferred that the synthesis of mono-acid compounds via this method occurs on compounds that are symmetrical in their substitution pattern of R 1 -R 4 , such that isomers are not formed.
- the mono- or di-acid can then be converted to the desired amide via standard techniques, to produce pendant arm groups with terminal amine moieties.
- R 5 possesses a functional group that can be modified to produce a reactive linking moiety (for example C 6 H 4 SO 3 H, C 6 H 4 CO 2 H and the like), these may alternatively be chemically modified to produce compounds with pendant arm groups having terminal amine moieties. Such compounds can, if desired, be reacted with: metals to produce metallotetrapyrrolic complexes.
- Scheme 6 outlines the synthesis route of metal-free or metallated mono- or di-amine porphyrins based on rhodoporphyrin or pyrroporphyrin.
- rhodoporphyrin R ⁇ CO 2 Me
- both groups can be hydrolyzed with KOH/H 2 O to give the di-acid derivative.
- the acid groups can then be converted to the acid chloride derivatives and reacted with the appropriate amine to give compounds possessing one or two pendant arm terminal amine moieties. These compounds can, if desired, be reacted with metals to produce metallo-tetrapyrrolic mono or di-amine complexes.
- Scheme 7 outlines the synthesis of metal-free or metallated mono or di-amine di-azaporphyrins.
- the di-azaporphyrins themselves can be synthesized via the coupling of appropriate brominated dipyrromethanes.
- the peripheral functionality can be modified by similar chemistry as outlined in schemes 4 and 5.
- R 1 -R 4 should possess a symmetrical substitution pattern. This preference does not apply if di-amine substitution is desired.
- the introduction of the desired metals (e.g., Zn, Ga, Al, Sn, In, Mg, Mn, Fe, etc) into the porphyrins or azaporphyrins can be carried out according to methods that are known in the literature (e.g., The Porphyrins, ed. D. Dolphin, Academic Press, New York 1980, Vol. V, p. 459; DE 4232925).
- metal substitution of pyrrolic NH's can be carried out by heating the metal-free ligand with the corresponding metal salt, preferably acetate or halide, optionally with the addition of acid-buffering agents, such as, for example, sodium acetate in a polar solvent.
- substitutions can be carried out by metal exchange in which a metal that is already complexed by the porphyrin or azaporphyrin is displaced by the desired metal.
- a metal is cadmium.
- the preferred solvent is a polar solvent, such as, for example, methanol, glacial acetic acid, dimethylformamide, chloroform or water.
- the metal is difficult to remove under acid conditions (Pt, Pd)
- the introduction of a diamagnetic or paramagnetic metal M into the porphyrin system can be carried out before or after linkage of the metal complexing agent radical (MCR).
- MCR metal complexing agent radical
- MCA metal complexing agent
- an activated MCR can be reacted with the amine porphyrin or azaporphyrin derivatives such that a covalent link between the two compounds occurs.
- the nature of the linking amine moiety on the porphyrins or azaporphyrins (P) to the MCR compounds may be varied.
- Preferable examples include: P-(CH 2 ) n NH 2 , where n is an integer from 1 to 10; P-(aryl)NH 2 , P-CONHNH 2 , or P-(CH 2 ) n CONHNH 2 , where n is an integer from 1 to 10; P-CONH(CH 2 ) n NH 2 , where n is an integer from 1 to 10; P-CONH(CH 2 ) 2 O(CH 2 ) 2 NH 2 , or P-CONH[(CH 2 ) 2 ] n O n/2 [(CH 2 ) 2 ] n NH 2 , where n is an integer from 1 to 10; P-SO 2 NHNH 2 , or P-SO 2 NH(CH 2 ) n NH 2 , where n is an integer from 1 to 10; P-SO 2 NH(CH 2 ) 2 O(CH 2 ) 2 NH 2 , or P-SO 2 NH[(CH 2 ) 2 ] n
- porphyrin and azaporphyrin units can be generated that possess alcohol terminal linking groups.
- Preferred examples of such groups include P-(CH 2 ) n OH, where n is an integer from 1 to 10; P-(aryl)OH, P-CONHOH, or P-(CH 2 ) n CONHOH, where n is an integer from 1 to 10; P-CONH(CH 2 ) n OH, where n is an integer from 1 to 10; P-CONH(CH 2 ) 2 O(CH 2 ) 2 OH, or P-CONH[(CH 2 ) 2 ] n O n/2 [(CH 2 ) 2 ] n OH, where n is an integer from 1 to 10; P-SO 2 NHOH, or P-SO 2 NH(CH 2 ) n OH, where n is an integer from 1 to 10; P-SO 2 NH(CH 2 ) 2 O(CH 2 ) 2 OH, or P-SO 2
- the MCR linking group Q is an organic group that when linked to the amine or alcohol porphyrin or azaporphyrin results in a product that is an ester, an amide, an amine, an ether, or a thiolate.
- Preferable reactive MCR's are described in, for example, U.S. Pat. No. 4,885,363, U.S. Pat. No. 5,730,956, U.S. Pat. No. 6,136,841, and U.S. Pat. No. 5,275,801 the disclosures which are hereby incorporated herein by reference. Examples are illustrated in FIG. 2.
- linker groups Q include —CO—, —CS—, —COCH 2 NH—, —CO(CH 2 ) 2 NH, —CO(CH 2 ) 2 —, —COCH 2 OC 6 H 4 CO, —COC 6 H 4 NH—, —COCH 2 OCH 2 NH—, —COC 6 H 4 —, —COCH 2 NHCOCH 2 CH(CH 2 COOH)C 6 H 4 NH—, phenyleneoxy, a C1-C12 alkylene or a C7-C12 aralkylene group by one or more oxygen atoms.
- the porphyrin or azaporphyrin linked MCR compounds can then be modified to produce PDT/MRI radiodiagnostic compounds.
- paramagnetic metal ions must be present in the complex. These are preferably divalent or trivalent ions of the elements of atomic numbers 21-29, 42-44 and 57-71.
- the paramagnetic metal may be coordinated to either the inner pyrrolic core of the porphyrin or azaporphyrin, or in the MCR pendant arm, or in both.
- Suitable ions include, for example, chromium, gadolinium, dysprosium, manganese, iron, cobalt, cobalt, nickel, copper, praseodymium, neodymium, samarium, terbium, holmium, erbium and ytterbium ions. Because of their high magnetic moment, the gadolinium, dysprosium, manganese, terbium, holmium, erbium and iron ions are especially preferred.
- the metal ions must be radioactive.
- radioisotopes of the elements copper, cobalt, gallium, zinc, germanium, yttrium, strontium, technetium, indium, ytterbium, gadolinium, samarium, thallium, and iridium.
- the radioactive isotope may be coordinated to the porphyrin or azaporphyrin ligand or within the MCR, or both.
- Metal chelation to the MCR group can be carried out by techniques known in the literature (see, e.g., DE3401052) by the metal oxide or metal salt (e.g., nitrate, acetate, carbonate, chloride or sulfate) of the metal that is desired.
- the metal oxide or salt can be suspended or dissolved in polar solvents such as water or aqueous alcohols and then reacted with the corresponding amount of the complexing ligand.
- acidic hydrogen atoms or acid groups that are present can be substituted by cations of inorganic and/or organic bases or amino acids.
- neutralization can be carried out with the aid of inorganic bases, such as, e.g., alkali or alkaline-earth hydroxides, carbonates or bicarbonates and/or organic bases such as, for example, primary, secondary and tertiary amines, such as, e.g., ethanolamine, morpholine, glucamine, N-methyl- and N,N-dimethylglucamine, as well as basic amino acids, such as, e.g., lysine, arginine and ornithine or amides of originally neutral or acidic amino acids.
- inorganic bases such as, e.g., alkali or alkaline-earth hydroxides, carbonates or bicarbonates and/or organic bases
- organic bases such as, for example, primary, secondary and tertiary amines, such as, e.g., ethanolamine, morpholine, glucamine, N-methyl- and N,N-dimethylglucamine, as
- a sufficient amount of the desired bases can be added to, for example, the acidic complex salts in aqueous solution or suspension to ensure that the neutral point is reached.
- the solution that is obtained can then be evaporated to the dry state in a vacuum.
- water-miscible solvents such as, for example, lower alcohols (e.g., methanol, ethanol, isopropanol, acetonitrile), lower ketones (e.g., acetone), polar ethers (e.
- the acidic complex compounds contain several free acid groups, it is often advantageous to produce neutral mixed salts that contain both inorganic and organic cations as counter-ions.
- This can be achieved, for example, by reacting the complexing ligands in aqueous suspension or solution with the oxide or salt of the element that yields the central ion and half of the amount of an organic base that is required for neutralization.
- the complex salt that is formed can then be isolated, optionally purified, and then mixed for complete neutralization with the required amount of inorganic base.
- the sequence in which the base is added can also be reversed.
- Another way of obtaining neutral complex compounds consists of converting the remaining acid groups in the complex completely or partially into esters. This can be achieved by subsequent reaction on the finished complex, e.g., by exhaustive reaction of free carboxy groups with dimethylsulfate.
- Pharmaceutical agents of the invention can be produced by adding to the complex compounds of the invention certain additives that are commonly used in the pharmaceutical industry to suspend or dissolve the compounds in an aqueous medium, and then the suspension or solution can be sterilized by techniques known in the art.
- suitable additives include, for example, physiologically harmless buffers (such as, e.g., trimethamine), small additions of complexing agents (such as, e.g., diethylenetriaminepentaacetic acid) or, if necessary, electrolytes such as, e.g., sodium chloride or antioxidants such as, e.g., ascorbic acid, butylate hydroxy toluene, or tocopherol.
- suspensions or solutions of the agents according to the invention in water or in physiological salt solution are desired for enteral administration or other purposes, they can be mixed with one or more adjuvants that are commonly used in galenicals (e.g., methylcellulose, lactose, mannitol) and/or surfactant(s) (e.g., lecithins, Tween, and/or flavoring substances for taste correction (e.g., ethereal oils).
- adjuvants e.g., methylcellulose, lactose, mannitol
- surfactant(s) e.g., lecithins, Tween, and/or flavoring substances for taste correction (e.g., ethereal oils).
- the compounds and agents according to the invention should be stored and handled as much as possible in a light-free environment.
- the pharmaceutical agents according to the invention preferably contain from about 20 ⁇ mol/L to about 200 mmol/L of the complex salt and are generally dosed in amounts of 0.01 ⁇ mol to 2 mmol/kg of body weight, both for their use in PDT and for therapy monitoring using MRI diagnosis. They are intended for enteral and parenteral administration or are administered with the methods of interventional radiology.
- the agents according to the invention are especially suitable for PDT and as MRI contrast media. After administration, they can enhance the informational value of the image that is obtained from a nuclear spin tomograph by increasing the signal intensity. They are effective without burdening the body with large amounts of foreign substances.
- the high water-solubility of the agents according to the invention allows the production of highly concentrated solutions, so as to keep the volume burden of the circulation within acceptable limits and to compensate for dilution by bodily fluid.
- the agents according to the invention show not only a high stability in vitro but also a surprisingly high stability in vivo, so that a release or an exchange of the ions, which are inherently toxic and not covalently bonded in the complexes, will not be harmful within the time that it takes for the contrast media to be completely excreted.
- any porphyrinic molecule may be modified according to the invention to form the desired photoactive compounds with widely differing functionality as described in the literature (for example see “Porphyrins and Metalloporphyrins” Ed. K. Smith, Elsevier, 1975, N.Y., “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978, and “The Porphyrin Handbook”, Eds. K. Kadish, K. M. Smith, R. Guilard, Academic Press, 2000). These compounds contain various and ranging substituents on the ⁇ -pyrrole positions or meso-positions of the porphyrin ring, either symmetrically or asymmetrically substituted on the ring.
- Examples of such functionality include functional groups having a molecular weight less than about 100,000 daltons and can be a biologically active group or organic. Examples include, but are not limited to: (1) hydrogen; (2) halogen, such as fluoro, chloro, iodo and bromo (3) lower alkyl, such as methyl, ethyl, n-propyl, butyl, hexyl, heptyl, octyl, isopropyl, t-butyl, n-pentyl and the like groups; (4) lower alkoxy, such as methoxy, ethoxy, isopropoxy, n-butoxy, t-pentoxy and the like; (5) hydroxy; (6) carboxylic acid or acid salts, such as —CH 2 COOH, —CH 2 COONa, —CH 2 CH 2 COOH, —CH 2 CH 2 COONa, —CH 2 CH 2 CH(Br)COOH, —CH 2 CH 2 CH(CH
- biologically active group can be any group that selectively promotes the accumulation, elimination, binding rate, or tightness of binding in a particular biological environment.
- one category of biologically active groups is the substituents derived from sugars, specifically: (1) aldoses such as glyceraldehyde, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, and talose; (2) ketoses such as hydroxyacetone, erythrulose, rebulose, xylulose, psicose, fructose, sorbose, and tagatose; (3) pyranoses such as glucopyranose; (4) furanoses such as fructo-furanose; (5) O-acyl derivatives such as penta-O-acetyl- ⁇ -glucose;
- Amino acid derivatives are also useful biologically active substituents, such as those derived from valine, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, alanine, arginine, aspartic acid, cystine, cysteine, glutamic acid, glycine, histidine, proline, serine, tyrosine, asparagine and glutamine.
- peptides particularly those known to have affinity for specific receptors, for example, oxytocin, vasopressin, bradykinin, LHRH, thrombin and the like.
- nucleosides for example, ribonucleosides such as adenosine, guanosine, cytidine, and uridine; and 2′-deoxyribonucleosides, such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- ribonucleosides such as adenosine, guanosine, cytidine, and uridine
- 2′-deoxyribonucleosides such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- ligand specific for a biological receptor refers to a moiety that binds a receptor at cell surfaces, and thus contains contours and charge patterns that are complementary to those of the biological receptor.
- the ligand is not the receptor itself, but a substance complementary to it. It is well understood that a wide variety of cell types have specific receptors designed to bind hormones, growth factors, or neurotransmitters. However, while these embodiments of ligands specific for receptors are known and understood, the phrase “ligand specific for a biological receptor”, as used herein, refers to any substance, natural or synthetic, that binds specifically to a receptor.
- ligands examples include: (1) the steroid hormones, such as progesterone, estrogens, androgens, and the adrenal cortical hormones; (2) growth factors, such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like; (3) other protein hormones, such as human growth hormone, parathyroid hormone, and the like; (4) neurotransmitters, such as acetylcholine, serotonin, dopamine, and the like; and (5) antibodies. Any analog of these substances that also succeeds in binding to a biological receptor is also included within the invention.
- the steroid hormones such as progesterone, estrogens, androgens, and the adrenal cortical hormones
- growth factors such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like
- other protein hormones such as human growth hormone, parathyroid hormone, and the like
- neurotransmitters such as acetylcholine, serotonin, dopamine, and the like
- antibodies Any analog of
- substituents tending to increase the amphiphilic nature of the compounds include, but are not limited to: (1) short or long chain alcohols, such as, for example, —C 12 H 24 —OH; (2) fatty acids and their salts, such as, for example, the sodium salt of the long-chain fatty acid oleic acid; (3) phosphoglycerides, such as, for example, phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, phosphatidyl 3′-O-alanyl glycerol, cardiolipin, or phosphatidyl choline; (4) sphingolipids, such as, for example, sphingomyelin; and (5) glycolipids, such as, for example, glycosyldiacylglycerols, cerebrosides, sulfate
- the compounds of the present invention can be administered to the host in a variety of forms adapted to the chosen route of administration, e.g., orally, intravenously, topically, intramuscularly or subcutaneously.
- the active compound may be orally administered, for example with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with food.
- the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- Such compositions and preparations should contain at least about 0.1% of active compound.
- the percentage of the compositions and preparations may, of course, be varied and may, for example, conveniently be between about 2 to about 60% of the weight of the administered product.
- the amount of active compound in such therapeutically useful compositions is can be selected so that a suitable dosage will be obtained.
- Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 50 and 300 mg of active compound.
- the tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring.
- a binder such as gum tragacanth, acacia, corn starch or gelatin
- excipients such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid and the like
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, lactose or saccharin
- a flavoring agent such as peppermint, oil of winter
- tablets, pills, or capsules may be coated with shellac, sugar or both.
- a syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor.
- any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed.
- the active compound may be incorporated into sustained-release preparations and formulations.
- the active compound may also be administered parenterally or intraperitoneally.
- Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporanous preparation of sterile injectable solutions, dispersions, or liposomal or emulsion formulations.
- the form must be sterile and should be fluid to enable administration by a syringe.
- the form must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required additional ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and the freeze-drying technique, which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solutions thereof.
- the new compounds of the invention may also be applied directly to tumors in the host whether internal or external, in topical compositions.
- exemplary compositions include solutions of the new compounds in solvents, particularly aqueous solvents, most preferably water.
- the present new compounds may be dispersed in the usual cream or salve formulations commonly used for this purpose (such as liposomes, ointments, gels, hydrogels, cremes and oils) or may be provided in the form of spray solutions or suspensions that may include a propellant usually. employed in aerosol preparations.
- “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Any conventional media or agent that is compatible with the active ingredient can be used in the therapeutic compositions of the invention. Supplementary active ingredients can also be incorporated into the compositions.
- Dosage unit form refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated. Each unit contains a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specifications for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of cardiovascular diseases, diseases of the skin, cancers and other superficial disease conditions in living subjects.
- the present invention provides a method of treating live cells, which includes, but is not limited to, animals such as humans and other mammals.
- animals such as humans and other mammals.
- the “mammals” also include farm animals, such as cows, hogs and sheep, as well as pet or sport animals, such as horses, dogs and cats.
- the dosage of the pharmaceutical compositions of the invention is dependent on the method of administration, the patient's age, severity of the disease, and the like.
- the compounds of the invention may be taken parentally or orally, generally being administered intravascularly, subcutaneously, or intramuscularly or interperitoneally.
- the subject compounds may also be administered by inhalation, perivascular delivery, pericardial delivery (into perivascular sac), periadvential delivery (e.g., using a hydrogel wrap around the vessel), endovascular balloon catheters with micropores, channels, transmural injection ports, and the like.
- an infusate can be placed and pressurized to facilitate intramural and transmural penetration into the target vessel.
- Local delivery can also be enhanced by other mechanical and electrical means.
- the depth of the penetration of the subject compounds by this local delivery method is a function of pressure in the perfused segment and the dwell time.
- Delivery of the compounds of the invention may also be via antibody-drug conjugates, internalizing antibodies or antibody fragments conjugated to compounds into cells using endocytosis.
- the subject compounds may also be impregnated into stent struts for local delivery.
- the route of administration of these pharmaceutical preparations is not critical, but may be selected according to the dosage form, the patient's age, the severity of the disease to be treated and other factors.
- the compounds of the invention may find use in conjunction with other interventions, diagnostics and therapies, where lower levels of other therapies having significant side effects may be used effectively to reduce the detrimental side effects.
- Adjunctive interventions may include, but are not limited to: balloon angioplasty, invasive and non-invasive surgical procedures, stent deployment, cutting balloons, embolic protection devices, rotational and directional atherectomy, eximer lasers and the like.
- Adjunctive therapies may include, but are not limited to radiation therapy, chemotherapy, anti-platelet agents, vasodilators, antihypertensives, anti-arrhythmics, hyperthermia, cryotherapy, magnetic force, viral and non-viral gene therapy, pharmacogenetic therapy, antibodies, vaccines, glycoprotein IIb/IIIa Inhibitors, growth factors, peptides, DNA delivery, nucleic acids, anticancer drugs, steroid hormones, anti-inflammatories, proteins, anti-apoptotic therapies, anti-sense agents, immunotoxins, immunomodulators, antibody-drug conjugates, anti-proliferative therapies, drug eluting stents containing pharmacologically active agents, transplant products and processes, prostaglandins and catheter based devices to detect vulnerable plaques, hormone products, chelating agents, diuretics, cardiac glycosides, bronchodilators, antibiotics, antivirals, antitioxins, cyclosporins, thrombolytic agents, interferon
- Adjunctive diagnostics may include, but are not limited to: intravascular ultrasound imaging, angiography, quantitative vessel measurements and the use of radiological contrast agents, hormone products, chelating agents, diuretics, cardiac glycosides, bronchodilators, antibiotics, antivirals, antitoxins, cyclosporins, thrombolytic agents, interferons, blood products such as parental iron and hemin, anti-fungal agents, antianginals, anticoagulants, analgesics, narcotics, neuromuscular blockers, sedatives, bacterial vaccines, viral vaccines, DNA or RNA of natural or synthetic origin including recombinent RNA and DNA, cytokines and their antagonists/inhibitors, and chemokines and their antagonists/inhibitors.
- alkyl refers to substituted or unsubstituted, straight or branched chain groups, preferably having one to twenty, more preferably having one to six, and most preferably having from one to four carbon atoms.
- C 1 -C 20 alkyl represents a straight or branched alkyl chain having from one to twenty carbon atoms.
- Exemplary C 1 -C 20 alkyl groups include methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, neo-pentyl, hexyl, isohexyl, and the like.
- C 1 -C 20 alkyl includes within its definition the term “C 1 -C 4 alkyl.”
- Such alkyl groups may themselves be ethers or thioethers, or aminoethers or dendrimers.
- cycloalkyl represents a substituted or unsubstituted, saturated or partially saturated, mono- or poly-carbocyclic ring, preferably having 5-14 ring carbon atoms.
- exemplary cycloalkyls include monocyclic rings having from 3-7, preferably 3-6, carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
- An exemplary cycloalkyl is a C 5 -C 7 cycloalkyl, which is a saturated hydrocarbon ring structure containing from five to seven carbon atoms.
- aryl refers to an aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, or 18 carbon ring atoms, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents.
- aryl groups include, but are not limited to, phenyl, napthalenes, anthracenes, benzopyrenes, quinolines, benzoquinolines, benzoperylene, benzofluorenes, fluorenes, benzofurazans, benzodiphenylenes, benzofluoranthenes, benzanthracenes, benzacephenanthrylenes, bathophenanthrolines, indans, benzoquinolines, quinolines, pyrazines, quinolines, quinazoles, quinoxalines, imidazopyridines, indenes, indolines, thiazolines, benzopyrimidines, pyrimidines, benzimidazole, triazolopyrimidines, pyrazoles, tryptophans, phenanthrolines, benzooxadiazoles, benzoselenadiazole, benzocoumarins, chalcones, fluoranthenes, pyr
- halogen represents chlorine, fluorine, bromine or iodine.
- halocarbon or “haloalkyl” represents one or more halogens bonded to a one or more carbon bearing groups.
- heterohaloalkyl represents for example halogenated alkylethers, halogenated alkyl amines, halogenated alkyl esters, halogenated alkyl amides, halogenated alkyl thioesters, halogenated alkyl thiols, where N, S, O, P atoms are present in the haloalkylated structure.
- heteroalkyl represents for example ethers, alkylamines, alkylated thiols and alkylate phosphorus containing groups.
- carrier represents a substituted or unsubstituted aromatic or a saturated or a partially saturated 5-14 membered monocyclic or polycyclic ring, such as a 5- to 7-membered monocyclic or 7- to 10-membered bicyclic ring, wherein all the ring members are carbon atoms.
- electronegative group is intended to mean a chemical group containing an electronegative element such as halogen, sulfur, nitrogen or oxygen.
- a “heterocycloalkyl group” is intended to mean a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, and which includes 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, wherein the radical is unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted.
- heterocycloalkyl groups include, but are not limited to azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholinyl, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, dihydrofuryl, tetrahydropyranyl, dihydropyranyl, 1,3-dioxolanyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-oxathiolanyl, 1,3-oxathianyl, 1,3-dithianyl, azabicylo[3.2.1]octyl, azabicylo[3.3.1]nonyl, azabicylo[4.3.0]nonyl, oxabicylo[2.2.1]heptyl, 1,5,9-triazacyclododecyl, and the like.
- heteroaryl group is intended to mean an aromatic monovalent monocyclic, bicyclic, or tricyclic radical containing 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, including 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubstituted or substituted.
- heteroaryl groups include, but are not limited to, thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, furazanyl, isoxazolyl, thiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, benzo[b]thienyl, naphtho[2,3-b]thianthrenyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathienyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxyalinyl, quinzolinyl, benzothiazolyl, benzimidazolyl, te
- leaving group refers to any group that departs from a molecule in a substitution reaction by breakage of a bond.
- Examples of leaving groups include, but are not limited to, halides, tosylates, arenesulfonates, alkylsulfonates, and triflates.
- Suitable protecting groups are recognizable to those skilled in the art. Examples of suitable protecting groups can be found in T. Green & P. Wuts, Protective Groups in Organic Synthesis (2d ed. 1991), which is hereby incorporated by reference herein in its entirety.
- Suitable salt anions include, but are not limited to, inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions; and organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions
- organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- substituents for alkyl and aryl groups include mercapto, thioether, nitro (NO 2 ), amino, aryloxyl, halogen, hydroxyl, alkoxyl, and acyl, as well as aryl, cycloalkyl and saturated and partially saturated heterocycles.
- substituents for cycloalkyl groups include those listed above for alkyl and aryl, as well as alkyl.
- Exemplary substituted aryls include a phenyl or naphthyl ring substituted with one or more substituents, preferably one to three substituents, independently selected from halo, hydroxy, morpholino(C 1 -C 20 )alkoxy carbonyl, pyridyl (C 1 -C 20 )alkoxycarbonyl, halo (C 1 -C 20 )alkyl, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, carboxy, C 1 -C 20 alkocarbonyl, carbamoyl, N-(C 1 -C 20 )alkylcarbamoyl, amino, C 1 -C 20 alkylamino, di(C 1 -C 20 )alkylamino or a group of the formula —(CH 2 ) a —R 7 where a is 1, 2, 3, 4, 5; and R 7 is hydroxy, C 1 -C 20 alkoxy, carboxy, C 1
- halo(C 1 -C 20 )alkyl which represents a straight or branched alkyl chain having at least one halogen atom attached to it.
- exemplary halo(C 1 -C 20 )alkyl groups include chloromethyl, 2-bromoethyl, 1-chloroisopropyl, 3-fluoropropyl, 2,3-dibromobutyl, 3-chloroisobutyl, trifluoromethyl, trifluoroethyl, and the like.
- hydroxy (C 1 -C 20 )alkyl which represents a straight or branched alkyl chain having from one to twenty carbon atoms with a hydroxy group attached to it.
- exemplary hydroxy(C 1 -C 20 )alkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxyisopropyl, 4-hydroxybutyl, and the like.
- C 1 -C 20 alkylthio(C 1 -C 20 )alkyl is a straight or branched C 1 -C 20 alkyl group with a C 1 -C 20 alkylthio group attached to it.
- Exemplary C 1 -C 20 alkylthio(C 1 -C 20 )alkyl groups include methylthiomethyl, ethylthiomethyl, propylthiopropyl, sec-butylthiomethyl, and the like.
- heterocycle(C 1 -C 20 )alkyl is a straight or branched alkyl chain having from one to twenty carbon atoms with a heterocycle attached to it.
- exemplary heterocycle(C 1 -C 20 )alkyls include pyrrolylmethyl, quinolinylmethyl, 1-indolylethyl, 2-furylethyl, 3-thien-2-ylpropyl, 1-imidazolylisopropyl, 4-thiazolylbutyl and the like.
- aryl(C 1 -C 20 )alkyl which is a straight or branched alkyl chain having from one to twenty carbon atoms with an aryl group attached to it.
- exemplary aryl(C 1 -C 20 )alkyl groups include phenylmethyl, 2-phenylethyl, 3-naphthyl-propyl, 1-naphthylisopropyl, 4-phenylbutyl and the like.
- the heterocycloalkyls and the heteroaryls can, for example, be substituted with 1, 2 or 3 substituents independently selected from halo, halo(C 1 -C 20 )alkyl, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, carboxy, C 1 -C 20 alkoxycarbonyl, carbamoyl, —(C 1 -C 20 )alkylcarbamoyl, amino, C 1 -C 20 alkylamino, di(C 1 -C 20 )alkylamino or a group having the structure —(CH 2 ) a —R 7 where a is 1, 2, 3, 4, 5 and R 7 is hydroxy, C 1 -C 20 alkoxy, carboxy, C 1 -C 20 alkoxycarbonyl, amino, carbamoyl, C 1 -C 20 alkylamino or di(C 1 -C 20 )alkylamino.
- substituents independently selected from halo
- substituted heterocycloalkyls include, but are not limited to, 3-N-t-butyl carboxamide decahydroisoquinolinyl and 6-N-t-butyl carboxamide octahydro-thieno[3,2-c]pyridinyl.
- substituted heteroaryls include, but are not limited to, 3-methylimidazolyl, 3-methoxypyridyl, 4-chloroquinolinyl, 4-aminothiazolyl, 8-methylquinolinyl, 6-chloroquinoxalinyl, 3-ethylpyridyl, 6-methoxybenzimidazolyl, 4-hydroxyfuryl, 4-methylisoquinolinyl, 6,8-dibromoquinolinyl, 4,8-dimethylnaphthyl, 2-methyl-1,2,3,4-tetrahydroisoquinolinyl, N-methyl-quinolin-2-yl, 2-t-butoxycarbonyl-1,2,3,4-isoquinolin-7-yl and the like.
- a “pharmaceutically acceptable solvate” is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of the inventive compounds.
- Examples of pharmaceutically acceptable solvates include, but are not limited to, compounds prepared using water, isopropanol, ethanol, DMSO, and other excipients generally reffered to as GRAS ingredients.
- the compounds of the inventive methods may exist in different polymorph forms, such as stable and metastable crystalline forms and isotropic and amorphous forms, all of which are intended to be within the scope of the present invention.
- a “pharmaceutically acceptable salt” is intended to mean those salts that retain the biological effectiveness and properties of the free acids and bases and that are not biologically or otherwise undesirable.
- Examples of pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, citrates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates
- the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, lactic acid, salicylic acid, pyranosidyl acids such as glucuronic acid and galacturonic acid, alpha-hydroxy acids such as citric acid and tartaric acid, amino acids such as aspartic acid and glutamic acid, aromatic acids such as benzoic acid and cinnamic acid, sulfonic acids such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.
- an inorganic acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, ni
- the desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), or an alkali metal or alkaline earth metal hydroxide or the like.
- suitable salts include organic salts derived from amino acids such as glycine and arginine; ammonia; primary, secondary and tertiary amines; cyclic amines such as piperidine, morpholine and piperazine; and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.
- shorter wavelength light may be equally important in other PDT applications that only require short wavelength excitation to effect a therapy.
- Such applications may be, for example, in hollow organ disease (for example lung cancers, barrets esophagus), or in diseases of the skin (for example psoriasis, actinic keratosis, acne vulgaris).
- the invention disclosed herein describes the synthesis of metallated photosensitizers having ring systems that have shown excellent efficacy in advanced animal model systems as well as preferred uptake in the target tissue, with excellent clearance characteristics and low toxicity.
- the compounds of the invention are intended for use not only for effective photodynamic therapy treatment but also as MRI and radiodiagnostic diagostic agents. Such compounds may be used to diagnose, locate or treat cardiovascular disease and normal or abnormal conditions of the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, pulmonary system, gastrointestinal system including the liver, reproductive system, skin, immune system, cardiovascular system, urinary system, ocular system, auditory or olfactory system.
- photoactive derivatives of porphyrins and azaporphyrins are particularly advantageous where shorter wavelengths of light are necessary to effect a photodynamic response.
- the azaporphyrin synthesized in example 13 was modified according to H. Fischer, E. Haarer and F. Stadler, Z. Physiol. Chem. 241, 209 (1936) by treatment with hydrazine hydrate (1.5 mL of an 80% water solution) in pyridine (20 mL) at room temperature. The solution was evaporated to dryness, dissolved/suspended in methanol (10 mL) and water (30 mL) was added. The methanol was removed by rotary evaporation and the precipitated porphyrin collected by filtration and dried. Yield of title compound: 250 g of a purple powder.
- the azaporphyrin prepared in example 14 (100 mg) was metallated according to example 2. Yield of title compound 110 mg.
- the dimethyl ester azaporphyrin of example 14 (1.0 g, 1.6 mmol) is dissolved in THF (200 ml) and a solution of KOH (100 mg)/MeOH (5 mL) is added. The solution is closely monitored until only a trace of starting material remains and the major product is the mono-hydrolyzed azaporphyrin. Acetic acid (107 mg) is added and the solution diluted with water (100 mL). The THF was removed by rotary evaporation and the precipitated azaporphyrins were collected and washed with methanol (20 mL) and dried.
- the monoacid azaporphyrin prepared in example 30 (500 mg) is dissolved in dichloromethane (50 ml) and oxalyl chloride (5 ml) added. The solution is refluxed under dry conditions for 2 hrs and then evaporated to dryness, care being taken not to expose the crude material to moisture. The residue is dissolved in dichloromethane (50 mL, dry) and ethylene diamine (3 ml, dry) added all at once. The resulting solution is washed with a saturated sodium bicarbonate solution, followed by water and the organic layer is collected, dried over sodium sulfate, filtered and evaporated.
- the crude reaction mixture is chromatographed on silica using 4% methanol/dichloromethane/0.5% triethylamine as eluent, and the major fraction collected.
- the ligand that is produced by Example 22 (1.0 g, 0.74 mmol) is dissolved in THF (50 mL) and water (350 mL). Sodium hydroxide solution (10 mol) is added and it is stirred overnight at room temperature. After the ester groups have been completely saponified, the THF is removed by rotoevaporation. A pH of 4 is set with concentrated hydrochloric acid. It is evaporated to the dry state in a vacuum. The residue is chromatographed on RP 18 (eluant: H 2 O/tetrahydrofuran/gradient). Yield of title compound: 0.90 g of a reddish-brown powder.
- the ligand produced by example 36 (200 mg, 0.13 mmol) is dissolved in water (100 mL), and gadolinium chloride (69 mg, 0.26 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound 247 mg.
- This compound was prepared via the method of Neya, S., Hori, H., Imai, K., Konishi, Y. K., Suzuki, H., Shiro, Y., Lizuka, T., Funasaki, N., J. Biochem, 1997, 121, 654.
- the compound produced by example 48 (200 mg, 0.148 mmol) is dissolved in water (100 mL), and gadolinium chloride (78.2 mg, 0.296 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Cardiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Substituted porphyrin and azaporphyrin deviations with various substitutents in the 12- and 17-positions of the prophyrin skeleton as pharmaceutical agents for use in photodynamic therapy, MRI diagnosis, and radiodiagnostics.
Description
- 1. Field of the Invention
- This invention is directed to substituted porphyrin and azaporphyrin derivatives with various substituents in the 13- and 17-positions of the porphyrin skeleton suitable as pharmaceutical agents for use in photodynamic therapy, MRI diagnosis, and radiodiagnostics. The invention is also directed to pharmaceutical agents that contain these compounds, as well as a process for the production of these compounds and agents.
- 2. Background of the Invention
- Photodynamic therapy (“PDT”) is a new modality for the treatment of malignancies, diseased tissue, hyperproliferating tissues, pathogens or unwanted normal tissues. PDT involves a localized or systemic administration of a photosensitizing compound followed by exposure of target tissue to photoactivating light. The photoactivating light excites the photosensitizer which, in turn, interacts with singlet oxygen causing the production of cytotoxic oxygen species. The interaction of the cytotoxic oxygen species with tissues in which the photosensitizer is localized causes a modification of the tissue, resulting in a desired clinical effect. The tissue specificity of the resultant phototoxic damage is determined largely, although not entirely, by the relative concentrations of the photosensitizer in each tissue at the time of its exposure to the photoactivating light.
- Following systemic administration, many photosensitizers accumulate to varying degrees within tissues depending on the pharmacokinetic and distribution profile of the photosensitizing compound and the cell types comprising the tissues. The chemical factors that enable certain photosensitizers to accumulate to a greater degree at a target site than other photosensitizers is not well understood. Indeed, the biological factors that result in the preferential uptake of some photosensitizers in certain tissue types compared to other tissue types are not well understood either. It is clear, however, that each photosensitizer has its own distribution and pharmacokinetic properties within different tissues and these properties determine the relative usefulness of the photosensitizer for the desired therapy. Currently, rigorous screening and biological evaluation in appropriate model systems is required to identify suitable photosensitizers that display the characteristics necessary to effect a therapy within the diseased or target tissues.
- Porphyrins and azaporphyrins and their metallated derivatives belong to a family of substances that are suitable for PDT. These compounds accumulate in target tissues and absorb light in a range in which living tissue is still fairly permeable, namely between 380-680 nm. Moreover, porphyrins, azaporphyrins and their photoactive metallated derivatives exhibit high yields of the excited triplet state, a long lifetime in this state, and good energy transfer to oxygen with concomittent production of singlet oxygen. Of the porphyrins and their derivatives, several photosensitizers have been developed largely for use in oncological applications, but have also been examined in other disease areas in the PDT field in humans. (WO 92/06097; WO 97/20846; EP 0 811626; U.S. Pat. Nos. 5,633,275, 5,654,423, 5,675,001, 5,703,230, and 5,705,622). Such photosensitizers include Photofrin (U.S. Pat. No. 4,882,234), 5-aminolevulinic acid (protoporphyrin IX precursor), SnET2, Visudyne® (Benzoporphyrin derivative), Antrin®, Optrin® (Lutetium texaphyrin) and mono-aspartyl chlorin e6 (MACE). All of these compounds were designed specifically for the treatment of solid tumors. Specifically, many of these compounds were designed to have large absorptions in the 620-740 nm range so as to optimize the photoactivation of the drug with a wavelength that will penetrate to the greatest depths possible all tissue types. In particular, these drugs were designed to absorb outside of the blood absorption profile, thus ensuring efficient photoactivation in most tissue types.
- The excitation light source (usually diode lasers or dye lasers) has historically been matched to the far-red absorption bandwidth of the photosensitizer in order to maximize light penetration through tissues. Indeed, the present inventor believes that all the tetrapyrrolic photosensitizers used have been designed for long wavelength absorption of light (>630 nm) to address this perceived issue. Surprisingly, it has been found that short wavelength photosensitizers (with activation absorptions <600 nm) are capable of delivering effective localized therapy to many disease indications where historically long wavelength photosensitizers (with activation absorptions >600 nm) have shown ineffective clinical outcomes. One such example is in coronary artery disease.
- While several of the photosensitizers described above have been used to treat atheromatous plaques and some are able to display some inhibition of intimal hyperplasia in animal models, many if not all have characteristics that will limit the usefulness of these drugs in a clinical setting. One particular concern is the half-life of the photosensitizer. A photosensitizer delivered systemically with a long half-life (CASPc, Photofrin, SnET2) may have phototoxic side effects if exposed to direct light, within days of the procedure.
- A second even more pressing concern that has to date escaped many of the investigators testing new photosensitizers in cardiovascular disease is photochemically induced damage to “normal” myocardial tissue surrounding the artery due to non-selective photosensitizer uptake and long depths of light penetration, which activates the photosensitizer in the myocardial tissue. Historically, it has been believed that attenuation of the photosensitizer excitation light by blood would inhibit the use of wavelengths of light shorter than 600 nm in the cardiovascular field. This may have been true several years ago when balloon catheter technology in PDT was not as advanced as it is today. New endovascular light ballon catheters, however, can remove most of the blood from the treatment area. This advance enables the use of short wavelengths of light that historically may have been attenuated by blood.
- The use of wavelengths of light lower than 600 nm offers significant advantages in PDT because such wavelengths have penetration characteristics that deliver the PDT effect to the target sites (media and adventicia layers of the vessel) and not to myocardial tissue. Thus, effective therapy can be afforded at the target site, while deeper tissues are shielded from a PDT response by blood absorption within these tissues. Previously reported cardiovascular experiments performed to date on tetrapyrrolic molecules have been done at wavelengths >620 nm. Experiments that we have performed in pig arteries with new photosensitizer candidates at light activation >600 nm have resulted in unacceptable levels of damage to myocardial or cardiac muscle tissue surrounding the treatment area. This has major clinical implications to patients with existing ischemic myocardial or muscle tissue due to poor artery perfusion. Attempts to lower the light dosimetry in order to limit treatments to the target tissue (media/intima) leads to long treatment times and less efficacy. In addition, long treatment times in the artery exposes the patient to additional risks with inflation and deflation of the balloon devices. Importantly, we have demonstrated in pig arteries that effective treatment depths can be obtained with shorter wavelengths of light, with sparing of underlying tissue damage.
- Thus, it is believed that, long wavelength absorbing molecules (>600 nm), unless highly selective to target myocardial and intimal tissues (which has not to date been reported with any photosensitizer in cardiovascular tissues), may cause unacceptable normal cardiac tissue damage. Therefore, it would appear that activation of lutetium texaphyrin, BPD-MA, MACE, CASPc, SnET2, and pheophorbide PH-II26 with red light may be of limited use in the treatment of cardiovascular disease as all of these compounds are “red” absorbers by design, in so much as all possess low energy absorbtion peaks at wavelengths >600 nm. It should be noted also that chlorins, phthalocyanines and texaphyrin type photosensitizers in general have little absorption in the 500-600 nm regions, and thus may be suboptimal with regard to light activation at green and yellow wavelengths in cardiovascular tissues. In addition, protoporphyrin IX and photofrin do not display absorption maximas at 532 nm, thus they may be inefficient at absorbing treatment light at this wavelength and have very low molar extinction coefficients at 575 nm (˜7000 cm−1/M−1). Furthermore, because long wavelength photosensitizers by design have red absorption peaks, operating room lighting in an emergency situation may cause serious photosensitivity in light exposed tissues. Attempts to use red light filters on operating room lights results in poor tissue contrast and sub-optimal lighting conditions, making surgical procedures under these conditions extremely difficult, if not impossible. Optical clarity is much better at shorter wavelengths (500-600 nm) where the depth of light peneration is limited to a few mm of tissue penetration during the surgical procedure.
- Another significant drawback of the above long wavelength absorbing compounds mentioned is that they are only suitable for therapy; prior or simultaneous MRI-diagnostic monitoring of the success of the therapy is not possible with them, nor is radiodiagnostic imaging. For this purpose, it is necessary to administer another paramagnetic substance, which must have a biodistribution that is as close to that of the therapeutic agent as possible. This requirement often cannot be met.
- There have been attempts by groups in the field to provide porphyrin linked MRI or radiodiagnostic compounds. Notable examples include: Hilgar, C. S., et al, U.S. Pat. No. 5,849,259; Niedballa, U., et. al., U.S. Pat. No. 5,275,801; Platzek, J., et. al., U.S. Pat. No. 6,136,841; Niedballa, U., et. al., EP 0355041 A2, A3, and B1; Sakata, I., et. al., U.S. Pat. No. 4,996,312; Sakata, I., et. al., U.S. Pat. No. 4,996,312; and Sakata, I., et. al., U.S. Pat. No. EP 0220686. It has been known for some time that porphyrin derivatives selectively accumulate in human and animal tumors (D. Kessel and T.-II. Chu, Cancer Res. 43, pp.1994-1999, 1983; P. Hambright, Bioinorg. Chem. 5, pp. 87-92, 1975; R. Lipson et al., Cancer 20, pp. 2250-2257, 1967; and D. Sanderson et al., Cancer 30, pp. 1368-1372, 1972). First attempts to use this class of compound as a diagnostic agent were also described in the literature (J. Winkelmann et al., Cancer Research 27, pp. 2060-2064, 1967; N. J. Patronas et al, Cancer Treatment Reports 70, pp. 391-395, 1986). However, the compounds so far described are far from being able to satisfactorily meet the desired requirements to be effective PDT, MRI and radiodiagnostic imaging agents.
- Substituted hematoporphyrin complex compounds used in diagnosis and treatment are described in patent application EP 0 355 041. While these compounds show a good concentration behavior in various target organs, the described compounds used as NMR diagnostic agents are not satisfacatory because they require a dose necessary for optimal imaging that is too close to the lethal dose. Hematoporphyrin derivatives have the drawback that they can eliminate both pseudobenzylic OH groups in the hydroxyethyl side chains.
- Derivatives of the deuteroporphyrin have been proposed (Sakata, et. al., U.S. Pat. No. 4,996,312 and EP 0220686) for tumor imaging with radioisotopes, containing as additional complexing groups polyaminopolycarboxylic acids bound to the porphyrin skeleton by ethylene glycol bridges (Photochemistry and Photobiology Vol. 46, pp. 783-788 (1987)). However, such porphyrin esters are not very suitable for parenteral use in patients, especially for NMR or radiodiagnostic diagnosis, since the injection solutions obtained from them can neither be heat-sterilized nor stored for a sufficiently long time.
- Other derivatives of deuteroporphyrins have been proposed in Hilgar, C. S., et al. U.S. Pat. No. 5,849,259; Niedballa, U., et. al., U.S. Pat. No. 5,275,801; Platzek, J., et. al. U.S. Pat. No. 6,136,841; and Niedballa, U., et. al., EP 0355041 A2, A3, B1 with striking similarity to overcome certain deficiencies of Sakata's deuteroporphyrins by providing metalloporphyrin amide linkages. However, all of these approaches using deuteroporphyrins are suboptimal with respect to design of short wavelength PDT photosensitizers for use as MRI or radiodiagnostic agents for reasons detailed below.
- Sakata's porphyrin-based PDT/MRI/radiodiagnostic compounds are based on a naturally occurring asymmetrical porphyrin ring system shown in FIG. 1.
In his synthetic philosophy, Sakata has linked polyfunctional carboxyl groups that are capable of binding radioactive metals or MRI active metals to a) the R1 and R2 positions as shown via ether—alcohol linkages; and b) to positions R4 or R5 via ether linking units. This synthetic approach carries with it significant manufacturing problems. First, the linking of one metal chelating moiety to an asymmetrical porphyrin at R1 or R2, R3 or R4 (where R1 and R2 can be vinyl, ethyl, —CH(O-lower alkanoyl)CH3, —CH(OR)CH3 or —CH(O-loweralklene-OR)CH_,) generates at least two new chemical porphyrinic entities in the synthesis process if R1 and R2 (or R3 and R4) are the same linking moiety. This is outlined in scheme 1. - Naturally occurring porphyrins like hematoporphyrin or protoporphyrin cannot be chemically modified such that only one position, either R1 or R2, (or R3 or R4) is selectively modified to form a molecule with a single linking unit as the only product. In this instance, two compounds are always formed which must be separated to obtain a pure single molecule with which to link the metal chelating moiety. The separation of the two porphyrins is often difficult (if not impossible) and complicates both the manufacturing process and the cost of the final product. If one chooses not to separate the isomers, the isomeric components will each have their own toxicities, and pharmacokinetic and distribution profiles. If one of the isomers is not optimal therapeutically due to any one of these parameters, then the route to regulatory approval is often more complex, time consuming and costly than pursuing a single defined isomer. A second limiting factor that has been highlighted previously, is the instability of the various linking groups to aqueous hydrolysis, elimination at sterilization temperatures, or prolonged storage in solution. Additionally, the use of diastereotopic mixtures as occurs with —CH(OR)CH3 groups in porphyrins complicates the analysis of the molecules for development.
- Niedballa and Platzek's approach also has the same synthetic manufacturing problems as explained for Sakata (except when R1═H), i.e., multiple compounds are produced when a single linking moiety is attached to the molecule. These molecules may offer enhanced stability over Sakata's due to the use of amine linkages. The limitation of R1═H symmetry does not, however, allow for modification of this molecule with other functionality that may enhance localization or uptake in tissues or target organelle, or changes in pharmacokinetic or elimination profiles for singly linked molecules. Compounds with high water solubility are often not taken up efficiently by tumors or cells. The ability to enhance the lipophilicity of the molecule is thus very important.
- An additional problem, that has been overlooked by all of the prior workers (Sakata, Niedballa, and Platzek) in the development of short wavelength porphyrin photosensitizers, is the limited absortion profile of the porphyrin ring system metallated tetrapyrroles. In general, metallotetrapyrroles have green and yellow absorptions at about 532 and 575 nm with molar extinction coefficients of between 15,000-20,000 M−1cm−1. In the field of photodynamic therapy, the depth of light penetration into tissues is a function of the wavelength of the exciting light. The theoretical efficacy of a photosensitizer largely correlates to the molar extinction coefficient of the photosensitizer's absorption peak and its ability to absorb light. This is due primarily to the fact that the ability of a photosensitizer to absorb incidental light is a function of the cross sectional area of the molecule's absorption profile. Hence, photosensitizers with low molar extinction coefficients capture photons less efficiently than molecules with high molar extinction coefficients and are thus less efficient.
- Therefore, there remains a need for novel photosensitizers that are easily manufactured, have excellent stability and solubility, and have more favorable wavelength absorption characteristics. There is a further need for photosensitizers that are capable of being modified to contain a wide range of substituents making biological targeting more possible and ultimately enabling control of the properties and uses of the compounds clinically for not only MRI and radiodiagnostic imaging, but also for treatment using photodynamic therapy.
- The present inventor has found novel metal-free or metallated functionalized phototherapeutic agents that may be used for imaging (MRI or radiodiagnostic) before or after photodynamic therapy. These novel phototherapeutic agents are based on tetrapyrrolic ring systems such as the porphyrins and azaporphyrins that can be covalently linked by stable linkages to metal complexing agents. These new photosensitizers are useful in short wavelength applications in photodynamic therapy.
- To achieve these and other advantages, and in accordance with the purpose of the invention as embodied and broadly described herein, the present invention in one aspect provides phototherapeutic compositions of metallo-tetrapyrrolic compounds of formula I which may be used as MRI, radiodiagnostic and PDT agents:
In formula I, R1-R12 can be the same or different and can be selected from: -
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
- C(X)2C(X)3, where X is a halogen;
- CO2R13, where R13 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR14, where R14 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R15, (CHX)nCO2R15, or (CX2)nCO2R15, where X is a halogen and R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R16), CONHNH(R16), CO(R16), CON(R16)2, CON(R16)(R17), (CH2)nCONH(R16), (CH2)nCON(R16)2, (CH2)nCOR16, (CH2)nCON(R16)(R17), (CX2)nCONH(R16), (CX2)nCON(R16)2, (CX2)nCON(R16)(R17), (CX2)nCOR16, (CH2)nCONHNH(R16), (CX2)nCONHNH(R16), (CHX)nCONH(R16), (CHX)nCONHNH(R16), (CHX)nCO(R16), (CHX)nCON(R16)2, or (CHX)nCON(R16)(R17), where X is a halogen and R16 and R17 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R18), (CH2)nS(R18), (CH2)nNH(R18), (CH2)nNHNH(R18), (CH2)nN(R18)2, (CH2)nN(R18)(R19), or (CH2)nN(R18)(R19)(R20)+A, where R18, R19 and R20 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R18) is part of the amino acid), a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R18, R19 and R20 possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR21, or (CH2)nPO(OR21)2, (CH2)nPO2R21, (CH2)nPOR21 where R21 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR22, or (CH2)nNHNHCOR22, where R22 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R23, SO2NHR23, SO2N(R23)2, SO2NHNHR23, or SO2R23, where R23 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR23 can also be an amino acid, an amino acid salt, an amino acid ester residue, an amino acid amide residue, and n is an integer between 0 and 4;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
- R1-R2, R4-R5, R7-R8, R10-R11, R2-R3, R5-R6, R8-R9, and R11-R12 may also possess the atoms necessary to form ring systems, which themselves may possess heteroatoms that may bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
- with the proviso that at least one of the R1-R16 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and that when R1 and R4 are methyl, R2 and R5 cannot be methyl, a straight chain C1-C6 alkyl, a C7-C12 aralkyl, CH2O(C1-C3alkyl), CH2OH, CH(OH)CH3, CH2CH2OH, CH(NH(CH2)nNH2)CH3, CH2CH2NH(CH2)nNH2 (where n=2, 3, 4, 6), vinyl, ethyl, CH(O-lower alkanoyl)CH3, CH(O-lower alkylene-OR)CH3, or CH(OR)CH3 (where R═H, lower alkyl, a polyfunctional carbonyl compound excluding a hydrogen atom therefrom or a metal derivative of a polyfunctional carbonyl compound).
- In formula I, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ either with or without a physiologically acceptable charge balancing counter ion.
-
-
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl; (where n is an integer from 0 to 8);
- C(X)2C(X)3, where X is a halogen;
- CO2R8, where R8 is selected from a physiologically acceptable counter ion, a straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, ether or polyether, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR9, where R9 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R10, (CHX)nCO2R10, or (CX2)nCO2R10, where X is a halogen and R10 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R11), CO(R11), CON(R11)2, CON(R11)(R12), (CH2)nCONH(R11), (CH2)nCON(R11)2, (CH2)nCOR11, (CH2)nCON(R11)(R12), (CX2)nCONH(R11), (CX2)nCON(R11)2, (CX2)nCON(R11)(R12), (CX2)nCOR11, (CH2)nCONHNH(R11), (CX2)nCONHNH(R11), (CHX)nCONH(R11), (CHX)nCONHNH(R11), (CHX)nCON(R11)2, (CHX)nCON(R11)(R12), where X is a halogen and R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R13), (CH2)nS(R13), (CH2)nNH(R13), (CH2)nNH(R13), (CH2)nR13(CH2)nN(R13)(R14), or (CH2)nN(R13)(R14)(R15)+A, where R13, R14 and R15 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R13, R14 and R15 possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR16, or (CH2)nPO(OR16)2, (CH2)nPO2R16, (CH2)nPOR16 where R16 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR17, (CH2)nNHNHCOR17, where R17 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R18, SO2NHR18, SO2N(R18)2, SO2NHNHR18 or SO2R18, where R18 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue, or a functional group of less than about 100,000 daltons;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
- R1-R2, and R3-R4 may also possess the atoms necessary to form ring systems, either aromatic or not, which themselves may possess heteroatoms that may be charged or neutral or bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
- with the proviso that R1 and R4 are the same, R2 and R3 are the same, and that when R7 is H, R1-R4 cannot be methyl; and that at least one of the R1-R7 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, a ester, a ether or an amide link:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula IA, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably scheduled from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ either with or without a physiologically acceptable charge balancing counter ion.
- In another preferred embodiment of the invention, provided are phototherapeutic compositions of metallo-tetrapyrrolic compounds of the formula IB:
In formula IB, R1 and R2 can be the same or different and can be selected from H, NO2, CN, CHO, CO-alkyl, SO3H, SO3alkyl, SO3alkylether, SO3heteroalkyl, SO3Na, SO3K, SO2NHalkyl, SO2N(alkyl)2, SO2NHheteroalkyl, SO2N(heteroalkyl)2, SO2NHhaloalkyl, SO2N(haloalkyl)2, SO2NHhaloalkylether, SO2N(haloalkylether)2, SO2NHalkylether, SO2N(haloalkylether)2, CO-haloalkyl, haloalkyl, heteroalkyl, hydroxyhaloalkyl, haloalkyl ether, haloalkyl ester, a halogen, a alkylcarbonyloxy group;
R3 and R4 can be the same or different and are selected from: -
- CO2R5, where R5 is selected from a physiologically acceptable counter ion, a straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, ethers or polyethers, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR6, where R6 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R7, (CHX)nCO2R7, or (CX2)nCO2R7, where X is a halogen and R7 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R8), CO(R8), CON(R8)2, CON(R8)(R9), (CH2)nCONH(R8), (CH2)nCON(R8)2, (CH2)nCOR8, (CH2)nCON(R8)(R9), (CX2)nCONH(R8), (CX2)nCON(R8)2, (CX2)nCON(R8)(R9), (CX2)nCOR8, (CH2)nCONHNH(R8), (CX2)nCONHNH(R8), (CHX)nCONH(R8), (CHX)nCONHNH(R8), (CHX)nCON(R8)2, (CHX)nCON(R8)(R9), where X is a halogen and R8 and R9 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R10), (CH2)nS(R10), (CH2)nNH(R10), (CH2)nNH(R10), (CH2)nR10), (CH2)nN(R10)(R11), or (CH2)nN(R10)(R11)(R12)+A, where R10, R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R10, R11 and R12 possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR13, (CH2)nPO(OR13)2, (CH2)nPO2R13, (CH2)nPOR13 where R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR14, (CH2)nNHNHCOR14, where R14 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R15, SO2NHR15, SO2N(R15)2, SO2NHNHR15 or SO2R15, where R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue, or a functional group of less than about 100,000 daltons;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- with the proviso that at least one of the R1-R4 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula IB, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga3+; Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ either with or without a physiologically acceptable charge balancing counter ion.
-
-
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
- C(X)2C(X)3, where X is a halogen;
- CO2R12, where R12 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR13, where R13 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R14, (CHX)nCO2R14, or (CX2)nCO2R14, where X is a halogen and R14 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R15), CONHNH(R15), CO(R15), CON(R15)2, CON(R15)(R16), (CH2)nCONH(R15), (CH2)nCONHNH(R15), (CH2)nCON(R15)2, (CH2)nCOR15, (CH2)nCON(R15)(R16), (CX2)nCONH(R15), (CX2)nCON(R15)2, (CX2)nCON(R15)(R16), (CX2)nCOR15, (CH2)nCONHNH(R15), (CX2)nCONHNH(R15), (CHX)nCONH(R15), (CHX)nCONHNH(R15), (CHX)nCON(R15)2, (CHX)nCON(R15)(R16), where X is a halogen and R15 and R16 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R17), (CH2)nS(R17), (CH2)nNH(R17), (CH2)nNH(R17), (CH2)nR17, (CH2)nN(R17)(R18), or (CH2)nN(R17)(R18)(R19)+A, where R17, R18 and R19 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R17, R18 and R19 possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR20, or (CH2)nPO(OR20)2, (CH2)nPO2R20, (CH2)nPOR20 where R20 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR21, or (CH2)nNHNHCOR21, where R21 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R22, SO2NHR22, SO2N(R22)2, SO2NHNHR22 or SO2R22, where R22 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue, or a functional group of less than about 100,000 daltons;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- R1-R2, R3-R4, R6-R7, R9-R10, R4-R5, R5-R6, R7-R8, R8-R9, R10-R11, or R11-R1, may also possess the atoms necessary to form ring systems, either aromatic or not, which themselves may possess heteroatoms that may be charged or neutral or bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons; with the proviso that at least one of the R1-R11 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula II, M is 2H or a diamagnetic or paramagnetic metal ion that can be radioactive, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, either with or without a physiologically acceptable charge balancing counter ion.
-
-
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, or CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
- C(X)2C(X)3, where X is a halogen;
- CO2R7, where R7 is selected from a physiologically acceptable counter ion, a straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR8, where R8 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R9, (CHX)nCO2R9, or (CX2)nCO2R9, where X is a halogen and R9 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R10), CONHNH(R10), CO(R10), CON(R10)2, CON(R10)(R11), (CH2)nCONH(R10), (CH2)nCONHNH(R10), (CH2)nCON(R10)2, (CH2)nCOR10, (CH2)nCON(R10)(R11), (CX2)nCONH(R10), (CX2)nCON(R10)2, (CX2)nCON(R10)(R11), (CX2)nCOR10, (CH2)nCONHNH(R10), (CX2)nCONHNH(R10), (CHX)nCONH(R10), (CHX)nCONHNH(R10), (CHX)nCON(R10)2, or (CHX)nCON(R10)(R11), where X is a halogen and R10 and R11 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R12), (CH2)nS(R12), (CH2)nNH(R12), (CH2)nNHNH(R12), (CH2)nN(R12)2, (CH2)nN(R12)(R13); or (CH2)nN(R12)(R13)(R14)+A, where R12, R13 and R14 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NH(R13) is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R12, R13 and R14 possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR15, or (CH2)nPO(OR15)2, (CH2)nPO2R15, (CH2)nPOR15where R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids and salts, esters, or amides thereof, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR16, or (CH2)nNHNHCOR16, where R16 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids and salts, esters, or amides thereof, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R17, SO2NHR17, SO2N(R17)2, SO2NHNHR17 or SO2R17, where R17 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, and NHR17 can be an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
- R1-R2, and R3-R4 may also possess the atoms necessary to form ring systems, either aromatic or not, which themselves may possess heteroatoms that may be charged or neutral or bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
- with the proviso that at least one of the R1-R4 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula IIA, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, S4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+, either with or without a physiologically acceptable charge balancing counter ion.
-
-
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group having a molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, or CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
- C(X)2C(X)3, where X is a halogen;
- CO2R11, where R11 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR12, where R12 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R13, (CHX)nCO2R13, or (CX2)nCO2R13, where X is a halogen and R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R14), CONHNH(R14), CO(R14), CON(R14)2, CON(R14)(R15), (CH2)nCONH(R14), (CH2)nCONHNH(R14), (CH2)nCON(R14)2, (CH2)nCOR14, (CH2)nCON(R14)(R15), (CX2)nCONH(R14), (CX2)nCON(R14)2, (CX2)nCON(R14)(R15), (CX2)nCOR14, (CH2)nCONHNH(R14), (CX2)nCONHNH(R14), (CHX)nCONH(R14), (CHX)nCONHNH(R14), (CHX)nCON(R14)2, (CHX)nCON(R14)(R15), where X is a halogen and R14 and R15 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R16), (CH2)nS(R16), (CH2)nNH(R16), (CH2)nNHNH(R16), (CH2)nN(R16)2 (CH2)nN(R16)(R17), or (CH2)nN(R16)(R17)(R18)+A, where R16, R17 and R18 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NHR16 is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R16, R17 and R18 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR19, or (CH2)nPO(OR19)2, (CH2)nPO2R19, (CH2)nPOR19 where R19 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR20, (CH2)nNHNHCOR20, where R20 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R21, SO2NHR21, SO2N(R21)2, SO2NHNHR21 or SO2R21, where R21 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons; and NHR21 can be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
- R1-R2, R3-R4, R6-R7, R8-R9, R4-R5, R5-R6, R9-R10 and R10-R1 may also possess the atoms necessary to form ring systems, either aromatic or not, which themselves may possess heteroatoms that may be charged or neutral or bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
- with the proviso that at least one of the R1-R4 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula III, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ either with or without a physiologically acceptable charge balancing counter ion.
-
-
- a functional group of less than about 100,000 daltons;
- CO2R5, where R5 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR6, where R6 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R7, (CHX)nCO2R7, or (CX2)nCO2R7, where X is a halogen and R7 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R8), (CONHNH(R8), CO(R8), CON(R8)2, CON(R8)(R9), (CH2)nCONH(R8), (CH2)nCONHNH(R8), (CH2)nCON(R8)2, (CH2)nCOR8, (CH2)nCON(R8)(R9), (CX2)nCONH(R8), (CX2)nCON(R8)2, (CX2)nCON(R8)(R9), (CX2)nCOR8, (CH2)nCONHNH(R8), (CX2)nCONHNH(R8), (CHX)nCONH(R8), (CHX)nCONHNH(R8), (CHX)nCON(R8)2, or (CHX)nCON(R8)(R9), where X is a halogen and R8 and R9 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R10), (CH2)nS(R10), (CH2)nNH(R10), (CH2)nNHNH(R10), (CH2)nN(R10)2, (CH2)nN(R10)(R11), or (CH2)nN(R10)(R11)(R12)+A, where R10, R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NHR10 is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R10, R11 and R12 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR13, or (CH2)nPO(OR13)2, (CH2)nPO2R13, (CH2)nPOR13 where R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR14, or (CH2)nNHNHCOR14, where R4 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R15, SO2NHR15, SO2N(R15)2, SO2NHNHR15 or SO2R15, where R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, halbheteroalkyl, aryl, heteroaryl, heterocycle; NHR15 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue; a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons;
- aryl or substituted aryl, which may optionally bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
- with the proviso that at least one of the R1-R4 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides.
- In formula IIIA, M is 2H or a diamagnetic or paramagnetic metal ion that may be radioactive or not, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ either with or without a physiologically acceptable charge balancing counter ion.
-
-
- H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ethers, polyethers, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N(CH3)3 +A, CH═N(alkyl)2 +A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, or CH(CH3)O-aryl;
- (CH2)nO-alkoxy, or (CH2)nO-alkyl; where n is an integer from 0 to 8;
- C(X)2C(X)3, where X is a halogen;
- CO2R9, where R9 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
- (CH2)nOH, or (CH2)nOR10, where R10 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nCO2R11, (CHX)nCO2R11, (CX2)nCO2R11, where X is a halogen and R11 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
- CONH(R12), CONHNH(R12)CO(R12), CON(R12)2, CON(R12)(R13), (CH2)nCONH(R12), (CH2)nCONHNH(R12), (CH2)nCON(R12)2, (CH2)nCOR12, (CH2)nCON(R12)(R13), (CX2)nCONH(R12), (CX2)nCON(R12)2, (CX2)nCON(R12)(R13), (CX2)nCOR12, (CH2)nCONHNH(R12), (CX2)nCONHNH(R12), (CHX)nCONH(R12), (CHX)nCONHNH(R12), (CHX)nCON(R12)2, (CHX)nCON(R12)(R13), where X is a halogen and R12 and R13 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- S(R14), (CH2)nS(R14), (CH2)nNH(R14), (CH2)nNHNH(R14), (CH2)nN(R14)2, (CH2)nN(R14)(R15), or (CH2)nN(R14)(R15)(R16)+A, where R14, R15 and R16 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NH(R14) is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R14, R15 and R16 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
- (CH2)nOPO2OR17, or (CH2)nPO(OR17)2, (CH2)nPO2R17, (CH2)nPOR17 where R17 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- (CH2)nNHCOR18, or (CH2)nNHNHCOR18, where R18 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
- SO3R19, SO2NHR19, SO2N(R19)2, SO2NHNHR19 or SO2R19, where R19 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR19 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue; and
- aryl or substituted aryl, which may optionally bear one or more substituents selected from hydroxy groups, alkyl groups, carboxyl groups and its esters and amides and sulfonic acid groups and their esters and amides, and substitiuents with a molecular weight of less than or equal to about 100,000 daltons;
- with the proviso that at least one of the R1-R12 groups is linked to a complexing agent of general formula IIA, IIB, IIC, IID, IIE by way of an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link:
- wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and
- A, B, C, and D can be the same or different and can be selected from N, CH, CR20 where R20 is selected from a halogen, aryl, subsitituted aryl, heteroaryl, alkyl, haloalkyl, heterohaloalkyl, heterocycle, hydroxyalky, hydroxyhaloalkyl, or a functional group of molecular weight of less than about 100,000 daltons.
- In formula IV, M is selected from 2H or a diamagnetic or paramagnetic metal ion that can be radioactive, photoactive metals being preferably selected from Ga3+, Pt2+, Pd2+, S4+, In3+, Ge4+, Si4+, Al3+, Zn2+, Mg2+ the appropriate number of physiologically acceptable charge balancing counter ions.
- In accordance with a preferred embodiment of the invention, the metallo-tetrapyrrolic compounds of the invention can be derived by various procedures from naturally occuring cyclic tetrapyrroles. The naturally occurring cyclic tetrapyrrolic molecules can have the basic ring structure of compounds I, II, III, and IV, whose substituents are outlined in Table 1, and are particularly preferred as starting materials for the synthesis of the compounds of structures I-IV. In particular, tetrapyrroles derived from naturally occuring ring systems that have one linking group are particularly preferred. These are shown in scheme 1.
- In a second preferred aspect of this invention, the tetrapyrrole is derived by the coupling of suitably substituted dipyrromethane, dipyrromethenes, biladienes, builirubins, pyrroles and functionalized aldehydes, or functionalized maleonitriles. The cyclic tetrapyrroles that have the basic ring structure of compounds I-IV, whose substituents are outlined in Table 2, are particularly preferred as starting materials for the synthesis of compounds of structures I-IV.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
- The terms “tetrapyrrole”, tetrapyrrolic molecule and “porphyrin” are used here to designate compounds of the cyclic structure where four pyrrolic ring systems are linked via either carbon or nitrogen bonds. Compounds within the scope of the invention include porphyrins, mono-, di-, tri- and tetraazaporphyrins, and porphyrin isomers such as porphycenes, isoporphycenes, hemiporphycenes, corroles, corrphycenes, and the like.
- Included in the first class of metallated tetrapyrrolic compounds of the invention are those of the porphyrins. Scheme 1 outlines an example of the synthesis of porphyrins that are derived from plants. Particularly advantageous are the porphyrins based on chloroporphyrin e6 (9), chloroporphyrin e4 (10), phylloporphyrin (11), rhodoporphyrin (7), pyrroporphyrin (8), pheoporphyrin a5 (13) and phylloerythrin (12) and compounds having similar ring systems. Such compounds can be synthesized with single linking groups, which can be modified according to the invention to increase their biological activity and MRI and radiodiagnostic capacity. In particular, the propionic esters of (2), (3), (5) and (6) can be selectively hydrolized to form carboxylic acids, which can then be linked to the metal coordinating moiety. Alternatively, the carboxylic acids can be converted to amides with a free amine linking unit, which can then be linked to the metal co-ordinating moiety. Porphyrin amide derivatives like (4) (R2═NHR3) may be synthesized from phylloporphyrin such that an amine linking group is present. Examples include where R2═NHCH2CH2NH2, NHCH2CH2CH2NH2, NHCH2CH2NH2, NH(CH2)2O(CH2)2NH2 and similar compounds. These amine groups can then be linked to the metal co-ordinating moiety.
- While plant derived porphyrins are preferred as starting materials in the invention due to their abundant availability, a very large number of synthetic porphyrins are generally applicable to the invention. Such porphyrins can be made by synthetic methods known to those skilled in the art, via coupling of pyrrolic precursors, dipyrromethanes, dipyrromethenes and biladienes to give the required porphyrins with widely ranging functionality at both the β and meso positions. The synthesis of porphyrins via the coupling of pyrrolic intermediates is outlined in detail in chapters 1, 2, 3 in “The Porphyrin Handbook” Editors, K. M. Kadish, K. M. Smith, R. Guilard, Volume 1, Academic press, 2000, p. 1-148, the disclosure of which is hereby incorporated by reference herein. Such functionality is explained in detail below. This functionality can be modified by further chemical reactions. Such compounds can then be modified according to the invention to produce metalloporphyrins that absorb at or about 400, 532 and 575 nm. Table 1 outlines some of the preferred porphyrins that may be used as starting materials in the development of these types of compounds.
TABLE 1 Tetrapyrrole R1 R2 R3 R4 R5 R6 R7 R8 Hematoporphyrin IX Me EO Me EO Me PO PO Me Protoporphyrin IX Me V Me V Me PO PO Me Mesoporphyrin IX Me Et Me Et Me PO PO Me Deuteroporphyrin IX Me H Me H Me PO PO Me Hematoporphyrin dialkylethers Me EOE Me EOE Me PO PO Me Coproporphyrin I PO Me PO Me PO Me PO Me Coproporphyrin II Me PO PO Me Me PO PO Me Coproporphyrin III Me PO Me PO Me PO PO Me Uroporphyrin IX Me EO Me EO Me PO PO Me Pentacarboxyporphyrin I PO Me PO Me PO Me PO AO Pentacarboxyporphyrin III PO Me PO Me PO Me AO PO 2, 4-dihalodeuteroporphyrin IX Me X Me X Me PO PO Me Hexacarboxyporphyrin I PO Me PO AO PO Me PO AO Hexacarboxyporphyrin III PO Me PO Me PO AO PO AO Heptacarboxyporphyrin I PO Me PO AO PO AO PO AO
AO = —CH2CO2H; PO = —CH2CH2CO2H, EO =]—CH(OH)CH3, EOE = —CH(OR)CH3, Me = —CH3, Et = CH2CH3, V = —CH═CH2
-
- A second preferred class of compounds according to the invention are the mono-, di-, tri- and tetra-azaporphyrins. Schemes 3-7 outline the synthesis of mono-, di-, and tetra-azaporphyrins, examples of which are listed in Table 2.
TABLE 2 Tetrapyrrole A B C D R1 R2 R3 R4 R5 R6 R7 R8 5-aza-coproporphyrin II N CH CH CH Me PO PO Me Me PO PO Me 5-aza-protoporphyrin IX N CH CH CH Me V V Me Me PO PO Me 5-aza-mesoporphyrin IX N CH CH CH Me Et Me Et Me PO PO Me 5-aza-mesoporphyrin XIII N CH CH CH Me Et Et Me Me PO PO Me 5-aza-uroporphyrin III N CH CH CH PO AO PO AO PO AO AO PO 5-aza-isomesoporphyrin N CH CH CH Et Me Me Et Me PO PO Me 5-aza-mesoporphyrin III N CH CH CH Me Et Me Et PO Me Me PO 5,15-Diaza-coproporphyrin II N CH N CH Me PO PO Me Me PO PO Me 5,15-diaza-mesoporphyrin III N CH N CH Me Et Me Et PO Me Me PO
AO = —CH2CO2H; PO = —CH2CH2CO2H, EO = —CH(OH)CH3, EOE = —CH(OR)CH3, Me = —CH3, Et = CH2CH3, V = —CH═CH2
-
- Mono-azaporphyrins are synthesized efficiently via the coupling of dibromobiladienes with sodium azide or via the reaction of oxyporphyrins with ammonia. Copper and metal free diazaporphyrins can be obtained via the coupling of 5,5′-dibromopyrromethenes with sodium azide. Tetra-azaporphyrins are synthesized most efficiently via the treatment of substituted maleonitriles with magnesium powder or magnesium alcoxides. Such reactions are well known in the art and are outlined in detail by N. Kobayashi in “The Porphyrin Handbook,” K. M. Kadish, K. M. Smith, R. Guilard, Editors, Volume 2, Chapter 13, Academic Press, 2000, p. 301-360, the disclosure of which is hereby incorporated by reference herein.
- The peripheral functionality of these compounds is important with respect to further derivatization to achieve the desired coupling to the metal complexing reagent (MCR) and the desired biological effect (both therapeutic and diagnostic). The types of peripheral functionality applicable to the invention are described in detail below. It is recognized that small changes in the peripheral functionality can have pronounced effects on the biological efficacy of the molecules as does metal co-ordination to the compounds. Schemes 4-7 outline synthetic routes to the novel tetrapyrrolic molecules of the invention.
- The new compounds of the invention are based on the porphyrin, mono-, di-, tri- and tetra-azaporphyrin ring systems that bear peripheral functionality on the ring system. Such functionality includes esters, alcohols, amides, amines, ethers, and phosphates. Such derivatives may also have at least one hydroxylated residue present, or an amine group with which to couple the metal co-ordination compound. The new porphyrins themselves may be photodynamically active as metal free analogs and therefore useful as PDT agents. In addition, metallated derivatives of these compounds are also of particular interest for treatment and diagnosis of disorders of the cardiovascular system, normal or abnormal conditions of the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, pulmonary system, gastrointestinal system including the liver, reproductive system, skin, immune system, cardiovascular system, urinary system, ocular system, auditory or olfactory system, where shorter wavelengths of light are necessary or advantageous to effect a desired therapy.
- Scheme 4 outlines chemistry that has been undertaken to produce photosensitizing or diagnostic agents (based on non-naturally occuring porphyrin systems and azaporphyrins) that possess pendant terminal amine moieties and is exemplary only and is not intended to limit the invention. It should be noted that the functionality and position of the N and C meso atoms can be varied to produce analogs different from those shown. Additionally, the R groups in these schemes constitute functional groups that can be symmetrically substituted and can also, if desired, be modified by techniques known to those skilled in the art based on the chemistry described herein without departing from the spirit or scope of the invention.
- In scheme 4, the ester functionality of porphyrins or azaporphyrins can be hydrolyzed to yield both mono- and di-acid compounds. It is preferred that the synthesis of mono-acid compounds via this method occurs on compounds that are symmetrical in their substitution pattern of R1-R4, such that isomers are not formed. The mono- or di-acid can then be converted to the desired amide via standard techniques, to produce pendant arm groups with terminal amine moieties. Alternatively, if R5 possesses a functional group that can be modified to produce a reactive linking moiety (for example C6H4SO3H, C6H4CO2H and the like), these may alternatively be chemically modified to produce compounds with pendant arm groups having terminal amine moieties. Such compounds can, if desired, be reacted with: metals to produce metallotetrapyrrolic complexes.
- Scheme 5 outlines the synthesis of porphyrins and azaporphyrins possessing two pendant arm terminal amine moieties. In this instance, the ester functionality of porphyrins or azaporphyrins can be hydrolyzed to yield di-acid compounds. The mono-or di-acid can then be converted to its di-acid chloride, which subsequently can be reacted with sodium azide in acetone to yield the di-azide compound. The di-azide then can be rearranged in methanol to give the di-urethane derivative, which can then be hydrolysed in acid to give protonated amine compounds. Neutralization with base yields the free amine compound. Such compounds can, if desired, be reacted with metals to produce metallo-tetrapyrrolic diamine complexes.
- Scheme 6 outlines the synthesis route of metal-free or metallated mono- or di-amine porphyrins based on rhodoporphyrin or pyrroporphyrin. In the case of rhodoporphyrin (R═CO2Me), it is possible to selectively hydrolyze the propionic acid ester with dilute HCl/water to give the mono acid derivative shown. Alternatively, both groups can be hydrolyzed with KOH/H2O to give the di-acid derivative. The acid groups can then be converted to the acid chloride derivatives and reacted with the appropriate amine to give compounds possessing one or two pendant arm terminal amine moieties. These compounds can, if desired, be reacted with metals to produce metallo-tetrapyrrolic mono or di-amine complexes.
- Scheme 7 outlines the synthesis of metal-free or metallated mono or di-amine di-azaporphyrins. The di-azaporphyrins themselves can be synthesized via the coupling of appropriate brominated dipyrromethanes. Once synthesized, the peripheral functionality can be modified by similar chemistry as outlined in schemes 4 and 5. As before, it is preferred that if mono-amine functionalized compounds are to be made, R1-R4 should possess a symmetrical substitution pattern. This preference does not apply if di-amine substitution is desired.
- The introduction of the desired metals (e.g., Zn, Ga, Al, Sn, In, Mg, Mn, Fe, etc) into the porphyrins or azaporphyrins can be carried out according to methods that are known in the literature (e.g., The Porphyrins, ed. D. Dolphin, Academic Press, New York 1980, Vol. V, p. 459; DE 4232925). In particular, metal substitution of pyrrolic NH's can be carried out by heating the metal-free ligand with the corresponding metal salt, preferably acetate or halide, optionally with the addition of acid-buffering agents, such as, for example, sodium acetate in a polar solvent. Alternatively, such substitutions can be carried out by metal exchange in which a metal that is already complexed by the porphyrin or azaporphyrin is displaced by the desired metal. An example of such a metal is cadmium. In this process, the preferred solvent is a polar solvent, such as, for example, methanol, glacial acetic acid, dimethylformamide, chloroform or water. In some instances where the metal is difficult to remove under acid conditions (Pt, Pd), it is more practical to generate the metalloporphyrin or metalloazaporphyrin compounds prior to modification to form the amine linking units. Additionally, the introduction of a diamagnetic or paramagnetic metal M into the porphyrin system can be carried out before or after linkage of the metal complexing agent radical (MCR). As a result, an especially flexible procedure for the synthesis of the compounds according to the invention is made possible.
- The reaction of a metal-free or metallated porphyrin or azaporphyrin amine with a metal complexing agent (MCA) can be carried out according to methods that are known in the literature. Preferable MCA's include diethylenetriaminepentaacetic acid and 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, which can be bonded via a linker to the respective porphyrin or azaporphyrin derivatives. See, e.g., DE 4232925 for IIa and IId; DE 19507822, DE 19580858 and DE 19507819 for IIb; U.S. Pat. No. 5,053,503, WO 96/02669, WO 96/01655, EP 0430863, EP 255471, U.S. Pat. No. 5,277,895, EP 0232751, and U.S. Pat. No. 4,885,363 for IIc and IIe.
- In accordance with the invention, an activated MCR can be reacted with the amine porphyrin or azaporphyrin derivatives such that a covalent link between the two compounds occurs. As can be seen in schemes 4-7, the nature of the linking amine moiety on the porphyrins or azaporphyrins (P) to the MCR compounds may be varied. Preferable examples include: P-(CH2)nNH2, where n is an integer from 1 to 10; P-(aryl)NH2, P-CONHNH2, or P-(CH2)nCONHNH2, where n is an integer from 1 to 10; P-CONH(CH2)nNH2, where n is an integer from 1 to 10; P-CONH(CH2)2O(CH2)2NH2, or P-CONH[(CH2)2]nOn/2[(CH2)2]nNH2, where n is an integer from 1 to 10; P-SO2NHNH2, or P-SO2NH(CH2)nNH2, where n is an integer from 1 to 10; P-SO2NH(CH2)2O(CH2)2NH2, or P-SO2NH[(CH2)2]nOn/2[(CH2)2]nNH2, where n is an integer from 1 to 10; P-(Aryl)-SO2NHNH2, or P-(Aryl)-SO2NH(CH2)nNH2, where n is an integer from 1 to 10; and P-(Aryl)-SO2NH(CH2)2O(CH2)2NH2, or P-(Aryl)-SO2NH[(CH2)2]nOn/2[(CH2)2]nNH2, where n is an integer from 1 to 10. It would be apparent to those skilled in the art that other suitable linking amine units could be used in accordance with the teachings of the specification.
- Alternatively, in accordance with the invention, porphyrin and azaporphyrin units can be generated that possess alcohol terminal linking groups. Preferred examples of such groups include P-(CH2)nOH, where n is an integer from 1 to 10; P-(aryl)OH, P-CONHOH, or P-(CH2)nCONHOH, where n is an integer from 1 to 10; P-CONH(CH2)nOH, where n is an integer from 1 to 10; P-CONH(CH2)2O(CH2)2OH, or P-CONH[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10; P-SO2NHOH, or P-SO2NH(CH2)nOH, where n is an integer from 1 to 10; P-SO2NH(CH2)2O(CH2)2OH, or P-SO2NH[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10; P-(Aryl)-SO2NHOH, or P-(Aryl)-SO2NH(CH2)nOH, where n is an integer from 1 to 10; P-(Aryl)-SO2NH(CH2)2O(CH2)2OH, or P-(Aryl)-SO2NH[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10; P-CO2(CH2)nOH, where n is an integer from 1 to 10; P-CO2(CH2)2O(CH2)2OH, or P-CO2[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10; P-SO3(CH2)nOH, where n is an integer from 1 to 10; P-SO3(CH2)2O(CH2)2OH, or P-SO3[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10; P-(Aryl)-SO3(CH2)nOH, where n is an integer from 1 to 10; and P-(Aryl)-SO3(CH2)2O(CH2)2OH, or P-(Aryl)-SO3[(CH2)2]nOn/2[(CH2)2]nOH, where n is an integer from 1 to 10. Such compounds can then be linked to the MCR group. It would be apparent to those skilled in the art that other suitable linking alcohol units or other reactive moieties can be used in accordance with the teachings of the specification.
- The MCR linking group Q is an organic group that when linked to the amine or alcohol porphyrin or azaporphyrin results in a product that is an ester, an amide, an amine, an ether, or a thiolate. Preferable reactive MCR's are described in, for example, U.S. Pat. No. 4,885,363, U.S. Pat. No. 5,730,956, U.S. Pat. No. 6,136,841, and U.S. Pat. No. 5,275,801 the disclosures which are hereby incorporated herein by reference. Examples are illustrated in FIG. 2.
- Examples of linker groups Q include —CO—, —CS—, —COCH2NH—, —CO(CH2)2NH, —CO(CH2)2—, —COCH2OC6H4CO, —COC6H4NH—, —COCH2OCH2NH—, —COC6H4—, —COCH2NHCOCH2CH(CH2COOH)C6H4NH—, phenyleneoxy, a C1-C12 alkylene or a C7-C12 aralkylene group by one or more oxygen atoms. Obviously a large variety of linker groups are possible and it would be apparent to those skilled in the art that other suitable groups can be used in accordance with the teachings of the specification without deviating from the spirit of the invention.
- In accordance with the invention, the porphyrin or azaporphyrin linked MCR compounds can then be modified to produce PDT/MRI radiodiagnostic compounds. If the compounds are to be used for NMR diagnosis, paramagnetic metal ions must be present in the complex. These are preferably divalent or trivalent ions of the elements of atomic numbers 21-29, 42-44 and 57-71. In this instance, the paramagnetic metal may be coordinated to either the inner pyrrolic core of the porphyrin or azaporphyrin, or in the MCR pendant arm, or in both. Suitable ions include, for example, chromium, gadolinium, dysprosium, manganese, iron, cobalt, cobalt, nickel, copper, praseodymium, neodymium, samarium, terbium, holmium, erbium and ytterbium ions. Because of their high magnetic moment, the gadolinium, dysprosium, manganese, terbium, holmium, erbium and iron ions are especially preferred.
- For the use of the agents according to the invention for photodynamic therapy, the porphyrin or azaporphyrin compound should be metal free, i.e, M=2H, or should have coordinated photoactive metals, preferred examples of which include zinc, indium, gallium, tin, germanium, palladium, platinum, aluminum, silicon, ruthenium, yttrium, ytterbium, magnesium, lutetium, and cadmium.
- For the use of the agents according to the invention in nuclear medicine, the metal ions must be radioactive. Examples that are suitable for the invention include radioisotopes of the elements copper, cobalt, gallium, zinc, germanium, yttrium, strontium, technetium, indium, ytterbium, gadolinium, samarium, thallium, and iridium. In this instance, the radioactive isotope may be coordinated to the porphyrin or azaporphyrin ligand or within the MCR, or both. Alternatively, such compounds can be modified such that they become active or excited using sonotherapy (e.g., M=gallium) or photothermally.
- Metal chelation to the MCR group can be carried out by techniques known in the literature (see, e.g., DE3401052) by the metal oxide or metal salt (e.g., nitrate, acetate, carbonate, chloride or sulfate) of the metal that is desired. In each case the metal oxide or salt can be suspended or dissolved in polar solvents such as water or aqueous alcohols and then reacted with the corresponding amount of the complexing ligand. If desired, acidic hydrogen atoms or acid groups that are present can be substituted by cations of inorganic and/or organic bases or amino acids.
- In accordance with the invention, neutralization can be carried out with the aid of inorganic bases, such as, e.g., alkali or alkaline-earth hydroxides, carbonates or bicarbonates and/or organic bases such as, for example, primary, secondary and tertiary amines, such as, e.g., ethanolamine, morpholine, glucamine, N-methyl- and N,N-dimethylglucamine, as well as basic amino acids, such as, e.g., lysine, arginine and ornithine or amides of originally neutral or acidic amino acids.
- For the production of neutral complex compounds, a sufficient amount of the desired bases can be added to, for example, the acidic complex salts in aqueous solution or suspension to ensure that the neutral point is reached. The solution that is obtained can then be evaporated to the dry state in a vacuum. It is may be advantageous to precipitate the neutral salts that are formed by adding water-miscible solvents, such as, for example, lower alcohols (e.g., methanol, ethanol, isopropanol, acetonitrile), lower ketones (e.g., acetone), polar ethers (e.g., tetrahydrofuran, dioxane, 1,2-dimethoxyethane) and thus to obtain easily isolated and readily purified crystallizates. It has proven especially advantageous to add the desired base as early as during the complexing of the reaction mixture and thus eliminate a process step.
- If the acidic complex compounds contain several free acid groups, it is often advantageous to produce neutral mixed salts that contain both inorganic and organic cations as counter-ions. This can be achieved, for example, by reacting the complexing ligands in aqueous suspension or solution with the oxide or salt of the element that yields the central ion and half of the amount of an organic base that is required for neutralization. The complex salt that is formed can then be isolated, optionally purified, and then mixed for complete neutralization with the required amount of inorganic base. The sequence in which the base is added can also be reversed. Another way of obtaining neutral complex compounds consists of converting the remaining acid groups in the complex completely or partially into esters. This can be achieved by subsequent reaction on the finished complex, e.g., by exhaustive reaction of free carboxy groups with dimethylsulfate.
- Pharmaceutical agents of the invention can be produced by adding to the complex compounds of the invention certain additives that are commonly used in the pharmaceutical industry to suspend or dissolve the compounds in an aqueous medium, and then the suspension or solution can be sterilized by techniques known in the art. Suitable additives include, for example, physiologically harmless buffers (such as, e.g., trimethamine), small additions of complexing agents (such as, e.g., diethylenetriaminepentaacetic acid) or, if necessary, electrolytes such as, e.g., sodium chloride or antioxidants such as, e.g., ascorbic acid, butylate hydroxy toluene, or tocopherol.
- If suspensions or solutions of the agents according to the invention in water or in physiological salt solution are desired for enteral administration or other purposes, they can be mixed with one or more adjuvants that are commonly used in galenicals (e.g., methylcellulose, lactose, mannitol) and/or surfactant(s) (e.g., lecithins, Tween, and/or flavoring substances for taste correction (e.g., ethereal oils).
- In principle, it is possible to produce the pharmaceutical agents according to the invention even without isolating the complex salt. In any case, special care must be taken to perform the chelation such that the salts and salt solutions according to the invention are virtually free of noncomplexed metal ions that may have a toxic effect. This can be ensured, for example, by the use of color indicators such as xylenol orange by control titrations during the production process. As a final precaution, there remains purification of the isolated complex salt.
- To avoid undesirable photoreactions of porphyrins and azaporphyrins, the compounds and agents according to the invention should be stored and handled as much as possible in a light-free environment.
- The pharmaceutical agents according to the invention preferably contain from about 20 μmol/L to about 200 mmol/L of the complex salt and are generally dosed in amounts of 0.01 μmol to 2 mmol/kg of body weight, both for their use in PDT and for therapy monitoring using MRI diagnosis. They are intended for enteral and parenteral administration or are administered with the methods of interventional radiology.
- The agents according to the invention are especially suitable for PDT and as MRI contrast media. After administration, they can enhance the informational value of the image that is obtained from a nuclear spin tomograph by increasing the signal intensity. They are effective without burdening the body with large amounts of foreign substances.
- The high water-solubility of the agents according to the invention allows the production of highly concentrated solutions, so as to keep the volume burden of the circulation within acceptable limits and to compensate for dilution by bodily fluid. In addition, the agents according to the invention show not only a high stability in vitro but also a surprisingly high stability in vivo, so that a release or an exchange of the ions, which are inherently toxic and not covalently bonded in the complexes, will not be harmful within the time that it takes for the contrast media to be completely excreted.
- Similar reactions can be undertaken on tetrapyrrolic molecules in which more than two carboxylic acid functionalities are present, for example, those compounds shown in Tables 1 and 2. Such reactions on mono-, di- and tetra-azaporphyrin compounds are particularly preferred because metallo-derivatives of such compounds have larger molar extinction co-efficents than the porphyrins in the green and yellow region, and thus theoretically may be more efficient photosensitizers as a larger cross-sectional area of light may be absorbed. While the specification describes several chemical modifications to the tetrapyrrolic compounds, those skilled in the art would know that additional modifications can be made to the tetrapyrrolic ring systems in accordance with the teachings of the specification.
- The scope of the present invention is not limited to the specific disclosure provided herein. As shown by the above disclosure, any porphyrinic molecule may be modified according to the invention to form the desired photoactive compounds with widely differing functionality as described in the literature (for example see “Porphyrins and Metalloporphyrins” Ed. K. Smith, Elsevier, 1975, N.Y., “The Porphyrins”, Ed. D. Dolphin, Vol I-V, Academic Press, 1978, and “The Porphyrin Handbook”, Eds. K. Kadish, K. M. Smith, R. Guilard, Academic Press, 2000). These compounds contain various and ranging substituents on the β-pyrrole positions or meso-positions of the porphyrin ring, either symmetrically or asymmetrically substituted on the ring.
- Examples of such functionality include functional groups having a molecular weight less than about 100,000 daltons and can be a biologically active group or organic. Examples include, but are not limited to: (1) hydrogen; (2) halogen, such as fluoro, chloro, iodo and bromo (3) lower alkyl, such as methyl, ethyl, n-propyl, butyl, hexyl, heptyl, octyl, isopropyl, t-butyl, n-pentyl and the like groups; (4) lower alkoxy, such as methoxy, ethoxy, isopropoxy, n-butoxy, t-pentoxy and the like; (5) hydroxy; (6) carboxylic acid or acid salts, such as —CH2COOH, —CH2COONa, —CH2CH2COOH, —CH2CH2COONa, —CH2CH2CH(Br)COOH, —CH2CH2CH(CH3)COOH, —CH2CH(Br)COOH, —CH2CH(CH3)COOH, —CH(Cl)CH2CH(CH3)COOH, —CH2CH2C(CH3)2COOH, —CH2CH2C(CH3)2COOK, —CH2CH2CH2CH2COOH, C(CH3)2COOH, CH(Cl)2COOH and the like; (7) carboxylic acid esters, such as —CH2CH2COOCH3, —CH2CH2COOCH2CH3, —CH2CH(CH3)COOCH2CH3, —CH2CH2COOCH2CH2CH3, —CH2CH2CH2COOCH2CH2CH3, —CH2CH(CH3)COOCH2CH3, —CH2CH2COOCH2CH2OH, —CH2CH2COOCH2CH2N(CH3)2 and the like, particularly halogenated alkyl esters; (8) sulfonic acid or acid salts, for example, group I and group II salts, ammonium salts, and organic cation salts such as alkyl and quaternary ammonium salts; (9) sulfonylamides such as —SO2NH(alkyl), —SO2N(alkyl)2, —SO2NH(alkyl-OH), —SO2N(alkyl-OH)2, —SO2NH(alkyl)-N(alkyl)2, —SO2N(alkyl-N(alkyl)2)2, SO2(NH(alkyl)-N(alkyl)3 +Z−) and the like, wherein Z− is a counterion, —SO2NHCH2CO2H, substituted and unsubstituted benzene sulfonamides and sulfonylamides of aminoacids and the like; (10) sulfonic acid esters, such as SO3(alkyl), SO3(alkyl-OH), SO3(alkyl-N(alkyl)2), SO3(alkyl-N(alkyl)3 +Z−) and the like, wherein Z− is a counterion, SO3CH2CO2H, and the like; (11) amino, such as unsubstituted or substituted primary amino, methylamino, ethylamino, n-propylamino, isopropylamino, butylamino, sec-butylamino, dimethylamino, trimethylamino, diethylamino, triethylamino, di-n-propylamino, methylethylamino, dimethyl-sec-butylamino, 2-aminoethoxy, ethylenediamino, cyclohexylamino, benzylamino, phenylethylamino, anilino, N-methylanilino, N,N-dimethylanilino, N-methyl-N-ethylanilino, 3,5-dibromo-4-anilino, p-toluidino, diphenylamino, 4,4′-dinitrodiphenylamino and the like; (12) cyano; (13) nitro; (14) a biologically active group; (15) amides, such as —CH2CH2CONHCH3, —CH2CH2CONHCH2CH3, —CH2CH2CON(CH3)2, —CH2CH2CON(CH2CH3)2, —CH2CONHCH3, —CH2CONHCH2CH3, —CH2CON(CH3)2, —CH2CON(CH2CH3)2, —CH2CH2CONHSO2CH3; (16) iminium salts, for example —CH═N(CH3)2 +Z− and the like, wherein Z− is a counterion); (17) boron containing complexes; (18) carbon cage complexes (e.g., C20 and the like); (19) polyfunctional carboxylic acid groups and their metal cluster complexes, for example metal complexes of polyfunctional carboxylic acid moieties such as of EDTA, DTPA, EGTA, crown ethers, cyclams, cyclens, and the like; (20) other porphyrin, chlorin, bacteriochlorin, isobacteriochlorin, azaporphyrin, tetraazaporphyrin, phthalocyanine, naphthalocyanine, texaphyrins, tetrapyrrolic macrocycles or dye molecules and the like; (21) alkynyl, including alkyl, aryl, acid and heteroatom substituted alkynes; (22) leaving or protecting groups; (23) aromatic ring systems (aryl), such as substituted phenyls, napthalenes, anthracenes, benzopyrenes, quinolines, benzoquinolines, benzoperylene, benzofluorenes, fluorenes, benzofurazans, benzodiphenylenes, benzofluoranthenes, benzanthracenes, benzacephenanthrylenes, bathophenanthrolines, indans, benzoquinolines, quinolines, pyrazines, quinolines, quinazoles, quinoxalines, imidazopyridines, indenes, indolines, thiazolines, bezopyrimidines, pyrimidines, benzimidazole, triazolopyrimidines, pyrazoles, tryptophans, phenanthrolines, benzooxadiazoles, benzoselenadiazole, benzocoumarins, chalcones, fluoranthenes, pyridoindoles, pentacenes, perylenes, phenatholines, phenazines, phenoxazines, phenoxathiins, phenothiazines, pyrroles, thiophenes, or heteroaromatics containing 5, 6, 7, 8, membered ring systems; 24) —NHCS groups or any other substituent that increases the hydrophilic, amphiphilic or lipophilic nature or stability of the compounds. It is recognized that such groups can affect the biological activity of the compounds in vivo.
- The term “biologically active group” can be any group that selectively promotes the accumulation, elimination, binding rate, or tightness of binding in a particular biological environment. For example, one category of biologically active groups is the substituents derived from sugars, specifically: (1) aldoses such as glyceraldehyde, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, and talose; (2) ketoses such as hydroxyacetone, erythrulose, rebulose, xylulose, psicose, fructose, sorbose, and tagatose; (3) pyranoses such as glucopyranose; (4) furanoses such as fructo-furanose; (5) O-acyl derivatives such as penta-O-acetyl-α-glucose; (6) O-methyl derivatives such as methyl α-glucoside, methyl β-glucoside, methyl α-glucopyranoside, and methyl-2,3,4,6-tetra-O-methyl-glucopyranoside; (7) phenylosazones such as glucose phenylosazone; (8) sugar alcohols such as sorbitol, mannitol, glycerol, and myo-inositol; (9) sugar acids such as gluconic acid, glucaric acid and glucuronic acid, δ-gluconolactone, δ-glucuronolactone, ascorbic acid, and dehydroascorbic acid; (10) phosphoric acid esters such as α-glucose 1-phosphoric acid, α-glucose 6-phosphoric acid, α-fructose 1,6-diphosphoric acid, and α-fructose 6-phosphoric acid; (11) deoxy sugars such as 2-deoxy-ribose, rhammose (deoxy-mannose), and fructose (6-deoxy-galactose); (12) amino sugars such as glucosamine and galactosamine; muramic acid and neurarninic acid; (13) disaccharides such as maltose, sucrose and trehalose; (14) trisaccharides such as raffinose (fructose, glucose, galactose) and melezitose (glucose, fructose, glucose); (15) polysaccharides (glycans) such as glucans and mannans; and (16) storage polysaccharides such as α-amylose, amylopectin, dextrins, and dextrans.
- Amino acid derivatives are also useful biologically active substituents, such as those derived from valine, leucine, isoleucine, threonine, methionine, phenylalanine, tryptophan, alanine, arginine, aspartic acid, cystine, cysteine, glutamic acid, glycine, histidine, proline, serine, tyrosine, asparagine and glutamine. Also useful are peptides, particularly those known to have affinity for specific receptors, for example, oxytocin, vasopressin, bradykinin, LHRH, thrombin and the like.
- Another useful group of biologically active substituents are those derived from nucleosides, for example, ribonucleosides such as adenosine, guanosine, cytidine, and uridine; and 2′-deoxyribonucleosides, such as 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxycytidine, and 2′-deoxythymidine.
- Another category of biologically active groups that is particularly useful is any ligand that is specific for a particular biological receptor. The term “ligand specific for a biological receptor” refers to a moiety that binds a receptor at cell surfaces, and thus contains contours and charge patterns that are complementary to those of the biological receptor. The ligand is not the receptor itself, but a substance complementary to it. It is well understood that a wide variety of cell types have specific receptors designed to bind hormones, growth factors, or neurotransmitters. However, while these embodiments of ligands specific for receptors are known and understood, the phrase “ligand specific for a biological receptor”, as used herein, refers to any substance, natural or synthetic, that binds specifically to a receptor.
- Examples of such ligands include: (1) the steroid hormones, such as progesterone, estrogens, androgens, and the adrenal cortical hormones; (2) growth factors, such as epidermal growth factor, nerve growth factor, fibroblast growth factor, and the like; (3) other protein hormones, such as human growth hormone, parathyroid hormone, and the like; (4) neurotransmitters, such as acetylcholine, serotonin, dopamine, and the like; and (5) antibodies. Any analog of these substances that also succeeds in binding to a biological receptor is also included within the invention.
- Particularly useful examples of substituents tending to increase the amphiphilic nature of the compounds include, but are not limited to: (1) short or long chain alcohols, such as, for example, —C12H24—OH; (2) fatty acids and their salts, such as, for example, the sodium salt of the long-chain fatty acid oleic acid; (3) phosphoglycerides, such as, for example, phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol, phosphatidyl 3′-O-alanyl glycerol, cardiolipin, or phosphatidyl choline; (4) sphingolipids, such as, for example, sphingomyelin; and (5) glycolipids, such as, for example, glycosyldiacylglycerols, cerebrosides, sulfate esters of cerebrosides or gangliosides. It would be known to those skilled in the art what other substituents, or combinations of the subsituents described, would be suitable for use in the invention.
- The compounds of the present invention, or their pharmaceutically acceptable salts, solvates, prodrugs, or metabolites, can be administered to the host in a variety of forms adapted to the chosen route of administration, e.g., orally, intravenously, topically, intramuscularly or subcutaneously.
- The active compound may be orally administered, for example with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with food. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least about 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may, for example, conveniently be between about 2 to about 60% of the weight of the administered product. The amount of active compound in such therapeutically useful compositions is can be selected so that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 50 and 300 mg of active compound.
- The tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; a sweetening agent such as sucrose, lactose or saccharin; or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and formulations.
- The active compound may also be administered parenterally or intraperitoneally. Solutions of the active compound as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporanous preparation of sterile injectable solutions, dispersions, or liposomal or emulsion formulations. In all cases the form must be sterile and should be fluid to enable administration by a syringe. The form must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required additional ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique, which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solutions thereof.
- The new compounds of the invention may also be applied directly to tumors in the host whether internal or external, in topical compositions. Exemplary compositions include solutions of the new compounds in solvents, particularly aqueous solvents, most preferably water. Alternatively, for topical application particularly to skin tumors or psoriasis, the present new compounds may be dispersed in the usual cream or salve formulations commonly used for this purpose (such as liposomes, ointments, gels, hydrogels, cremes and oils) or may be provided in the form of spray solutions or suspensions that may include a propellant usually. employed in aerosol preparations.
- As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Any conventional media or agent that is compatible with the active ingredient can be used in the therapeutic compositions of the invention. Supplementary active ingredients can also be incorporated into the compositions.
- It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated. Each unit contains a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specifications for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of cardiovascular diseases, diseases of the skin, cancers and other superficial disease conditions in living subjects.
- The present invention provides a method of treating live cells, which includes, but is not limited to, animals such as humans and other mammals. The “mammals” also include farm animals, such as cows, hogs and sheep, as well as pet or sport animals, such as horses, dogs and cats. The dosage of the pharmaceutical compositions of the invention is dependent on the method of administration, the patient's age, severity of the disease, and the like.
- The compounds of the invention may be taken parentally or orally, generally being administered intravascularly, subcutaneously, or intramuscularly or interperitoneally. The subject compounds may also be administered by inhalation, perivascular delivery, pericardial delivery (into perivascular sac), periadvential delivery (e.g., using a hydrogel wrap around the vessel), endovascular balloon catheters with micropores, channels, transmural injection ports, and the like.
- For local catheter-based delivery of the compounds of the invention, an infusate can be placed and pressurized to facilitate intramural and transmural penetration into the target vessel. Local delivery can also be enhanced by other mechanical and electrical means. The depth of the penetration of the subject compounds by this local delivery method is a function of pressure in the perfused segment and the dwell time. Although little attention has been paid to the quantitative characteristics of the compounds of the invention in this setting, deposition of the substance should obey the principles governing transmural convection and diffusion.
- Delivery of the compounds of the invention may also be via antibody-drug conjugates, internalizing antibodies or antibody fragments conjugated to compounds into cells using endocytosis. The subject compounds may also be impregnated into stent struts for local delivery. The route of administration of these pharmaceutical preparations is not critical, but may be selected according to the dosage form, the patient's age, the severity of the disease to be treated and other factors.
- The compounds of the invention may find use in conjunction with other interventions, diagnostics and therapies, where lower levels of other therapies having significant side effects may be used effectively to reduce the detrimental side effects. Adjunctive interventions may include, but are not limited to: balloon angioplasty, invasive and non-invasive surgical procedures, stent deployment, cutting balloons, embolic protection devices, rotational and directional atherectomy, eximer lasers and the like.
- Adjunctive therapies may include, but are not limited to radiation therapy, chemotherapy, anti-platelet agents, vasodilators, antihypertensives, anti-arrhythmics, hyperthermia, cryotherapy, magnetic force, viral and non-viral gene therapy, pharmacogenetic therapy, antibodies, vaccines, glycoprotein IIb/IIIa Inhibitors, growth factors, peptides, DNA delivery, nucleic acids, anticancer drugs, steroid hormones, anti-inflammatories, proteins, anti-apoptotic therapies, anti-sense agents, immunotoxins, immunomodulators, antibody-drug conjugates, anti-proliferative therapies, drug eluting stents containing pharmacologically active agents, transplant products and processes, prostaglandins and catheter based devices to detect vulnerable plaques, hormone products, chelating agents, diuretics, cardiac glycosides, bronchodilators, antibiotics, antivirals, antitioxins, cyclosporins, thrombolytic agents, interferons, blood products such as parental iron and hemin, anti-fungal agents, antianginals, anticoagulants, analgesics, narcotics, neuromuscular blockers, sedatives, bacterial vaccines, viral vaccines, DNA or RNA of natural or synthetic origin including recombinent RNA and DNA, cytokines and their antagonists/inhibitors, chemokines and their antagonists/inhibitors,
- Adjunctive diagnostics may include, but are not limited to: intravascular ultrasound imaging, angiography, quantitative vessel measurements and the use of radiological contrast agents, hormone products, chelating agents, diuretics, cardiac glycosides, bronchodilators, antibiotics, antivirals, antitoxins, cyclosporins, thrombolytic agents, interferons, blood products such as parental iron and hemin, anti-fungal agents, antianginals, anticoagulants, analgesics, narcotics, neuromuscular blockers, sedatives, bacterial vaccines, viral vaccines, DNA or RNA of natural or synthetic origin including recombinent RNA and DNA, cytokines and their antagonists/inhibitors, and chemokines and their antagonists/inhibitors.
- As used in the present application, the following definitions apply:
- The term “alkyl” as used herein refers to substituted or unsubstituted, straight or branched chain groups, preferably having one to twenty, more preferably having one to six, and most preferably having from one to four carbon atoms. The term “C1-C20 alkyl” represents a straight or branched alkyl chain having from one to twenty carbon atoms. Exemplary C1-C20 alkyl groups include methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, neo-pentyl, hexyl, isohexyl, and the like. The term “C1-C20 alkyl” includes within its definition the term “C1-C4 alkyl.” Such alkyl groups may themselves be ethers or thioethers, or aminoethers or dendrimers.
- The term “cycloalkyl” represents a substituted or unsubstituted, saturated or partially saturated, mono- or poly-carbocyclic ring, preferably having 5-14 ring carbon atoms. Exemplary cycloalkyls include monocyclic rings having from 3-7, preferably 3-6, carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. An exemplary cycloalkyl is a C5-C7 cycloalkyl, which is a saturated hydrocarbon ring structure containing from five to seven carbon atoms.
- The term “aryl” as used herein refers to an aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, or 18 carbon ring atoms, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of aryl groups include, but are not limited to, phenyl, napthalenes, anthracenes, benzopyrenes, quinolines, benzoquinolines, benzoperylene, benzofluorenes, fluorenes, benzofurazans, benzodiphenylenes, benzofluoranthenes, benzanthracenes, benzacephenanthrylenes, bathophenanthrolines, indans, benzoquinolines, quinolines, pyrazines, quinolines, quinazoles, quinoxalines, imidazopyridines, indenes, indolines, thiazolines, benzopyrimidines, pyrimidines, benzimidazole, triazolopyrimidines, pyrazoles, tryptophans, phenanthrolines, benzooxadiazoles, benzoselenadiazole, benzocoumarins, chalcones, fluoranthenes, pyridoindoles, pentacenes, perylenes, phenatholines, phenazines, phenoxazines, phenoxathiins, phenothiazines ad the like.
- The term “halogen” represents chlorine, fluorine, bromine or iodine. The term “halocarbon” or “haloalkyl” represents one or more halogens bonded to a one or more carbon bearing groups. The term “heterohaloalkyl” represents for example halogenated alkylethers, halogenated alkyl amines, halogenated alkyl esters, halogenated alkyl amides, halogenated alkyl thioesters, halogenated alkyl thiols, where N, S, O, P atoms are present in the haloalkylated structure. The term. heteroalkyl represents for example ethers, alkylamines, alkylated thiols and alkylate phosphorus containing groups.
- The term “carbocycle” represents a substituted or unsubstituted aromatic or a saturated or a partially saturated 5-14 membered monocyclic or polycyclic ring, such as a 5- to 7-membered monocyclic or 7- to 10-membered bicyclic ring, wherein all the ring members are carbon atoms.
- The term “electron withdrawing group” is intended to mean a chemical group containing an electronegative element such as halogen, sulfur, nitrogen or oxygen.
- A “heterocycloalkyl group” is intended to mean a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, and which includes 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, wherein the radical is unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted. Illustrative examples of heterocycloalkyl groups include, but are not limited to azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholinyl, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, dihydrofuryl, tetrahydropyranyl, dihydropyranyl, 1,3-dioxolanyl, 1,3-dioxanyl, 1,4-dioxanyl, 1,3-oxathiolanyl, 1,3-oxathianyl, 1,3-dithianyl, azabicylo[3.2.1]octyl, azabicylo[3.3.1]nonyl, azabicylo[4.3.0]nonyl, oxabicylo[2.2.1]heptyl, 1,5,9-triazacyclododecyl, and the like.
- A “heteroaryl group” is intended to mean an aromatic monovalent monocyclic, bicyclic, or tricyclic radical containing 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, including 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubstituted or substituted. Illustrative examples of heteroaryl groups include, but are not limited to, thienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, furazanyl, isoxazolyl, thiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, benzo[b]thienyl, naphtho[2,3-b]thianthrenyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathienyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxyalinyl, quinzolinyl, benzothiazolyl, benzimidazolyl, tetrahydroquinolinyl, cinnolinyl, pteridinyl, carbazolyl, beta-carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, and phenoxazinyl and the like.
- The term “leaving group” as used herein refers to any group that departs from a molecule in a substitution reaction by breakage of a bond. Examples of leaving groups include, but are not limited to, halides, tosylates, arenesulfonates, alkylsulfonates, and triflates.
- Suitable protecting groups are recognizable to those skilled in the art. Examples of suitable protecting groups can be found in T. Green & P. Wuts, Protective Groups in Organic Synthesis (2d ed. 1991), which is hereby incorporated by reference herein in its entirety.
- Suitable salt anions include, but are not limited to, inorganics such as halogens, pseudohalogens, sulfates, hydrogen sulfates, nitrates, hydroxides, phosphates, hydrogen phosphates, dihydrogen phosphates, perchlorates, and related complex inorganic anions; and organics such as carboxylates, sulfonates, bicarbonates and carbonates.
- Examples of substituents for alkyl and aryl groups include mercapto, thioether, nitro (NO2), amino, aryloxyl, halogen, hydroxyl, alkoxyl, and acyl, as well as aryl, cycloalkyl and saturated and partially saturated heterocycles. Examples of substituents for cycloalkyl groups include those listed above for alkyl and aryl, as well as alkyl.
- Exemplary substituted aryls include a phenyl or naphthyl ring substituted with one or more substituents, preferably one to three substituents, independently selected from halo, hydroxy, morpholino(C1-C20)alkoxy carbonyl, pyridyl (C1-C20)alkoxycarbonyl, halo (C1-C20)alkyl, C1-C20 alkyl, C1-C20 alkoxy, carboxy, C1-C20 alkocarbonyl, carbamoyl, N-(C1-C20)alkylcarbamoyl, amino, C1-C20alkylamino, di(C1-C20)alkylamino or a group of the formula —(CH2)a—R7 where a is 1, 2, 3, 4, 5; and R7 is hydroxy, C1-C20 alkoxy, carboxy, C1-C20 alkoxycarbonyl, amino, carbamoyl, C1-C20 alkylamino or di(C1-C20)alkylamino, sulfonic acids, sulfonic esters, sulfonic amides, amides, esters and the like.
- Another substituted alkyl is halo(C1-C20)alkyl, which represents a straight or branched alkyl chain having at least one halogen atom attached to it. Exemplary halo(C1-C20)alkyl groups include chloromethyl, 2-bromoethyl, 1-chloroisopropyl, 3-fluoropropyl, 2,3-dibromobutyl, 3-chloroisobutyl, trifluoromethyl, trifluoroethyl, and the like.
- Another substituted alkyl is hydroxy (C1-C20)alkyl, which represents a straight or branched alkyl chain having from one to twenty carbon atoms with a hydroxy group attached to it. Exemplary hydroxy(C1-C20)alkyl groups include hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-hydroxyisopropyl, 4-hydroxybutyl, and the like.
- Yet another substituted alkyl is C1-C20 alkylthio(C1-C20)alkyl, which is a straight or branched C1-C20 alkyl group with a C1-C20 alkylthio group attached to it. Exemplary C1-C20 alkylthio(C1-C20)alkyl groups include methylthiomethyl, ethylthiomethyl, propylthiopropyl, sec-butylthiomethyl, and the like.
- Yet another exemplary substituted alkyl is heterocycle(C1-C20)alkyl, which is a straight or branched alkyl chain having from one to twenty carbon atoms with a heterocycle attached to it. Exemplary heterocycle(C1-C20)alkyls include pyrrolylmethyl, quinolinylmethyl, 1-indolylethyl, 2-furylethyl, 3-thien-2-ylpropyl, 1-imidazolylisopropyl, 4-thiazolylbutyl and the like.
- Yet another substituted alkyl is aryl(C1-C20)alkyl, which is a straight or branched alkyl chain having from one to twenty carbon atoms with an aryl group attached to it. Exemplary aryl(C1-C20)alkyl groups include phenylmethyl, 2-phenylethyl, 3-naphthyl-propyl, 1-naphthylisopropyl, 4-phenylbutyl and the like.
- The heterocycloalkyls and the heteroaryls can, for example, be substituted with 1, 2 or 3 substituents independently selected from halo, halo(C1-C20)alkyl, C1-C20 alkyl, C1-C20 alkoxy, carboxy, C1-C20 alkoxycarbonyl, carbamoyl, —(C1-C20)alkylcarbamoyl, amino, C1-C20alkylamino, di(C1-C20)alkylamino or a group having the structure —(CH2)a—R7 where a is 1, 2, 3, 4, 5 and R7 is hydroxy, C1-C20 alkoxy, carboxy, C1-C20 alkoxycarbonyl, amino, carbamoyl, C1-C20alkylamino or di(C1-C20)alkylamino.
- Examples of substituted heterocycloalkyls include, but are not limited to, 3-N-t-butyl carboxamide decahydroisoquinolinyl and 6-N-t-butyl carboxamide octahydro-thieno[3,2-c]pyridinyl. Examples of substituted heteroaryls include, but are not limited to, 3-methylimidazolyl, 3-methoxypyridyl, 4-chloroquinolinyl, 4-aminothiazolyl, 8-methylquinolinyl, 6-chloroquinoxalinyl, 3-ethylpyridyl, 6-methoxybenzimidazolyl, 4-hydroxyfuryl, 4-methylisoquinolinyl, 6,8-dibromoquinolinyl, 4,8-dimethylnaphthyl, 2-methyl-1,2,3,4-tetrahydroisoquinolinyl, N-methyl-quinolin-2-yl, 2-t-butoxycarbonyl-1,2,3,4-isoquinolin-7-yl and the like.
- A “pharmaceutically acceptable solvate” is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of the inventive compounds.
- Examples of pharmaceutically acceptable solvates include, but are not limited to, compounds prepared using water, isopropanol, ethanol, DMSO, and other excipients generally reffered to as GRAS ingredients.
- In the case of solid formulations, it is understood that the compounds of the inventive methods may exist in different polymorph forms, such as stable and metastable crystalline forms and isotropic and amorphous forms, all of which are intended to be within the scope of the present invention.
- A “pharmaceutically acceptable salt” is intended to mean those salts that retain the biological effectiveness and properties of the free acids and bases and that are not biologically or otherwise undesirable.
- Examples of pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, citrates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, hydroxybutyrates, glycolates, tartrates, methanesulfoantes, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.
- If a compound of the present invention is a base, the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, lactic acid, salicylic acid, pyranosidyl acids such as glucuronic acid and galacturonic acid, alpha-hydroxy acids such as citric acid and tartaric acid, amino acids such as aspartic acid and glutamic acid, aromatic acids such as benzoic acid and cinnamic acid, sulfonic acids such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.
- If a compound of the present invention is an acid, the desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), or an alkali metal or alkaline earth metal hydroxide or the like. Illustrative examples of suitable salts include organic salts derived from amino acids such as glycine and arginine; ammonia; primary, secondary and tertiary amines; cyclic amines such as piperidine, morpholine and piperazine; and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.
- In summary, there is a real need for better “shorter wavelength” absorbing photodynamic agents that do not display red absorptions, that are cleared rapidly from normal tissues, especially skin, and agents that may be used as MRI diagnostics or radiodiagnostic agents in addition to therapeutics. Additionally, as more disease indications are realized, shorter wavelength light may be equally important in other PDT applications that only require short wavelength excitation to effect a therapy. Such applications may be, for example, in hollow organ disease (for example lung cancers, barrets esophagus), or in diseases of the skin (for example psoriasis, actinic keratosis, acne vulgaris). The invention disclosed herein describes the synthesis of metallated photosensitizers having ring systems that have shown excellent efficacy in advanced animal model systems as well as preferred uptake in the target tissue, with excellent clearance characteristics and low toxicity. (See co-pending application filed on May 31, 2001 entitled “Metallotetrapyrrolic Photosensitizing Agents For Use In Photodynamic Therapy,” inventors Byron C. Robinson, Ian M. Leitch, Stephanie Greene, and Steve Rychnovsky, Attorney Docket No. 07328-0015.)
- The compounds of the invention are intended for use not only for effective photodynamic therapy treatment but also as MRI and radiodiagnostic diagostic agents. Such compounds may be used to diagnose, locate or treat cardiovascular disease and normal or abnormal conditions of the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system including bone, connective tissue, cartilage and skeletal muscle, pulmonary system, gastrointestinal system including the liver, reproductive system, skin, immune system, cardiovascular system, urinary system, ocular system, auditory or olfactory system. In particular, photoactive derivatives of porphyrins and azaporphyrins are particularly advantageous where shorter wavelengths of light are necessary to effect a photodynamic response.
- Preparation of compounds according to the invention is illustrated by reference to the following non-limiting examples. It will be appreciated by persons skilled in the art with the teachings of the examples and the rest of the specification (i) how the chemistry may be applied to other peripheral groups on tetrapyrrolic ring structures that fall within the scope of this invention and (ii) that other synthetic routes may be suitable for preparation of the desired compounds.
- 1.3 g of 8,12-diethyl-3,7,13,17-tetramethylporphyrin-2,18-diyl-di(methoxycarbonylpropionic acid) was modified according to H. Fischer, E. Haarer and F. Stadler, Z. Physiol. Chem. 241, 209 (1936) by treatment with hydrazine hydrate (7 mL of an 80% water solution) in pyridine (30 mL) at room temperature overnight. The solvent was removed by rotoevaporation and the solid suspended/dissolved in methanol (10 mL). Water (30 mL) was added and the methanol removed by rotary evaporation. The precipitated porphyrin was collected by filtration and dried to give the title compound. Yield: 1.25 g of a reddish-brown powder.
- The compound produced in example 1 (100 mg) was dissolved in chloroform/methanol (80:20) and zinc acetate (200 mg) was added. The solution was refluxed until complete by UV. The solution was evaporated to dryness and redissolved in dichloromethane (50 mL). Water (100 mL) was added and the dichloromethane removed by rotary evaporation. The precipitated solid was collected by filtration, washed with water (50 mL) and dried. Yield of the title compound=110 mg.
- Platinum 8,12-Diethyl-3,7,13,17-tetramethylporphyrin-2,18-dipropionic acid methyl ester (1.2 g) was modified according to H. Fischer, E. Haarer and F. Stadler, Z. Physiol. Chem. 241, 209 (1936) by treatment with hydrazine hydrate (7 mL of an 80% water solution) in pyridine (30 mL) at room temperature. The solution was evaporated to dryness, dissolved/suspended in methanol (10 mL) and water (30 mL) was added. The methanol was removed by rotary evaporation and the precipitated porphyrin collected by filtration and dried. Yield: 1.25 g of an orange-red powder.
- 8,12-Diethyl-3,7,13,17-tetramethylporphyrin-2,18-dipropionic acid (1.8 g), 1-hydroxybenzotriazole (810 mg), N-BOC-1,6-diaminohexane hydrochloride (1.52 g) and triethylamine (608 mg) is dissolved in dimethylformamide (300 mL). The solution is stirred under argon and cooled to −10° C. Dicyclohexylcarbodiimide (1.24 g) is added and the solution is stirred for 1 hr at −10° C., then left to warm to room temperature. After three hours the solution is evaporated to dryness and the residue dissolved in dichloromethane (50 mL). The solution is washed with a saturated sodium bicarbonate solution. The dichloromethane layer was dried over sodium sulfate and filtered and evaporated. The crude residue is chromatographed on silica using dichloromethane/methanol (0-10%) as eluent and the two fractions collected. The diamide is eluted first (800 mg), followed sluggishly by the mono amide title compound (1500 mg).
- The mono amide produced in example 4 (500 mg) is dissolved in 2N hydrochloric acid in glacial acetic acid (10 mL). When no more starting material could be detected, the solution is evaporated to dryness and dissolved in distilled water. A saturated sodium bicarbonate solution is added dropwise until the porphyrin precipitated. The porphyrin is collected by filtration and dried. Yield of title compound=400 mg.
- The di-amide produced in example 4 (500 mg) is dissolved in 2N hydrochloric acid in glacial acetic acid (10 mL) and the solution is stirred overnight. When no more starting material could be detected, the solution is evaporated to dryness and dissolved in distilled water. A saturated sodium bicarbonate solution is added dropwise until the porphyrin precipitated. The porphyrin was collected by filtration and dried. Yield of title compound=400 mg.
- The porphyrin prepared in Example 5 (100 mg) is metallated as described in example 2. Yield of title compound=(100 mg).
- The porphyrin prepared in Example 6 (100 mg) is metallated as described in example 2. Yield of title compound=(100 mg).
- The porphyrin prepared in Example 2 (100 mg) is hydrolyzed in THF (50 mL) containing KOH/methanol (0.4 g; 5 mL). The solution is neutralized using acetic acid and evaporated to 10 mL. Water (50 mL) is added and the precipitated porphyrin collected by filtration and dried under vacuum. The diacid porphyrin is converted to the protected amide according to example 4, except that the solution is reacted over night. The diamide protected compound is chromatographed on silica using 5% methanol/dichloromethane as eluent. Yield of title compound=85 mg.
- The porphyrin of example 9 (85 mg) is dissolved in dichloromethane (20 mL) and trifluoroacetic acid (10 mL) is added. The solution is stirred for 4 hrs, after which the solvent is removed by rotary evaporation. The compound is partially dissolved in methanol and triethylamine (0.4 mL) added. The precipitated porphyrin is collected and washed with water and dried. Yield of title compound=72 mg.
- 8,12-diethyl-3,7,13,17-tetramethylporphyrin-2,18-propionic acid (250 mg) is suspended in dichloromethane (50 mL) and oxalyl chloride (5 mL) is added. The solution is refluxed for 2 hrs under a dry inert atmosphere and the solvent removed by rotary evaporation. The solid is redissolved in dichloromethane (dry, 20 mL) and ethylenediamine (4 mL) is added all at once. The resulting solution is stirred at room temperature for 2 hrs and the solvent removed by rotary evaporation. The solid is suspended in methanol and triethylamine (5 drops) added. The flocculated porphyrin is collected by filtration, dissolved in dichloromethane (30 mL) and chromatographed on silica using 10-15% methanol/dichloromethane (with 1% triethylamine) and the major red band collected. The solvent is removed and the porphyrin dissolved in dichloromethane and precipitated from methanol by slow evaporation of dichloromethane. The solid is collected and washed with methanol. Yield of title compound=210 mg.
- The porphyrin prepared in Example 11 (100 mg) is metallated by refluxing a solution of the porphyrin and gallium acetylacetonate (100 mg) in acetic acid for 1.5 hrs. The solvent is removed and the solid dissolved in dichloromethane (50 mL) and washed with a saturated sodium bicarbonate solution. The organic layer is dried over sodium sulfate, filtered, evaporated to 10 ml, and hexane (10 mL) is added. The dichloromethane is slowly removed by rotary evaporation and the precipitated porphyrin collected by filtration. Yield of title compound=(100 mg).
- The porphyrin prepared in Example 11 (100 mg) is metallated by refluxing a solution of the porphyrin, indium chloride (100 mg) and sodium acetate (100 mg) in acetic acid for 2 hrs. The solvent is removed and the solid dissolved in dichloromethane (50 mL) and washed with a saturated sodium bicarbonate solution. The organic layer is dried over sodium sulfate, filtered, evaporated to 10 ml, and hexane (10 mL) is added. The dichloromethane is slowly removed by rotary evaporation and the precipitated porphyrin collected by filtration. Yield of title compound=(100 mg).
- To a solution of 5,5′-dicarboxy-3,3′-di(2-methoxycarbonylethyl)-4,4′-dimethylpyrromethane (5 g) in methanol (70 mL) was added ammonium hydroxide (2.6 ml) and the solution stirred until the dipyrromethane had dissolved. 2-bromo-5-formyl-3,4-diethylpyrrole (5.3 g) and HBr (33%, 25 mL) were added. The solution was stirred at room temperature for 2 hrs after which time the solid 1,19-dibromobiladiene was filtered and dried to yield=7.2 g. A smaller amount of 1,19-dibromobiladiene (3 g) was refluxed in methanol containing sodium azide (4 g) for 4 hrs. The solvent was removed and the residue dissolved in dichloromethane and chromatographed on silica using dichloromethane as eluent. The major purple band was collected and evaporated to dryness. The compound was dissolved in dichloromethane (50 mL) and methanol (50 mL) added. The dichloromethane was removed by rotary evaporation and the precipitated azaporphyrin collected by filtration. Yield of title compound=1.7 g.
- The azaporphyrin synthesized in example 13 (250 mg) was modified according to H. Fischer, E. Haarer and F. Stadler, Z. Physiol. Chem. 241, 209 (1936) by treatment with hydrazine hydrate (1.5 mL of an 80% water solution) in pyridine (20 mL) at room temperature. The solution was evaporated to dryness, dissolved/suspended in methanol (10 mL) and water (30 mL) was added. The methanol was removed by rotary evaporation and the precipitated porphyrin collected by filtration and dried. Yield of title compound: 250 g of a purple powder.
- The azaporphyrin prepared in example 14 (100 mg) was metallated according to example 2. Yield of title compound 110 mg.
- The azaporphyrin prepared in example 14 (100 mg) was metallated according to example 12. Yield of title compound=110 mg.
- 8,12-diethyl-3,7,13,17-tetramethylporphyrin-2,18-propionic acid potassium salt (250 mg)(prepared by hydrolysis of the azaporphyrin prepared in example 14 with KOH/methanol) was converted to the title compound via the procedure described in example 11. Yield=200 mg.
- The porphyrin prepared in example 18 (100 mg) was metallated by the procedure of example 14. Yield of title compound=100 mg.
- The porphyrin prepared in example 18 (100 mg) was metallated by the procedure of example 12. Yield of title compound=100 mg.
- The porphyrin prepared in example 18 (100 mg) was metallated by the procedure of example 13. Yield of title compound=100 mg.
- 806.8 mg (2 mmol) of 3-ethoxy-carbonylmethyl-6-[2-(2,6-dioxomorpholino)ethyl]-3,6-diazaoctanedioic acid (DTPA-monoethylester-monoanhydride) is suspended in 250 ml of absolute dimethylformamide. It is then covered with a layer of nitrogen, 1.0 g (10 mmol) of triethylamine and 593 mg (1 mmol) of the title compound synthesized via Example I are added, and the resulting reaction mixture is stirred for 3 days at room temperature. After the reaction is complete, it is filtered, the solvent is drawn off in a vacuum, and the remaining oil is pulverized with 500 ml of diethyl ether. The precipitated solid is filtered off and washed with diethyl ether and n-hexane. For purification, it is chromatographed on silica gel RP-18 (eluant: H2O/tetrahydrofuran: 0-30%). Yield of title compound: 1.30 g of a reddish-brown powder
- The zinc porphyrin (658 mg) of example 2 is reacted as described in example 22. Yield of title compound=1.0 g
- The platinum porphyrin of example 3 (786 mg) is reacted as described in example 22. Yield of title compound=1.5 g
- The mono-hexylamine porphyrin (663 mg) of example 5 is reacted analogously as described in example 22, except using DTPA-monoethylester-monoanhydride (404 mg) and triethylamine (0.5 g). Yield of title compound=900 mg.
- The dihexylamine porphyrin (663 mg) of example 5 is reacted as described in example 22, using DTPA-monoethylester-monoanhydride (808 mg) and triethylamine (1.0 g). Yield of title compound=1.3 g.
- The diamine azaporphyrin (663 mg) of example 18 is reacted as described in example 24, using DTPA-monoethylester-monoanhydride (808 mg) and triethylamine (1.0 g). Yield of title compound=1.32 g.
- The zinc dihydrazide azaporphyrin (686 mg) of example 16 is reacted as described in example 22, using DTPA-monoethylester-monoanhydride (808 mg) and triethylamine (1.0 g). Yield of title compound=1.22 g.
- The gallium dihydrazide azaporphyrin (707 mg) of example 17 is reacted as described in example 22, using DTPA-monoethylester-monoanhydride (808 mg) and triethylamine (1.0 g). Yield of title compound=1.31 g.
- The zinc azaporphyrin of example 19 (742 mg) is reacted as described in example 22, using DTPA-monoethylester-monoanhydride (808 mg) and triethylamine (1.0 g). Yield of title compound=1.35 g.
- The dimethyl ester azaporphyrin of example 14 (1.0 g, 1.6 mmol) is dissolved in THF (200 ml) and a solution of KOH (100 mg)/MeOH (5 mL) is added. The solution is closely monitored until only a trace of starting material remains and the major product is the mono-hydrolyzed azaporphyrin. Acetic acid (107 mg) is added and the solution diluted with water (100 mL). The THF was removed by rotary evaporation and the precipitated azaporphyrins were collected and washed with methanol (20 mL) and dried. The solid was dissolved in dichloromethane containing 2% methanol and the solution is chromatographed on silica using 2% methanol/dichloromethane as eluent. The second major fraction is collected and evaporated to dryness. Yield of title compound=0.62 g.
- The monoacid azaporphyrin prepared in example 30 (500 mg) is dissolved in dichloromethane (50 ml) and oxalyl chloride (5 ml) added. The solution is refluxed under dry conditions for 2 hrs and then evaporated to dryness, care being taken not to expose the crude material to moisture. The residue is dissolved in dichloromethane (50 mL, dry) and ethylene diamine (3 ml, dry) added all at once. The resulting solution is washed with a saturated sodium bicarbonate solution, followed by water and the organic layer is collected, dried over sodium sulfate, filtered and evaporated. The crude reaction mixture is chromatographed on silica using 4% methanol/dichloromethane/0.5% triethylamine as eluent, and the major fraction collected. The dichloromethane is removed by rotary evaporation and the precipitated porphyrin collected by filtration and dried. Yield of title compound=0.51 g.
- The azaporphyrin of example 32 (0.5 g, 0.76 mmol) is reacted as described in example 22, using DTPA-monoethylester-monoanhydride (404 mg) and triethylamine (0.5 g). Yield of title compound=0.8 g.
- The ligand that is produced by Example 22 (1.0 g, 0.74 mmol) is dissolved in THF (50 mL) and water (350 mL). Sodium hydroxide solution (10 mol) is added and it is stirred overnight at room temperature. After the ester groups have been completely saponified, the THF is removed by rotoevaporation. A pH of 4 is set with concentrated hydrochloric acid. It is evaporated to the dry state in a vacuum. The residue is chromatographed on RP 18 (eluant: H2O/tetrahydrofuran/gradient). Yield of title compound: 0.90 g of a reddish-brown powder.
- The esters on the ligand produced by Example 23 (1.3 g, 0.885 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=1.12 g.
- The esters on the ligand produced by Example 24 (1.0 g, 0.62 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=1.12 g.
- The esters on the ligand produced in Example 28 (1.0 g, 0.69 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=0.85 g.
- The esters on the ligand produced in Example 33 (1.0 g, 1 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=0.85 g.
- The esters on the ligand produced in Example 29 (1.0 g, 0.68 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=0.85 g.
- The esters on the ligand produced in Example 27 (1.0 g, 0.7 mmol) are hydrolyzed and acidified as described in example 34. Yield of title compound=0.82 g.
- The ligand produced by example 35 (200 mg, 0.14 mmol) is dissolved in water (100 mL), and gadolinium chloride (74 mg, 0.28 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound=260 mg.
- The ligand produced by example 36 (200 mg, 0.13 mmol) is dissolved in water (100 mL), and gadolinium chloride (69 mg, 0.26 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound 247 mg.
- The ligand produced by example 34 (200 mg, 0.15 mmol) is dissolved in water (10 mL), and gadolinium chloride (79 mg, 0.30 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound=258 mg.
- The ligand produced by example 37 (200 mg, 0.15 mmol) is dissolved in water (100 mL), and gadolinium chloride (79 mg, 0.30 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound=260 mg.
- The ligand produced by example 38 (200 mg, 0.21 mmol) is dissolved in water (100 mL), and gadolinium chloride (110 mg, 0.42 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium chloride is added, stirring is continued overnight at room temperature. The solvent is drawn off in a vacuum, and the residue is chromatographed on silica gel RP-18 (eluent:water/THF: 0-30%). Yield of title compound=260 mg.
- This compound was prepared via the method of Neya, S., Hori, H., Imai, K., Konishi, Y. K., Suzuki, H., Shiro, Y., Lizuka, T., Funasaki, N., J. Biochem, 1997, 121, 654. The free bases of 5,5′-dibromo-3,3′-diethyldipyrromethene (2.00 g, 5.18 mmol) and 5,5′-dibromo-3,3′-di(methoxycarbonylethyl)-4,4′-dimethyldipyrromethene (2.60 g, 5.18 mmol) and sodium azide (10 g, 154 mmol) were placed in a round bottom flask containing methanol (1 L). the mixture was gently refluxed for 72 hrs. After solvent evaporation the residue was chromatographed on silica using chloroform as eluent. The title compound was eluted as the middle fraction of the three possible diazaporphyrins. The middle fraction was collected and recrystallized from dichloromethane/methanol. Yield=240 mg.
- The compound produced by example 46 (1.0 g) was modified according to H. Fischer, E. Haarer and F. Stadler, Z. Physiol. Chem. 241, 209 (1936) by treatment with hydrazine hydrate (7 mL of an 80% water solution) in pyridine (30 mL) at room temperature overnight. The solvent was removed by rotoevaporation and the solid suspended/dissolved in methanol (10 mL). Water (30 mL) was added and the methanol removed by rotary evaporation. The precipitated porphyrin was collected by filtration and dried to give the title compound. Yield: 1.25 g of purple powder.
- The compound produced by example 47 (500 mg, 0.83 mmol) is modified according to example 22 except using DTPA-monoethylester-monoanhydride (674 mg, 1.67 mmol) and triethylamine (1.0 g) Yield of title compound=990 mg.
- The compound produced by example 48 (200 mg, 0.148 mmol) is dissolved in water (100 mL), and gadolinium chloride (78.2 mg, 0.296 mmol) and 2N aqueous sodium hydroxide solution are added alternately in portions, such that the pH of the reaction mixture remains between 6.8 and 7.2. After all of the gadolinium
Claims (120)
1. A compound of formula I:
wherein R1-R12 can be the same or different and are selected from:
H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy group, aryloxy group, haloalkoxy, group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)-alkoxy, CH(CH3)O-aryl;
(CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
C(X)2C(X)3, where X is a halogen;
CO2R13, where R13 is selected from H, a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR14, where R14 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R15, (CHX)nCO2R15, or (CX2)nCO2R15, where X is a halogen and R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R16), CONHNH(R16), CO(R16), CON(R16)2, CON(R16)(R17), (CH2)nCONH(R16), (CH2)nCON(R16)2, (CH2)nCOR16, (CH2)nCON(R16)(R17), (CX2)nCONH(R16), (CX2)nCON(R16)2, (CX2)nCON(R16)(R17), (CX2)nCOR16, (CH2)nCONHNH(R16), (CX2)nCONHNH(R16), (CHX)nCONH(R16), (CHX)nCONHNH(R16), (CHX)nCO(R16), (CHX)nCON(R16)2, or (CHX)nCON(R16)(R17), where X is a halogen and R16 and R17 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R18), (CH2)nS(R18), (CH2)nNH(R18), (CH2)nNHNH(R18), (CH2)nN(R18)2, (CH2)nN(R18)(R19), or (CH2)nN(R18)(R19)(R20)+A, where R18, R19 and R20 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R18) is part of the amino acid), an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R18, R19 and R20 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR21, (CH2)nPO(OR21)2, (CH2)nPO2R21, or (CH2)nPOR21 where R21 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR22, or (CH2)nNHNHCOR22, where R22 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R23, SO2NHR23, SO2N(R23)2, SO2NHNHR23, or SO2R23, where R23 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR23 can also be an amino acid, an amino acid salt, an amino acid ester residue, an amino acid amide residue[, and n is an integer between 0 and 4];
Aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
R1-R2, R4-R5, R7-R8, R10-R11, R2-R3, R5-R6, R8-R9, and R11-R12 may also possess the atoms necessary to form ring systems, which themselves may possess heteroatoms that may bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
with the proviso that at least one of the R1-R23 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e;
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; with the proviso that when R1 and R4 are methyl, R2 and R5 cannot be methyl, a straight chain C1-C6 alkyl, a C7-C12 aralkyl, CH2O(C1-C3 alkyl), CH2OH, CH(OH)CH3, CH2CH2OH, CH(NH(CH2)nNH2)CH3, CH2CH2NH(CH2)nNH2 (where n=2, 3, 4, 6), vinyl, ethyl, CH2OR25 (where R25 is a hydrogen or a C1-C3 alkyl), CH(O-lower alkanoyl)CH3, CH(O-lower alkylene-OR26)CH3, or CH(OR26)CH3 (where R26═H, lower alkyl, a polyfunctional carbonyl compound excluding a hydrogen atom therefrom or a metal derivative of a polyfunctional carbonyl compound); and wherein
M is 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+,
Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
2. A method of using the compound of claim 1 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
3. A method of using the compound of claim 1 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
4. A method of using the compound of claim 1 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
5. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 1 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal system, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
6. The method of claim 2 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
7. The method of claim 6 wherein said vessel is an artery or a vein.
8. The method of claim 2 wherein the tissue is atherosclerosis, restenosis or graft disease.
9. The method of claim 3 wherein the tissue is atherosclerosis, restenosis or graft disease.
10. The method of claim 4 wherein the tissue is atherosclerosis, restenosis or graft disease.
11. The method of claim 5 wherein the tissue is atherosclerosis, restenosis or graft disease.
12. The method of claim 4 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
13. The method of claim 4 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
14. The method of claim 4 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
15. The method of claim 4 wherein said administration is a single bolus or plurality of doses administered to the patient.
16. A compound of formula IA:
wherein R1-R7 can be the same or different and are selected from:
H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, CH(CH3)O-aryl; (CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
C(X)2C(X)3, where X is a halogen;
CO2R8, where R8 is selected from a physiologically acceptable counter ion, a C1-C20 straight or branched chain alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-,. or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, ether or polyether, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR9, where R9 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R10, (CHX)nCO2R10, or (CX2)nCO2R10, where X is a halogen and R10 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R11), CO(R11), CON(R11)2, CON(R11)(R12), (CH2)nCONH(R11), (CH2)nCON(R11)2, (CH2)nCOR11, (CH2)nCON(R11)(R12), (CX2)nCONH(R11), (CX2)nCON(R11)2, (CX2)nCON(R11)(R12), (CX2)nCOR11, (CH2)nCONHNH(R11), (CX2)nCONHNH(R11), (CHX)nCONH(R11), (CHX)nCONHNH(R11), (CHX)nCON(R11)2, (CHX)nCON(R11)(R12), where X is a halogen and R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R13), (CH2)nS(R13), (CH2)nNH(R13), (CH2)nNHNH(R13), (CH2) n NR13(CH2)nN(R13)(R14), or (CH2)nN(R13)(R14)(R15)+A, where R13, R14 and R15 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R13 is part of the amino acid), an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R13, R14 and R15 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR16, (CH2)nPO(OR16)2, (CH2)nPO2R16, or (CH2)nPOR16 where R16 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR17, (CH2)nNHNHCOR17, where R17 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R18, SO2NHR18, SO2N(R18)2, SO2NHNHR18 or SO2R18, where R18 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and NHR18 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue, or a functional group of less than about 100,000 daltons;
Aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
R1-R2, and R3-R4 may also possess the atoms necessary to form ring systems, which themselves may possess heteroatoms that may bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
with the proviso that R1 and R4 are the same, R2 and R3 are the same, and that when R7 is H, R1-R4 cannot be methyl; and that at least one of the R1-R7 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, a ester, a ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and wherein
M is 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
17. A method of using the compound of claim 16 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
18. A method of using the compound of claim 16 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
19. A method of using the compound of claim 16 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
20. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 16 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
21. The method of claim 17 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
22. The method of claim 21 wherein said vessel is an artery or a vein.
23. The method of claim 17 wherein the tissue is atherosclerosis, restenosis or graft disease.
24. The method of claim 18 wherein the tissue is atherosclerosis, restenosis or graft disease.
25. The method of claim 19 wherein the tissue is atherosclerosis, restenosis or graft disease.
26. The method of claim 20 wherein the tissue is atherosclerosis, restenosis or graft disease.
27. The method of claim 19 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
28. The method of claim 19 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
29. The method of claim 19 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
30. The method of claim 19 wherein said administration is a single bolus or plurality of doses administered to the patient.
31. A compound of formula IB:
wherein R1 and R2 can be the same or different and are selected from H, NO2, CN, CHO, CO-alkyl, SO3H, SO3alkyl, SO3alkylether, SO3heteroalkyl, SO3Na, SO3K, SO2NHalkyl, SO2N(alkyl)2, SO2NHheteroalkyl, SO2N(heteroalkyl)2, SO2NHhaloalkyl, SO2N(haloalkyl)2, SO2NHhaloalkylether, SO2N(haloalkylether)2, SO2NHalkylether, SO2N(haloalkylether)2, CO-haloalkyl, haloalkyl, heteroalkyl, hydroxyhaloalkyl, haloalkyl ether, haloalkyl ester, a halogen, and a alkylcarbonyloxy group;
R3 and R4 can be the same or different and are selected from:
CO2R5, where R5 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, ethers or polyethers, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR6, where R6 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R7, (CHX)nCO2R7, or (CX2)nCO2R7, where X is a halogen and R7 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R8), CO(R8), CON(R8)2, CON(R8)(R9), (CH2)nCONH(R8), (CH2)nCON(R8)2, (CH2)nCOR8, (CH2)nCON(R8)(R9), (CX2)nCONH(R8), (CX2)nCON(R8)2, (CX2)nCON(R8)(R9), (CX2)nCOR8, (CH2)nCONHNH(R8), (CX2)nCONHNH(R8), (CHX)nCONH(R8), (CHX)nCONHNH(R8), (CHX)nCON(R8)2, (CHX)nCON(R8)(R9), where X is a halogen and R8 and R9 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R10), (CH2)nS(R10), (CH2)nNH(R10), (CH2)nNHNH(R10), (CH2) n NR10(CH2)nN(R10)(R11), or (CH2)nN(R10)(R11)(R12)+A, where R10, R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids (provided —NH(R10 is part of the amino acid), an amino acid ester, an amino acid amide, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R10, R11 and R12 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR13, (CH2)nPO(OR13)2, (CH2)nPO2R13, or (CH2)nPOR13 where R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR14, (CH2)nNHNHCOR14, where R14 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R15, SO2NHR15, SO2N(R15)2, SO2NHNHR15 or SO2R15, where R15 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl or heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, and NHR15 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, an amino acid amide residue, or a functional group of less than about 100,000 daltons;
Aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
with the proviso that at least one of the R1-R4 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and wherein
M is 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
32. A method of using the compound of claim 31 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
33. A method of using the compound of claim 31 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
34. A method of using the compound of claim 31 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
35. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 31 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
36. The method of claim 32 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
37. The method of claim 36 wherein said vessel is an artery or a vein.
38. The method of claim 32 wherein the tissue is atherosclerosis, restenosis or graft disease.
39. The method of claim 33 wherein the tissue is atherosclerosis, restenosis or graft disease.
40. The method of claim 34 wherein the tissue is atherosclerosis, restenosis or graft disease.
41. The method of claim 35 wherein the tissue is atherosclerosis, restenosis or graft disease.
42. The method of claim 34 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
43. The method of claim 34 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
44. The method of claim 34 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
45. The method of claim 34 wherein said administration is a single bolus or plurality of doses administered to the patient.
46. (canceled)
47. (canceled)
48. (canceled)
49. (canceled)
50. (canceled)
51. (canceled)
52. (canceled)
53. (canceled)
54. (canceled)
55. (canceled)
56. (canceled)
57. (canceled)
58. (canceled)
59. (canceled)
60. (canceled)
61. (canceled)
62. (canceled)
63. (canceled)
64. (canceled)
65. (canceled)
66. (canceled)
67. (canceled)
68. (canceled)
69. (canceled)
70. (canceled)
71. (canceled)
72. (canceled)
73. (canceled)
74. (canceled)
75. (canceled)
76. A compound of formula III:
wherein R1-R10 can be the same or different and are selected from:
H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group having a molecular weight of less than about 100,000 daltons; CH═CHCH2N+(CH3)3A, CH═N(alkyl)2A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, or CH(CH3)O-aryl;
(CH2)nO-alkoxy, or (CH2)nO-alkyl, where n is an integer from 0 to 8;
C(X)2C(X)3, where X is a halogen;
CO2R11, where R11 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR12, where R12 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R13, (CHX)nCO2R13, or (CX2)nCO2R13, where X is a halogen and R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R14), CONHNH(R14), CO(R14), CON(R14)2, CON(R14)(R15), (CH2)nCONH(R14), (CH2)nCONHNH(R14), (CH2)nCON(R14)2, (CH2)nCOR14, (CH2)nCON(R14)(R15), (CX2)nCONH(R14), (CX2)nCON(R14)2, (CX2)nCON(R14)(R15), (CX2)nCOR14, (CH2)nCONHNH(R14), (CX2)nCONHNH(R14), (CHX)nCONH(R14), (CHX)nCONHNH(R14), (CHX)nCON(R14)2, (CHX)nCON(R14)(R15), where X is a halogen and R14 and R15 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R16), (CH2)nS(R16), (CH2)nNH(R16), (CH2)nNHNH(R16), (CH2)nN(R16)2 (C2)nN(R16)(R17), or (CH2)nN(R16)(R17)(R18)+A, where R16, R17 and R18 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NHR16 is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R16, R17 and R18 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR19, (CH2)nPO(OR19)2, (CH2)nPO2R19, or (CH2)nPOR19 where R19 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR20, (CH2)nNHNHCOR20, where R20 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R21, SO2NHR21, SO2N(R21)2, SO2NHNHR21 or SO2R21, where R21 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons; and NHR21 can be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue;
Aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons; and
R1-R2, R3-R4, R6-R7; R8-R9, R4-R5, R5-R6, R9-R10 and R10-R1 may also possess the atoms necessary to form ring systems, which themselves may possess heteroatoms that may neutral or bear one or more functional groups of molecular weight equal to or less than about 100,000 daltons;
with the proviso that at least one of the R1-R10 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and wherein
M is 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
77. A method of using the compound of claim 76 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
78. A method of using the compound of claim 76 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
79. A method of using the compound of claim 76 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
80. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 76 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
81. The method of claim 77 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
82. The method of claim 81 wherein said vessel is an artery or a vein.
83. The method of claim 77 wherein the tissue is atherosclerosis, restenosis or graft disease.
84. The method of claim 78 wherein the tissue is atherosclerosis, restenosis or graft disease.
85. The method of claim 79 wherein the tissue is atherosclerosis, restenosis or graft disease.
86. The method of claim 80 wherein the tissue is atherosclerosis, restenosis or graft disease.
87. The method of claim 79 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
88. The method of claim 79 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
89. The method of claim 79 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
90. The method of claim 79 wherein said administration is a single bolus or plurality of doses administered to the patient.
91. A compound of formula IIIA:
wherein R1-R4 can be the same or different and are selected from a functional group of less than about 100,000 daltons;
CO2R5, where R5 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR6, where R6 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, heterocycle, aryl, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R7, (CHX)nCO2R7, or (CX2)nCO2R7, where X is a halogen and R7 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, heterocycle, aryl, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R8), (CONHNH(R8), CO(R8), CON(R8)2, CON(R8)(R9), (CH2)nCONH(R8), (CH2)nCONHNH(R8), (CH2)nCON(R8)2, (CH2)nCOR8, (CH2)nCON(R8)(R9), (CX2)nCONH(R8), (CX2)nCON(R8)2, (CX2)nCON(R8)(R9), (CX2)nCOR8, (CH2)nCONHNH(R8), (CX2)nCONHNH(R8), (CHX)nCONH(R8), (CHX)nCONHNH(R8), (CHX)nCON(R8)2, or (CHX)nCON(R8)(R9), where X is a halogen and R8 and R9 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R10), (CH2)nS(R10), (CH2)nNH(R10), (CH2)nNHNH(R10), (CH2)nN(R10)2, (CH2)nN(R10)(R11), or (CH2)nN(R10)(R11)(R12)+A, where R10, R11 and R12 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NHR10 is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R10, R11 and R12 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR13, (CH2)nPO(OR13)2, (CH2)nPO2R13, or (CH2)nPOR13 where R13 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR14, or (CH2)nNHNHCOR14, where R14 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R15, SO2NHR15, SO2N(R15)2, SO2NHNHR15 or SO2R15, where R15 is selected from H, a physiologically acceptable counter ion, a, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle; NHR15 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue; a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-,
or polyetheraryl residue, or a functional group of less than about 100,000 daltons;
Aryl or substituted aryl, which may bear one or more substituents with a molecular weight of less than or equal to about 100,000 daltons;
with the proviso that at least one of the R1-R4 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and wherein
M is 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
92. A method of using the compound of claim 91 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
93. A method of using the compound of claim 91 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
94. A method of using the compound of claim 91 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
95. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 91 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
96. The method of claim 92 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
97. The method of claim 96 wherein said vessel is an artery or a vein.
98. The method of claim 92 wherein the tissue is atherosclerosis, restenosis or graft disease.
99. The method of claim 93 wherein the tissue is atherosclerosis, restenosis or graft disease.
100. The method of claim 94 wherein the tissue is atherosclerosis, restenosis or graft disease.
101. The method of claim 95 wherein the tissue is atherosclerosis, restenosis or graft disease.
102. The method of claim 94 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
103. The method of claim 94 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
104. The method of claim 94 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
105. The method of claim 94 wherein said administration is a single bolus or plurality of doses administered to the patient.
106. A compound of formula IV:
wherein R1-R8 can be the same or different and are selected from:
H, halide, substituted or unsubstituted alkyl, heteroalkyl, haloalkyl, heterohaloalkyl, cyclic alkyl, aryl, substituted aryl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amide, ester, ether, polyether, alkoxy group, aryloxy group, haloalkoxy group, amino group, alkylcarbonyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, azo group, arylcarbonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, sulfinyl group, sulfonyl group, silil group, carbamoyl group, heterocyclic group, nitro group, nitroso group, formyloxy group, isocyano group, cyanate group, isocyanate group, thiocyanate group, isothiocyanate group, N(alkyl)2, N(aryl)2, CH═CH(aryl), CH═CHCH2N(CH3)2, or a functional group of molecular weight of less than about 100,000 daltons; CH═CHCH2N(CH3)3 +A, CH═N(alkyl)2 +A, or N(alkyl)3 +A, where A is a charge balancing ion; CN, OH, CHO, COCH3, CO(alkyl), CO2H, CO2Na, CO2K, CH(CH3)OH, CH(CH3)O-alkyl, CH(CH3)O-alkoxy, or CH(CH3)O-aryl;
(CH2)nO-alkoxy, or (CH2)nO-alkyl; where n is an integer from 0 to 8;
C(X)2C(X)3, where X is a halogen;
CO2R9, where R9 is selected from a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons;
(CH2)nOH, or (CH2)nOR10, where R10 is selected from alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a protecting group, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nCO2R11, (CHX)nCO2R11, (CX2)nCO2R11 where X is a halogen and R11 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heterocycle, heteroaryl, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 1 and 4;
CONH(R12), CONHNH(R12)CO(R12), CON(R12)2, CON(R12)(R13), (CH2)nCONH(R12), (CH2)nCONHNH(R12), (CH2)nCON(R12)2, (CH2)nCOR12 (CH2)nCON(R12)(R13), (CX2)nCONH(R12), (CX2)nCON(R12)2, (CX2)nCON(R12)(R13), (CX2)nCOR12, (CH2)nCONHNH(R12), (CX2)nCONHNH(R12), (CHX)nCONH(R12), (CHX)nCONHNH(R12), (CHX)nCON(R12)2, (CHX)nCON(R12)(R13), where X is a halogen and R12 and R13 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, haloheteroalkyl, heteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, an amino acid, an amino acid salt, an amino acid ester, an amino acid amide, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
S(R14), (CH2)nS(R14), (CH2)nNH(R14), (CH2)nNHNH(R14), (CH2)nN(R14)2, (CH2)nN(R14)(R15), or (CH2)nN(R14)(R15)(R16)+A, where R14, R15 and R16 can be the same or different and are selected from H, NH2, straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, an amino acid ester, or an amino acid amide provided —NH(R14) is part of the amino acid, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, a functional group of less than about 100,000 daltons, or where R14, R15 and R16 together possess the atoms necessary to constitute an aromatic ring system, n is an integer between 0 and 4, and A is a physiologically acceptable counter ion;
(CH2)nOPO2OR17, (CH2)nPO(OR17)2, (CH2)nPO2R17, or (CH2)nPOR17 where R17 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, amino acids, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
(CH2)nNHCOR18, or (CH2)nNHNHCOR18, where R18 is selected from a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, or a functional group of less than about 100,000 daltons, and n is an integer between 0 and 4;
SO3R19, SO2NHR19, SO2N(R19)2, SO2NHNHR19 or SO2R19, where R19 is selected from H, a physiologically acceptable counter ion, a straight or branched chain C1-C20 alkyl, haloalkyl, heteroalkyl, haloheteroalkyl, aryl, heteroaryl, heterocycle, a mono-, di-, or polyhydroxyalkyl residue, a mono-, di-, or polyhydroxyaryl residue, a mono-, di-, or polyetheralkyl residue, a mono-, di-, or polyetheraryl residue, or a functional group of less than about 100,000 daltons, and NHR19 can also be an amino acid residue, an amino acid salt, an amino acid ester residue, or an amino acid amide residue; and
Aryl or substituted aryl, which may bear one or more substituents selected from hydroxy groups, alkyl groups, carboxyl groups and its esters and amides and sulfonic acid groups and their esters and amides, and substitiuents with a molecular weight of less than or equal to about 100,000 daltons;
with the proviso that at least one of the R1-R12 groups is linked via an organic group that has as part or all of its structure a group Q, which is an amine, an ester, an ether or an amide link, to a complexing agent of general formula 11a, 11b, 11c, 11d, 11e:
wherein R24 is selected from a hydrogen, a straight or branched chain C1-C7 alkyl group, a phenyl or benzyl group; L1, L2, L3, L4, independently of one another, are selected from a hydrogen atom or a metal ion equivalent of an element of the atomic numbers 20-32, 37-39, 42-51, or 57-83, which may be radioactive, provided that at least two of L1, L2, L3 and L4 are metal ion equivalents, that other anions are present to compensate for optionally present charges on the porphyrin, and free carboxylic acid groups that are not required for complexing are optionally present as salts with physiologically compatible inorganic cations, or organic cations, or as esters or amides; and
A, B, C, and D can be the same or different and are selected from N, CH, and CR20 where R20 is selected from a halogen, aryl, subsitituted aryl, heteroaryl, alkyl, haloalkyl, heterohaloalkyl, heterocycle, hydroxyalky, hydroxyhaloalkyl, or a functional group of molecular weight of less than about 100,000 daltons; and wherein
M is selected from 2H or a diamagnetic or paramagnetic photoactive metal ion selected from Ga3+, Pt2+, Pd2+, Sn4+, In3+, Ge4+, Si4+, Al3+, Zn2+, and Mg2+.
107. A method of using the compound of claim 106 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging.
108. A method of using the compound of claim 106 comprising administering the compound to a patient and, after a period of time, irradiating targeted tissue of the patient with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
109. A method of using the compound of claim 106 comprising administering the compound to a patient and, after a period of time, imaging targeted tissue of the patient through MRI or radio-diagnostic imaging then, after a second period of time, irradiating the targeted tissue with an energy source that excites the compound thereby producing a desired therapeutic response in the target tissue.
110. A method for the detection or treatment of tissue comprising administering to a patient a therapeutic amount of the compound of claim 106 locally, systemically, intramuscularly or interperitoneally and irradiating said compound with energy at a wavelength able to excite the molecule, such that a desired therapeutic effect is observed, whereby said tissue belongs to the hematological system, lymphatic reticuloendothelial system, nervous system, endocrine and exocrine system, skeletomuscular system, skin, pulmonary system, gastrointestinal, reproductive system, immune system, cardiovascular system, urinary system, auditory or olfactory system.
111. The method of claim 107 , wherein said method is for diagnosing disorders in a vessel wall, tissue adjoining the vessel wall, or material attached to the vessel wall of a coronary, carotid or peripheral vasculature.
112. The method of claim 111 wherein said vessel is an artery or a vein.
113. The method of claim 107 wherein the tissue is atherosclerosis, restenosis or graft disease.
114. The method of claim 108 wherein the tissue is atherosclerosis, restenosis or graft disease.
115. The method of claim 109 wherein the tissue is atherosclerosis, restenosis or graft disease.
116. The method of claim 1 10 wherein the tissue is atherosclerosis, restenosis or graft disease.
117. The method of claim 109 wherein the therapy is selected from ablation, reduction and stabilization of vessel wall plaque.
118. The method of claim 109 wherein said energy source is selected from light, ultrasound, magnetic force, and electromagnetic radiation in the UV/visible electromagnetic spectrum or near infrared.
119. The method of claim 109 wherein said administration of the compound is prior to, concomitant with, or subsequent to adjunctive interventions, diagnostics or therapies.
120. The method of claim 109 wherein said administration is a single bolus or plurality of doses administered to the patient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/059,557 US20050226810A1 (en) | 2001-05-31 | 2005-02-17 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29534301P | 2001-05-31 | 2001-05-31 | |
US10/159,580 US6906050B2 (en) | 2001-05-31 | 2002-05-31 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
US11/059,557 US20050226810A1 (en) | 2001-05-31 | 2005-02-17 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/159,580 Division US6906050B2 (en) | 2001-05-31 | 2002-05-31 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050226810A1 true US20050226810A1 (en) | 2005-10-13 |
Family
ID=23137288
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/159,580 Expired - Fee Related US6906050B2 (en) | 2001-05-31 | 2002-05-31 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
US11/059,557 Abandoned US20050226810A1 (en) | 2001-05-31 | 2005-02-17 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/159,580 Expired - Fee Related US6906050B2 (en) | 2001-05-31 | 2002-05-31 | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis |
Country Status (4)
Country | Link |
---|---|
US (2) | US6906050B2 (en) |
EP (1) | EP1401430A4 (en) |
CA (1) | CA2448570A1 (en) |
WO (1) | WO2002096417A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256141A1 (en) * | 2007-10-12 | 2009-10-15 | University Of Southern California | Organic photosensitive optoelectronic devices containing tetra-azaporphyrins |
US11896852B2 (en) | 2020-12-21 | 2024-02-13 | Xerox Corporation | Closed-loop non-invasive transcranial stimulation and neural activity recording system and method |
US12207930B2 (en) | 2020-12-21 | 2025-01-28 | Xerox Corporation | Non-invasive transcranial stimulation system and method using pre-recorded neurostimulation data |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE335719T1 (en) * | 1999-04-30 | 2006-09-15 | Cellgate Inc | POLYAMINE AND THEIR THERAPEUTIC USE |
US7097826B2 (en) * | 1999-12-23 | 2006-08-29 | Health Research, Inc. | Chlorin and bacteriochlorin-based difunctional aminophenyl DTPA and N2S2 conjugates for MR contrast media and radiopharmaceuticals |
WO2002096366A2 (en) * | 2001-05-31 | 2002-12-05 | Miravant Pharmaceuticals, Inc. | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy |
WO2003003975A2 (en) * | 2001-06-04 | 2003-01-16 | The General Hospital Corporation | Detection and therapy of vulnerable plaque with photodynamic compounds |
US7375216B2 (en) * | 2002-06-04 | 2008-05-20 | Infacare Pharmaceutical Corporation | Preparation of metal mesoporphyrin compounds |
ES2197818B1 (en) * | 2002-06-11 | 2005-02-01 | Institut Quimic De Sarria Cets | 2,7,12,17 ALQUENIL, ARIL AND HETEROARIL DERIVED FROM 3,6,13,16-TETRAAZAPORFICENO, AND PROCEDURE, INTERMEDIATE COMPOUND AND CORRESPONDING UTILIZATIONS. |
AU2003279756A1 (en) * | 2002-06-26 | 2004-01-19 | Cellgate, Inc. | Porphyrin-polyamine conjugates for cancer therapy |
US20040192665A1 (en) * | 2002-08-02 | 2004-09-30 | Slil Biomedical Corporation | Conjugates of porphyrin compounds with chemotherapeutic agents |
US20040097481A1 (en) * | 2002-11-20 | 2004-05-20 | Benjamin Levinson | Water-soluble mesoporphyrin compounds and methods of preparation |
EP1572245B1 (en) * | 2002-12-16 | 2012-10-10 | Ge Healthcare As | Magnetic resonance imaging method and compounds for use in the method |
GB2397067B (en) * | 2002-12-23 | 2005-05-11 | Destiny Pharma Ltd | Porphin & azaporphin derivatives with at least one cationic-nitrogen-containing meso-substituent for use in photodynamic therapy & in vitro sterilisation |
US20050209193A1 (en) * | 2003-12-05 | 2005-09-22 | Keller Gregory S | Method for enhanced photodynamic therapy |
FR2867473B1 (en) * | 2004-03-12 | 2006-06-23 | Guerbet Sa | PORPHYRINE COMPOUND AND HIGH FIELD USE IN MRI |
WO2005112759A1 (en) * | 2004-05-20 | 2005-12-01 | Pharmacyclics, Inc. | A method of enhancing visualization of atherosclerotic plaque |
GB2415372A (en) | 2004-06-23 | 2005-12-28 | Destiny Pharma Ltd | Non photodynamical or sonodynamical antimicrobial use of porphyrins and azaporphyrins containing at least one cationic-nitrogen-containing substituent |
US20060222668A1 (en) * | 2005-04-01 | 2006-10-05 | Wellspring Pharmaceutical Corporation | Stannsoporfin compositions, drug products and methods of manufacture |
ES2275416B1 (en) * | 2005-07-15 | 2008-06-01 | Institut Quimic De Sarria Cets | HALOGENATED DERIVATIVES OF 4H, 5H-TIENO (3,2-B: 4,5-B ') DIPIRROLES AND PROCEDURE AND CORRESPONDING UTILIZATIONS. |
US20080085293A1 (en) * | 2006-08-22 | 2008-04-10 | Jenchen Yang | Drug eluting stent and therapeutic methods using c-Jun N-terminal kinase inhibitor |
EA200970345A1 (en) * | 2006-10-04 | 2009-10-30 | Инфакэар Фармасьютикал Корпорейшн | TREATMENT OF HYPERBILIRUBINEMIA OF NEWBORNS WITH THE USE OF LOW DOSING OF STANNSOPORFIN |
EP2079472B1 (en) | 2006-10-04 | 2011-09-14 | InfaCare Pharmaceutical Corporation | High-purity large-scale preparation of stannsoporfin |
US8287839B2 (en) * | 2006-12-04 | 2012-10-16 | Brookhaven Science Associates, Llc | Carboranylporphyrins and uses thereof |
US8444953B2 (en) * | 2007-03-22 | 2013-05-21 | Brookhaven Science Associates, Llc | Symmetric and asymmetric halogen-containing metallocarboranylporphyrins and uses thereof |
US20080279781A1 (en) * | 2007-05-10 | 2008-11-13 | Brookhaven Science Associates, Llc | Glycosylated Carboranylporphyrins and Uses Thereof |
US7952719B2 (en) * | 2007-06-08 | 2011-05-31 | Prescient Medical, Inc. | Optical catheter configurations combining raman spectroscopy with optical fiber-based low coherence reflectometry |
US20100113906A1 (en) * | 2008-11-06 | 2010-05-06 | Prescient Medical, Inc. | Hybrid basket catheters |
WO2012135686A1 (en) | 2011-03-30 | 2012-10-04 | Infacare Pharmaceutical Corporation | Methods for synthesizing metal mesoporphyrins |
CN102363619A (en) * | 2011-11-18 | 2012-02-29 | 中国医学科学院生物医学工程研究所 | Water soluble protoporphyrin compound and preparation method and use thereof |
PL2796100T3 (en) | 2013-04-23 | 2016-08-31 | Fraunhofer Ges Forschung | Gelling system for the removal of kidney stone fragments |
EP2796101B1 (en) * | 2013-04-23 | 2016-04-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Kit for producing a cross-linked gel for encapsulating kidney stones and/or kidney stone fragments |
US20160235866A1 (en) * | 2013-10-04 | 2016-08-18 | The Governing Council Of The University Of Toronto | Mri contrast agents for cell labeling |
EP3684425A4 (en) * | 2017-09-21 | 2021-04-21 | Health Research, Inc. | TETRAPYRROLIC CONJUGATES AND THEIR USE FOR IMAGING |
CZ2017657A3 (en) * | 2017-10-16 | 2018-12-19 | Fyziologický ústav AV ČR, v. v. i. | A liposomal dosage form with light-converting nanoparticles, its preparation and use |
CN116003820B (en) * | 2023-02-15 | 2023-12-19 | 山东大学 | Palladium porphyrin and triptycene-based porous organic polymer, and preparation method and application thereof |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647447A (en) * | 1981-07-24 | 1987-03-03 | Schering Aktiengesellschaft | Diagnostic media |
US4882234A (en) * | 1986-11-12 | 1989-11-21 | Healux, Inc. | Storage-stable porphin compositions and a method for their manufacture |
US4885363A (en) * | 1987-04-24 | 1989-12-05 | E. R. Squibb & Sons, Inc. | 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs |
US4996312A (en) * | 1985-10-23 | 1991-02-26 | Nihon Medi-Physics Co., Ltd. | Porphyrin derivatives, and their production and use |
US5053503A (en) * | 1989-02-17 | 1991-10-01 | Centocor | Chelating agents |
US5275801A (en) * | 1988-08-13 | 1994-01-04 | Schering Aktiengesellschaft | 13,17-propionic acid and propionic acid derivative substituted porphyrin complex compounds, process for their production and pharmaceutical agents containing them |
US5277895A (en) * | 1990-11-08 | 1994-01-11 | Schering Aktiengesellschaft | Mono-n-substituted 1,4,7,10-tetraazacyclododecane derivatives, process for their production and pharmaceutical agents containing these derivatives |
US5284647A (en) * | 1988-03-18 | 1994-02-08 | Schering Aktiengesellschaft | Mesotetraphenylporphyrin complex compounds, process for their production and pharmaceutical agents containing them |
US5364614A (en) * | 1989-11-21 | 1994-11-15 | Schering Aktiengesellschaft | Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them |
US5633275A (en) * | 1995-09-06 | 1997-05-27 | Meiji Seika Kaisha, Ltd. | Photochemotherapeutical obstruction of newly-formed blood vessels |
US5654423A (en) * | 1990-11-21 | 1997-08-05 | Regents Of The University Of California | Boronated metalloporphyrine and therapeutic methods |
US5675001A (en) * | 1995-03-14 | 1997-10-07 | Hoffman/Barrett, L.L.C. | Heteroatom-functionalized porphyrazines and multimetallic complexes and polymers derived therefrom |
US5676923A (en) * | 1995-02-21 | 1997-10-14 | Schering Aktiengesellschaft | Substituted DTPA monoamides of the central carboxylic acid group and their metal complexes |
US5703230A (en) * | 1994-12-02 | 1997-12-30 | University Of British Columbia | Meso-monoiodo-substituted tetramacrocyclic compounds and methods for making and using the same |
US5705622A (en) * | 1988-06-08 | 1998-01-06 | London Diagnostics, Inc. | Sensitizer conjugates containing porphyrins |
US5730956A (en) * | 1995-02-21 | 1998-03-24 | Schering Aktiengesellschaft | DTPA di-alkyl monoamides for x-ray and MRI |
US5849259A (en) * | 1992-09-28 | 1998-12-15 | Institut Fur Diagnostikforschung Gmbh | 3-,8-substituted deuteroporphyrin derivatives, pharmaceutical agents containing the latter and process for their production |
US6136841A (en) * | 1998-06-02 | 2000-10-24 | Schering Aktiengesellschaft | 3-, 8-substituted deuteroporphyrin derivatives, pharmaceutical agents that contain the latter, process for their production and their use in photodynamic therapy and MRI diagnosis |
US6251367B1 (en) * | 1998-07-24 | 2001-06-26 | Schering Aktiengesellschaft | Paramagnetic 3-,8-substituted deuteroporphyrin derivatives, pharmaceutical agents that contain the latter, process for their production, and their use for MR imaging of necrosis and infarction |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3772785D1 (en) | 1986-01-23 | 1991-10-17 | Squibb & Sons Inc | 1-SUBSTITUTED-4,7,10-TRISCARBOXYMETHYL-1,4,7,10-TETRAAZACYCLODODECAN AND ANALOG. |
WO1992006097A1 (en) | 1990-10-05 | 1992-04-16 | Queen's University At Kingston | Porphyrin derivatives |
DE4425857A1 (en) | 1994-07-07 | 1996-01-11 | Schering Ag | Cascade polymer complexes, processes for their preparation and pharmaceutical compositions containing them |
IL114235A0 (en) | 1994-07-14 | 1995-10-31 | Schering Ag | Oligonucleotide conjugates and processes for noninvasive diagnosis utilizing the same |
GB9524028D0 (en) | 1995-11-23 | 1996-01-24 | Secr Defence | Substituted porphyrins |
EP0811626B1 (en) | 1996-06-04 | 2002-08-14 | Roche Diagnostics GmbH | Use of metallo-porphyrin conjugates for the detection of biological substances |
DE19825512A1 (en) | 1998-06-02 | 1999-12-09 | Schering Ag | 3-, 8-substituted deuteroporphyrin derivatives, pharmaceutical compositions containing them, processes for their preparation and their use in photodynamic therapy and MRI diagnostics |
DE19835082A1 (en) | 1998-07-24 | 2000-02-03 | Schering Ag | Paramagnetic 3-, 8-substituted deuteroporphyrin derivatives, pharmaceutical compositions containing them, processes for their preparation and their use for necrosis and infarct MR imaging |
-
2002
- 2002-05-31 US US10/159,580 patent/US6906050B2/en not_active Expired - Fee Related
- 2002-05-31 WO PCT/US2002/017179 patent/WO2002096417A1/en not_active Application Discontinuation
- 2002-05-31 EP EP02741780A patent/EP1401430A4/en not_active Withdrawn
- 2002-05-31 CA CA002448570A patent/CA2448570A1/en not_active Abandoned
-
2005
- 2005-02-17 US US11/059,557 patent/US20050226810A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647447A (en) * | 1981-07-24 | 1987-03-03 | Schering Aktiengesellschaft | Diagnostic media |
US4996312A (en) * | 1985-10-23 | 1991-02-26 | Nihon Medi-Physics Co., Ltd. | Porphyrin derivatives, and their production and use |
US4882234A (en) * | 1986-11-12 | 1989-11-21 | Healux, Inc. | Storage-stable porphin compositions and a method for their manufacture |
US4885363A (en) * | 1987-04-24 | 1989-12-05 | E. R. Squibb & Sons, Inc. | 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs |
US5284647A (en) * | 1988-03-18 | 1994-02-08 | Schering Aktiengesellschaft | Mesotetraphenylporphyrin complex compounds, process for their production and pharmaceutical agents containing them |
US5705622A (en) * | 1988-06-08 | 1998-01-06 | London Diagnostics, Inc. | Sensitizer conjugates containing porphyrins |
US5275801A (en) * | 1988-08-13 | 1994-01-04 | Schering Aktiengesellschaft | 13,17-propionic acid and propionic acid derivative substituted porphyrin complex compounds, process for their production and pharmaceutical agents containing them |
US5053503A (en) * | 1989-02-17 | 1991-10-01 | Centocor | Chelating agents |
US5364614A (en) * | 1989-11-21 | 1994-11-15 | Schering Aktiengesellschaft | Cascade polymer bound chelating compounds, their chelates and conjugates, processes for their production, and pharmaceutical agents containing them |
US5277895A (en) * | 1990-11-08 | 1994-01-11 | Schering Aktiengesellschaft | Mono-n-substituted 1,4,7,10-tetraazacyclododecane derivatives, process for their production and pharmaceutical agents containing these derivatives |
US5654423A (en) * | 1990-11-21 | 1997-08-05 | Regents Of The University Of California | Boronated metalloporphyrine and therapeutic methods |
US5849259A (en) * | 1992-09-28 | 1998-12-15 | Institut Fur Diagnostikforschung Gmbh | 3-,8-substituted deuteroporphyrin derivatives, pharmaceutical agents containing the latter and process for their production |
US5703230A (en) * | 1994-12-02 | 1997-12-30 | University Of British Columbia | Meso-monoiodo-substituted tetramacrocyclic compounds and methods for making and using the same |
US5676923A (en) * | 1995-02-21 | 1997-10-14 | Schering Aktiengesellschaft | Substituted DTPA monoamides of the central carboxylic acid group and their metal complexes |
US5730956A (en) * | 1995-02-21 | 1998-03-24 | Schering Aktiengesellschaft | DTPA di-alkyl monoamides for x-ray and MRI |
US5675001A (en) * | 1995-03-14 | 1997-10-07 | Hoffman/Barrett, L.L.C. | Heteroatom-functionalized porphyrazines and multimetallic complexes and polymers derived therefrom |
US5633275A (en) * | 1995-09-06 | 1997-05-27 | Meiji Seika Kaisha, Ltd. | Photochemotherapeutical obstruction of newly-formed blood vessels |
US6136841A (en) * | 1998-06-02 | 2000-10-24 | Schering Aktiengesellschaft | 3-, 8-substituted deuteroporphyrin derivatives, pharmaceutical agents that contain the latter, process for their production and their use in photodynamic therapy and MRI diagnosis |
US6251367B1 (en) * | 1998-07-24 | 2001-06-26 | Schering Aktiengesellschaft | Paramagnetic 3-,8-substituted deuteroporphyrin derivatives, pharmaceutical agents that contain the latter, process for their production, and their use for MR imaging of necrosis and infarction |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256141A1 (en) * | 2007-10-12 | 2009-10-15 | University Of Southern California | Organic photosensitive optoelectronic devices containing tetra-azaporphyrins |
US8158972B2 (en) * | 2007-10-12 | 2012-04-17 | The University Of Southern California | Organic photosensitive optoelectronic devices containing tetra-azaporphyrins |
US11896852B2 (en) | 2020-12-21 | 2024-02-13 | Xerox Corporation | Closed-loop non-invasive transcranial stimulation and neural activity recording system and method |
US12207930B2 (en) | 2020-12-21 | 2025-01-28 | Xerox Corporation | Non-invasive transcranial stimulation system and method using pre-recorded neurostimulation data |
Also Published As
Publication number | Publication date |
---|---|
EP1401430A4 (en) | 2005-10-19 |
US20030100752A1 (en) | 2003-05-29 |
WO2002096417A1 (en) | 2002-12-05 |
US6906050B2 (en) | 2005-06-14 |
CA2448570A1 (en) | 2002-12-05 |
EP1401430A1 (en) | 2004-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6906050B2 (en) | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis | |
US6827926B2 (en) | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy | |
JP3530529B2 (en) | Metal complexes of water-soluble texaphyrins | |
AU2002344234A1 (en) | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy | |
JPH10500659A (en) | Texaphyrin metal complexes with improved functionality | |
JPH08504399A (en) | 3-, 8-Substituted deuteroporphyrin derivative, drug containing the same, and process for producing the same | |
US8133473B2 (en) | Chlorin and bacteriochlorin-based difunctional aminophenyl DTPA and N2S2 conjugates for MR contrast media and radiopharmaceuticals | |
US6136841A (en) | 3-, 8-substituted deuteroporphyrin derivatives, pharmaceutical agents that contain the latter, process for their production and their use in photodynamic therapy and MRI diagnosis | |
US20050020559A1 (en) | Chlorin photosensitizing agents for use in photodynamic therapy | |
JP5372371B2 (en) | Cationic bacteriochlorophyll derivatives and uses thereof | |
US20080275232A1 (en) | Chlorins possessing fused ring systems useful as photoselective compounds for photodynamic therapy | |
CN1984915B (en) | Adduct of fluorescent dye and tumor avid tetrapyrrole | |
AU2002314857A1 (en) | Substituted porphyrin and azaporphyrin derivatives and their use in photodynamic therapy, radioimaging and MRI diagnosis | |
AU2008200847A1 (en) | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy | |
Boateng | Design, synthesis and biological evaluation of folate-targeted photodynamic therapy agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |