US20050167085A1 - Graphite-based heat sinks and method and apparatus for the manufacture thereof - Google Patents
Graphite-based heat sinks and method and apparatus for the manufacture thereof Download PDFInfo
- Publication number
- US20050167085A1 US20050167085A1 US11/101,125 US10112505A US2005167085A1 US 20050167085 A1 US20050167085 A1 US 20050167085A1 US 10112505 A US10112505 A US 10112505A US 2005167085 A1 US2005167085 A1 US 2005167085A1
- Authority
- US
- United States
- Prior art keywords
- heat sink
- fins
- substrate
- chamber
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 27
- 229910002804 graphite Inorganic materials 0.000 title abstract description 26
- 239000010439 graphite Substances 0.000 title abstract description 26
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 238000000034 method Methods 0.000 title description 18
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 35
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- 238000005253 cladding Methods 0.000 claims abstract description 9
- 239000007921 spray Substances 0.000 claims description 10
- 238000005422 blasting Methods 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000000576 coating method Methods 0.000 abstract description 39
- 239000011248 coating agent Substances 0.000 abstract description 38
- 229910052751 metal Inorganic materials 0.000 abstract description 31
- 239000002184 metal Substances 0.000 abstract description 30
- 125000006850 spacer group Chemical group 0.000 abstract description 9
- 239000013618 particulate matter Substances 0.000 abstract description 4
- 230000000717 retained effect Effects 0.000 abstract description 2
- 239000004593 Epoxy Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 239000011253 protective coating Substances 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000001815 facial effect Effects 0.000 description 5
- 239000007770 graphite material Substances 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005488 sandblasting Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/02—Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0028—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
- F28D2021/0029—Heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49133—Assembling to base an electrical component, e.g., capacitor, etc. with component orienting
- Y10T29/49135—Assembling to base an electrical component, e.g., capacitor, etc. with component orienting and shaping, e.g., cutting or bending, etc.
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
- Y10T29/49144—Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
Definitions
- This disclosure relates generally to heat sinks and, more particularly, to graphite-based heat sinks and a method and an apparatus for the manufacture thereof.
- Heat sinks are generally utilized to provide for the conductive transfer of heat from a heat source (e.g., an electronic component) to a surrounding environment.
- the conductive transfer of heat from the heat source is most efficient when the heat sink is fabricated from a material having a high coefficient of thermal conductivity to facilitate the rapid conduction of heat from the heat source and its dissipation to the surrounding environment.
- Such materials include metals such as copper, aluminum, tungsten, molybdenum, alloys of the foregoing metals, and the like.
- Heat sinks fabricated from such metals and alloys typically add significant cost and weight to the systems into which they are incorporated.
- the fins of the heat sinks may be made of lighter materials having comparable or improved heat transfer properties.
- One example of such a material is high conductivity graphite, which may be utilized in a pure form or may be combined with another material to form a graphite composite.
- graphite or graphite composite heat sink fins pose significant obstacles to the use of such materials.
- attachment of graphite fins to a metal base are oftentimes made by alternate means, e.g., with adhesives such as epoxies.
- graphite is by nature a brittle material
- heat sink fins fabricated from graphite or graphite composites typically crack, chip, or flake, thereby potentially compromising the integrity of the heat sink structure.
- Chipping or flaking of the graphite or graphite composite material may further raise issues with respect to the contamination of the componentry of the device at which the heat sink is disposed.
- chipping or flaking of the graphite materials may contaminate and detrimentally affect the operation of electronic components from which heat must be removed to ensure the proper operation of an electronic system.
- a heat sink comprises a metal support member having a groove disposed at a surface thereof and a fin disposed at the groove.
- the fin comprises a graphite-based material having a metal-based coating disposed thereon, and the fin is retained at the groove via a soldered joint at the metal-based coating and the groove.
- a heat sink comprises a plurality of fins alternatingly arranged with a plurality of spacers, the fins comprising a graphite-based material having a metal-based coating disposed thereon, and the spacers comprising either metal or graphite-epoxy coated with metal.
- a method of fabricating a heat sink comprises preparing a surface of a graphite-based substrate, removing particulate matter generated from the preparation of the surface of the substrate, applying a metal-based coating at the surface of the prepared substrate, and arranging the prepared substrate having the metal-based coating to form a heat sink structure.
- An apparatus for cladding fins of a heat sink with a protective material comprises a first chamber configured to facilitate the preparation of substrate surfaces of the fins of the heat sink, a grit-removing apparatus disposed adjacent to the first chamber, a second chamber disposed adjacent to the grit-removing apparatus and being configured to facilitate the application of the protective material to the substrate surfaces of the fins, and a transport device configured to facilitate the movement of the substrate surfaces through the first chamber, to the grit-removing apparatus, and through the second chamber.
- FIG. 1 is a cross-sectional representation of a heat sink having graphite-epoxy fins clad with a metal coating disposed in grooves of a metal support;
- FIG. 2 is a cross-sectional representation of a heat sink having graphite-epoxy fins alternately arranged with spacers;
- FIG. 3 is a plan view of a heat sink fin having a metal coating
- FIG. 4 is a perspective view of a fin of a heat sink in which a protective coating can be selectively applied using a mask
- FIG. 5 is a schematic representation of an apparatus by which the fins of the heat sink of FIG. 1 may be coated.
- FIG. 6 is a cross-sectional representation of a heat sink having graphite-epoxy fins clad with protective coatings disposed at line-of-sight surfaces.
- a heat sink having graphite-based fins.
- a heat sink is defined by fins mounted within grooves disposed in a support surface.
- a heat sink is defined by an alternating arrangement of fins and spacers.
- methods of fabricating heat sinks by metallizing graphite-based substrates and either disposing the substrates as fins at a support or arranging the substrates with spacers.
- Exemplary materials that may be used for the metallizing include, but are not limited to, metals, alloys, metal-based composite materials, refractory materials, and the like.
- the metallizing of the substrates to form fins preferably provides a surface finish that facilitates the connection (e.g., the soldering) of the fins to the support.
- the metallizing also increases the robustness of the fins and further serves to form a protective coating that inhibits chipping and/or flaking of the graphite material, which may detrimentally affect the performance of the heat sink or the components associated therewith.
- Heat sink 10 comprises a support 12 and a plurality of fins 14 extending from support 12 . Fins 14 are preferably disposed in grooves disposed within support 12 and secured therein. Alternately, as is shown in FIG. 2 , a heat sink 110 may comprise an arrangement of alternatingly-positioned fins 114 and spacers 115 to form a heat sink structure. The fins 114 and spacers 115 are preferably fixed in a parallel-planar relationship by any suitable means, e.g., a solder joint 117 . In either configuration, the heat sink is generally configured to be attached to a, heat generating electrical device, e.g., a microchip module or a similar device.
- a heat generating electrical device e.g., a microchip module or a similar device.
- the graphite-based fins 14 preferably comprise graphite or a graphite-epoxy composite (hereinafter “graphite”) substrates clad with a metal (“metallized”) to facilitate the securing of fins 14 within the grooves of support 12 and to inhibit the flaking or chipping of the graphite material.
- the foot portion of each fin 14 is preferably securely disposed at support 12 via a solder joint 17 , although any suitable method of attachment such as ultrasonic welding, brazing, or the like may be utilized.
- Fins 14 are also planar in structure such that the facial areas of each fin 14 are maximized in order to effect a maximum amount of heat transfer from each fin 14 to the adjacent environment.
- the planar facial areas of each fin 14 may be of any configuration including, but not limited to, round, elliptical, angular, or any combination of the foregoing configurations.
- each fin 14 comprises the substrate 16 fabricated of the graphite.
- Substrate 16 is preferably substantially uniformly coated with the coating, shown at 18 , thereby cladding the exposed surfaces.
- a substantially uniform coating is one in which variations in thickness of the coating over the area of the substrate to which the coating is applied are functions of the conditions under which the coating is applied (e.g., temperature, rheological characteristics of the coating material, method of application of the coating material, and the like).
- both the facial surfaces as well as the edges of substrate 16 are coated to a thickness L of about 25 micrometers (um) to about 50 um.
- the edges may be defined by a radius r at the edges of substrate 16 , which may be formed during the application of coating 18 as a result of the flow characteristics of the metal during its application.
- coating 18 is selected and disposed at the exposed surface of substrate 16 to allow for the soldering attachment of fins to support 12 (or to spacers) as well as to prevent damage to fins 14 and further to inhibit the flaking or chipping of the graphite material.
- the graphite from which substrate 16 is fabricated may allow the coating material to penetrate the surface of substrate 16 to a substantial degree, thereby securely cladding substrate 16 .
- Coating 18 preferably comprises a lightweight metal having a high coefficient of thermal transfer and having corrosion inhibitive- or preventive properties and sufficient durability when applied to substrate 16 such that damage to fins 14 during handling of the heat sink is avoided or at least minimized.
- Metals that may be used include, but are not limited to, aluminum, zinc, copper, silver, nickel, alloys of the foregoing metals, high temperature refractory coatings, combinations of the foregoing materials, and the like.
- a preferred coating material comprises about 85% zinc and about 15% aluminum.
- a more preferred coating comprises pure or near-pure zinc.
- fins 14 are typically prepared and coated prior to assembly of heat sink 10 .
- the cladding of fins 14 comprises the preparation of substrate 16 and the application of coating 18 to substrate 16 to form fins 14 prior to the mounting of fins 14 at support 12 .
- the preparation of substrate 16 typically comprises abrading the substrate surface.
- One method of abrading the substrate surface comprises a sand-blasting or grit-blasting process, which increases the area of the substrate surface and creates an anchor profile on the surface to enhance the adhesion of the protective coating to the graphite.
- the preparation of substrate 16 may further comprise removing the particulate matter resulting from the sand-blasting or grit-blasting process.
- Abrading the substrate surface may further provide for the cleaning of the surface (e.g., the removal of foreign particulate material and minor imperfections embedded in the surface layers of the material).
- the preparation of the substrate surface may be effected by other methods such as, for example, reactive ion etching in which chemically active ions are accelerated along the lines of a generated electromagnetic field to bombard the substrate surface perpendicular to the plane in which the surface extends, thereby removing the surface layer.
- the application of coating 18 to substrate 16 typically comprises the spray deposition of the metal, alloy, or refractory material onto the prepared surface of substrate 16 .
- the coating is applied to the surface of substrate 16 utilizing an arc spray technique.
- an arc is struck between two wire electrodes fabricated of the metal to be deposited, and the electrodes are melted by the heat generated from the arc.
- a pressurized gas is directed at the electrodes, and the molten metal droplets are projected at substrate 16 and impinged on the substrate surface at high velocity.
- coating 18 In another method of the application of coating 18 known as the flame spray technique, the metal is melted via a flame generated from a combustible gas, and the molten metal droplets are projected onto a heated substrate 16 .
- Other techniques by which coating 18 may be disposed on substrate include, but are not limited to, vapor deposition.
- the coating may be selectively applied by masking areas of substrates 16 .
- a masking material 40 is applied to some areas of substrate 16 to allow substrate 16 to be metallized solely at the non-masked areas 42 .
- Coating material applied to some surfaces facilitates the effectiveness of the soldered joints by which the fins are easily and readily attached to the body while allowing the weight of the fin to be kept to a minimum.
- masking material 40 allows the heat transfer surfaces to remain free of the coating.
- masking material 40 may also be applied to the facial areas of substrate 16 in order to avoid the unnecessary disposing of excess coating material on substrate 16 , further limiting the amount of coating material unnecessarily disposed on substrate 16 .
- Apparatus 20 allows for the preparation of the surfaces of substrates 16 and the application of the coating material in an assembly line format to form fins 14 , which may be assembled with supports to form heat sinks.
- Apparatus 20 comprises a first chamber 22 , a second chamber 24 , and a transport device 26 by which substrates 16 can be transported through chambers 22 , 24 for preparation and application of the coating.
- a grit-removing apparatus 23 is preferably disposed intermediate chambers 22 , 24 to remove residue and particulate matter generated in the abrading process.
- the transport of substrates 16 through apparatus 20 is preferably automated and controlled via a control system (not shown) disposed in communication with apparatus 20 .
- First chamber 22 is preferably an area in which the surfaces of substrates 16 may be prepared for the subsequent application of the protective material to form the coating.
- the preparation of substrates 16 typically comprises an abrasive treatment of the surfaces of substrates 16 .
- Such an abrasive treatment is effected via the mechanical operation of a suitable treatment device 28 , e.g., a sand-blasting or grit-blasting device or a reactive ion etching device.
- Grit-removing apparatus 23 preferably comprises a jet of inert gas directed at the surfaces of fins 14 .
- Other apparatuses similarly operated, e.g., solvent or aqueous sprayers optionally followed by blow dry streams, may alternately provide for the removal of grit generated in the abrading process.
- Second chamber 24 is an area in which the protective coatings are disposed at the prepared substrates 16 .
- second chamber 24 is disposed adjacent to grit-removing apparatus 23 such that a continuous feed of substrates 16 can be maintained through apparatus 20 .
- the application of the protective coating is effected via the operation of a spray device 30 , which is preferably an arc spray device.
- Transport device 26 provides for the assembly line treatment of substrates 16 to form fins 14 that may be assembled to form the heat sinks.
- the assembly line treatment is effected by the movement of the workpiece substrates 16 through chambers 22 , 24 in the direction of an arrow 32 . Movement of substrates 16 may be either continual or continuous; in either case, however, the movement is preferably automated such that operator intervention is minimal and controlled such that the level of skill required to operate apparatus 20 is low.
- Transport device 26 may be a conveyor belt, as is shown. Other devices that may provide for the transport of substrates through the chambers include, but are not limited to, carousels, trolleys, and the like.
- the product fins 14 are removed from transport device 26 preferably subsequent to their exiting from second chamber 24 .
- cladding fins 14 comprises preparing only the surfaces of the fins at which contact is made during the handling or assembly of the heat sink and applying the protective material only to those surfaces.
- Handling surfaces are typically the line-of-sight surfaces that comprise the outer edges of the fins as well as the facial surfaces of the fins disposed at the ends of a heat sink. Handling surfaces may, however, comprise the surfaces of the fins intermediate the edges.
- heat sink 10 on which only the line-of-sight surfaces are coated is shown.
- heat sink 10 is fully assembled by disposing the graphite fins 14 at the grooves of support 12 by any suitable means prior to coating. Cladding of the line-of-sight surfaces, particularly those surfaces at the edges of the fins and at which contact is made during the handling or assembly of heat sink 10 , provides a protective coating to inhibit the chipping and/or flaking of the graphite-epoxy composite material while surfaces 36 at which contact is less likely to be made remain uncoated or minimally coated. As described above, application of coating 18 to the line-of-sight surface enhances the robustness of the assembled heat sink 10 .
- the line-of-sight surfaces of the assembled heat sink 10 may be prepared and coated using techniques similar to those described above.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
One embodiment of a heat sink comprises a metal support member having a groove disposed at a surface thereof and a fin disposed at the groove. The fin comprises a graphite-based material having a metal-based coating disposed thereon, and the fin is retained at the groove via a soldered joint at the metal-based coating and the groove. Another exemplary embodiment of a heat sink comprises a plurality of fins alternatingly arranged with a plurality of spacers. A method of fabricating a heat sink comprises preparing a surface of a graphite-based substrate, removing particulate matter generated from the preparation of the surface of the substrate, applying a metal-based coating at the surface of the substrate, and arranging the substrate to form a heat sink structure. An apparatus for cladding fins of a heat sink with a protective material comprises a first chamber that facilitates the preparation of substrate surfaces, a grit-removing apparatus disposed adjacent to the first chamber, a second chamber that facilitates the application of the protective material to the substrate surfaces, and a transport device configured to facilitate the movement of the substrates through the first chamber, to the grit-removing apparatus, and through the second chamber.
Description
- This application is a divisional of U.S. patent application Ser. No. 10/340,445 filed Jan. 10, 2003, the contents of which are incorporated by reference herein in their entirety.
- This disclosure relates generally to heat sinks and, more particularly, to graphite-based heat sinks and a method and an apparatus for the manufacture thereof.
- Heat sinks are generally utilized to provide for the conductive transfer of heat from a heat source (e.g., an electronic component) to a surrounding environment. The conductive transfer of heat from the heat source is most efficient when the heat sink is fabricated from a material having a high coefficient of thermal conductivity to facilitate the rapid conduction of heat from the heat source and its dissipation to the surrounding environment. Such materials include metals such as copper, aluminum, tungsten, molybdenum, alloys of the foregoing metals, and the like. Heat sinks fabricated from such metals and alloys, however, while providing adequate heat transfer capabilities, typically add significant cost and weight to the systems into which they are incorporated.
- To alleviate problems associated with weight, the fins of the heat sinks may be made of lighter materials having comparable or improved heat transfer properties. One example of such a material is high conductivity graphite, which may be utilized in a pure form or may be combined with another material to form a graphite composite. However, difficulties associated with the attachment of graphite or graphite composite heat sink fins pose significant obstacles to the use of such materials. In particular, because graphite is not solderable, attachment of graphite fins to a metal base are oftentimes made by alternate means, e.g., with adhesives such as epoxies. Furthermore, because graphite is by nature a brittle material, heat sink fins fabricated from graphite or graphite composites typically crack, chip, or flake, thereby potentially compromising the integrity of the heat sink structure. Chipping or flaking of the graphite or graphite composite material may further raise issues with respect to the contamination of the componentry of the device at which the heat sink is disposed. In particular, chipping or flaking of the graphite materials may contaminate and detrimentally affect the operation of electronic components from which heat must be removed to ensure the proper operation of an electronic system.
- Disclosed herein are heat sinks, a method for fabricating a heat sink, and an apparatus for cladding fins of a heat sink with protective material. One exemplary embodiment of a heat sink comprises a metal support member having a groove disposed at a surface thereof and a fin disposed at the groove. The fin comprises a graphite-based material having a metal-based coating disposed thereon, and the fin is retained at the groove via a soldered joint at the metal-based coating and the groove. Another exemplary embodiment of a heat sink comprises a plurality of fins alternatingly arranged with a plurality of spacers, the fins comprising a graphite-based material having a metal-based coating disposed thereon, and the spacers comprising either metal or graphite-epoxy coated with metal.
- A method of fabricating a heat sink comprises preparing a surface of a graphite-based substrate, removing particulate matter generated from the preparation of the surface of the substrate, applying a metal-based coating at the surface of the prepared substrate, and arranging the prepared substrate having the metal-based coating to form a heat sink structure.
- An apparatus for cladding fins of a heat sink with a protective material comprises a first chamber configured to facilitate the preparation of substrate surfaces of the fins of the heat sink, a grit-removing apparatus disposed adjacent to the first chamber, a second chamber disposed adjacent to the grit-removing apparatus and being configured to facilitate the application of the protective material to the substrate surfaces of the fins, and a transport device configured to facilitate the movement of the substrate surfaces through the first chamber, to the grit-removing apparatus, and through the second chamber.
- Referring to the exemplary drawings, wherein like elements are numbered alike in the several figures:
-
FIG. 1 is a cross-sectional representation of a heat sink having graphite-epoxy fins clad with a metal coating disposed in grooves of a metal support; -
FIG. 2 is a cross-sectional representation of a heat sink having graphite-epoxy fins alternately arranged with spacers; -
FIG. 3 is a plan view of a heat sink fin having a metal coating; -
FIG. 4 is a perspective view of a fin of a heat sink in which a protective coating can be selectively applied using a mask; -
FIG. 5 is a schematic representation of an apparatus by which the fins of the heat sink ofFIG. 1 may be coated; and -
FIG. 6 is a cross-sectional representation of a heat sink having graphite-epoxy fins clad with protective coatings disposed at line-of-sight surfaces. - Disclosed herein are heat sinks having graphite-based fins. In one exemplary embodiment, a heat sink is defined by fins mounted within grooves disposed in a support surface. In another exemplary embodiment, a heat sink is defined by an alternating arrangement of fins and spacers. Also disclosed are methods of fabricating heat sinks by metallizing graphite-based substrates and either disposing the substrates as fins at a support or arranging the substrates with spacers. Exemplary materials that may be used for the metallizing include, but are not limited to, metals, alloys, metal-based composite materials, refractory materials, and the like. The metallizing of the substrates to form fins preferably provides a surface finish that facilitates the connection (e.g., the soldering) of the fins to the support. The metallizing also increases the robustness of the fins and further serves to form a protective coating that inhibits chipping and/or flaking of the graphite material, which may detrimentally affect the performance of the heat sink or the components associated therewith.
- Referring to
FIG. 1 , a heat sink is shown generally at 10.Heat sink 10 comprises asupport 12 and a plurality offins 14 extending fromsupport 12. Fins 14 are preferably disposed in grooves disposed withinsupport 12 and secured therein. Alternately, as is shown inFIG. 2 , aheat sink 110 may comprise an arrangement of alternatingly-positionedfins 114 andspacers 115 to form a heat sink structure. Thefins 114 andspacers 115 are preferably fixed in a parallel-planar relationship by any suitable means, e.g., asolder joint 117. In either configuration, the heat sink is generally configured to be attached to a, heat generating electrical device, e.g., a microchip module or a similar device. - Referring back to
FIG. 1 , the graphite-basedfins 14 preferably comprise graphite or a graphite-epoxy composite (hereinafter “graphite”) substrates clad with a metal (“metallized”) to facilitate the securing offins 14 within the grooves ofsupport 12 and to inhibit the flaking or chipping of the graphite material. The foot portion of eachfin 14 is preferably securely disposed atsupport 12 via asolder joint 17, although any suitable method of attachment such as ultrasonic welding, brazing, or the like may be utilized. Fins 14 are also planar in structure such that the facial areas of eachfin 14 are maximized in order to effect a maximum amount of heat transfer from eachfin 14 to the adjacent environment. The planar facial areas of eachfin 14 may be of any configuration including, but not limited to, round, elliptical, angular, or any combination of the foregoing configurations. - Referring now to
FIG. 3 , one exemplary embodiment of a metallized heat sink fin is shown at 14. The underlying structure of eachfin 14 comprises thesubstrate 16 fabricated of the graphite.Substrate 16 is preferably substantially uniformly coated with the coating, shown at 18, thereby cladding the exposed surfaces. A substantially uniform coating is one in which variations in thickness of the coating over the area of the substrate to which the coating is applied are functions of the conditions under which the coating is applied (e.g., temperature, rheological characteristics of the coating material, method of application of the coating material, and the like). As is shown, both the facial surfaces as well as the edges ofsubstrate 16 are coated to a thickness L of about 25 micrometers (um) to about 50 um. The edges may be defined by a radius r at the edges ofsubstrate 16, which may be formed during the application ofcoating 18 as a result of the flow characteristics of the metal during its application. - As stated above,
coating 18 is selected and disposed at the exposed surface ofsubstrate 16 to allow for the soldering attachment of fins to support 12 (or to spacers) as well as to prevent damage tofins 14 and further to inhibit the flaking or chipping of the graphite material. The graphite from whichsubstrate 16 is fabricated may allow the coating material to penetrate the surface ofsubstrate 16 to a substantial degree, thereby securely claddingsubstrate 16. Coating 18 preferably comprises a lightweight metal having a high coefficient of thermal transfer and having corrosion inhibitive- or preventive properties and sufficient durability when applied tosubstrate 16 such that damage tofins 14 during handling of the heat sink is avoided or at least minimized. Metals that may be used include, but are not limited to, aluminum, zinc, copper, silver, nickel, alloys of the foregoing metals, high temperature refractory coatings, combinations of the foregoing materials, and the like. A preferred coating material comprises about 85% zinc and about 15% aluminum. A more preferred coating comprises pure or near-pure zinc. - Referring now to both
FIGS. 1 and 3 ,fins 14 are typically prepared and coated prior to assembly ofheat sink 10. In one exemplary embodiment, the cladding offins 14 comprises the preparation ofsubstrate 16 and the application ofcoating 18 tosubstrate 16 to formfins 14 prior to the mounting offins 14 atsupport 12. The preparation ofsubstrate 16 typically comprises abrading the substrate surface. One method of abrading the substrate surface comprises a sand-blasting or grit-blasting process, which increases the area of the substrate surface and creates an anchor profile on the surface to enhance the adhesion of the protective coating to the graphite. The preparation ofsubstrate 16 may further comprise removing the particulate matter resulting from the sand-blasting or grit-blasting process. Abrading the substrate surface may further provide for the cleaning of the surface (e.g., the removal of foreign particulate material and minor imperfections embedded in the surface layers of the material). The preparation of the substrate surface may be effected by other methods such as, for example, reactive ion etching in which chemically active ions are accelerated along the lines of a generated electromagnetic field to bombard the substrate surface perpendicular to the plane in which the surface extends, thereby removing the surface layer. - The application of
coating 18 tosubstrate 16 typically comprises the spray deposition of the metal, alloy, or refractory material onto the prepared surface ofsubstrate 16. Preferably, the coating is applied to the surface ofsubstrate 16 utilizing an arc spray technique. In the arc spray technique, an arc is struck between two wire electrodes fabricated of the metal to be deposited, and the electrodes are melted by the heat generated from the arc. As the electrodes are melted, a pressurized gas is directed at the electrodes, and the molten metal droplets are projected atsubstrate 16 and impinged on the substrate surface at high velocity. In another method of the application ofcoating 18 known as the flame spray technique, the metal is melted via a flame generated from a combustible gas, and the molten metal droplets are projected onto aheated substrate 16. Other techniques by whichcoating 18 may be disposed on substrate include, but are not limited to, vapor deposition. - The coating may be selectively applied by masking areas of
substrates 16. In one embodiment as is shown with reference toFIG. 4 , a maskingmaterial 40 is applied to some areas ofsubstrate 16 to allowsubstrate 16 to be metallized solely at thenon-masked areas 42. Coating material applied to some surfaces (particularly to the surfaces at which the fins are joined to the body to form the heat sink) facilitates the effectiveness of the soldered joints by which the fins are easily and readily attached to the body while allowing the weight of the fin to be kept to a minimum. Thus, maskingmaterial 40 allows the heat transfer surfaces to remain free of the coating. In other embodiments, because chipping and flaking of the composite material generally occurs at the corners and edges ofsubstrate 16, maskingmaterial 40 may also be applied to the facial areas ofsubstrate 16 in order to avoid the unnecessary disposing of excess coating material onsubstrate 16, further limiting the amount of coating material unnecessarily disposed onsubstrate 16. - Referring now to
FIG. 5 , the apparatus by which-substrates 16 are clad with the protective material is shown generally at 20.Apparatus 20 allows for the preparation of the surfaces ofsubstrates 16 and the application of the coating material in an assembly line format to formfins 14, which may be assembled with supports to form heat sinks.Apparatus 20 comprises afirst chamber 22, asecond chamber 24, and atransport device 26 by whichsubstrates 16 can be transported throughchambers apparatus 23 is preferably disposedintermediate chambers substrates 16 throughapparatus 20 is preferably automated and controlled via a control system (not shown) disposed in communication withapparatus 20. -
First chamber 22 is preferably an area in which the surfaces ofsubstrates 16 may be prepared for the subsequent application of the protective material to form the coating. As stated above, the preparation ofsubstrates 16 typically comprises an abrasive treatment of the surfaces ofsubstrates 16. Such an abrasive treatment is effected via the mechanical operation of asuitable treatment device 28, e.g., a sand-blasting or grit-blasting device or a reactive ion etching device. - Grit-removing
apparatus 23 preferably comprises a jet of inert gas directed at the surfaces offins 14. Other apparatuses similarly operated, e.g., solvent or aqueous sprayers optionally followed by blow dry streams, may alternately provide for the removal of grit generated in the abrading process. -
Second chamber 24 is an area in which the protective coatings are disposed at theprepared substrates 16. Preferably,second chamber 24 is disposed adjacent to grit-removingapparatus 23 such that a continuous feed ofsubstrates 16 can be maintained throughapparatus 20. As stated above, the application of the protective coating is effected via the operation of aspray device 30, which is preferably an arc spray device. -
Transport device 26 provides for the assembly line treatment ofsubstrates 16 to formfins 14 that may be assembled to form the heat sinks. The assembly line treatment is effected by the movement of theworkpiece substrates 16 throughchambers arrow 32. Movement ofsubstrates 16 may be either continual or continuous; in either case, however, the movement is preferably automated such that operator intervention is minimal and controlled such that the level of skill required to operateapparatus 20 is low.Transport device 26 may be a conveyor belt, as is shown. Other devices that may provide for the transport of substrates through the chambers include, but are not limited to, carousels, trolleys, and the like. Theproduct fins 14 are removed fromtransport device 26 preferably subsequent to their exiting fromsecond chamber 24. - Another exemplary embodiment of
cladding fins 14 comprises preparing only the surfaces of the fins at which contact is made during the handling or assembly of the heat sink and applying the protective material only to those surfaces. Handling surfaces are typically the line-of-sight surfaces that comprise the outer edges of the fins as well as the facial surfaces of the fins disposed at the ends of a heat sink. Handling surfaces may, however, comprise the surfaces of the fins intermediate the edges. - Referring now to
FIG. 6 ,heat sink 10 on which only the line-of-sight surfaces are coated is shown. In such an embodiment,heat sink 10 is fully assembled by disposing thegraphite fins 14 at the grooves ofsupport 12 by any suitable means prior to coating. Cladding of the line-of-sight surfaces, particularly those surfaces at the edges of the fins and at which contact is made during the handling or assembly ofheat sink 10, provides a protective coating to inhibit the chipping and/or flaking of the graphite-epoxy composite material whilesurfaces 36 at which contact is less likely to be made remain uncoated or minimally coated. As described above, application ofcoating 18 to the line-of-sight surface enhances the robustness of the assembledheat sink 10. The line-of-sight surfaces of the assembledheat sink 10 may be prepared and coated using techniques similar to those described above. - While the invention has been described with reference to an exemplary embodiment, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims (6)
1. An apparatus for cladding fins of a heat sink with a protective material, said apparatus comprising:
a first chamber configured to facilitate the preparation of substrate surfaces of said fins of said heat sink;
a grit-removing apparatus disposed adjacent to said first chamber;
a second chamber disposed adjacent to said grit-removing apparatus and being configured to facilitate the application of said protective material to said substrate surfaces of said fins; and
a transport device configured to facilitate the movement of said substrate surfaces through said first chamber, to said grit-removing apparatus, and through said second chamber.
2. The apparatus of claim 1 , wherein said first chamber comprises an abrasive treatment device.
3. The apparatus of claim 2 , wherein said abrasive treatment device comprises a grit-blasting device.
4. The apparatus of claim 1 , wherein said second chamber comprises a spray device.
5. The apparatus of claim 4 , wherein said spray device is selected from the group of spray devices consisting of arc spray devices, thermal spray devices, and vapor deposition devices.
6. The apparatus of claim 1 , wherein said transport device is a conveyor belt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/101,125 US20050167085A1 (en) | 2003-01-10 | 2005-04-07 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/340,445 US6907917B2 (en) | 2003-01-10 | 2003-01-10 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
US11/101,125 US20050167085A1 (en) | 2003-01-10 | 2005-04-07 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/340,445 Division US6907917B2 (en) | 2003-01-10 | 2003-01-10 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050167085A1 true US20050167085A1 (en) | 2005-08-04 |
Family
ID=32711334
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/340,445 Expired - Fee Related US6907917B2 (en) | 2003-01-10 | 2003-01-10 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
US11/101,125 Abandoned US20050167085A1 (en) | 2003-01-10 | 2005-04-07 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
US11/100,874 Expired - Fee Related US7254888B2 (en) | 2003-01-10 | 2005-04-07 | Method for manufacturing graphite-base heat sinks |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/340,445 Expired - Fee Related US6907917B2 (en) | 2003-01-10 | 2003-01-10 | Graphite-based heat sinks and method and apparatus for the manufacture thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/100,874 Expired - Fee Related US7254888B2 (en) | 2003-01-10 | 2005-04-07 | Method for manufacturing graphite-base heat sinks |
Country Status (1)
Country | Link |
---|---|
US (3) | US6907917B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070246824A1 (en) * | 2006-03-28 | 2007-10-25 | Gwin Paul J | Heat sink design using clad metal |
US20090032218A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for transferring between two heat conducting surfaces |
US20090032217A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for spreading heat over a finned surface |
US20090032234A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for transferring heat in a fin of a heat sink |
US20090178782A1 (en) * | 2006-03-15 | 2009-07-16 | Ferraz Shawmut Thermal Management | Heat Exchanger and a Method of Manufacturing it |
US20100000718A1 (en) * | 2008-06-02 | 2010-01-07 | Gerald Ho Kim | Silicon-based thermal energy transfer device and apparatus |
KR101081565B1 (en) * | 2009-04-17 | 2011-11-08 | 디에스엠 주식회사 | heat exchange pipe |
US20180308780A1 (en) * | 2015-07-03 | 2018-10-25 | Zhejiang Jiaxi Optoelectronic Equipment Manufactur Ing Co., Ltd. | Thermally superconducting heat dissipation device and manufacturing method thereof |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070053168A1 (en) * | 2004-01-21 | 2007-03-08 | General Electric Company | Advanced heat sinks and thermal spreaders |
FR2865555B1 (en) * | 2004-01-26 | 2006-04-28 | Lacroix Soc E | ACTUATOR DEVICE WITH THERMAL CONTROL |
US8020608B2 (en) * | 2004-08-31 | 2011-09-20 | Hewlett-Packard Development Company, L.P. | Heat sink fin with stator blade |
US20060068205A1 (en) * | 2004-09-24 | 2006-03-30 | Carbone Lorraine Composants | Composite material used for manufacturing heat exchanger fins with high thermal conductivity |
US7228887B2 (en) * | 2005-02-23 | 2007-06-12 | Asia Vital Component Co., Ltd. | Radiator structure |
US7286352B2 (en) * | 2005-04-15 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Thermally expanding base of heatsink to receive fins |
US7593230B2 (en) * | 2005-05-05 | 2009-09-22 | Sensys Medical, Inc. | Apparatus for absorbing and dissipating excess heat generated by a system |
US20060266496A1 (en) * | 2005-05-31 | 2006-11-30 | Sensis Corporation | Method and apparatus for dissipating heat |
EP1746077A1 (en) * | 2005-06-21 | 2007-01-24 | Sgl Carbon Ag | Metal-coated graphite foil |
US20060289092A1 (en) * | 2005-06-23 | 2006-12-28 | Chun-Hou Chan | Heat dissipation device having low melting point alloy coating and a method thereof |
US20070017660A1 (en) * | 2005-07-12 | 2007-01-25 | Stefan Kienitz | Heatsink with adapted backplate |
US7786486B2 (en) * | 2005-08-02 | 2010-08-31 | Satcon Technology Corporation | Double-sided package for power module |
US20070121299A1 (en) * | 2005-11-30 | 2007-05-31 | International Business Machines Corporation | Heat transfer apparatus, cooled electronic module and methods of fabrication thereof employing thermally conductive composite fins |
US20070204972A1 (en) * | 2006-03-01 | 2007-09-06 | Sensis Corporation | Method and apparatus for dissipating heat |
US20070218284A1 (en) * | 2006-03-17 | 2007-09-20 | Lotes Co., Ltd. | Graphite product and its fabrication method |
US7420810B2 (en) * | 2006-09-12 | 2008-09-02 | Graftech International Holdings, Inc. | Base heat spreader with fins |
US20090145580A1 (en) * | 2007-12-10 | 2009-06-11 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Heat sink and a method of manufacturing the heat sink |
US20090165302A1 (en) * | 2007-12-31 | 2009-07-02 | Slaton David S | Method of forming a heatsink |
ITVI20080147A1 (en) * | 2008-06-23 | 2009-12-24 | Amer Spa | REFINED SINK, FREQUENCY CONVERTER INCLUDING SUCH DRAINER AND METHOD OF PRODUCTION OF SUCH SINK |
TW201035513A (en) * | 2009-03-25 | 2010-10-01 | Wah Hong Ind Corp | Method for manufacturing heat dissipation interface device and product thereof |
US8955580B2 (en) * | 2009-08-14 | 2015-02-17 | Wah Hong Industrial Corp. | Use of a graphite heat-dissipation device including a plating metal layer |
US8852778B2 (en) * | 2009-04-30 | 2014-10-07 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
CN102122647A (en) * | 2010-01-08 | 2011-07-13 | 精碳科技股份有限公司 | Carbon interface composite heat dissipation structure |
CN101813394A (en) * | 2010-04-04 | 2010-08-25 | 姚德龙 | High thermal conductive fin for heat collector of solar water heater |
US10347559B2 (en) | 2011-03-16 | 2019-07-09 | Momentive Performance Materials Inc. | High thermal conductivity/low coefficient of thermal expansion composites |
US20120261105A1 (en) * | 2011-04-12 | 2012-10-18 | Asia Vital Components Co., Ltd. | Led heat sink and manufacturing method thereof |
DE102011118483A1 (en) | 2011-11-12 | 2013-05-16 | Volkswagen Aktiengesellschaft | Heat exchanger used for motor car, has base whose oriented cross-section is set with different widths and lengths perpendicular and parallel to longitudinal direction such that maximum length has greater extension than maximum width |
WO2013117213A1 (en) * | 2012-02-06 | 2013-08-15 | Huawei Technologies Co., Ltd. | Heat sink with laminated fins and method for production of such a heat sink |
US9723058B2 (en) | 2013-05-28 | 2017-08-01 | Vmware, Inc. | Dynamic registration of an application with an enterprise system |
CN103429057A (en) * | 2013-07-26 | 2013-12-04 | 昆山维金五金制品有限公司 | Radiating fin supporting device |
CN104752375A (en) * | 2013-12-27 | 2015-07-01 | 奇鋐科技股份有限公司 | Semiconductor cooling structure |
US20170115073A1 (en) * | 2015-10-22 | 2017-04-27 | Michael R. Knox | Heat exchanger elements and divices |
US10653038B2 (en) * | 2016-04-14 | 2020-05-12 | Microsoft Technology Licensing, Llc | Heat spreader |
CA3040456A1 (en) * | 2016-10-14 | 2018-04-19 | Magna Seating Inc. | Flexible graphite ribbon heat sink for thermoelectric device |
JP2018093119A (en) * | 2016-12-06 | 2018-06-14 | パナソニックIpマネジメント株式会社 | Heat sink |
KR101877322B1 (en) * | 2017-03-29 | 2018-07-11 | (주)엘이디월드 | LED package module using graphene pin inserted heat sink and graphene radiant heat plate |
JP2019096702A (en) * | 2017-11-21 | 2019-06-20 | トヨタ自動車株式会社 | Cooler |
US11222830B2 (en) * | 2018-01-03 | 2022-01-11 | Lenovo (Beijing) Co., Ltd. | Heat dissipation structure and electronic device |
DE102018127774A1 (en) | 2018-11-07 | 2020-05-07 | Bayerische Motoren Werke Aktiengesellschaft | Component and method for producing a component |
USD891200S1 (en) * | 2018-11-08 | 2020-07-28 | Alexander Moskovic | Utensil rest |
USD891199S1 (en) * | 2018-11-08 | 2020-07-28 | Alexander Moskovic | Utensil rest |
EP3696849A1 (en) * | 2019-02-18 | 2020-08-19 | ABB Schweiz AG | A heatsink and a method of manufacturing a heat sink |
JP7238522B2 (en) * | 2019-03-22 | 2023-03-14 | 富士通株式会社 | Heat sink, substrate module, transmission device, and heat sink manufacturing method |
EP3872845A1 (en) * | 2020-02-28 | 2021-09-01 | Siemens Aktiengesellschaft | Method for manufacturing a power module unit |
CN112366188B (en) * | 2020-08-24 | 2023-07-25 | 杰群电子科技(东莞)有限公司 | Semiconductor device packaging structure with radiating fins and packaging method |
CN114571013B (en) * | 2022-02-13 | 2024-01-30 | 江苏中清光伏科技有限公司 | Solar power generation component manufacturing device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2683436A (en) * | 1949-04-09 | 1954-07-13 | Columbia Cable & Electric Corp | Apparatus for the metal spray coating of tubes |
US3527688A (en) * | 1965-12-29 | 1970-09-08 | Solvay | Electrolytic cells |
US4714623A (en) * | 1985-02-28 | 1987-12-22 | Riccio Louis M | Method and apparatus for applying metal cladding on surfaces and products formed thereby |
US5100737A (en) * | 1989-11-16 | 1992-03-31 | Le Carbone Lorraine | Multi-layer material comprising flexible graphite which is reinforced mechanically, electrically and thermally by a metal and a process for the production thereof |
US5494753A (en) * | 1994-06-20 | 1996-02-27 | General Electric Company | Articles having thermal conductors of graphite |
US5695883A (en) * | 1991-09-17 | 1997-12-09 | Tocalo Co., Ltd. | Carbon member having a metal spray coating |
US6113991A (en) * | 1996-12-24 | 2000-09-05 | Sulzer Metco Ag | Method for coating a carbon substrate or a non-metallic containing carbon |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3547692A (en) * | 1968-10-17 | 1970-12-15 | Engelhard Min & Chem | Metal coating carbon substrates |
GB1601427A (en) * | 1977-06-20 | 1981-10-28 | Siemens Ag | Deposition of a layer of electrically-conductive material on a graphite body |
DE2817371C2 (en) * | 1978-04-20 | 1982-08-12 | Siemens AG, 1000 Berlin und 8000 München | Power transmission brush |
US4471837A (en) * | 1981-12-28 | 1984-09-18 | Aavid Engineering, Inc. | Graphite heat-sink mountings |
US5471367A (en) * | 1994-03-15 | 1995-11-28 | Composite Optics, Inc. | Composite structure for heat transfer and radiation |
US6085830A (en) * | 1997-03-24 | 2000-07-11 | Fujikura Ltd. | Heat sink, and process and apparatus for manufacturing the same |
US6099974A (en) * | 1997-07-16 | 2000-08-08 | Thermal Spray Technologies, Inc. | Coating that enables soldering to non-solderable surfaces |
JPH1180858A (en) * | 1997-09-03 | 1999-03-26 | Furukawa Electric Co Ltd:The | Composite material and its production |
DE50100123D1 (en) * | 2001-05-14 | 2003-04-24 | Franz Oberflaechentechnik Gmbh | Metal coating of graphite |
US6758263B2 (en) * | 2001-12-13 | 2004-07-06 | Advanced Energy Technology Inc. | Heat dissipating component using high conducting inserts |
US6918438B2 (en) * | 2002-06-04 | 2005-07-19 | International Business Machines Corporation | Finned heat sink |
US6749010B2 (en) * | 2002-06-28 | 2004-06-15 | Advanced Energy Technology Inc. | Composite heat sink with metal base and graphite fins |
-
2003
- 2003-01-10 US US10/340,445 patent/US6907917B2/en not_active Expired - Fee Related
-
2005
- 2005-04-07 US US11/101,125 patent/US20050167085A1/en not_active Abandoned
- 2005-04-07 US US11/100,874 patent/US7254888B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2683436A (en) * | 1949-04-09 | 1954-07-13 | Columbia Cable & Electric Corp | Apparatus for the metal spray coating of tubes |
US3527688A (en) * | 1965-12-29 | 1970-09-08 | Solvay | Electrolytic cells |
US4714623A (en) * | 1985-02-28 | 1987-12-22 | Riccio Louis M | Method and apparatus for applying metal cladding on surfaces and products formed thereby |
US5100737A (en) * | 1989-11-16 | 1992-03-31 | Le Carbone Lorraine | Multi-layer material comprising flexible graphite which is reinforced mechanically, electrically and thermally by a metal and a process for the production thereof |
US5695883A (en) * | 1991-09-17 | 1997-12-09 | Tocalo Co., Ltd. | Carbon member having a metal spray coating |
US5494753A (en) * | 1994-06-20 | 1996-02-27 | General Electric Company | Articles having thermal conductors of graphite |
US6113991A (en) * | 1996-12-24 | 2000-09-05 | Sulzer Metco Ag | Method for coating a carbon substrate or a non-metallic containing carbon |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090178782A1 (en) * | 2006-03-15 | 2009-07-16 | Ferraz Shawmut Thermal Management | Heat Exchanger and a Method of Manufacturing it |
US8434228B2 (en) * | 2006-03-15 | 2013-05-07 | Ferraz Shawmut Thermal Management | Heat exchanger and a method of manufacturing it |
US7446412B2 (en) * | 2006-03-28 | 2008-11-04 | Intel Corporation | Heat sink design using clad metal |
US20080282543A1 (en) * | 2006-03-28 | 2008-11-20 | Gwin Paul J | Heat sink design using clad metal |
US20070246824A1 (en) * | 2006-03-28 | 2007-10-25 | Gwin Paul J | Heat sink design using clad metal |
US7882634B2 (en) | 2006-03-28 | 2011-02-08 | Intel Corporation | Method of manufacturing heat sink using clad metal |
US8235094B2 (en) * | 2007-07-31 | 2012-08-07 | Adc Telecommunications, Inc. | Apparatus for transferring heat in a fin of a heat sink |
US20090032218A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for transferring between two heat conducting surfaces |
US20090032217A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for spreading heat over a finned surface |
US20090032234A1 (en) * | 2007-07-31 | 2009-02-05 | Adc Telecommunications, Inc. | Apparatus for transferring heat in a fin of a heat sink |
US8051896B2 (en) | 2007-07-31 | 2011-11-08 | Adc Telecommunications, Inc. | Apparatus for spreading heat over a finned surface |
US20140131011A1 (en) * | 2008-06-02 | 2014-05-15 | Gerald Ho Kim | Silicon-Based Thermal Energy Transfer Device And Apparatus |
US8490678B2 (en) * | 2008-06-02 | 2013-07-23 | Gerald Ho Kim | Silicon-based thermal energy transfer device and apparatus |
US20140124185A1 (en) * | 2008-06-02 | 2014-05-08 | Gerald Ho Kim | Silicon-Based Thermal Energy Transfer Device And Apparatus |
US20100000718A1 (en) * | 2008-06-02 | 2010-01-07 | Gerald Ho Kim | Silicon-based thermal energy transfer device and apparatus |
US20140158329A1 (en) * | 2008-06-02 | 2014-06-12 | Gerald Ho Kim | Silicon-Based Thermal Energy Transfer Device And Apparatus |
US9746254B2 (en) * | 2008-06-02 | 2017-08-29 | Gerald Ho Kim | Silicon-based thermal energy transfer device and apparatus |
KR101081565B1 (en) * | 2009-04-17 | 2011-11-08 | 디에스엠 주식회사 | heat exchange pipe |
US20180308780A1 (en) * | 2015-07-03 | 2018-10-25 | Zhejiang Jiaxi Optoelectronic Equipment Manufactur Ing Co., Ltd. | Thermally superconducting heat dissipation device and manufacturing method thereof |
US10727149B2 (en) * | 2015-07-03 | 2020-07-28 | Zhejiang Jiaxi Optoelectronic Equipment Manufacturing Co., Ltd. | Thermally superconducting heat dissipation device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20040134646A1 (en) | 2004-07-15 |
US6907917B2 (en) | 2005-06-21 |
US7254888B2 (en) | 2007-08-14 |
US20050167084A1 (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7254888B2 (en) | Method for manufacturing graphite-base heat sinks | |
US5282943A (en) | Method of bonding a titanium containing sputter target to a backing plate and bonded target/backing plate assemblies produced thereby | |
TW524885B (en) | Corrosion resistant component of semiconductor processing equipment and method of manufacturing thereof | |
US6205264B1 (en) | Optical assembly with improved dimensional stability | |
JP3983323B2 (en) | Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer | |
JP3057065B2 (en) | Plasma processing apparatus and plasma processing method | |
CN102259222A (en) | Method and device for applying solder to a workpiece | |
US7964247B2 (en) | Process and apparatus for the manufacture of a sputtering target | |
CN101212126A (en) | Heat dissipation member and semiconductor device using same | |
TW201330761A (en) | Heat dissipating structure, power module, method for manufacturing heat dissipating structure and method for manufacturing power module | |
JP3548221B2 (en) | Method for bonding silicon-containing composition to metal surface | |
JP2001053135A (en) | Robot blade for semiconductor processing device | |
JP7477498B2 (en) | Removable thermal leveller | |
US5276423A (en) | Circuit units, substrates therefor and method of making | |
RU2696910C2 (en) | Sputtering target | |
EP3572555B1 (en) | Method for manufacturing ceramic circuit board | |
KR101790394B1 (en) | Internal member applying apparatus for depositing thin film and method for the same | |
WO2008119696A1 (en) | Composite aluminium or aluminium alloy porous structures | |
EP0862791B1 (en) | Method of manufacturing and transferring metallic droplets | |
CN113897572A (en) | A kind of target material component and target material component manufacturing method | |
US20140151009A1 (en) | Thermal interface element and method of preparation | |
JP4255652B2 (en) | Solid bonding method | |
JP7076630B2 (en) | Semiconductor laser device manufacturing method | |
US10047427B2 (en) | Article, an intermediate product, and a method of making an article | |
JP3329166B2 (en) | Plasma cleaning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |