US20050163708A1 - Chimeric antibody with specificity to human B cell surface antigen - Google Patents
Chimeric antibody with specificity to human B cell surface antigen Download PDFInfo
- Publication number
- US20050163708A1 US20050163708A1 US10/941,768 US94176804A US2005163708A1 US 20050163708 A1 US20050163708 A1 US 20050163708A1 US 94176804 A US94176804 A US 94176804A US 2005163708 A1 US2005163708 A1 US 2005163708A1
- Authority
- US
- United States
- Prior art keywords
- human
- cells
- antibody
- molecule
- chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000282414 Homo sapiens Species 0.000 title claims abstract description 101
- 210000003719 b-lymphocyte Anatomy 0.000 title claims abstract description 31
- 101710160107 Outer membrane protein A Proteins 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 44
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims abstract description 30
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims abstract description 30
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 24
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 19
- 229920001184 polypeptide Polymers 0.000 claims abstract description 17
- 210000004027 cell Anatomy 0.000 claims description 77
- 239000002299 complementary DNA Substances 0.000 claims description 47
- 108060003951 Immunoglobulin Proteins 0.000 claims description 42
- 102000018358 immunoglobulin Human genes 0.000 claims description 42
- 239000013612 plasmid Substances 0.000 claims description 39
- 239000000427 antigen Substances 0.000 claims description 32
- 108091007433 antigens Proteins 0.000 claims description 32
- 102000036639 antigens Human genes 0.000 claims description 32
- 108020004414 DNA Proteins 0.000 claims description 25
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 25
- 238000000338 in vitro Methods 0.000 claims description 11
- 210000004962 mammalian cell Anatomy 0.000 claims description 10
- 108020004511 Recombinant DNA Proteins 0.000 claims description 9
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 claims description 9
- 230000000295 complement effect Effects 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 238000001727 in vivo Methods 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 230000001404 mediated effect Effects 0.000 claims description 4
- 102000053602 DNA Human genes 0.000 claims description 3
- 230000009089 cytolysis Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims 6
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 claims 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 claims 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 claims 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 claims 1
- 238000003018 immunoassay Methods 0.000 claims 1
- 108091033319 polynucleotide Proteins 0.000 claims 1
- 102000040430 polynucleotide Human genes 0.000 claims 1
- 239000002157 polynucleotide Substances 0.000 claims 1
- 239000007790 solid phase Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 18
- 241001529936 Murinae Species 0.000 abstract description 4
- 108090000623 proteins and genes Proteins 0.000 description 86
- 241000699666 Mus <mouse, genus> Species 0.000 description 34
- 108091034117 Oligonucleotide Proteins 0.000 description 23
- 230000014509 gene expression Effects 0.000 description 23
- 108020004999 messenger RNA Proteins 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 230000027455 binding Effects 0.000 description 16
- 239000012634 fragment Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000010367 cloning Methods 0.000 description 14
- 239000013613 expression plasmid Substances 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 12
- 210000004408 hybridoma Anatomy 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000013615 primer Substances 0.000 description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 10
- 108091008146 restriction endonucleases Proteins 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 8
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 241000283707 Capra Species 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 238000002703 mutagenesis Methods 0.000 description 6
- 231100000350 mutagenesis Toxicity 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 201000000050 myeloid neoplasm Diseases 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 108091034057 RNA (poly(A)) Proteins 0.000 description 4
- 101150006914 TRP1 gene Proteins 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 101150084750 1 gene Proteins 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108091035707 Consensus sequence Proteins 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 238000002825 functional assay Methods 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108010089430 Phosphoproteins Proteins 0.000 description 2
- 102000007982 Phosphoproteins Human genes 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 108091092328 cellular RNA Proteins 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000002414 glycolytic effect Effects 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000011503 in vivo imaging Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229960000951 mycophenolic acid Drugs 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 102000013415 peroxidase activity proteins Human genes 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 206010002199 Anaphylactic shock Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 208000037914 B-cell disorder Diseases 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 0 CC***(C)*=N Chemical compound CC***(C)*=N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical class [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108010073254 Colicins Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102100028991 Cytochrome c1, heme protein, mitochondrial Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000916041 Homo sapiens Cytochrome c1, heme protein, mitochondrial Proteins 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 101150062031 L gene Proteins 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- JJWSNOOGIUMOEE-UHFFFAOYSA-N Monomethylmercury Chemical compound [Hg]C JJWSNOOGIUMOEE-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 101100062121 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cyc-1 gene Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 241000609499 Palicourea Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 101000947508 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Cytochrome c isoform 1 Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000006642 detritylation reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 101150106093 gpt gene Proteins 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 101150118163 h gene Proteins 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000002625 monoclonal antibody therapy Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 108010083127 phage repressor proteins Proteins 0.000 description 1
- 108010024226 placental ribonuclease inhibitor Proteins 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 206010040400 serum sickness Diseases 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229940043517 specific immunoglobulins Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000001296 transplacental effect Effects 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- AVBGNFCMKJOFIN-UHFFFAOYSA-N triethylammonium acetate Chemical compound CC(O)=O.CCN(CC)CC AVBGNFCMKJOFIN-UHFFFAOYSA-N 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6875—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody being a hybrid immunoglobulin
- A61K47/6877—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody being a hybrid immunoglobulin the antibody being an immunoglobulin containing regions, domains or residues from different species
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/462—Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
Definitions
- This invention relates to recombinant DNA methods of preparing an antibody with specificity for an antigen on the surface of human B cells, genetic sequences coding therefor, as well as methods of obtaining such sequences.
- mouse monoclonal antibodies may lack the ability to efficiently interact with human effector cells as assessed by functional assays such as antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis (CDC).
- ADCC antibody-dependent cellular cytotoxicity
- CDC complement-mediated cytolysis
- the present invention bridges both the hybridoma and genetic engineering technologies to provide a quick and efficient method, as well as products derived therefrom, for the production of a chimeric human/non-human antibody.
- the chimeric antibodies of the present invention embody a combination of the advantageous characteristics of monoclonal antibodies derived from mouse-mouse hybridomas and of human monoclonal antibodies.
- the chimeric monoclonal antibodies like mouse monoclonal antibodies, can recognize and bind to a human target antigen; however, unlike mouse monoclonal antibodies, the species-specific properties of the chimeric antibodies will avoid the induction of harmful hypersensitivity reactions and may allow for resistance to clearance when used in humans in vivo.
- the inclusion of appropriate human immunoglobulin sequences can result in an antibody which efficiently interacts with human effector cells in vivo to cause tumor cell lysis and the like.
- any desired antibody isotype can be conferred upon a particular antigen combining site.
- Boulianne G. L. et al., Nature, 312: 643 (December 13, 1984), also produced antibodies consisting of mouse variable regions joined to human constant regions. They constructed immunoglobulin genes in which the DNA segments encoding mouse variable regions specific for the hapten trinitrophenyl (TNP) were joined to segments encoding human mu and kappa constant regions. These chimeric genes were expressed as functional TNP binding chimeric IgM.
- TNP hapten trinitrophenyl
- NP 4-hydroxy-3-nitrophenacetyl
- Taniguchi M., in European Patent Publication No. 171 496 (published Feb. 19, 1985) discloses the production of chimeric antibodies having variable regions with tumor specificty derived from experimental animals, and constant regions derived from human.
- the corresponding heavy and light chain genes are produced in the genomic form, and expressed in mammalian cells.
- Boss, M. A., European Patent Application 120694 shows expression in E. coli of non-chimeric immunoglobulin chains with 4-nitrophenyl specificity. There is a broad description of chimeric antibodies but no details (see p. 9).
- Seno M. et al., Nucleic Acids Research, 11: 719-726 (1983), describe the preparation of a cDNA sequence and recombinant plasmids containing the same coding for part of the variable region and all of the constant region of the human IgE heavy chain (epsilon chain).
- the invention provides a genetically engineered chimeric antibody of desired variable region specificity and constant region properties, through gene cloning and expression of light and heavy chains.
- the cloned immunoglobulin gene products can be produced by expression in genetically engineered cells.
- the invention provides cDNA sequences coding for immunoglobulin chains comprising a constant human region and a variable, non-human, region.
- the immunoglobulin chains can be either heavy or light.
- the invention provides gene sequences coding for immunoglobulin chains comprising a cDNA variable region of the desired specificity. These can be combined with genomic constant regions of human origin.
- the invention provides sequences as above, present in recombinant DNA molecules in vehicles such as plasmid vectors, capable of expression in desired prokaryotic or eukaryotic hosts.
- the invention provides hosts capable of producing, by culture, the chimeric antibodies and methods of using these hosts.
- the invention also provides individual chimeric immunoglobulin individual chains, as well as complete assembled molecules having human constant regions and variable regions with a human B cell surface antigen specificity, wherein both variable regions have the same binding specificity.
- immunoglobulin chains and/or molecules provided by the invention are:
- the invention also provides for a genetic sequence, especially a cDNA sequence, coding for the variable region of desired specificity of an antibody molecule heavy and/or light chain, operably linked to a sequence coding for a polypeptide different than an immunoglobulin chain (e.g., an enzyme).
- a genetic sequence especially a cDNA sequence, coding for the variable region of desired specificity of an antibody molecule heavy and/or light chain, operably linked to a sequence coding for a polypeptide different than an immunoglobulin chain (e.g., an enzyme).
- cDNA sequences are particularly advantageous over genomic sequences (which contain introns), in that cDNA sequences can be expressed in bacteria or other hosts which lack appropriate RNA splicing systems.
- FIG. 1 shows the DNA rearrangements and the expression of immunoglobulin mu and gamma heavy chain genes. This is a schematic representation of the human heavy chain gene complex (not shown to scale). Heavy chain variable V region formation occurs through the proper joining of V H , D and J H gene segments. This generates an active mu gene. A different kind of DNA rearrangement called “class switching” relocates the joined V H , D and J H region from the vicinity of mu constant C region to that of another heavy chain C region (switching to gamma is diagrammed here).
- FIG. 2 shows the known nucleotide sequences of human and mouse J regions. Consensus sequences for the J regions are shown below the actual sequences.
- the oligonucleotide sequence below the mouse kappa J region consensus sequence is a Universal Immunoglobulin Gene (UIG) oligonucleotide. Note that there are only a few J regions with relatively conserved sequences, especially near the constant regions, in each immunoglobulin gene locus.
- UAG Universal Immunoglobulin Gene
- FIG. 3 shows the nucleotide sequences of the mouse J regions. Shown below are the oligonucleotide primers UIG-H and UIG-K. Note that each contains a restriction enzyme site. They can be used as primers for the synthesis of cDNA complementary to the variable region of mRNA, and can also be used to mutagenize, in vitro, cloned cDNA.
- FIG. 4 Human Constant Domain Module .
- the ApaI site is 16 nucleotide residues into the C H 1 coding domain of Human gamma 1; and is used in a previous construction of a mouse-human chimeric heavy-chain immunoglobulin.
- the BstEII site is in the J H region, and is used in the construction described in this application.
- the human C K clone, pGML60 is a composite of two cDNA clones, one isolated from GM1500 (pK2-3), the other from GM2146 (pGML1).
- the J K -C K junction sequence shown comes from pK2-3.
- In vitro mutagenesis using the oligonucleotide, J K HindIII was carried out to engineer a HindIII site 14 nucleotide residues 5′ of the J-C junction. This changes a human GTG codon into a CTT codon.
- FIG. 5 shows the nucleotide sequence of the V region of the 2H7 V H cDNA clone pH2-11. The sequence was determined by the dideoxytermination method using M13 subclones of gene fragments. Open circles denote amino acid residues confirmed by peptide sequence. A sequence homologous to D SP.2 in the CDR3 region is underlined. The NcoI site at 5′ end was converted to a SalI site by using SalI linkers.
- FIG. 6 shows the nucleotide sequence of the V region of the 2H7 V K cDNA clone pL2-12.
- the oligonucleotide primer used for site-directed mutagenesis is shown below the J K 5 segment. Open circles denote amino acid residues confirmed by peptide sequence.
- FIG. 7 shows the construction of the light and heavy chain expression plasmids pING2106 (panel a) and pING2101 (panel B).
- the SalI to BamHI fragment from pING2100 is identical to the SalI to BamHI fragment from pING2012E (see panel C).
- a linear representation of the circular plasmid pING2012E is shown in panel C.
- the 6.6 Kb SalI to BamHI fragment contains sequences from pSV2-neo, puc12, M8alphaRX12, and pL1.
- the HindIII site in pSV2-neo was destroyed before assembly of pING2012E by HindIII cleavage, fill-in, and religation.
- FIG. 8 shows the structure of several chimeric 2H7-V H expression plasmids.
- pING2107 is a qpt version of the light chain plasmid, pING2106.
- the larger ones are two-gene plasmids.
- pHL2-11 and pHL2-26 contain both H and L genes, while pLL2-25 contains two L genes. They were constructed by joining an NdeI fragment containing either an H or L gene to partially digested (with NdeI) pING2106.
- FIG. 9 shows a summary of the sequence alterations made in the construction of the 2H7 chimeric antibody expression plasmids. Residues underlined in the 5′ untranslated region are derived from the cloned mouse kappa and heavy-chain genes. Residues circled in the V/C boundary result from mutagenesis operations to engineer restriction enzyme sites in this region.
- antibodies are composed of two light and two heavy chain molecules.
- Light and heavy chains are divided into domains of structural and functional homology.
- the variable domains of both the light (V L ) and the heavy (V H ) chains determine recognition and specificity.
- the constant region domains of light (C L ) and heavy (C H ) chains confer important biological properties such as antibody chain association, secretion, transplacental mobility, complement binding, and the like.
- V H , D and J H ; or V L and J L germ line gene segments
- V H , D and J H ; or V L and J L germ line gene segments
- V L -J L and V H -D-J H V segments are joined by DNA rearrangements to form the complete V regions expressed in heavy and light chains respectively ( FIG. 1 ).
- the rearranged, joined (V L -J L and V H -D-J H )V segments then encode the complete variable regions or antigen binding domains of light and heavy chains, respectively.
- Expression vector a plasmid DNA containing necessary regulatory signals for the synthesis of mRNA derived from any gene sequence, inserted into the vector.
- Module vector a plasmid DNA containing a constant or variable region gene module.
- Expression plasmid an expression vector that contains an inserted gene, such as a chimeric immunoglobulin gene.
- the invention provides a novel approach for the cloning and production of a human/mouse chimeric antibody with specificity to a human B cell surface antigen.
- the antigen is a polypeptide or comprises a polypeptide bound by the 2H7 monoclonal antibody described in Clark et al. Proc. Natl. Acad. Sci., U.S.A. 82: 1766-1770 (1985).
- This antigen is a phosphoprotein designated (Bp35(CD20)) and is only expressed on cells of the B cell lineage.
- Murine monoclonal antibodies to this antigen have been made before and are described in Clark et al., supra; see also Stashenko, P., et al., J. Immunol. 125: 1678-1685 (1980).
- the method of production combines five elements:
- One common feature of all immunoglobulin light and heavy chain genes and the encoded messenger RNAs is the so-called J region (i.e. joining region, see FIG. 1 ).
- Heavy and light chain J regions have different sequences, but a high degree of sequence homology exists (greater than 80%) especially near the constant region, within the heavy J H regions or the kappa light chain J regions. This homology is exploited in this invention and consensus sequences of light and heavy chain J regions were used to design oligonucleotides (designated herein as UIGs) for use as primers or probes for cloning immunoglobulin light or heavy chain mRNAs or genes ( FIG. 3 ).
- UIGs oligonucleotides
- UIG may be capable of hybridizing to all immunoglobulin mRNAs or a specific one containing a particular J sequence.
- Another utility of a particular UIG probe may be hybridization to light chain or heavy chain mRNAs of a specific constant region, such as UIG-MJK which detects all mouse J K -containing sequences ( FIG. 2 ).
- UIG design can also include a sequence to introduce a restriction enzyme site into the cDNA copy of an immunoglobulin gene (see FIG. 3 ).
- the invention may, for example, utilize chemical gene synthesis to generate the UIG probes for the cloning and modification of V regions from immunoglobulin mRNA.
- oligonucleotides can be synthesized to recognize individually, the less conserved 5′-region of the J regions as a diagnostic aid in identifying the particular J region present in the immunoglobulin mRNA.
- a multi-step procedure is utilized for generating complete V+C region cDNA clones from the hybridoma cell light and heavy chain mRNAs.
- Clones are screened by hybridization with UIG oligonucleotide probes. Positive heavy and light chain clones identified by this screening procedure are mapped and sequenced to select those containing V region and leader coding sequences.
- In vitro mutagenesis including, for example, the use of UIG oligonucleotides, is then used to engineer desired restriction enzyme cleavage sites. We used this approach for the chimeric 2H7 light chain.
- An expedient method is to use synthetic UIG oligonucleotides as primers for the synthesis of cDNA.
- This method has the advantage of simultaneously introducing a desired restriction enzyme site, such as BstEII ( FIG. 3 ) into a V region cDNA clone. We used this approach for the chimeric 2H7 heavy chain.
- cDNA constant region module vectors are prepared from human cells. These cDNA clones are modified, when necessary, by site-directed mutagenesis to place a restriction site at the analogous position in the human sequence or at another desired location near a boundary of the constant region.
- An alternative method utilizes genomic C region clones as the source for C region module vectors.
- cloned V region segments generated as above are excised and ligated to light or heavy chain C region module vectors. For example, one can clone the complete human kappa light chain C region and the complete human gamma 1 C region. In addition, one can modify the human gamma 1 region to introduce a termination codon and thereby obtain a gene sequence which encodes the heavy chain portion of an Fab molecule.
- Operationally linked means in-frame joining of coding sequences to derive a continuously translatable gene sequence without alterations or interruptions of the triplet reading frame.
- cDNA genetic sequences in the present invention are the fact that they code continuously for immunoglobulin chains, either heavy or light.
- continuous is meant that the sequences do not contain introns (i.e. are not genomic sequences, but rather, since derived from mRNA by reverse transcription, are sequences of contiguous exons).
- This characteristic of the cDNA sequences provided by the invention allows them to be expressible in prokaryotic hosts, such as bacteria, or in lower eukaryotic hosts, such as yeast.
- Another advantage of using cDNA cloning method is the ease and simplicity of obtaining variable region gene modules.
- variable and variable are used functionally to denote those regions of the immunoglobulin chain, either heavy or light chain, which code for properties and features possessed by the variable and constant regions in natural non-chimeric antibodies. As noted, it is not necessary for the complete coding region for variable or constant regions to be present, as long as a functionally operating region is present and available.
- Expression vehicles include plasmids or other vectors. Preferred among these are vehicles carrying a functionally complete human constant heavy or light chain sequence having appropriate restriction sites engineered so that any variable-heavy or light chain sequence with appropriate cohesive ends can be easily inserted thereinto. Human constant heavy or light chain sequence-containing vehicles are thus an important embodiment of the invention. These vehicles can be used as intermediates for the expression of any desired complete heavy or light chain in any appropriate host.
- yeast provides substantial advantages for the production of immunoglobulin light and heavy chains. Yeasts carry out post-translational peptide modifications including glycosylation. A number of recombinant DNA strategies now exist which utilize strong promoter sequences and high copy number plasmids which can be used for overt production of the desired proteins in yeast. Yeast recognizes leader sequences on cloned mammalian gene products and secretes peptides bearing leader sequences (i.e. prepeptides) (Hitzman, et al., 11th International Conference on Yeast, Genetics and Molecular Biology, Montpelier, France, Sep. 13-17, 1982).
- Yeast gene expression systems can be routinely evaluated for the level of heavy and light chain production, protein stability, and secretion. Any of a series of yeast gene expression systems incorporating promoter and termination elements from the actively expressed genes coding for glycolytic enzymes produced in large quantities when yeasts are grown in mediums rich in glucose can be utilized. Known glycolytic genes can also provide very efficient transcription control signals. For example, the promoter and terminator signals of the iso-1-cytochrome C (CYC-1) gene can be utilized.
- CYC-1-cytochrome C CYC-1-cytochrome C
- the following approach can be taken to develop and evaluate optimal expression plasmids for the expression of cloned immunoglobulin cDNAs in yeast.
- E. coli K12 strain 294 (ATCC 31446) is particularly useful.
- Other microbial strains which may be used include E. coli X1776 (ATCC 31537).
- the aforementioned strains, as well as E. coli W3110 (ATCC 27325) and other enterobacteria such as Salmonella typhimurium or Serratia marcescens , and various Pseudomonas species may be used.
- plasmid vectors containing replicon and control sequences which are derived from species compatible with a host cell are used in connection with these hosts.
- the vector ordinarily carries a replication site, as well as specific genes which are capable of providing phenotypic selection in transformed cells.
- E. coli is readily transformed using pBR322, a plasmid derived from an E. coli species (Bolivar, et al., Gene, 2: 95 (1977)).
- pBR322 contains genes for ampicillin and tetracycline resistance, and thus provides easy means for identifying transformed cells.
- the pBR322 plasmid or other microbial plasmids must also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of its own proteins.
- promoters most commonly used in recombinant DNA construction include the beta-lactamase (penicillinase) and lactose (beta-galactosidase) promoter systems (Chang et al., Nature, 275: 615 (1978); Itakura et al., Science, 198: 1056 (1977)); and tryptophan promoter systems (Goeddel et al., Nucleic Acids Research, 8: 4057 (1980); EPO Publication No. 0036776). While these are the most commonly used, other microbial promoters have been discovered and utilized.
- a genetic construct for any heavy or light chimeric immunoglobulin chain can be placed under the control of the leftward promoter of bacteriophage lambda (P L ).
- This promoter is one of the strongest known promoters which can be controlled. Control is exerted by the lambda repressor, and adjacent restriction sites are known.
- lactose dependent E. coli chromosomal DNA comprises a lactose or lac operon which mediates lactose digestion by elaborating the enzyme beta-galactosidase.
- the lac control elements may be obtained from bacteriophage lambda pLAC5, which is infective for E. coli .
- the lac promoter-operator system can be induced by IPTG.
- promoter/operator systems or portions thereof can be employed as well.
- arabinose, colicine E1, galactose, alkaline phosphatase, tryptophan, xylose, tac, and the like can be used.
- Mammalian cells are mammalian cells, grown in vitro in tissue culture, or in vivo in animals. Mammalian cells provide post-translational modifications to immunoglobulin protein molecules including leader peptide removal, correct folding and assembly of heavy and light chains, proper glycosylation at correct sites, and secretion of functional antibody protein.
- Mammalian cells which may be useful as hosts for the production of antibody proteins include cells of lymphoid origin, such as the hybridoma Sp2/0-Ag14 (ATCC CRL 1581) or the myleoma P3X63Ag8 (ATCC TIB 9), and its derivatives. Others include cells of fibroblast origin, such as Vero (ATCC CRL 81) or CHO-K1 (ATCC CRL 61).
- Several possible vector systems are available for the expression of cloned heavy chain and light chain genes in mammalian cells.
- One class of vectors relies upon the integration of the desired gene sequences into the host cell genome.
- Cells which have stably integrated DNA can be selected by simultaneously introducing drug resistance genes such as E. coli gpt (Mulligan, R. C. and Berg, P., Proc. Natl. Acad. Sci., USA, 78: 2072 (1981)) or Tn5 neo (Southern, P. J. and Berg, P., J. Mol. Appl. Genet., 1: 327 (1982)).
- the selectable marker gene can be either linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection (Wigler, M. et al., Cell, 16: 77 (1979)).
- a second class of vectors utilizes DNA elements which confer autonomously replicating capabilities to an extrachromosomal plasmid. These vectors can be derived from animal viruses, such as bovine papillomavirus (Sarver, N. et al., Proc. Natl. Acad. Sci., USA, 79: 7147 (1982)), polyoma virus (Deans, R. J. et al., Proc. Natl. Acad. Sci., USA, 81: 1292 (1984)), or SV40 virus (Lusky, M. and Botchan, M., Nature, 293: 79 (1981)).
- an immunoglobulin cDNA is comprised only of sequences representing the mature mRNA encoding an antibody protein
- additional gene expression elements regulating transcription of the gene and processing of the RNA are required for the synthesis of immunoglobulin mRNA.
- These elements may include splice signals, transcription promoters, including inducible promoters enhancers, and termination signals.
- cDNA expression vectors incorporating such elements include those described by Okayama, H. and Berg, P., Mol. Cell Biol., 3: 280 (1983); Cepko, C. L. et al., Cell, 37: 1053 (1984); and Kaufman, R. J., Proc. Natl. Acad. Sci., USA, 82: 689 (1985).
- mammalian cells may express chimeric immunoglobulin genes which are comprised of a variable region cDNA module plus a constant region which is composed in whole or in part of genomic sequences.
- a variable region cDNA module plus a constant region which is composed in whole or in part of genomic sequences.
- human constant region genomic clones have been described (Ellison, J. W. et al., Nucl. Acids Res., 10: 4071 (1982), or Max, E. et al., Cell, 29: 691 (1982)).
- the use of such genomic sequences may be convenient for the simultaneous introduction of immunoglobulin enhancers, splice signals, and transcription termination signals along with the constant region gene segment.
- the invention provides “chimeric” immunoglobulin chains, either heavy or light.
- a chimeric chain contains a constant region substantially similar to that present in a natural human immunoglobulin, and a variable region having the desired antigenic specificity of the invention, i.e., to the specified human B cell surface antigen.
- the invention also provides immunoglobulin molecules having heavy and light chains associated so that the overall molecule exhibits any desired binding and recognition properties.
- immunoglobulin molecules having heavy and light chains associated so that the overall molecule exhibits any desired binding and recognition properties.
- Various types of immunoglobulin molecules are provided: monovalent, divalent, molecules with chimeric heavy chains and non-chimeric light chains, or molecules with the invention's variable binding domains attached to moieties carrying desired functions.
- Antibodies having chimeric heavy chains of the same or different variable region binding specificity and non-chimeric (i.e., all human or all non-human) light chains can be prepared by appropriate association of the needed polypeptide chains. These chains are individually prepared by the modular assembly methods of the invention.
- the antibodies of the invention having human constant region can be utilized for passive immunization, especially in humans, without negative immune reactions such as serum sickness or anaphylactic shock.
- the antibodies can, of course, also be utilized in prior art immunodiagnostic assays and kits in detectably labelled form (e.g., enzymes, 125 I, 14 C, fluorescent labels, etc.), or in immunobilized form (on polymeric tubes, beads, etc.), in labelled form for in vivo imaging, wherein the label can be a radioactive emitter, or an NMR contrasting agent such as a carbon-13 nucleus, or an X-ray contrasting agent, such as a heavy metal nucleus.
- the antibodies can also be used for in vitro localization of the antigen by appropriate labelling.
- the antibodies can be used for therapeutic purposes, by themselves, in complement mediated lysis, or coupled to toxins or therapeutic moieties, such as ricin, etc.
- Mixed antibody-enzyme molecules can be used for immunodiagnostic methods, such as ELISA.
- Mixed antibody-peptide effector conjugates can be used for targeted delivery of the effector moiety with a high degree of efficacy and specificity.
- the chimeric antibodies of this invention can be used for any and all uses in which the murine 2H7 monoclonal antibody can be used, with the obvious advantage that the chimeric ones are more compatible with the human body.
- the human cell lines GM2146 and GM1500 were obtained from the Human Mutant Cell Repository (Camden, N.J.) and cultured in RPMI1640 plus 10% fetal bovine serum (M. A. Bioproducts).
- the cell line Sp2/0 was obtained from the American Type Culture Collection and grown in Dulbecco's Modified Eagle Medium (DMEM) plus 4.5 g/l glucose (M. A. Bioproducts) plus 10% fetal bovine serum (Hyclone, Sterile Systems, Logan, Utah). Media were supplemented with penicillin/streptomycin (Irvine Scientific, Irvine, California).
- the plasmids pBR322, pL1 and pUC12 were purchased from Pharmacia P-L Biochemicals (Milwaukee, Wisconsin).
- the plasmids pSV2-neo and pSV2-qpt were obtained from BRL (Gaithersburg, Md.), and are available from the American Type Culture Collection (Rockville, Md.).
- pHu-gamma-1 is a subclone of the 8.3 Kb HindIII to BamHI fragment of the human IgG1 chromosomal gene. An isolation method for of the human IgG1 chromosomal gene is described by Ellison, J. W. et al., Nucl. Acids Res., 10: 4071 (1982).
- M8alphaRX12 contains the 0.7 Kb XbaI to EcoRI fragment containing the mouse heavy chain enhancer from the J-C intron region of the M603 chromosomal gene (Davis, M. et al., Nature, 283: 733, 1979) inserted into M13mp10.
- DNA manipulations involving purification of plasmid DNA by buoyant density centrifugation, restriction endonuclease digestion, purification of DNA fragments by agarose gel electrophoresis, ligation and transformation of E. coli were as described by Maniatis, T. et al., Molecular Cloning: A Laboratory Manual , (1982) or other procedures. Restriction endonucleases and other DNA/RNA modifying enzymes were purchased from Boehringer-Mannheim (Indianapolis, Ind.), BRL, New England Biolabs (Beverly, Mass.) and Pharmacia P-L.
- Oligonucleotides were either synthesized by the triester method of Ito et al. ( Nucl. Acids Res., 10: 1755 (1982)), or were purchased from ELESEN, Los Angeles, Calif. Tritylated, deblocked oligonucleotides were purified on Sephadex-G50, followed by reverse-phase HPLC with a 0-25% gradient of acetonitrile in 10 mM triethylamine-acetic acid, pH 7.2, on a C18 Bondapak column (Waters Associates). Detritylation was in 80% acetic acid for 30 min., followed by evaporation thrice. Oligonucleotides were labeled with [gamma- 32 P]ATP by T4 polynucleotide kinase.
- Total cellular RNA was prepared from tissue culture cells by the method of Auffray, C. and Rougeon, F. ( Eur. J. Biochem., 107: 303 (1980)) or Chirgwin, J. M. et al. ( Biochemistry, 18: 5294 (1979)). Preparation of poly(A) + RNA, methyl-mercury agarose gel electrophoresis, and “Northern” transfer to nitrocellulose were as described by Maniatis, T. et al., supra. Total cellular RNA or poly(A) + RNA was directly bound to nitrocellulose by first treating the RNA with formaldehyde (White, B. A. and Bancroft, F. C., J. Biol.
- Hybridization to filterbound RNA was with nick-translated DNA fragments using conditions described by Margulies, D. H. et al. ( Nature, 295: 168 (1982)) or with 32 P-labelled oligonucleotide using 4 ⁇ SSC, 10 ⁇ Denhardt's, 100 ug/ml salmon sperm DNA at 37° C. overnight, followed by washing in 4 ⁇ SSC at 37° C.
- Oligo-dT primed cDNA libraries were prepared from poly(A) + RNA from GM1500 and GM2146 cells by the methods of Land, H. et al. ( Nucl. Acids Res., 9: 2251 (1981)) and Gubler, V. and Hoffman, B. J., Gene, 25: 263 (1983), respectively.
- the cDNA libraries were screened by hybridization (Maniatis, T., supra) with 32 P-labelled oligonucleotides using the procedure of de Lange et al. ( Cell, 34: 891 (1983)), or with nick-translated DNA fragments.
- Poly(A) + RNA (20 ug) was mixed with 1.2 ug primer in 40 ul of 64 mM KCl. After denaturation at 90° C. for 5 min. and then chilling in ice, 3 units Human Placental Ribonuclease Inhibitor (BRL) was added in 3 ul of 1M Tris-HCl, pH 8.3. The oligonucleotide was annealed to the RNA at 42° C. for 15 minutes, then 12 ul of 0.05M DTT, 0.05M MgCl 2 , and 1 mM each of dATP, dTTP, dCTP, and dGTP was added. 2 ul of alpha- 32 P-dATP (400 Ci/mmol, New England Nuclear) was added, followed by 3 ul of AMV reverse transcriptase (19 units/ul, Life Sciences).
- BRL Human Placental Ribonuclease Inhibitor
- RNA-DNA hybrid was extracted with phenol, then with chloroform, and precipitated with ethanol.
- Second strand synthesis, homopolymer tailing with dGTP or dCTP, and insertion into homopolymer tailed vectors was as described by Gubler and Hoffman, supra.
- Single stranded M13 subclone DNA (1 ug) was combined with 20 ng oligonucleotide primer in 12.5 ul of Hin buffer (7 mM Tris-HCl, pH 7.6, 7 mM MgCl 2 , 50 mM NaCl). After heating to 95° C. in a sealed tube, the primer was annealed to the template by slowly cooling from 70° C. to 37° C. for 90 minutes. 2 ul dNTPs (1 mM each), 1 ul 32 P-DATP (10 uCi), 1 ul DTT (0.1 M) and 0.4 ul Klenow DNA PolI (2u, Boehringer Mannheim) were added and chains extended at 37° C. for 30 minutes.
- Hin buffer 7 mM Tris-HCl, pH 7.6, 7 mM MgCl 2 , 50 mM NaCl.
- Cytoplasmic protein extract was prepared by vortexing 10 6 cells in 160 ul of 1% NP40, 0.15 M NaCl, 10 mM Tris, 1 mM EDTA, pH 7.6 and leaving the lysate at 0° C., 15 minutes, followed by centrifugation at 10,600 ⁇ g to remove insoluble debris.
- a double antibody sandwich ELISA (Voller, A. et al., in Manual of Clinical Immunology, 2nd Ed., Eds. Rose, N. and Friedman, H., pp. 359-371, 1980) using affinity purified antisera was used to detect specific immunoglobulins.
- the plate-bound antiserum is goat anti-human IgG (KPL, Gaithersburg, Md.) at 1/1000 dilution, while the peroxidase-bound antiserum is goat anti-human IgG (KPL or Tago, Burlingame) at 1/4000 dilution.
- the plate-bound antiserum is goat anti-human kappa (Tago) at 1/500 dilution, while the peroxidase-bound antiserum is goat anti-human kappa (Cappel) at 1/1000 dilution.
- the 2H7 mouse monoclonal antibody (gamma 2b, kappa) recognizes a human B-cell surface antigen, (Bp35(CD20)) Clark, E. A., et al., Proc. Natl. Acad. Sci., U.S.A. 82: 1766 (1985)).
- the (Bp35(CD20)) molecules presumably play a role in B-cell activation.
- the antibody 2H7 does not react with stem cells which are progenitors of B-cells epithelial, mesenchymal and fibroblastic cells of other organs.
- Frozen cells were thawed on ice for 10 minutes and then at room temperature. The suspension was diluted with 15 ml PBS and the cells were centrifuged down. They were resuspended, after washes in PBS, in 16 ml 3M LiCl, 6M urea and disrupted in a polytron shear. The preparation of mRNA and the selection of the poly(A+) fraction were carried out according to Auffray, C. and Rougeon, F., Eur. J. Biochem. 107: 303, 1980.
- the poly (A+) RNA from 2H7 was hybridized individually with labeled J H 1, J H 2, J H 3 and J H 4 oligonucleotides under conditions described by Nobrega et al. Anal. Biochem 131: 141, 1983). The products were then subjected to electrophoresis in a 1.7% agarose-TBE gel. The gel was fixed in 10% TCA, blotted dry and exposed for autoradiography. The result showed that the 2H7 V H contains J H 1, J H 2, or J H 4 but not J H 3 sequences.
- V K mRNA For the analysis of the V K mRNA, the dot-blot method of White and Bancroft J. Biol. Chem. 257: 8569, (1982) was used. Poly (A+) RNA was immobilized on nitrocellulose filters and was hybridized to labeled probe-oligonucleotides at 400 in 4 ⁇ SSC. These experiments show that 2H7 contains J K 5 sequences.
- a library primed by oligo (dT) on 2H7 poly (A+) RNA was screened for kappa clones with a mouse C K region probe. From the 2H7 library, several clones were isolated. A second screen with a 5′ J K 5 specific probe identified the 2H7 (J K 5) light-chain clones. Heavy chain clones of 2H7 were generated by priming the poly(A+) RNA with the UIGH(BstEII) oligonucleotide (see FIG. 3 ), and identified by screening with the UIGH(BstEII) oligonucleotide.
- the heavy and light chain genes or gene fragments from the V H and V K cDNA clones pH2-11 and pL2-12 were inserted into M13 bacteriophage vectors for nucleotide sequence analysis.
- the complete nucleotide sequences of the variable region of these clones were determined ( FIGS. 5 and 6 ) by the dideoxy chain termination method. These sequences predict V region amino acid compositions that agree well with the observed compositions, and predict peptide sequences which have been verified by direct amino acid sequencing of portions of the V regions.
- the nucleotide sequences of the cDNA clones show that they are immunoglobulin V region clones as they contain amino acid residues diagnostic of V domains (Kabat et al., Sequences of Proteins of Immunological Interest; U.S. Dept of HHS, 1983).
- the 2H7 V H has the J H 1 sequence.
- the 2H7 V L is from the V K -KpnI family (Nishi et al. Proc. Nat. Acd. Sci. USA 82: 6399, 1985), and uses J K 5.
- the cloned 2H7 V L predicts an amino acid sequence which was confirmed by amino acid sequencing of peptides from the 2H7 light chain corresponding to residues 81-100.
- the cloned 2H7 V H predicts an amino acid sequence confirmed also by peptide sequencing, namely residues 1-12.
- the J-region mutagenesis primer J K HindIII As shown in FIG. 6 , was utilized.
- a human C K module derived from a cDNA clone was also mutagenized to contain the HindIII sequence (see FIG. 4 ).
- the mutagenesis reaction was performed on M13 subclones of these genes. The frequency of mutant clones ranged from 0.5 to 1% of the plaques obtained.
- oligo (dC) sequence upstream of the AUG codon in a V H chimeric gene interferes with proper splicing in one particular gene construct. It was estimated that perhaps as much as 70% of the RNA transcripts had undergone the mis-splicing, wherein a cryptic 3′ splice acceptor in the leader sequence was used. Therefore the oligo (dC) sequence upstream of the initiator AUG was removed in all of the clones.
- an oligonucleotide was used which contains a SalI restriction site to mutagenize the 2H7 V K clone.
- the primer used for this oligonucleotide-directed mutagenesis is a 22-mer which introduces a SalI site between the oligo (dC) and the initiator met codon ( FIG. 6 ).
- the human C gamma 1 gene module is a cDNA derived from GM2146 cells (Human Genetic Mutant Cell Repository, Newark, N.J.). This C gamma 1 gene module was previously combined with a mouse V H gene module to form the chimeric expression plasmid pING2012E ( FIG. 7C ).
- a 2H7 chimeric heavy chain expression plasmid was derived from the replacement of the V H module of pING2012E with the V H cDNA modules to give the expression plasmid pING2101 ( FIG. 7 b ). This plasmid directs the synthesis of chimeric 2H7 heavy chain when transfected into mammalian cells.
- the SalI to HindIII fragment of the mouse V K module was joined to the human C K module by the procedure outlined in FIG. 7 a , forming pING2106.
- Replacement of the neo sequence with the E. coli gpt gene derived from pSV2-gpt resulted in pING2107, which expresses 2H7 chimeric light chain and confers mycophenolic acid resistance when transfected into mammalian cells.
- both heavy and light chain chimeric genes in the same plasmid allows for the introduction into transfected cells of a 1:1 gene ratio of heavy and light chain genes leading to a balanced gene dosage. This may improve expression and decrease manipulations of transfected cells for optimal chimeric antibody expression.
- the DNA fragments derived from the chimeric heavy and light chain genes of pING2101 and pING2106 were combined into the expression plasmids pHL2-11 and pHL2-26 ( FIG. 8 ).
- This expression plasmid contains a selectable neoR marker and separate transcription units for each chimeric gene, each including a mouse heavy chain enhancer.
- Electroporation was used (Potter et al. supra; Toneguzzo et al. Mol. Cell Biol. 6: 703 1986) for the introduction of 2H7 chimeric expression plasmid DNA into mouse Sp2/0 cells.
- the electroporation technique gave a transfection frequency of 10 4 ⁇ 10 5 for the Sp2/0 cells.
- the expression plasmids, pING2101 and pING2106, were digested with NdeI; and the DNA was introduced into Sp2/0 cells by electroporation.
- Transformant 1D6 was obtained which secretes chimeric 2H7 antibody.
- Antibody isolated from this cell line was used for the functional assays done to characterize the chimeric antibody.
- 1D6 Sp2/0.pING2101/pING2106.1D6 cells were grown in culture medium [DMEM (Gibco #320-1965), supplemented with 10% Fetal Bovine Serum (Hyclone #A-1111-D), 10 mM HEPES, 1 ⁇ Glutamine-Pen-Strep (Irvine Scientific #9316) to 1 ⁇ 10 6 cell/ml.
- DMEM Gibco #320-1965
- Fetal Bovine Serum Hyclone #A-1111-D
- 10 mM HEPES 1 ⁇ Glutamine-Pen-Strep (Irvine Scientific #9316) to 1 ⁇ 10 6 cell/ml.
- the cells were then centrifuged at 400 ⁇ g and resuspended in serum-free culture medium at 2 ⁇ 10 6 cell/ml for 18-24 hr.
- the medium was centrifuged at 4000 RPM in a JS-4.2 rotor (3000 ⁇ g) for 15 min.
- the supernatant was centrifuged at 2000 ⁇ g, 5 min., and then loaded onto a 40 ml DEAE column, which was preequilibrated with 10 mM sodium phosphate, pH8.0.
- the bulk of the IgG was in the pH 3.5 elution and was pooled and concentrated over Centricon 30 (Amicon Corp.) to approximately 0.06 ml.
- the buffer was changed to PBS (10 mM sodium phosphate pH 7.4, 0.15M NaCl) in Centricon 30 by repeated diluting with PBS and reconcentrating.
- the IgG solution was then adjusted to 0.10 ml and bovine serum albumin (Fraction V, U.S. Biochemicals) was added to 1.0% as a stabilizing reagent.
- the samples were tested with a binding assay, in which cells of both an 2H7 antigen-positive and an 2H7 antigen-negative cell line were incubated with standard mouse monoclonal antibody 2H7 with chimeric 2H7 antibody derived from the cell culture supernatants, followed by a second reagent, fluoresceinisothiocyanate (FITC)-conjugated goat antibodies to human (or mouse, for the standard) immunoglobulin.
- FITC fluoresceinisothiocyanate
- Binding Assays Cells from a human B cell line, T51, were used. Cells from human colon carcinoma line C3347 were used as a negative control, since they, according to previous testing, do not express detectable amounts of the 2H7 antigen.
- the target cells were first incubated for 30 min at 4° C. with either the chimeric 2H7 or with mouse 2H7 standard, which had been purified from mouse ascites. This was followed by incubation with a second, FITC-labelled, reagent, which for the chimeric antibody was goat-anti-human immunoglobulin, obtained from TAGO (Burlingame, Calif.), and used at a dilution of 1:50.
- TAGO Boundingame, Calif.
- Antibody binding to the cell surface was determined using a Coulter Model EPIC-C cell sorter.
- both the chimeric and the mouse standard 2H7 bound significantly, and to approximately the same extent, to the positive T51 line. They did not bind above background to the 2H7 negative C-3347 line.
- ADCC antibody-dependent cellular cytotoxicity
- Chimeric 2H7, but not mouse 2H7 antibody will be able to mediate both ADCC and CDC against human B lymphoma cells.
- a hybridoma producing a non-functional mouse antibody can be converted to a hybridoma producing a chimeric antibody with ADCC and CDC activities.
- Such a chimeric antibody is a prime candidate for the treatment or imaging of B-cell disorders, such as leukemias, lymphomas, and the like.
- This invention therefore provides a method for making biologically functional antibodies when starting with a hybridoma which produces antibody which has the desired specificity for antigen but lacks biological effector functions such as ADCC and CDC.
- the results presented above demonstrate that the chimeric 2H7 antibody binds to (Bp35(CD20)) antigen positive human B cells to approximately the same extent as the mouse 2H7 monoclonal antibody. This is significant because the 2H7 antibody defines a surface phosphoprotein antigen (Bp35(CD20)), of about 35,000 daltons, which is expressed on the cells of B cell lineage.
- the 2H7 antibody does not bind detectably to various other cells such as fibroblasts, endothelial cells, or epithelial cells in the major organs or the stem cell precursors which give rise to B cells.
- the chimeric 2H7 monoclonal antibodies will be advantageously used not only for therapy with unmodified chimeric antibodies, but also for development of various immunoconjugates with drugs, toxins, immunomodulators, isotopes, etc., as well as for diagnostic purposes such as in vivo imaging of B-cell tumors (for example, lymphomas and leukemias) using appropriately labelled chimeric 2H7 antibodies.
- diagnostic purposes such as in vivo imaging of B-cell tumors (for example, lymphomas and leukemias) using appropriately labelled chimeric 2H7 antibodies.
- Such immunoconjugation techniques are known to those skilled in the art and can be used to modify the chimeric 2H7 antibody molecules of the present invention.
- the chimeric 2H7 antibody by virtue of its having the human constant portion, will possess biological activity in complement dependent and antibody dependent cytotoxicity which the mouse 2H7 does not.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
A chimeric antibody with human constant region and murine variable region, having specificity to a 35 kDA polypeptide (Bp35(CD20)) expressed on the surface of human B cells, methods of production, and uses.
Description
- This application is a continuation in part of U.S. application Ser. No. ______, International Application No. PCT/US86/02269, filed Oct. 27, 1986, in the PCT receiving office of the U.S.
- 1. Field of the Invention
- This invention relates to recombinant DNA methods of preparing an antibody with specificity for an antigen on the surface of human B cells, genetic sequences coding therefor, as well as methods of obtaining such sequences.
- 2. Background Art
- The application of cell-to-cell fusion for the production of monoclonal antibodies by Kohler and Milstein (Nature (London), 256: 495, 1975) spawned a revolution in biology equal in impact to that from the invention of recombinant DNA cloning. Monoclonal antibodies produced from hybridomas are already widely used in clinical and basic scientific studies. Applications of human monoclonal antibodies produced by human hybridomas hold great promise for the treatment of cancer, viral and microbial infections, certain immunodeficiencies with diminished antibody production, and other diseases and disorders of the immune system.
- Unfortunately, a number of obstacles exist with respect to the development of human monoclonal antibodies. This is especially true when attempting to develop therapeutically useful monoclonal antibodies which define human cell surface antigens. Many of these human cell surface antigens are not recognized as foreign antigens by the human immune system; therefore, these antigens are not immunogenic in man. By contrast, human cellular antigens which are immunogenic in mice can be used for the production of mouse monoclonal antibodies that specifically recognize the human antigens. Although such antibodies may be used therapeutically in man, repeated injections of “foreign” antibodies, such as a mouse antibody, in humans, can lead to harmful hypersensitivity reactions as well as increased rate of clearance of the circulating antibody molecules so that the antibodies do not reach their target site. Furthermore, mouse monoclonal antibodies may lack the ability to efficiently interact with human effector cells as assessed by functional assays such as antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis (CDC).
- Another problem faced by immunologists is that most human monoclonal antibodies obtained in cell culture are of the IgM type. When it is desirable to obtain human monoclonals of the IgG type, however, it has been necessary to use such techniques as cell sorting to identify and isolate the few cells which are producing antibodies of the IgG or other type from the majority producing antibodies of the IgM type. A need therefore exists for an efficient method of switching antibody classes, for any given antibody of a predetermined or desired antigenic specificity.
- The present invention bridges both the hybridoma and genetic engineering technologies to provide a quick and efficient method, as well as products derived therefrom, for the production of a chimeric human/non-human antibody.
- The chimeric antibodies of the present invention embody a combination of the advantageous characteristics of monoclonal antibodies derived from mouse-mouse hybridomas and of human monoclonal antibodies. The chimeric monoclonal antibodies, like mouse monoclonal antibodies, can recognize and bind to a human target antigen; however, unlike mouse monoclonal antibodies, the species-specific properties of the chimeric antibodies will avoid the induction of harmful hypersensitivity reactions and may allow for resistance to clearance when used in humans in vivo. Also, the inclusion of appropriate human immunoglobulin sequences can result in an antibody which efficiently interacts with human effector cells in vivo to cause tumor cell lysis and the like. Moreover, using the methods disclosed in the present invention, any desired antibody isotype can be conferred upon a particular antigen combining site.
- Approaches to the problem of producing chimeric antibodies have been published by various authors.
- Morrison, S. L. et al., Proc. Natl. Acad. Sci., USA, 81: 6851-6855 (November 1984), describe the production of a mouse-human antibody molecule of defined antigen binding specificity, produced by joining the variable region genes of a mouse antibody-producing myeloma cell line with known antigen binding specificity to human immunoglobulin constant region genes using recombinant DNA techniques. Chimeric genes were constructed, wherein the heavy chain variable region exon from the myeloma cell line S107 well joined to human IgG1 or IgG2 heavy chain constant region exons, and the light chain variable region exon from the same myeloma to the human kappa light chain exon. These genes were transfected into mouse myeloma cell lines and. Transformed cells producing chimeric mouse-human antiphosphocholine antibodies were thus developed.
- Morrison, S. L. et al., European Patent Publication No. 173494 (published Mar. 5, 1986), disclose chimeric “receptors” (e.g. antibodies) having variable regions derived from one species and constant regions derived from another. Mention is made of utilizing cDNA cloning to construct the genes, although no details of cDNA cloning or priming are shown. (see
pp 5, 7 and 8).
* Note: The present Information Disclosure Statement is subject to the provisions of 37 C.F.R. 1.97(b). In addition, Applicants reserve the right to demonstrate that their invention was made prior to any one or more of the mentioned publications.
- Boulianne, G. L. et al., Nature, 312: 643 (December 13, 1984), also produced antibodies consisting of mouse variable regions joined to human constant regions. They constructed immunoglobulin genes in which the DNA segments encoding mouse variable regions specific for the hapten trinitrophenyl (TNP) were joined to segments encoding human mu and kappa constant regions. These chimeric genes were expressed as functional TNP binding chimeric IgM. For a commentary on the work of Boulianne et al. and Morrison et al., see Munro, Nature, 312: 597 (Dec. 13, 1984), Dickson, Genetic Engineerinq News, 5, No. 3 (March 1985), or Marx, Science, 229: 455 (August 1985).
- Neuberger, M. S. et al., Nature, 314: 268 (Mar. 25, 1985), also constructed a chimeric heavy chain immunoglobulin gene in which a DNA segment encoding a mouse variable region specific for the hapten 4-hydroxy-3-nitrophenacetyl (NP) was joined to a segment encoding the human epsilon region. When this chimeric gene was transfected into the J558L cell line, an antibody was produced which bound to the NP hapten and had human IgE properties.
- Neuberger, M. S. et al., have also published work showing the preparation of cell lines that secrete hapten-specific antibodies in which the Fc portion has been replaced either with an active enzyme moiety (Williams, G. and Neuberger, M. S. Gene 43: 319, 1986) or with a polypeptide displaying c-myc antigenic determinants (Nature, 312: 604, 1984).
- Neuberger, M. et al., PCT Publication WO 86/01533, (published Mar. 13, 1986) also disclose production of chimeric antibodies (see p. 5) and suggests, among the technique's many uses the concept of “class switching” (see p. 6).
- Taniguchi, M., in European Patent Publication No. 171 496 (published Feb. 19, 1985) discloses the production of chimeric antibodies having variable regions with tumor specificty derived from experimental animals, and constant regions derived from human. The corresponding heavy and light chain genes are produced in the genomic form, and expressed in mammalian cells.
- Takeda, S. et al., Nature, 314: 452 (Apr. 4, 1985) have described a potential method for the construction of chimeric immunoglobulin genes which have intron sequences removed by the use of a retrovirus vector. However, an unexpected splice donor site caused the deletion of the V region leader sequence. Thus, this approach did not yield complete chimeric antibody molecules.
- Cabilly, S. et al., Proc. Natl. Acad. Sci., USA, 81: 3273-3277 (June 1984), describe plasmids that direct the synthesis in E. coli of heavy chains and/or light chains of anti-carcinoembryonic antigen (CEA) antibody. Another plasmid was constructed for expression of a truncated form of heavy chain (Fd′) fragment in E. coli. Functional CEA-binding activity was obtained by in vitro reconstitution, in E. coli extracts, of a portion of the heavy chain with light chain.
- Cabilly, S., et al., European Patent Publication 125023 (published Nov. 14, 1984) describes chimeric immunoglobulin genes and their presumptive products as well as other modified forms. On pages 21, 28 and 33 it discusses cDNA cloning and priming.
- Boss, M. A., European Patent Application 120694 (published Oct. 3, 1984) shows expression in E. coli of non-chimeric immunoglobulin chains with 4-nitrophenyl specificity. There is a broad description of chimeric antibodies but no details (see p. 9).
- Wood, C. R. et al., Nature, 314: 446 (April, 1985) describe plasmids that direct the synthesis of mouse anti-NP antibody proteins in yeast. Heavy chain mu antibody proteins appeared to be glycosylated in the yeast cells. When both heavy and light chains were synthesized in the same cell, some of the protein was assembled into functional antibody molecules, as detected by anti-NP binding activity in soluble protein prepared from yeast cells.
- Alexander, A. et al., Proc. Nat. Acad. Sci. USA, 79: 3260-3264 (1982), describe the preparation of a cDNA sequence coding for an abnormally short human Ig gamma heavy chain (OMM gamma3 HCD serum protein) containing a 19-amino acid leader followed by the first 15 residues of the V region. An extensive internal deletion removes the remainder of the V and the
entire C H1 domain. This is cDNA coding for an internally deleted molecule. - Dolby, T. W. et al., Proc. Natl. Acad. Sci., USA, 77: 6027-6031 (1980), describe the preparation of a cDNA sequence and recombinant plasmids containing the same coding for mu and kappa human immunoglobulin polypeptides. One of the recombinant DNA molecules contained codons for part of the CH3 constant region domain and the entire 3′ noncoding sequence.
- Seno, M. et al., Nucleic Acids Research, 11: 719-726 (1983), describe the preparation of a cDNA sequence and recombinant plasmids containing the same coding for part of the variable region and all of the constant region of the human IgE heavy chain (epsilon chain).
- Kurokawa, T. et al., ibid, 11: 3077-3085 (1983), show the construction, using cDNA, of three expression plasmids coding for the constant portion of the human IgE heavy chain.
- Liu, F. T. et al., Proc. Nat. Acad. Sci., USA, 81: 5369-5373 (September 1984), describe the preparation of a cDNA sequence and recombinant plasmids containing the same encoding about two-thirds of the CH2, and all of the CH3 and
C H4 domains of human IgE heavy chain. - Tsujimoto, Y. et al., Nucleic Acids Res., 12: 8407-8414 (November 1984), describe the preparation of a human V lambda cDNA sequence from an Ig lambda-producing human Burkitt lymphoma cell line, by taking advantage of a cloned constant region gene as a primer for cDNA synthesis.
- Murphy, J., PCT Publication WO 83/03971 (published Nov. 24, 1983) discloses hybrid proteins made of fragments comprising a toxin and a cell-specific ligand (which is suggested as possibly being an antibody).
- Tan, et al., J. Immunol. 135: 8564 (November, 1985), obtained expression of a chimeric human-mouse immunoglobulin genomic gene after transfection into mouse myeloma cells.
- Jones, P. T., et al., Nature 321: 552 (May 1986) constructed and expressed a genomic construct where CDR domains of variable regions from a mouse monolonal antibody were used to substitute for the corresponding domains in a human antibody.
- Sun, L. K., et al.,
Hybridoma 5 suppl. 1 S17 (1986), describes a chimeric human/mouse antibody with potential tumor specificty. The chimeric heavy and light chain genes are genomic constructs and expressed in mammalian cells. - Sahagan et al., J. Immun. 137-1066-1074 (August 1986) describe a chimeric antibody with specificity to a human tumor associated antigen, the genes for which are assembled from genomic sequences.
- For a recent review of the field see also Morrison, S. L., Science 229: 1202-1207 (Sep. 20, 1985) and Oi, V. T., et al., BioTechniques 4: 214 (1986).
- The Oi, et al., paper is relevant as it argues that the production of chimeric antibodies from cDNA constructs in yeast and/or bacteria is not necessarily advantageous.
- See also Commentary on page 835 in Biotechnology 4 (1986).
- The invention provides a genetically engineered chimeric antibody of desired variable region specificity and constant region properties, through gene cloning and expression of light and heavy chains. The cloned immunoglobulin gene products can be produced by expression in genetically engineered cells.
- The application of oligodeoxyribonucleotide synthesis, recombinant DNA cloning, and production of specific immunoglobulin chains in various prokaryotic and eukaryotic cells provides a means for the large scale production of a chimeric human/mouse monoclonal antibody with specificity to a human B cell surface antigen.
- The invention provides cDNA sequences coding for immunoglobulin chains comprising a constant human region and a variable, non-human, region. The immunoglobulin chains can be either heavy or light.
- The invention provides gene sequences coding for immunoglobulin chains comprising a cDNA variable region of the desired specificity. These can be combined with genomic constant regions of human origin.
- The invention provides sequences as above, present in recombinant DNA molecules in vehicles such as plasmid vectors, capable of expression in desired prokaryotic or eukaryotic hosts.
- The invention provides hosts capable of producing, by culture, the chimeric antibodies and methods of using these hosts.
- The invention also provides individual chimeric immunoglobulin individual chains, as well as complete assembled molecules having human constant regions and variable regions with a human B cell surface antigen specificity, wherein both variable regions have the same binding specificity.
- Among other immunoglobulin chains and/or molecules provided by the invention are:
-
- (a) a complete functional, immunoglobulin molecule comprising:
- (i) two identical chimeric heavy chains comprising a variable region with a human B cell surface antigen specificity and human constant region and
- (ii) two identical all (i.e. non-chimeric) human light chains.
- (b) a complete, functional, immunoglobulin molecule comprising:
- (i) two identical chimeric heavy chains comprising a variable region as indicated, and a human constant region, and
- (ii) two identical all (i.e. non-chimeric) non-human light chains.
- (c) a monovalent antibody, i.e., a complete, functional immunoglobulin molecule comprising:
- (i) two identical chimeric heavy chains comprising a variable region as indicated, and a human constant region, and
- (ii) two different light chains, only one of which has the same specificity as the variable region of the heavy chains. The resulting antibody molecule binds only to one end thereof and is therefore incapable of divalent binding.
- (a) a complete functional, immunoglobulin molecule comprising:
- Genetic sequences, especially cDNA sequences, coding for the aforementioned combinations of chimeric chains or of non-chimeric chains are also provided herein.
- The invention also provides for a genetic sequence, especially a cDNA sequence, coding for the variable region of desired specificity of an antibody molecule heavy and/or light chain, operably linked to a sequence coding for a polypeptide different than an immunoglobulin chain (e.g., an enzyme). These sequences can be assembled by the methods of the invention, and expressed to yield mixed-function molecules.
- The use of cDNA sequences is particularly advantageous over genomic sequences (which contain introns), in that cDNA sequences can be expressed in bacteria or other hosts which lack appropriate RNA splicing systems.
-
FIG. 1 shows the DNA rearrangements and the expression of immunoglobulin mu and gamma heavy chain genes. This is a schematic representation of the human heavy chain gene complex (not shown to scale). Heavy chain variable V region formation occurs through the proper joining of VH, D and JH gene segments. This generates an active mu gene. A different kind of DNA rearrangement called “class switching” relocates the joined VH, D and JH region from the vicinity of mu constant C region to that of another heavy chain C region (switching to gamma is diagrammed here). -
FIG. 2 shows the known nucleotide sequences of human and mouse J regions. Consensus sequences for the J regions are shown below the actual sequences. The oligonucleotide sequence below the mouse kappa J region consensus sequence is a Universal Immunoglobulin Gene (UIG) oligonucleotide. Note that there are only a few J regions with relatively conserved sequences, especially near the constant regions, in each immunoglobulin gene locus. -
FIG. 3 shows the nucleotide sequences of the mouse J regions. Shown below are the oligonucleotide primers UIG-H and UIG-K. Note that each contains a restriction enzyme site. They can be used as primers for the synthesis of cDNA complementary to the variable region of mRNA, and can also be used to mutagenize, in vitro, cloned cDNA. -
FIG. 4 Human Constant Domain Module. Thehuman C gamma 1 clone, pGMH6, was isolated from the cell line GM2146. The sequence at its JH-C H1 junction is shown. Two restriction enzyme sites are useful as joints in recombining theC H1 gene with different VH genes. The ApaI site is 16 nucleotide residues into theC H1 coding domain ofHuman gamma 1; and is used in a previous construction of a mouse-human chimeric heavy-chain immunoglobulin. The BstEII site is in the JH region, and is used in the construction described in this application. - The human CK clone, pGML60, is a composite of two cDNA clones, one isolated from GM1500 (pK2-3), the other from GM2146 (pGML1). The JK-CK junction sequence shown comes from pK2-3. In vitro mutagenesis using the oligonucleotide, JKHindIII, was carried out to engineer a HindIII site 14
nucleotide residues 5′ of the J-C junction. This changes a human GTG codon into a CTT codon. -
FIG. 5 shows the nucleotide sequence of the V region of the 2H7 VH cDNA clone pH2-11. The sequence was determined by the dideoxytermination method using M13 subclones of gene fragments. Open circles denote amino acid residues confirmed by peptide sequence. A sequence homologous to DSP.2 in the CDR3 region is underlined. The NcoI site at 5′ end was converted to a SalI site by using SalI linkers. -
FIG. 6 shows the nucleotide sequence of the V region of the 2H7 VK cDNA clone pL2-12. The oligonucleotide primer used for site-directed mutagenesis is shown below theJ K5 segment. Open circles denote amino acid residues confirmed by peptide sequence. -
FIG. 7 shows the construction of the light and heavy chain expression plasmids pING2106 (panel a) and pING2101 (panel B). The SalI to BamHI fragment from pING2100 is identical to the SalI to BamHI fragment from pING2012E (see panel C). A linear representation of the circular plasmid pING2012E is shown in panel C. The 6.6 Kb SalI to BamHI fragment contains sequences from pSV2-neo, puc12, M8alphaRX12, and pL1. The HindIII site in pSV2-neo was destroyed before assembly of pING2012E by HindIII cleavage, fill-in, and religation. -
FIG. 8 shows the structure of several chimeric 2H7-VH expression plasmids. pING2107 is a qpt version of the light chain plasmid, pING2106. The larger ones are two-gene plasmids. pHL2-11 and pHL2-26 contain both H and L genes, while pLL2-25 contains two L genes. They were constructed by joining an NdeI fragment containing either an H or L gene to partially digested (with NdeI) pING2106. -
FIG. 9 shows a summary of the sequence alterations made in the construction of the 2H7 chimeric antibody expression plasmids. Residues underlined in the 5′ untranslated region are derived from the cloned mouse kappa and heavy-chain genes. Residues circled in the V/C boundary result from mutagenesis operations to engineer restriction enzyme sites in this region. - Generally, antibodies are composed of two light and two heavy chain molecules. Light and heavy chains are divided into domains of structural and functional homology. The variable domains of both the light (VL) and the heavy (VH) chains determine recognition and specificity. The constant region domains of light (CL) and heavy (CH) chains confer important biological properties such as antibody chain association, secretion, transplacental mobility, complement binding, and the like.
- A complex series of events leads to immunoglobulin gene expression in the antibody producing cells. The V region gene sequences conferring antigen specificity and binding are located in separate germ line gene segments called VH, D and JH; or VL and JL. These gene segments are joined by DNA rearrangements to form the complete V regions expressed in heavy and light chains respectively (
FIG. 1 ). The rearranged, joined (VL-JL and VH-D-JH)V segments then encode the complete variable regions or antigen binding domains of light and heavy chains, respectively. - Certain terms and phrases are used throughout the specification and claims. The following definitions are provided for purposes of clarity and consistency.
- 1. Expression vector—a plasmid DNA containing necessary regulatory signals for the synthesis of mRNA derived from any gene sequence, inserted into the vector.
- 2. Module vector—a plasmid DNA containing a constant or variable region gene module.
- 3. Expression plasmid—an expression vector that contains an inserted gene, such as a chimeric immunoglobulin gene.
- 4. Gene cloning—synthesis of a gene, insertion into DNA vectors, identification by hybridization, sequence analysis and the like.
- 5. Transfection—the transfer of DNA into mammalian cells.
- The invention provides a novel approach for the cloning and production of a human/mouse chimeric antibody with specificity to a human B cell surface antigen. The antigen is a polypeptide or comprises a polypeptide bound by the 2H7 monoclonal antibody described in Clark et al. Proc. Natl. Acad. Sci., U.S.A. 82: 1766-1770 (1985). This antigen is a phosphoprotein designated (Bp35(CD20)) and is only expressed on cells of the B cell lineage. Murine monoclonal antibodies to this antigen have been made before and are described in Clark et al., supra; see also Stashenko, P., et al., J. Immunol. 125: 1678-1685 (1980).
- The method of production combines five elements:
-
- (1) Isolation of messenger RNA (mRNA) from the mouse hybridoma line producing the monoclonal antibody, cloning and cDNA production therefrom;
- (2) Preparation of Universal Immunoglobulin Gene (UIG) oligonucleotides, useful as primers and/or probes for cloning of the variable region gene segments in the light and heavy chain mRNA from the hybridoma cell line, and cDNA production therefrom;
- (3) Preparation of constant region gene segment modules by cDNA preparation and cloning, or genomic gene preparation and cloning;
- (4) Construction of complete heavy or light chain coding sequences by linkage of the cloned specific immunoglobulin variable region gene segments of part (2) above to cloned human constant region gene segment modules;
- (5) Expression and production of light and heavy chains in selected hosts, including prokaryotic and eukaryotic cells, either in separate fermentations followed by assembly of antibody molecules in vitro, or through production of both chains in the same cell.
- One common feature of all immunoglobulin light and heavy chain genes and the encoded messenger RNAs is the so-called J region (i.e. joining region, see
FIG. 1 ). Heavy and light chain J regions have different sequences, but a high degree of sequence homology exists (greater than 80%) especially near the constant region, within the heavy JH regions or the kappa light chain J regions. This homology is exploited in this invention and consensus sequences of light and heavy chain J regions were used to design oligonucleotides (designated herein as UIGs) for use as primers or probes for cloning immunoglobulin light or heavy chain mRNAs or genes (FIG. 3 ). Depending on the sequence of a particular UIG, it may be capable of hybridizing to all immunoglobulin mRNAs or a specific one containing a particular J sequence. Another utility of a particular UIG probe may be hybridization to light chain or heavy chain mRNAs of a specific constant region, such as UIG-MJK which detects all mouse JK-containing sequences (FIG. 2 ). - UIG design can also include a sequence to introduce a restriction enzyme site into the cDNA copy of an immunoglobulin gene (see
FIG. 3 ). The invention may, for example, utilize chemical gene synthesis to generate the UIG probes for the cloning and modification of V regions from immunoglobulin mRNA. On the other hand, oligonucleotides can be synthesized to recognize individually, the less conserved 5′-region of the J regions as a diagnostic aid in identifying the particular J region present in the immunoglobulin mRNA. - A multi-step procedure is utilized for generating complete V+C region cDNA clones from the hybridoma cell light and heavy chain mRNAs. First, the complementary strand of oligodT-primed cDNA is synthesized, and this double-stranded cDNA is cloned in appropriate cDNA cloning vectors such as pBR322 (Gubler and Hoffman, Gene, 25: 263 (1983)). Clones are screened by hybridization with UIG oligonucleotide probes. Positive heavy and light chain clones identified by this screening procedure are mapped and sequenced to select those containing V region and leader coding sequences. In vitro mutagenesis including, for example, the use of UIG oligonucleotides, is then used to engineer desired restriction enzyme cleavage sites. We used this approach for the chimeric 2H7 light chain.
- An expedient method is to use synthetic UIG oligonucleotides as primers for the synthesis of cDNA. This method has the advantage of simultaneously introducing a desired restriction enzyme site, such as BstEII (
FIG. 3 ) into a V region cDNA clone. We used this approach for the chimeric 2H7 heavy chain. - Second, cDNA constant region module vectors are prepared from human cells. These cDNA clones are modified, when necessary, by site-directed mutagenesis to place a restriction site at the analogous position in the human sequence or at another desired location near a boundary of the constant region. An alternative method utilizes genomic C region clones as the source for C region module vectors.
- Third, cloned V region segments generated as above are excised and ligated to light or heavy chain C region module vectors. For example, one can clone the complete human kappa light chain C region and the complete human gamma1 C region. In addition, one can modify the human gamma1 region to introduce a termination codon and thereby obtain a gene sequence which encodes the heavy chain portion of an Fab molecule.
- The coding sequences having operationally linked V and C regions are then transferred into appropriate expression vehicles for expression in appropriate hosts, prokaryotic or eukaryotic. Operationally linked means in-frame joining of coding sequences to derive a continuously translatable gene sequence without alterations or interruptions of the triplet reading frame.
- One particular advantage of using cDNA genetic sequences in the present invention is the fact that they code continuously for immunoglobulin chains, either heavy or light. By “continuously” is meant that the sequences do not contain introns (i.e. are not genomic sequences, but rather, since derived from mRNA by reverse transcription, are sequences of contiguous exons). This characteristic of the cDNA sequences provided by the invention allows them to be expressible in prokaryotic hosts, such as bacteria, or in lower eukaryotic hosts, such as yeast.
- Another advantage of using cDNA cloning method is the ease and simplicity of obtaining variable region gene modules.
- The terms “constant” and “variable” are used functionally to denote those regions of the immunoglobulin chain, either heavy or light chain, which code for properties and features possessed by the variable and constant regions in natural non-chimeric antibodies. As noted, it is not necessary for the complete coding region for variable or constant regions to be present, as long as a functionally operating region is present and available.
- Expression vehicles include plasmids or other vectors. Preferred among these are vehicles carrying a functionally complete human constant heavy or light chain sequence having appropriate restriction sites engineered so that any variable-heavy or light chain sequence with appropriate cohesive ends can be easily inserted thereinto. Human constant heavy or light chain sequence-containing vehicles are thus an important embodiment of the invention. These vehicles can be used as intermediates for the expression of any desired complete heavy or light chain in any appropriate host.
- One preferred host is yeast. Yeast provides substantial advantages for the production of immunoglobulin light and heavy chains. Yeasts carry out post-translational peptide modifications including glycosylation. A number of recombinant DNA strategies now exist which utilize strong promoter sequences and high copy number plasmids which can be used for overt production of the desired proteins in yeast. Yeast recognizes leader sequences on cloned mammalian gene products and secretes peptides bearing leader sequences (i.e. prepeptides) (Hitzman, et al., 11th International Conference on Yeast, Genetics and Molecular Biology, Montpelier, France, Sep. 13-17, 1982).
- Yeast gene expression systems can be routinely evaluated for the level of heavy and light chain production, protein stability, and secretion. Any of a series of yeast gene expression systems incorporating promoter and termination elements from the actively expressed genes coding for glycolytic enzymes produced in large quantities when yeasts are grown in mediums rich in glucose can be utilized. Known glycolytic genes can also provide very efficient transcription control signals. For example, the promoter and terminator signals of the iso-1-cytochrome C (CYC-1) gene can be utilized.
- The following approach can be taken to develop and evaluate optimal expression plasmids for the expression of cloned immunoglobulin cDNAs in yeast.
-
- (1) The cloned immunoglobulin DNA linking V and C regions is attached to different transcription promoters and terminator DNA fragments;
- (2) The chimeric genes are placed on yeast plasmids (see, for example, Broach, J. R. in Methods in Enzymology—Vol. 101: 307 ed. Wu, R. et al., 1983));
- (3) Additional genetic units such as a yeast leader peptide may be included on immunoglobulin DNA constructs to obtain antibody secretion.
- (4) A portion of the sequence, frequently the first 6 to 20 codons of the gene sequence may be modified to represent preferred yeast codon usage.
- (5) The chimeric genes are placed on plasmids used for integration into yeast chromosomes.
- The following approaches can be taken to simultaneously express both light and heavy chain genes in yeast.
-
- (1) The light and heavy chain genes are each attached to a yeast promoter and a terminator sequence and placed on the same plasmid. This plasmid can be designed for either autonomous replication in yeast or integration at specific sites in the yeast chromosome.
- (2) The light and heavy chain genes are each attached to a yeast promoter and terminator sequence on separate plasmids containing different selectable markers. For example, the light chain gene can be placed on a plasmid containing the trp1 gene as a selectable marker, while the heavy chain gene can be placed on a plasmid containing ura3 as a selectable marker. The plasmids can be designed for either autonomous replication in yeast or integration at specific sites in yeast chromosomes. A yeast strain defective for both selectable markers is either simultaneously or sequentially transformed with the plasmid containing the light chain gene and with the plasmid containing the heavy chain gene.
- (3) The light and heavy chain genes are each attached to a yeast promoter and terminator sequence on separate plasmids each containing different selectable markers as described in (2) above. A yeast mating type “a” strain defective in the selectable markers found on the light and heavy chain expression plasmids (trp1 and ura3 in the above example) is transformed with the plasmid containing the light chain gene by selection for one of the two selectable markers (trp1 in the above example). A yeast mating type “alpha” strain defective in the same selectable markers as the “a” strain (i.e. trp1 and ura3 as examples) is transformed with a plasmid containing the heavy chain gene by selection for the alternate selectable marker (i.e. ura3 in the above example). The “a” strain containing the light chain plasmid (phenotype: Trp+Ura− in the above example) and the strain containing the heavy chain plasmid (phenotype: Trp−Ura+ in the above example) are mated and diploids are selected which are prototrophic for both of the above selectable markers (Trp+Ura+ in the above example).
- Among bacterial hosts which may be utilized as transformation hosts, E. coli K12 strain 294 (ATCC 31446) is particularly useful. Other microbial strains which may be used include E. coli X1776 (ATCC 31537). The aforementioned strains, as well as E. coli W3110 (ATCC 27325) and other enterobacteria such as Salmonella typhimurium or Serratia marcescens, and various Pseudomonas species may be used.
- In general, plasmid vectors containing replicon and control sequences which are derived from species compatible with a host cell are used in connection with these hosts. The vector ordinarily carries a replication site, as well as specific genes which are capable of providing phenotypic selection in transformed cells. For example, E. coli is readily transformed using pBR322, a plasmid derived from an E. coli species (Bolivar, et al., Gene, 2: 95 (1977)). pBR322 contains genes for ampicillin and tetracycline resistance, and thus provides easy means for identifying transformed cells. The pBR322 plasmid or other microbial plasmids must also contain, or be modified to contain, promoters which can be used by the microbial organism for expression of its own proteins. Those promoters most commonly used in recombinant DNA construction include the beta-lactamase (penicillinase) and lactose (beta-galactosidase) promoter systems (Chang et al., Nature, 275: 615 (1978); Itakura et al., Science, 198: 1056 (1977)); and tryptophan promoter systems (Goeddel et al., Nucleic Acids Research, 8: 4057 (1980); EPO Publication No. 0036776). While these are the most commonly used, other microbial promoters have been discovered and utilized.
- For example, a genetic construct for any heavy or light chimeric immunoglobulin chain can be placed under the control of the leftward promoter of bacteriophage lambda (PL). This promoter is one of the strongest known promoters which can be controlled. Control is exerted by the lambda repressor, and adjacent restriction sites are known.
- The expression of the immunoglobulin chain sequence can also be placed under control of other regulatory sequences which may be “homologous” to the organism in its untransformed state. For example, lactose dependent E. coli chromosomal DNA comprises a lactose or lac operon which mediates lactose digestion by elaborating the enzyme beta-galactosidase. The lac control elements may be obtained from bacteriophage lambda pLAC5, which is infective for E. coli. The lac promoter-operator system can be induced by IPTG.
- Other promoter/operator systems or portions thereof can be employed as well. For example, arabinose, colicine E1, galactose, alkaline phosphatase, tryptophan, xylose, tac, and the like can be used.
- Other preferred hosts are mammalian cells, grown in vitro in tissue culture, or in vivo in animals. Mammalian cells provide post-translational modifications to immunoglobulin protein molecules including leader peptide removal, correct folding and assembly of heavy and light chains, proper glycosylation at correct sites, and secretion of functional antibody protein.
- Mammalian cells which may be useful as hosts for the production of antibody proteins include cells of lymphoid origin, such as the hybridoma Sp2/0-Ag14 (ATCC CRL 1581) or the myleoma P3X63Ag8 (ATCC TIB 9), and its derivatives. Others include cells of fibroblast origin, such as Vero (ATCC CRL 81) or CHO-K1 (ATCC CRL 61).
- Several possible vector systems are available for the expression of cloned heavy chain and light chain genes in mammalian cells. One class of vectors relies upon the integration of the desired gene sequences into the host cell genome. Cells which have stably integrated DNA can be selected by simultaneously introducing drug resistance genes such as E. coli gpt (Mulligan, R. C. and Berg, P., Proc. Natl. Acad. Sci., USA, 78: 2072 (1981)) or Tn5 neo (Southern, P. J. and Berg, P., J. Mol. Appl. Genet., 1: 327 (1982)). The selectable marker gene can be either linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection (Wigler, M. et al., Cell, 16: 77 (1979)). A second class of vectors utilizes DNA elements which confer autonomously replicating capabilities to an extrachromosomal plasmid. These vectors can be derived from animal viruses, such as bovine papillomavirus (Sarver, N. et al., Proc. Natl. Acad. Sci., USA, 79: 7147 (1982)), polyoma virus (Deans, R. J. et al., Proc. Natl. Acad. Sci., USA, 81: 1292 (1984)), or SV40 virus (Lusky, M. and Botchan, M., Nature, 293: 79 (1981)).
- Since an immunoglobulin cDNA is comprised only of sequences representing the mature mRNA encoding an antibody protein additional gene expression elements regulating transcription of the gene and processing of the RNA are required for the synthesis of immunoglobulin mRNA. These elements may include splice signals, transcription promoters, including inducible promoters enhancers, and termination signals. cDNA expression vectors incorporating such elements include those described by Okayama, H. and Berg, P., Mol. Cell Biol., 3: 280 (1983); Cepko, C. L. et al., Cell, 37: 1053 (1984); and Kaufman, R. J., Proc. Natl. Acad. Sci., USA, 82: 689 (1985).
- An additional advantage of mammalian cells as hosts is their ability to express chimeric immunoglobulin genes which are derived from genomic sequences. Thus, mammalian cells may express chimeric immunoglobulin genes which are comprised of a variable region cDNA module plus a constant region which is composed in whole or in part of genomic sequences. Several human constant region genomic clones have been described (Ellison, J. W. et al., Nucl. Acids Res., 10: 4071 (1982), or Max, E. et al., Cell, 29: 691 (1982)). The use of such genomic sequences may be convenient for the simultaneous introduction of immunoglobulin enhancers, splice signals, and transcription termination signals along with the constant region gene segment.
- Different approaches can be followed to obtain complete H2L2 antibodies.
- First, one can separately express the light and heavy chains followed by in vitro assembly of purified light and heavy chains into complete H2L2 IgG antibodies. The assembly pathways used for generation of complete H2L2 IgG molecules in cells have been extensively studied (see, for example, Scharff, M., Harvey Lectures, 69: 125 (1974)). In vitro reaction parameters for the formation of IgG antibodies from reduced isolated light and heavy chains have been defined by Beychok, S., Cells of Immunoglobulin Synthesis, Academic Press, New York, page 69, 1979.
- Second, it is possible to co-express light and heavy chains in the same cells to achieve intracellular association and linkage of heavy and light chains into complete H2L2 IgG antibodies. The co-expression can occur by using either the same or different plasmids in the same host.
- The invention provides “chimeric” immunoglobulin chains, either heavy or light. A chimeric chain contains a constant region substantially similar to that present in a natural human immunoglobulin, and a variable region having the desired antigenic specificity of the invention, i.e., to the specified human B cell surface antigen.
- The invention also provides immunoglobulin molecules having heavy and light chains associated so that the overall molecule exhibits any desired binding and recognition properties. Various types of immunoglobulin molecules are provided: monovalent, divalent, molecules with chimeric heavy chains and non-chimeric light chains, or molecules with the invention's variable binding domains attached to moieties carrying desired functions.
- Antibodies having chimeric heavy chains of the same or different variable region binding specificity and non-chimeric (i.e., all human or all non-human) light chains, can be prepared by appropriate association of the needed polypeptide chains. These chains are individually prepared by the modular assembly methods of the invention.
- The antibodies of the invention having human constant region can be utilized for passive immunization, especially in humans, without negative immune reactions such as serum sickness or anaphylactic shock. The antibodies can, of course, also be utilized in prior art immunodiagnostic assays and kits in detectably labelled form (e.g., enzymes, 125I, 14C, fluorescent labels, etc.), or in immunobilized form (on polymeric tubes, beads, etc.), in labelled form for in vivo imaging, wherein the label can be a radioactive emitter, or an NMR contrasting agent such as a carbon-13 nucleus, or an X-ray contrasting agent, such as a heavy metal nucleus. The antibodies can also be used for in vitro localization of the antigen by appropriate labelling.
- The antibodies can be used for therapeutic purposes, by themselves, in complement mediated lysis, or coupled to toxins or therapeutic moieties, such as ricin, etc.
- Mixed antibody-enzyme molecules can be used for immunodiagnostic methods, such as ELISA. Mixed antibody-peptide effector conjugates can be used for targeted delivery of the effector moiety with a high degree of efficacy and specificity.
- Specifically, the chimeric antibodies of this invention can be used for any and all uses in which the murine 2H7 monoclonal antibody can be used, with the obvious advantage that the chimeric ones are more compatible with the human body.
- Having now generally described the invention, the same will be further understood by reference to certain specific examples which are included herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
- Materials and Methods
- Tissue Culture Cell Lines
- The human cell lines GM2146 and GM1500 were obtained from the Human Mutant Cell Repository (Camden, N.J.) and cultured in RPMI1640 plus 10% fetal bovine serum (M. A. Bioproducts). The cell line Sp2/0 was obtained from the American Type Culture Collection and grown in Dulbecco's Modified Eagle Medium (DMEM) plus 4.5 g/l glucose (M. A. Bioproducts) plus 10% fetal bovine serum (Hyclone, Sterile Systems, Logan, Utah). Media were supplemented with penicillin/streptomycin (Irvine Scientific, Irvine, California).
- Recombinant Plasmid and Bacteriophage DNAs
- The plasmids pBR322, pL1 and pUC12 were purchased from Pharmacia P-L Biochemicals (Milwaukee, Wisconsin). The plasmids pSV2-neo and pSV2-qpt were obtained from BRL (Gaithersburg, Md.), and are available from the American Type Culture Collection (Rockville, Md.). pHu-gamma-1 is a subclone of the 8.3 Kb HindIII to BamHI fragment of the human IgG1 chromosomal gene. An isolation method for of the human IgG1 chromosomal gene is described by Ellison, J. W. et al., Nucl. Acids Res., 10: 4071 (1982). M8alphaRX12 contains the 0.7 Kb XbaI to EcoRI fragment containing the mouse heavy chain enhancer from the J-C intron region of the M603 chromosomal gene (Davis, M. et al., Nature, 283: 733, 1979) inserted into M13mp10. DNA manipulations involving purification of plasmid DNA by buoyant density centrifugation, restriction endonuclease digestion, purification of DNA fragments by agarose gel electrophoresis, ligation and transformation of E. coli were as described by Maniatis, T. et al., Molecular Cloning: A Laboratory Manual, (1982) or other procedures. Restriction endonucleases and other DNA/RNA modifying enzymes were purchased from Boehringer-Mannheim (Indianapolis, Ind.), BRL, New England Biolabs (Beverly, Mass.) and Pharmacia P-L.
- Oligonucleotide Preparation
- Oligonucleotides were either synthesized by the triester method of Ito et al. (Nucl. Acids Res., 10: 1755 (1982)), or were purchased from ELESEN, Los Angeles, Calif. Tritylated, deblocked oligonucleotides were purified on Sephadex-G50, followed by reverse-phase HPLC with a 0-25% gradient of acetonitrile in 10 mM triethylamine-acetic acid, pH 7.2, on a C18 Bondapak column (Waters Associates). Detritylation was in 80% acetic acid for 30 min., followed by evaporation thrice. Oligonucleotides were labeled with [gamma-32P]ATP by T4 polynucleotide kinase.
- RNA Preparation and Analysis
- Total cellular RNA was prepared from tissue culture cells by the method of Auffray, C. and Rougeon, F. (Eur. J. Biochem., 107: 303 (1980)) or Chirgwin, J. M. et al. (Biochemistry, 18: 5294 (1979)). Preparation of poly(A)+ RNA, methyl-mercury agarose gel electrophoresis, and “Northern” transfer to nitrocellulose were as described by Maniatis, T. et al., supra. Total cellular RNA or poly(A)+ RNA was directly bound to nitrocellulose by first treating the RNA with formaldehyde (White, B. A. and Bancroft, F. C., J. Biol. Chem., 257: 8569 (1982)). Hybridization to filterbound RNA was with nick-translated DNA fragments using conditions described by Margulies, D. H. et al. (Nature, 295: 168 (1982)) or with 32P-labelled oligonucleotide using 4×SSC, 10× Denhardt's, 100 ug/ml salmon sperm DNA at 37° C. overnight, followed by washing in 4×SSC at 37° C.
- cDNA Preparation and Cloning
- Oligo-dT primed cDNA libraries were prepared from poly(A)+ RNA from GM1500 and GM2146 cells by the methods of Land, H. et al. (Nucl. Acids Res., 9: 2251 (1981)) and Gubler, V. and Hoffman, B. J., Gene, 25: 263 (1983), respectively. The cDNA libraries were screened by hybridization (Maniatis, T., supra) with 32P-labelled oligonucleotides using the procedure of de Lange et al. (Cell, 34: 891 (1983)), or with nick-translated DNA fragments.
- Oligonucleotide Primer Extension and Cloning
- Poly(A)+ RNA (20 ug) was mixed with 1.2 ug primer in 40 ul of 64 mM KCl. After denaturation at 90° C. for 5 min. and then chilling in ice, 3 units Human Placental Ribonuclease Inhibitor (BRL) was added in 3 ul of 1M Tris-HCl, pH 8.3. The oligonucleotide was annealed to the RNA at 42° C. for 15 minutes, then 12 ul of 0.05M DTT, 0.05M MgCl2, and 1 mM each of dATP, dTTP, dCTP, and dGTP was added. 2 ul of alpha-32P-dATP (400 Ci/mmol, New England Nuclear) was added, followed by 3 ul of AMV reverse transcriptase (19 units/ul, Life Sciences).
- After incubation at 42° C. for 105 min., 2 ul 0.5 M EDTA and 50 ul 10 mM Tris, 1 mM EDTA, pH 7.6 were added. Unincorporated nucleotides were removed by Sephadex G-50 spin column chromatography, and the RNA-DNA hybrid was extracted with phenol, then with chloroform, and precipitated with ethanol. Second strand synthesis, homopolymer tailing with dGTP or dCTP, and insertion into homopolymer tailed vectors was as described by Gubler and Hoffman, supra.
- Site-Directed Mutagenesis
- Single stranded M13 subclone DNA (1 ug) was combined with 20 ng oligonucleotide primer in 12.5 ul of Hin buffer (7 mM Tris-HCl, pH 7.6, 7 mM MgCl2, 50 mM NaCl). After heating to 95° C. in a sealed tube, the primer was annealed to the template by slowly cooling from 70° C. to 37° C. for 90 minutes. 2 ul dNTPs (1 mM each), 1 ul 32P-DATP (10 uCi), 1 ul DTT (0.1 M) and 0.4 ul Klenow DNA PolI (2u, Boehringer Mannheim) were added and chains extended at 37° C. for 30 minutes. To this was added 1 ul (10 ng) M13 reverse primer (New England Biolabs), and the heating/annealing and chain extension steps were repeated. The reaction was stopped with 2 ul of 0.5M EDTA, pH 8, plus 80 ul of 10 mM Tris-HCl, pH 7.6, 1 mM EDTA. The products were phenol extracted and purified by Sephadex G-50 spun column chromatography and ethanol precipitated prior to restriction enzyme digestion and ligation to the appropriate vector.
- Transfection of Myeloma Tissue Culture Cells
- The electroporation method of Potter, H. et al. (Proc. Natl. Acad. Sci., USA, 81: 7161 (1984)) was used. After transfection, cells were allowed to recover in complete DMEM for 48-72 hours, then were seeded at 10,000 to 50,000 cells per well in 96-well culture plates in the presence of selective medium. G418 (GIBCO) selection was at 0.8 mg/ml, and mycophenolic acid (Calbiochem) was at 6 ug/ml plus 0.25 mg/ml xanthine.
- Assays for Immunoglobulin Synthesis and Secretion
- Secreted immunoglobulin was measured directly from tissue culture cell supernatants. Cytoplasmic protein extract was prepared by vortexing 106 cells in 160 ul of 1% NP40, 0.15 M NaCl, 10 mM Tris, 1 mM EDTA, pH 7.6 and leaving the lysate at 0° C., 15 minutes, followed by centrifugation at 10,600×g to remove insoluble debris.
- A double antibody sandwich ELISA (Voller, A. et al., in Manual of Clinical Immunology, 2nd Ed., Eds. Rose, N. and Friedman, H., pp. 359-371, 1980) using affinity purified antisera was used to detect specific immunoglobulins. For detection of human IgG, the plate-bound antiserum is goat anti-human IgG (KPL, Gaithersburg, Md.) at 1/1000 dilution, while the peroxidase-bound antiserum is goat anti-human IgG (KPL or Tago, Burlingame) at 1/4000 dilution. For detection of human immunoglobulin kappa, the plate-bound antiserum is goat anti-human kappa (Tago) at 1/500 dilution, while the peroxidase-bound antiserum is goat anti-human kappa (Cappel) at 1/1000 dilution.
- (1) Antibody 2H7.
- The 2H7 mouse monoclonal antibody (gamma 2b, kappa) recognizes a human B-cell surface antigen, (Bp35(CD20)) Clark, E. A., et al., Proc. Natl. Acad. Sci., U.S.A. 82: 1766 (1985)). The (Bp35(CD20)) molecules presumably play a role in B-cell activation. The antibody 2H7 does not react with stem cells which are progenitors of B-cells epithelial, mesenchymal and fibroblastic cells of other organs.
- (2) Identification of J Sequences in the Immunoglobulin mRNA of 2H7.
- Frozen cells were thawed on ice for 10 minutes and then at room temperature. The suspension was diluted with 15 ml PBS and the cells were centrifuged down. They were resuspended, after washes in PBS, in 16 ml 3M LiCl, 6M urea and disrupted in a polytron shear. The preparation of mRNA and the selection of the poly(A+) fraction were carried out according to Auffray, C. and Rougeon, F., Eur. J. Biochem. 107: 303, 1980.
- The poly (A+) RNA from 2H7 was hybridized individually with labeled
J H1, JH2, JH3 andJ H4 oligonucleotides under conditions described by Nobrega et al. Anal. Biochem 131: 141, 1983). The products were then subjected to electrophoresis in a 1.7% agarose-TBE gel. The gel was fixed in 10% TCA, blotted dry and exposed for autoradiography. The result showed that the 2H7 VH containsJ H1, JH2, orJ H4 but not JH3 sequences. - For the analysis of the VK mRNA, the dot-blot method of White and Bancroft J. Biol. Chem. 257: 8569, (1982) was used. Poly (A+) RNA was immobilized on nitrocellulose filters and was hybridized to labeled probe-oligonucleotides at 400 in 4×SSC. These experiments show that 2H7 contains
J K5 sequences. - (3) V Region cDNA Clones.
- A library primed by oligo (dT) on 2H7 poly (A+) RNA was screened for kappa clones with a mouse CK region probe. From the 2H7 library, several clones were isolated. A second screen with a 5′
J K5 specific probe identified the 2H7 (JK5) light-chain clones. Heavy chain clones of 2H7 were generated by priming the poly(A+) RNA with the UIGH(BstEII) oligonucleotide (seeFIG. 3 ), and identified by screening with the UIGH(BstEII) oligonucleotide. - The heavy and light chain genes or gene fragments from the VH and VK cDNA clones pH2-11 and pL2-12 were inserted into M13 bacteriophage vectors for nucleotide sequence analysis. The complete nucleotide sequences of the variable region of these clones were determined (
FIGS. 5 and 6 ) by the dideoxy chain termination method. These sequences predict V region amino acid compositions that agree well with the observed compositions, and predict peptide sequences which have been verified by direct amino acid sequencing of portions of the V regions. - The nucleotide sequences of the cDNA clones show that they are immunoglobulin V region clones as they contain amino acid residues diagnostic of V domains (Kabat et al., Sequences of Proteins of Immunological Interest; U.S. Dept of HHS, 1983).
- The 2H7 VH has the
J H1 sequence. The 2H7 VL is from the VK-KpnI family (Nishi et al. Proc. Nat. Acd. Sci. USA 82: 6399, 1985), and usesJ K5. The cloned 2H7 VL predicts an amino acid sequence which was confirmed by amino acid sequencing of peptides from the 2H7 light chain corresponding to residues 81-100. The cloned 2H7 VH predicts an amino acid sequence confirmed also by peptide sequencing, namely residues 1-12. - (4) In Vitro Mutagenesis to Engineer Restriction Enzyme Sites in the J Region for Joining to a Human C-Module, and to Remove Oligo (dC)
Sequences 5′ to the V Modules. - For the 2H7 VK, the J-region mutagenesis primer JKHindIII, as shown in
FIG. 6 , was utilized. A human CK module derived from a cDNA clone was also mutagenized to contain the HindIII sequence (seeFIG. 4 ). The mutagenesis reaction was performed on M13 subclones of these genes. The frequency of mutant clones ranged from 0.5 to 1% of the plaques obtained. - It had been previously observed that the oligo (dC) sequence upstream of the AUG codon in a VH chimeric gene interferes with proper splicing in one particular gene construct. It was estimated that perhaps as much as 70% of the RNA transcripts had undergone the mis-splicing, wherein a cryptic 3′ splice acceptor in the leader sequence was used. Therefore the oligo (dC) sequence upstream of the initiator AUG was removed in all of the clones.
- In one approach, an oligonucleotide was used which contains a SalI restriction site to mutagenize the 2H7 VK clone. The primer used for this oligonucleotide-directed mutagenesis is a 22-mer which introduces a SalI site between the oligo (dC) and the initiator met codon (
FIG. 6 ). - In a different approach, a convenient NcoI site was utilized to delete the 5′ untranslated region and oligo (dC) of the 2H7 VH clone (see
FIG. 5 ). - The
human C gamma 1 gene module is a cDNA derived from GM2146 cells (Human Genetic Mutant Cell Repository, Newark, N.J.). ThisC gamma 1 gene module was previously combined with a mouse VH gene module to form the chimeric expression plasmid pING2012E (FIG. 7C ). - (5) Chimeric 2H7 Expression Plasmids.
- A 2H7 chimeric heavy chain expression plasmid was derived from the replacement of the VH module of pING2012E with the VH cDNA modules to give the expression plasmid pING2101 (
FIG. 7 b). This plasmid directs the synthesis of chimeric 2H7 heavy chain when transfected into mammalian cells. - For the 2H7 light chain chimeric gene, the SalI to HindIII fragment of the mouse VK module was joined to the human C K module by the procedure outlined in
FIG. 7 a, forming pING2106. Replacement of the neo sequence with the E. coli gpt gene derived from pSV2-gpt resulted in pING2107, which expresses 2H7 chimeric light chain and confers mycophenolic acid resistance when transfected into mammalian cells. - The inclusion of both heavy and light chain chimeric genes in the same plasmid allows for the introduction into transfected cells of a 1:1 gene ratio of heavy and light chain genes leading to a balanced gene dosage. This may improve expression and decrease manipulations of transfected cells for optimal chimeric antibody expression. For this purpose, the DNA fragments derived from the chimeric heavy and light chain genes of pING2101 and pING2106 were combined into the expression plasmids pHL2-11 and pHL2-26 (
FIG. 8 ). This expression plasmid contains a selectable neoR marker and separate transcription units for each chimeric gene, each including a mouse heavy chain enhancer. - The modifications and V-C joint regions of the 2H7 chimeric genes are summarized in
FIG. 9 . - (6) Stable Transfection of Mouse Lymphoid Cells for the Production of Chimeric Antibody.
- Electroporation was used (Potter et al. supra; Toneguzzo et al. Mol. Cell Biol. 6: 703 1986) for the introduction of 2H7 chimeric expression plasmid DNA into mouse Sp2/0 cells. The electroporation technique gave a transfection frequency of 104×105 for the Sp2/0 cells.
- The expression plasmids, pING2101 and pING2106, were digested with NdeI; and the DNA was introduced into Sp2/0 cells by electroporation. Transformant 1D6 was obtained which secretes chimeric 2H7 antibody. Antibody isolated from this cell line was used for the functional assays done to characterize the chimeric antibody. We have also obtained transformants from experiments using the two-gene plasmids.
- (7) Purification of Chimeric 2H7 Antibody Secreted in Tissue Culture.
- a. 1D6 (Sp2/0.pING2101/pING2106.1D6) cells were grown in culture medium [DMEM (Gibco #320-1965), supplemented with 10% Fetal Bovine Serum (Hyclone #A-1111-D), 10 mM HEPES, 1× Glutamine-Pen-Strep (Irvine Scientific #9316) to 1×106 cell/ml.
- b. The cells were then centrifuged at 400×g and resuspended in serum-free culture medium at 2×106 cell/ml for 18-24 hr.
- c. The medium was centrifuged at 4000 RPM in a JS-4.2 rotor (3000×g) for 15 min.
- d. 1.6 liter of supernatant was then filtered through a 0.45 micron filter and then concentrated over a YM30 (Amicon Corp.) filter to 25 ml.
- e. The conductance of the concentrated supernatant was adjusted to 5.7-5.6 mS/cm CDM 80 radiometer and the pH was adjusted to 8.0.
- f. The supernatant was centrifuged at 2000×g, 5 min., and then loaded onto a 40 ml DEAE column, which was preequilibrated with 10 mM sodium phosphate, pH8.0.
- g. The flow through fraction was collected and loaded onto a 1 ml protein A-Sepharose (Sigma) column preequilibrated with 10 mM sodium phosphate, pH8.0.
- h. The column was washed first with 6 ml 10 mM sodium phosphate buffer pH 8.0, followed by 8 ml 0.1M sodium citrate pH 3.5, then by 6 ml 0.1M citric acid (pH 2.2). Fractions of 0.5 ml were collected in tubes containing 50 ul 2M Tris base (Sigma).
- i. The bulk of the IgG was in the pH 3.5 elution and was pooled and concentrated over Centricon 30 (Amicon Corp.) to approximately 0.06 ml.
- j. The buffer was changed to PBS (10 mM sodium phosphate pH 7.4, 0.15M NaCl) in Centricon 30 by repeated diluting with PBS and reconcentrating.
- k. The IgG solution was then adjusted to 0.10 ml and bovine serum albumin (Fraction V, U.S. Biochemicals) was added to 1.0% as a stabilizing reagent.
- (9) Chimeric 2H7 Antibody, Like the Mouse 2H7 Antibody, Specifically Binds to Human B Cells.
- First, the samples were tested with a binding assay, in which cells of both an 2H7 antigen-positive and an 2H7 antigen-negative cell line were incubated with standard mouse monoclonal antibody 2H7 with chimeric 2H7 antibody derived from the cell culture supernatants, followed by a second reagent, fluoresceinisothiocyanate (FITC)-conjugated goat antibodies to human (or mouse, for the standard) immunoglobulin.
- Binding Assays. Cells from a human B cell line, T51, were used. Cells from human colon carcinoma line C3347 were used as a negative control, since they, according to previous testing, do not express detectable amounts of the 2H7 antigen. The target cells were first incubated for 30 min at 4° C. with either the chimeric 2H7 or with mouse 2H7 standard, which had been purified from mouse ascites. This was followed by incubation with a second, FITC-labelled, reagent, which for the chimeric antibody was goat-anti-human immunoglobulin, obtained from TAGO (Burlingame, Calif.), and used at a dilution of 1:50. For the mouse standard, it was goat-anti-mouse immunoglobulin, also obtained from TAGO and used at a dilution of 1:50. Antibody binding to the cell surface was determined using a Coulter Model EPIC-C cell sorter.
- As shown in Table I, both the chimeric and the mouse standard 2H7 bound significantly, and to approximately the same extent, to the positive T51 line. They did not bind above background to the 2H7 negative C-3347 line.
- Functional Assays.
- In previous studies, antibody 2H7 was tested for antibody-dependent cellular cytotoxicity (ADCC) measured by its ability to lyse Cr-labelled human B lymphona cells in the presence of human peripheral blood leukocytes as the source of effector cells. It was also tested for its ability to lyse 51Cr labelled hum B cells in the presence of human serum as the source of complement. These tests were carried out as previously described for mouse monoclonal anti-carcinoma antibody L6, which can mediate ADCC, as well as complement-mediated cytoxicity, CDC. The techniques used and the data described for the L6 antibody have been previously described. Hellstrom, et al., Proc. Natl. Acad. Sci. U.S.A. 83: 7059-7063 (1986).
- Chimeric 2H7, but not mouse 2H7 antibody, will be able to mediate both ADCC and CDC against human B lymphoma cells. Thus a hybridoma producing a non-functional mouse antibody can be converted to a hybridoma producing a chimeric antibody with ADCC and CDC activities. Such a chimeric antibody is a prime candidate for the treatment or imaging of B-cell disorders, such as leukemias, lymphomas, and the like.
- This invention therefore provides a method for making biologically functional antibodies when starting with a hybridoma which produces antibody which has the desired specificity for antigen but lacks biological effector functions such as ADCC and CDC.
- The results presented above demonstrate that the chimeric 2H7 antibody binds to (Bp35(CD20)) antigen positive human B cells to approximately the same extent as the mouse 2H7 monoclonal antibody. This is significant because the 2H7 antibody defines a surface phosphoprotein antigen (Bp35(CD20)), of about 35,000 daltons, which is expressed on the cells of B cell lineage. The 2H7 antibody does not bind detectably to various other cells such as fibroblasts, endothelial cells, or epithelial cells in the major organs or the stem cell precursors which give rise to B cells.
- Although the prospect of attempting tumor therapy using monoclonal antibodies is attractive, with some partial tumor regressions being reported, to date such monoclonal antibody therapy has been met with limited success (Houghton et al., February 1985, Proc. Natl. Acad. Sci. 82: 1242-1246). Murine monoclonal anti-(Bp35(CD20)) antibody has been used for therapy of B cell malignancies (Press, et al.,) Blood: February 1987, in press). The therapeutic efficacy of mouse monoclonal antibodies (which are the ones that have been tried so far) appears to be too low for most practical purposes. Because of the “human” properties which may make the chimeric 2H7 monoclonal antibodies more resistant to clearance and less immunogenic in vivo, the chimeric 2H7 monoclonal antibodies will be advantageously used not only for therapy with unmodified chimeric antibodies, but also for development of various immunoconjugates with drugs, toxins, immunomodulators, isotopes, etc., as well as for diagnostic purposes such as in vivo imaging of B-cell tumors (for example, lymphomas and leukemias) using appropriately labelled chimeric 2H7 antibodies. Such immunoconjugation techniques are known to those skilled in the art and can be used to modify the chimeric 2H7 antibody molecules of the present invention. The chimeric 2H7 antibody, by virtue of its having the human constant portion, will possess biological activity in complement dependent and antibody dependent cytotoxicity which the mouse 2H7 does not.
- An illustrative cell line secreting chimeric 2H7 antibody was deposited prior to the U.S. filing date at the ATCC, Rockville Md. This is a transfected hybridoma (corresponds to 1D6 cells supra) ATCC HB 9303.
- The present invention is not to be limited in scope by the cell lines deposited since the deposited embodiment is intended as a single illustration of one aspect of the invention and all cell lines which are functionally equivalent are within the scope of the invention. Indeed, various modifications of the invention in addition to those shown in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
TABLE 1 Binding Assays Of Chimeric 2H7 Antibody and Mouse 2H7 Monoclonal Antibody to a B cell Line Expressing (Bp35(CD20)) and a Cell Line Not Expressing This Antigen. Antibody GAM GAH Binding Ratio* for T51 B-Cells 2H7 Mouse 37 ND 2H7 Chimeric ND 29 L6 Mouse 1 ND Binding Ratio* for C3347 Cells 2H7 Mouse 1.4 ND 2H7 Chimeric ND 1.3 L6 Mouse 110 ND
*All assays were conducted using an antibody concentration of 10 ug/ml. The binding ratio is the number of times brighter a test sample is than a control sample treated with GAM (FITC-Conjugated goat anti-mouse) or GAH (FITC conjugated goat anti-human) alone. A ratio of 1 means that the test sample is just as bright as the control; a ratio of 2 means the test sample is twice as bright as the control and so on.
ND—not done
-
Claims (29)
1. A polynucleotide molecule comprising a cDNA sequence coding for the variable region of an immunoglobulin chain having specificity to a 35-kDa polypeptide (Bp35(CD20)) expressed on the surface of B cells.
2. The molecule of claim 1 wherein said chain is a heavy chain.
3. The molecule of claim 1 wherein said chain is a light chain.
4. The molecule of claim 1 which further comprises an additional sequence coding for the constant C region of a human immunoglobulin chain, both said sequences in operable linkage with each other.
5. The molecule of claim 4 wherein said additional sequence is a cDNA sequence.
6. The molecule of claim 4 wherein said additional sequence is a genomic sequence.
7. The molecule of claim 1 which is a recombinant DNA molecule.
8. The molecule of claim 7 which is in double-stranded DNA form.
9. The molecule of claim 7 which is an expressible vehicle.
10. The molecule of claim 9 wherein said vehicle is a plasmid.
11. A prokaryotic host transformed with the molecule of claim 4 .
12. The host of claim 11 which is a bacterium.
13. A eukaryotic host transfected with the molecule of claim 4 .
14. The host of claim 13 which is yeast or a mammalian cell.
15. A heavy immunoglobulin chain comprising a constant human region and a variable region having specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells.
16. A light immunoglobulin chain comprising a constant human region and a variable region having specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells.
17. A chimeric antibody molecule comprising two light chains and two heavy chains, each of said chains comprising a constant human region and a variable region having specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells.
18. The antibody of claim 17 in detectably labelled form.
19. The antibody of claim 17 immobilized on an aqueous-insoluble solid phase.
20. A process of preparing an immunoglobulin heavy chain having a constant human region and a variable region having specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells which comprises:
culturing a host capable of expressing said chain under culturing conditions and
recovering from said culture said heavy chain.
21. A process of preparing an immunoglobulin light chain having a constant human region and a variable region with specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells which comprises:
culturing a host capable of expressing said chain under culturing conditions; and
recovering from said culture said light chain.
22. A process of preparing a chimeric immunoglobulin containing a heavy chain and a light chain, each of said heavy and light chains having a constant human region and a variable region with specificity to a 35 kDa polypeptide (Bp35(CD20)) expressed on the surface of human B cells which comprises:
culturing a host capable of expressing said heavy chain, or said light chain, or both, under culturing conditions; and
recovering from said culture said chimeric immunoglobulin molecule.
23. The process of any of claims 20, 21 or 22 wherein said host is prokaryotic.
24. The process of any of claims 20, 21 or 22 wherein said host is eukaryotic.
25. An immunoassay method for the detection of a 35 kDa polypeptide normally expressed on the surface of B cells in a sample, which comprises:
contacting said sample with the antibody of claim 17 and
detecting whether said antibody binds to said antigen.
26. An in vivo or in vitro imaging method to detect an antigen comprising a 35 kDa polypeptide normally expressed on the surface of ‘B ’ cells which comprises contacting said antigen with the labelled antibody of claim 18 and detecting said antibody.
27. A method of killing cells carrying an antigen thereon, which antigen comprising a 35 kDa polypeptide normally expressed on the surface of B cells which comprises:
contacting said cells with the antibody of claim 17 .
28. The method of claim 27 wherein said killing occurs by complement mediated lysis of said cells.
29. The method of claim 27 wherein said killing occurs by ADCC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/941,768 US20050163708A1 (en) | 1986-10-27 | 2004-09-15 | Chimeric antibody with specificity to human B cell surface antigen |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1986/002269 WO1987002671A1 (en) | 1985-11-01 | 1986-10-27 | Modular assembly of antibody genes, antibodies prepared thereby and use |
US1620287A | 1987-01-08 | 1987-01-08 | |
US19596188A | 1988-05-13 | 1988-05-13 | |
US07/665,939 US5500362A (en) | 1987-01-08 | 1991-03-05 | Chimeric antibody with specificity to human B cell surface antigen |
US08/471,984 US5721108A (en) | 1987-01-08 | 1995-06-06 | Chimeric antibody with specificity to human B cell surface antigen |
US09/021,934 US6120767A (en) | 1986-10-27 | 1998-02-12 | Chimeric antibody with specificity to human B cell surface antigen |
US09/630,198 US6893625B1 (en) | 1986-10-27 | 2000-08-01 | Chimeric antibody with specificity to human B cell surface antigen |
US10/941,768 US20050163708A1 (en) | 1986-10-27 | 2004-09-15 | Chimeric antibody with specificity to human B cell surface antigen |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/630,198 Continuation US6893625B1 (en) | 1986-10-27 | 2000-08-01 | Chimeric antibody with specificity to human B cell surface antigen |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050163708A1 true US20050163708A1 (en) | 2005-07-28 |
Family
ID=34577905
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/630,198 Expired - Fee Related US6893625B1 (en) | 1986-10-27 | 2000-08-01 | Chimeric antibody with specificity to human B cell surface antigen |
US09/724,138 Expired - Fee Related US6652852B1 (en) | 1986-10-27 | 2000-11-28 | Chimeric antibody with specificity to human B cell surface antigen |
US10/941,768 Abandoned US20050163708A1 (en) | 1986-10-27 | 2004-09-15 | Chimeric antibody with specificity to human B cell surface antigen |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/630,198 Expired - Fee Related US6893625B1 (en) | 1986-10-27 | 2000-08-01 | Chimeric antibody with specificity to human B cell surface antigen |
US09/724,138 Expired - Fee Related US6652852B1 (en) | 1986-10-27 | 2000-11-28 | Chimeric antibody with specificity to human B cell surface antigen |
Country Status (1)
Country | Link |
---|---|
US (3) | US6893625B1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020058029A1 (en) * | 2000-09-18 | 2002-05-16 | Nabil Hanna | Combination therapy for treatment of autoimmune diseases using B cell depleting/immunoregulatory antibody combination |
US20020197255A1 (en) * | 1992-11-13 | 2002-12-26 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabelled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US20030147885A1 (en) * | 1992-11-13 | 2003-08-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US20030206903A1 (en) * | 1998-08-11 | 2003-11-06 | Idec Pharmaceuticals Corporation | Combination therapies for B-cell lynphomas comprising administration of anti-CD20 antibody |
US20050123546A1 (en) * | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
US20080206818A1 (en) * | 2006-09-22 | 2008-08-28 | Wacker Chemie Ag | Process for the fermentative production of antibodies |
US20090074760A1 (en) * | 1998-11-09 | 2009-03-19 | Grillo-Lopez Antonio J | Use of chimeric anti-cd20 antibody as in vitro or in vivo purging agent in patients receiving bmt or pbsc transplant |
US7682612B1 (en) | 1998-11-09 | 2010-03-23 | Biogen Idec Inc. | Treatment of hematologic malignancies associated with circulating tumor cells using chimeric anti-CD20 antibody |
US7820161B1 (en) | 1999-05-07 | 2010-10-26 | Biogen Idec, Inc. | Treatment of autoimmune diseases |
US20100303806A1 (en) * | 2009-05-27 | 2010-12-02 | Synageva Biopharma Corp. | Avian derivedantibodies |
US20110076273A1 (en) * | 2009-09-11 | 2011-03-31 | Genentech, Inc. | Highly Concentrated Pharmaceutical Formulations |
US20110201022A1 (en) * | 2008-07-30 | 2011-08-18 | Biomarin Pharmaceutical Inc. | Assays for detection of phenylalanine ammonia-lyase and antibodies to phenylalanine ammonia-lyase |
WO2011097335A3 (en) * | 2010-02-04 | 2011-10-20 | Biomarin Pharmaceutical Inc. | Compositions of prokaryotic phenylalanine ammonia-lyase variants and methods of using compositions thereof |
US8277650B2 (en) | 2009-03-13 | 2012-10-02 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8557244B1 (en) | 1999-08-11 | 2013-10-15 | Biogen Idec Inc. | Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody |
WO2014031648A3 (en) * | 2012-08-21 | 2014-05-01 | Ortho-Clinical Diagnostics, Inc | Antibodies to risperidone and use thereof |
WO2014031630A3 (en) * | 2012-08-21 | 2014-05-08 | Ortho-Clinical Diagnostics, Inc | Antibodies to paliperidone and use thereof |
US9410972B2 (en) | 2012-08-21 | 2016-08-09 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
US9494608B2 (en) | 2012-08-21 | 2016-11-15 | Janssen Pharmaceutica Nv | Antibodies to olanzapine and use thereof |
US9494607B2 (en) | 2012-08-21 | 2016-11-15 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole and use thereof |
US9611332B2 (en) | 2012-08-21 | 2017-04-04 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole haptens and use thereof |
US9751953B2 (en) | 2012-08-21 | 2017-09-05 | Janssen Pharmaceutica Nv | Antibodies to risperidone haptens and use thereof |
US9850318B2 (en) | 2012-08-21 | 2017-12-26 | Janssen Pharmaceutica Nv | Antibodies to quetiapine haptens and use thereof |
US10370457B2 (en) | 2012-08-21 | 2019-08-06 | Janssen Pharmaceutica Nv | Antibodies to paliperidone haptens and use thereof |
US10435478B2 (en) | 2015-12-17 | 2019-10-08 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
US10444250B2 (en) | 2015-12-17 | 2019-10-15 | Janssen Pharmaceutica Nv | Antibodies to risperidone and use thereof |
US10712353B2 (en) | 2012-08-21 | 2020-07-14 | Janssen Pharmaceutica Nv | Antibodies to olanzapine haptens and use thereof |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5776093A (en) * | 1985-07-05 | 1998-07-07 | Immunomedics, Inc. | Method for imaging and treating organs and tissues |
US6893625B1 (en) * | 1986-10-27 | 2005-05-17 | Royalty Pharma Finance Trust | Chimeric antibody with specificity to human B cell surface antigen |
US5736137A (en) * | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
DE60028830T2 (en) * | 2000-02-16 | 2007-01-18 | Genentech, Inc., South San Francisco | ANTI-APRIL ANTIBODIES AND HYBRIDOMA CELLS |
US7754208B2 (en) * | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
US7829084B2 (en) * | 2001-01-17 | 2010-11-09 | Trubion Pharmaceuticals, Inc. | Binding constructs and methods for use thereof |
US20030133939A1 (en) | 2001-01-17 | 2003-07-17 | Genecraft, Inc. | Binding domain-immunoglobulin fusion proteins |
BR0211614A (en) * | 2001-08-03 | 2006-10-31 | Genentech Inc | tacis and br3 polypeptide and their uses |
EP1944320A1 (en) * | 2002-12-16 | 2008-07-16 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
WO2004098634A2 (en) * | 2003-04-30 | 2004-11-18 | Government Of The United States Of America As Represented By The Sercretary Of The Department Of Health And Human Services National Institutes Of Health | Protein arginine n-methyltransferase 2 (prmt-2) |
NZ568403A (en) * | 2003-05-09 | 2009-10-30 | Univ Duke | CD20-specific antibodies and methods of employing same |
US20050163775A1 (en) * | 2003-06-05 | 2005-07-28 | Genentech, Inc. | Combination therapy for B cell disorders |
CA2526402A1 (en) | 2003-06-05 | 2005-01-20 | Genentech, Inc. | Blys antagonists and uses thereof |
US7902338B2 (en) | 2003-07-31 | 2011-03-08 | Immunomedics, Inc. | Anti-CD19 antibodies |
US20080166718A1 (en) * | 2003-12-15 | 2008-07-10 | Institut Pasteur | Repertoire determination of a lymphocyte B population |
RU2006140374A (en) * | 2004-04-16 | 2008-05-27 | Дженентек, Инк. (Us) | TREATMENT OF VIOLATIONS |
US20050271658A1 (en) * | 2004-05-05 | 2005-12-08 | Genentech, Inc. | Preventing autoimmune disease |
JP2008501706A (en) * | 2004-06-04 | 2008-01-24 | ジェネンテック・インコーポレーテッド | Treatment method of disease |
MXPA06014069A (en) * | 2004-06-04 | 2007-04-25 | Genentech Inc | Method for treating multiple sclerosis. |
EP1781378A2 (en) * | 2004-07-22 | 2007-05-09 | Genentech, Inc. | Method of treating sjögren's syndrome |
AU2005274905B2 (en) | 2004-08-04 | 2010-12-23 | Mentrik Biotech, Llc | Variant Fc regions |
WO2006023382A2 (en) * | 2004-08-23 | 2006-03-02 | Albert Einstein College Of Medicine Of Yeshiva University | Collagen vi and cancer |
KR20070100228A (en) * | 2004-10-05 | 2007-10-10 | 제넨테크, 인크. | How to treat vasculitis |
ZA200705459B (en) * | 2005-01-13 | 2008-09-25 | Genentech Inc | Treatment method |
DOP2006000029A (en) * | 2005-02-07 | 2006-08-15 | Genentech Inc | ANTIBODY VARIANTS AND USES THEREOF. (VARIATIONS OF AN ANTIBODY AND USES OF THE SAME) |
AR053579A1 (en) * | 2005-04-15 | 2007-05-09 | Genentech Inc | TREATMENT OF INTESTINAL INFLAMMATORY DISEASE (IBD) |
US20060240007A1 (en) * | 2005-04-22 | 2006-10-26 | Genentech, Inc. | Method for treating dementia or Alzheimer's disease |
KR20080046135A (en) * | 2005-05-20 | 2008-05-26 | 제넨테크, 인크. | Pretreatment of Biological Samples from Autoimmune Disease Subjects |
CA2616395C (en) | 2005-07-25 | 2016-10-04 | Trubion Pharmaceuticals | B-cell reduction using cd37-specific and cd20-specific binding molecules |
MY149159A (en) | 2005-11-15 | 2013-07-31 | Hoffmann La Roche | Method for treating joint damage |
WO2007062090A2 (en) | 2005-11-23 | 2007-05-31 | Genentech, Inc. | Methods and compositions related to b cell assays |
BRPI0708998A2 (en) * | 2006-03-21 | 2011-06-21 | Wyeth Corp | antibody that specifically binds to rage; chimeric antibody or a rage binding fragment thereof; humanized antibody or a rage binding fragment thereof; humanized antibody that specifically binds to rage or a rage binding fragment thereof; antibody that specifically binds to rage and blocks the binding of a rage body partner; isolated nucleic acid; method of treating an individual who has a rage-related disease or disorder; method of treating sepsis or septic shock in a human subject; method of treating systemic listeriosis in a human subject; and method of inhibiting the binding of a rage binding partner (rage-bp), rage in a mammalian subject |
BRPI0712222B1 (en) | 2006-06-02 | 2021-10-13 | Aveo Pharmaceuticals, Inc. | ISOLATED BINDING PROTEIN WHICH BINDS TO HUMAN HEPATOCYTE GROWTH FACTOR (HGF), ITS USE AND METHOD OF PRODUCTION, NUCLEIC ACID, EXPRESSION VECTOR, HOST CELL, AND METHODS TO PRODUCE A VARIABLE REGION POLYPEPTIDE IMMUNOGLOBULIN AND TO PRODUCE A POLYPEPTIDE THAT COMPRISES A VARIABLE REGION OF THE IMMUNOGLOBULIN LIGHT CHAIN |
NZ573819A (en) | 2006-06-02 | 2011-09-30 | Aveo Pharmaceuticals Inc | Hepatocyte growth factor (hgf) binding proteins |
EP2044120B1 (en) | 2006-06-07 | 2019-01-30 | BioAlliance C.V. | Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same |
EP3805269A1 (en) | 2006-06-12 | 2021-04-14 | Aptevo Research and Development LLC | Single-chain multivalent binding proteins with effector function |
NZ574046A (en) | 2006-07-13 | 2012-09-28 | Univ Iowa Res Found | Methods and reagents for treatment and diagnosis of vascular disorders and age-related macular degeneration |
WO2009018411A1 (en) * | 2007-07-31 | 2009-02-05 | Regeneron Pharmaceuticals, Inc. | Human antibodies to human cd20 and method of using thereof |
AU2008302111B2 (en) * | 2007-09-21 | 2014-04-24 | The Regents Of The University Of California | Targeted interferon demonstrates potent apoptotic and anti-tumor activities |
NZ585959A (en) | 2007-12-18 | 2012-09-28 | Bioalliance Cv | Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same |
US7914785B2 (en) | 2008-01-02 | 2011-03-29 | Bergen Teknologieverforing As | B-cell depleting agents, like anti-CD20 antibodies or fragments thereof for the treatment of chronic fatigue syndrome |
EP2077281A1 (en) | 2008-01-02 | 2009-07-08 | Bergen Teknologioverforing AS | Anti-CD20 antibodies or fragments thereof for the treatment of chronic fatigue syndrome |
KR20110013391A (en) * | 2008-04-11 | 2011-02-09 | 이머전트 프로덕트 디벨롭먼트 시애틀, 엘엘씨 | CD37 immunotherapy and bifunctional chemotherapeutic agents and combinations thereof |
TW201438738A (en) | 2008-09-16 | 2014-10-16 | Genentech Inc | Method for treating progressive multiple sclerosis |
WO2010075249A2 (en) | 2008-12-22 | 2010-07-01 | Genentech, Inc. | A method for treating rheumatoid arthritis with b-cell antagonists |
US20110142836A1 (en) * | 2009-01-02 | 2011-06-16 | Olav Mella | B-cell depleting agents for the treatment of chronic fatigue syndrome |
DK3903829T3 (en) | 2009-02-13 | 2023-06-26 | Immunomedics Inc | IMMUNE CONJUGATES WITH AN INTRACELLULAR CLEAVABLE BOND |
EP3009455A1 (en) | 2009-09-16 | 2016-04-20 | Immunomedics Inc. | Class i anti-cea antibodies and uses thereof |
EP2506881B1 (en) | 2009-12-02 | 2024-03-06 | Immunomedics, Inc. | Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy |
WO2011079283A1 (en) * | 2009-12-23 | 2011-06-30 | Bioalliance C.V. | Anti-epcam antibodies that induce apoptosis of cancer cells and methods using same |
WO2011100403A1 (en) | 2010-02-10 | 2011-08-18 | Immunogen, Inc | Cd20 antibodies and uses thereof |
US8481687B2 (en) | 2010-04-09 | 2013-07-09 | Aveo Pharmaceuticals, Inc. | Anti-ErbB3 antibodies |
WO2011156617A2 (en) | 2010-06-09 | 2011-12-15 | Aveo Pharmaceuticals, Inc. | Anti-egfr antibodies |
WO2012003472A1 (en) | 2010-07-02 | 2012-01-05 | Aveo Pharmaceuticals, Inc. | Anti-notch1 antibodies |
AR082194A1 (en) | 2010-07-06 | 2012-11-21 | Aveo Pharmaceuticals Inc | ANTI-RON ANTIBODIES |
JP6024025B2 (en) | 2011-05-02 | 2016-11-09 | イミューノメディクス、インコーポレイテッドImmunomedics, Inc. | Ultrafiltration concentration of allotype-selected antibodies for small volume administration |
US9790280B2 (en) | 2011-10-26 | 2017-10-17 | Elanco Tiergesundheit Ag | Monoclonal canine CD20 antibodies and methods of use |
AU2013302696B9 (en) | 2012-08-14 | 2018-08-09 | Ibc Pharmaceuticals, Inc. | T-cell redirecting bispecific antibodies for treatment of disease |
JOP20200236A1 (en) | 2012-09-21 | 2017-06-16 | Regeneron Pharma | Anti-cd3 antibodies, bispecific antigen-binding molecules that bind cd3 and cd20, and uses thereof |
WO2014089354A1 (en) | 2012-12-07 | 2014-06-12 | The Regents Of The University Of California | Cd138-targeted interferon demonstrates potent apoptotic and anti-tumor activities |
CN107753954A (en) | 2012-12-13 | 2018-03-06 | 免疫医疗公司 | The dosage of the antibody that effect is improved and toxicity reduces and SN 38 immunoconjugates |
DK2935330T3 (en) | 2012-12-19 | 2019-07-22 | Aveo Pharmaceuticals Inc | ANTI-NOTCH3 ANTIBODIES |
WO2014100689A1 (en) | 2012-12-21 | 2014-06-26 | Aveo Pharmaceuticals, Inc. | Anti-gdf15 antibodies |
WO2014194100A1 (en) | 2013-05-29 | 2014-12-04 | The Regents Of The University Of California | Anti-cspg4 fusions with interferon for the treatment of malignancy |
US9321834B2 (en) | 2013-12-05 | 2016-04-26 | Leidos, Inc. | Anti-malarial compositions |
ES2978993T3 (en) | 2014-02-21 | 2024-09-23 | Ibc Pharmaceuticals Inc | Therapy of diseases by inducing immune response to cells expressing Trop-2 |
EP3110445A4 (en) | 2014-02-25 | 2017-09-27 | Immunomedics, Inc. | Humanized rfb4 anti-cd22 antibody |
TWI754319B (en) | 2014-03-19 | 2022-02-01 | 美商再生元醫藥公司 | Methods and antibody compositions for tumor treatment |
US20170137506A1 (en) | 2014-06-20 | 2017-05-18 | Aveo Pharmaceuticals, Inc. | Treatment of chronic kidney disease and other renal dysfunction using a gdf15 modulator |
US20170137505A1 (en) | 2014-06-20 | 2017-05-18 | Aveo Pharmaceuticals, Inc. | Treatment of congestive heart failure and other cardiac dysfunction using a gdf15 modulator |
US9580495B2 (en) | 2014-06-24 | 2017-02-28 | Immunomedics, Inc. | Anti-histone therapy for vascular necrosis in severe glomerulonephritis |
PL3197493T3 (en) | 2014-09-25 | 2021-08-23 | Aveo Pharmaceuticals Inc. | METHODS FOR REVERSIBLE CACHEXIA AND EXTENDING SURVIVAL, INCLUDING GDF15 MODULATOR AND ANTICOGENIC AGENT |
PT3204018T (en) | 2014-10-07 | 2021-11-12 | Immunomedics Inc | Neoadjuvant use of antibody-drug conjugates |
JP6681396B2 (en) | 2014-11-17 | 2020-04-15 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | Method of treating a tumor with a CD3XCD20 bispecific antibody |
AU2016252771B2 (en) | 2015-04-22 | 2021-12-16 | Immunomedics, Inc. | Isolation, detection, diagnosis and/or characterization of circulating Trop-2-positive cancer cells |
IL292708B2 (en) | 2015-05-30 | 2024-08-01 | Molecular Templates Inc | Vaccine-free Shiga toxin A subunit scaffolds and cell-targeting molecules containing them |
MY193078A (en) | 2015-06-24 | 2022-09-26 | Hoffmann La Roche | Anti-transferrin receptor antibodies with tailored affinity |
EP4257134A3 (en) | 2015-06-25 | 2024-01-24 | Immunomedics, Inc. | Combining anti-hla-dr or anti-trop-2 antibodies with microtubule inhibitors, parp inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer |
EP3316885B1 (en) | 2015-07-01 | 2021-06-23 | Immunomedics, Inc. | Antibody-sn-38 immunoconjugates with a cl2a linker |
JP7002446B2 (en) | 2015-09-21 | 2022-03-04 | アプティーボ リサーチ アンド デベロップメント エルエルシー | CD3 binding polypeptide |
AR106189A1 (en) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | BIESPECTIFIC ANTIBODIES AGAINST HUMAN A-b AND THE HUMAN TRANSFERRINE RECEIVER AND METHODS OF USE |
IL312251A (en) | 2015-10-02 | 2024-06-01 | Hoffmann La Roche | Human anti-CD20/human transferrin receptor bispecific antibodies and methods of use |
WO2017120534A1 (en) | 2016-01-08 | 2017-07-13 | Bioalliance C.V. | Tetravalent anti-psgl-1 antibodies and uses thereof |
CA3010678A1 (en) | 2016-01-10 | 2017-07-20 | Neotx Therapeutics Ltd. | Methods and compositions for enhancing the potency of superantigen mediated cancer immunotherapy |
US11578371B2 (en) | 2017-06-15 | 2023-02-14 | Mira Dx, Inc. | Biomarkers for predicting tumor response to and toxicity of immunotherapy |
MA53495A (en) | 2018-08-31 | 2021-12-08 | Regeneron Pharma | DOSING STRATEGY TO MITIGATE CYTOKINE RELEASE SYNDROME FOR CD3/C20 BISPECIFIC ANTIBODIES |
MX2021013908A (en) | 2019-05-15 | 2022-03-11 | Neotx Therapeutics Ltd | CANCER TREATMENT. |
EP4097143A1 (en) | 2020-01-31 | 2022-12-07 | The Cleveland Clinic Foundation | Anti-müllerian hormone receptor 2 antibodies and methods of use |
US20250073349A1 (en) | 2021-05-10 | 2025-03-06 | Kawasaki Institute Of Industrial Promotion | Antibody having reduced binding affinity for antigen |
IL310662A (en) | 2021-08-23 | 2024-04-01 | Immunitas Therapeutics Inc | Anti-cd161 antibodies and uses thereof |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468464A (en) * | 1974-11-04 | 1984-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Biologically functional molecular chimeras |
US4486538A (en) * | 1978-07-07 | 1984-12-04 | Samuel Bogoch | Detection of malignant tumor cells |
US4650756A (en) * | 1981-08-31 | 1987-03-17 | Sloan Kettering Institute For Cancer Research | Monoclonal antibodies to cell surface antigens of human renal cancer |
US4708862A (en) * | 1983-02-22 | 1987-11-24 | Xoma Corporation | Radioimmuno detection of human cancers using anti-tumor monoclonal antibody |
US4724212A (en) * | 1985-05-24 | 1988-02-09 | Northwestern University | Murine hybridoma Lym-2 and diagnostic antibody produced thereby |
US4724213A (en) * | 1985-05-24 | 1988-02-09 | Northwestern University | Murine hybridoma Lym-1 and diagnostic antibody produced thereby |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4863726A (en) * | 1987-05-29 | 1989-09-05 | Cetus Corporation | Combination therapy using immunotoxins with interleukin-2 |
US5091178A (en) * | 1986-02-21 | 1992-02-25 | Oncogen | Tumor therapy with biologically active anti-tumor antibodies |
US5354847A (en) * | 1986-10-27 | 1994-10-11 | Bristol-Myers Squibb Company | Chimeric antibody with specificity to human tumor antigen |
US5500302A (en) * | 1989-04-26 | 1996-03-19 | Flex Products, Inc. | Barrier film and method |
US5500362A (en) * | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5545404A (en) * | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from a T-cell medicated disorder with a CHO-Glycosylated antibody |
US5595721A (en) * | 1993-09-16 | 1997-01-21 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 |
US5807715A (en) * | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US6652852B1 (en) * | 1986-10-27 | 2003-11-25 | Royalty Pharma Finance Trust | Chimeric antibody with specificity to human B cell surface antigen |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1203672B (en) | 1982-05-12 | 1989-02-15 | Harvard College | HYBRID PROTEIN INCLUDING PROTEIN FRAGMENTS LINKED TO PEPTIDAL BONDS AND RELATED GENE OF MELTING COMPOSITION CONTAINING SUCH PROTEIN |
GB8308235D0 (en) | 1983-03-25 | 1983-05-05 | Celltech Ltd | Polypeptides |
JPS6147500A (en) | 1984-08-15 | 1986-03-07 | Res Dev Corp Of Japan | Chimeric monoclonal antibody and its production method |
EP0173494A3 (en) | 1984-08-27 | 1987-11-25 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by dna splicing and expression |
GB8422238D0 (en) | 1984-09-03 | 1984-10-10 | Neuberger M S | Chimeric proteins |
JPS61134325A (en) | 1984-12-04 | 1986-06-21 | Teijin Ltd | Expression of hybrid antibody gene |
US4770993A (en) | 1985-10-31 | 1988-09-13 | Beatrice Companies, Inc. | Hybridoma tumor cell lines and their monoclonal antibodies to thaumatin |
EP0247091B1 (en) | 1985-11-01 | 1993-09-29 | Xoma Corporation | Modular assembly of antibody genes, antibodies prepared thereby and use |
-
2000
- 2000-08-01 US US09/630,198 patent/US6893625B1/en not_active Expired - Fee Related
- 2000-11-28 US US09/724,138 patent/US6652852B1/en not_active Expired - Fee Related
-
2004
- 2004-09-15 US US10/941,768 patent/US20050163708A1/en not_active Abandoned
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468464A (en) * | 1974-11-04 | 1984-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Biologically functional molecular chimeras |
US4486538A (en) * | 1978-07-07 | 1984-12-04 | Samuel Bogoch | Detection of malignant tumor cells |
US4650756A (en) * | 1981-08-31 | 1987-03-17 | Sloan Kettering Institute For Cancer Research | Monoclonal antibodies to cell surface antigens of human renal cancer |
US4708862A (en) * | 1983-02-22 | 1987-11-24 | Xoma Corporation | Radioimmuno detection of human cancers using anti-tumor monoclonal antibody |
US4816567A (en) * | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5807715A (en) * | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US4724213A (en) * | 1985-05-24 | 1988-02-09 | Northwestern University | Murine hybridoma Lym-1 and diagnostic antibody produced thereby |
US4724212A (en) * | 1985-05-24 | 1988-02-09 | Northwestern University | Murine hybridoma Lym-2 and diagnostic antibody produced thereby |
US5091178A (en) * | 1986-02-21 | 1992-02-25 | Oncogen | Tumor therapy with biologically active anti-tumor antibodies |
US5354847A (en) * | 1986-10-27 | 1994-10-11 | Bristol-Myers Squibb Company | Chimeric antibody with specificity to human tumor antigen |
US6893625B1 (en) * | 1986-10-27 | 2005-05-17 | Royalty Pharma Finance Trust | Chimeric antibody with specificity to human B cell surface antigen |
US6652852B1 (en) * | 1986-10-27 | 2003-11-25 | Royalty Pharma Finance Trust | Chimeric antibody with specificity to human B cell surface antigen |
US6120767A (en) * | 1986-10-27 | 2000-09-19 | Pharmaceutical Royalties, L.L.C. | Chimeric antibody with specificity to human B cell surface antigen |
US5721108A (en) * | 1987-01-08 | 1998-02-24 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5500362A (en) * | 1987-01-08 | 1996-03-19 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US5677180A (en) * | 1987-01-08 | 1997-10-14 | Xoma Corporation | Chimeric antibody with specificity to human B cell surface antigen |
US4863726A (en) * | 1987-05-29 | 1989-09-05 | Cetus Corporation | Combination therapy using immunotoxins with interleukin-2 |
US5500302A (en) * | 1989-04-26 | 1996-03-19 | Flex Products, Inc. | Barrier film and method |
US5545405A (en) * | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from cancer with a cho-glycosylated antibody |
US5545403A (en) * | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal by administering a CHO-glycosylated antibody |
US5545404A (en) * | 1990-10-17 | 1996-08-13 | Burroughs Wellcome Co. | Method for treating a mammal suffering from a T-cell medicated disorder with a CHO-Glycosylated antibody |
US5595721A (en) * | 1993-09-16 | 1997-01-21 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 |
US5843398A (en) * | 1993-09-16 | 1998-12-01 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 antibodies |
US6015542A (en) * | 1993-09-16 | 2000-01-18 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 antibodies |
US6090365A (en) * | 1993-09-16 | 2000-07-18 | Coulter Pharmaceutical, Inc. | Radioimmunotherapy of lymphoma using anti-CD20 antibodies |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7744877B2 (en) | 1992-11-13 | 2010-06-29 | Biogen Idec Inc. | Expression and use of anti-CD20 Antibodies |
US20020197255A1 (en) * | 1992-11-13 | 2002-12-26 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabelled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US20030147885A1 (en) * | 1992-11-13 | 2003-08-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
US20080089893A9 (en) * | 1992-11-13 | 2008-04-17 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabelled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma |
US7381560B2 (en) | 1992-11-13 | 2008-06-03 | Biogen Idec Inc. | Expression and use of anti-CD20 antibodies |
US7422739B2 (en) | 1992-11-13 | 2008-09-09 | Biogen Idec Inc. | Anti-CD20 antibodies |
US20030206903A1 (en) * | 1998-08-11 | 2003-11-06 | Idec Pharmaceuticals Corporation | Combination therapies for B-cell lynphomas comprising administration of anti-CD20 antibody |
US9296821B2 (en) | 1998-08-11 | 2016-03-29 | Biogen Inc. | Combination therapies for B-cell lymphomas comprising administration of anti-CD20 antibodies |
US20080038261A1 (en) * | 1998-08-11 | 2008-02-14 | Biogen Idec Inc. | Combination therapies for b-cell lymphomas comprising administration of anti-cd20 antibody |
US10113000B2 (en) | 1998-08-11 | 2018-10-30 | Biogen Inc. | Combination therapies for B-cell lymphomas comprising administration of anti-CD20 antibody |
US8329172B2 (en) | 1998-08-11 | 2012-12-11 | Biogen Idec | Combination therapies for B-cell lymphomas comprising administration of anti-CD20 antibody |
US20110165159A1 (en) * | 1998-11-09 | 2011-07-07 | Biogen Idec Inc. | Use of chimeric anti-cd20 antibody as in vitro or in vivo purging agent in patients receiving bmt or pbsc transplant |
US20100080769A1 (en) * | 1998-11-09 | 2010-04-01 | Biogen Idec Inc. | Treatment of Chronic Lymphocytic Leukemia using Anti-CD20 Antibodies |
US7682612B1 (en) | 1998-11-09 | 2010-03-23 | Biogen Idec Inc. | Treatment of hematologic malignancies associated with circulating tumor cells using chimeric anti-CD20 antibody |
US8206711B2 (en) | 1998-11-09 | 2012-06-26 | Biogen Idec Inc. | Treatment of chronic lymphocytic leukemia using anti-CD20 antibodies |
US20090074760A1 (en) * | 1998-11-09 | 2009-03-19 | Grillo-Lopez Antonio J | Use of chimeric anti-cd20 antibody as in vitro or in vivo purging agent in patients receiving bmt or pbsc transplant |
US20110008250A1 (en) * | 1999-05-07 | 2011-01-13 | Genentech, Inc. | Treatment of Autoimmune Diseases |
US20110008337A1 (en) * | 1999-05-07 | 2011-01-13 | Genetech, Inc. | Treatment of Autoimmune Diseases |
US20110008338A1 (en) * | 1999-05-07 | 2011-01-13 | Genentech, Inc. | Treatment of Autoimmune Diseases |
US20110008336A1 (en) * | 1999-05-07 | 2011-01-13 | Genentech, Inc. | Treatment of Autoimmune Diseases |
US9993550B2 (en) | 1999-05-07 | 2018-06-12 | Genentech, Inc. | Treatment of pemphigus |
US7820161B1 (en) | 1999-05-07 | 2010-10-26 | Biogen Idec, Inc. | Treatment of autoimmune diseases |
US8545843B2 (en) | 1999-05-07 | 2013-10-01 | Genentech, Inc. | Treatment of vasculitis |
US9504744B2 (en) | 1999-08-11 | 2016-11-29 | Biogen Inc. | Treatment of diffuse large-cell lymphoma with anti-CD20 antibody |
US10400043B2 (en) | 1999-08-11 | 2019-09-03 | Biogen, Inc. | Treatment of diffuse large-cell lymphoma with anti-CD20 antibody |
US8821873B2 (en) | 1999-08-11 | 2014-09-02 | Biogen Idec Inc. | Treatment of diffuse large-cell lymphoma with anti-CD20 antibody |
US8557244B1 (en) | 1999-08-11 | 2013-10-15 | Biogen Idec Inc. | Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody |
US20020058029A1 (en) * | 2000-09-18 | 2002-05-16 | Nabil Hanna | Combination therapy for treatment of autoimmune diseases using B cell depleting/immunoregulatory antibody combination |
US9296820B2 (en) | 2003-11-05 | 2016-03-29 | Roche Glycart Ag | Polynucleotides encoding anti-CD20 antigen binding molecules with increased Fc receptor binding affinity and effector function |
US20050123546A1 (en) * | 2003-11-05 | 2005-06-09 | Glycart Biotechnology Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
US8883980B2 (en) | 2003-11-05 | 2014-11-11 | Roche Glycart Ag | Antigen binding molecules with increased Fc receptor binding affinity and effector function |
US8216573B2 (en) | 2006-09-22 | 2012-07-10 | Wacker Chemie Ag | Process for the fermentative production of antibodies |
US20080206818A1 (en) * | 2006-09-22 | 2008-08-28 | Wacker Chemie Ag | Process for the fermentative production of antibodies |
US20110201022A1 (en) * | 2008-07-30 | 2011-08-18 | Biomarin Pharmaceutical Inc. | Assays for detection of phenylalanine ammonia-lyase and antibodies to phenylalanine ammonia-lyase |
US9557340B2 (en) | 2008-07-30 | 2017-01-31 | Biomarin Pharmaceutical Inc. | Assays for detection of phenylalanine ammonia-lyase and antibodies to phenylalanine ammonia-lyase |
US9052304B2 (en) | 2009-03-13 | 2015-06-09 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8293100B2 (en) | 2009-03-13 | 2012-10-23 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8277650B2 (en) | 2009-03-13 | 2012-10-02 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8277651B2 (en) | 2009-03-13 | 2012-10-02 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8293101B2 (en) | 2009-03-13 | 2012-10-23 | Terrasep, Llc | Methods and apparatus for centrifugal liquid chromatography |
US8815242B2 (en) | 2009-05-27 | 2014-08-26 | Synageva Biopharma Corp. | Avian derived antibodies |
US20100303806A1 (en) * | 2009-05-27 | 2010-12-02 | Synageva Biopharma Corp. | Avian derivedantibodies |
US10752696B2 (en) | 2009-09-11 | 2020-08-25 | Genentech, Inc. | Highly concentrated pharmaceutical formulations |
US10377831B2 (en) | 2009-09-11 | 2019-08-13 | Genentech, Inc. | Highly concentrated pharmaceutical formulations |
US10280227B2 (en) | 2009-09-11 | 2019-05-07 | Genentech, Inc. | Highly concentrated pharmaceutical formulations |
US20110076273A1 (en) * | 2009-09-11 | 2011-03-31 | Genentech, Inc. | Highly Concentrated Pharmaceutical Formulations |
US10221408B2 (en) | 2010-02-04 | 2019-03-05 | Biomarin Pharmaceutical Inc. | Compositions of prokaryotic phenylalanine ammonia-lyase variants and methods of using compositions thereof |
WO2011097335A3 (en) * | 2010-02-04 | 2011-10-20 | Biomarin Pharmaceutical Inc. | Compositions of prokaryotic phenylalanine ammonia-lyase variants and methods of using compositions thereof |
US11505790B2 (en) | 2010-02-04 | 2022-11-22 | Biomarin Pharmaceutical Inc. | Compositions of prokaryotic phenylalanine ammonia-lyase variants and methods of using compositions thereof |
US9410972B2 (en) | 2012-08-21 | 2016-08-09 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
US10793644B2 (en) | 2012-08-21 | 2020-10-06 | Janssen Pharmaceutica Nv | Antibodies to risperidone haptens and use thereof |
US9850318B2 (en) | 2012-08-21 | 2017-12-26 | Janssen Pharmaceutica Nv | Antibodies to quetiapine haptens and use thereof |
US9664700B2 (en) | 2012-08-21 | 2017-05-30 | Janssen Pharmaceutica Nv | Antibodies to risperidone and use thereof |
US9611332B2 (en) | 2012-08-21 | 2017-04-04 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole haptens and use thereof |
US10175257B2 (en) | 2012-08-21 | 2019-01-08 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole and use thereof |
US9494607B2 (en) | 2012-08-21 | 2016-11-15 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole and use thereof |
US9494608B2 (en) | 2012-08-21 | 2016-11-15 | Janssen Pharmaceutica Nv | Antibodies to olanzapine and use thereof |
US10288631B2 (en) | 2012-08-21 | 2019-05-14 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
US10344098B2 (en) | 2012-08-21 | 2019-07-09 | Janssen Pharmaceutica Nv | Antibodies to olanzapine and use thereof |
US10370457B2 (en) | 2012-08-21 | 2019-08-06 | Janssen Pharmaceutica Nv | Antibodies to paliperidone haptens and use thereof |
US10379129B2 (en) | 2012-08-21 | 2019-08-13 | Janssen Pharmaceutica Nv | Antibodies to paliperidone and use thereof |
US9465041B2 (en) | 2012-08-21 | 2016-10-11 | Janssen Pharmaceutica Nv | Antibodies to paliperidone and use thereof |
US10379105B2 (en) | 2012-08-21 | 2019-08-13 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole haptens and use thereof |
CN104737017A (en) * | 2012-08-21 | 2015-06-24 | 奥索临床诊断有限公司 | Antibodies to risperidone and use thereof |
WO2014031648A3 (en) * | 2012-08-21 | 2014-05-01 | Ortho-Clinical Diagnostics, Inc | Antibodies to risperidone and use thereof |
US11385246B2 (en) | 2012-08-21 | 2022-07-12 | Saladax Biomedical Inc. | Antibodies to paliperidone and use thereof |
US10465013B2 (en) | 2012-08-21 | 2019-11-05 | Janssen Pharmaceutica Nv | Antibodies to quetiapine haptens and use thereof |
US10488401B2 (en) | 2012-08-21 | 2019-11-26 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole haptens and use thereof |
US10690686B2 (en) | 2012-08-21 | 2020-06-23 | Janssen Pharmaceutica Nv | Antibodies to risperidone and use thereof |
US10712353B2 (en) | 2012-08-21 | 2020-07-14 | Janssen Pharmaceutica Nv | Antibodies to olanzapine haptens and use thereof |
WO2014031630A3 (en) * | 2012-08-21 | 2014-05-08 | Ortho-Clinical Diagnostics, Inc | Antibodies to paliperidone and use thereof |
US9751953B2 (en) | 2012-08-21 | 2017-09-05 | Janssen Pharmaceutica Nv | Antibodies to risperidone haptens and use thereof |
US10816561B2 (en) | 2012-08-21 | 2020-10-27 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole and use thereof |
US11226345B2 (en) | 2012-08-21 | 2022-01-18 | Janssen Pharmaceutica Nv | Antibodies to olanzapine haptens and use thereof |
US11046786B2 (en) | 2012-08-21 | 2021-06-29 | Janssen Pharmaceutica Nv | Antibodies to olanzapine and use thereof |
US11225527B2 (en) | 2012-08-21 | 2022-01-18 | Janssen Pharmaceutica Nv | Antibodies to paliperidone haptens and use thereof |
US11105793B2 (en) | 2012-08-21 | 2021-08-31 | Janssen Pharmaceutica Nv | Antibodies to aripiprazole haptens and use thereof |
US11104742B2 (en) | 2015-12-17 | 2021-08-31 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
US10852313B2 (en) | 2015-12-17 | 2020-12-01 | Janssen Pharmaceutica Nv | Antibodies to risperidone and use thereof |
US10444250B2 (en) | 2015-12-17 | 2019-10-15 | Janssen Pharmaceutica Nv | Antibodies to risperidone and use thereof |
US10435478B2 (en) | 2015-12-17 | 2019-10-08 | Janssen Pharmaceutica Nv | Antibodies to quetiapine and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US6652852B1 (en) | 2003-11-25 |
US6893625B1 (en) | 2005-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5677180A (en) | Chimeric antibody with specificity to human B cell surface antigen | |
US6893625B1 (en) | Chimeric antibody with specificity to human B cell surface antigen | |
EP0266663B1 (en) | Chimeric antibody with specificity to human tumor antigen | |
EP0247091B1 (en) | Modular assembly of antibody genes, antibodies prepared thereby and use | |
EP0550400B1 (en) | Modular assembly of antibody genes, antibodies prepared thereby and use | |
US5595898A (en) | Modular assembly of antibody genes, antibodies prepared thereby and use | |
US5846818A (en) | Pectate lyase signal sequence | |
EP0364096B1 (en) | Gene expression elements and the production of chimeric mouse-human antibodies | |
CA2019323A1 (en) | Chimeric mouse-human km10 antibody with specificity to a human tumor cell antigen | |
AU606653C (en) | Chimeric antibody with specificity to human B cell surface antigen | |
EP0536566A1 (en) | Modular assembly of antibody genes, antibodies prepared thereby and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |