US20050143787A1 - Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator - Google Patents
Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator Download PDFInfo
- Publication number
- US20050143787A1 US20050143787A1 US11/035,374 US3537405A US2005143787A1 US 20050143787 A1 US20050143787 A1 US 20050143787A1 US 3537405 A US3537405 A US 3537405A US 2005143787 A1 US2005143787 A1 US 2005143787A1
- Authority
- US
- United States
- Prior art keywords
- pulse generator
- rechargeable
- implantable
- disorders
- vagus nerve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 210000001186 vagus nerve Anatomy 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000004007 neuromodulation Effects 0.000 title description 11
- 230000000638 stimulation Effects 0.000 claims abstract description 49
- 230000000903 blocking effect Effects 0.000 claims abstract description 23
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 23
- 208000035475 disorder Diseases 0.000 claims abstract description 23
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 19
- 206010007559 Cardiac failure congestive Diseases 0.000 claims abstract description 17
- 206010019280 Heart failures Diseases 0.000 claims abstract description 17
- 208000002193 Pain Diseases 0.000 claims abstract description 15
- 230000000926 neurological effect Effects 0.000 claims abstract description 12
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 208000008589 Obesity Diseases 0.000 claims abstract description 9
- 206010015037 epilepsy Diseases 0.000 claims abstract description 9
- 235000020824 obesity Nutrition 0.000 claims abstract description 9
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 8
- 208000019901 Anxiety disease Diseases 0.000 claims abstract description 8
- 206010003658 Atrial Fibrillation Diseases 0.000 claims abstract description 8
- 208000020446 Cardiac disease Diseases 0.000 claims abstract description 8
- 206010012289 Dementia Diseases 0.000 claims abstract description 8
- 208000012661 Dyskinesia Diseases 0.000 claims abstract description 8
- 208000019695 Migraine disease Diseases 0.000 claims abstract description 8
- 208000021384 Obsessive-Compulsive disease Diseases 0.000 claims abstract description 8
- 208000018737 Parkinson disease Diseases 0.000 claims abstract description 8
- 208000019622 heart disease Diseases 0.000 claims abstract description 8
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 claims abstract description 8
- 201000000980 schizophrenia Diseases 0.000 claims abstract description 8
- 208000020925 Bipolar disease Diseases 0.000 claims abstract description 7
- 208000010235 Food Addiction Diseases 0.000 claims abstract description 7
- 208000003078 Generalized Epilepsy Diseases 0.000 claims abstract description 7
- 101000620451 Homo sapiens Leucine-rich glioma-inactivated protein 1 Proteins 0.000 claims abstract description 7
- 102100022275 Leucine-rich glioma-inactivated protein 1 Human genes 0.000 claims abstract description 7
- 208000028683 bipolar I disease Diseases 0.000 claims abstract description 7
- 208000025307 bipolar depression Diseases 0.000 claims abstract description 7
- 235000014632 disordered eating Nutrition 0.000 claims abstract description 7
- 201000001993 idiopathic generalized epilepsy Diseases 0.000 claims abstract description 7
- 230000001272 neurogenic effect Effects 0.000 claims abstract description 7
- 208000019116 sleep disease Diseases 0.000 claims abstract description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 19
- 239000010936 titanium Substances 0.000 claims description 19
- 229910052719 titanium Inorganic materials 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 12
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 11
- 229920001296 polysiloxane Polymers 0.000 claims description 8
- 229910000575 Ir alloy Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 208000024891 symptom Diseases 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 230000002457 bidirectional effect Effects 0.000 claims 2
- 210000005036 nerve Anatomy 0.000 abstract description 30
- 230000001515 vagal effect Effects 0.000 abstract description 15
- 238000002560 therapeutic procedure Methods 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 230000001939 inductive effect Effects 0.000 abstract description 3
- 239000000835 fiber Substances 0.000 description 42
- 238000010586 diagram Methods 0.000 description 26
- 230000036982 action potential Effects 0.000 description 22
- 239000012528 membrane Substances 0.000 description 15
- 210000002569 neuron Anatomy 0.000 description 15
- 210000004556 brain Anatomy 0.000 description 14
- 230000001953 sensory effect Effects 0.000 description 11
- 210000004126 nerve fiber Anatomy 0.000 description 10
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 10
- 210000003050 axon Anatomy 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 210000001679 solitary nucleus Anatomy 0.000 description 8
- 210000001835 viscera Anatomy 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- 230000000747 cardiac effect Effects 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 230000002146 bilateral effect Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000036279 refractory period Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000003187 abdominal effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000030214 innervation Effects 0.000 description 5
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 210000000278 spinal cord Anatomy 0.000 description 5
- 230000009278 visceral effect Effects 0.000 description 5
- 239000000232 Lipid Bilayer Substances 0.000 description 4
- 210000003169 central nervous system Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 210000003792 cranial nerve Anatomy 0.000 description 4
- 230000001734 parasympathetic effect Effects 0.000 description 4
- -1 potassium (K+) ions Chemical class 0.000 description 4
- 230000036390 resting membrane potential Effects 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 210000001103 thalamus Anatomy 0.000 description 4
- 210000000115 thoracic cavity Anatomy 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 210000000133 brain stem Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003238 esophagus Anatomy 0.000 description 3
- 210000003016 hypothalamus Anatomy 0.000 description 3
- 210000000867 larynx Anatomy 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000000944 nerve tissue Anatomy 0.000 description 3
- 210000000653 nervous system Anatomy 0.000 description 3
- 210000003800 pharynx Anatomy 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 108090000862 Ion Channels Proteins 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 210000003626 afferent pathway Anatomy 0.000 description 2
- 210000004727 amygdala Anatomy 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 210000003710 cerebral cortex Anatomy 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 210000002049 efferent pathway Anatomy 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000002102 hyperpolarization Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 210000004731 jugular vein Anatomy 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 210000003007 myelin sheath Anatomy 0.000 description 2
- 230000007383 nerve stimulation Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 210000004189 reticular formation Anatomy 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 210000003384 transverse colon Anatomy 0.000 description 2
- 210000004760 visceral afferent Anatomy 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 1
- 0 CC*C1=CCCC1 Chemical compound CC*C1=CCCC1 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 208000005298 acute pain Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 210000002413 aortic body Anatomy 0.000 description 1
- 230000002567 autonomic effect Effects 0.000 description 1
- 210000003403 autonomic nervous system Anatomy 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 208000030963 borderline personality disease Diseases 0.000 description 1
- 208000006218 bradycardia Diseases 0.000 description 1
- 230000036471 bradycardia Effects 0.000 description 1
- 230000009084 cardiovascular function Effects 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000004004 carotid artery internal Anatomy 0.000 description 1
- 210000001638 cerebellum Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000000883 ear external Anatomy 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 210000000609 ganglia Anatomy 0.000 description 1
- 230000007661 gastrointestinal function Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 210000001767 medulla oblongata Anatomy 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 210000003666 myelinated nerve fiber Anatomy 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000007372 neural signaling Effects 0.000 description 1
- 208000004296 neuralgia Diseases 0.000 description 1
- 230000003227 neuromodulating effect Effects 0.000 description 1
- 230000005015 neuronal process Effects 0.000 description 1
- PCLURTMBFDTLSK-UHFFFAOYSA-N nickel platinum Chemical compound [Ni].[Pt] PCLURTMBFDTLSK-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 210000000584 nodose ganglion Anatomy 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- 210000005037 parasympathetic nerve Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000002856 peripheral neuron Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 210000004129 prosencephalon Anatomy 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000001584 soft palate Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 210000002538 spinal trigeminal nucleus Anatomy 0.000 description 1
- 210000003009 spinothalamic tract Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000007384 vagal nerve stimulation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36114—Cardiac control, e.g. by vagal stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36007—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36071—Pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3627—Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
Definitions
- the present invention relates to electrical stimulation with implanted medical device, more specifically to neuromoduation of vagus nerve(s) with rechargeable implantable pulse generator, to provide therapy for neurological, neuropsychiatric, and other medical disorders.
- Implantable neuromodulation systems are known in the art. This patent application is directed to novel method and system for increasing the useful service life of nerve stimulators which are used for applications that can be demanding on the power source.
- the implantable neurostimulation system for modulating vagus nerve(s) is used to provide therapy for neurological, neuropsychiatric, and other medical disorders such as obesity, and certain cardiac disorders such as atrial fibrillation and congestive heart failure (CHF).
- Vagus nerve neuromodulation systems generally fall into two categories, RF coupled devices and implantable pulse generators (IPG).
- U.S. Pat. No. 6,205,359 (Boveja), U.S. Pat. No. 6,356,788 (Boveja), U.S. Pat. No. 6,208,902 (Boveja), U.S. Pat. No. 6,269,270 (Boveja), U.S. Pat. No. 6,611,715 (Boveja), and U.S. Pat. No. 6,668,191 (Boveja) are generally directed to neuromodulating vagus nerve(s) with an RF coupled device.
- U.S. Patents, U.S. Pat. No. 4,702,254 (Zabara), U.S. Pat. No. 5,023,807 (Zabara), and U.S. Pat. No. 4,867,164 (Zabra) are generally directed to neuromodulation of vagus nerve, preferably using an implanted pulse generator (IPG).
- IPG implanted pulse generator
- the prior art IPG devices are similar to cardiac pacemakers, and have been adapted to deliver pulses at higher frequencies than cardiac pacemakers.
- cardiac pacing pulses are typically delivered at a rate of approximately one Hz (generally 50-70 beats per min.).
- pulses to vagus nerve(s) are typically delivered at frequency of about 20-50 Hz.
- Electrical pulsed neuromodulation of vagus nerve(s) can be very demanding for an implantable power source. It would be desirable to have an implantable pulse generator comprising a rechargeable power source, such as rechargeable Li-ion battery or re-chargeable Li-ion polymer battery.
- implantable pulse generator comprising rechargeable batteries. Even a rechargeable implanted pulse generator does not have an indefinite life, therefore in order to enhance the service life, in one embodiment the implanted pulse generator may comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted pulse generator of this embodiment is also adapted to function in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing vagal nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein.
- the 10 th cranial nerve or the vagus nerve plays a role in mediating afferent information from visceral organs to the brain.
- the vagus nerve arises directly from the brain, but unlike the other cranial nerves extends well beyond the head. At its farthest extension it reaches the lower parts of the intestines.
- the vagus nerve provides an easily accessible, peripheral route to modulate central nervous system (CNS) function. Observations on the profound effect of electrical stimulation of the vagus nerve on central nervous system (CNS) activity extends back to the 1930's.
- epilepsy partial complex epilepsy
- generalized epilepsy and involuntary movement disorders
- involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders
- dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders
- vagal nerves In the human body there are two vagal nerves (VN), the right VN and the left VN. Each vagus nerve is encased in the carotid sheath along with the carotid artery and jugular vein. The innervation of the right and left vagus nerves is different. The innervation of the right vagus nerve is such that stimulating it results in profound bradycardia (slowing of the heart rate).
- the left vagus nerve has some innervation to the heart, but mostly innervates the visceral organs such as the gastrointestinal tract. It is known that stimulation of the left vagus nerve does not cause substantial slowing of the heart rate or cause any other significant deleterious side effects.
- the different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C.
- the vagus nerve for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one.
- the diameter of individual fibers vary substantially, as is also shown schematically in FIG. 2 .
- the largest nerve fibers are approximately 20 ⁇ m in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 ⁇ m in diameter and are unmyelinated.
- the diameters of group A and group B fibers include the thickness of the myelin sheaths.
- Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups.
- the smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
- Nerve cells have membranes that are composed of lipids and proteins (shown schematically in FIGS. 3A and 3B ), and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately ⁇ 90 mV relative to the outside. The electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments.
- the cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it ( FIG. 3A ), separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism.
- the lipid component of the membrane is a double sheet of phospholipids, elongated molecules with polar groups at one end and the fatty acid chains at the other.
- the ions that carry the currents used for neuronal signaling are among these water-soluble substances, so the lipid bilayer is also an insulator, across which membrane potentials develop.
- the lipid bilayer is not permeable to ions. In electrical terms, it functions as a capacitor, able to store charges of opposite sign that are attracted to each other but unable to cross the membrane.
- Embedded in the lipid bilayer is a large assortment of proteins. These are proteins that regulate the passage of ions into or out of the cell. Certain membrane-spanning proteins allow selected ions to flow down electrical or concentration gradients or by pumping them across.
- ion channels have an appreciable permeability (or conductance) to at least some ions. In electrical terms, they function as resistors, allowing a predicable amount of current flow in response to a voltage across them.
- a nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid.
- stimuli 4 and 5 are subthreshold, and do not induce a response.
- Stimulus 6 exceeds a threshold value and induces an action potential (AP) which will be propagated.
- the threshold stimulus intensity is defined as that value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around ⁇ 55 mV inside the nerve cell relative to the outside (critical firing threshold).
- the graded depolarization will not generate an action potential and the signal will not be propagated along the axon.
- This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon.
- This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated.
- FIG. 5A illustrates a segment of the surface of the membrane of an excitable cell. Metabolic activity maintains ionic gradients across the membrane, resulting in a high concentration of potassium (K + ) ions inside the cell and a high concentration of sodium (Na + ) ions in the extracellular environment. The net result of the ionic gradient is a transmembrane potential that is largely dependent on the K + gradient. Typically in nerve cells, the resting membrane potential (RMP) is slightly less than 90 mV, with the outside being positive with respect to inside.
- RMP resting membrane potential
- TP critical or threshold potential
- Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by a simplified electrical model in diagram 5 C, and shown in a more realistic electrical model in FIG. 6 , where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit.
- Each unit length of the process is a circuit with its own membrane resistance (r m ), membrane capacitance (c m ), and axonal resistance (r a ).
- an action potential When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in FIG. 7 , the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period).
- the absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na + channels have returned to their resting state by the voltage activated K + current.
- the refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies.
- FIG. 8 A single electrical impulse passing down an axon is shown schematically in FIG. 8 .
- the top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers.
- the information in the nervous system is coded by frequency of firing rather than the size of the action potential. This is shown schematically in FIG. 9 .
- the bottom portion of the figure shows a train of action potentials.
- myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers.
- the A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds ( ⁇ s), for example.
- the A fiber conducts slightly faster than the B fiber and has a slightly lower threshold.
- the C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 ⁇ s) and a higher amplitude for activation. Because of their very slow conduction, C fibers would not be highly responsive to rapid stimulation.
- a compound action potential is recorded by an electrode located more proximally.
- a compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities.
- the waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below, TABLE 1 Conduction Fiber Fiber Velocity Diameter Type (m/sec) ( ⁇ m) Myelination A Fibers Alpha 70-120 12-20 Yes Beta 40-70 5-12 Yes Gamma 10-50 3-6 Yes Delta 6-30 2-5 Yes B Fibers 5-15 ⁇ 3 Yes C Fibers 0.5-2.0 0.4-1.2 No
- FIG. 10B further clarifies the differences in action potential conduction velocities between the A ⁇ -fibers and the C-fibers. For many of the application of current patent application, it is the slow conduction C-fibers that are stimulated by the pulse generator.
- FIGS. 11 and 12 The modulation of nerve in the periphery, as done by the body, in response to different types of pain is illustrated schematically in FIGS. 11 and 12 .
- the electrical impulses in response to acute pain sensations are transmitted to brain through peripheral nerve and the spinal cord.
- the first-order peripheral neurons at the point of injury transmit a signal along A-type nerve fibers to the dorsal horns of the spinal cord.
- the second-order neurons take over, transfer the signal to the other side of the spinal cord, and pass it through the spinothalamic tracts to thalamus of the brain.
- FIG. 12 duller and more persistent pain travel by another-slower route using unmyelinated C-fibers.
- This route made up from a chain of interconnected neurons, which run up the spinal cord to connect with the brainstem, the thalamus and finally the cerebral cortex.
- the autonomic nervous system also senses pain and transmits signals to the brain using a similar route to that for dull pain.
- Vagus nerve stimulation with or without blocking is a means of directly affecting central function.
- FIG. 13 shows cranial nerves have both afferent pathway 19 (inward conducting nerve fibers which convey impulses toward the brain) and efferent pathway 21 (outward conducting nerve fibers which convey impulses to an effector).
- Vagus nerve is composed of 80% afferent sensory fibers carrying information to the brain from the head, neck, thorax, and abdomen. The sensory afferent cell bodies of the vagus reside in the nodose ganglion and relay information to the nucleus tractus solitarius (NTS).
- NTS nucleus tractus solitarius
- the vagus nerve is composed of somatic and visceral afferents and efferents.
- nerve stimulation activates signals in both directions (bi-directionally). It is possible however, through the use of special electrodes and waveforms, to selectively stimulate a nerve in one direction only (unidirectionally).
- the vast majority of vagus nerve fibers are C fibers, and a majority are visceral afferents having cell bodies lying in masses or ganglia in the skull.
- the vagus nerve spans from the brain stem all the way to the splenic flexure of the colon. Not only is the vagus the parasympathetic nerve to the thoracic and abdominal viscera, it also the largest visceral sensory (afferent) nerve. Sensory fibers outnumber parasympathetic fibers four to one. In the medulla, the vagal fibers are connected to the nucleus of the tractus solitarius (viceral sensory), and three other nuclei. The central projections terminate largely in the nucleus of the solitary tract, which sends fibers to various regions of the brain (e.g., the thalamus, hypothalamus and amygdala).
- the vagus nerve emerges from the medulla of the brain stem dorsal to the olive as eight to ten rootlets. These rootlets converge into a flat cord that exits the skull through the jugular foramen. Exiting the Jugular foramen, the vagus nerve enlarges into a second swelling, the inferior ganglion.
- the vagus lies in a groove between the internal jugular vein and the internal carotid artery. It descends vertically within the carotid sheath, giving off branches to the pharynx, larynx, and constrictor muscles. From the root of the neck downward, the vagus nerve takes a different path on each side of the body to reach the cardiac, pulmonary, and esophageal plexus (consisting of both sympathetic and parasympathetic axons). From the esophageal plexus, right and left gastric nerves arise to supply the abdominal viscera as far caudal as the splenic flexure.
- vagus nerve regulates viscera, swallowing, speech, and taste. It has sensory, motor, and parasympathetic components. Table two below outlines the innervation and function of these components. TABLE 2 Vagus Nerve Components Component fibers Structures innervated Functions SENSORY Pharynx. larynx, General sensation esophagus, external ear Aortic bodies, aortic arch Chemo- and baroreception Thoracic and abdominal viscera MOTOR Soft palate, pharynx, Speech, swallowing larynx, upper esophagus PARA- Thoracic and abdominal Control of cardiovascular SYMPATHETIC viscera system, respiratory and gastrointestinal tracts
- visceral sensation is carried in the visceral sensory component of the vagus nerve.
- FIGS. 15A and 15B visceral sensory fibers from plexus around the abdominal viscera converge and join with the right and left gastric nerves of the vagus. These nerves pass upward through the esophageal hiatus (opening) of the diaphragm to merge with the plexus of nerves around the esophagus. Sensory fibers from plexus around the heart and lungs also converge with the esophageal plexus and continue up through the thorax in the right and left vagus nerves. As shown in FIG.
- the central process of the nerve cell bodies in the inferior vagal ganglion enter the medulla and descend in the tractus solitarius to enter the caudal part of the nucleus of the tractus solitarius. From the nucleus, bilateral connections important in the reflex control of cardiovascular, respiratory, and gastrointestinal functions are made with several areas of the reticular formation and the hypothalamus.
- the afferent fibers project primarily to the nucleus of the solitary tract (shown schematically in FIGS. 16 and 17 ) which extends throughout the length of the medulla oblongata. A small number of fibers pass directly to the spinal trigeminal nucleus and the reticular formation. As shown in FIG. 16 , the nucleus of the solitary tract has widespread projections to cerebral cortex, basal forebrain, thalamus, hypothalamus, amygdala, hippocampus, dorsal raphe, and cerebellum.
- neuromodulation of the vagal afferent nerve fibers produce alleviation of symptoms of the neurological and neuropsychiatric disorders covered in this patent application, such as epilepsy, depression, involuntary movement disorders including Parkinson's disease, anxiety disorders, neurogenic pain, psycogenic pain, obsessive compulsive disorders, migraines, obesity, dementia including Alzheimer's disease, and the like.
- U.S. Pat. No. 5,299,569 (Wernicke et al.) is directed to the use of implantable pulse generator technology for treating and controlling neuropsychiatric disorders including schizophrenia, depression, and borderline personality disorder.
- U.S. Pat. No. 6,205,359 B1 (Boveja) and U.S. Pat. No. 6,356,788 B2 (Boveja) are directed to adjunct therapy for neurological and neuropsychiatric disorders using an implanted lead-receiver and an external stimulator.
- U.S. Pat. No. 5,807,397 (Barreras) is directed to an implantable stimulator with replenishable, high value capacitive power source.
- U.S. Pat. No. 5,193,539 (Schulman, et al) is generally directed to an addressable, implantable microstimulator that is of size and shape which is capable of being implanted by expulsion through a hypodermic needle.
- a hypodermic needle In the Schulman patent, up to 256 microstimulators may be implanted within a muscle and they can be used to stimulate in any order as each one is addressable, thereby providing therapy for muscle paralysis.
- U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery.
- an implantable pulse generator IPG
- an external stimulator for providing modulating pulses to vagal nerve(s), as in the applicant's disclosure.
- U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil.
- a magnetic shield is required between the externalized coil and the pulse generator case.
- the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
- U.S. Pat. No. 6,622,041 B2 (Terry, Jr. et al.) is directed to treatment of congestive heart failure and autonomic cardiovascular drive disorders using implantable neurostimulator.
- Method and system of the current invention provides vagal nerve(s) neuromodulation to provide therapy for at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure(CHF).
- the method and system comprises both implantable and external components.
- the method and system for modulating vagal nerve(s) comprises implantable pulse generator with rechargeable battery, and battery charging circuitry.
- the charging of the implantable battery being performed by an external charger via an inductive link.
- one embodiment of the implanted pulse generator comprises, a stimulus-receiver module that can be used in conjunction with an external stimulator, and an implanted pulse generator module with rechargeable battery.
- the implantable pulse generator with rechargeable battery is connected to an implanted lead with at least two electrodes for providing stimulation and/or blocking pulses to vagal nerve(s).
- the recharge coil is externalized from the titanium case and is wrapped around the titanium case in an epoxy header, thereby eliminating the need for a magnetic shield.
- the recharge coil is also used for bi-directional telemetry.
- the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer battery.
- the lead comprises at least two electrodes which are made of one from a group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
- the selective stimulation and/or blocking to vagus nerve(s) may be anywhere along the length of the nerve, for example such stimulation may be at the cervical level or at a level near the diaphragm.
- the stimulation and/or blocking may be unilateral or bilateral.
- the implanted lead body may be made of a material selected from the group consisting of polyurethane, silicone, and silicone with polytetrafluoroethylene.
- the implanted lead comprises at least two electrodes selected from the group consisting of spiral electrodes, cuff electrodes, steroid eluting electrodes, wrap-around electrodes, and hydrogel electrodes.
- FIG. 1 is a diagram of the structure of a nerve.
- FIG. 2 is a diagram showing different types of nerve fibers.
- FIGS. 3A and 3B are schematic illustrations of the biochemical makeup of nerve cell membrane.
- FIG. 4 is a figure demonstrating subthreshold and suprathreshold stimuli.
- FIGS. 5A, 5B , 5 C are schematic illustrations of the electrical properties of nerve cell membrane.
- FIG. 7 is an illustration of propagation of action potential in nerve cell membrane.
- FIG. 8 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon.
- FIG. 9 is an illustration showing a train of action potentials.
- FIG. 10A is a diagram showing recordings of compound action potentials.
- FIG. 10B is a schematic diagram showing conduction of first pain and second pain.
- FIG. 11 is a schematic illustration showing mild stimulation being carried over the large diameter A-fibers.
- FIG. 12 is a schematic illustration showing painful stimulation being carried over small diameter C-fibers
- FIG. 13 is a schematic diagram of brain showing afferent and efferent pathways.
- FIG. 14 is a schematic diagram showing the vagus nerve at the level of the nucleus of the solitary tract.
- FIG. 15A is a schematic diagram showing the thoracic and visceral innervations of the vagal nerves.
- FIG. 15B is a schematic diagram of the medullary section of the brain.
- FIG. 16 is a simplified block diagram illustrating the connections of solitary tract nucleus to other centers of the brain.
- FIG. 17 is a schematic diagram of brain showing the relationship of the solitary tract nucleus to other centers of the brain.
- FIG. 18 is a simplified general block diagram of an implantable pulse generator.
- FIG. 19A shows the pulse train transmitted to the vagus nerve(s).
- FIG. 19B shows the ramp-up and ramp-down characteristic of the pulse train.
- FIG. 20A shows energy density of different types of batteries.
- FIG. 20B shows discharge curves for different types of batteries.
- FIG. 21 shows a block diagram of an implantable stimulator which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery.
- FIG. 22 is a block diagram highlighting battery charging circuit of the implantable stimulator of FIG. 21 .
- FIG. 23 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment.
- FIG. 24 depicts externalizing recharge and telemetry coil from the titanium case.
- FIG. 25A depicts coil around the titanium case with two feedthroughs for a bipolar configuration.
- FIG. 25B depicts coil around the titanium case with one feedthrough for a unipolar configuration.
- FIG. 25C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal.
- FIG. 25D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal.
- FIGS. 26A and 26B depict recharge coil on the titanium case with a magnetic shield in-between.
- FIG. 27 shows in block diagram form an implantable rechargable pulse generator.
- FIG. 28 depicts in block diagram form the implanted and external components of an implanted rechargable system.
- FIG. 29 depicts the alignment function of rechargable implantable pulse generator.
- FIG. 30 is a block diagram of the external recharger.
- FIG. 31 depicts an implantable system with tripolar lead for selective unidirectional blocking of vagus nerve(s) stimulation
- FIG. 32 depicts selective efferent blocking in the large diameter A and B fibers.
- FIG. 33 depicts unilateral stimulation of vagus nerve at near the diaphram level.
- FIG. 34 depicts bilateral stimulation of vagus nerves with one stimulator.
- FIG. 35 is a schematic diagram of the implantable lead with two electrodes.
- FIG. 36 is a schematic diagram of the implantable lead with three electrodes.
- vagus nerve(s) for afferent neuromodulation.
- An implantable lead is surgically implanted in the patient.
- the vagus nerve(s) is/are surgically exposed and isolated, the electrodes on the distal end of the lead are wrapped around the vagus nerve(s), and the proximal end of the lead is tunneled subcutaneously.
- a pulse generator means is connected to the proximal end of the lead, and surgically implanted in a subcutaneous or submuscular pocket.
- FIG. 18 Shown in conjunction with FIG. 18 , is an overall schematic of an implantable pulse generator system to deliver electrical pulses for modulating the vagus nerve(s) and providing therapy.
- the implantable pulse generator unit 391 is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can.
- the logic & control unit 398 provides the proper timing for the output circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via a lead 40 . Timing is provided by oscillator 393 .
- the pair of electrodes to which the stimulation energy is delivered is switchable.
- Programming of the implantable pulse generator (IPG) is done via an external programmer 85 . Once programmed via an external programmer 85 , the implanted pulse generator 391 provides appropriate electrical stimulation pulses to the vagal nerve(s) 54 via the stimulating electrode pair 61 , 62 .
- Each parameter may be individually programmed and stored in memory.
- the range of programmable electrical stimulation parameters are shown in table 3 below. TABLE 3 Programmable electrical parameter range PARAMER RANGE Pulse Amplitude 0.1 Volt-10 Volts Pulse width 20 ⁇ S-5 mSec. Frequency 3 Hz-300 Hz On-time 5 Secs-24 hours Off-time 5 Secs-24 hours Ramp ON/OFF
- the pulses delivered to the nerve tissue for stimulation therapy are shown graphically in FIG. 19A .
- the electrical stimulation may be ramped up and ramped down, instead of abrupt delivery of electrical pulses.
- FIG. 20A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction with FIG. 20B , which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production.
- implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
- the implanted device comprises a stimulus-receiver module and a pulse generator module.
- this embodiment provides an ideal power source, since the power source can be an external stimulator coupled with an implanted stimulus-receiver, or the power source can be from the implanted rechargeable battery.
- FIG. 21 Shown in conjunction with FIG. 21 is a simplified overall block diagram of this embodiment.
- a coil 48 C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil.
- the coil 48 C may be externalized at the header portion 79 C of the implanted device, and may be wrapped around the titanium can, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79 C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield.
- the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is the internal battery 740 or an external power source.
- the external device serves as a source of energy, and as a programmer that sends telemetry to the IPG.
- An external stimulator and recharger may also be combined within the same enclosure.
- the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46 C.
- the telemetry is passed through coupling capacitor 727 to the IPG's telemetry circuit 742 .
- the stimulus-receiver portion will receive the energy coupled to the implanted coil 48 C and, using the power conditioning circuit 726 , rectify it to produce DC, filter and regulate the DC, and couple it to the IPG's voltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implanted battery 740 .
- the system of this embodiment provides a power sense circuit 728 that senses the presence of external power communicated with the power control 730 , when adequate and stable power is available from an external source.
- the power control circuit controls a switch 736 that selects either implanted battery power 740 or conditioned external power from 726 .
- the logic and control section 732 and memory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for the telemetry circuit 742 and power control 730 , this section controls the output circuit 734 that generates the output pulses.
- this embodiment of the invention is practiced with a rechargeable battery.
- This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later.
- Capacitor C 1 ( 729 ) makes the combination of C 1 and L 1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46 C is inductively transferred to the implanted unit via the secondary coil 48 C.
- the AC signal is rectified DC via diode 731 , and filtered via capacitor 733 .
- a regulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage.
- the output capacitor C 4 ( 737 ), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction with FIG. 23 , a capacitor C 3 ( 727 ) couples signals for forward and back telemetry.
- existing nerve stimulators and cardiac pacemakers can be modified to incorporate rechargeable batteries.
- the nerve stimulators that can be adopted with rechargeable batteries can for example be the vagus nerve stimulator manufactured by Cyberonics Inc. (Houston, Tex.).
- the coil is externalized from the titanium case 57 .
- the RF pulses transmitted via coil 46 and received via subcutaneous coil 48 A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge the battery 694 / 740 in the implanted pulse generator.
- the coil 48 C may be externalized at the header portion 79 of the implanted device, and may be wrapped around the titanium can, as shown in FIGS. 25A and 25B .
- Shown in FIG. 25A is a bipolar configuration which requires two feedthroughs 76 , 77 .
- unipolar configuration may also be used which requires only one feedthrough 75 .
- the coil is encased in the same material as the header 79 .
- the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations.
- the coil may also be positioned on the titanium case as shown in conjunction with FIGS. 26A and 26B .
- FIG. 26A shows a diagram of the finished implantable stimulator 391 R of one embodiment.
- FIG. 26B shows the pulse generator with some of the components used in assembly in an exploded view. These components include a coil cover 7 , the secondary coil 48 and associated components, a magnetic shield 9 , and a coil assembly carrier 11 .
- the coil assembly carrier 11 has at least one positioning detail 13 located between the coil assembly and the feed through for positioning the electrical connection. The positioning detail 13 secures the electrical connection.
- FIG. 27 A schematic diagram of the implanted pulse generator (IPG 391 R), with re-chargeable battery 694 , is shown in conjunction with FIG. 27 .
- the IPG 391 R includes logic and control circuitry 673 connected to memory circuitry 691 .
- the operating program and stimulation parameters are typically stored within the memory 691 via forward telemetry.
- Stimulation pulses are provided to the nerve tissue 54 via output circuitry 677 controlled by the microcontroller.
- the operating power for the IPG 391 R is derived from a rechargeable power source 694 .
- the rechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implanted coil 48 B underneath the skin 60 .
- the rechargeable battery 694 may be recharged repeatedly as needed. Additionally, the IPG 391R is able to monitor and telemeter the status of its rechargable battery 691 each time a communication link is established with the external programmer 85 .
- Much of the circuitry included within the IPG 391 R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of the IPG 391 R to be quite small, and readily housed within a suitable hermetically-sealed case.
- the IPG case is preferably made from a titanium and is shaped in a rounded case.
- the re-charging system uses a portable external charger to couple energy into the power source of the IPG 391 R.
- the DC-to-AC conversion circuitry 696 of the re-charger receives energy from a battery 672 in the re-charger.
- a charger base station 680 and conventional AC power line may also be used.
- the AC signals amplified via power amplifier 674 are inductively coupled between an external coil 46 B and an implanted coil 48 B located subcutaneously with the implanted pulse generator (IPG) 391 R.
- the AC signal received via implanted coil 48 B is rectified 686 to a DC signal which is used for recharging the rechargeable battery 694 of the IPG, through a charge controller IC 682 .
- Additional circuitry within the IPG 391 R includes, battery protection IC 688 which controls a FET switch 690 to make sure that the rechargeable battery 694 is charged at the proper rate, and is not overcharged.
- the battery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implanted rechargeable battery 694 to ensure safe operation.
- the battery protection IC 688 opens charge enabling FET switches 690 , and prevents further charging.
- a fuse 692 acts as an additional safeguard, and disconnects the battery 694 if the battery charging current exceeds a safe level.
- charge completion detection is achieved by a back-telemetry transmitter 684 , which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through a back telemetry receiver 676 , either an audible alarm is generated or a LED is turned on.
- FIG. 29 A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with FIG. 29 .
- a switch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging and protection circuitry 698 .
- the energy induced in implanted coil 48 B passes through the switch rectifier 686 and charging and protection circuitry 698 to the implanted rechargeable battery 694 .
- the charging and protection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging and protection circuitry 698 triggers a control signal.
- This control signal causes the switch rectifier 686 to switch to half-wave rectifier operation.
- the voltage sensed by voltage detector 702 causes the alignment indicator 706 to be activated.
- This indicator 706 may be an audible sound or a flashing LED type of indicator.
- the indicator 706 may similarly be used as a misalignment indicator.
- the voltage V S sensed by voltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when the coils 46 B and 48 B become misaligned, then less than a maximum energy transfer occurs, and the voltage V S sensed by detection circuit 704 increases significantly. If the voltage V S reaches a predetermined level, alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing V S to decrease below the predetermined threshold level, the alignment indicator 706 is turned off.
- the elements of the external recharger are shown as a block diagram in conjunction with FIG. 30 .
- the charger base station 680 receives its energy from a standard power outlet 714 , which is then converted to 5 volts DC by a AC-to-DC transformer 712 .
- the re-chargeable battery 672 of the re-charger is fully recharged in a few hours and is able to recharge the battery 694 of the IPG 391 R. If the battery 672 of the external re-charger falls below a prescribed limit of 2.5 volt DC, the battery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process.
- a battery protection circuit 718 monitors the voltage condition, and disconnects the battery 672 through one of the FET switches 716 , 720 if a fault occurs until a normal condition returns.
- a fuse 724 will disconnect the battery 672 should the charging or discharging current exceed a prescribed amount.
- efferent stimulation of selected types of fibers may be substantially blocked, utilizing the “greenwave” effect.
- a tripolar lead is utilized. As depicted on the top right portion of FIG. 31 , there is a depolarization peak 10 on the vagus nerve bundle corresponding to electrode 61 (cathode) and the two hyper-polarization peaks 8 , 12 corresponding to electrodes 62 , 63 (anodes). With the microcontroller controlling the tripolar device, the size and timing of the hyper-polarizations 8 , 12 can be controlled. As was shown previously in FIGS.
- collision blocks can be created for conduction via the large diameter A and B fibers in the efferent direction.
- FIG. 32 A number of blocking techniques are known in the art, such as collision blocking, high frequency blocking, and anodal blocking. Any of these well known blocking techniques may be used with the practice of this invention, and are considered within the scope of this invention.
- the pulsed electrical stimulation and/or blocking to the vagus nerve(s) may be provided anywhere along the length of the vagus nerve(s).
- the pulsed electrical stimulation may be at the cervical level.
- the stimulation to the vagus nerve(s) may be around the diaphramatic level. Either above the diaphragm or below the diaphragm.
- the stimulation may be unilateral or bilateral, i.e. stimulation is to one or both vagus nerves.
- FIG. 34 depicts bilateral vagal nerve stimulation at around the level of the diaphragm. Any combination of vagal nerve(s) stimulation, either unilateral or bilateral, anywhere along the length of the vagal nerve(s) is considered within the scope of this invention.
- the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead.
- This figure shows a pair of electrodes 61 , 62 that are used for providing electrical pulses for stimulation.
- FIG. 36 depicts a lead with tripolar electrodes 62 , 61 , 63 for stimulation and/or blocking.
- the lead terminal preferably is linear bipolar, even though it can be bifurcated, and plug(s) into the cavity of the pulse generator means.
- the lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane.
- the electrodes 61 , 62 for stimulating the vagus nerve 54 may either wrap around the nerve once or may be spiral shaped. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride.
- the conductor connecting the terminal to the electrodes 61 , 62 is made of an alloy of nickel-cobalt.
- the implanted lead design variables are also summarized in table four below.
- coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Neurosurgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Hospice & Palliative Care (AREA)
- Pain & Pain Management (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Gastroenterology & Hepatology (AREA)
- Electrotherapy Devices (AREA)
Abstract
A method and system of providing electrical pulses to vagal nerve(s) using rechargeable implantable pulse generator for stimulation and/or blocking to provide therapy for neurological and neuropsychiatric disorders comprises implantable and external components. These disorders include (but are not limited to) epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF). The implantable components are a lead and an implantable pulse generator, comprising rechargeable lithium-ion or lithium-ion polymer battery. The external components are a programmer and an external recharger. In one embodiment, the implanted pulse generator may also comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted stimulus-receiver is adapted to work in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing vagal nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein. The implanted system may also use a lead with two or more electrodes, for vagus nerve(s) modulation with selective stimulation and/or blocking.
Description
- This application is a continuation of application Ser. No. 10/841,995 filed May 8, 2004, entitled “METHOD AND SYSTEM FOR MODULATING THE VAGUS NERVE (10th CRANIAL NERVE) WITH ELECTRICAL PULSES USING IMPLANTED AND EXTERNAL COMPONANTS, TO PROVIDE THERAPY FOR NEUROLOGICAL AND NEUROPSYCHIATRIC DISORDERS”, which is a continuation of application Ser. No. 10/196,533 filed Jul. 16, 2002, which is a continuation of Ser. No. 10/142,298 filed on May 9, 2002. The prior applications being incorporated herein in entirety by reference, and priority is claimed from these applications.
- The present invention relates to electrical stimulation with implanted medical device, more specifically to neuromoduation of vagus nerve(s) with rechargeable implantable pulse generator, to provide therapy for neurological, neuropsychiatric, and other medical disorders.
- Implantable neuromodulation systems are known in the art. This patent application is directed to novel method and system for increasing the useful service life of nerve stimulators which are used for applications that can be demanding on the power source. The implantable neurostimulation system for modulating vagus nerve(s) is used to provide therapy for neurological, neuropsychiatric, and other medical disorders such as obesity, and certain cardiac disorders such as atrial fibrillation and congestive heart failure (CHF). Vagus nerve neuromodulation systems generally fall into two categories, RF coupled devices and implantable pulse generators (IPG).
- U.S. Pat. No. 6,205,359 (Boveja), U.S. Pat. No. 6,356,788 (Boveja), U.S. Pat. No. 6,208,902 (Boveja), U.S. Pat. No. 6,269,270 (Boveja), U.S. Pat. No. 6,611,715 (Boveja), and U.S. Pat. No. 6,668,191 (Boveja) are generally directed to neuromodulating vagus nerve(s) with an RF coupled device. U.S. Patents, U.S. Pat. No. 4,702,254 (Zabara), U.S. Pat. No. 5,023,807 (Zabara), and U.S. Pat. No. 4,867,164 (Zabra) are generally directed to neuromodulation of vagus nerve, preferably using an implanted pulse generator (IPG).
- The prior art IPG devices are similar to cardiac pacemakers, and have been adapted to deliver pulses at higher frequencies than cardiac pacemakers. In cardiac pacing, pulses are typically delivered at a rate of approximately one Hz (generally 50-70 beats per min.). In contrast, pulses to vagus nerve(s) are typically delivered at frequency of about 20-50 Hz. Electrical pulsed neuromodulation of vagus nerve(s) can be very demanding for an implantable power source. It would be desirable to have an implantable pulse generator comprising a rechargeable power source, such as rechargeable Li-ion battery or re-chargeable Li-ion polymer battery.
- This patent application discloses two embodiments of implantable pulse generator comprising rechargeable batteries. Even a rechargeable implanted pulse generator does not have an indefinite life, therefore in order to enhance the service life, in one embodiment the implanted pulse generator may comprise stimulus-receiver means, and a pulse generator means with rechargeable battery. The implanted pulse generator of this embodiment is also adapted to function in conjunction with an external stimulator. In another embodiment, the implanted pulse generator is adapted to be rechargeable, utilizing inductive coupling with an external recharger. Existing vagal nerve stimulators may also be adapted to be used with rechargeable power sources as disclosed herein.
- The 10th cranial nerve or the vagus nerve plays a role in mediating afferent information from visceral organs to the brain. The vagus nerve arises directly from the brain, but unlike the other cranial nerves extends well beyond the head. At its farthest extension it reaches the lower parts of the intestines. The vagus nerve provides an easily accessible, peripheral route to modulate central nervous system (CNS) function. Observations on the profound effect of electrical stimulation of the vagus nerve on central nervous system (CNS) activity extends back to the 1930's.
- The present invention is primarily directed to a method and system for selective electrical stimulation and/or blocking or neuromodulation of vagus nerve, for providing adjunct therapy for neurological and neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure(CHF).
- In the human body there are two vagal nerves (VN), the right VN and the left VN. Each vagus nerve is encased in the carotid sheath along with the carotid artery and jugular vein. The innervation of the right and left vagus nerves is different. The innervation of the right vagus nerve is such that stimulating it results in profound bradycardia (slowing of the heart rate). The left vagus nerve has some innervation to the heart, but mostly innervates the visceral organs such as the gastrointestinal tract. It is known that stimulation of the left vagus nerve does not cause substantial slowing of the heart rate or cause any other significant deleterious side effects.
- One of the fundamental features of the nervous system is its ability to generate and conduct electrical impulses. Most nerves in the human body are composed of thousands of fibers of different sizes. This is shown schematically in
FIG. 1 . The different sizes of nerve fibers, which carry signals to and from the brain, are designated by groups A, B, and C. The vagus nerve, for example, may have approximately 100,000 fibers of the three different types, each carrying signals. Each axon or fiber of that nerve conducts only in one direction, in normal circumstances. In the vagus nerve sensory fibers outnumber parasympathetic fibers four to one. - In a cross section of peripheral nerve it is seen that the diameter of individual fibers vary substantially, as is also shown schematically in
FIG. 2 . The largest nerve fibers are approximately 20 μm in diameter and are heavily myelinated (i.e., have a myelin sheath, constituting a substance largely composed of fat), whereas the smallest nerve fibers are less than 1 μm in diameter and are unmyelinated. - The diameters of group A and group B fibers include the thickness of the myelin sheaths. Group A is further subdivided into alpha, beta, gamma, and delta fibers in decreasing order of size. There is some overlapping of the diameters of the A, B, and C groups because physiological properties, especially in the form of the action potential, are taken into consideration when defining the groups. The smallest fibers (group C) are unmyelinated and have the slowest conduction rate, whereas the myelinated fibers of group B and group A exhibit rates of conduction that progressively increase with diameter.
- Nerve cells have membranes that are composed of lipids and proteins (shown schematically in
FIGS. 3A and 3B ), and have unique properties of excitability such that an adequate disturbance of the cell's resting potential can trigger a sudden change in the membrane conductance. Under resting conditions, the inside of the nerve cell is approximately −90 mV relative to the outside. The electrical signaling capabilities of neurons are based on ionic concentration gradients between the intracellular and extracellular compartments. The cell membrane is a complex of a bilayer of lipid molecules with an assortment of protein molecules embedded in it (FIG. 3A ), separating these two compartments. Electrical balance is provided by concentration gradients which are maintained by a combination of selective permeability characteristics and active pumping mechanism. - The lipid component of the membrane is a double sheet of phospholipids, elongated molecules with polar groups at one end and the fatty acid chains at the other. The ions that carry the currents used for neuronal signaling are among these water-soluble substances, so the lipid bilayer is also an insulator, across which membrane potentials develop. In biophysical terms, the lipid bilayer is not permeable to ions. In electrical terms, it functions as a capacitor, able to store charges of opposite sign that are attracted to each other but unable to cross the membrane. Embedded in the lipid bilayer is a large assortment of proteins. These are proteins that regulate the passage of ions into or out of the cell. Certain membrane-spanning proteins allow selected ions to flow down electrical or concentration gradients or by pumping them across.
- These membrane-spanning proteins consist of several subunits surrounding a central aqueous pore (shown in
FIG. 3B ). Ions whose size and charge “fit” the pore can diffuse through it, allowing these proteins to serve as ion channels. Hence, unlike the lipid bilayer, ion channels have an appreciable permeability (or conductance) to at least some ions. In electrical terms, they function as resistors, allowing a predicable amount of current flow in response to a voltage across them. - A nerve cell can be excited by increasing the electrical charge within the neuron, thus increasing the membrane potential inside the nerve with respect to the surrounding extracellular fluid. As shown in
FIG. 4 ,stimuli Stimulus 6 exceeds a threshold value and induces an action potential (AP) which will be propagated. The threshold stimulus intensity is defined as that value at which the net inward current (which is largely determined by Sodium ions) is just greater than the net outward current (which is largely carried by Potassium ions), and is typically around −55 mV inside the nerve cell relative to the outside (critical firing threshold). If however, the threshold is not reached, the graded depolarization will not generate an action potential and the signal will not be propagated along the axon. This fundamental feature of the nervous system i.e., its ability to generate and conduct electrical impulses, can take the form of action potentials, which are defined as a single electrical impulse passing down an axon. This action potential (nerve impulse or spike) is an “all or nothing” phenomenon, that is to say once the threshold stimulus intensity is reached, an action potential will be generated. -
FIG. 5A illustrates a segment of the surface of the membrane of an excitable cell. Metabolic activity maintains ionic gradients across the membrane, resulting in a high concentration of potassium (K+) ions inside the cell and a high concentration of sodium (Na+) ions in the extracellular environment. The net result of the ionic gradient is a transmembrane potential that is largely dependent on the K+ gradient. Typically in nerve cells, the resting membrane potential (RMP) is slightly less than 90 mV, with the outside being positive with respect to inside. - To stimulate an excitable cell, it is only necessary to reduce the transmembrane potential by a critical amount. When the membrane potential is reduced by an amount ΔV, reaching the critical or threshold potential (TP); Which is shown in
FIG. 5B . When the threshold potential (TP) is reached, a regenerative process takes place: sodium ions enter the cell, potassium ions exit the cell, and the transmembrane potential falls to zero (depolarizes), reverses slightly, and then recovers or repolarizes to the resting membrane potential (RMP). - For a stimulus to be effective in producing an excitation, it must have an abrupt onset, be intense enough, and last long enough. These facts can be drawn together by considering the delivery of a suddenly rising cathodal constant-current stimulus of duration d to the cell membrane as shown in
FIG. 5B . - Cell membranes can be reasonably well represented by a capacitance C, shunted by a resistance R as shown by a simplified electrical model in diagram 5C, and shown in a more realistic electrical model in
FIG. 6 , where neuronal process is divided into unit lengths, which is represented in an electrical equivalent circuit. Each unit length of the process is a circuit with its own membrane resistance (rm), membrane capacitance (cm), and axonal resistance (ra). - When the stimulation pulse is strong enough, an action potential will be generated and propagated. As shown in
FIG. 7 , the action potential is traveling from right to left. Immediately after the spike of the action potential there is a refractory period when the neuron is either unexcitable (absolute refractory period) or only activated to sub-maximal responses by supra-threshold stimuli (relative refractory period). The absolute refractory period occurs at the time of maximal Sodium channel inactivation while the relative refractory period occurs at a later time when most of the Na+ channels have returned to their resting state by the voltage activated K+ current. The refractory period has two important implications for action potential generation and conduction. First, action potentials can be conducted only in one direction, away from the site of its generation, and secondly, they can be generated only up to certain limiting frequencies. - A single electrical impulse passing down an axon is shown schematically in
FIG. 8 . The top portion of the figure (A) shows conduction over mylinated axon (fiber) and the bottom portion (B) shows conduction over nonmylinated axon (fiber). These electrical signals will travel along the nerve fibers. - The information in the nervous system is coded by frequency of firing rather than the size of the action potential. This is shown schematically in
FIG. 9 . The bottom portion of the figure shows a train of action potentials. - In terms of electrical conduction, myelinated fibers conduct faster, are typically larger, have very low stimulation thresholds, and exhibit a particular strength-duration curve or respond to a specific pulse width versus amplitude for stimulation, compared to unmyelinated fibers. The A and B fibers can be stimulated with relatively narrow pulse widths, from 50 to 200 microseconds (μs), for example. The A fiber conducts slightly faster than the B fiber and has a slightly lower threshold. The C fibers are very small, conduct electrical signals very slowly, and have high stimulation thresholds typically requiring a wider pulse width (300-1,000 μs) and a higher amplitude for activation. Because of their very slow conduction, C fibers would not be highly responsive to rapid stimulation. Selective stimulation of only A and B fibers is readily accomplished. The requirement of a larger and wider pulse to stimulate the C fibers, however, makes selective stimulation of only C fibers, to the exclusion of the A and B fibers, virtually unachievable inasmuch as the large signal will tend to activate the A and B fibers to some extent as well.
- As shown in
FIG. 10A , when the distal part of a nerve is electrically stimulated, a compound action potential is recorded by an electrode located more proximally. A compound action potential contains several peaks or waves of activity that represent the summated response of multiple fibers having similar conduction velocities. The waves in a compound action potential represent different types of nerve fibers that are classified into corresponding functional categories as shown in the Table one below,TABLE 1 Conduction Fiber Fiber Velocity Diameter Type (m/sec) (μm) Myelination A Fibers Alpha 70-120 12-20 Yes Beta 40-70 5-12 Yes Gamma 10-50 3-6 Yes Delta 6-30 2-5 Yes B Fibers 5-15 <3 Yes C Fibers 0.5-2.0 0.4-1.2 No -
FIG. 10B further clarifies the differences in action potential conduction velocities between the Aδ-fibers and the C-fibers. For many of the application of current patent application, it is the slow conduction C-fibers that are stimulated by the pulse generator. - The modulation of nerve in the periphery, as done by the body, in response to different types of pain is illustrated schematically in
FIGS. 11 and 12 . As shown schematically inFIG. 11 , the electrical impulses in response to acute pain sensations are transmitted to brain through peripheral nerve and the spinal cord. The first-order peripheral neurons at the point of injury transmit a signal along A-type nerve fibers to the dorsal horns of the spinal cord. Here the second-order neurons take over, transfer the signal to the other side of the spinal cord, and pass it through the spinothalamic tracts to thalamus of the brain. As shown inFIG. 12 , duller and more persistent pain travel by another-slower route using unmyelinated C-fibers. This route made up from a chain of interconnected neurons, which run up the spinal cord to connect with the brainstem, the thalamus and finally the cerebral cortex. The autonomic nervous system also senses pain and transmits signals to the brain using a similar route to that for dull pain. - Vagus nerve stimulation with or without blocking, as performed by the system and method of the current patent application, is a means of directly affecting central function.
FIG. 13 shows cranial nerves have both afferent pathway 19 (inward conducting nerve fibers which convey impulses toward the brain) and efferent pathway 21 (outward conducting nerve fibers which convey impulses to an effector). Vagus nerve is composed of 80% afferent sensory fibers carrying information to the brain from the head, neck, thorax, and abdomen. The sensory afferent cell bodies of the vagus reside in the nodose ganglion and relay information to the nucleus tractus solitarius (NTS). - The vagus nerve is composed of somatic and visceral afferents and efferents. Usually, nerve stimulation activates signals in both directions (bi-directionally). It is possible however, through the use of special electrodes and waveforms, to selectively stimulate a nerve in one direction only (unidirectionally). The vast majority of vagus nerve fibers are C fibers, and a majority are visceral afferents having cell bodies lying in masses or ganglia in the skull.
- In considering the anatomy, the vagus nerve spans from the brain stem all the way to the splenic flexure of the colon. Not only is the vagus the parasympathetic nerve to the thoracic and abdominal viscera, it also the largest visceral sensory (afferent) nerve. Sensory fibers outnumber parasympathetic fibers four to one. In the medulla, the vagal fibers are connected to the nucleus of the tractus solitarius (viceral sensory), and three other nuclei. The central projections terminate largely in the nucleus of the solitary tract, which sends fibers to various regions of the brain (e.g., the thalamus, hypothalamus and amygdala).
- As shown in
FIG. 14 , the vagus nerve emerges from the medulla of the brain stem dorsal to the olive as eight to ten rootlets. These rootlets converge into a flat cord that exits the skull through the jugular foramen. Exiting the Jugular foramen, the vagus nerve enlarges into a second swelling, the inferior ganglion. - In the neck, the vagus lies in a groove between the internal jugular vein and the internal carotid artery. It descends vertically within the carotid sheath, giving off branches to the pharynx, larynx, and constrictor muscles. From the root of the neck downward, the vagus nerve takes a different path on each side of the body to reach the cardiac, pulmonary, and esophageal plexus (consisting of both sympathetic and parasympathetic axons). From the esophageal plexus, right and left gastric nerves arise to supply the abdominal viscera as far caudal as the splenic flexure.
- In the body, the vagus nerve regulates viscera, swallowing, speech, and taste. It has sensory, motor, and parasympathetic components. Table two below outlines the innervation and function of these components.
TABLE 2 Vagus Nerve Components Component fibers Structures innervated Functions SENSORY Pharynx. larynx, General sensation esophagus, external ear Aortic bodies, aortic arch Chemo- and baroreception Thoracic and abdominal viscera MOTOR Soft palate, pharynx, Speech, swallowing larynx, upper esophagus PARA- Thoracic and abdominal Control of cardiovascular SYMPATHETIC viscera system, respiratory and gastrointestinal tracts - On the Afferent side, visceral sensation is carried in the visceral sensory component of the vagus nerve. As shown in
FIGS. 15A and 15B , visceral sensory fibers from plexus around the abdominal viscera converge and join with the right and left gastric nerves of the vagus. These nerves pass upward through the esophageal hiatus (opening) of the diaphragm to merge with the plexus of nerves around the esophagus. Sensory fibers from plexus around the heart and lungs also converge with the esophageal plexus and continue up through the thorax in the right and left vagus nerves. As shown inFIG. 15B , the central process of the nerve cell bodies in the inferior vagal ganglion enter the medulla and descend in the tractus solitarius to enter the caudal part of the nucleus of the tractus solitarius. From the nucleus, bilateral connections important in the reflex control of cardiovascular, respiratory, and gastrointestinal functions are made with several areas of the reticular formation and the hypothalamus. - The afferent fibers project primarily to the nucleus of the solitary tract (shown schematically in
FIGS. 16 and 17 ) which extends throughout the length of the medulla oblongata. A small number of fibers pass directly to the spinal trigeminal nucleus and the reticular formation. As shown inFIG. 16 , the nucleus of the solitary tract has widespread projections to cerebral cortex, basal forebrain, thalamus, hypothalamus, amygdala, hippocampus, dorsal raphe, and cerebellum. Because of the widespread projections of the Nucleus of the Solitary Trap, neuromodulation of the vagal afferent nerve fibers produce alleviation of symptoms of the neurological and neuropsychiatric disorders covered in this patent application, such as epilepsy, depression, involuntary movement disorders including Parkinson's disease, anxiety disorders, neurogenic pain, psycogenic pain, obsessive compulsive disorders, migraines, obesity, dementia including Alzheimer's disease, and the like. - U.S. Pat. Nos. 4,702,254, 4,867,164 and 5,025,807 (Zabara) generally disclose animal research and experimentation related to epilepsy and the like. Applicant's method of neuromodulation is significantly different than that disclosed in Zabara '254, '164’ and '807 patents.
- U.S. Pat. No. 5,299,569 (Wernicke et al.) is directed to the use of implantable pulse generator technology for treating and controlling neuropsychiatric disorders including schizophrenia, depression, and borderline personality disorder.
- U.S. Pat. No. 6,205,359 B1 (Boveja) and U.S. Pat. No. 6,356,788 B2 (Boveja) are directed to adjunct therapy for neurological and neuropsychiatric disorders using an implanted lead-receiver and an external stimulator.
- U.S. Pat. No. 5,807,397 (Barreras) is directed to an implantable stimulator with replenishable, high value capacitive power source.
- U.S. Pat. No. 5,193,539 (Schulman, et al) is generally directed to an addressable, implantable microstimulator that is of size and shape which is capable of being implanted by expulsion through a hypodermic needle. In the Schulman patent, up to 256 microstimulators may be implanted within a muscle and they can be used to stimulate in any order as each one is addressable, thereby providing therapy for muscle paralysis.
- U.S. Pat. No. 6,553,263B1 (Meadows et al.) is generally directed to an implantable pulse generator system for spinal cord stimulation, which includes a rechargeable battery. In the Meadows '263 patent there is no disclosure or suggestion for combing a stimulus-receiver module to an implantable pulse generator (IPG) for use with an external stimulator, for providing modulating pulses to vagal nerve(s), as in the applicant's disclosure.
- U.S. Pat. No. 6,505,077 B1 (Kast et al.) is directed to electrical connection for external recharging coil. In the Kast '077 disclosure, a magnetic shield is required between the externalized coil and the pulse generator case. In one embodiment of the applicant's disclosure, the externalized coil is wrapped around the pulse generator case, without requiring a magnetic shield.
- U.S. Pat. No. 6,622,041 B2 (Terry, Jr. et al.) is directed to treatment of congestive heart failure and autonomic cardiovascular drive disorders using implantable neurostimulator.
- Method and system of the current invention provides vagal nerve(s) neuromodulation to provide therapy for at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure(CHF). The method and system comprises both implantable and external components.
- In one aspect of the invention, the method and system for modulating vagal nerve(s) comprises implantable pulse generator with rechargeable battery, and battery charging circuitry. The charging of the implantable battery being performed by an external charger via an inductive link.
- In another aspect of the invention, one embodiment of the implanted pulse generator comprises, a stimulus-receiver module that can be used in conjunction with an external stimulator, and an implanted pulse generator module with rechargeable battery.
- In another aspect of the invention the implantable pulse generator with rechargeable battery is connected to an implanted lead with at least two electrodes for providing stimulation and/or blocking pulses to vagal nerve(s).
- In another aspect of the invention, the recharge coil is externalized from the titanium case and is wrapped around the titanium case in an epoxy header, thereby eliminating the need for a magnetic shield.
- In another aspect of the invention, the recharge coil is also used for bi-directional telemetry.
- In another aspect of the invention, the rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer battery.
- In another aspect of the invention, the lead comprises at least two electrodes which are made of one from a group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
- In another aspect of the invention, the selective stimulation and/or blocking to vagus nerve(s) may be anywhere along the length of the nerve, for example such stimulation may be at the cervical level or at a level near the diaphragm.
- In another aspect of the invention, the stimulation and/or blocking may be unilateral or bilateral.
- In another aspect of the invention, the implanted lead body may be made of a material selected from the group consisting of polyurethane, silicone, and silicone with polytetrafluoroethylene.
- In yet another aspect of the invention, the implanted lead comprises at least two electrodes selected from the group consisting of spiral electrodes, cuff electrodes, steroid eluting electrodes, wrap-around electrodes, and hydrogel electrodes.
- Various other features, objects and advantages of the invention will be made apparent from the following description taken together with the drawings.
- For the purpose of illustrating the invention, there are shown in accompanying drawing forms which are presently preferred, it being understood that the invention is not intended to be limited to the precise arrangement and instrumentalities shown.
-
FIG. 1 is a diagram of the structure of a nerve. -
FIG. 2 is a diagram showing different types of nerve fibers. -
FIGS. 3A and 3B are schematic illustrations of the biochemical makeup of nerve cell membrane. -
FIG. 4 is a figure demonstrating subthreshold and suprathreshold stimuli. -
FIGS. 5A, 5B , 5C are schematic illustrations of the electrical properties of nerve cell membrane. -
FIG. 6 is a schematic illustration of electrical circuit model of nerve cell membrane. -
FIG. 7 is an illustration of propagation of action potential in nerve cell membrane. -
FIG. 8 is an illustration showing propagation of action potential along a myelinated axon and non-myelinated axon. -
FIG. 9 is an illustration showing a train of action potentials. -
FIG. 10A is a diagram showing recordings of compound action potentials. -
FIG. 10B is a schematic diagram showing conduction of first pain and second pain. -
FIG. 11 is a schematic illustration showing mild stimulation being carried over the large diameter A-fibers. -
FIG. 12 is a schematic illustration showing painful stimulation being carried over small diameter C-fibers -
FIG. 13 is a schematic diagram of brain showing afferent and efferent pathways. -
FIG. 14 is a schematic diagram showing the vagus nerve at the level of the nucleus of the solitary tract. -
FIG. 15A is a schematic diagram showing the thoracic and visceral innervations of the vagal nerves. -
FIG. 15B is a schematic diagram of the medullary section of the brain. -
FIG. 16 is a simplified block diagram illustrating the connections of solitary tract nucleus to other centers of the brain. -
FIG. 17 is a schematic diagram of brain showing the relationship of the solitary tract nucleus to other centers of the brain. -
FIG. 18 is a simplified general block diagram of an implantable pulse generator. -
FIG. 19A shows the pulse train transmitted to the vagus nerve(s). -
FIG. 19B shows the ramp-up and ramp-down characteristic of the pulse train. -
FIG. 20A shows energy density of different types of batteries. -
FIG. 20B shows discharge curves for different types of batteries. -
FIG. 21 shows a block diagram of an implantable stimulator which can be used as a stimulus-receiver or an implanted pulse generator with rechargeable battery. -
FIG. 22 is a block diagram highlighting battery charging circuit of the implantable stimulator ofFIG. 21 . -
FIG. 23 is a schematic diagram highlighting stimulus-receiver portion of implanted stimulator of one embodiment. -
FIG. 24 depicts externalizing recharge and telemetry coil from the titanium case. -
FIG. 25A depicts coil around the titanium case with two feedthroughs for a bipolar configuration. -
FIG. 25B depicts coil around the titanium case with one feedthrough for a unipolar configuration. -
FIG. 25C depicts two feedthroughs for the external coil which are common with the feedthroughs for the lead terminal. -
FIG. 25D depicts one feedthrough for the external coil which is common to the feedthrough for the lead terminal. -
FIGS. 26A and 26B depict recharge coil on the titanium case with a magnetic shield in-between. -
FIG. 27 shows in block diagram form an implantable rechargable pulse generator. -
FIG. 28 depicts in block diagram form the implanted and external components of an implanted rechargable system. -
FIG. 29 depicts the alignment function of rechargable implantable pulse generator. -
FIG. 30 is a block diagram of the external recharger. -
FIG. 31 depicts an implantable system with tripolar lead for selective unidirectional blocking of vagus nerve(s) stimulationFIG. 32 depicts selective efferent blocking in the large diameter A and B fibers. -
FIG. 33 depicts unilateral stimulation of vagus nerve at near the diaphram level. -
FIG. 34 depicts bilateral stimulation of vagus nerves with one stimulator. -
FIG. 35 is a schematic diagram of the implantable lead with two electrodes. -
FIG. 36 is a schematic diagram of the implantable lead with three electrodes. - In the method and system of this invention, electrical pulses for stimulation and/or blocking are applied to vagus nerve(s) for afferent neuromodulation. An implantable lead is surgically implanted in the patient. The vagus nerve(s) is/are surgically exposed and isolated, the electrodes on the distal end of the lead are wrapped around the vagus nerve(s), and the proximal end of the lead is tunneled subcutaneously. A pulse generator means is connected to the proximal end of the lead, and surgically implanted in a subcutaneous or submuscular pocket.
- Shown in conjunction with
FIG. 18 , is an overall schematic of an implantable pulse generator system to deliver electrical pulses for modulating the vagus nerve(s) and providing therapy. The implantablepulse generator unit 391 is a microprocessor based device, where the entire circuitry is encased in a hermetically sealed titanium can. As shown in the overall block diagram, the logic &control unit 398 provides the proper timing for theoutput circuitry 385 to generate electrical pulses that are delivered to a pair of electrodes via alead 40. Timing is provided byoscillator 393. The pair of electrodes to which the stimulation energy is delivered is switchable. Programming of the implantable pulse generator (IPG) is done via anexternal programmer 85. Once programmed via anexternal programmer 85, the implantedpulse generator 391 provides appropriate electrical stimulation pulses to the vagal nerve(s) 54 via the stimulatingelectrode pair - Each parameter may be individually programmed and stored in memory. The range of programmable electrical stimulation parameters are shown in table 3 below.
TABLE 3 Programmable electrical parameter range PARAMER RANGE Pulse Amplitude 0.1 Volt-10 Volts Pulse width 20 μS-5 mSec. Frequency 3 Hz-300 Hz On- time 5 Secs-24 hours Off- time 5 Secs-24 hours Ramp ON/OFF - The pulses delivered to the nerve tissue for stimulation therapy are shown graphically in
FIG. 19A . As shown inFIG. 19B , for patient comfort when the electrical stimulation is turned on, the electrical stimulation may be ramped up and ramped down, instead of abrupt delivery of electrical pulses. - Because of the rapidity of the pulses required for modulating nerve tissue 54 (unlike cardiac pacing), there is a real need for power sources that will provide an acceptable service life under conditions of continuous delivery of high frequency pulses.
FIG. 20A shows a graph of the energy density of several commonly used battery technologies. Lithium batteries have by far the highest energy density of commonly available batteries. Also, a lithium battery maintains a nearly constant voltage during discharge. This is shown in conjunction withFIG. 20B , which is normalized to the performance of the lithium battery. Lithium-ion batteries also have a long cycle life, and no memory effect. However, Lithium-ion batteries are not as tolerant to overcharging and overdischarging. One of the most recent development in rechargable battery technology is the Lithium-ion polymer battery. Recently the major battery manufacturers (Sony, Panasonic, Sanyo) have announced plans for Lithium-ion polymer battery production. - For the practice of the current invention, two embodiments of implantable pulse generators may be used. Both embodiments comprise re-chargeable power sources, such as Lithium-ion polymer battery.
- In one embodiment, the implanted device comprises a stimulus-receiver module and a pulse generator module. Advantageously, this embodiment provides an ideal power source, since the power source can be an external stimulator coupled with an implanted stimulus-receiver, or the power source can be from the implanted rechargeable battery. Shown in conjunction with
FIG. 21 is a simplified overall block diagram of this embodiment. Acoil 48C which is external to the titanium case may be used both as a secondary of a stimulus-receiver, or may also be used as the forward and back telemetry coil. Thecoil 48C may be externalized at the header portion 79C of the implanted device, and may be wrapped around the titanium can, eliminating the need for a magnetic shield. In this case, the coil is encased in the same material as the header 79C. Alternatively, the coil may be positioned on the titanium case, with a magnetic shield. - In this embodiment, as disclosed in
FIG. 21 , the IPG circuitry within the titanium case is used for all stimulation pulses whether the energy source is theinternal battery 740 or an external power source. The external device serves as a source of energy, and as a programmer that sends telemetry to the IPG. An external stimulator and recharger may also be combined within the same enclosure. For programming, the energy is sent as high frequency sine waves with superimposed telemetry wave driving the external coil 46C. The telemetry is passed throughcoupling capacitor 727 to the IPG'stelemetry circuit 742. For pulse delivery using external power source, the stimulus-receiver portion will receive the energy coupled to the implantedcoil 48C and, using thepower conditioning circuit 726, rectify it to produce DC, filter and regulate the DC, and couple it to the IPG'svoltage regulator 738 section so that the IPG can run from the externally supplied energy rather than the implantedbattery 740. - The system of this embodiment provides a
power sense circuit 728 that senses the presence of external power communicated with thepower control 730, when adequate and stable power is available from an external source. The power control circuit controls aswitch 736 that selects either implantedbattery power 740 or conditioned external power from 726. The logic andcontrol section 732 andmemory 744 includes the IPG's microcontroller, pre-programmed instructions, and stored changeable parameters. Using input for thetelemetry circuit 742 andpower control 730, this section controls theoutput circuit 734 that generates the output pulses. - Shown in conjunction with
FIG. 22 , this embodiment of the invention is practiced with a rechargeable battery. This circuit is energized when external power is available. It senses the charge state of the battery and provides appropriate charge current to safely recharge the battery without overcharging. Recharging circuitry is described later. - The stimulus-receiver portion of the circuitry is shown in conjunction with
FIG. 23 . Capacitor C1 (729) makes the combination of C1 and L1 sensitive to the resonant frequency and less sensitive to other frequencies, and energy from an external (primary) coil 46C is inductively transferred to the implanted unit via thesecondary coil 48C. The AC signal is rectified DC via diode 731, and filtered viacapacitor 733. Aregulator 735 set the output voltage and limits it to a value just above the maximum IPG cell voltage. The output capacitor C4 (737), typically a tantalum capacitor with a value of 100 micro-Farads or greater, stores charge so that the circuit can supply the IPG with high values of current for a short time duration with minimal voltage change during a pulse while the current draw from the external source remains relatively constant. Also shown in conjunction withFIG. 23 , a capacitor C3 (727) couples signals for forward and back telemetry. - In another embodiment, existing nerve stimulators and cardiac pacemakers can be modified to incorporate rechargeable batteries. Among the nerve stimulators that can be adopted with rechargeable batteries can for example be the vagus nerve stimulator manufactured by Cyberonics Inc. (Houston, Tex.). U.S. Pat. No. 4,702,254 (Zabara), U.S. Pat. No. 5,023,807 (Zabara), and U.S. Pat. No. 4,867,164 (Zabara) on Neurocybernetic Prostheses, which can be practiced with rechargeable power source as disclosed in the next section. These patents are incorporated herein by reference.
- As shown in conjunction with
FIG. 24 , in both embodiments, the coil is externalized from thetitanium case 57. The RF pulses transmitted viacoil 46 and received viasubcutaneous coil 48A are rectified via a diode bridge. These DC pulses are processed and the resulting current applied to recharge thebattery 694/740 in the implanted pulse generator. In one embodiment thecoil 48C may be externalized at theheader portion 79 of the implanted device, and may be wrapped around the titanium can, as shown inFIGS. 25A and 25B . Shown inFIG. 25A is a bipolar configuration which requires twofeedthroughs FIG. 25B unipolar configuration may also be used which requires only onefeedthrough 75. The other end is electronically connected to the case. In both cases, the coil is encased in the same material as theheader 79. Advantageously, as shown in conjunction withFIGS. 25C and 25D , the feedthrough for the coil can be combined with the feedthrough for the lead terminal. This can be applied both for bipolar and unipolar configurations. - In one embodiment, the coil may also be positioned on the titanium case as shown in conjunction with
FIGS. 26A and 26B .FIG. 26A shows a diagram of the finishedimplantable stimulator 391 R of one embodiment.FIG. 26B shows the pulse generator with some of the components used in assembly in an exploded view. These components include acoil cover 7, thesecondary coil 48 and associated components, amagnetic shield 9, and acoil assembly carrier 11. Thecoil assembly carrier 11 has at least onepositioning detail 13 located between the coil assembly and the feed through for positioning the electrical connection. Thepositioning detail 13 secures the electrical connection. - A schematic diagram of the implanted pulse generator (
IPG 391 R), withre-chargeable battery 694, is shown in conjunction withFIG. 27 . TheIPG 391 R includes logic andcontrol circuitry 673 connected tomemory circuitry 691. The operating program and stimulation parameters are typically stored within thememory 691 via forward telemetry. Stimulation pulses are provided to thenerve tissue 54 viaoutput circuitry 677 controlled by the microcontroller. - The operating power for the
IPG 391 R is derived from arechargeable power source 694. Therechargeable power source 694 comprises a rechargeable lithium-ion or lithium-ion polymer battery. Recharging occurs inductively from an external charger to an implantedcoil 48B underneath theskin 60. Therechargeable battery 694 may be recharged repeatedly as needed. Additionally, theIPG 391R is able to monitor and telemeter the status of itsrechargable battery 691 each time a communication link is established with theexternal programmer 85. - Much of the circuitry included within the
IPG 391 R may be realized on a single application specific integrated circuit (ASIC). This allows the overall size of theIPG 391 R to be quite small, and readily housed within a suitable hermetically-sealed case. The IPG case is preferably made from a titanium and is shaped in a rounded case. - Shown in conjunction with
FIG. 28 are the recharging elements of the invention. The re-charging system uses a portable external charger to couple energy into the power source of theIPG 391 R. The DC-to-AC conversion circuitry 696 of the re-charger receives energy from abattery 672 in the re-charger. Acharger base station 680 and conventional AC power line may also be used. The AC signals amplified viapower amplifier 674 are inductively coupled between anexternal coil 46B and an implantedcoil 48B located subcutaneously with the implanted pulse generator (IPG) 391 R. The AC signal received via implantedcoil 48B is rectified 686 to a DC signal which is used for recharging therechargeable battery 694 of the IPG, through acharge controller IC 682. Additional circuitry within theIPG 391 R includes,battery protection IC 688 which controls aFET switch 690 to make sure that therechargeable battery 694 is charged at the proper rate, and is not overcharged. Thebattery protection IC 688 can be an off-the-shelf IC available from Motorola (part no. MC 33349N-3R1). This IC monitors the voltage and current of the implantedrechargeable battery 694 to ensure safe operation. If the battery voltage rises above a safe maximum voltage, thebattery protection IC 688 opens charge enabling FET switches 690, and prevents further charging. Afuse 692 acts as an additional safeguard, and disconnects thebattery 694 if the battery charging current exceeds a safe level. As also shown inFIG. 28 , charge completion detection is achieved by a back-telemetry transmitter 684, which modulates the secondary load by changing the full-wave rectifier into a half-wave rectifier/voltage clamp. This modulation is in turn, sensed by the charger as a change in the coil voltage due to the change in the reflected impedance. When detected through aback telemetry receiver 676, either an audible alarm is generated or a LED is turned on. - A simplified block diagram of charge completion and misalignment detection circuitry is shown in conjunction with
FIG. 29 . As shown, aswitch regulator 686 operates as either a full-wave rectifier circuit or a half-wave rectifier circuit as controlled by a control signal (CS) generated by charging andprotection circuitry 698. The energy induced in implantedcoil 48B (fromexternal coil 46B) passes through theswitch rectifier 686 and charging andprotection circuitry 698 to the implantedrechargeable battery 694. As the implantedbattery 694 continues to be charged, the charging andprotection circuitry 698 continuously monitors the charge current and battery voltage. When the charge current and battery voltage reach a predetermined level, the charging andprotection circuitry 698 triggers a control signal. This control signal causes theswitch rectifier 686 to switch to half-wave rectifier operation. When this change happens, the voltage sensed byvoltage detector 702 causes thealignment indicator 706 to be activated. Thisindicator 706 may be an audible sound or a flashing LED type of indicator. - The
indicator 706 may similarly be used as a misalignment indicator. In normal operation, when coils 46B (external) and 48B (implanted) are properly aligned, the voltage VS sensed byvoltage detector 704 is at a minimum level because maximum energy transfer is taking place. If and when thecoils detection circuit 704 increases significantly. If the voltage VS reaches a predetermined level,alignment indicator 706 is activated via an audible speaker and/or LEDs for visual feedback. After adjustment, when an optimum energy transfer condition is established, causing VS to decrease below the predetermined threshold level, thealignment indicator 706 is turned off. - The elements of the external recharger are shown as a block diagram in conjunction with
FIG. 30 . In this disclosure, the words charger and recharger are used interchangeably. Thecharger base station 680 receives its energy from astandard power outlet 714, which is then converted to 5 volts DC by a AC-to-DC transformer 712. When the re-charger is placed in acharger base station 680, there-chargeable battery 672 of the re-charger is fully recharged in a few hours and is able to recharge thebattery 694 of theIPG 391 R. If thebattery 672 of the external re-charger falls below a prescribed limit of 2.5 volt DC, thebattery 672 is trickle charged until the voltage is above the prescribed limit, and then at that point resumes a normal charging process. - As also shown in
FIG. 30 , abattery protection circuit 718 monitors the voltage condition, and disconnects thebattery 672 through one of the FET switches 716, 720 if a fault occurs until a normal condition returns. Afuse 724 will disconnect thebattery 672 should the charging or discharging current exceed a prescribed amount. - Since another key concept of this invention is to deliver afferent stimulation, in one aspect efferent stimulation of selected types of fibers may be substantially blocked, utilizing the “greenwave” effect. In such a case, as shown in conjunction with
FIGS. 31 and 32 , a tripolar lead is utilized. As depicted on the top right portion ofFIG. 31 , there is adepolarization peak 10 on the vagus nerve bundle corresponding to electrode 61 (cathode) and the two hyper-polarization peaks electrodes 62, 63 (anodes). With the microcontroller controlling the tripolar device, the size and timing of the hyper-polarizations FIGS. 2 and 10 A, since the speed of conduction is different between the larger diameter A and B fibers and the smaller diameter c-fibers, by appropriately timing the pulses, collision blocks can be created for conduction via the large diameter A and B fibers in the efferent direction. This is depicted schematically inFIG. 32 . A number of blocking techniques are known in the art, such as collision blocking, high frequency blocking, and anodal blocking. Any of these well known blocking techniques may be used with the practice of this invention, and are considered within the scope of this invention. - In one aspect of the invention, the pulsed electrical stimulation and/or blocking to the vagus nerve(s) may be provided anywhere along the length of the vagus nerve(s). As was shown earlier in conjunction with
FIG. 31 , the pulsed electrical stimulation may be at the cervical level. Alternatively, shown in conjunction withFIG. 33 , the stimulation to the vagus nerve(s) may be around the diaphramatic level. Either above the diaphragm or below the diaphragm. Further, the stimulation may be unilateral or bilateral, i.e. stimulation is to one or both vagus nerves.FIG. 34 depicts bilateral vagal nerve stimulation at around the level of the diaphragm. Any combination of vagal nerve(s) stimulation, either unilateral or bilateral, anywhere along the length of the vagal nerve(s) is considered within the scope of this invention. - Referring now to
FIG. 35 , the implanted lead component of the system is similar to cardiac pacemaker leads, except for distal portion (or electrode end) of the lead. This figure shows a pair ofelectrodes FIG. 36 depicts a lead withtripolar electrodes lead body 59 insulation may be constructed of medical grade silicone, silicone reinforced with polytetrafluoro-ethylene (PTFE), or polyurethane. Theelectrodes vagus nerve 54 may either wrap around the nerve once or may be spiral shaped. These stimulating electrodes may be made of pure platinum, platinum/Iridium alloy or platinum/iridium coated with titanium nitride. The conductor connecting the terminal to theelectrodes TABLE 4 Lead design variables Conductor Proximal (connecting Distal End Lead body- proximal End Lead Insulation and distal Electrode - Electrode - Terminal Materials Lead-Coating ends) Material Type Linear Polyurethane Antimicrobial Alloy of Pure Spiral bipolar coating Nickel- Platinum electrode Cobalt Bifurcated Silicone Anti- Platinum- Wrap-around Inflammatory Iridium electrode coating (Pt/Ir) Alloy Silicone with Lubricious Pt/Ir coated Steroid Polytetrafluoroethylene coating with Titanium eluting (PTFE) Nitride Carbon Hydrogel electrodes Cuff electrodes - Once the lead is fabricated, coating such as anti-microbial, anti-inflammatory, or lubricious coating may be applied to the body of the lead.
Claims (28)
1. A method of providing electrical pulses with a rechargeable implantable pulse generator for stimulation and/or blocking of vagus nerve(s) and/or its branches or part thereof, for treating or alleviating the symptoms for at least one of neurological, neuropsychiatric disorders, comprising the steps of:
providing said implantable rechargeable pulse generator, comprising a microcontroller, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
providing a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof, and in electrical contact with said rechargeable implantable pulse generator;
providing an external power source to charge said rechargeable implantable pulse generator; and
providing an external programmer to program said rechargeable implantable pulse generator.
2. A method of claim 1 , wherein said neurological, neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF).
3. A method of claim 1 , wherein said coil is also used for bidirectional telemetry.
4. A method of claim 1 , wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
5. A method of claim 4 , wherein said implantable rechargeable pulse generator does not require magnetic shielding between said coil and said titanium case.
6. A method of claim 1 , wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
7. A method of claim 1 , wherein said implantable rechargeable pulse generator further comprises means stimulus-receiver means such that, said implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
8. A method of claim 1 , wherein said at least two electrodes are of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
9. A method of claim 1 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
10. A method of modulating vagus nerve(s) and/or its branches or part thereof with electrical pulses for treating or alleviating the symptoms of neurological, or neuropsychiatric disorders, comprising at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF), and further comprising the steps of:
providing an implantable rechargeable pulse generator, wherein said implantable rechargeable pulse generator comprises a stimulus-receiver means, and an implantable pulse generator means comprising a microcontroller, pulse generation circuitry, rechargeable battery, and battery recharging circuitry;
providing a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof, and in electrical contact with said implantable rechargeable pulse generator;
providing an external power source to charge rechargeable implantable pulse generator.
providing an external programmer to program the said rechargeable implantable pulse generator.
11. A method of claim 10 , wherein said rechargeable implantable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
12. A method of claim 10 , wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a slicone enclosure.
13. A method of claim 10 , wherein said rechargeable implantable pulse generator can be recharged using an external recharger or an external stimulator.
14. A method of claim 10 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
15. A vagus nerve(s) stimulation and/or blocking system for providing electrical pulses to vagus nerve(s) or its branches or part thereof for treating or alleviating the symptoms for at least one of neurological, and neuropsychiatric disorders, comprising:
a rechargeable implantable pulse generator, comprising, a microprocessor, pulse generation circuitry, rechargeable battery, battery recharging circuitry, and a coil;
a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge said rechargeable implantable pulse generator; and
an external programmer to program said rechargeable implantable pulse generator.
16. A system of claim 15 , wherein said at least one of neurological and neuropsychiatric disorders comprises at least one of epilepsy, partial complex epilepsy, generalized epilepsy, and involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF).
17. A system of claim 15 , wherein said coil is used for bidirectional telemetry, or receiving electrical pulses from said external stimulator.
18. A system of claim 15 , wherein said coil used in recharging said pulse generator is around said rechargeable implantable pulse generator case in a silicone enclosure.
19. A system of claim 15 , wherein said rechargeable implantable pulse generator does not require a magnetic shield between said coil and said titanium case.
20. A system of claim 15 , wherein said rechargeable implantable rechargeable pulse generator does require a magnetic shield between said coil and said titanium case.
21. A system of claim 15 , wherein said rechargeable implanted pulse generator further comprises one or two feedthrough(s) for unipolar or bipolar configurations respectively.
22. A system of claim 15 , wherein said implantable rechargeable pulse generator further comprises means such that said implantable rechargeable pulse generator can also function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
23. A system of claim 15 , wherein said at least two electrodes are of a material selected from the group consisting of platinum, platinum/iridium alloy, platinum/iridium alloy coated with titanium nitride, and carbon.
24. A system of claim 15 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
25. A system for modulating the vagus nerve(s) and/or its branches or part thereof with electrical pulses, for treating or for alleviating the symptoms for at least one of epilepsy, partial complex epilepsy, generalized epilepsy, involuntary movement disorders such as in Parkinson's disease, depression, bipolar depression, schizophrenia, anxiety disorders, neurogenic/psycogenic pain, compulsive eating disorders, obesity, obsessive compulsive disorders, dementia including Alzheimer's disease, sleep disorders, learning difficulties, migraines and cardiac disorders such as atrial fibrillation and congestive heart failure (CHF), comprising:
a rechargeable implantable pulse generator, comprising a microprocessor, pulse generation circuitry, rechargeable battery, and stimulus-receiver means;
a lead with at least two electrodes adapted to be in contact with said vagus nerve(s) or its branches or part thereof and in electrical contact with said implantable rechargeable pulse generator;
an external power source to charge implantable rechargeable pulse generator; and
an external programmer to program the said rechargeable implantable pulse generator.
25. A system of claim 25 , wherein said implantable rechargeable pulse generator can function in conjunction with an external stimulator, to provide said stimulation and/or blocking to said vagus nerve(s) and/or its branches.
26. A system of claim 25 , wherein said coil used in recharging said pulse generator is around said implantable rechargeable pulse generator case in a silicone enclosure.
27. A system of claim 25 , wherein said rechargeable battery comprises at least one of lithium-ion, lithium-ion polymer batteries.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/035,374 US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
US11/047,137 US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14229802A | 2002-05-09 | 2002-05-09 | |
US10/196,533 US20030212440A1 (en) | 2002-05-09 | 2002-07-16 | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US10/841,995 US7076307B2 (en) | 2002-05-09 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US11/035,374 US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/841,995 Continuation US7076307B2 (en) | 1998-10-26 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/047,233 Continuation US20050131487A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders |
US11/047,137 Continuation US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US11/047,232 Continuation US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050143787A1 true US20050143787A1 (en) | 2005-06-30 |
Family
ID=34704997
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/841,995 Expired - Lifetime US7076307B2 (en) | 1998-10-26 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US11/035,374 Abandoned US20050143787A1 (en) | 2002-05-09 | 2005-01-13 | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator |
US11/047,232 Abandoned US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
US11/047,137 Abandoned US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US11/047,233 Abandoned US20050131487A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/841,995 Expired - Lifetime US7076307B2 (en) | 1998-10-26 | 2004-05-08 | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/047,232 Abandoned US20050131486A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for vagal blocking with or without vagal stimulation to provide therapy for obesity and other gastrointestinal disorders using rechargeable implanted pulse generator |
US11/047,137 Abandoned US20050149146A1 (en) | 2002-05-09 | 2005-01-31 | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US11/047,233 Abandoned US20050131487A1 (en) | 2002-05-09 | 2005-01-31 | Method and system for providing electrical pulses to gastric wall of a patient with rechargeable implantable pulse generator for treating or controlling obesity and eating disorders |
Country Status (1)
Country | Link |
---|---|
US (5) | US7076307B2 (en) |
Cited By (199)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040167583A1 (en) * | 2003-02-03 | 2004-08-26 | Enteromedics, Inc. | Electrode band apparatus and method |
US20040172084A1 (en) * | 2003-02-03 | 2004-09-02 | Knudson Mark B. | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
US20050038484A1 (en) * | 2003-02-03 | 2005-02-17 | Enteromedics, Inc. | Controlled vagal blockage therapy |
US20050070970A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Movement disorder stimulation with neural block |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US20050131485A1 (en) * | 2003-02-03 | 2005-06-16 | Enteromedics, Inc. | High frequency vagal blockage therapy |
US20050143785A1 (en) * | 2003-12-24 | 2005-06-30 | Imad Libbus | Baroreflex therapy for disordered breathing |
US20050149127A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation responsive to adverse event |
US20050149126A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Baroreflex stimulation to treat acute myocardial infarction |
US20050149146A1 (en) * | 2002-05-09 | 2005-07-07 | Boveja Birinder R. | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US20050149132A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation based on cardiac activity |
US20060004421A1 (en) * | 2004-02-12 | 2006-01-05 | Bennett Maria E | Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence |
US20060020298A1 (en) * | 2004-07-20 | 2006-01-26 | Camilleri Michael L | Systems and methods for curbing appetite |
US20060095080A1 (en) * | 2004-11-04 | 2006-05-04 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
WO2006101917A2 (en) * | 2005-03-16 | 2006-09-28 | Purdue Research Foundation | Devices for treatment of central nervous system injuries |
US20060224202A1 (en) * | 2005-04-05 | 2006-10-05 | Julia Moffitt | System to treat AV-conducted ventricular tachyarrhythmia |
US20060229677A1 (en) * | 2005-04-11 | 2006-10-12 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device |
US20070043400A1 (en) * | 2005-08-17 | 2007-02-22 | Donders Adrianus P | Neural electrode treatment |
US20070043411A1 (en) * | 2005-08-17 | 2007-02-22 | Enteromedics Inc. | Neural electrode |
US7209787B2 (en) | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US20070093875A1 (en) * | 2005-10-24 | 2007-04-26 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US7231254B2 (en) | 1998-08-05 | 2007-06-12 | Bioneuronics Corporation | Closed-loop feedback-driven neuromodulation |
US20070142864A1 (en) * | 2003-12-24 | 2007-06-21 | Imad Libbus | Automatic neural stimulation modulation based on activity |
US20070150027A1 (en) * | 2005-12-22 | 2007-06-28 | Rogers Lesco L | Non-invasive device and method for electrical stimulation of neural tissue |
US7239918B2 (en) | 2004-06-10 | 2007-07-03 | Ndi Medical Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US7242984B2 (en) | 1998-08-05 | 2007-07-10 | Neurovista Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US20070179543A1 (en) * | 2002-05-23 | 2007-08-02 | Tamir Ben-David | Techniques for prevention of atrial fibrillation |
US7277758B2 (en) | 1998-08-05 | 2007-10-02 | Neurovista Corporation | Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder |
US20070282386A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US20070282390A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Amelioration of chronic pain by endolymphatic stimulation |
US20070282376A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for neural stimulation via the lymphatic system |
US7324851B1 (en) | 1998-08-05 | 2008-01-29 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
US7343202B2 (en) | 2004-02-12 | 2008-03-11 | Ndi Medical, Llc. | Method for affecting urinary function with electrode implantation in adipose tissue |
EP1897586A1 (en) * | 2006-09-07 | 2008-03-12 | Biocontrol Medical Ltd. | Techniques for reducing pain associated with nerve stimulation |
US20080086179A1 (en) * | 2006-10-09 | 2008-04-10 | Virender K Sharma | Method and apparatus for treatment of the gastrointestinal tract |
US20080132974A1 (en) * | 2004-06-10 | 2008-06-05 | Ndi Medical, Inc. | Implantable systems and methods for acquisition and processing of electrical signals for therapeutic and/or functional restoration purposes |
US20080161874A1 (en) * | 2004-02-12 | 2008-07-03 | Ndi Medical, Inc. | Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation |
US7403820B2 (en) | 1998-08-05 | 2008-07-22 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
US20080195171A1 (en) * | 2007-02-13 | 2008-08-14 | Sharma Virender K | Method and Apparatus for Electrical Stimulation of the Pancreatico-Biliary System |
US20080221644A1 (en) * | 2007-03-09 | 2008-09-11 | Enteromedics, Inc. | Remote monitoring and control of implantable devices |
US20080243204A1 (en) * | 2007-03-28 | 2008-10-02 | University Of Florida Research Foundation, Inc. | Variational parameter neurostimulation paradigm for treatment of neurologic disease |
US20080243196A1 (en) * | 2007-04-02 | 2008-10-02 | Imad Libbus | Unidirectional neural stimulation systems, devices and methods |
US20080300656A1 (en) * | 2007-05-31 | 2008-12-04 | Adrianus Donders | Implantable therapy system |
US7493171B1 (en) * | 2000-11-21 | 2009-02-17 | Boston Scientific Neuromodulation Corp. | Treatment of pathologic craving and aversion syndromes and eating disorders by electrical brain stimulation and/or drug infusion |
US20090054947A1 (en) * | 2007-08-20 | 2009-02-26 | Medtronic, Inc. | Electrode configurations for directional leads |
US20090132001A1 (en) * | 2006-05-18 | 2009-05-21 | Soffer Edy E | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US20090145912A1 (en) * | 2007-12-11 | 2009-06-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage containers |
US20090145164A1 (en) * | 2007-12-11 | 2009-06-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage systems |
US7570999B2 (en) | 2005-12-20 | 2009-08-04 | Cardiac Pacemakers, Inc. | Implantable device for treating epilepsy and cardiac rhythm disorders |
US20090264951A1 (en) * | 2008-01-25 | 2009-10-22 | Sharma Virender K | Device and Implantation System for Electrical Stimulation of Biological Systems |
US7623928B2 (en) | 1998-08-05 | 2009-11-24 | Neurovista Corporation | Controlling a subject's susceptibility to a seizure |
US7647114B2 (en) | 2003-12-24 | 2010-01-12 | Cardiac Pacemakers, Inc. | Baroreflex modulation based on monitored cardiovascular parameter |
US20100016927A1 (en) * | 2005-05-16 | 2010-01-21 | Anthony Caparso | Transvascular reshaping lead system |
US20100018981A1 (en) * | 2008-07-23 | 2010-01-28 | Searete Llc | Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods |
US7676275B1 (en) | 2005-05-02 | 2010-03-09 | Pacesetter, Inc. | Endovascular lead for chronic nerve stimulation |
US7676263B2 (en) | 2006-06-23 | 2010-03-09 | Neurovista Corporation | Minimally invasive system for selecting patient-specific therapy parameters |
US20100137940A1 (en) * | 1997-07-21 | 2010-06-03 | Levin Bruce H | Method for Directed Intranasal Administration of a Composition |
US7747325B2 (en) | 1998-08-05 | 2010-06-29 | Neurovista Corporation | Systems and methods for monitoring a patient's neurological disease state |
US7747323B2 (en) | 2004-06-08 | 2010-06-29 | Cardiac Pacemakers, Inc. | Adaptive baroreflex stimulation therapy for disordered breathing |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US20100213200A1 (en) * | 2007-12-11 | 2010-08-26 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage systems |
US7787946B2 (en) | 2003-08-18 | 2010-08-31 | Cardiac Pacemakers, Inc. | Patient monitoring, diagnosis, and/or therapy systems and methods |
US20100256708A1 (en) * | 2009-04-03 | 2010-10-07 | Thornton Arnold W | Implantable device with heat storage |
US7813805B1 (en) | 2006-01-11 | 2010-10-12 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US20100274321A1 (en) * | 2003-12-24 | 2010-10-28 | Imad Libbus | Baroreflex activation therapy with conditional shut off |
US20100280569A1 (en) * | 2007-08-28 | 2010-11-04 | Eric Bobillier | Device and method for reducing weight |
US20100324436A1 (en) * | 2008-02-04 | 2010-12-23 | University Of Virginia Patent Foundation | System, Method and Computer Program Product for Detection of Changes in Health Status and Risk of Imminent Illness |
US7869869B1 (en) | 2006-01-11 | 2011-01-11 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US7869881B2 (en) | 2003-12-24 | 2011-01-11 | Cardiac Pacemakers, Inc. | Baroreflex stimulator with integrated pressure sensor |
US7887493B2 (en) | 2003-09-18 | 2011-02-15 | Cardiac Pacemakers, Inc. | Implantable device employing movement sensing for detecting sleep-related disorders |
US20110050431A1 (en) * | 2009-08-28 | 2011-03-03 | Hood Leroy E | Beverage containers with detection capability |
US20110053283A1 (en) * | 2009-08-28 | 2011-03-03 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Beverage Immersate with detection capability |
US20110127273A1 (en) * | 2007-12-11 | 2011-06-02 | TOKITAE LLC, a limited liability company of the State of Delaware | Temperature-stabilized storage systems including storage structures configured for interchangeable storage of modular units |
US20110150924A1 (en) * | 2009-12-22 | 2011-06-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Device, Method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US8002553B2 (en) | 2003-08-18 | 2011-08-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
US8024050B2 (en) | 2003-12-24 | 2011-09-20 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
US8036736B2 (en) | 2007-03-21 | 2011-10-11 | Neuro Vista Corporation | Implantable systems and methods for identifying a contra-ictal condition in a subject |
US8126560B2 (en) | 2003-12-24 | 2012-02-28 | Cardiac Pacemakers, Inc. | Stimulation lead for stimulating the baroreceptors in the pulmonary artery |
US8165692B2 (en) | 2004-06-10 | 2012-04-24 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator power management |
US8170668B2 (en) | 2006-07-14 | 2012-05-01 | Cardiac Pacemakers, Inc. | Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy |
US8295943B2 (en) | 2007-08-20 | 2012-10-23 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US8295934B2 (en) | 2006-11-14 | 2012-10-23 | Neurovista Corporation | Systems and methods of reducing artifact in neurological stimulation systems |
US8326418B2 (en) | 2007-08-20 | 2012-12-04 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
WO2012154865A3 (en) * | 2011-05-09 | 2013-01-31 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US8391970B2 (en) | 2007-08-27 | 2013-03-05 | The Feinstein Institute For Medical Research | Devices and methods for inhibiting granulocyte activation by neural stimulation |
US8412336B2 (en) | 2008-12-29 | 2013-04-02 | Autonomic Technologies, Inc. | Integrated delivery and visualization tool for a neuromodulation system |
US8412338B2 (en) | 2008-11-18 | 2013-04-02 | Setpoint Medical Corporation | Devices and methods for optimizing electrode placement for anti-inflamatory stimulation |
US8447403B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8467875B2 (en) | 2004-02-12 | 2013-06-18 | Medtronic, Inc. | Stimulation of dorsal genital nerves to treat urologic dysfunctions |
US8473062B2 (en) | 2008-05-01 | 2013-06-25 | Autonomic Technologies, Inc. | Method and device for the treatment of headache |
US8494641B2 (en) | 2009-04-22 | 2013-07-23 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US8514067B2 (en) | 2011-08-16 | 2013-08-20 | Elwha Llc | Systematic distillation of status data relating to regimen compliance |
US8535222B2 (en) | 2002-12-04 | 2013-09-17 | Cardiac Pacemakers, Inc. | Sleep detection using an adjustable threshold |
US8571662B2 (en) | 2007-01-29 | 2013-10-29 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US8588933B2 (en) | 2009-01-09 | 2013-11-19 | Cyberonics, Inc. | Medical lead termination sleeve for implantable medical devices |
US8606356B2 (en) | 2003-09-18 | 2013-12-10 | Cardiac Pacemakers, Inc. | Autonomic arousal detection system and method |
US8612002B2 (en) | 2009-12-23 | 2013-12-17 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8690934B2 (en) | 2011-05-09 | 2014-04-08 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US8703259B2 (en) | 2008-05-13 | 2014-04-22 | The Invention Science Fund I, Llc | Multi-layer insulation composite material including bandgap material, storage container using same, and related methods |
US8725243B2 (en) | 2005-12-28 | 2014-05-13 | Cyberonics, Inc. | Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US8729129B2 (en) | 2004-03-25 | 2014-05-20 | The Feinstein Institute For Medical Research | Neural tourniquet |
US8762065B2 (en) | 1998-08-05 | 2014-06-24 | Cyberonics, Inc. | Closed-loop feedback-driven neuromodulation |
US8786624B2 (en) | 2009-06-02 | 2014-07-22 | Cyberonics, Inc. | Processing for multi-channel signals |
US8790400B2 (en) | 2012-06-13 | 2014-07-29 | Elwha Llc | Breast implant with covering and analyte sensors responsive to external power source |
US8795359B2 (en) | 2012-06-13 | 2014-08-05 | Elwha Llc | Breast implant with regionalized analyte sensors and internal power source |
US8805494B2 (en) | 2005-05-10 | 2014-08-12 | Cardiac Pacemakers, Inc. | System and method to deliver therapy in presence of another therapy |
US8808373B2 (en) | 2012-06-13 | 2014-08-19 | Elwha Llc | Breast implant with regionalized analyte sensors responsive to external power source |
US8825164B2 (en) | 2010-06-11 | 2014-09-02 | Enteromedics Inc. | Neural modulation devices and methods |
US8831729B2 (en) | 2011-03-04 | 2014-09-09 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US8849390B2 (en) | 2008-12-29 | 2014-09-30 | Cyberonics, Inc. | Processing for multi-channel signals |
US8868172B2 (en) | 2005-12-28 | 2014-10-21 | Cyberonics, Inc. | Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders |
US8886339B2 (en) | 2009-06-09 | 2014-11-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US8887944B2 (en) | 2007-12-11 | 2014-11-18 | Tokitae Llc | Temperature-stabilized storage systems configured for storage and stabilization of modular units |
US8914114B2 (en) | 2000-05-23 | 2014-12-16 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US8929986B2 (en) | 2011-11-04 | 2015-01-06 | Nevro Corporation | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US8979887B2 (en) | 2012-02-24 | 2015-03-17 | Elwha Llc | Devices, systems, and methods to control stomach volume |
US8996116B2 (en) | 2009-10-30 | 2015-03-31 | Setpoint Medical Corporation | Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction |
US9020597B2 (en) | 2008-11-12 | 2015-04-28 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20150119952A1 (en) * | 2006-10-09 | 2015-04-30 | Endostim, Inc. | Systems and Methods for Electrical Stimulation of Biological Systems |
US9037245B2 (en) | 2011-09-02 | 2015-05-19 | Endostim, Inc. | Endoscopic lead implantation method |
US9042988B2 (en) | 1998-08-05 | 2015-05-26 | Cyberonics, Inc. | Closed-loop vagus nerve stimulation |
USD736383S1 (en) | 2012-11-05 | 2015-08-11 | Nevro Corporation | Implantable signal generator |
US9140476B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-controlled storage systems |
US9138295B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-stabilized medicinal storage systems |
US9144489B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with covering, analyte sensors and internal power source |
US9144488B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with analyte sensors responsive to external power source |
US9205255B2 (en) | 2004-06-10 | 2015-12-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9211410B2 (en) | 2009-05-01 | 2015-12-15 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US9211409B2 (en) | 2008-03-31 | 2015-12-15 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation of T-cell activity |
US9211185B2 (en) | 2012-06-13 | 2015-12-15 | Elwha Llc | Breast implant with analyte sensors and internal power source |
US9227076B2 (en) | 2011-11-04 | 2016-01-05 | Nevro Corporation | Molded headers for implantable signal generators, and associated systems and methods |
US9238133B2 (en) | 2011-05-09 | 2016-01-19 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US9259591B2 (en) | 2007-12-28 | 2016-02-16 | Cyberonics, Inc. | Housing for an implantable medical device |
US9320908B2 (en) | 2009-01-15 | 2016-04-26 | Autonomic Technologies, Inc. | Approval per use implanted neurostimulator |
US9345879B2 (en) | 2006-10-09 | 2016-05-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9372016B2 (en) | 2013-05-31 | 2016-06-21 | Tokitae Llc | Temperature-stabilized storage systems with regulated cooling |
US9370654B2 (en) | 2009-01-27 | 2016-06-21 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
US9375573B2 (en) | 1998-08-05 | 2016-06-28 | Cyberonics, Inc. | Systems and methods for monitoring a patient's neurological disease state |
US9413396B2 (en) | 2008-05-13 | 2016-08-09 | Tokitae Llc | Storage container including multi-layer insulation composite material having bandgap material |
US9409020B2 (en) | 2014-05-20 | 2016-08-09 | Nevro Corporation | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
US9415222B2 (en) | 1998-08-05 | 2016-08-16 | Cyberonics, Inc. | Monitoring an epilepsy disease state with a supervisory module |
US9447995B2 (en) | 2010-02-08 | 2016-09-20 | Tokitac LLC | Temperature-stabilized storage systems with integral regulated cooling |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US9498619B2 (en) | 2013-02-26 | 2016-11-22 | Endostim, Inc. | Implantable electrical stimulation leads |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US9572983B2 (en) | 2012-03-26 | 2017-02-21 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US9622675B2 (en) | 2007-01-25 | 2017-04-18 | Cyberonics, Inc. | Communication error alerting in an epilepsy monitoring system |
US9623238B2 (en) | 2012-08-23 | 2017-04-18 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9643019B2 (en) | 2010-02-12 | 2017-05-09 | Cyberonics, Inc. | Neurological monitoring and alerts |
US9662490B2 (en) | 2008-03-31 | 2017-05-30 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug |
US9682234B2 (en) | 2014-11-17 | 2017-06-20 | Endostim, Inc. | Implantable electro-medical device programmable for improved operational life |
US9697336B2 (en) | 2009-07-28 | 2017-07-04 | Gearbox, Llc | Electronically initiating an administration of a neuromodulation treatment regimen chosen in response to contactlessly acquired information |
US9724526B2 (en) | 2004-06-10 | 2017-08-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for operating the same |
US9788744B2 (en) | 2007-07-27 | 2017-10-17 | Cyberonics, Inc. | Systems for monitoring brain activity and patient advisory device |
US9827425B2 (en) | 2013-09-03 | 2017-11-28 | Endostim, Inc. | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9833621B2 (en) | 2011-09-23 | 2017-12-05 | Setpoint Medical Corporation | Modulation of sirtuins by vagus nerve stimulation |
US9878139B2 (en) | 2014-06-03 | 2018-01-30 | Pop Test Abuse Deterrent Technology, LLC | Drug device configured for wireless communication |
US9884198B2 (en) | 2014-10-22 | 2018-02-06 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US9898656B2 (en) | 2007-01-25 | 2018-02-20 | Cyberonics, Inc. | Systems and methods for identifying a contra-ictal condition in a subject |
US9925367B2 (en) | 2011-09-02 | 2018-03-27 | Endostim, Inc. | Laparoscopic lead implantation method |
US10039920B1 (en) | 2017-08-02 | 2018-08-07 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US10314501B2 (en) | 2016-01-20 | 2019-06-11 | Setpoint Medical Corporation | Implantable microstimulators and inductive charging systems |
US10376694B2 (en) | 2008-10-09 | 2019-08-13 | Virender K. Sharma | Method and apparatus for stimulating the vascular system |
US10391314B2 (en) | 2014-01-21 | 2019-08-27 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US10406367B2 (en) | 2013-06-21 | 2019-09-10 | Lungpacer Medical Inc. | Transvascular diaphragm pacing system and methods of use |
US10420935B2 (en) | 2015-12-31 | 2019-09-24 | Nevro Corp. | Controller for nerve stimulation circuit and associated systems and methods |
US10426955B2 (en) | 2006-10-09 | 2019-10-01 | Endostim, Inc. | Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease |
US10512772B2 (en) | 2012-03-05 | 2019-12-24 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US10583304B2 (en) | 2016-01-25 | 2020-03-10 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US10596367B2 (en) | 2016-01-13 | 2020-03-24 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
US10695569B2 (en) | 2016-01-20 | 2020-06-30 | Setpoint Medical Corporation | Control of vagal stimulation |
US10912712B2 (en) | 2004-03-25 | 2021-02-09 | The Feinstein Institutes For Medical Research | Treatment of bleeding by non-invasive stimulation |
US10933238B2 (en) | 2019-01-31 | 2021-03-02 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US10987511B2 (en) | 2018-11-08 | 2021-04-27 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11040199B2 (en) * | 2016-04-04 | 2021-06-22 | General Electric Company | Techniques for neuromodulation |
US11051744B2 (en) | 2009-11-17 | 2021-07-06 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US11173307B2 (en) | 2017-08-14 | 2021-11-16 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US11207518B2 (en) | 2004-12-27 | 2021-12-28 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway |
US11260229B2 (en) | 2018-09-25 | 2022-03-01 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11311725B2 (en) | 2014-10-24 | 2022-04-26 | Setpoint Medical Corporation | Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation |
US11344724B2 (en) | 2004-12-27 | 2022-05-31 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by electrical vagus nerve stimulation |
US11357979B2 (en) | 2019-05-16 | 2022-06-14 | Lungpacer Medical Inc. | Systems and methods for sensing and stimulation |
US11406317B2 (en) | 2007-12-28 | 2022-08-09 | Livanova Usa, Inc. | Method for detecting neurological and clinical manifestations of a seizure |
US11406833B2 (en) | 2015-02-03 | 2022-08-09 | Setpoint Medical Corporation | Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator |
US11471681B2 (en) | 2016-01-20 | 2022-10-18 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US11577077B2 (en) | 2006-10-09 | 2023-02-14 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US11633604B2 (en) | 2018-01-30 | 2023-04-25 | Nevro Corp. | Efficient use of an implantable pulse generator battery, and associated systems and methods |
US11707619B2 (en) | 2013-11-22 | 2023-07-25 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US11717681B2 (en) | 2010-03-05 | 2023-08-08 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US11771900B2 (en) | 2019-06-12 | 2023-10-03 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
US11819683B2 (en) | 2016-11-17 | 2023-11-21 | Endostim, Inc. | Modular stimulation system for the treatment of gastrointestinal disorders |
US11883658B2 (en) | 2017-06-30 | 2024-01-30 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US11938324B2 (en) | 2020-05-21 | 2024-03-26 | The Feinstein Institutes For Medical Research | Systems and methods for vagus nerve stimulation |
US12029903B2 (en) | 2017-12-11 | 2024-07-09 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
US12053626B2 (en) | 2017-04-06 | 2024-08-06 | Endostim, Inc. | Surface electrodes |
US12172017B2 (en) | 2011-05-09 | 2024-12-24 | Setpoint Medical Corporation | Vagus nerve stimulation to treat neurodegenerative disorders |
Families Citing this family (282)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7062330B1 (en) * | 1998-10-26 | 2006-06-13 | Boveja Birinder R | Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator |
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US20060217782A1 (en) * | 1998-10-26 | 2006-09-28 | Boveja Birinder R | Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components |
US6587719B1 (en) * | 1999-07-01 | 2003-07-01 | Cyberonics, Inc. | Treatment of obesity by bilateral vagus nerve stimulation |
US6919361B2 (en) * | 2000-06-30 | 2005-07-19 | Sumitomo Pharmaceuticals Company, Limited | Five-membered-ring compound |
US6609025B2 (en) * | 2001-01-02 | 2003-08-19 | Cyberonics, Inc. | Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation |
US6907295B2 (en) | 2001-08-31 | 2005-06-14 | Biocontrol Medical Ltd. | Electrode assembly for nerve control |
US6684105B2 (en) * | 2001-08-31 | 2004-01-27 | Biocontrol Medical, Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US7643887B2 (en) * | 2001-05-01 | 2010-01-05 | Intrapace, Inc. | Abdominally implanted stimulator and method |
US7747322B2 (en) * | 2001-05-01 | 2010-06-29 | Intrapace, Inc. | Digestive organ retention device |
US7702394B2 (en) * | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US7756582B2 (en) | 2001-05-01 | 2010-07-13 | Intrapace, Inc. | Gastric stimulation anchor and method |
US7979127B2 (en) * | 2001-05-01 | 2011-07-12 | Intrapace, Inc. | Digestive organ retention device |
US6535764B2 (en) * | 2001-05-01 | 2003-03-18 | Intrapace, Inc. | Gastric treatment and diagnosis device and method |
US7616996B2 (en) * | 2005-09-01 | 2009-11-10 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US7689284B2 (en) * | 2001-05-01 | 2010-03-30 | Intrapace, Inc. | Pseudounipolar lead for stimulating a digestive organ |
US8571653B2 (en) | 2001-08-31 | 2013-10-29 | Bio Control Medical (B.C.M.) Ltd. | Nerve stimulation techniques |
US7734355B2 (en) * | 2001-08-31 | 2010-06-08 | Bio Control Medical (B.C.M.) Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US7778703B2 (en) * | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Selective nerve fiber stimulation for treating heart conditions |
WO2009021080A2 (en) * | 2007-08-06 | 2009-02-12 | Great Lakes Biosciences, Llc | Methods and apparatus for electrical stimulation of tissues using signals that minimize the effects of tissue impedance |
US7689276B2 (en) * | 2002-09-13 | 2010-03-30 | Leptos Biomedical, Inc. | Dynamic nerve stimulation for treatment of disorders |
US7702386B2 (en) * | 2002-03-22 | 2010-04-20 | Leptos Biomedical, Inc. | Nerve stimulation for treatment of obesity, metabolic syndrome, and Type 2 diabetes |
US7689277B2 (en) | 2002-03-22 | 2010-03-30 | Leptos Biomedical, Inc. | Neural stimulation for treatment of metabolic syndrome and type 2 diabetes |
US7937145B2 (en) | 2002-03-22 | 2011-05-03 | Advanced Neuromodulation Systems, Inc. | Dynamic nerve stimulation employing frequency modulation |
US7239912B2 (en) * | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
US7551964B2 (en) * | 2002-03-22 | 2009-06-23 | Leptos Biomedical, Inc. | Splanchnic nerve stimulation for treatment of obesity |
US7236822B2 (en) * | 2002-03-22 | 2007-06-26 | Leptos Biomedical, Inc. | Wireless electric modulation of sympathetic nervous system |
US20090259279A1 (en) * | 2002-03-22 | 2009-10-15 | Dobak Iii John D | Splanchnic nerve stimulation for treatment of obesity |
US20080077192A1 (en) | 2002-05-03 | 2008-03-27 | Afferent Corporation | System and method for neuro-stimulation |
US20060079936A1 (en) * | 2003-05-11 | 2006-04-13 | Boveja Birinder R | Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders |
US20050209654A1 (en) * | 2002-05-09 | 2005-09-22 | Boveja Birinder R | Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s) |
US20060004423A1 (en) * | 2002-05-09 | 2006-01-05 | Boveja Birinder R | Methods and systems to provide therapy or alleviate symptoms of chronic headache, transformed migraine, and occipital neuralgia by providing rectangular and/or complex electrical pulses to occipital nerves |
US20050216070A1 (en) * | 2002-05-09 | 2005-09-29 | Boveja Birinder R | Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s) |
US20060009815A1 (en) * | 2002-05-09 | 2006-01-12 | Boveja Birinder R | Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s) |
US7627384B2 (en) * | 2004-11-15 | 2009-12-01 | Bio Control Medical (B.C.M.) Ltd. | Techniques for nerve stimulation |
US8880192B2 (en) | 2012-04-02 | 2014-11-04 | Bio Control Medical (B.C.M.) Ltd. | Electrode cuffs |
US7184839B2 (en) * | 2002-12-16 | 2007-02-27 | Medtronic, Inc. | Catheter-delivered cardiac lead |
JP2004201901A (en) * | 2002-12-25 | 2004-07-22 | Yoshimi Kurokawa | Stomach electrostimulator |
JP2006519229A (en) * | 2003-02-13 | 2006-08-24 | アルバート・アインシュタイン・カレッジ・オヴ・メディシン・オヴ・イェシヴァ・ユニヴァーシティ | Regulation of food intake and glucose production by modulation of long-chain fatty acyl-CoA levels in the hypothalamus |
EP1596928A4 (en) * | 2003-02-25 | 2011-03-09 | Advanced Neuromodulation Sys | Splanchnic nerve stimulation for treatment of obesity |
US20050187590A1 (en) * | 2003-05-11 | 2005-08-25 | Boveja Birinder R. | Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s) |
US20050197678A1 (en) * | 2003-05-11 | 2005-09-08 | Boveja Birinder R. | Method and system for providing therapy for Alzheimer's disease and dementia by providing electrical pulses to vagus nerve(s) |
US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
US8116883B2 (en) | 2003-06-04 | 2012-02-14 | Synecor Llc | Intravascular device for neuromodulation |
EP1648560A4 (en) | 2003-06-13 | 2015-10-28 | Biocontrol Medical Ltd | Vagal stimulation for anti-embolic therapy |
US9050469B1 (en) | 2003-11-26 | 2015-06-09 | Flint Hills Scientific, Llc | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
US7751891B2 (en) * | 2004-07-28 | 2010-07-06 | Cyberonics, Inc. | Power supply monitoring for an implantable device |
US7623924B2 (en) * | 2004-08-31 | 2009-11-24 | Leptos Biomedical, Inc. | Devices and methods for gynecologic hormone modulation in mammals |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
WO2006041922A2 (en) * | 2004-10-08 | 2006-04-20 | Dara Biosciences, Inc. | Agents and methods for administration to the central nervous system |
US7483746B2 (en) * | 2004-12-06 | 2009-01-27 | Boston Scientific Neuromodulation Corp. | Stimulation of the stomach in response to sensed parameters to treat obesity |
US20060161217A1 (en) * | 2004-12-21 | 2006-07-20 | Jaax Kristen N | Methods and systems for treating obesity |
US20060137699A1 (en) * | 2004-12-23 | 2006-06-29 | Moore Mark P | Providing data destination information to a medical device |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US20060212097A1 (en) * | 2005-02-24 | 2006-09-21 | Vijay Varadan | Method and device for treatment of medical conditions and monitoring physical movements |
US8700163B2 (en) * | 2005-03-04 | 2014-04-15 | Cyberonics, Inc. | Cranial nerve stimulation for treatment of substance addiction |
US7835796B2 (en) * | 2005-04-29 | 2010-11-16 | Cyberonics, Inc. | Weight loss method and device |
US7899540B2 (en) * | 2005-04-29 | 2011-03-01 | Cyberonics, Inc. | Noninvasively adjustable gastric band |
US7310557B2 (en) * | 2005-04-29 | 2007-12-18 | Maschino Steven E | Identification of electrodes for nerve stimulation in the treatment of eating disorders |
US20060248672A1 (en) * | 2005-05-06 | 2006-11-09 | Alex Dussaussoy | Lotion applicator |
US7711419B2 (en) * | 2005-07-13 | 2010-05-04 | Cyberonics, Inc. | Neurostimulator with reduced size |
WO2007013065A2 (en) | 2005-07-25 | 2007-02-01 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US20070021786A1 (en) * | 2005-07-25 | 2007-01-25 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of angina pectoris |
US7840280B2 (en) | 2005-07-27 | 2010-11-23 | Cyberonics, Inc. | Cranial nerve stimulation to treat a vocal cord disorder |
US20070027497A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Nerve stimulation for treatment of syncope |
US20070027504A1 (en) * | 2005-07-27 | 2007-02-01 | Cyberonics, Inc. | Cranial nerve stimulation to treat a hearing disorder |
US7856273B2 (en) * | 2005-07-28 | 2010-12-21 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a gastrointestinal disorder |
US20070027484A1 (en) * | 2005-07-28 | 2007-02-01 | Cyberonics, Inc. | Autonomic nerve stimulation to treat a pancreatic disorder |
US7706874B2 (en) | 2005-07-28 | 2010-04-27 | Cyberonics, Inc. | Stimulating cranial nerve to treat disorders associated with the thyroid gland |
US8660647B2 (en) | 2005-07-28 | 2014-02-25 | Cyberonics, Inc. | Stimulating cranial nerve to treat pulmonary disorder |
US20070027499A1 (en) * | 2005-07-29 | 2007-02-01 | Cyberonics, Inc. | Neurostimulation device for treating mood disorders |
US7499752B2 (en) | 2005-07-29 | 2009-03-03 | Cyberonics, Inc. | Selective nerve stimulation for the treatment of eating disorders |
US7532935B2 (en) * | 2005-07-29 | 2009-05-12 | Cyberonics, Inc. | Selective neurostimulation for treating mood disorders |
US7509175B2 (en) | 2006-08-03 | 2009-03-24 | Intrapace, Inc. | Method and devices for stimulation of an organ with the use of a transectionally placed guide wire |
US7620455B2 (en) | 2005-10-25 | 2009-11-17 | Cyberonics, Inc. | Cranial nerve stimulation to treat eating disorders |
US8428731B2 (en) | 2005-10-27 | 2013-04-23 | Cyberonics, Inc. | Sequenced therapy protocols for an implantable medical device |
US7555344B2 (en) | 2005-10-28 | 2009-06-30 | Cyberonics, Inc. | Selective neurostimulation for treating epilepsy |
US8694118B2 (en) * | 2005-10-28 | 2014-04-08 | Cyberonics, Inc. | Variable output ramping for an implantable medical device |
WO2007053881A1 (en) * | 2005-11-08 | 2007-05-18 | Ventrassist Pty Ltd | Improvements to control systems and power systems for rotary blood pumps |
US8041428B2 (en) | 2006-02-10 | 2011-10-18 | Electrocore Llc | Electrical stimulation treatment of hypotension |
US8812112B2 (en) | 2005-11-10 | 2014-08-19 | ElectroCore, LLC | Electrical treatment of bronchial constriction |
EP1948301B8 (en) | 2005-11-10 | 2014-03-12 | ElectroCore LLC | Electrical stimulation treatment of bronchial constriction |
US20090234417A1 (en) * | 2005-11-10 | 2009-09-17 | Electrocore, Inc. | Methods And Apparatus For The Treatment Of Metabolic Disorders |
US20070106337A1 (en) * | 2005-11-10 | 2007-05-10 | Electrocore, Inc. | Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention |
US9037247B2 (en) | 2005-11-10 | 2015-05-19 | ElectroCore, LLC | Non-invasive treatment of bronchial constriction |
US20070142696A1 (en) | 2005-12-08 | 2007-06-21 | Ventrassist Pty Ltd | Implantable medical devices |
US20070149952A1 (en) * | 2005-12-28 | 2007-06-28 | Mike Bland | Systems and methods for characterizing a patient's propensity for a neurological event and for communicating with a pharmacological agent dispenser |
US7657310B2 (en) | 2006-01-26 | 2010-02-02 | Cyberonics, Inc. | Treatment of reproductive endocrine disorders by vagus nerve stimulation |
US7974697B2 (en) | 2006-01-26 | 2011-07-05 | Cyberonics, Inc. | Medical imaging feedback for an implantable medical device |
US7801601B2 (en) | 2006-01-27 | 2010-09-21 | Cyberonics, Inc. | Controlling neuromodulation using stimulus modalities |
AU2006337679A1 (en) | 2006-02-10 | 2007-08-16 | Electrocore, Inc. | Methods and apparatus for treating anaphylaxis using electrical modulation |
JP2009525806A (en) * | 2006-02-10 | 2009-07-16 | エレクトロコア、インコーポレイテッド | Electrical stimulation treatment for hypotension |
US20070287931A1 (en) * | 2006-02-14 | 2007-12-13 | Dilorenzo Daniel J | Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
CA2641821C (en) | 2006-02-16 | 2017-10-10 | Imthera Medical, Inc. | An rfid-based apparatus, system, and method for therapeutic treatment of a patient |
US20070225781A1 (en) * | 2006-03-21 | 2007-09-27 | Nidus Medical, Llc | Apparatus and methods for altering temperature in a region within the body |
JP5052596B2 (en) | 2006-03-29 | 2012-10-17 | ディグニティー ヘルス | Synchronization of vagus nerve stimulation by patient's cardiac cycle |
US20100057178A1 (en) * | 2006-04-18 | 2010-03-04 | Electrocore, Inc. | Methods and apparatus for spinal cord stimulation using expandable electrode |
US8209034B2 (en) * | 2008-12-18 | 2012-06-26 | Electrocore Llc | Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode |
US8401650B2 (en) * | 2008-04-10 | 2013-03-19 | Electrocore Llc | Methods and apparatus for electrical treatment using balloon and electrode |
US20090157138A1 (en) * | 2006-04-18 | 2009-06-18 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
US20080183237A1 (en) * | 2006-04-18 | 2008-07-31 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
US7869885B2 (en) * | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US7348805B2 (en) * | 2006-05-02 | 2008-03-25 | International Business Machines Corporation | Chip-to-chip digital transmission circuit delivering power over signal lines |
US8753334B2 (en) * | 2006-05-10 | 2014-06-17 | Covidien Ag | System and method for reducing leakage current in an electrosurgical generator |
US8185206B2 (en) * | 2006-05-17 | 2012-05-22 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US8295926B2 (en) | 2006-06-02 | 2012-10-23 | Advanced Neuromodulation Systems, Inc. | Dynamic nerve stimulation in combination with other eating disorder treatment modalities |
DE102006035547A1 (en) * | 2006-07-27 | 2008-02-21 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Transfer arrangement |
US8682445B2 (en) * | 2006-07-28 | 2014-03-25 | Cyberonics, Inc. | Patient management system for treating depression using an implantable medical device |
US8103341B2 (en) | 2006-08-25 | 2012-01-24 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
US8905999B2 (en) * | 2006-09-01 | 2014-12-09 | Cardiac Pacemakers, Inc. | Method and apparatus for endolymphatic drug delivery |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
WO2008058028A2 (en) * | 2006-11-03 | 2008-05-15 | Gep Technology, Inc. | Apparatus and methods for minimally invasive obesity treatment |
WO2008060633A2 (en) * | 2006-11-17 | 2008-05-22 | Stryker Development Llc | Enhancement of and continuous biasing of afferent nerves for treatment of obesity |
US7706875B2 (en) | 2007-01-25 | 2010-04-27 | Cyberonics, Inc. | Modulation of drug effects by vagus nerve stimulation |
US20080208074A1 (en) * | 2007-02-21 | 2008-08-28 | David Snyder | Methods and Systems for Characterizing and Generating a Patient-Specific Seizure Advisory System |
US20080262557A1 (en) * | 2007-04-19 | 2008-10-23 | Brown Stephen J | Obesity management system |
US7869884B2 (en) * | 2007-04-26 | 2011-01-11 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US7962214B2 (en) | 2007-04-26 | 2011-06-14 | Cyberonics, Inc. | Non-surgical device and methods for trans-esophageal vagus nerve stimulation |
US7904175B2 (en) | 2007-04-26 | 2011-03-08 | Cyberonics, Inc. | Trans-esophageal vagus nerve stimulation |
US7974701B2 (en) * | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
US20080281365A1 (en) * | 2007-05-09 | 2008-11-13 | Tweden Katherine S | Neural signal duty cycle |
US8249717B2 (en) | 2007-07-18 | 2012-08-21 | Cardiac Pacemakers, Inc. | Systems and methods for providing neural stimulation transitions |
US11376435B2 (en) | 2007-07-20 | 2022-07-05 | Boston Scientific Neuromodulation Corporation | System and method for shaped phased current delivery |
EP2586490B1 (en) | 2007-07-20 | 2016-02-24 | Boston Scientific Neuromodulation Corporation | Stimulation system to control neural recruitment order and clinical effect |
US20090118777A1 (en) * | 2007-08-09 | 2009-05-07 | Kobi Iki | Efferent and afferent splanchnic nerve stimulation |
WO2009048580A1 (en) | 2007-10-09 | 2009-04-16 | Imthera Medical, Inc. | Apparatus, system, and method for selective stimulation |
US7949397B1 (en) | 2007-10-29 | 2011-05-24 | Pacesetter, Inc. | Implantable medical device capable of depressing appetite to control obesity using stochastic resonance electrical stimulation |
EP2254462B1 (en) * | 2007-11-12 | 2015-05-20 | Daniel J. Dilorenzo | Apparatus for programming of autonomic neuromodulation for the treatment of obesity |
US9089707B2 (en) | 2008-07-02 | 2015-07-28 | The Board Of Regents, The University Of Texas System | Systems, methods and devices for paired plasticity |
US8457757B2 (en) * | 2007-11-26 | 2013-06-04 | Micro Transponder, Inc. | Implantable transponder systems and methods |
US9089703B2 (en) * | 2008-07-02 | 2015-07-28 | Microtransponder, Inc. | Methods for enhancing exposure therapy using vagus nerve stimulation |
US8165668B2 (en) | 2007-12-05 | 2012-04-24 | The Invention Science Fund I, Llc | Method for magnetic modulation of neural conduction |
US8233976B2 (en) | 2007-12-05 | 2012-07-31 | The Invention Science Fund I, Llc | System for transdermal chemical modulation of neural activity |
US8160695B2 (en) | 2007-12-05 | 2012-04-17 | The Invention Science Fund I, Llc | System for chemical modulation of neural activity |
US8195287B2 (en) | 2007-12-05 | 2012-06-05 | The Invention Science Fund I, Llc | Method for electrical modulation of neural conduction |
US8170659B2 (en) * | 2007-12-05 | 2012-05-01 | The Invention Science Fund I, Llc | Method for thermal modulation of neural activity |
US8165669B2 (en) | 2007-12-05 | 2012-04-24 | The Invention Science Fund I, Llc | System for magnetic modulation of neural conduction |
US8170658B2 (en) * | 2007-12-05 | 2012-05-01 | The Invention Science Fund I, Llc | System for electrical modulation of neural conduction |
US8180446B2 (en) | 2007-12-05 | 2012-05-15 | The Invention Science Fund I, Llc | Method and system for cyclical neural modulation based on activity state |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
EP2240239A4 (en) * | 2008-01-30 | 2013-11-27 | Great Lakes Biosciences Llc | Brain-related chronic pain disorder treatment method and apparatus |
US8538535B2 (en) | 2010-08-05 | 2013-09-17 | Rainbow Medical Ltd. | Enhancing perfusion by contraction |
US9005106B2 (en) | 2008-01-31 | 2015-04-14 | Enopace Biomedical Ltd | Intra-aortic electrical counterpulsation |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
US7925352B2 (en) | 2008-03-27 | 2011-04-12 | Synecor Llc | System and method for transvascularly stimulating contents of the carotid sheath |
US8543211B2 (en) | 2008-04-10 | 2013-09-24 | ElectroCore, LLC | Methods and apparatus for deep brain stimulation |
US8682449B2 (en) | 2008-04-10 | 2014-03-25 | ElectroCore, LLC | Methods and apparatus for transcranial stimulation |
US8204603B2 (en) * | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
EP4166107A1 (en) | 2008-05-09 | 2023-04-19 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US11554243B2 (en) | 2008-07-02 | 2023-01-17 | The Board Of Regents, The University Of Texas System | Methods for enhancing exposure therapy using pairing with vagus nerve stimulation |
US10213577B2 (en) | 2008-07-02 | 2019-02-26 | Microtransponder, Inc. | Methods for enhancing exposure therapy using pairing with vagus nerve stimulation |
WO2010006341A1 (en) | 2008-07-11 | 2010-01-14 | Gep Technology, Inc. | Apparatus and methods for minimally invasive obesity treatment |
AU2009302591B2 (en) | 2008-10-09 | 2014-08-07 | Imthera Medical, Inc. | Method of stimulating a hypoglossal nerve for controlling the position of a patient's tongue |
EP2346437B1 (en) * | 2008-10-10 | 2016-12-14 | Kirk Promotion LTD. | An accessory for an implant |
US8457747B2 (en) | 2008-10-20 | 2013-06-04 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8417344B2 (en) | 2008-10-24 | 2013-04-09 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US20100168603A1 (en) * | 2008-12-23 | 2010-07-01 | Himes David M | Brain state analysis based on select seizure onset characteristics and clinical manifestations |
US20100191304A1 (en) | 2009-01-23 | 2010-07-29 | Scott Timothy L | Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation |
US20100198281A1 (en) * | 2009-01-30 | 2010-08-05 | C.Y. Joseph Chang, MD, PA | Methods for treating disorders of perceptual integration by brain modulation |
US20100268297A1 (en) * | 2009-02-24 | 2010-10-21 | Hans Neisz | Duodenal Stimulation To Induce Satiety |
US9030169B2 (en) * | 2009-03-03 | 2015-05-12 | Robert Bosch Gmbh | Battery system and method for system state of charge determination |
WO2010101877A1 (en) * | 2009-03-03 | 2010-09-10 | Medtronic, Inc. | Electrical stimulation therapy to promote gastric distention for obesity management |
US10376696B2 (en) * | 2009-03-20 | 2019-08-13 | Electrocore, Inc. | Medical self-treatment using non-invasive vagus nerve stimulation |
CN102448365B (en) * | 2009-04-03 | 2016-02-10 | 内测公司 | Strengthen the feedback system of obstructive and other obesity process |
US8321030B2 (en) | 2009-04-20 | 2012-11-27 | Advanced Neuromodulation Systems, Inc. | Esophageal activity modulated obesity therapy |
US8239028B2 (en) * | 2009-04-24 | 2012-08-07 | Cyberonics, Inc. | Use of cardiac parameters in methods and systems for treating a chronic medical condition |
US8827912B2 (en) | 2009-04-24 | 2014-09-09 | Cyberonics, Inc. | Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters |
US8340772B2 (en) | 2009-05-08 | 2012-12-25 | Advanced Neuromodulation Systems, Inc. | Brown adipose tissue utilization through neuromodulation |
WO2010141481A1 (en) * | 2009-06-01 | 2010-12-09 | Autonomic Technologies, Inc. | Methods and devices for adrenal stimulation |
US9345878B2 (en) * | 2009-06-30 | 2016-05-24 | Boston Scientific Neuromodulation Corporation | System and method for compensating for shifting of neurostimulation leads in a patient |
US8346354B2 (en) * | 2009-07-28 | 2013-01-01 | The Invention Science Fund I, Llc | Determining a neuromodulation treatment regimen in response to contactlessly acquired information |
US8942817B2 (en) * | 2009-07-28 | 2015-01-27 | The Invention Science Fund I, Llc | Broadcasting a signal indicative of a disease, disorder, or symptom determined in response to contactlessly acquired information |
US8374701B2 (en) | 2009-07-28 | 2013-02-12 | The Invention Science Fund I, Llc | Stimulating a nervous system component of a mammal in response to contactlessly acquired information |
EP2480283A1 (en) * | 2009-09-21 | 2012-08-01 | Medtronic, Inc. | Waveforms for electrical stimulation therapy |
CN102639077B (en) | 2009-10-27 | 2015-05-13 | 赫莱拉公司 | Delivery devices with coolable energy emitting assemblies |
JP2013509943A (en) | 2009-11-10 | 2013-03-21 | イムセラ・メディカル・インコーポレーテッド | A system that adjusts the position of the patient's tongue by stimulating the hypoglossal nerve |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
EP2498705B1 (en) | 2009-11-11 | 2014-10-15 | Holaira, Inc. | Device for treating tissue and controlling stenosis |
WO2011059570A1 (en) * | 2009-11-12 | 2011-05-19 | Cardiac Pacemakers, Inc. | Fiber reinforced silicone for cardiac and neurostimulation leads |
US20110219325A1 (en) * | 2010-03-02 | 2011-09-08 | Himes David M | Displaying and Manipulating Brain Function Data Including Enhanced Data Scrolling Functionality |
US20110218820A1 (en) * | 2010-03-02 | 2011-09-08 | Himes David M | Displaying and Manipulating Brain Function Data Including Filtering of Annotations |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8594806B2 (en) | 2010-04-30 | 2013-11-26 | Cyberonics, Inc. | Recharging and communication lead for an implantable device |
US8679009B2 (en) | 2010-06-15 | 2014-03-25 | Flint Hills Scientific, Llc | Systems approach to comorbidity assessment |
US9579504B2 (en) | 2010-06-24 | 2017-02-28 | Robert Bosch Llc | Personalized patient controlled neurostimulation system |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8805519B2 (en) | 2010-09-30 | 2014-08-12 | Nevro Corporation | Systems and methods for detecting intrathecal penetration |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
WO2012045030A2 (en) | 2010-10-01 | 2012-04-05 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9821159B2 (en) | 2010-11-16 | 2017-11-21 | The Board Of Trustees Of The Leland Stanford Junior University | Stimulation devices and methods |
AU2011328900B2 (en) | 2010-11-16 | 2015-03-19 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for treatment of dry eye |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
EP2691149B1 (en) * | 2011-03-28 | 2019-02-27 | Med-El Elektromedizinische Geraete GmbH | System for treating apnea using evoked swallow |
US9498162B2 (en) | 2011-04-25 | 2016-11-22 | Cyberonics, Inc. | Identifying seizures using heart data from two or more windows |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US11413458B2 (en) | 2011-05-19 | 2022-08-16 | Neuros Medical, Inc. | Nerve cuff electrode for neuromodulation in large human nerve trunks |
GB201113602D0 (en) * | 2011-08-08 | 2011-09-21 | Queen Mary & Westfield College | Selective nerve stimulation for relief of abdominal pain |
WO2013035092A2 (en) | 2011-09-09 | 2013-03-14 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US9549677B2 (en) | 2011-10-14 | 2017-01-24 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm |
JP6002931B2 (en) * | 2011-12-07 | 2016-10-05 | パナソニックIpマネジメント株式会社 | Car charger |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US9343923B2 (en) | 2012-08-23 | 2016-05-17 | Cyberonics, Inc. | Implantable medical device with backscatter signal based communication |
US9935498B2 (en) | 2012-09-25 | 2018-04-03 | Cyberonics, Inc. | Communication efficiency with an implantable medical device using a circulator and a backscatter signal |
US9455596B2 (en) | 2012-10-16 | 2016-09-27 | Ford Global Technologies, Llc | System and method for reducing interference between wireless charging and amplitude modulation reception |
US9124124B2 (en) | 2012-10-16 | 2015-09-01 | Ford Global Technologies, Llc | System and method for reducing interference during wireless charging |
US9148033B2 (en) | 2012-12-21 | 2015-09-29 | Ford Global Technologies, Llc | System of securing a wide-range of devices during wireless charging |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US20140203770A1 (en) * | 2013-01-24 | 2014-07-24 | Ford Global Technologies, Llc | System and method for indicating charging status during wireless charging |
US9472963B2 (en) | 2013-02-06 | 2016-10-18 | Ford Global Technologies, Llc | Device for wireless charging having a plurality of wireless charging protocols |
US9174053B2 (en) | 2013-03-08 | 2015-11-03 | Boston Scientific Neuromodulation Corporation | Neuromodulation using modulated pulse train |
WO2014138709A1 (en) | 2013-03-08 | 2014-09-12 | Oculeve, Inc. | Devices and methods for treating dry eye in animals |
US9717627B2 (en) | 2013-03-12 | 2017-08-01 | Oculeve, Inc. | Implant delivery devices, systems, and methods |
US9446241B2 (en) | 2013-03-15 | 2016-09-20 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US9370660B2 (en) | 2013-03-29 | 2016-06-21 | Rainbow Medical Ltd. | Independently-controlled bidirectional nerve stimulation |
AU2014253754C1 (en) | 2013-04-19 | 2015-07-30 | Oculeve, Inc. | Nasal stimulation devices and methods |
AU2014296323B2 (en) | 2013-07-29 | 2019-04-04 | Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
WO2015068167A2 (en) | 2013-11-06 | 2015-05-14 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
CN106470673B (en) | 2014-02-25 | 2020-01-31 | 奥库利维公司 | Polymer formulations for nasolacrimal stimulation |
US9782584B2 (en) | 2014-06-13 | 2017-10-10 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US10130809B2 (en) | 2014-06-13 | 2018-11-20 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
US10940318B2 (en) * | 2014-06-17 | 2021-03-09 | Morton M. Mower | Method and apparatus for electrical current therapy of biological tissue |
WO2016004230A1 (en) | 2014-07-03 | 2016-01-07 | Boston Scientific Neuromodulation Corporation | Neurostimulation system with flexible patterning and waveforms |
WO2016015025A1 (en) | 2014-07-25 | 2016-01-28 | Oculeve, Inc. | Stimulation patterns for treating dry eye |
WO2016025915A1 (en) | 2014-08-15 | 2016-02-18 | Axonics Modulation Technologies, Inc. | Integrated electromyographic clinician programmer for use with an implantable neurostimulator |
CA2958199C (en) | 2014-08-15 | 2023-03-07 | Axonics Modulation Technologies, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
WO2016025912A1 (en) | 2014-08-15 | 2016-02-18 | Axonics Modulation Technologies, Inc. | Systems and methods for neurostimulation electrode configurations based on neural localization |
CN107148294B (en) | 2014-08-15 | 2021-08-24 | 艾克索尼克斯股份有限公司 | External pulse generator apparatus and associated method for experimental nerve stimulation |
EP3180070B1 (en) | 2014-08-15 | 2021-04-14 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indications |
US10207108B2 (en) | 2014-10-22 | 2019-02-19 | Oculeve, Inc. | Implantable nasal stimulator systems and methods |
AU2015335776B2 (en) | 2014-10-22 | 2020-09-03 | Oculeve, Inc. | Stimulation devices and methods for treating dry eye |
CA2965514A1 (en) | 2014-10-22 | 2016-04-28 | Oculeve, Inc. | Contact lens for increasing tear production |
US9597507B2 (en) | 2014-10-31 | 2017-03-21 | Medtronic, Inc. | Paired stimulation pulses based on sensed compound action potential |
AU2016205049B2 (en) | 2015-01-09 | 2020-05-14 | Axonics Modulation Technologies, Inc. | Improved antenna and methods of use for an implantable nerve stimulator |
AU2016205047B2 (en) | 2015-01-09 | 2020-07-02 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
ES2750101T3 (en) | 2015-01-09 | 2020-03-24 | Axonics Modulation Tech Inc | Fixation devices and usage procedures associated with a nerve stimulation loading device |
WO2016191055A1 (en) | 2015-05-28 | 2016-12-01 | Boston Scientific Neuromodulation Corporation | Neuromodulation using stochastically-modulated stimulation parameters |
JP6946261B2 (en) | 2015-07-10 | 2021-10-06 | アクソニクス インコーポレイテッド | Implantable nerve stimulators and methods with internal electronics without ASICs |
WO2017041138A1 (en) * | 2015-09-08 | 2017-03-16 | D'urso Paul S | Systems and methods of neuromodulation |
US10342975B2 (en) * | 2015-09-14 | 2019-07-09 | Cochlear Limited | Micro-charge stimulation |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
US10426958B2 (en) | 2015-12-04 | 2019-10-01 | Oculeve, Inc. | Intranasal stimulation for enhanced release of ocular mucins and other tear proteins |
AU2017212551B2 (en) | 2016-01-29 | 2021-05-27 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
CN108697897B (en) | 2016-02-12 | 2023-01-13 | 艾克索尼克斯股份有限公司 | External pulse generator apparatus for testing neural stimulation and associated methods |
US10252048B2 (en) | 2016-02-19 | 2019-04-09 | Oculeve, Inc. | Nasal stimulation for rhinitis, nasal congestion, and ocular allergies |
AU2017260237A1 (en) | 2016-05-02 | 2018-11-22 | Oculeve, Inc. | Intranasal stimulation for treatment of meibomian gland disease and blepharitis |
US11471692B2 (en) | 2016-06-15 | 2022-10-18 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for adjusting charging power based on determined position using at least one sense coil |
US11129996B2 (en) | 2016-06-15 | 2021-09-28 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil |
US10363426B2 (en) | 2016-06-15 | 2019-07-30 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device for determining position using phase angle or a plurality of parameters as determined from at least one sense coil |
US10226637B2 (en) | 2016-06-15 | 2019-03-12 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having alignment and centering capabilities |
US10342984B2 (en) | 2016-06-15 | 2019-07-09 | Boston Scientific Neuromodulation Corporation | Split coil for uniform magnetic field generation from an external charger for an implantable medical device |
US10603501B2 (en) | 2016-06-15 | 2020-03-31 | Boston Scientific Neuromodulation Corporation | External charger for an implantable medical device having at least one sense coil concentric with a charging coil for determining position |
ES2910203T3 (en) * | 2016-08-26 | 2022-05-11 | Univ California | Treatment of cardiac dysfunction |
US10792491B2 (en) | 2016-11-23 | 2020-10-06 | Boston Scientific Neuromodulation Corporation | Pulsed passive charge recovery circuitry for an implantable medical device |
RU2019118600A (en) | 2016-12-02 | 2021-01-11 | Окулив, Инк. | APPARATUS AND METHOD FOR MAKING DRY EYE SYNDROME PREDICTION AND TREATMENT RECOMMENDATIONS |
EP3551280B1 (en) | 2016-12-12 | 2023-08-09 | The Regents of the University of California | Implantable and non-invasive stimulators for gastrointestinal therapeutics |
AU2018231031B2 (en) | 2017-03-09 | 2023-11-02 | Nevro Corp. | Paddle leads and delivery tools, and associated systems and methods |
BR112019023985A2 (en) | 2017-05-17 | 2020-06-09 | Massachusetts Inst Technology | self-correction system and related components and methods |
US11541015B2 (en) | 2017-05-17 | 2023-01-03 | Massachusetts Institute Of Technology | Self-righting systems, methods, and related components |
JP7279048B2 (en) | 2017-12-13 | 2023-05-22 | ニューロス・メディカル・インコーポレイティッド | Nerve cuff deployment device |
CA3090810A1 (en) | 2018-02-22 | 2019-08-29 | Axonics Modulation Technologies, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
AU2019242906A1 (en) | 2018-03-29 | 2020-10-15 | Nevro Corp. | Leads having sidewall openings, and associated systems and methods |
CN112188915A (en) | 2018-04-09 | 2021-01-05 | 纽若斯医疗公司 | Device and method for setting an electric dose |
KR102187646B1 (en) * | 2018-04-24 | 2020-12-07 | 고려대학교 산학협력단 | Stimulator for digestive organ |
WO2019222570A1 (en) | 2018-05-17 | 2019-11-21 | Massachusetts Institute Of Technology | Systems for electrical stimulation |
CN113423462A (en) * | 2018-10-26 | 2021-09-21 | 丹拿·凯米 | Device and method for treating gastrointestinal tract diseases through oropharynx minimally invasive |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
US11771829B2 (en) | 2019-02-01 | 2023-10-03 | Massachusetts Institute Of Technology | Systems and methods for liquid injection |
US11642537B2 (en) | 2019-03-11 | 2023-05-09 | Axonics, Inc. | Charging device with off-center coil |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
WO2020242900A1 (en) | 2019-05-24 | 2020-12-03 | Axonics Modulation Technologies, Inc. | Trainer device for a neurostimulator programmer and associated methods of use with a neurostimulation system |
US11541216B2 (en) | 2019-11-21 | 2023-01-03 | Massachusetts Institute Of Technology | Methods for manufacturing tissue interfacing components |
US11878172B2 (en) | 2020-02-11 | 2024-01-23 | Neuros Medical, Inc. | System and method for quantifying qualitative patient-reported data sets |
PL242569B1 (en) * | 2020-03-04 | 2023-03-13 | Univ Medyczny Im Piastow Slaskich We Wroclawiu | Wireless electrostimulating applicator and method of the determination of acupuncture points |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796221A (en) * | 1971-07-07 | 1974-03-12 | N Hagfors | Apparatus for delivering electrical stimulation energy to body-implanted apparatus with signal-receiving means |
US3942535A (en) * | 1973-09-27 | 1976-03-09 | G. D. Searle & Co. | Rechargeable tissue stimulating system |
US4573481A (en) * | 1984-06-25 | 1986-03-04 | Huntington Institute Of Applied Research | Implantable electrode array |
US4702254A (en) * | 1983-09-14 | 1987-10-27 | Jacob Zabara | Neurocybernetic prosthesis |
US4867164A (en) * | 1983-09-14 | 1989-09-19 | Jacob Zabara | Neurocybernetic prosthesis |
US5025807A (en) * | 1983-09-14 | 1991-06-25 | Jacob Zabara | Neurocybernetic prosthesis |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5263480A (en) * | 1991-02-01 | 1993-11-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5299569A (en) * | 1991-05-03 | 1994-04-05 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by nerve stimulation |
US5405367A (en) * | 1991-12-18 | 1995-04-11 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5807397A (en) * | 1995-01-04 | 1998-09-15 | Plexus, Inc. | Implantable stimulator with replenishable, high value capacitive power source and method therefor |
US5978713A (en) * | 1998-02-06 | 1999-11-02 | Intermedics Inc. | Implantable device with digital waveform telemetry |
US5997476A (en) * | 1997-03-28 | 1999-12-07 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US6067474A (en) * | 1997-08-01 | 2000-05-23 | Advanced Bionics Corporation | Implantable device with improved battery recharging and powering configuration |
US6104955A (en) * | 1997-12-15 | 2000-08-15 | Medtronic, Inc. | Method and apparatus for electrical stimulation of the gastrointestinal tract |
US6205359B1 (en) * | 1998-10-26 | 2001-03-20 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US6270457B1 (en) * | 1999-06-03 | 2001-08-07 | Cardiac Intelligence Corp. | System and method for automated collection and analysis of regularly retrieved patient information for remote patient care |
US6356788B2 (en) * | 1998-10-26 | 2002-03-12 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US6418346B1 (en) * | 1999-12-14 | 2002-07-09 | Medtronic, Inc. | Apparatus and method for remote therapy and diagnosis in medical devices via interface systems |
US20020099419A1 (en) * | 2001-01-25 | 2002-07-25 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
US6443891B1 (en) * | 2000-09-20 | 2002-09-03 | Medtronic, Inc. | Telemetry modulation protocol system for medical devices |
US20020198572A1 (en) * | 1999-05-29 | 2002-12-26 | Medtronic, Inc. | Peripheral nerve stimulation apparatus |
US6505077B1 (en) * | 2000-06-19 | 2003-01-07 | Medtronic, Inc. | Implantable medical device with external recharging coil electrical connection |
US20030036773A1 (en) * | 2001-08-03 | 2003-02-20 | Whitehurst Todd K. | Systems and methods for treatment of coronary artery disease |
US20030045914A1 (en) * | 2001-08-31 | 2003-03-06 | Biocontrol Medical Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US6553263B1 (en) * | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6591137B1 (en) * | 2000-11-09 | 2003-07-08 | Neuropace, Inc. | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US6611715B1 (en) * | 1998-10-26 | 2003-08-26 | Birinder R. Boveja | Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator |
US6615084B1 (en) * | 2000-11-15 | 2003-09-02 | Transneuronix, Inc. | Process for electrostimulation treatment of morbid obesity |
US6622041B2 (en) * | 2001-08-21 | 2003-09-16 | Cyberonics, Inc. | Treatment of congestive heart failure and autonomic cardiovascular drive disorders |
US20030212440A1 (en) * | 2002-05-09 | 2003-11-13 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US6708064B2 (en) * | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
US6735475B1 (en) * | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
US20040167583A1 (en) * | 2003-02-03 | 2004-08-26 | Enteromedics, Inc. | Electrode band apparatus and method |
US20050004621A1 (en) * | 2002-05-09 | 2005-01-06 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external componants, to provide therapy for neurological and neuropsychiatric disorders |
US20050143789A1 (en) * | 2001-01-30 | 2005-06-30 | Whitehurst Todd K. | Methods and systems for stimulating a peripheral nerve to treat chronic pain |
US20050154419A1 (en) * | 2001-01-30 | 2005-07-14 | Whitehurst Todd K. | Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4134408A (en) * | 1976-11-12 | 1979-01-16 | Research Corporation | Cardiac pacer energy conservation system |
US5188104A (en) * | 1991-02-01 | 1993-02-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5304206A (en) * | 1991-11-18 | 1994-04-19 | Cyberonics, Inc. | Activation techniques for implantable medical device |
IT1260485B (en) * | 1992-05-29 | 1996-04-09 | PROCEDURE AND DEVICE FOR THE TREATMENT OF THE OBESITY OF A PATIENT | |
US5314457A (en) * | 1993-04-08 | 1994-05-24 | Jeutter Dean C | Regenerative electrical |
US5540730A (en) * | 1995-06-06 | 1996-07-30 | Cyberonics, Inc. | Treatment of motility disorders by nerve stimulation |
US6480743B1 (en) * | 2000-04-05 | 2002-11-12 | Neuropace, Inc. | System and method for adaptive brain stimulation |
US5690691A (en) * | 1996-05-08 | 1997-11-25 | The Center For Innovative Technology | Gastro-intestinal pacemaker having phased multi-point stimulation |
US5733313A (en) * | 1996-08-01 | 1998-03-31 | Exonix Corporation | RF coupled, implantable medical device with rechargeable back-up power source |
US5713939A (en) * | 1996-09-16 | 1998-02-03 | Sulzer Intermedics Inc. | Data communication system for control of transcutaneous energy transmission to an implantable medical device |
US5749909A (en) * | 1996-11-07 | 1998-05-12 | Sulzer Intermedics Inc. | Transcutaneous energy coupling using piezoelectric device |
US5861014A (en) * | 1997-04-30 | 1999-01-19 | Medtronic, Inc. | Method and apparatus for sensing a stimulating gastrointestinal tract on-demand |
US6321124B1 (en) * | 1997-05-28 | 2001-11-20 | Transneuronix, Inc. | Implant device for electrostimulation and/or monitoring of endo-abdominal cavity tissue |
US5928272A (en) * | 1998-05-02 | 1999-07-27 | Cyberonics, Inc. | Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity |
US6941171B2 (en) * | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US7599736B2 (en) * | 2001-07-23 | 2009-10-06 | Dilorenzo Biomedical, Llc | Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease |
US20050137644A1 (en) * | 1998-10-26 | 2005-06-23 | Boveja Birinder R. | Method and system for vagal blocking and/or vagal stimulation to provide therapy for obesity and other gastrointestinal disorders |
US6853862B1 (en) * | 1999-12-03 | 2005-02-08 | Medtronic, Inc. | Gastroelectric stimulation for influencing pancreatic secretions |
US6650943B1 (en) * | 2000-04-07 | 2003-11-18 | Advanced Bionics Corporation | Fully implantable neurostimulator for cavernous nerve stimulation as a therapy for erectile dysfunction and other sexual dysfunction |
US6609025B2 (en) * | 2001-01-02 | 2003-08-19 | Cyberonics, Inc. | Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation |
US6662052B1 (en) * | 2001-04-19 | 2003-12-09 | Nac Technologies Inc. | Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites |
US6678561B2 (en) * | 2001-05-23 | 2004-01-13 | Surgical Development Ag | Heartburn and reflux disease treatment apparatus |
US6760626B1 (en) * | 2001-08-29 | 2004-07-06 | Birinder R. Boveja | Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system |
US20030144708A1 (en) * | 2002-01-29 | 2003-07-31 | Starkebaum Warren L. | Methods and apparatus for retarding stomach emptying for treatment of eating disorders |
US7236822B2 (en) * | 2002-03-22 | 2007-06-26 | Leptos Biomedical, Inc. | Wireless electric modulation of sympathetic nervous system |
US7239912B2 (en) * | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
US20040172084A1 (en) * | 2003-02-03 | 2004-09-02 | Knudson Mark B. | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
US7844338B2 (en) * | 2003-02-03 | 2010-11-30 | Enteromedics Inc. | High frequency obesity treatment |
US7613515B2 (en) * | 2003-02-03 | 2009-11-03 | Enteromedics Inc. | High frequency vagal blockage therapy |
US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US7720546B2 (en) * | 2004-09-30 | 2010-05-18 | Codman Neuro Sciences Sárl | Dual power supply switching circuitry for use in a closed system |
-
2004
- 2004-05-08 US US10/841,995 patent/US7076307B2/en not_active Expired - Lifetime
-
2005
- 2005-01-13 US US11/035,374 patent/US20050143787A1/en not_active Abandoned
- 2005-01-31 US US11/047,232 patent/US20050131486A1/en not_active Abandoned
- 2005-01-31 US US11/047,137 patent/US20050149146A1/en not_active Abandoned
- 2005-01-31 US US11/047,233 patent/US20050131487A1/en not_active Abandoned
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3796221A (en) * | 1971-07-07 | 1974-03-12 | N Hagfors | Apparatus for delivering electrical stimulation energy to body-implanted apparatus with signal-receiving means |
US3942535A (en) * | 1973-09-27 | 1976-03-09 | G. D. Searle & Co. | Rechargeable tissue stimulating system |
US4702254A (en) * | 1983-09-14 | 1987-10-27 | Jacob Zabara | Neurocybernetic prosthesis |
US4867164A (en) * | 1983-09-14 | 1989-09-19 | Jacob Zabara | Neurocybernetic prosthesis |
US5025807A (en) * | 1983-09-14 | 1991-06-25 | Jacob Zabara | Neurocybernetic prosthesis |
US4573481A (en) * | 1984-06-25 | 1986-03-04 | Huntington Institute Of Applied Research | Implantable electrode array |
US5263480A (en) * | 1991-02-01 | 1993-11-23 | Cyberonics, Inc. | Treatment of eating disorders by nerve stimulation |
US5299569A (en) * | 1991-05-03 | 1994-04-05 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by nerve stimulation |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5405367A (en) * | 1991-12-18 | 1995-04-11 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5807397A (en) * | 1995-01-04 | 1998-09-15 | Plexus, Inc. | Implantable stimulator with replenishable, high value capacitive power source and method therefor |
US5997476A (en) * | 1997-03-28 | 1999-12-07 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US6067474A (en) * | 1997-08-01 | 2000-05-23 | Advanced Bionics Corporation | Implantable device with improved battery recharging and powering configuration |
US6104955A (en) * | 1997-12-15 | 2000-08-15 | Medtronic, Inc. | Method and apparatus for electrical stimulation of the gastrointestinal tract |
US5978713A (en) * | 1998-02-06 | 1999-11-02 | Intermedics Inc. | Implantable device with digital waveform telemetry |
US6205359B1 (en) * | 1998-10-26 | 2001-03-20 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US6356788B2 (en) * | 1998-10-26 | 2002-03-12 | Birinder Bob Boveja | Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator |
US6611715B1 (en) * | 1998-10-26 | 2003-08-26 | Birinder R. Boveja | Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator |
US6505075B1 (en) * | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US20020198572A1 (en) * | 1999-05-29 | 2002-12-26 | Medtronic, Inc. | Peripheral nerve stimulation apparatus |
US6270457B1 (en) * | 1999-06-03 | 2001-08-07 | Cardiac Intelligence Corp. | System and method for automated collection and analysis of regularly retrieved patient information for remote patient care |
US6553263B1 (en) * | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6418346B1 (en) * | 1999-12-14 | 2002-07-09 | Medtronic, Inc. | Apparatus and method for remote therapy and diagnosis in medical devices via interface systems |
US6708064B2 (en) * | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
US6505077B1 (en) * | 2000-06-19 | 2003-01-07 | Medtronic, Inc. | Implantable medical device with external recharging coil electrical connection |
US6443891B1 (en) * | 2000-09-20 | 2002-09-03 | Medtronic, Inc. | Telemetry modulation protocol system for medical devices |
US6591137B1 (en) * | 2000-11-09 | 2003-07-08 | Neuropace, Inc. | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US6615084B1 (en) * | 2000-11-15 | 2003-09-02 | Transneuronix, Inc. | Process for electrostimulation treatment of morbid obesity |
US20020099419A1 (en) * | 2001-01-25 | 2002-07-25 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
US20050143789A1 (en) * | 2001-01-30 | 2005-06-30 | Whitehurst Todd K. | Methods and systems for stimulating a peripheral nerve to treat chronic pain |
US6735475B1 (en) * | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
US20050154419A1 (en) * | 2001-01-30 | 2005-07-14 | Whitehurst Todd K. | Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition |
US20030036773A1 (en) * | 2001-08-03 | 2003-02-20 | Whitehurst Todd K. | Systems and methods for treatment of coronary artery disease |
US6622041B2 (en) * | 2001-08-21 | 2003-09-16 | Cyberonics, Inc. | Treatment of congestive heart failure and autonomic cardiovascular drive disorders |
US20030045914A1 (en) * | 2001-08-31 | 2003-03-06 | Biocontrol Medical Ltd. | Treatment of disorders by unidirectional nerve stimulation |
US20030212440A1 (en) * | 2002-05-09 | 2003-11-13 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system |
US20050004621A1 (en) * | 2002-05-09 | 2005-01-06 | Boveja Birinder R. | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external componants, to provide therapy for neurological and neuropsychiatric disorders |
US7076307B2 (en) * | 2002-05-09 | 2006-07-11 | Boveja Birinder R | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
US20040167583A1 (en) * | 2003-02-03 | 2004-08-26 | Enteromedics, Inc. | Electrode band apparatus and method |
Cited By (471)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9381349B2 (en) | 1997-07-21 | 2016-07-05 | Bhl Patent Holdings Llc | Apparatus for treating cerebral neurovascular disorders including headaches by neural stimulation |
US9302096B2 (en) | 1997-07-21 | 2016-04-05 | Bruce H. Levin | Apparatus for treating cerebral neurovascular disorders including headaches by neural stimulation |
US20100137940A1 (en) * | 1997-07-21 | 2010-06-03 | Levin Bruce H | Method for Directed Intranasal Administration of a Composition |
US8224438B2 (en) | 1997-07-21 | 2012-07-17 | Levin Bruce H | Method for directed intranasal administration of a composition |
US7747325B2 (en) | 1998-08-05 | 2010-06-29 | Neurovista Corporation | Systems and methods for monitoring a patient's neurological disease state |
US7324851B1 (en) | 1998-08-05 | 2008-01-29 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
US9375573B2 (en) | 1998-08-05 | 2016-06-28 | Cyberonics, Inc. | Systems and methods for monitoring a patient's neurological disease state |
US8762065B2 (en) | 1998-08-05 | 2014-06-24 | Cyberonics, Inc. | Closed-loop feedback-driven neuromodulation |
US7623928B2 (en) | 1998-08-05 | 2009-11-24 | Neurovista Corporation | Controlling a subject's susceptibility to a seizure |
US9320900B2 (en) | 1998-08-05 | 2016-04-26 | Cyberonics, Inc. | Methods and systems for determining subject-specific parameters for a neuromodulation therapy |
US7209787B2 (en) | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US7403820B2 (en) | 1998-08-05 | 2008-07-22 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
US9421373B2 (en) | 1998-08-05 | 2016-08-23 | Cyberonics, Inc. | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US9415222B2 (en) | 1998-08-05 | 2016-08-16 | Cyberonics, Inc. | Monitoring an epilepsy disease state with a supervisory module |
US7853329B2 (en) | 1998-08-05 | 2010-12-14 | Neurovista Corporation | Monitoring efficacy of neural modulation therapy |
US9113801B2 (en) | 1998-08-05 | 2015-08-25 | Cyberonics, Inc. | Methods and systems for continuous EEG monitoring |
US9042988B2 (en) | 1998-08-05 | 2015-05-26 | Cyberonics, Inc. | Closed-loop vagus nerve stimulation |
US7277758B2 (en) | 1998-08-05 | 2007-10-02 | Neurovista Corporation | Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder |
US8781597B2 (en) | 1998-08-05 | 2014-07-15 | Cyberonics, Inc. | Systems for monitoring a patient's neurological disease state |
US7930035B2 (en) | 1998-08-05 | 2011-04-19 | Neurovista Corporation | Providing output indicative of subject's disease state |
US7242984B2 (en) | 1998-08-05 | 2007-07-10 | Neurovista Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
US7231254B2 (en) | 1998-08-05 | 2007-06-12 | Bioneuronics Corporation | Closed-loop feedback-driven neuromodulation |
US10166395B2 (en) | 2000-05-23 | 2019-01-01 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US8914114B2 (en) | 2000-05-23 | 2014-12-16 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US9987492B2 (en) | 2000-05-23 | 2018-06-05 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US10561846B2 (en) | 2000-05-23 | 2020-02-18 | The Feinstein Institutes For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US7493171B1 (en) * | 2000-11-21 | 2009-02-17 | Boston Scientific Neuromodulation Corp. | Treatment of pathologic craving and aversion syndromes and eating disorders by electrical brain stimulation and/or drug infusion |
US20050149146A1 (en) * | 2002-05-09 | 2005-07-07 | Boveja Birinder R. | Method and system to provide therapy for obesity and other medical disorders, by providing electrical pules to symapthetic nerves or vagal nerve(s) with rechargeable implanted pulse generator |
US8204591B2 (en) | 2002-05-23 | 2012-06-19 | Bio Control Medical (B.C.M.) Ltd. | Techniques for prevention of atrial fibrillation |
US20070179543A1 (en) * | 2002-05-23 | 2007-08-02 | Tamir Ben-David | Techniques for prevention of atrial fibrillation |
US8956295B2 (en) | 2002-12-04 | 2015-02-17 | Cardiac Pacemakers, Inc. | Sleep detection using an adjustable threshold |
US8535222B2 (en) | 2002-12-04 | 2013-09-17 | Cardiac Pacemakers, Inc. | Sleep detection using an adjustable threshold |
US9162062B2 (en) | 2003-02-03 | 2015-10-20 | Enteromedics Inc. | Controlled vagal blockage therapy |
US20060229685A1 (en) * | 2003-02-03 | 2006-10-12 | Knudson Mark B | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
US20070142870A1 (en) * | 2003-02-03 | 2007-06-21 | Enteromedics, Inc. | Irritable bowel syndrome treatment |
US20040172084A1 (en) * | 2003-02-03 | 2004-09-02 | Knudson Mark B. | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
US8369952B2 (en) | 2003-02-03 | 2013-02-05 | Enteromedics, Inc. | Bulimia treatment |
US20110034968A1 (en) * | 2003-02-03 | 2011-02-10 | Enteromedics Inc. | Controlled vagal blockage therapy |
US20070135857A1 (en) * | 2003-02-03 | 2007-06-14 | Enteromedics, Inc. | GI inflammatory disease treatment |
US20070135858A1 (en) * | 2003-02-03 | 2007-06-14 | Enteromedics, Inc. | Pancreatitis treatment |
US7613515B2 (en) | 2003-02-03 | 2009-11-03 | Enteromedics Inc. | High frequency vagal blockage therapy |
US20040167583A1 (en) * | 2003-02-03 | 2004-08-26 | Enteromedics, Inc. | Electrode band apparatus and method |
US7986995B2 (en) | 2003-02-03 | 2011-07-26 | Enteromedics Inc. | Bulimia treatment |
US20040172086A1 (en) * | 2003-02-03 | 2004-09-02 | Beta Medical, Inc. | Nerve conduction block treatment |
US8538542B2 (en) | 2003-02-03 | 2013-09-17 | Enteromedics Inc. | Nerve stimulation and blocking for treatment of gastrointestinal disorders |
US20080021512A1 (en) * | 2003-02-03 | 2008-01-24 | Enteromedics Inc. | Nerve stimulation and blocking for treatment of gastrointestinal disorders |
US20070135856A1 (en) * | 2003-02-03 | 2007-06-14 | Enteromedics, Inc. | Bulimia treatment |
US7844338B2 (en) | 2003-02-03 | 2010-11-30 | Enteromedics Inc. | High frequency obesity treatment |
US7167750B2 (en) | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
US9586046B2 (en) | 2003-02-03 | 2017-03-07 | Enteromedics, Inc. | Electrode band system and methods of using the system to treat obesity |
US9174040B2 (en) | 2003-02-03 | 2015-11-03 | Enteromedics Inc. | Nerve stimulation and blocking for treatment of gastrointestinal disorders |
US7630769B2 (en) | 2003-02-03 | 2009-12-08 | Enteromedics Inc. | GI inflammatory disease treatment |
US8010204B2 (en) | 2003-02-03 | 2011-08-30 | Enteromedics Inc. | Nerve blocking for treatment of gastrointestinal disorders |
US8862233B2 (en) | 2003-02-03 | 2014-10-14 | Enteromedics Inc. | Electrode band system and methods of using the system to treat obesity |
US8046085B2 (en) | 2003-02-03 | 2011-10-25 | Enteromedics Inc. | Controlled vagal blockage therapy |
US20050131485A1 (en) * | 2003-02-03 | 2005-06-16 | Enteromedics, Inc. | High frequency vagal blockage therapy |
US20040172088A1 (en) * | 2003-02-03 | 2004-09-02 | Enteromedics, Inc. | Intraluminal electrode apparatus and method |
US20040172085A1 (en) * | 2003-02-03 | 2004-09-02 | Beta Medical, Inc. | Nerve stimulation and conduction block therapy |
US8538533B2 (en) | 2003-02-03 | 2013-09-17 | Enteromedics Inc. | Controlled vagal blockage therapy |
US7444183B2 (en) | 2003-02-03 | 2008-10-28 | Enteromedics, Inc. | Intraluminal electrode apparatus and method |
US7729771B2 (en) | 2003-02-03 | 2010-06-01 | Enteromedics Inc. | Nerve stimulation and blocking for treatment of gastrointestinal disorders |
US7720540B2 (en) | 2003-02-03 | 2010-05-18 | Enteromedics, Inc. | Pancreatitis treatment |
US7693577B2 (en) | 2003-02-03 | 2010-04-06 | Enteromedics Inc. | Irritable bowel syndrome treatment |
US20050038484A1 (en) * | 2003-02-03 | 2005-02-17 | Enteromedics, Inc. | Controlled vagal blockage therapy |
US9682233B2 (en) | 2003-02-03 | 2017-06-20 | Enteromedics Inc. | Nerve stimulation and blocking for treatment of gastrointestinal disorders |
US7489969B2 (en) | 2003-02-03 | 2009-02-10 | Enteromedics Inc. | Vagal down-regulation obesity treatment |
US20040176812A1 (en) * | 2003-02-03 | 2004-09-09 | Beta Medical, Inc. | Enteric rhythm management |
US8002553B2 (en) | 2003-08-18 | 2011-08-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
US8915741B2 (en) | 2003-08-18 | 2014-12-23 | Cardiac Pacemakers, Inc. | Sleep quality data collection and evaluation |
US7787946B2 (en) | 2003-08-18 | 2010-08-31 | Cardiac Pacemakers, Inc. | Patient monitoring, diagnosis, and/or therapy systems and methods |
US9014819B2 (en) | 2003-09-18 | 2015-04-21 | Cardiac Pacemakers, Inc. | Autonomic arousal detection system and method |
US8657756B2 (en) | 2003-09-18 | 2014-02-25 | Cardiac Pacemakers, Inc. | Implantable device employing movement sensing for detecting sleep-related disorders |
US8606356B2 (en) | 2003-09-18 | 2013-12-10 | Cardiac Pacemakers, Inc. | Autonomic arousal detection system and method |
US7887493B2 (en) | 2003-09-18 | 2011-02-15 | Cardiac Pacemakers, Inc. | Implantable device employing movement sensing for detecting sleep-related disorders |
US20050070970A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Movement disorder stimulation with neural block |
US20050070974A1 (en) * | 2003-09-29 | 2005-03-31 | Knudson Mark B. | Obesity and eating disorder stimulation treatment with neural block |
US8874211B2 (en) | 2003-12-23 | 2014-10-28 | Cardiac Pacemakers, Inc. | Hypertension therapy based on activity and circadian rhythm |
US9561373B2 (en) | 2003-12-24 | 2017-02-07 | Cardiac Pacemakers, Inc. | System to stimulate a neural target and a heart |
US10369367B2 (en) | 2003-12-24 | 2019-08-06 | Cardiac Pacemakers, Inc. | System for providing stimulation pattern to modulate neural activity |
US7194313B2 (en) | 2003-12-24 | 2007-03-20 | Cardiac Pacemakers, Inc. | Baroreflex therapy for disordered breathing |
US8285389B2 (en) | 2003-12-24 | 2012-10-09 | Cardiac Pacemakers, Inc. | Automatic neural stimulation modulation based on motion and physiological activity |
US8131373B2 (en) | 2003-12-24 | 2012-03-06 | Cardiac Pacemakers, Inc. | Baroreflex stimulation synchronized to circadian rhythm |
US9440078B2 (en) | 2003-12-24 | 2016-09-13 | Cardiac Pacemakers, Inc. | Neural stimulation modulation based on monitored cardiovascular parameter |
US7647114B2 (en) | 2003-12-24 | 2010-01-12 | Cardiac Pacemakers, Inc. | Baroreflex modulation based on monitored cardiovascular parameter |
US7869881B2 (en) | 2003-12-24 | 2011-01-11 | Cardiac Pacemakers, Inc. | Baroreflex stimulator with integrated pressure sensor |
US8126560B2 (en) | 2003-12-24 | 2012-02-28 | Cardiac Pacemakers, Inc. | Stimulation lead for stimulating the baroreceptors in the pulmonary artery |
US8121693B2 (en) | 2003-12-24 | 2012-02-21 | Cardiac Pacemakers, Inc. | Baroreflex stimulation to treat acute myocardial infarction |
US7509166B2 (en) | 2003-12-24 | 2009-03-24 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation responsive to adverse event |
US8626301B2 (en) | 2003-12-24 | 2014-01-07 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation based on cardiac activity |
US8805513B2 (en) | 2003-12-24 | 2014-08-12 | Cardiac Pacemakers, Inc. | Neural stimulation modulation based on monitored cardiovascular parameter |
US8805501B2 (en) | 2003-12-24 | 2014-08-12 | Cardiac Pacemakers, Inc. | Baroreflex stimulation to treat acute myocardial infarction |
US20050143785A1 (en) * | 2003-12-24 | 2005-06-30 | Imad Libbus | Baroreflex therapy for disordered breathing |
US7706884B2 (en) | 2003-12-24 | 2010-04-27 | Cardiac Pacemakers, Inc. | Baroreflex stimulation synchronized to circadian rhythm |
US9950170B2 (en) | 2003-12-24 | 2018-04-24 | Cardiac Pacemakers, Inc. | System for providing stimulation pattern to modulate neural activity |
US7460906B2 (en) | 2003-12-24 | 2008-12-02 | Cardiac Pacemakers, Inc. | Baroreflex stimulation to treat acute myocardial infarction |
US8818513B2 (en) | 2003-12-24 | 2014-08-26 | Cardiac Pacemakers, Inc. | Baroreflex stimulation synchronized to circadian rhythm |
US10342978B2 (en) | 2003-12-24 | 2019-07-09 | Cardiac Pacemakers, Inc. | Vagus nerve stimulation responsive to a tachycardia precursor |
US9314635B2 (en) | 2003-12-24 | 2016-04-19 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation responsive to adverse event |
US20070142864A1 (en) * | 2003-12-24 | 2007-06-21 | Imad Libbus | Automatic neural stimulation modulation based on activity |
US20050149127A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation responsive to adverse event |
US9020595B2 (en) | 2003-12-24 | 2015-04-28 | Cardiac Pacemakers, Inc. | Baroreflex activation therapy with conditional shut off |
US8024050B2 (en) | 2003-12-24 | 2011-09-20 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
US7783353B2 (en) | 2003-12-24 | 2010-08-24 | Cardiac Pacemakers, Inc. | Automatic neural stimulation modulation based on activity and circadian rhythm |
US9265948B2 (en) | 2003-12-24 | 2016-02-23 | Cardiac Pacemakers, Inc. | Automatic neural stimulation modulation based on activity |
US20050149126A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Baroreflex stimulation to treat acute myocardial infarction |
US20050149132A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Automatic baroreflex modulation based on cardiac activity |
US8000793B2 (en) | 2003-12-24 | 2011-08-16 | Cardiac Pacemakers, Inc. | Automatic baroreflex modulation based on cardiac activity |
US20050149130A1 (en) * | 2003-12-24 | 2005-07-07 | Imad Libbus | Baroreflex stimulation synchronized to circadian rhythm |
US8442640B2 (en) | 2003-12-24 | 2013-05-14 | Cardiac Pacemakers, Inc. | Neural stimulation modulation based on monitored cardiovascular parameter |
US8457746B2 (en) | 2003-12-24 | 2013-06-04 | Cardiac Pacemakers, Inc. | Implantable systems and devices for providing cardiac defibrillation and apnea therapy |
US20100274321A1 (en) * | 2003-12-24 | 2010-10-28 | Imad Libbus | Baroreflex activation therapy with conditional shut off |
US8473076B2 (en) | 2003-12-24 | 2013-06-25 | Cardiac Pacemakers, Inc. | Lead for stimulating the baroreceptors in the pulmonary artery |
US11154716B2 (en) | 2003-12-24 | 2021-10-26 | Cardiac Pacemakers, Inc. | System for providing stimulation pattern to modulate neural activity |
US7343202B2 (en) | 2004-02-12 | 2008-03-11 | Ndi Medical, Llc. | Method for affecting urinary function with electrode implantation in adipose tissue |
US8467875B2 (en) | 2004-02-12 | 2013-06-18 | Medtronic, Inc. | Stimulation of dorsal genital nerves to treat urologic dysfunctions |
US20060004421A1 (en) * | 2004-02-12 | 2006-01-05 | Bennett Maria E | Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence |
US20080161874A1 (en) * | 2004-02-12 | 2008-07-03 | Ndi Medical, Inc. | Systems and methods for a trial stage and/or long-term treatment of disorders of the body using neurostimulation |
US8649870B2 (en) | 2004-02-12 | 2014-02-11 | Medtronic Uninary Solutions, Inc. | Systems and methods including lead and electrode structures sized and configured for implantation in adipose tissue |
US7565198B2 (en) | 2004-02-12 | 2009-07-21 | Medtronic Urinary Solutions, Inc. | Systems and methods for bilateral stimulation of left and right branches of the dorsal genital nerves to treat dysfunctions, such as urinary incontinence |
US10912712B2 (en) | 2004-03-25 | 2021-02-09 | The Feinstein Institutes For Medical Research | Treatment of bleeding by non-invasive stimulation |
US8729129B2 (en) | 2004-03-25 | 2014-05-20 | The Feinstein Institute For Medical Research | Neural tourniquet |
US9872987B2 (en) | 2004-06-08 | 2018-01-23 | Cardiac Pacemakers, Inc. | Method and system for treating congestive heart failure |
US7747323B2 (en) | 2004-06-08 | 2010-06-29 | Cardiac Pacemakers, Inc. | Adaptive baroreflex stimulation therapy for disordered breathing |
US8442638B2 (en) | 2004-06-08 | 2013-05-14 | Cardiac Pacemakers, Inc. | Adaptive baroreflex stimulation therapy for disordered breathing |
US10434320B2 (en) | 2004-06-10 | 2019-10-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9216294B2 (en) | 2004-06-10 | 2015-12-22 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US8706252B2 (en) | 2004-06-10 | 2014-04-22 | Medtronic, Inc. | Systems and methods for clinician control of stimulation system |
US9724526B2 (en) | 2004-06-10 | 2017-08-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for operating the same |
US7813809B2 (en) | 2004-06-10 | 2010-10-12 | Medtronic, Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US8165692B2 (en) | 2004-06-10 | 2012-04-24 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator power management |
US7239918B2 (en) | 2004-06-10 | 2007-07-03 | Ndi Medical Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US9205255B2 (en) | 2004-06-10 | 2015-12-08 | Medtronic Urinary Solutions, Inc. | Implantable pulse generator systems and methods for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US20080132974A1 (en) * | 2004-06-10 | 2008-06-05 | Ndi Medical, Inc. | Implantable systems and methods for acquisition and processing of electrical signals for therapeutic and/or functional restoration purposes |
US7283867B2 (en) | 2004-06-10 | 2007-10-16 | Ndi Medical, Llc | Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue |
US7761167B2 (en) | 2004-06-10 | 2010-07-20 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US8195304B2 (en) | 2004-06-10 | 2012-06-05 | Medtronic Urinary Solutions, Inc. | Implantable systems and methods for acquisition and processing of electrical signals |
US10293168B2 (en) | 2004-06-10 | 2019-05-21 | Medtronic Urinary Solutions, Inc. | Systems and methods for clinician control of stimulation systems |
US20060020298A1 (en) * | 2004-07-20 | 2006-01-26 | Camilleri Michael L | Systems and methods for curbing appetite |
US8200332B2 (en) | 2004-11-04 | 2012-06-12 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
US8200331B2 (en) | 2004-11-04 | 2012-06-12 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
US8768462B2 (en) | 2004-11-04 | 2014-07-01 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
US20060095080A1 (en) * | 2004-11-04 | 2006-05-04 | Cardiac Pacemakers, Inc. | System and method for filtering neural stimulation |
US11344724B2 (en) | 2004-12-27 | 2022-05-31 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by electrical vagus nerve stimulation |
US11207518B2 (en) | 2004-12-27 | 2021-12-28 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway |
WO2006101917A3 (en) * | 2005-03-16 | 2007-06-21 | Purdue Research Foundation | Devices for treatment of central nervous system injuries |
WO2006101917A2 (en) * | 2005-03-16 | 2006-09-28 | Purdue Research Foundation | Devices for treatment of central nervous system injuries |
US8909337B2 (en) | 2005-04-05 | 2014-12-09 | Cardiac Pacemakers, Inc. | System to treat AV-conducted ventricular tachyarrhythmia |
US20090234408A1 (en) * | 2005-04-05 | 2009-09-17 | Julia Moffitt | System to treat av-conducted ventricular tachyarrhythmia |
US8190257B2 (en) | 2005-04-05 | 2012-05-29 | Cardiac Pacemakers, Inc. | System to treat AV-conducted ventricular tachyarrhythmia |
US7555341B2 (en) | 2005-04-05 | 2009-06-30 | Cardiac Pacemakers, Inc. | System to treat AV-conducted ventricular tachyarrhythmia |
US20060224202A1 (en) * | 2005-04-05 | 2006-10-05 | Julia Moffitt | System to treat AV-conducted ventricular tachyarrhythmia |
US20060229677A1 (en) * | 2005-04-11 | 2006-10-12 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device |
US7499748B2 (en) | 2005-04-11 | 2009-03-03 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device |
US8929990B2 (en) | 2005-04-11 | 2015-01-06 | Cardiac Pacemakers, Inc. | Transvascular neural stimulation device and method for treating hypertension |
US20090149900A1 (en) * | 2005-04-11 | 2009-06-11 | Julia Moffitt | Transvascular neural stimulation device |
US7676275B1 (en) | 2005-05-02 | 2010-03-09 | Pacesetter, Inc. | Endovascular lead for chronic nerve stimulation |
US8805494B2 (en) | 2005-05-10 | 2014-08-12 | Cardiac Pacemakers, Inc. | System and method to deliver therapy in presence of another therapy |
US9504836B2 (en) | 2005-05-10 | 2016-11-29 | Cardiac Pacemakers, Inc. | System and method to deliver therapy in presence of another therapy |
US7979141B2 (en) | 2005-05-16 | 2011-07-12 | Cardiac Pacemakers, Inc. | Transvascular reshaping lead system |
US20100016927A1 (en) * | 2005-05-16 | 2010-01-21 | Anthony Caparso | Transvascular reshaping lead system |
US7822486B2 (en) | 2005-08-17 | 2010-10-26 | Enteromedics Inc. | Custom sized neural electrodes |
US7672727B2 (en) | 2005-08-17 | 2010-03-02 | Enteromedics Inc. | Neural electrode treatment |
US20070043411A1 (en) * | 2005-08-17 | 2007-02-22 | Enteromedics Inc. | Neural electrode |
US20070043400A1 (en) * | 2005-08-17 | 2007-02-22 | Donders Adrianus P | Neural electrode treatment |
US20100094375A1 (en) * | 2005-08-17 | 2010-04-15 | Enteromedics Inc. | Neural electrode treatment |
US8103349B2 (en) | 2005-08-17 | 2012-01-24 | Enteromedics Inc. | Neural electrode treatment |
US8660648B2 (en) | 2005-10-24 | 2014-02-25 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US8634921B2 (en) | 2005-10-24 | 2014-01-21 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US7616990B2 (en) | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US20070093875A1 (en) * | 2005-10-24 | 2007-04-26 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US8126561B2 (en) | 2005-10-24 | 2012-02-28 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US7570999B2 (en) | 2005-12-20 | 2009-08-04 | Cardiac Pacemakers, Inc. | Implantable device for treating epilepsy and cardiac rhythm disorders |
US20070150027A1 (en) * | 2005-12-22 | 2007-06-28 | Rogers Lesco L | Non-invasive device and method for electrical stimulation of neural tissue |
US8868172B2 (en) | 2005-12-28 | 2014-10-21 | Cyberonics, Inc. | Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders |
US9044188B2 (en) | 2005-12-28 | 2015-06-02 | Cyberonics, Inc. | Methods and systems for managing epilepsy and other neurological disorders |
US9592004B2 (en) | 2005-12-28 | 2017-03-14 | Cyberonics, Inc. | Methods and systems for managing epilepsy and other neurological disorders |
US8725243B2 (en) | 2005-12-28 | 2014-05-13 | Cyberonics, Inc. | Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders |
US7869869B1 (en) | 2006-01-11 | 2011-01-11 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US7813805B1 (en) | 2006-01-11 | 2010-10-12 | Pacesetter, Inc. | Subcardiac threshold vagal nerve stimulation |
US9480846B2 (en) | 2006-05-17 | 2016-11-01 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US10322287B2 (en) | 2006-05-17 | 2019-06-18 | Medtronic Urinary Solutions, Inc. | Systems and methods for patient control of stimulation systems |
US20090132001A1 (en) * | 2006-05-18 | 2009-05-21 | Soffer Edy E | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US8160709B2 (en) | 2006-05-18 | 2012-04-17 | Endostim, Inc. | Use of electrical stimulation of the lower esophageal sphincter to modulate lower esophageal sphincter pressure |
US11517750B2 (en) | 2006-05-18 | 2022-12-06 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US10272242B2 (en) | 2006-05-18 | 2019-04-30 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8538534B2 (en) | 2006-05-18 | 2013-09-17 | Endostim, Inc. | Systems and methods for electrically stimulating the lower esophageal sphincter to treat gastroesophageal reflux disease |
US9616225B2 (en) | 2006-05-18 | 2017-04-11 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8369943B2 (en) | 2006-06-06 | 2013-02-05 | Cardiac Pacemakers, Inc. | Method and apparatus for neural stimulation via the lymphatic system |
US7734341B2 (en) | 2006-06-06 | 2010-06-08 | Cardiac Pacemakers, Inc. | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US20070282386A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US7894906B2 (en) | 2006-06-06 | 2011-02-22 | Cardiac Pacemakers, Inc. | Amelioration of chronic pain by endolymphatic stimulation |
US20070282390A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Amelioration of chronic pain by endolymphatic stimulation |
US20070282376A1 (en) * | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for neural stimulation via the lymphatic system |
US8897878B2 (en) | 2006-06-06 | 2014-11-25 | Cardiac Pacemakers, Inc. | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US20100217346A1 (en) * | 2006-06-06 | 2010-08-26 | Shuros Allan C | Method and apparatus for gastrointestinal stimulation via the lymphatic system |
US7676263B2 (en) | 2006-06-23 | 2010-03-09 | Neurovista Corporation | Minimally invasive system for selecting patient-specific therapy parameters |
US9480845B2 (en) | 2006-06-23 | 2016-11-01 | Cyberonics, Inc. | Nerve stimulation device with a wearable loop antenna |
US8170668B2 (en) | 2006-07-14 | 2012-05-01 | Cardiac Pacemakers, Inc. | Baroreflex sensitivity monitoring and trending for tachyarrhythmia detection and therapy |
US20080065158A1 (en) * | 2006-09-07 | 2008-03-13 | Omry Ben-Ezra | Techniques for reducing pain associated with nerve stimulation |
EP1897586A1 (en) * | 2006-09-07 | 2008-03-12 | Biocontrol Medical Ltd. | Techniques for reducing pain associated with nerve stimulation |
US8571651B2 (en) | 2006-09-07 | 2013-10-29 | Bio Control Medical (B.C.M.) Ltd. | Techniques for reducing pain associated with nerve stimulation |
US7904176B2 (en) | 2006-09-07 | 2011-03-08 | Bio Control Medical (B.C.M.) Ltd. | Techniques for reducing pain associated with nerve stimulation |
US9561367B2 (en) | 2006-10-09 | 2017-02-07 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US11786726B2 (en) | 2006-10-09 | 2023-10-17 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20080086179A1 (en) * | 2006-10-09 | 2008-04-10 | Virender K Sharma | Method and apparatus for treatment of the gastrointestinal tract |
US9724510B2 (en) * | 2006-10-09 | 2017-08-08 | Endostim, Inc. | System and methods for electrical stimulation of biological systems |
US7738961B2 (en) | 2006-10-09 | 2010-06-15 | Endostim, Inc. | Method and apparatus for treatment of the gastrointestinal tract |
US10406356B2 (en) | 2006-10-09 | 2019-09-10 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US10426955B2 (en) | 2006-10-09 | 2019-10-01 | Endostim, Inc. | Methods for implanting electrodes and treating a patient with gastreosophageal reflux disease |
US11577077B2 (en) | 2006-10-09 | 2023-02-14 | Endostim, Inc. | Systems and methods for electrical stimulation of biological systems |
US9345879B2 (en) | 2006-10-09 | 2016-05-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20150119952A1 (en) * | 2006-10-09 | 2015-04-30 | Endostim, Inc. | Systems and Methods for Electrical Stimulation of Biological Systems |
US20110004266A1 (en) * | 2006-10-09 | 2011-01-06 | Sharma Virender K | Method and Apparatus for Treatment of the Gastrointestinal Tract |
US8295934B2 (en) | 2006-11-14 | 2012-10-23 | Neurovista Corporation | Systems and methods of reducing artifact in neurological stimulation systems |
US8855775B2 (en) | 2006-11-14 | 2014-10-07 | Cyberonics, Inc. | Systems and methods of reducing artifact in neurological stimulation systems |
US9622675B2 (en) | 2007-01-25 | 2017-04-18 | Cyberonics, Inc. | Communication error alerting in an epilepsy monitoring system |
US9898656B2 (en) | 2007-01-25 | 2018-02-20 | Cyberonics, Inc. | Systems and methods for identifying a contra-ictal condition in a subject |
US10792499B2 (en) | 2007-01-29 | 2020-10-06 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9168377B2 (en) | 2007-01-29 | 2015-10-27 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US9950167B2 (en) | 2007-01-29 | 2018-04-24 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US10022546B2 (en) | 2007-01-29 | 2018-07-17 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9108058B2 (en) | 2007-01-29 | 2015-08-18 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US9108059B2 (en) | 2007-01-29 | 2015-08-18 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US10765867B2 (en) | 2007-01-29 | 2020-09-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9220898B2 (en) | 2007-01-29 | 2015-12-29 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US8571662B2 (en) | 2007-01-29 | 2013-10-29 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US9566436B2 (en) | 2007-01-29 | 2017-02-14 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US11027130B2 (en) | 2007-01-29 | 2021-06-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US10864374B2 (en) | 2007-01-29 | 2020-12-15 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9968785B2 (en) | 2007-01-29 | 2018-05-15 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US9026231B2 (en) | 2007-01-29 | 2015-05-05 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US10561843B2 (en) | 2007-01-29 | 2020-02-18 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US20080195171A1 (en) * | 2007-02-13 | 2008-08-14 | Sharma Virender K | Method and Apparatus for Electrical Stimulation of the Pancreatico-Biliary System |
US9037244B2 (en) | 2007-02-13 | 2015-05-19 | Virender K. Sharma | Method and apparatus for electrical stimulation of the pancreatico-biliary system |
US8521299B2 (en) | 2007-03-09 | 2013-08-27 | Enteromedics Inc. | Remote monitoring and control of implantable devices |
US8068918B2 (en) | 2007-03-09 | 2011-11-29 | Enteromedics Inc. | Remote monitoring and control of implantable devices |
US20080221644A1 (en) * | 2007-03-09 | 2008-09-11 | Enteromedics, Inc. | Remote monitoring and control of implantable devices |
US9445730B2 (en) | 2007-03-21 | 2016-09-20 | Cyberonics, Inc. | Implantable systems and methods for identifying a contra-ictal condition in a subject |
US8543199B2 (en) | 2007-03-21 | 2013-09-24 | Cyberonics, Inc. | Implantable systems and methods for identifying a contra-ictal condition in a subject |
US8036736B2 (en) | 2007-03-21 | 2011-10-11 | Neuro Vista Corporation | Implantable systems and methods for identifying a contra-ictal condition in a subject |
US20080243204A1 (en) * | 2007-03-28 | 2008-10-02 | University Of Florida Research Foundation, Inc. | Variational parameter neurostimulation paradigm for treatment of neurologic disease |
US20120265273A1 (en) * | 2007-04-02 | 2012-10-18 | Imad Libbus | Unidirectional neural stimulation systems, devices and methods |
US8224436B2 (en) | 2007-04-02 | 2012-07-17 | Cardiac Research, Inc. | Unidirectional neural stimulation systems, devices and methods |
US8725247B2 (en) * | 2007-04-02 | 2014-05-13 | Cardiac Pacemakers, Inc. | Unidirectional neural stimulation systems, devices and methods |
AU2008236864B2 (en) * | 2007-04-02 | 2011-10-13 | Cardiac Pacemakers, Inc. | Unidirectional neural stimulation systems, devices and methods |
CN101678205A (en) * | 2007-04-02 | 2010-03-24 | 心脏起搏器股份公司 | Unidirectional neural stimulation systems, apparatus and method |
JP2010523200A (en) * | 2007-04-02 | 2010-07-15 | カーディアック ペースメイカーズ, インコーポレイテッド | Unidirectional nerve stimulation systems, devices, and methods |
US20080243196A1 (en) * | 2007-04-02 | 2008-10-02 | Imad Libbus | Unidirectional neural stimulation systems, devices and methods |
WO2008123923A2 (en) * | 2007-04-02 | 2008-10-16 | Cardiac Pacemakers, Inc. | Unidirectional neural stimulation systems, devices and methods |
WO2008123923A3 (en) * | 2007-04-02 | 2008-12-04 | Cardiac Pacemakers Inc | Unidirectional neural stimulation systems, devices and methods |
US20080300657A1 (en) * | 2007-05-31 | 2008-12-04 | Mark Raymond Stultz | Therapy system |
US20080300656A1 (en) * | 2007-05-31 | 2008-12-04 | Adrianus Donders | Implantable therapy system |
US8140167B2 (en) | 2007-05-31 | 2012-03-20 | Enteromedics, Inc. | Implantable therapy system with external component having multiple operating modes |
US8532787B2 (en) | 2007-05-31 | 2013-09-10 | Enteromedics Inc. | Implantable therapy system having multiple operating modes |
US20080300654A1 (en) * | 2007-05-31 | 2008-12-04 | Scott Anthony Lambert | Implantable therapy system |
US9788744B2 (en) | 2007-07-27 | 2017-10-17 | Cyberonics, Inc. | Systems for monitoring brain activity and patient advisory device |
US8538523B2 (en) | 2007-08-20 | 2013-09-17 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
US8326418B2 (en) | 2007-08-20 | 2012-12-04 | Medtronic, Inc. | Evaluating therapeutic stimulation electrode configurations based on physiological responses |
US8295943B2 (en) | 2007-08-20 | 2012-10-23 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US8630719B2 (en) | 2007-08-20 | 2014-01-14 | Medtronic, Inc. | Implantable medical lead with biased electrode |
US20090054947A1 (en) * | 2007-08-20 | 2009-02-26 | Medtronic, Inc. | Electrode configurations for directional leads |
US8391970B2 (en) | 2007-08-27 | 2013-03-05 | The Feinstein Institute For Medical Research | Devices and methods for inhibiting granulocyte activation by neural stimulation |
US20100280569A1 (en) * | 2007-08-28 | 2010-11-04 | Eric Bobillier | Device and method for reducing weight |
US20110155745A1 (en) * | 2007-12-11 | 2011-06-30 | Searete LLC, a limited liability company of the State of Delaware | Temperature-stabilized storage systems with flexible connectors |
US9174791B2 (en) | 2007-12-11 | 2015-11-03 | Tokitae Llc | Temperature-stabilized storage systems |
US20100213200A1 (en) * | 2007-12-11 | 2010-08-26 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage systems |
US20090145912A1 (en) * | 2007-12-11 | 2009-06-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage containers |
US9205969B2 (en) | 2007-12-11 | 2015-12-08 | Tokitae Llc | Temperature-stabilized storage systems |
US20090145164A1 (en) * | 2007-12-11 | 2009-06-11 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Temperature-stabilized storage systems |
US20110127273A1 (en) * | 2007-12-11 | 2011-06-02 | TOKITAE LLC, a limited liability company of the State of Delaware | Temperature-stabilized storage systems including storage structures configured for interchangeable storage of modular units |
US9139351B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-stabilized storage systems with flexible connectors |
US9140476B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-controlled storage systems |
US9138295B2 (en) | 2007-12-11 | 2015-09-22 | Tokitae Llc | Temperature-stabilized medicinal storage systems |
US8887944B2 (en) | 2007-12-11 | 2014-11-18 | Tokitae Llc | Temperature-stabilized storage systems configured for storage and stabilization of modular units |
US11406317B2 (en) | 2007-12-28 | 2022-08-09 | Livanova Usa, Inc. | Method for detecting neurological and clinical manifestations of a seizure |
US9259591B2 (en) | 2007-12-28 | 2016-02-16 | Cyberonics, Inc. | Housing for an implantable medical device |
US8543210B2 (en) | 2008-01-25 | 2013-09-24 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20090264951A1 (en) * | 2008-01-25 | 2009-10-22 | Sharma Virender K | Device and Implantation System for Electrical Stimulation of Biological Systems |
US8798753B2 (en) | 2008-01-25 | 2014-08-05 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US20100324436A1 (en) * | 2008-02-04 | 2010-12-23 | University Of Virginia Patent Foundation | System, Method and Computer Program Product for Detection of Changes in Health Status and Risk of Imminent Illness |
US8588908B2 (en) | 2008-02-04 | 2013-11-19 | University Of Virginia Patent Foundation | System, method and computer program product for detection of changes in health status and risk of imminent illness |
US9211409B2 (en) | 2008-03-31 | 2015-12-15 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation of T-cell activity |
US9662490B2 (en) | 2008-03-31 | 2017-05-30 | The Feinstein Institute For Medical Research | Methods and systems for reducing inflammation by neuromodulation and administration of an anti-inflammatory drug |
US8473062B2 (en) | 2008-05-01 | 2013-06-25 | Autonomic Technologies, Inc. | Method and device for the treatment of headache |
US8703259B2 (en) | 2008-05-13 | 2014-04-22 | The Invention Science Fund I, Llc | Multi-layer insulation composite material including bandgap material, storage container using same, and related methods |
US9413396B2 (en) | 2008-05-13 | 2016-08-09 | Tokitae Llc | Storage container including multi-layer insulation composite material having bandgap material |
US8603598B2 (en) | 2008-07-23 | 2013-12-10 | Tokitae Llc | Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods |
US20100018981A1 (en) * | 2008-07-23 | 2010-01-28 | Searete Llc | Multi-layer insulation composite material having at least one thermally-reflective layer with through openings, storage container using the same, and related methods |
US10603489B2 (en) | 2008-10-09 | 2020-03-31 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
US10376694B2 (en) | 2008-10-09 | 2019-08-13 | Virender K. Sharma | Method and apparatus for stimulating the vascular system |
US11517749B2 (en) | 2008-10-09 | 2022-12-06 | Virender K. Sharma | Methods and apparatuses for stimulating blood vessels in order to control, treat, and/or prevent a hemorrhage |
US9020597B2 (en) | 2008-11-12 | 2015-04-28 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8412338B2 (en) | 2008-11-18 | 2013-04-02 | Setpoint Medical Corporation | Devices and methods for optimizing electrode placement for anti-inflamatory stimulation |
US9554694B2 (en) | 2008-12-29 | 2017-01-31 | Autonomic Technologies, Inc. | Integrated delivery and visualization tool for a neuromodulation system |
US8849390B2 (en) | 2008-12-29 | 2014-09-30 | Cyberonics, Inc. | Processing for multi-channel signals |
US8781574B2 (en) | 2008-12-29 | 2014-07-15 | Autonomic Technologies, Inc. | Integrated delivery and visualization tool for a neuromodulation system |
US8412336B2 (en) | 2008-12-29 | 2013-04-02 | Autonomic Technologies, Inc. | Integrated delivery and visualization tool for a neuromodulation system |
US9289595B2 (en) | 2009-01-09 | 2016-03-22 | Cyberonics, Inc. | Medical lead termination sleeve for implantable medical devices |
US8588933B2 (en) | 2009-01-09 | 2013-11-19 | Cyberonics, Inc. | Medical lead termination sleeve for implantable medical devices |
US9320908B2 (en) | 2009-01-15 | 2016-04-26 | Autonomic Technologies, Inc. | Approval per use implanted neurostimulator |
US9370654B2 (en) | 2009-01-27 | 2016-06-21 | Medtronic, Inc. | High frequency stimulation to block laryngeal stimulation during vagal nerve stimulation |
US20100256708A1 (en) * | 2009-04-03 | 2010-10-07 | Thornton Arnold W | Implantable device with heat storage |
US8326426B2 (en) | 2009-04-03 | 2012-12-04 | Enteromedics, Inc. | Implantable device with heat storage |
US8494641B2 (en) | 2009-04-22 | 2013-07-23 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US8886325B2 (en) | 2009-04-22 | 2014-11-11 | Autonomic Technologies, Inc. | Implantable neurostimulator with integral hermetic electronic enclosure, circuit substrate, monolithic feed-through, lead assembly and anchoring mechanism |
US9211410B2 (en) | 2009-05-01 | 2015-12-15 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US9849286B2 (en) | 2009-05-01 | 2017-12-26 | Setpoint Medical Corporation | Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US8786624B2 (en) | 2009-06-02 | 2014-07-22 | Cyberonics, Inc. | Processing for multi-channel signals |
US10220203B2 (en) | 2009-06-09 | 2019-03-05 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US12251558B2 (en) | 2009-06-09 | 2025-03-18 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US8886339B2 (en) | 2009-06-09 | 2014-11-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US9174041B2 (en) | 2009-06-09 | 2015-11-03 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US10716936B2 (en) | 2009-06-09 | 2020-07-21 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US9700716B2 (en) | 2009-06-09 | 2017-07-11 | Setpoint Medical Corporation | Nerve cuff with pocket for leadless stimulator |
US9697336B2 (en) | 2009-07-28 | 2017-07-04 | Gearbox, Llc | Electronically initiating an administration of a neuromodulation treatment regimen chosen in response to contactlessly acquired information |
US20110054938A1 (en) * | 2009-08-28 | 2011-03-03 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Devices and methods for detecting an analyte in salivary fluid |
US8898069B2 (en) | 2009-08-28 | 2014-11-25 | The Invention Science Fund I, Llc | Devices and methods for detecting an analyte in salivary fluid |
US20110053283A1 (en) * | 2009-08-28 | 2011-03-03 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Beverage Immersate with detection capability |
US20110050431A1 (en) * | 2009-08-28 | 2011-03-03 | Hood Leroy E | Beverage containers with detection capability |
US9024766B2 (en) | 2009-08-28 | 2015-05-05 | The Invention Science Fund, Llc | Beverage containers with detection capability |
US8810417B2 (en) | 2009-08-28 | 2014-08-19 | The Invention Science Fund I, Llc | Beverage immersate with detection capability |
US8996116B2 (en) | 2009-10-30 | 2015-03-31 | Setpoint Medical Corporation | Modulation of the cholinergic anti-inflammatory pathway to treat pain or addiction |
US11051744B2 (en) | 2009-11-17 | 2021-07-06 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US8321012B2 (en) | 2009-12-22 | 2012-11-27 | The Invention Science Fund I, Llc | Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US20110150924A1 (en) * | 2009-12-22 | 2011-06-23 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Device, Method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US8364258B2 (en) | 2009-12-22 | 2013-01-29 | The Invention Science Fund I, Llc | Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US8725251B2 (en) | 2009-12-22 | 2014-05-13 | The Invention Science Fund I, Llc | Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US8788037B2 (en) | 2009-12-22 | 2014-07-22 | The Invention Science Fund I, Llc | Device, method, and system for neural modulation as vaccine adjuvant in a vertebrate subject |
US9993651B2 (en) | 2009-12-23 | 2018-06-12 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8855767B2 (en) | 2009-12-23 | 2014-10-07 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US11110287B2 (en) | 2009-12-23 | 2021-09-07 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US10384068B2 (en) | 2009-12-23 | 2019-08-20 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US9162064B2 (en) | 2009-12-23 | 2015-10-20 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US8612002B2 (en) | 2009-12-23 | 2013-12-17 | Setpoint Medical Corporation | Neural stimulation devices and systems for treatment of chronic inflammation |
US9447995B2 (en) | 2010-02-08 | 2016-09-20 | Tokitac LLC | Temperature-stabilized storage systems with integral regulated cooling |
US9643019B2 (en) | 2010-02-12 | 2017-05-09 | Cyberonics, Inc. | Neurological monitoring and alerts |
US8447404B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8712529B2 (en) | 2010-03-05 | 2014-04-29 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US8447403B2 (en) | 2010-03-05 | 2013-05-21 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US10058703B2 (en) | 2010-03-05 | 2018-08-28 | Endostim, Inc. | Methods of treating gastroesophageal reflux disease using an implanted device |
US11717681B2 (en) | 2010-03-05 | 2023-08-08 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US11058876B2 (en) | 2010-03-05 | 2021-07-13 | Endostim (Abc), Llc | Device and implantation system for electrical stimulation of biological systems |
US9789309B2 (en) | 2010-03-05 | 2017-10-17 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US10420934B2 (en) | 2010-03-05 | 2019-09-24 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US8712530B2 (en) | 2010-03-05 | 2014-04-29 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9381344B2 (en) | 2010-03-05 | 2016-07-05 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US9061147B2 (en) | 2010-03-05 | 2015-06-23 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US9968778B2 (en) | 2010-06-11 | 2018-05-15 | Reshape Lifesciences Inc. | Neural modulation devices and methods |
US9358395B2 (en) | 2010-06-11 | 2016-06-07 | Enteromedics Inc. | Neural modulation devices and methods |
US8825164B2 (en) | 2010-06-11 | 2014-09-02 | Enteromedics Inc. | Neural modulation devices and methods |
US8831729B2 (en) | 2011-03-04 | 2014-09-09 | Endostim, Inc. | Systems and methods for treating gastroesophageal reflux disease |
US8968377B2 (en) | 2011-05-09 | 2015-03-03 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US8690934B2 (en) | 2011-05-09 | 2014-04-08 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US9011510B2 (en) | 2011-05-09 | 2015-04-21 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US9238133B2 (en) | 2011-05-09 | 2016-01-19 | The Invention Science Fund I, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US12172017B2 (en) | 2011-05-09 | 2024-12-24 | Setpoint Medical Corporation | Vagus nerve stimulation to treat neurodegenerative disorders |
US9433775B2 (en) | 2011-05-09 | 2016-09-06 | Gearbox, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US9656056B2 (en) | 2011-05-09 | 2017-05-23 | Gearbox, Llc | Method, device and system for modulating an activity of brown adipose tissue in a vertebrate subject |
US8788034B2 (en) | 2011-05-09 | 2014-07-22 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
WO2012154865A3 (en) * | 2011-05-09 | 2013-01-31 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
US8816814B2 (en) | 2011-08-16 | 2014-08-26 | Elwha Llc | Systematic distillation of status data responsive to whether or not a wireless signal has been received and relating to regimen compliance |
US8514067B2 (en) | 2011-08-16 | 2013-08-20 | Elwha Llc | Systematic distillation of status data relating to regimen compliance |
US9770189B2 (en) | 2011-08-16 | 2017-09-26 | Elwha Llc | Systematic distillation of status data relating to regimen compliance |
US8723640B2 (en) | 2011-08-16 | 2014-05-13 | Elwha Llc | Distillation of status data relating to regimen compliance responsive to the presence and absence of wireless signals relating to one or more threshold frequencies |
US8599009B2 (en) | 2011-08-16 | 2013-12-03 | Elwha Llc | Systematic distillation of status data relating to regimen compliance |
US11052243B2 (en) | 2011-09-02 | 2021-07-06 | Endostim (Abc), Llc | Laparoscopic lead for esophageal sphincter implantation |
US9037245B2 (en) | 2011-09-02 | 2015-05-19 | Endostim, Inc. | Endoscopic lead implantation method |
US9925367B2 (en) | 2011-09-02 | 2018-03-27 | Endostim, Inc. | Laparoscopic lead implantation method |
US9833621B2 (en) | 2011-09-23 | 2017-12-05 | Setpoint Medical Corporation | Modulation of sirtuins by vagus nerve stimulation |
US10918866B2 (en) | 2011-11-04 | 2021-02-16 | Nevro Corp. | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US9227076B2 (en) | 2011-11-04 | 2016-01-05 | Nevro Corporation | Molded headers for implantable signal generators, and associated systems and methods |
US8929986B2 (en) | 2011-11-04 | 2015-01-06 | Nevro Corporation | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US9776002B2 (en) | 2011-11-04 | 2017-10-03 | Nevro Corp. | Medical device communication and charging assemblies for use with implantable signal generators, and associated systems and methods |
US8979885B2 (en) | 2012-02-24 | 2015-03-17 | Elwha Llc | Devices, systems, and methods to control stomach volume |
US8986337B2 (en) | 2012-02-24 | 2015-03-24 | Elwha Llc | Devices, systems, and methods to control stomach volume |
US8979887B2 (en) | 2012-02-24 | 2015-03-17 | Elwha Llc | Devices, systems, and methods to control stomach volume |
US10512772B2 (en) | 2012-03-05 | 2019-12-24 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US11369787B2 (en) | 2012-03-05 | 2022-06-28 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9572983B2 (en) | 2012-03-26 | 2017-02-21 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US10449358B2 (en) | 2012-03-26 | 2019-10-22 | Setpoint Medical Corporation | Devices and methods for modulation of bone erosion |
US8795359B2 (en) | 2012-06-13 | 2014-08-05 | Elwha Llc | Breast implant with regionalized analyte sensors and internal power source |
US8808373B2 (en) | 2012-06-13 | 2014-08-19 | Elwha Llc | Breast implant with regionalized analyte sensors responsive to external power source |
US9144488B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with analyte sensors responsive to external power source |
US8790400B2 (en) | 2012-06-13 | 2014-07-29 | Elwha Llc | Breast implant with covering and analyte sensors responsive to external power source |
US9333071B2 (en) | 2012-06-13 | 2016-05-10 | Elwha Llc | Breast implant with regionalized analyte sensors and internal power source |
US9326730B2 (en) | 2012-06-13 | 2016-05-03 | Elwha Llc | Breast implant with covering and analyte sensors responsive to external power source |
US10034743B2 (en) | 2012-06-13 | 2018-07-31 | Elwha Llc | Breast implant with analyte sensors responsive to external power source |
US9211185B2 (en) | 2012-06-13 | 2015-12-15 | Elwha Llc | Breast implant with analyte sensors and internal power source |
US9144489B2 (en) | 2012-06-13 | 2015-09-29 | Elwha Llc | Breast implant with covering, analyte sensors and internal power source |
US9339372B2 (en) | 2012-06-13 | 2016-05-17 | Elwha Llc | Breast implant with regionalized analyte sensors responsive to external power source |
US9623238B2 (en) | 2012-08-23 | 2017-04-18 | Endostim, Inc. | Device and implantation system for electrical stimulation of biological systems |
US11052248B2 (en) | 2012-08-23 | 2021-07-06 | Endostim (Abc), Llc | Device and implantation system for electrical stimulation of biological systems |
USD736383S1 (en) | 2012-11-05 | 2015-08-11 | Nevro Corporation | Implantable signal generator |
USD736930S1 (en) | 2012-11-05 | 2015-08-18 | Nevro Corporation | Implantable signal generator |
US9498619B2 (en) | 2013-02-26 | 2016-11-22 | Endostim, Inc. | Implantable electrical stimulation leads |
US11969253B2 (en) | 2013-04-10 | 2024-04-30 | Setpoint Medical Corporation | Closed-loop vagus nerve stimulation |
US10946204B2 (en) | 2013-05-03 | 2021-03-16 | Nevro Corp. | Methods for forming implantable signal generators with molded headers |
US10065044B2 (en) | 2013-05-03 | 2018-09-04 | Nevro Corp. | Molded headers for implantable signal generators, and associated systems and methods |
US9372016B2 (en) | 2013-05-31 | 2016-06-21 | Tokitae Llc | Temperature-stabilized storage systems with regulated cooling |
US10406367B2 (en) | 2013-06-21 | 2019-09-10 | Lungpacer Medical Inc. | Transvascular diaphragm pacing system and methods of use |
US10589097B2 (en) | 2013-06-21 | 2020-03-17 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US10561844B2 (en) | 2013-06-21 | 2020-02-18 | Lungpacer Medical Inc. | Diaphragm pacing systems and methods of use |
US11357985B2 (en) | 2013-06-21 | 2022-06-14 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US11052254B2 (en) | 2013-09-03 | 2021-07-06 | Endostim (Abc), Llc | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US9827425B2 (en) | 2013-09-03 | 2017-11-28 | Endostim, Inc. | Methods and systems of electrode polarity switching in electrical stimulation therapy |
US11707619B2 (en) | 2013-11-22 | 2023-07-25 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US12239838B2 (en) | 2013-11-22 | 2025-03-04 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US11311730B2 (en) | 2014-01-21 | 2022-04-26 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US12172020B2 (en) | 2014-01-21 | 2024-12-24 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US10391314B2 (en) | 2014-01-21 | 2019-08-27 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US10881857B2 (en) | 2014-05-20 | 2021-01-05 | Nevro Corp. | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
US11766566B2 (en) | 2014-05-20 | 2023-09-26 | Nevro Corp. | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
US10173062B2 (en) | 2014-05-20 | 2019-01-08 | Nevro Corp. | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
US9409020B2 (en) | 2014-05-20 | 2016-08-09 | Nevro Corporation | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
US10245323B2 (en) | 2014-06-03 | 2019-04-02 | Pop Test Abuse Deterrent Technology Llc | Drug device configured for wireless communication |
US10010703B2 (en) | 2014-06-03 | 2018-07-03 | Pop Test Abuse Deterrent Technology, LLC | Drug device configured for wireless communication |
US10625063B2 (en) | 2014-06-03 | 2020-04-21 | Pop Test Abuse Deterrent Technology Llc | Drug device configured for wireless communication |
US11527315B2 (en) | 2014-06-03 | 2022-12-13 | Pop Test Abuse Deterrent Technology Llc | Drug device configured for wireless communication |
US10441762B2 (en) | 2014-06-03 | 2019-10-15 | Pop Test Abuse Deterrent Technology Llc | Drug device configured for wireless communication |
US10137288B2 (en) | 2014-06-03 | 2018-11-27 | Pop Test Abuse Deterrent Technology, LLC | Drug device configured for wireless communication |
US9878139B2 (en) | 2014-06-03 | 2018-01-30 | Pop Test Abuse Deterrent Technology, LLC | Drug device configured for wireless communication |
EP3643355A1 (en) | 2014-06-03 | 2020-04-29 | Pop Test Abuse Deterrent Technology LLC | Drug device configured for wireless communication |
US9878138B2 (en) | 2014-06-03 | 2018-01-30 | Pop Test Abuse Deterrent Technology Llc | Drug device configured for wireless communication |
US11090502B2 (en) | 2014-10-22 | 2021-08-17 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US9884198B2 (en) | 2014-10-22 | 2018-02-06 | Nevro Corp. | Systems and methods for extending the life of an implanted pulse generator battery |
US11311725B2 (en) | 2014-10-24 | 2022-04-26 | Setpoint Medical Corporation | Systems and methods for stimulating and/or monitoring loci in the brain to treat inflammation and to enhance vagus nerve stimulation |
US9682234B2 (en) | 2014-11-17 | 2017-06-20 | Endostim, Inc. | Implantable electro-medical device programmable for improved operational life |
US11406833B2 (en) | 2015-02-03 | 2022-08-09 | Setpoint Medical Corporation | Apparatus and method for reminding, prompting, or alerting a patient with an implanted stimulator |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US9937348B1 (en) | 2015-03-13 | 2018-04-10 | Nevro Corp. | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US10780276B1 (en) | 2015-03-13 | 2020-09-22 | Nevro Corp. | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
US10420935B2 (en) | 2015-12-31 | 2019-09-24 | Nevro Corp. | Controller for nerve stimulation circuit and associated systems and methods |
US11278718B2 (en) | 2016-01-13 | 2022-03-22 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US10596367B2 (en) | 2016-01-13 | 2020-03-24 | Setpoint Medical Corporation | Systems and methods for establishing a nerve block |
US11964150B2 (en) | 2016-01-20 | 2024-04-23 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US10695569B2 (en) | 2016-01-20 | 2020-06-30 | Setpoint Medical Corporation | Control of vagal stimulation |
US11547852B2 (en) | 2016-01-20 | 2023-01-10 | Setpoint Medical Corporation | Control of vagal stimulation |
US11471681B2 (en) | 2016-01-20 | 2022-10-18 | Setpoint Medical Corporation | Batteryless implantable microstimulators |
US10314501B2 (en) | 2016-01-20 | 2019-06-11 | Setpoint Medical Corporation | Implantable microstimulators and inductive charging systems |
US12121726B2 (en) | 2016-01-20 | 2024-10-22 | Setpoint Medical Corporation | Control of vagal stimulation |
US11383091B2 (en) | 2016-01-25 | 2022-07-12 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US10583304B2 (en) | 2016-01-25 | 2020-03-10 | Setpoint Medical Corporation | Implantable neurostimulator having power control and thermal regulation and methods of use |
US11040199B2 (en) * | 2016-04-04 | 2021-06-22 | General Electric Company | Techniques for neuromodulation |
US12201836B2 (en) | 2016-04-04 | 2025-01-21 | General Electric Company | Techniques for neuromodulation |
US11819683B2 (en) | 2016-11-17 | 2023-11-21 | Endostim, Inc. | Modular stimulation system for the treatment of gastrointestinal disorders |
US12053626B2 (en) | 2017-04-06 | 2024-08-06 | Endostim, Inc. | Surface electrodes |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US11883658B2 (en) | 2017-06-30 | 2024-01-30 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US12029901B2 (en) | 2017-06-30 | 2024-07-09 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US10195429B1 (en) | 2017-08-02 | 2019-02-05 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10926087B2 (en) | 2017-08-02 | 2021-02-23 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US11090489B2 (en) | 2017-08-02 | 2021-08-17 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US12029902B2 (en) | 2017-08-02 | 2024-07-09 | Lungpacer Medical Inc. | Intravascular catheter methods |
US10039920B1 (en) | 2017-08-02 | 2018-08-07 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US11944810B2 (en) | 2017-08-04 | 2024-04-02 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US11173307B2 (en) | 2017-08-14 | 2021-11-16 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US11890471B2 (en) | 2017-08-14 | 2024-02-06 | Setpoint Medical Corporation | Vagus nerve stimulation pre-screening test |
US12029903B2 (en) | 2017-12-11 | 2024-07-09 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
US11633604B2 (en) | 2018-01-30 | 2023-04-25 | Nevro Corp. | Efficient use of an implantable pulse generator battery, and associated systems and methods |
US11857788B2 (en) | 2018-09-25 | 2024-01-02 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11260229B2 (en) | 2018-09-25 | 2022-03-01 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US12220579B2 (en) | 2018-09-25 | 2025-02-11 | The Feinstein Institutes For Medical Research | Methods and apparatuses for reducing bleeding via coordinated trigeminal and vagal nerve stimulation |
US11890462B2 (en) | 2018-11-08 | 2024-02-06 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11717673B2 (en) | 2018-11-08 | 2023-08-08 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US10987511B2 (en) | 2018-11-08 | 2021-04-27 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US10933238B2 (en) | 2019-01-31 | 2021-03-02 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US11571570B2 (en) | 2019-01-31 | 2023-02-07 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
US11357979B2 (en) | 2019-05-16 | 2022-06-14 | Lungpacer Medical Inc. | Systems and methods for sensing and stimulation |
US11771900B2 (en) | 2019-06-12 | 2023-10-03 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
US11938324B2 (en) | 2020-05-21 | 2024-03-26 | The Feinstein Institutes For Medical Research | Systems and methods for vagus nerve stimulation |
Also Published As
Publication number | Publication date |
---|---|
US20050149146A1 (en) | 2005-07-07 |
US20050004621A1 (en) | 2005-01-06 |
US20050131487A1 (en) | 2005-06-16 |
US7076307B2 (en) | 2006-07-11 |
US20050131486A1 (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050143787A1 (en) | Method and system for providing electrical pulses for neuromodulation of vagus nerve(s), using rechargeable implanted pulse generator | |
US7191012B2 (en) | Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders | |
US7444184B2 (en) | Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s) | |
US7263405B2 (en) | System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities | |
US20050197678A1 (en) | Method and system for providing therapy for Alzheimer's disease and dementia by providing electrical pulses to vagus nerve(s) | |
US11259732B2 (en) | Method and device for acquiring physiological data during tissue stimulation procedure | |
US20060009815A1 (en) | Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s) | |
US20060074450A1 (en) | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator | |
US20050216070A1 (en) | Method and system for providing therapy for migraine/chronic headache by providing electrical pulses to vagus nerve(s) | |
US20050187590A1 (en) | Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s) | |
US6760626B1 (en) | Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system | |
US20030212440A1 (en) | Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system | |
US20050209654A1 (en) | Method and system for providing adjunct (add-on) therapy for depression, anxiety and obsessive-compulsive disorders by providing electrical pulses to vagus nerve(s) | |
US8812115B2 (en) | System and method for reducing excitability of dorsal root fiber by introducing stochastic background noise | |
US9737703B2 (en) | Method to enhance afferent and efferent transmission using noise resonance | |
US6879859B1 (en) | External pulse generator for adjunct (add-on) treatment of obesity, eating disorders, neurological, neuropsychiatric, and urological disorders | |
US20060079936A1 (en) | Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders | |
US8204603B2 (en) | Blocking exogenous action potentials by an implantable medical device | |
US6208902B1 (en) | Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator | |
US8918179B2 (en) | System and method for increasing relative intensity between cathodes and anodes of neurostimulation system | |
JP5997829B2 (en) | Field-enhanced current steering using a voltage source | |
US20050070970A1 (en) | Movement disorder stimulation with neural block | |
US20080243204A1 (en) | Variational parameter neurostimulation paradigm for treatment of neurologic disease | |
US20100217347A1 (en) | Neurostimulation for the treatment of pulmonary disorders | |
US20130338732A1 (en) | Dynamic compliance voltage for energy efficient stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEURO AND CARDIAC TECHNOLOGIES, LLC, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOVEJA, BIRINDER R.;WIDHANY, ANGELY;REEL/FRAME:018728/0352;SIGNING DATES FROM 20060911 TO 20060914 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |