US20050112112A1 - Microorganism for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same - Google Patents
Microorganism for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same Download PDFInfo
- Publication number
- US20050112112A1 US20050112112A1 US10/971,116 US97111604A US2005112112A1 US 20050112112 A1 US20050112112 A1 US 20050112112A1 US 97111604 A US97111604 A US 97111604A US 2005112112 A1 US2005112112 A1 US 2005112112A1
- Authority
- US
- United States
- Prior art keywords
- lactobacillus
- canceled
- acetobacter
- pharmaceutical composition
- microorganism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 103
- 206010012601 diabetes mellitus Diseases 0.000 title claims abstract description 33
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 32
- 230000002265 prevention Effects 0.000 title abstract description 8
- 208000008589 Obesity Diseases 0.000 claims abstract description 31
- 235000020824 obesity Nutrition 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 21
- 241000186660 Lactobacillus Species 0.000 claims description 37
- 229940039696 lactobacillus Drugs 0.000 claims description 37
- 239000002702 enteric coating Substances 0.000 claims description 32
- 238000009505 enteric coating Methods 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 23
- 229920001282 polysaccharide Polymers 0.000 claims description 16
- 239000005017 polysaccharide Substances 0.000 claims description 16
- 241000186610 Lactobacillus sp. Species 0.000 claims description 11
- 244000235858 Acetobacter xylinum Species 0.000 claims description 9
- 229920001542 oligosaccharide Polymers 0.000 claims description 9
- 150000002482 oligosaccharides Chemical class 0.000 claims description 9
- 241000589234 Acetobacter sp. Species 0.000 claims description 8
- 241000186673 Lactobacillus delbrueckii Species 0.000 claims description 8
- 235000002837 Acetobacter xylinum Nutrition 0.000 claims description 7
- 241000589216 Komagataeibacter hansenii Species 0.000 claims description 7
- 240000002605 Lactobacillus helveticus Species 0.000 claims description 7
- 241000186612 Lactobacillus sakei Species 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 6
- 244000283763 Acetobacter aceti Species 0.000 claims description 5
- 241000589212 Acetobacter pasteurianus Species 0.000 claims description 5
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 claims description 5
- 244000199885 Lactobacillus bulgaricus Species 0.000 claims description 5
- 235000013967 Lactobacillus helveticus Nutrition 0.000 claims description 5
- 241001627205 Leuconostoc sp. Species 0.000 claims description 5
- 241000604136 Pediococcus sp. Species 0.000 claims description 5
- 235000014962 Streptococcus cremoris Nutrition 0.000 claims description 5
- 229940054346 lactobacillus helveticus Drugs 0.000 claims description 5
- 235000013960 Lactobacillus bulgaricus Nutrition 0.000 claims description 4
- 244000199866 Lactobacillus casei Species 0.000 claims description 4
- 241001147746 Lactobacillus delbrueckii subsp. lactis Species 0.000 claims description 4
- 241001468191 Lactobacillus kefiri Species 0.000 claims description 4
- 241000186604 Lactobacillus reuteri Species 0.000 claims description 4
- 241000194020 Streptococcus thermophilus Species 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 229940004208 lactobacillus bulgaricus Drugs 0.000 claims description 4
- 229940001882 lactobacillus reuteri Drugs 0.000 claims description 4
- 235000007847 Acetobacter aceti Nutrition 0.000 claims description 3
- 241000186000 Bifidobacterium Species 0.000 claims description 3
- 240000001929 Lactobacillus brevis Species 0.000 claims description 3
- 235000013957 Lactobacillus brevis Nutrition 0.000 claims description 3
- 235000013958 Lactobacillus casei Nutrition 0.000 claims description 3
- 229940068140 lactobacillus bifidus Drugs 0.000 claims description 3
- 229940017800 lactobacillus casei Drugs 0.000 claims description 3
- 241000178948 Lactococcus sp. Species 0.000 claims 4
- 241000194034 Lactococcus lactis subsp. cremoris Species 0.000 claims 2
- 241000194022 Streptococcus sp. Species 0.000 claims 2
- 150000004676 glycans Chemical class 0.000 claims 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 50
- 239000008103 glucose Substances 0.000 abstract description 49
- 210000000936 intestine Anatomy 0.000 abstract description 22
- 150000002772 monosaccharides Chemical class 0.000 abstract description 6
- 150000002016 disaccharides Chemical class 0.000 abstract description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 abstract description 2
- 229930091371 Fructose Natural products 0.000 abstract 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 abstract 1
- 239000005715 Fructose Substances 0.000 abstract 1
- 229930182830 galactose Natural products 0.000 abstract 1
- 239000008280 blood Substances 0.000 description 30
- 210000004369 blood Anatomy 0.000 description 30
- 241000589220 Acetobacter Species 0.000 description 28
- 241000699666 Mus <mouse, genus> Species 0.000 description 28
- 235000013325 dietary fiber Nutrition 0.000 description 26
- 239000002609 medium Substances 0.000 description 26
- 230000008859 change Effects 0.000 description 23
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 16
- 241000699670 Mus sp. Species 0.000 description 15
- 150000004804 polysaccharides Chemical class 0.000 description 14
- 150000002632 lipids Chemical class 0.000 description 13
- 229920002678 cellulose Polymers 0.000 description 11
- 239000003814 drug Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000002503 metabolic effect Effects 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 102000004877 Insulin Human genes 0.000 description 10
- 108090001061 Insulin Proteins 0.000 description 10
- 239000001913 cellulose Substances 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 229940125396 insulin Drugs 0.000 description 10
- 108020004465 16S ribosomal RNA Proteins 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 210000001198 duodenum Anatomy 0.000 description 7
- 210000001630 jejunum Anatomy 0.000 description 7
- 210000002429 large intestine Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 6
- 108010023302 HDL Cholesterol Proteins 0.000 description 6
- 108010028554 LDL Cholesterol Proteins 0.000 description 6
- -1 acetan Polymers 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 235000010419 agar Nutrition 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000000968 intestinal effect Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000013116 obese mouse model Methods 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 6
- 239000002504 physiological saline solution Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 238000009207 exercise therapy Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 230000004584 weight gain Effects 0.000 description 5
- 235000019786 weight gain Nutrition 0.000 description 5
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 4
- 241000186685 Lactobacillus hilgardii Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 4
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 4
- 102000038379 digestive enzymes Human genes 0.000 description 4
- 108091007734 digestive enzymes Proteins 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 4
- XUFXOAAUWZOOIT-SXARVLRPSA-N (2R,3R,4R,5S,6R)-5-[[(2R,3R,4R,5S,6R)-5-[[(2R,3R,4S,5S,6R)-3,4-dihydroxy-6-methyl-5-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-1-cyclohex-2-enyl]amino]-2-oxanyl]oxy]-3,4-dihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound O([C@H]1O[C@H](CO)[C@H]([C@@H]([C@H]1O)O)O[C@H]1O[C@@H]([C@H]([C@H](O)[C@H]1O)N[C@@H]1[C@@H]([C@@H](O)[C@H](O)C(CO)=C1)O)C)[C@@H]1[C@@H](CO)O[C@@H](O)[C@H](O)[C@H]1O XUFXOAAUWZOOIT-SXARVLRPSA-N 0.000 description 3
- 208000017667 Chronic Disease Diseases 0.000 description 3
- 102100028675 DNA polymerase subunit gamma-2, mitochondrial Human genes 0.000 description 3
- 206010012735 Diarrhoea Diseases 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 101000837415 Homo sapiens DNA polymerase subunit gamma-2, mitochondrial Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 244000241525 Streptococcus cremoris Species 0.000 description 3
- 229940100389 Sulfonylurea Drugs 0.000 description 3
- 229960002632 acarbose Drugs 0.000 description 3
- XUFXOAAUWZOOIT-UHFFFAOYSA-N acarviostatin I01 Natural products OC1C(O)C(NC2C(C(O)C(O)C(CO)=C2)O)C(C)OC1OC(C(C1O)O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O XUFXOAAUWZOOIT-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 210000004051 gastric juice Anatomy 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LWFUFLREGJMOIZ-UHFFFAOYSA-N 3,5-dinitrosalicylic acid Chemical compound OC(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O LWFUFLREGJMOIZ-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 102000016938 Catalase Human genes 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000145710 Gluconobacter sp. Species 0.000 description 2
- 208000013016 Hypoglycemia Diseases 0.000 description 2
- 206010022489 Insulin Resistance Diseases 0.000 description 2
- 241001468094 Komagataeibacter europaeus Species 0.000 description 2
- 240000001046 Lactobacillus acidophilus Species 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 102000019280 Pancreatic lipases Human genes 0.000 description 2
- 108050006759 Pancreatic lipases Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 230000036528 appetite Effects 0.000 description 2
- 235000019789 appetite Nutrition 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002218 hypoglycaemic effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000006362 insulin response pathway Effects 0.000 description 2
- 230000003914 insulin secretion Effects 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000004798 organs belonging to the digestive system Anatomy 0.000 description 2
- 229940116369 pancreatic lipase Drugs 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000013081 phylogenetic analysis Methods 0.000 description 2
- 229960005095 pioglitazone Drugs 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- ZILVNHNSYBNLSZ-UHFFFAOYSA-N 2-(diaminomethylideneamino)guanidine Chemical class NC(N)=NNC(N)=N ZILVNHNSYBNLSZ-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000589159 Agrobacterium sp. Species 0.000 description 1
- 241000588810 Alcaligenes sp. Species 0.000 description 1
- 229940077274 Alpha glucosidase inhibitor Drugs 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 229940122816 Amylase inhibitor Drugs 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 206010003011 Appendicitis Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- XHVAWZZCDCWGBK-WYRLRVFGSA-M Aurothioglucose Chemical compound OC[C@H]1O[C@H](S[Au])[C@H](O)[C@@H](O)[C@@H]1O XHVAWZZCDCWGBK-WYRLRVFGSA-M 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000589236 Gluconobacter Species 0.000 description 1
- 206010018473 Glycosuria Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000005016 Intestinal Neoplasms Diseases 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 241000186841 Lactobacillus farciminis Species 0.000 description 1
- 241000186606 Lactobacillus gasseri Species 0.000 description 1
- 241001640457 Lactobacillus intestinalis Species 0.000 description 1
- 241001468157 Lactobacillus johnsonii Species 0.000 description 1
- 241000108055 Lactobacillus kefiranofaciens Species 0.000 description 1
- 241001339775 Lactobacillus kunkeei Species 0.000 description 1
- 241000186851 Lactobacillus mali Species 0.000 description 1
- 241000186784 Lactobacillus oris Species 0.000 description 1
- 241001643448 Lactobacillus suebicus Species 0.000 description 1
- 241001468194 Leuconostoc mesenteroides subsp. dextranicum Species 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 108010019160 Pancreatin Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000589187 Rhizobium sp. Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001037421 Sarcina sp. Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 241001135759 Sphingomonas sp. Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 239000003888 alpha glucosidase inhibitor Substances 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000003392 amylase inhibitor Substances 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- BWKOZPVPARTQIV-UHFFFAOYSA-N azanium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [NH4+].OC(=O)CC(O)(C(O)=O)CC([O-])=O BWKOZPVPARTQIV-UHFFFAOYSA-N 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 102000016959 beta-3 Adrenergic Receptors Human genes 0.000 description 1
- 108010014502 beta-3 Adrenergic Receptors Proteins 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001906 cholesterol absorption Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000013230 female C57BL/6J mice Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000015203 fruit juice Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- DBTMGCOVALSLOR-AXAHEAMVSA-N galactotriose Natural products OC[C@@H]1O[C@@H](O[C@@H]2[C@@H](O)[C@H](CO)O[C@@H](O[C@H]3[C@@H](O)[C@H](O)O[C@@H](CO)[C@@H]3O)[C@@H]2O)[C@H](O)[C@H](O)[C@H]1O DBTMGCOVALSLOR-AXAHEAMVSA-N 0.000 description 1
- 208000020694 gallbladder disease Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 1
- 235000021472 generally recognized as safe Nutrition 0.000 description 1
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 208000018578 heart valve disease Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 description 1
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000001289 inhibitory effect on obesity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 201000002313 intestinal cancer Diseases 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- FBJQEBRMDXPWNX-FYHZSNTMSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H]2[C@H]([C@H](O)[C@@H](O)C(O)O2)O)O1 FBJQEBRMDXPWNX-FYHZSNTMSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 229940040461 lipase Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 235000020845 low-calorie diet Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- ZFLBZHXQAMUEFS-KUHUBIRLSA-N methyl 2-[4-[(2r)-2-[[(2r)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy]acetate Chemical compound C1=CC(OCC(=O)OC)=CC=C1C[C@@H](C)NC[C@H](O)C1=CC=CC(Cl)=C1 ZFLBZHXQAMUEFS-KUHUBIRLSA-N 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229960001243 orlistat Drugs 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 229940055695 pancreatin Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- 125000001557 phthalyl group Chemical group C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 230000008288 physiological mechanism Effects 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000006041 probiotic Substances 0.000 description 1
- 230000000529 probiotic effect Effects 0.000 description 1
- 235000018291 probiotics Nutrition 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- UNAANXDKBXWMLN-UHFFFAOYSA-N sibutramine Chemical compound C=1C=C(Cl)C=CC=1C1(C(N(C)C)CC(C)C)CCC1 UNAANXDKBXWMLN-UHFFFAOYSA-N 0.000 description 1
- 229960004425 sibutramine Drugs 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000001467 thiazolidinediones Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/742—Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
- A61K35/745—Bifidobacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
- A61K35/747—Lactobacilli, e.g. L. acidophilus or L. brevis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/02—Acetobacter
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/225—Lactobacillus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/8215—Microorganisms
- Y10S435/822—Microorganisms using bacteria or actinomycetales
- Y10S435/823—Acetobacter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/8215—Microorganisms
- Y10S435/822—Microorganisms using bacteria or actinomycetales
- Y10S435/853—Lactobacillus
Definitions
- the present invention relates to microorganisms for preventing or treating obesity or diabetes mellitus, which are capable of reducing an amount of monosaccharides or disaccharides that can be absorbed into the intestine by converting those mono or disaccharides into polymeric materials that cannot be absorbed in the intestines.
- the present invention also relates to use of the microorganisms for preventing or treating obesity or diabetes mellitus and a pharmaceutical composition containing the microorganisms.
- Obesity is well known as a chronic disease caused by various factors whose origins have not yet been clearly discovered. It is understood that obesity induces hypertension, diabetes mellitus, coronary heart disease, gall bladder disease, osteoarthritis, sleep apnea, respiratory disorder, endomerial, prostate, breast and colon cancer and the like.
- Diabetes mellitus is one of the most widespread chronic diseases in the world, which impose a substantial expense on the public as well as on patients of diabetes mellitus and their families.
- diabetes mellitus There are several types of diabetes mellitus that are caused by various etiological factors and whose pathogenesis is different from each other.
- genuine diabetes mellitus is characterized by high level of blood glucose and glycosuria, and is a chronic disorder of carbohydrate metabolism due to a disturbance of the normal insuline mechanism.
- Non-Insulin-Dependent Genuine Diabetes Mellitus or the type II diabetes mellitus is found in adults who have insulin-resistance in a peripheral target tissue, despite of normal generation and function of insulin.
- Non-Insulin-Dependent Genuine Diabetes Mellitus(NIDDM) can be caused by three important metabolic disorders, i.e., insulin-resistance, fucntional disorder of insulin secretion stimulated by nutrients, and overproduction of glucose in liver. Failure to treat NIDDM, resulting in losing control of blood glucose levels, leads to death of patients from diseases such as atherosclerosis, and/or may cause late complications of diabetes, such as retinopathy, nephropathy or neuropathy.
- NIDDM therapy uses sulfonylurea and biguanidine compounds to control blood glucose levels. Recently, therapeutic compounds such as metformin or acarbose have been used for treating NIDDM.
- diet-exercise therapy alone or even combined with chemotherapy using such compounds fails to control hyperglycemia in some of the diabetes mellitus patients. In such cases, these patients require exogenous insulin.
- insulin is very expensive and painful to patients, and furthermore, may cause various detrimental results and various complications in patients. For example, incidences, such as, miscalculating insulin dosage, going without a meal or irregular exercise, may cause insulin response (hypoglycemia) and sometimes the insulin response occurs even without any particular reasons. Insulin injection may also cause an allergy or immunological resistance to insulin.
- Diet-exercise therapy involves a low-calorie and low-fat diet accompanying aerobic exercise, but this therapy requiring a regular performance is hard to continue until achieving the goal.
- pharmacotherapy can reduce blood glucose level, inhibit absorption of glucose, strengthen the action of insulin or induce the decrease of appetite.
- the medicines that have been developed so far use various physiological mechanisms for the prevention and the treatment of obesity and diabetes mellitus.
- sulfonylurea Some medicines, such as, sulfonylurea, mefformin, pioglitazone or thiazolidindione derivatives and the like have been developed to enhance the function of insulin. Although sulfonylurea stimulates insulin-secretion from ⁇ -cells in the pancreas, it may accompany side effects, such as hypoglycemia resulting from lowering blood glucose levels under normal levels.
- Mefformin is mainly used for insulin-nondependent diabetes mellitus patients who fail to recover after diet-exercise therapy. This medicine inhibits hepatic gluconeogenesis and enhances glucose disposal in muscle and adipose tissue. However, it suffers from side effects, such as, nausea, vomiting and diarrhea.
- Pioglitazone developed by Takeda in Japan, enhances the function of insulin through increasing susceptibility of cells to insulin (Kobayashi M. et al., Diabetes, 41(4), pp 476-483, 1992).
- Beta 3-adreno receptor inhibitor (BRL-35135) known as a medicine that stimulates the decomposition of body fats and that convert body fats into heat with a specific action on adipose cells, also suffers from lowerings blood glucose level.
- pancreatic lipase produced by Roche of Switzlend
- the inhibitor of a pancreatic lipase inhibits and/or reduces absorption of body fats by inhibiting pancreatic lipase. It, however, accompanies undersirable inhibition of absorption of fat-soluble vitamin and may also cause breast cancer.
- ⁇ -Glucosidase inhibitor (Acarbose produced by Bayer of Germany), is known as a glucose absorbing inhibitor. Acarbose is pseudo-monosaccharide which competitively inhibits the action of various ⁇ -glucosidases existing in microvilli of the gastrointestinal tract. However, taking a large amount of these may induce diarrhea. (W. Puls et al., Front. Horm. Res. 2, 235, 1998).
- Amylase inhibitor that inhibit converting carbohydrates into oligosaccharides has been developed to prevent imbalance of metabolism originated from excessive uptake of nutrient. (Sanches-Monge R. et al. Eur. J. Biochem., 183, 003740, 1989).
- Dietary fiber using diet with a large amount of vegetable fiber is the easiest way to obtain inhibitory effect on obesity by lowering glucose and/or fat amounts absorbed in the intestine.
- Dietary fiber using diet with a large amount of vegetable fiber is the easiest way to obtain inhibitory effect on obesity by lowering glucose and/or fat amounts absorbed in the intestine.
- such method also involves problems in requiring facility and manpower for the production of dietary fiber with low productivity.
- Polymeric materials such as, isomaltotriose, dextran and pullulan, inhibit the increase of blood glucose level originated from glucose.
- dextran may induce excessive bleeding by delaying a blood coagulation time.
- dietary fibers are the most useful medicine for prevention or treatment of obesity because no damage to the human metabolism-balance and use natural substances.
- Microorganism dietary fiber is produced using microorganisms, such as, Gluconobacter sp., Agrobacterium sp., Acetobacterxylinum, A. hansenii, A. pasteurianus, A. aceti, Rhizobium sp., Alcaligenes sp., Sarcina sp., Streptococcus thermophilus, Lactococcus cremoris, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii subsp., Lactobacillus helveticusglucose var. jugurti, Leuconostoc dextranicum, Bulgariscus sp., Campestris sp., Sphingomonas sp.
- microorganisms such as, Glucono
- Dietary fiber produced by these microorganisms is used as stabilizer, thickening agent, emulsifier, hygroscopic agent of various foods and raw materials of cosmetics and pharmaceuticals.
- Microorganism cellulose, xanthan, acetan, guar gum, locust bean gum, carrageenan, alginate, and agar obtained from seaweed are commercialized.
- Lactobacillus sp. strain is the major component of normal microbial flora in the human intestines. Its significant roles for maintaining digestive organ and for healthy environment of the vagina, have been well known. [Bible, D. J., ASM News, 54:661-665,1988; Reid G. and A. W. Bruce, In H Lappin-Scott (de.), Bacterial biofilms, Cambridge University Press, Cambridge, England, p. 274-281,1995; Reid G., A. W. Bruce, J. A. McGroarty, K. J. Cheng, and J. W. Costerton, clin. Microbiol. Rev., 3:335-344, 1990].
- Lactobacillus strain inhabits in digestive organs ( L. acidophilus, L. intestinalis, L. johnsonii, L. reuteri et al.,), muscosa of the vagina ( L. vanginals, L. gasseri ), food (wine- L. hilgardii ), lactobacillus beverage ( L. kefir, L. kefiranofaciens ), cheese ( L. casei ), vinegar ( L. acetotolerance ), the oral cavity ( L. oris ), yeast ( L. sake, L. homohiochi ), fruit juice ( L. kunkeei, L. mali, L. suebicus ), fermented sausages or fish ( L. farciminis, L. alimentarious ) et al.
- Lactobacillus sp. strain Many people take health complementary food containing a Lactobacillus sp. strain in order to maintain healthy intestines and to prevent urogenital tract infection. Recently, in addition to the prevention of the diarrhea, constipation and urogenital tract infection, various probiotic activities of Lactobacillus, such as, control of immunity, control of cholesterol level in blood, prevention of cancer, treatment of rheumatism, alleviation of sensitivity on lactose or effect for atopic dermatitis, have been reported and thus, have attracted more attention.
- Acetobacter is a strict aerobe but has characteristics of surviving and living under the condition of infinitesimal oxygen, and of being floated to seek for oxygen by means of synthesizing cellulose dietary fiber itself under this condition of infinitesimal oxygen. According to the research regarding the amount and rate of converting glucose into cellulose dietary fiber by Acetobacter (Brown et al.: Proc. Natl. Acad. Sci. USA, Vol 73 (12), 4565-4569), Acetobacter converts glucose into cellulose with the speed rate of 400 mol/cell/hour. This is equivalent to the rate that about 200 g glucose can be converted into cellulose dietary fiber by 4 ⁇ 10 15 cells per an hour.
- Acetobacter that can metabolizes saccharose is rare, Acetobacter converting sacchores in glucose, exists in nature (PNAS, 9: pp 14-18).
- FDA of the United States has approved Acetobacter xylinum for synthesizing acetic acid and sorbose, and has classified it as generally safe microorganism (GRAS: Generally Recognized As Safe).
- the object of the present invention is to provide microorganisms capable of living within the intestines and converting oligosaccharides produced by the digestive enzymes into non-digestable polysaccharides, and thereby remarkably reducing the amount of oligosaccharide absorbed into the intestines.
- Another object of the present invention is to provide a pharmaceutical composition comprising at least one of said microorganisms in an amount effective to prevent or treat obesity and diabetes mellitus and a pharmaceutically acceptable carrier.
- Another object of the present invention is to provide a method for preventing or treating obesity, diabetes mellitus comprising administering to a subject in need thereof capable of pharmaceutical comprising a method for reducing weight gain, controlling blood glucose level and control absorption of blood lipod.
- microorganisms that can be used for the pharmaceutical composition of the present invention preferably fall within Acetobacter genus, Gluconobacter genus, Lactobacillus genus, and Acrobacterium genus, which are capable of living in the intestine and not harmful to human body, and are capable of converting oligosaccharides into polysaccharides that cannot be absorbed into human body.
- the following microorganisms can be used as microorganisms of the pharmaceutical composition of the present invention, such as, Acetobacter xylinum, A. hansenii, A. pasteurianus, A. aceti, Lactococcus cremoris, Lactobacillus helveticus, L.
- the microorganisms can be used as an active principle of the pharmaceutical composition of the present invention is Lactobacillus sp. BC-Y009 (KCTC0774BP) strain or Acetobacter sp. BC-Y058 (KCTC0773BP) strain.
- the pharmaceutical composition of the present invention may be administered in a form of tablet, capsule, suspension or emulsion, which comprises excipients, pharmaceutically acceptable vehicles and carriers which are selected depending on administration routes.
- the pharmaceutical formulation of the present invention may further comprises supplemental active ingredients.
- the pharmaceutical composition of the present invention may further comprises lubricants, moisturizer, emulsifier, suspension stabilizer, preservative, sweetener and flavor.
- the pharmaceutical composition of the present invention may be in a form of an enteric coating formulation produced by various methods which have been publicly known, in order to deliver the active ingredients of the pharmaceutical composition, i.e., microorganisms, to the small intestines without degradation by gastric juices in stomach.
- microorganisms of the present invention may be administered in a form of capsule prepared by conventional process.
- standard vehicles and lyophilized microorganisms of the present invention are mixed together and prepared to pellets and then, the pellets are filled into hard gelatin capsules.
- the microorganisms of the present invention and pharmaceutically allowable vehicles for example, aqueous gum, cellulose, silicate or oil are mixed to produce a suspension or emulsion and then, this suspension or emulsion may be filled into soft gelatin capsule.
- the pharmaceutical composition of the present invention may be prepared as an enterically coated tablets or capsules for oral administration.
- the enteric coating includes all conventional pharmaceutically acceptable coating that has resistance to gastric juice, however, in the small intestines, can disintegrate sufficiently for a rapid release of the microorganisms of the present invention.
- the enteric coating of the present invention can be maintained for more than 2 hours in synthetic gastric juice, such as HCl solution of pH 1 at the temperature of 36° C. to 38° C. and desirably, decomposes within 0.5 hours in synthetic intestinal juice, such as KH 2 PO 4 buffer solution of pH 6.8.
- synthetic gastric juice such as HCl solution of pH 1 at the temperature of 36° C. to 38° C. and desirably, decomposes within 0.5 hours in synthetic intestinal juice, such as KH 2 PO 4 buffer solution of pH 6.8.
- the enteric coating of the present invention applies to each tablet with the amount of about 16 to 30 mg, desirably 16 to 25 mg, more desirably 16 to 20 mg.
- the thickness of enteric coating of the present invention is 5 to 100 ⁇ m, desirably 20 to 80 ⁇ m.
- the components of the enteric coating are selected appropriately from common polymeric materials which have been publicly well known.
- the polymeric materials which may be employed for enteric coating of the present invention are enumerated and described in the flowing articles [The Theory and Practices of Industrial Pharmacy, 3rd Edition, 1986, pp. 365-373 by L. Lachman, Pharmazeutician Technologie, thieme, 1991, pp. 355-359 by H.
- cellulose ester derivative, cellulose ether and copolymer of acryl and methyl acrylate or maleic acid or phthalic acid derivative may be used in enteric coating of the present invention.
- the preferred enteric coating of the present invention are prepared from polymers of cellulose acetate phthals or trimelitate and methacrylic copolymer (for example, copolymer of more than 40% of methacrylic acid and methacrylic acid which contains hydroxyprophyl methylcellulose phthalate or derivatives from ester thereof.
- Endragit L 100-55 manufactured by Rohm GmbH of Germany may be used as a raw material for the enteric coating of the present invention.
- Cellulose acetate phthalate employed in the enteric coating of the present invention has about 45 to 90 cP of viscosity, 17 to 26% of acetyl contents and 30 to 40% of phthalate contents.
- the cellulose acetate trimelitate used in the enteric coating has about 15 to 21 cS of viscosity, 17 to 26% of acetyl contents, and 25 to 35% of trimelityl contents.
- the cellulose acetate trimelitate which is manufactured by the Eastman Kodak Company may be used as a material for the enteric coating of the present invention.
- Hydroxyprophyl methylcellulose phthalate used in the enteric coating of the present invention has molecular weight of generally 20,000 to 100,000 dalton, desirably 80,000 to 130,000 dalton and has 5 to 10% of hydroxyprophyl contents, 18 to 24% of metoxy contents, and 21 to 35% of phthalyl contents.
- Cellulose acetate phthalate manufactured by the Eastman Kodak Company can be used as a material for the enteric coating of the present invention.
- HP50 Hydroxyprophyl methylcellulose phthalate used in the enteric coating of the present invention
- HP50 which is manufactured by the Shin-Etsu Chemical Co. Ltd., Japan.
- the HP50 has 6 to 10% of hydroxyprophyl contents, 20 to 24% of metoxy contents, 21 to 27% of prophyl contents, and molecular weight is 84,000 dalton.
- Another material for enteric coating manufactured by the Shin-Etsu Chemical Co. Ltd. is HP55.
- HP55 can also be used as material for the enteric coating of the present invention.
- the HP55 has 5 to 9% of hydroxyprophyl contents, 18 to 22% of metoxy contents, 27 to 35% of phthalate contents, and molecular weight is 78,000 dalton.
- the enteric coating of the present invention is prepared by using conventional methods of spraying the enteric coating solution to the core.
- Solvents used in the process of the enteric coating are alcohol such as ethanol, ketone such as acetone, halogenated hydrocarbon such as dichloromethane, or the mixture thereof.
- Softeners such as Di-n-butylphthalate and triacetin are added to the enteric coating solution in the ratio of 1 part coating material to about 0.05 or to about 0.3 part softner.
- a spraying process is preferably performed continuously, and the amount of materials sprayed may be controlled depending on the condition of the coating process.
- Spraying pressure may be regulated variously and, generally, desirable result can be obtained under the pressure of average 1 to 1.5 bar.
- the effective amount means the minimum amount of the microorganisms of the present invention, which can reduce the amount of oligosaccharide absorbed into the body through the intestines of mammalian animals.
- the amount of microorganisms administered into a body with the pharmaceutical composition of the present invention may be adjusted depending on the administration method and the administration subject.
- composition of the present invention may be administered once or more per day on the subject.
- the unit of administration amount means that it is separated physically and thus is suitable for the unit administration for the human subjects and all other mammalian animals.
- Each unit contains a pharmaceutically acceptable carrier and the amount of the microorganisms of the present invention which are effective in therapy.
- An oral administration unit of an adult patient contains microorganisms of the present invention in an amount, desirably, 0.1 g or more, and the composition of the present invention contains 0.1 to 10 g per one time administration, desirably 0.5 to 5 g.
- the effective amount of microorganisms of the present invention is 0.1 g per 1 day.
- the administration amount can vary depending on the weight and the severity of obesity of the patient, supplemental active ingredients included and microorganisms used therein.
- composition of the present invention means not only as medicinal products but also to serve as functional foods and health complementary foods.
- composition of the present invention functions to treat and prevent obesity and diabetes mellitus.
- FIG. 1 is the graph illustrating the absorption rate of glucose by the microorganisms of the present invention.
- FIG. 2 is the graph illustrating the change of blood glucose level after taking the microorganisms of the present invention.
- FIG. 3 is the graph illustrating the change of energy metabolism efficiency of obese mouse that has taken the microorganism of the present invention.
- FIG. 4 is the graph illustrating the change of energy metabolism efficiency of control mouse that has taken the microorganism of the present invention.
- FIG. 5 is the graph illustrating the change of the body weight of obese mouse induced by pharmacological prescription.
- FIG. 6 is the graph illustrating the change of the metabolic efficiency of obese mouse induced by pharmacological prescription.
- FIG. 7 is the phylogenetic analysis diagram of Lactobacillus BC-Y009 based on 16 s rRNA nucleotide sequence of the present invention.
- FIG. 8 is the phylogenetic analysis diagram of Lactobacillus BC-Y058 based on 16 s rRNA nucleotide sequence of the present invention.
- microorganisms which can be used in the pharmaceutical composition of the present invention for preventing and treating obesity and diabetes mellitus, or in a method therefore, should satisfy the requirements of 1) being capable of proliferating within the intestinal layers, 2) being capable of absorbing oligosaccharide rapidly and of converting them into non-digestable or hardly digestable high molecular weight materials, such as fibrous materials, and 3) being harmless to human body and animals. All microorganisms that can satisfy the above requirements can be used as active principles of the pharmaceutical composition of the present invention and for use of the pharmaceutical composition, and may be obtained from the numerous microorganism depository institutions in the world.
- the microorganisms of the pharmaceutical composition of the present invention are Acetobacter xylinum, Acetobacter BC-Y058, Acetobacter hansenii, Acetobacter pasteurianus, Acetobacter aceti, Leuconostoc sp., Bacillus sp., Lactobacillus BC-Y009, Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus kefir, Lactobacillus keriranofaciens, Lactobacillus bifidus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii, Lactobacillus helveticusglucos var.
- Lactobacillus helveticus Lh59 secretes an exopolysaccharide that is identical to the one produced by Lactobacillus helveticus TN-4, a presumed spontaneous mutant of Lactobacillus helveticus TY 1-2”
- Bacillus subtilis as an antidiarrhoeal microorganism
- the present inventors have isolated and obtained novel microorganisms which can be used as an active principle of the pharmaceutical composition of the present invention.
- Samples of microorganisms collected from the glucose factory sewage and other locations were inoculated in MRS and BHS agar mediums containing cycloheximide, and then cultured. Colonies formed in agar medium were then inoculated into MRS and BHS liquid medium and incubated without shaking. Microorganisms that formed a matrix or a membrane shape on top layers of the medium were selected. Formed membranes were separated and tested for whether or not the separated membranes were decomposed by the intestinal digestive enzyme. The results determined whether non-digestable (or hardly digestable) high molecular-weight compounds were produced or not.
- BC-Y009 and BC-Y058 were selected for their high productivity of extracellular polysaccharide (dietary fiber).
- BC-Y009 is a novel microorganism which falls within the Lactobaccilus genus and BC-Y058 as a novel microorganism of Acetobacter genus.
- Lactobacillus BC-Y009 and Acetobacter BC-Y058 of the present invention were administered into a mouse which was induced to have obesity and diabetes mellitus.
- the blood glucose level of a subject mouse had been decreased approximately 70% after administration.
- microorganisms of the present invention has an effect in decreasing blood glucose level and thus it is effective for treating and preventing against diabetes mellitus.
- the microorganisms of the present invention is found to be capable of controlling the occurrence of diabetes mellitus, obesity and circulatory diseases, for example, arteriosclerosis or myocardial infarction. Additionally, in case of a normal mouse, mouse administered with the composition of the present invention consumed more feed, thus energy efficiency had been decreased in comparison with a control mouse. However, it was confirmed that there was no side effects led from the administration upon observing that the change of lipid content was negligible.
- samples were collected from glucose factory sewage and other locations. 10 g of the mixture thus collected were disrupted and suspended in 90 ml of physiological saline solution(0.85% NaCl). The said suspended samples were diluted to 10 ⁇ 2 , 10 ⁇ 4 , and 10 ⁇ 6 in physiological saline solution.
- MRS agar medium containing 1 mg of cycloheximide per 100 ml medium(1% Peptone, 1% beef extract, 0.5% yeast extract, 2% glucose, 0.1% Tween-80, 0.2% Citric Acid Ammonium, 0.5% Sodium Acetate, 0.01% MgSO 4 , 0.005% MnSO 4 , 0.2% Sodium Phosphate pH6.5) and on BSH agar medium(2% glucose, 0.5% Peptone, 0.5% yeast extract, 0.27% Na 2 HPO 4 , 0.115% Citric Acid pH 5.0)(Hestirin and Schramm, J. Gen. Microbiol., 11:123,1954) and cultured in 30° C. for 72 hours.
- each medium were centrifuged at 6,000 rpm in 4° C. to obtain the precipitation of microorganisms.
- Cell membrane were disrupted by alkali lysis in 0.1 N NaOH solution and left alone in 800° C. for 30 minutes and centrifuged at 6,000 rpm in 4° C. and repeated multiple times, the above process in entirety.
- Extracellular polysaccharide entangled like white strings were isolated and lyophilized to be measured the amount thereof.
- Microorganisms with high extracellular polysaccharide productivity were selected and extracellular polysaccharide productivity was compared with each other (Table 1).
- Microorganisms which show high polysaccharide productivity selected from the Example 1 were BC-YO09, BC-Y002, BC-Y015, BC-Y026, BC-Y058, BC-Y112, BC-Y130, and BC-Y201.
- BC-YO09, BC-Y002, BC-Y015 and BC-Y026 were microorganisms of Lactobacillus genus
- BC-Y058, BC-Y112, BC-Y130 and BC-Y201 were microorganisms of Acetobacter genus.
- BC-Y009 and BC-Y058 which show high polysaccharide productivity were inoculated in MRS and BSH liquid mediums at 30° C. for 72 hours and cultured in suspension. Cultured mediums were centrifuged at 6,000 rpm in 4° C. to obtain microorganisms and the nucleic acids thereof were isolated by means of using the CTAB/NaCl method. By using 16 s rRNA consensus primer, 16 s rRNA was amplified by means of PCR method, and the sequence thus obtained, was determined.
- top right of table indicates number of base pairs which show difference
- bottom left of table indicates % homology
- top right of table indicates number of base pairs which show difference
- bottom left of table indicates % homology
- BC-Y009 is a gram-positive bacteria and 0.5 to 3.0 ⁇ m in size. It is a non-motile & short-rod shaped bacteria. It does not form spores and is facultative anaerobic.
- the growth temperature is between 20° C. to 37° C. and pH level is 2.0 to 8.0 and optimal pH level is 4.0 to 7.0.
- the experimental results showed that this microorganism was condensed in milk and was negative (non-reactive) to catalase and formed white colored colony in complex medium. It was precipitated in MRS liquid medium and BSH liquid medium in form of white colored capsule. The turbidity of the liquid medium was clear and the microorganism produced extracellular polysacchardie in clear medium and in case liquid medium was shaken, the extracellular polysacchride (dietary fiber) were broken into small particles.
- BC-Y058 is a gram-negative bacteria, rod shaped bacteria and 0.6 to 0.8 ⁇ m in size and exists as single or a pair. It is also a non-motile and does not form spores. Growth rate thereof is slow, therefore 5 to 7 days of incubation time is needed and colonies formed are small and hard. In liquid medium, clear cellulose pellicle is formed. Ethanol, acetic acid, or lactic acid can be used as substrates and showed positive response to catalase. This microorganism produces acid by using glucose and in Hoier medium, it can not grow.
- BC-Y009 was named as Lactobacillus sp. BC-Y009 and BC-Y058 as Acetobacter sp. BC-Y058. They were deposited in KCTC(Korean Collection for Type Cultures) on May 30, 2000, and the deposit number were granted as KCTC BC-Y009, KCTC BC-Y058, respectively.
- porcine pancreatin that shows the activity of 3 ⁇ U.S.Pharmacopia (manufactured by Sigma) and comprises amylase, lipase, protease and nuclease, was suspended in buffer solution (pH7.5) of 1 g of dried dietary fiber. This suspension was incubated for 7 days at 40° C. and the suspension was collected once a day and the glucose therein was analyzed quantitatively by using DNS(3,5-dinitrosalicylic acid). The result thereof showed that dietary fibers has never been decomposed at all.
- the dietary fibers produced by the microorganisms of the present invention do not decompose within the intestine.
- Glucose absorption rates of Lactobacillus acidophilus (KCTC3140), L. hilgardii (KCTC3500) known as probiotics, and the said Lactobacillus BC-Y009, Acetobacter BC-Y002, Acetobacter BC-Y058 and E. coli., were measured in the condition of the intestine. The results are represented in FIG. 1 and Table 4.
- the microorganisms of the present invention are superior to the other lactic acid bacteria in terms of glucose absorption rate.
- Glucose concentration decreased by the bacteria of unit O.D. per unit time. glucose concentration initial glucose glucose decreased per initial concentration concentration unit time and unit O.D.600 nm (mM) after 1 hour(mM) O.D.(mM/hr/O.D.) E.
- OB Mouse Mouse C57BL/6J Lep ob ob/ob genetically induced of obesity and diabetes mellitus(hereinafter, “OB Mouse”), was starved for 18. hours and fed the composition of the present invention (the number of microorganism of the composition was 1.0 ⁇ 10 13 CFU/g) containing 1% of Lactobacillus BC-Y009, Acetobacter BC-Y058 (w/w, drying weight) for 7 days, and then the bacterial concentration in the duodenum, the jejunum, and the large intestine of these mice were analyzed. In addition, the bacterial concentration in the duodenum, the jejunum, and the large intestine of the control OB mouse that had been fed the feed without containing the microorganisms of the present invention, was analyzed.
- mice 100 g of mouse feed purchased from SAMYANG Co. and 400 g of Korean rice were mixed to make a composition in which carbohydrate content was 60%, then 5 g of dried Lactobaccillus BC-Y009 or Acetobacter BC-Y058 were added thereto to prepare a lyophilized tablet. Mice were fed this tablet with water.
- mice tested in this Example were female and OB mice.
- Acetobacter feed group (OB-058), Lactobacillus feed group (OB-009), and the control group (OB-con, which has no microorganism of the present invention in the feed) were bred separately.
- the breeding condition was that there was light every 12 hour intervals (9:00-21:00 lighted, 21:00-9:00 no lighted) and maintained 20 to 24° C. and 40 to 60% humidity.
- enteric coating solution was sprayed on dried Lactobacillus BC-Y009 or Acetobacter BC-Y058 to produce the compostion of the present invention which comprises enteric coated microorganisms.
- the weight of the enteric coating of material on the composition was approximately 16 to 30 mg or less per tablet.
- the materials for the enteric coating were selected from common high molecular weight materials, such as, cellulose acetate phthalate, trimelitate, copolymer of methacrylic acid (Methylacrylic acid 40% or more, especially methylacrylic acid including hydroxypropyl methylcellulose phthalate and its ester derivatives), or mixture thereof.
- Methylacrylate used in the Example was Endragit L 100-55 manufactured by Rohm GmbH(Germany), cellulose acetate phthalate with about 45 to 90 cP of viscosity, 17 to 26% of acetyl content and 30 to 40% of phthalate content, or cellulose acetate trimelitate manufactured by the Eastman Kodak Company (approximately 15 to 20 cS of viscosity, 17 to 26% of acetyl content and 25 to 35% of trimelityl content).
- the enteric coating was produced by a conventional coating process wherein the enteric coating solution was sprayed on a core. Ethanol and acetone mixture was used as solvent and a softening agent was added to the coating solution in a ratio of 1 to approximately 0.005 or 0.3.
- the enteric coating composition of the present invention produced by means of the process was provided to the mice with water for unrestricted taking.
- the blood glucose level of the mouse which has taken the enteric coating composition was measured.
- each mouse was starved for 18 hours. Following 60 minutes after starvation, sufficient amounts of feed were provided and after a 60 minute period, serum was collected from the retroorbital venous plexus by using anti-coagulating agent-free capillary tubes.
- the blood glucose level was measured by absorbance at 505 nm, using the Trinder kit (Cat. 315-500, Sigma, USA) which employs enzyme coloring method.
- the statistical error of the results was indicated by average ⁇ standard deviation per experimental group, and statistical significance of the average difference in each group was tested through ANOVA (p ⁇ 0.02).
- FIG. 2 Data for blood glucose level are illustrated in FIG. 2 .
- the blood glucose level for OB-con group is approximately 500 mg/dl, whereas OB-058 blood glucose level is low.
- the blood glucose levels of each mouse had been decreased to approximately 70% and 53% each (Table 7).
- TABLE 7 The change of blood glucose level after administration of Acetobacter BC-Y058 and Lactobacillus BC-Y009 OB-009 OB-058 OB-con Blood glucose 229 ⁇ 16 141 ⁇ 19 492 ⁇ 60 level(mg/dl)
- mice were classified as OB-058 group, OB-009 group, OB-con group, and Acetobacter BC-Y058 and Lactobacillus BC-Y009 were administered on each group and the weight of each mouse was measured in weekly intervals. Along with the measuring of changes in weight, the weight of feed consumed by the mice was also measured, therefore changes of metabolic efficiency of each group were investigated.
- the weight increase of the mice fed feed which comprises the microorganisms of the prevent invention was the same as that of the mice fed that does not contain the microorganism of the prevent invention.
- the results indicate that because Acetobacter BC-Y058 and Lactobacillus BC-Y009 suppress increase of blood glucose levels after meal, increase of feed consumption occurs as its compensation.
- increase of weight can be decreased by feeding the microorganism of the present invention without causing no further weight increase because of lower metabolic efficiency. Because of the conversion of glucose into dietary fiber by BC-Y058 and BC-Y009 microorganism, metabolic efficiency has changed.
- each mouse was administered with 1 g/kg of goldthioglucose (Cat. A-0632, Sigma, USA) in order to induce obesity. And every 3 or 4 weeks, weight change was measured and only obesity-induced mice were selected. For accuracy of the experiment, a mouse of which weight increase was too great or too little relatively, was excluded from the experiment.
- goldthioglucose Cat. A-0632, Sigma, USA
- the target was female C57BL/6J mice and breeding environment and conditions were the same as those in Example 6.
- the test subjects were classified into BC-Y058 group, KCTC3140 group, KCTC3500 group, and BC-Y009 group depending on microorganisms.
- mice The weight changes of mice depending on microorganisms administered with, are illustrated in FIG. 5 and it is confirmed that when Acetobacter BC-YO58 and Lactobacillus BC-Y009 were administered, the weight increase rate has decreased.
- the change of blood lipid, especially cholesterol change was analyzed and confirmed whether or not the microorganisms affected the circulatory disease, such as, artheriosclerosis and myocardial infarction besides diabetes mellitus and obesity.
- Lipid analysis was performed by means of enzyme coloring method as in Example 6, using TG-glycezyme-V (Young-Yeoun Chemical Co., Japan), HDL-zyme-V (Young-Yeoun Chemical Co., Japan), Cholestezyme-V (Young-Yeoun Co., Japan), LDL cholesterol (Cat. 61532, BioMeriux, France), to measure the absorbance at 505 to 570 nm with standard solution, and the amount of lipid in blood was calculated.
- TG-glycezyme-V Young-Yeoun Chemical Co., Japan
- HDL-zyme-V Young-Yeoun Chemical Co., Japan
- Cholestezyme-V Young-Yeoun Co., Japan
- LDL cholesterol Cat. 6152, BioMeriux, France
- lipid concentration before feed administration did not show any differences in obese mouse.
- Acetobacter BC-Y058 and Lactobacillus BC-Y009 were administered, as indicated in Table 12, the change of lipid concentration was apparent after 7 weeks.
- the microorganisms of the present invention are capable of living within the intestine and converting monosaccharides and disaccharides into high molecular weight materials which cannot be absorbed and hardly digestible in the intestine, thereby remarkably reducing the amount of monosaccharide to be absorbed. Therefore, the energy required for metabolic activity is provided from lipids and protein accumulated in the body, thus effectively suppressesing obesity and diabetes mellitus.
- the microorganisms of the present invention produce dietary fibers within the intestine and excreting harmful materials along with these dietary fibers, to prevent appendicitis or large intestinal cancer, to suppress cholesterol absorption and to clean the intestine.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Endocrinology (AREA)
- Emergency Medicine (AREA)
- Child & Adolescent Psychology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
The present invention relates to microorganisms for the treatment or the prevention of obesity or diabetes mellitus, which reduce the amount of monosaccharide or disaccharide which may be absorbed into human body by converting monosaccharides such as glucose, fructose, galactose et al. and disaccharides into polymeric materials which cannot be absorbed by the intestine, and relates to a pharmaceutical composition containing the said microorganisms.
Description
- The present invention relates to microorganisms for preventing or treating obesity or diabetes mellitus, which are capable of reducing an amount of monosaccharides or disaccharides that can be absorbed into the intestine by converting those mono or disaccharides into polymeric materials that cannot be absorbed in the intestines. The present invention also relates to use of the microorganisms for preventing or treating obesity or diabetes mellitus and a pharmaceutical composition containing the microorganisms.
- Obesity is well known as a chronic disease caused by various factors whose origins have not yet been clearly discovered. It is understood that obesity induces hypertension, diabetes mellitus, coronary heart disease, gall bladder disease, osteoarthritis, sleep apnea, respiratory disorder, endomerial, prostate, breast and colon cancer and the like.
- According to the NIH Report (THE EVIDENCE REPORT: Clinical Guideline on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults, 1999, NIH), about 97,000,000 Americans suffer from overweighting and obesesity, and the number of patients of type II diabetes mellitus associated with obesity, reaches about 15,700,000. Moreover, it is reported that about 200,000 people die of diseases associated with obesity each year (Dan Ferber, Science, 283, pp 1424, 1999).
- Diabetes mellitus is one of the most widespread chronic diseases in the world, which impose a substantial expense on the public as well as on patients of diabetes mellitus and their families.
- There are several types of diabetes mellitus that are caused by various etiological factors and whose pathogenesis is different from each other. For example, genuine diabetes mellitus is characterized by high level of blood glucose and glycosuria, and is a chronic disorder of carbohydrate metabolism due to a disturbance of the normal insuline mechanism.
- Non-Insulin-Dependent Genuine Diabetes Mellitus (NIDDM), or the type II diabetes mellitus is found in adults who have insulin-resistance in a peripheral target tissue, despite of normal generation and function of insulin. Non-Insulin-Dependent Genuine Diabetes Mellitus(NIDDM) can be caused by three important metabolic disorders, i.e., insulin-resistance, fucntional disorder of insulin secretion stimulated by nutrients, and overproduction of glucose in liver. Failure to treat NIDDM, resulting in losing control of blood glucose levels, leads to death of patients from diseases such as atherosclerosis, and/or may cause late complications of diabetes, such as retinopathy, nephropathy or neuropathy.
- Accompanying diet-exercise therapy, NIDDM therapy uses sulfonylurea and biguanidine compounds to control blood glucose levels. Recently, therapeutic compounds such as metformin or acarbose have been used for treating NIDDM. However, diet-exercise therapy alone or even combined with chemotherapy using such compounds fails to control hyperglycemia in some of the diabetes mellitus patients. In such cases, these patients require exogenous insulin.
- Administration of insulin is very expensive and painful to patients, and furthermore, may cause various detrimental results and various complications in patients. For example, incidences, such as, miscalculating insulin dosage, going without a meal or irregular exercise, may cause insulin response (hypoglycemia) and sometimes the insulin response occurs even without any particular reasons. Insulin injection may also cause an allergy or immunological resistance to insulin.
- There are several methods for preventing or treating obesity or diabetes mellitus, including diet-exercise therapy, surgical operation and chemotherapy. Diet-exercise therapy involves a low-calorie and low-fat diet accompanying aerobic exercise, but this therapy requiring a regular performance is hard to continue until achieving the goal.
- Despite of instant effects, a surgery for physically removing body fat has limitations due to the risk and cost involved in a surgical operation and insufficient durability of the effects.
- As one of the most promising therapies currently developed, pharmacotherapy can reduce blood glucose level, inhibit absorption of glucose, strengthen the action of insulin or induce the decrease of appetite. The medicines that have been developed so far use various physiological mechanisms for the prevention and the treatment of obesity and diabetes mellitus.
- Some medicines, such as, sulfonylurea, mefformin, pioglitazone or thiazolidindione derivatives and the like have been developed to enhance the function of insulin. Although sulfonylurea stimulates insulin-secretion from β-cells in the pancreas, it may accompany side effects, such as hypoglycemia resulting from lowering blood glucose levels under normal levels.
- Mefformin is mainly used for insulin-nondependent diabetes mellitus patients who fail to recover after diet-exercise therapy. This medicine inhibits hepatic gluconeogenesis and enhances glucose disposal in muscle and adipose tissue. However, it suffers from side effects, such as, nausea, vomiting and diarrhea.
- Pioglitazone developed by Takeda in Japan, enhances the function of insulin through increasing susceptibility of cells to insulin (Kobayashi M. et al., Diabetes, 41(4), pp 476-483, 1992).
- Beta 3-adreno receptor inhibitor (BRL-35135) known as a medicine that stimulates the decomposition of body fats and that convert body fats into heat with a specific action on adipose cells, also suffers from lowerings blood glucose level.
- The inhibitor of a pancreatic lipase (Orlistat produced by Roche of Switzlend) inhibits and/or reduces absorption of body fats by inhibiting pancreatic lipase. It, however, accompanies undersirable inhibition of absorption of fat-soluble vitamin and may also cause breast cancer.
- Generally, medicines that decrease appetite affects catecholamine in the brain. However, dexfenfluororamine and fenfluoroamine have side effects of nerve toxicity and valvular heart disease. Also, sibutramine has side effects of increasing heart rate and blood pressure.
- α-Glucosidase inhibitor (Acarbose produced by Bayer of Germany), is known as a glucose absorbing inhibitor. Acarbose is pseudo-monosaccharide which competitively inhibits the action of various α-glucosidases existing in microvilli of the gastrointestinal tract. However, taking a large amount of these may induce diarrhea. (W. Puls et al., Front. Horm. Res. 2, 235, 1998).
- Amylase inhibitor that inhibit converting carbohydrates into oligosaccharides has been developed to prevent imbalance of metabolism originated from excessive uptake of nutrient. (Sanches-Monge R. et al. Eur. J. Biochem., 183, 003740, 1989).
- Dietary fiber using diet with a large amount of vegetable fiber is the easiest way to obtain inhibitory effect on obesity by lowering glucose and/or fat amounts absorbed in the intestine. However, such method also involves problems in requiring facility and manpower for the production of dietary fiber with low productivity.
- Polymeric materials, such as, isomaltotriose, dextran and pullulan, inhibit the increase of blood glucose level originated from glucose. However, such materials also cause severe side effects. For example, dextran may induce excessive bleeding by delaying a blood coagulation time.
- Among said various medicines, dietary fibers are the most useful medicine for prevention or treatment of obesity because no damage to the human metabolism-balance and use natural substances.
- Microorganism dietary fiber is produced using microorganisms, such as, Gluconobacter sp., Agrobacterium sp., Acetobacterxylinum, A. hansenii, A. pasteurianus, A. aceti, Rhizobium sp., Alcaligenes sp., Sarcina sp., Streptococcus thermophilus, Lactococcus cremoris, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii subsp., Lactobacillus helveticusglucose var. jugurti, Leuconostoc dextranicum, Bulgariscus sp., Campestris sp., Sphingomonas sp.
- Dietary fiber produced by these microorganisms is used as stabilizer, thickening agent, emulsifier, hygroscopic agent of various foods and raw materials of cosmetics and pharmaceuticals. Microorganism cellulose, xanthan, acetan, guar gum, locust bean gum, carrageenan, alginate, and agar obtained from seaweed are commercialized.
- Lactobacillus sp. strain is the major component of normal microbial flora in the human intestines. Its significant roles for maintaining digestive organ and for healthy environment of the vagina, have been well known. [Bible, D. J., ASM News, 54:661-665,1988; Reid G. and A. W. Bruce, In H Lappin-Scott (de.), Bacterial biofilms, Cambridge University Press, Cambridge, England, p. 274-281,1995; Reid G., A. W. Bruce, J. A. McGroarty, K. J. Cheng, and J. W. Costerton, clin. Microbiol. Rev., 3:335-344, 1990]. Generally, Lactobacillus strain inhabits in digestive organs (L. acidophilus, L. intestinalis, L. johnsonii, L. reuteri et al.,), muscosa of the vagina (L. vanginals, L. gasseri), food (wine-L. hilgardii), lactobacillus beverage (L. kefir, L. kefiranofaciens), cheese (L. casei), vinegar (L. acetotolerance), the oral cavity (L. oris), yeast (L. sake, L. homohiochi), fruit juice (L. kunkeei, L. mali, L. suebicus), fermented sausages or fish (L. farciminis, L. alimentarious) et al.
- Many people take health complementary food containing a Lactobacillus sp. strain in order to maintain healthy intestines and to prevent urogenital tract infection. Recently, in addition to the prevention of the diarrhea, constipation and urogenital tract infection, various probiotic activities of Lactobacillus, such as, control of immunity, control of cholesterol level in blood, prevention of cancer, treatment of rheumatism, alleviation of sensitivity on lactose or effect for atopic dermatitis, have been reported and thus, have attracted more attention.
- According to the U.S. Public Health Service Guideline, all of the 262 Lactobacillus deposited in ATCC are classified as “
Bio-safety Level 1,” which stands for no potential risk, which has been known up to now, causing diseases in human or animals. There is no harm to human body among approximately 60 strains of Lactobacillus. - Recently, there has been a rapid progress in the research for an extracellular dietary fiber produced by Lactobacillus. It has been reported that a process of producing dietary fiber in these strains are very complicated because a lot of genes are mediated in the process, and the amount of dietary fiber thus produced are very low (Int. J. Food Microbiol.,
Mar 3 40:1-2,.87-92, 1998; Current Opinion in Microbiology, 2:598-603, 1999; Appl. Environ. Microbiol., Feburary 64:2, 659-64, 1998; FEMS Microbiol. Rev. April 23:2 153-77, 1999; FEMS Microbiol. Rev. September 7:1-2, 113-30, 1990). - Also, various researches on the synthesis of cellulose by Acetobacter sp. which is well known as a microorganism producing dietary fiber, have been performed (Aloni Y., cohen R., Benziman M., Delmer D, J Biological chemistry, 171:6649-6655, 1989; Ascher M., J. Bacteriology, 33:249-252, 1937; Benziman M., Burger-Rachamimv H., J., Bacteriology, 84:625-630, 1962; Brown A M. Journal of Polymer science, 59:155-169, 1962; Brown A M, Gascoigne J A, Nature, 187:1010-1012, 1960; Calvin J R, Planta D P, Benziman M., Padan E, PANS USA, 79:5282-5286,1982; Dehmer D P. Brown R M Jr., Cooper J B, Lin F C, Science, 230:82-825, 1985).
- Acetobacter is a strict aerobe but has characteristics of surviving and living under the condition of infinitesimal oxygen, and of being floated to seek for oxygen by means of synthesizing cellulose dietary fiber itself under this condition of infinitesimal oxygen. According to the research regarding the amount and rate of converting glucose into cellulose dietary fiber by Acetobacter (Brown et al.: Proc. Natl. Acad. Sci. USA, Vol 73 (12), 4565-4569), Acetobacter converts glucose into cellulose with the speed rate of 400 mol/cell/hour. This is equivalent to the rate that about 200 g glucose can be converted into cellulose dietary fiber by 4×1015 cells per an hour.
- Although Acetobacter that can metabolizes saccharose is rare, Acetobacter converting sacchores in glucose, exists in nature (PNAS, 9: pp 14-18). Presently, FDA of the United States has approved Acetobacter xylinum for synthesizing acetic acid and sorbose, and has classified it as generally safe microorganism (GRAS: Generally Recognized As Safe).
- As mentioned above, although there have been various researches and efforts to develop drugs for treatment or prevention of obesity and diabetes mellitus, their results were not satisfactory. Various chemical substances mentioned above, have been developed for treatment of obesity and diabetes mellitus, but still suffer from various side effects. These drugs forcibly discharge body fat together with valuable proteins. Consequently, any one single drug for treatment or prevention of obesity and diabetes mellitus at the origin thereof does not exist yet.
- Therefore, the object of the present invention is to provide microorganisms capable of living within the intestines and converting oligosaccharides produced by the digestive enzymes into non-digestable polysaccharides, and thereby remarkably reducing the amount of oligosaccharide absorbed into the intestines.
- Another object of the present invention is to provide a pharmaceutical composition comprising at least one of said microorganisms in an amount effective to prevent or treat obesity and diabetes mellitus and a pharmaceutically acceptable carrier. Another object of the present invention is to provide a method for preventing or treating obesity, diabetes mellitus comprising administering to a subject in need thereof capable of pharmaceutical comprising a method for reducing weight gain, controlling blood glucose level and control absorption of blood lipod.
- The microorganisms that can be used for the pharmaceutical composition of the present invention preferably fall within Acetobacter genus, Gluconobacter genus, Lactobacillus genus, and Acrobacterium genus, which are capable of living in the intestine and not harmful to human body, and are capable of converting oligosaccharides into polysaccharides that cannot be absorbed into human body. Specifically, the following microorganisms can be used as microorganisms of the pharmaceutical composition of the present invention, such as, Acetobacter xylinum, A. hansenii, A. pasteurianus, A. aceti, Lactococcus cremoris, Lactobacillus helveticus, L. bulgaricus, L. sake, L. reutari, L. lactis, the subspecies of L. delbrueckii, L. delbrueckii subsp., and a variant form of L. helveticusglucose. Preferably, the microorganisms can be used as an active principle of the pharmaceutical composition of the present invention is Lactobacillus sp. BC-Y009 (KCTC0774BP) strain or Acetobacter sp. BC-Y058 (KCTC0773BP) strain.
- The pharmaceutical composition of the present invention may be administered in a form of tablet, capsule, suspension or emulsion, which comprises excipients, pharmaceutically acceptable vehicles and carriers which are selected depending on administration routes. The pharmaceutical formulation of the present invention may further comprises supplemental active ingredients.
- Lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia gum, calcium phosphate, alginic acid salt, treguhkense latex, gelatin, calcium silicate, finecrystalline cellulose, polyvinylpyrolidon, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate and prophylhydroxybenzoate, talc, magnesium stearate or mineral oil may be used as carriers, exipients or diluents in the pharmaceutical composition of the present invention.
- In addition, the pharmaceutical composition of the present invention may further comprises lubricants, moisturizer, emulsifier, suspension stabilizer, preservative, sweetener and flavor. The pharmaceutical composition of the present invention may be in a form of an enteric coating formulation produced by various methods which have been publicly known, in order to deliver the active ingredients of the pharmaceutical composition, i.e., microorganisms, to the small intestines without degradation by gastric juices in stomach.
- Furthermore, microorganisms of the present invention may be administered in a form of capsule prepared by conventional process. For example, standard vehicles and lyophilized microorganisms of the present invention are mixed together and prepared to pellets and then, the pellets are filled into hard gelatin capsules. In addition, the microorganisms of the present invention and pharmaceutically allowable vehicles, for example, aqueous gum, cellulose, silicate or oil are mixed to produce a suspension or emulsion and then, this suspension or emulsion may be filled into soft gelatin capsule.
- The pharmaceutical composition of the present invention may be prepared as an enterically coated tablets or capsules for oral administration. The term “the enteric coating” of this application includes all conventional pharmaceutically acceptable coating that has resistance to gastric juice, however, in the small intestines, can disintegrate sufficiently for a rapid release of the microorganisms of the present invention.
- The enteric coating of the present invention can be maintained for more than 2 hours in synthetic gastric juice, such as HCl solution of
pH 1 at the temperature of 36° C. to 38° C. and desirably, decomposes within 0.5 hours in synthetic intestinal juice, such as KH2PO4 buffer solution of pH 6.8. - The enteric coating of the present invention applies to each tablet with the amount of about 16 to 30 mg, desirably 16 to 25 mg, more desirably 16 to 20 mg. The thickness of enteric coating of the present invention is 5 to 100 μm, desirably 20 to 80 μm. The components of the enteric coating are selected appropriately from common polymeric materials which have been publicly well known. The polymeric materials which may be employed for enteric coating of the present invention are enumerated and described in the flowing articles [The Theory and Practices of Industrial Pharmacy, 3rd Edition, 1986, pp. 365-373 by L. Lachman, Pharmazeutische Technologie, thieme, 1991, pp. 355-359 by H. Sucker, Hagers Handbuch der Pharmazeutischen Praxis, 4th Edition, Vol. 7, pp. 739, 742, 766, and 778, (SpringerVerlag, 1971), and Remington's Pharmaceutical Sciences, 13th Edition, pp.1689 and 1691 (Mack Publ., Co., 1970)]. For example, cellulose ester derivative, cellulose ether and copolymer of acryl and methyl acrylate or maleic acid or phthalic acid derivative may be used in enteric coating of the present invention.
- The preferred enteric coating of the present invention are prepared from polymers of cellulose acetate phthals or trimelitate and methacrylic copolymer (for example, copolymer of more than 40% of methacrylic acid and methacrylic acid which contains hydroxyprophyl methylcellulose phthalate or derivatives from ester thereof.
- Endragit L 100-55 manufactured by Rohm GmbH of Germany may be used as a raw material for the enteric coating of the present invention.
- Cellulose acetate phthalate employed in the enteric coating of the present invention, has about 45 to 90 cP of viscosity, 17 to 26% of acetyl contents and 30 to 40% of phthalate contents. The cellulose acetate trimelitate used in the enteric coating, has about 15 to 21 cS of viscosity, 17 to 26% of acetyl contents, and 25 to 35% of trimelityl contents. The cellulose acetate trimelitate which is manufactured by the Eastman Kodak Company may be used as a material for the enteric coating of the present invention.
- Hydroxyprophyl methylcellulose phthalate used in the enteric coating of the present invention has molecular weight of generally 20,000 to 100,000 dalton, desirably 80,000 to 130,000 dalton and has 5 to 10% of hydroxyprophyl contents, 18 to 24% of metoxy contents, and 21 to 35% of phthalyl contents. Cellulose acetate phthalate manufactured by the Eastman Kodak Company can be used as a material for the enteric coating of the present invention.
- Hydroxyprophyl methylcellulose phthalate used in the enteric coating of the present invention is HP50 which is manufactured by the Shin-Etsu Chemical Co. Ltd., Japan. The HP50 has 6 to 10% of hydroxyprophyl contents, 20 to 24% of metoxy contents, 21 to 27% of prophyl contents, and molecular weight is 84,000 dalton. Another material for enteric coating manufactured by the Shin-Etsu Chemical Co. Ltd., is HP55. HP55 can also be used as material for the enteric coating of the present invention. The HP55 has 5 to 9% of hydroxyprophyl contents, 18 to 22% of metoxy contents, 27 to 35% of phthalate contents, and molecular weight is 78,000 dalton.
- The enteric coating of the present invention is prepared by using conventional methods of spraying the enteric coating solution to the core. Solvents used in the process of the enteric coating are alcohol such as ethanol, ketone such as acetone, halogenated hydrocarbon such as dichloromethane, or the mixture thereof. Softeners such as Di-n-butylphthalate and triacetin are added to the enteric coating solution in the ratio of 1 part coating material to about 0.05 or to about 0.3 part softner.
- A spraying process is preferably performed continuously, and the amount of materials sprayed may be controlled depending on the condition of the coating process. Spraying pressure may be regulated variously and, generally, desirable result can be obtained under the pressure of average 1 to 1.5 bar.
- “The effective amount” of this specification means the minimum amount of the microorganisms of the present invention, which can reduce the amount of oligosaccharide absorbed into the body through the intestines of mammalian animals. The amount of microorganisms administered into a body with the pharmaceutical composition of the present invention may be adjusted depending on the administration method and the administration subject.
- The composition of the present invention may be administered once or more per day on the subject. The unit of administration amount means that it is separated physically and thus is suitable for the unit administration for the human subjects and all other mammalian animals. Each unit contains a pharmaceutically acceptable carrier and the amount of the microorganisms of the present invention which are effective in therapy.
- An oral administration unit of an adult patient contains microorganisms of the present invention in an amount, desirably, 0.1 g or more, and the composition of the present invention contains 0.1 to 10 g per one time administration, desirably 0.5 to 5 g. The effective amount of microorganisms of the present invention is 0.1 g per 1 day.
- However, the administration amount can vary depending on the weight and the severity of obesity of the patient, supplemental active ingredients included and microorganisms used therein. In addition, it is possible to divide up the. daily administration amount and to administer continuously, if needed. Therefore, range of the administration amount does not limit the scope of the present invention in any way.
- The “composition” of the present invention means not only as medicinal products but also to serve as functional foods and health complementary foods.
- In case of taking the composition of the present invention periodically, microorganisms form colony within the intestines and interrupt absorption of oligosaccharide in the body competitively. Also, non-digestable fibers produced by microorganisms make a healthy condition for other useful microorganisms within the intestines and stimulate the intestinal activity. Consequently, the composition of the present invention functions to treat and prevent obesity and diabetes mellitus.
- The above objects and other advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings, in which:
-
FIG. 1 is the graph illustrating the absorption rate of glucose by the microorganisms of the present invention. -
FIG. 2 is the graph illustrating the change of blood glucose level after taking the microorganisms of the present invention. -
FIG. 3 is the graph illustrating the change of energy metabolism efficiency of obese mouse that has taken the microorganism of the present invention. -
FIG. 4 is the graph illustrating the change of energy metabolism efficiency of control mouse that has taken the microorganism of the present invention. -
FIG. 5 is the graph illustrating the change of the body weight of obese mouse induced by pharmacological prescription. -
FIG. 6 is the graph illustrating the change of the metabolic efficiency of obese mouse induced by pharmacological prescription. -
FIG. 7 is the phylogenetic analysis diagram of Lactobacillus BC-Y009 based on 16 s rRNA nucleotide sequence of the present invention. -
FIG. 8 is the phylogenetic analysis diagram of Lactobacillus BC-Y058 based on 16 s rRNA nucleotide sequence of the present invention. - Hereinafter, the present invention will be described more in detail.
- The microorganisms which can be used in the pharmaceutical composition of the present invention for preventing and treating obesity and diabetes mellitus, or in a method therefore, should satisfy the requirements of 1) being capable of proliferating within the intestinal layers, 2) being capable of absorbing oligosaccharide rapidly and of converting them into non-digestable or hardly digestable high molecular weight materials, such as fibrous materials, and 3) being harmless to human body and animals. All microorganisms that can satisfy the above requirements can be used as active principles of the pharmaceutical composition of the present invention and for use of the pharmaceutical composition, and may be obtained from the numerous microorganism depository institutions in the world.
- Therefore, the microorganisms of the pharmaceutical composition of the present invention are Acetobacter xylinum, Acetobacter BC-Y058, Acetobacter hansenii, Acetobacter pasteurianus, Acetobacter aceti, Leuconostoc sp., Bacillus sp., Lactobacillus BC-Y009, Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus kefir, Lactobacillus keriranofaciens, Lactobacillus bifidus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii, Lactobacillus helveticusglucos var. jugurti., Lactococcus cremoris, Bifidobacterium bifidium, Streptococcus thermophilus or Pediococcus sp. Bacteria, which produce polysaccharide. These microorganisms are described in the following Articles:
- Bart Degeest and Luc De Vuyst,
- “Indication that the Nitrogen Source Influences Both Amount and Size of Exopolysaccharides Produced by Streptococcus thermophilus LY03 and Modelling of the Bacterial Growth and Exopolysaccharide Production in a Complex Medium”
- (Appl. Envir. Microbiol. 1999, 65: 2863-2870);
- Stacy A. Kimmel, Robert F. Roberts and Gregory R. Ziegler,
- “Optimization of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus R R Grown in a Semidefined Medium”
- (Appl. Envir. Microbiol. 1998, 64: 659-664.);
- P. L. Pham, I. Dupont, D. Roy, G. Lapointe and J. Cerning,
- “Production of Exopolysaccharide by Lactobacillus rhamnosus
- R and Analysis of Its Enzymatic Degradation during Prolonged Fermentation”
- (Appl. Envir. Microbiol. 2000, 66: 2302-2310.);
- Petronella J. Looijesteijn, Ingeborg C. Boels, Michiel Kleerebezem and Jeroen Hugenholtz,
- “Regulation of Exopolysaccharide Production by Lactococcus lactis subsp. cremoris by the Glucose Source”
- (Appl. Envir. Microbiol. 1999, 65: 5003-5008);
- G. H. Van Geel-Schutten, E. J. Faber, E. Smit, K. Bonting, M. R. Smith, B. Ten Brink, J. P. Kamerling, J. F. G. Vliegenthart and L. Dijkhuizen,
- “Biochemical and Structural Characterization of the Glucan and Fructan Exopolysaccharides Synthesized by the Lactobacillus reuteri Wild-Type Strain and by Mutant Strains”
- (Appl. Envir. Microbiol. 1999, 65: 3008-3014.);
- G. J. Grobben, I. Chin-Joe, V. A. Kitzen, I. C. Boels, F. Boer, J. Sikkema, M. R. Smith and J. A. M. de Bont,
- “Enhancement of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a Simplified Defined Medium”
- (Appl. Envir. Microbiol. 1998, 64:1333-1337.);
- Sandrine Petry, Sylviane Furlan, Marie-Jeanne Crepeau, Jutta Cerning and Michel Desmazeaud,
- “Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus Grown in a Chemically Defined Medium”
- (Appl. Envir. Microbiol. 2000, 66: 3427-3431.);
- Richard van Kranenburg, Iris I. van Swam, Joey D. Marugg, Michiel Kleerebezem and Willem M. de Vos,
- “Exopolysaccharide Biosynthesis in Lactococcus lactis NIZO B40: Functional Analysis of the Glycosyltransferase Genes Involved in Synthesis of the Polysaccharide Backbone”
- (J. Bacteriol. 1999, 181: 338-340.);
- Deborah Low, Jeffrey A. Ahlgren, Diane Horne, Donald J. McMahon, Craig J. Oberg and Jeffery R. Broadbent,
- “Role of Streptococcus thermophilus MR-1C Capsular Exopolysaccharide in Cheese Moisture Retention”
- (Appl. Envir. Microbiol. 1998, 64: 2147-2151.);
- Richard van Kranenburg and Willem M. de Vos,
- “Characterization of Multiple Regions Involved in Replication and Mobilization of Plasmid pNZ4000 Coding for Exopolysaccharide Production in Lactococcus lactis”
- (J. Bacteriol. 1998, 180: 5285-5290.);
- F Stingele, J R Neeser, and B Mollet,
- “Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6”
- (J. Bacteriol. 1996, 178: 1680-1690.);
- M Kojic, M Vujcic, A Banina, P Cocconcelli, J Cerning and L Topisirovic,
- “Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese”
- (Appl. Envir. Microbiol. 1992, 58: 4086-4088.);
- Christian Chervaux, S. Dusko Ehrlich and Emmanuelle Maguin,
- “Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium”
- (Appl. Envir. Microbiol. 2000, 66: 5306-5311.);
- J Lemoine, F Chirat, J M Wieruszeski, G Strecker, N Favre and J R Neeser,
- “Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12”
- (Appl. Envir. Microbiol. 1997, 63: 3512-3518.);
- Bart Degeest and Luc De Vuyst,
- “Correlation of Activities of the Enzymes—Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with Exopolysaccharide Biosynthesis by Streptococcus thermophilus LY03”
- (Appl. Envir. Microbiol. 2000, 66: 3519-3527.);
- Petronella J. Looijesteijn, Ingeborg C. Boels, Michiel Kleerebezem and Jeroen Hugenholtz,
- “Regulation of Exopolysaccharide Production by Lactococcus lactis subsp. cremoris by the Glucose Source”
- (Appl. Envir. Microbiol. 1999, 65: 5003-5008.);
- G. J. Grobben, I. Chin-Joe, V. A. Kitzen, I. C. Boels, F. Boer, J. Sikkema, M. R. Smith and J. A. M. de Bont,
- “Enhancement of Exopolysaccharide Production by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 with a Simplified Defined Medium”
- (Appl. Envir. Microbiol. 1998, 64: 1333-1337.);
- Richard van Kranenburg, Iris I. van Swam, Joey D. Marugg, Michiel Kleerebezem and Willem M. de Vos,
- “Exopolysaccharide Biosynthesis in Lactococcus lactis NIZO B40: Functional Analysis of the Glycosyltransferase Genes Involved in Synthesis of the Polysaccharide Backbone”
- (J. Bacteriol. 1999, 181: 338-340.);
- Williams W S and Cannon R E,
- “Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum”
- (Appl. Envir. Microbiol. 1989, 55:2448-2452.);
- Brown A M and Gascoigne J A,
- “Biosynthesis of cellulose by Acetobacter Acetigenum”
- (Nature 1960, 187:1010-1012.);
- Carr J G,
- “A strain of acetobacter aceti giving a positive cellulose reaction”
- (Nature 1958, 182:265-266.);
- Carr J G and Shimwell J L,
- “Old and new cellulose-producing Acetobacter species”
- (J. Inst. Brew. 1958, 64:477-484.);
- Colvin J R and Leppard G G,
- “The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus”
- (Can. J. Microbiol. 1977, 23:701-709.);
- Colvin J R and Webb T E,
- “The variable relation of oxygen consumption to cellulose synthesis by Acetobacter xylinum”
- (Can. J. Microbiol. 1964, 10:11-15.);
- Cook K E and Colvin J R,
- “Evidence for a Beneficial Influence of Cellulose Production on Growth of Acetobacter xylinum in Liquid Medium”
- (Curr. Microbiol. 1980, 3:203-205.);
- Fiedler S, Fussel M and Sattler K,
- “Production and application of bacterial cellulose”
- (Zentralbl Mikrobiol. 1989, 144:473-484.);
- Kauri T, Vladuttalor M and Kushner D J,
- “Production of Glycocalyxes by Bacteria Grown in the Presence of Cellulose”
- (Abstract ASM Meeting 1986, 273);
- Mounter L A,
- “Observations on the formation and structure of bacterial cellulose”
- (Biochemical Journal 1951, 50:128-132.);
- Valent B S and Albersheim P,
- “The effect of pH on binding of xyloglucan to cellulose” (Plant Physiol. 1973, 51 supp.:60.);
- Valla S and Kjosbakken J,
- “Isolation and characterization of a new extracellular polysaccharide from a cellulose-negative strain of Acetobacter xylinum”
- (Can. J. Microbiol. 1981, 27:599-603.);
- Valla S and Kjosbakken J,
- “Isolation and characterization of a new extracellular polysaccharide from a cellulose-negative strain of Acetobacter xylinum”
- (Can. J. Microbiol 1981, 27:599-603.);
- Valla S, Kjosbakken J and Coucheron D H,
- “Acetobacter xylinum contains several plasmids: evidence for their involvement in cellulose formation”
- (Archives of Microbiology 1983, 134:9-11.);
- Walker T K and Kaushal R
- “Formation of cellulose by Acetobacter acetigenum”
- (Nature 1947, 160:572-573.);
- Walker T K and Kaushal R,
- “Formation of cellulose by certain species of Acetobacter” (Biochemical J. 1951, 48:618-621.);
- Webb T E and Colvin J R,
- “The Variable Relation of Oxygen Consumption to. Cellulose Synthesis by Acetobacter xylinum”
- (Can. J. Microbiol. 1964, 10:11-15.);
- Webb T E and Colvin J R,
- “The extracellular proteins of Acetobacter xylinum and their relationship to cellulose synthesis”
- (Can. J. Biochemistry 1966, 45:465476.);
- Williams W S and Cannon R E,
- “Alternative environmental roles for cellulose produced by Acetobacter xylinium”
- (Appl. Environ. Microbiol. 1989, 55:2448-2452.);
- Wong H C, et al.,
- “Genetic organization of the cellulose in Acetobacter xylinium”
- (Proc. natl. acad. sci. USA 1990, 87:8130-8134.);
- Higashimura M, Mulder-Bosman B W, Reich R, Iwasaki T and Robijn G W,
- “Solution properties of viilian, the exopolysaccharide from Lactococcus lactis subsp. cremoris SBT 0495”
- (Biopolymers 2000, August 54:2 143-158.);
- Knoshaug E P, Ahlgren J A and Trempy J E,
- “Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352”
- (J. Dairy Sci. 2000, April 83:4 633-640.);
- Micheli L, Uccelletti D, Palleschi C and Crescenzi V,
- “Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran”
- (Appl. Microbiol. Biotechnol. 1999, December 53:1 69-74.);
- Looijesteijn P J, Boels I C, Kleerebezem M and Hugenholtz J,
- “Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris By the glucose source”
- (Appl. Environ. Microbiol. 1999, November 65:11 5003-5008.);
- Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Navarini L, Bosco M and Cescutti P,
- “Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization”
- (Int. J. Food Microbiol. 1999, October 15 51:2-3 105-111.);
- Van Kranenburg R, van Swam I I, Marugg J D, Kleerebezem M and de Vos W M,
- “Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone”
- (J. Bacteriol. 1999, January 181:1 338-340.);
- Breedveld M, Bonting K and Dijkhuizen L,
- “Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0-1”
- (FEMS Microbiol. Lett. 1998, December 15 169:2 241-249.);
- De Vuyst L, Vanderveken F, Van de Ven S and Degeest B,
- “Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis”
- (J. Appl. Microbiol. 1998, June 84:6 1059-1068.);
- Low D, Ahigren J A, Horne D, McMahon D J, Oberg C J and Broadbent J R,
- “Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention”
- (Appl. Environ. Microbiol. 1998, June 64:6 2147-2151.);
- Kimmel S A and Roberts R F,
- “Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR”
- (Int. J. Food Microbiol. 1998, March 3 40:1-2 87-92.);
- Duenas-Chasco M T, Rodriguez-Carvajal M A, Tejero-Mateo P, Espartero J L, lrastorza-Iribas A and Gil-Serrano A M,
- “Structural analysis of the exopolysaccharides produced by Lactobacillus spp. G-77”
- (Carbohydr. Res. 1998, Feburary 307:1-2 125-133.);
- Espartero J L, Irastorza-lribas A, Gil-Serrano A M, Duenas-Chasco M T, Rodriguez-Carvajal M A, Tejero Mateo P and Franco-Rodriguez G,
- “Structural analysis of the exopolysaccharide produced by Pediococcus damnosus 2.6”
- (Carbohydr. Res. 1997, October 7 303:4 453458.);
- Stingele F, Lemoine J and Neeser J R,
- “Lactobacillus helveticus Lh59 secretes an exopolysaccharide that is identical to the one produced by Lactobacillus helveticus TN-4, a presumed spontaneous mutant of Lactobacillus helveticus TY1-2”
- (Carbohydr. Res. 1997, August 7 302:3-4 197-202.);
- Bubb W A, Urashima T, Fujiwara R, Shinnai T and Ariga H,
- “Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901”
- (Carbohydr. Res. 1997, June 11 301:1-2 41-50.);
- Staaf M, Widmalm G, Yang Z and Huttunen E,
- “Structural elucidation of an extracellular polysaccharide produced by Lactobacillus helveticus”
- (Carbohydr. Res. 1996, Sepember 23 291: 155-164.);
- Robijn G W, Gutierrez Gallego R, van den Berg D J, Haas H, Kamerling J P and Vliegenthart J F,
- “Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433”
- (Carbohydr. Res. 1996, July 19 288: 203-218.);
- Robijn G W, Wienk H L, van den Berg D J, Haas H, Kamerling J P and Vliegenthart J F,
- “Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1”
- (Carbohydr. Res. 1996, May 14 285: 129-139.);
- Fontaine T, Wieruszeski J M, Talmont F, Saniez M H, Duflot P, Leleu J B and Fournet B,
- “Exopolysaccharide structure from Bacillus circulans”
- (Eur. J. Biochem. 1991,
Feburary 26 196:1 107-113.); - Osadchaia A I, Kudriavtsev V A and Safronova L A,
- “The role of amino acids in intensification of Bacillus subtilis exopolysaccharide biosynthesis in deep growth conditions”
- (Mikrobiologiia. 1995, Janurary -Feburary; 64(1):44-50.); and
- Mazza P,
- “The use of Bacillus subtilis as an antidiarrhoeal microorganism”
- (Boll. Chim. Farm. 1994, Janurary; 133(1):3-18.),
- which are hereby incorporated by reference in their entirety, including any drawings, as if fully set forth herein.
- In addition, the present inventors have isolated and obtained novel microorganisms which can be used as an active principle of the pharmaceutical composition of the present invention.
- In order to isolate and obtain novel microorganisms which satisfy the requirements for an active principle of the pharmaceutical composition of the present invention, the present inventors have researched as follows:
- Samples of microorganisms collected from the glucose factory sewage and other locations were inoculated in MRS and BHS agar mediums containing cycloheximide, and then cultured. Colonies formed in agar medium were then inoculated into MRS and BHS liquid medium and incubated without shaking. Microorganisms that formed a matrix or a membrane shape on top layers of the medium were selected. Formed membranes were separated and tested for whether or not the separated membranes were decomposed by the intestinal digestive enzyme. The results determined whether non-digestable (or hardly digestable) high molecular-weight compounds were produced or not. Among the microorganisms, BC-Y009 and BC-Y058 were selected for their high productivity of extracellular polysaccharide (dietary fiber).
- Upon observing the morphology of BC-Y009 and BC-Y058 and comparing with 16s rRNA's partial DNA sequences, it was confirmed that each showed high percentage of homology sequence when compared with Lactobacillus and Acetobacter. Based on the phenotype and 16s rRNA DNA sequence analysis, it was ascertained that BC-Y009 is a novel microorganism which falls within the Lactobaccilus genus and BC-Y058 as a novel microorganism of Acetobacter genus.
- Lactobacillus BC-Y009 and Acetobacter BC-Y058 of the present invention were administered into a mouse which was induced to have obesity and diabetes mellitus. The blood glucose level of a subject mouse had been decreased approximately 70% after administration.
- According to these results, it was confirmed that microorganisms of the present invention has an effect in decreasing blood glucose level and thus it is effective for treating and preventing against diabetes mellitus.
- When microorganisms of the present invention, BC-Y009 and BC-Y058 were administered into a mouse induced to have diabetes mellitus and obesity, the feed consumption rate increased 17 to 24% upon comparison with a control mouse. However, weight gain versus feed consumption amount was decreased. The result thus indicates that the microorganism composition of the present invention allows for humans to consume without worrying about obesity or diabetes mellitus.
- From the observation that a blood lipid level is also lower than that of control group in case of taking these microorganisms, the microorganisms of the present invention is found to be capable of controlling the occurrence of diabetes mellitus, obesity and circulatory diseases, for example, arteriosclerosis or myocardial infarction. Additionally, in case of a normal mouse, mouse administered with the composition of the present invention consumed more feed, thus energy efficiency had been decreased in comparison with a control mouse. However, it was confirmed that there was no side effects led from the administration upon observing that the change of lipid content was negligible.
- Hereinafter, the present invention will be further explained with reference to the following examples. The examples are given only for illustration of the invention and are not intended to limit the scope of the present invention.
- Selecting of Microorganism which Produces Extracellular Polysaccharide from Samples
- In order to isolate microorganisms which produce dietary fibers, samples were collected from glucose factory sewage and other locations. 10 g of the mixture thus collected were disrupted and suspended in 90 ml of physiological saline solution(0.85% NaCl). The said suspended samples were diluted to 10−2, 10−4, and 10−6 in physiological saline solution. These diluted samples then smeared on MRS agar medium containing 1 mg of cycloheximide per 100 ml medium(1% Peptone, 1% beef extract, 0.5% yeast extract, 2% glucose, 0.1% Tween-80, 0.2% Citric Acid Ammonium, 0.5% Sodium Acetate, 0.01% MgSO4, 0.005% MnSO4, 0.2% Sodium Phosphate pH6.5) and on BSH agar medium(2% glucose, 0.5% Peptone, 0.5% yeast extract, 0.27% Na2HPO4, 0.115% Citric Acid pH 5.0)(Hestirin and Schramm, J. Gen. Microbiol., 11:123,1954) and cultured in 30° C. for 72 hours. Approximately 2,000 colonies were selected and were initially inoculated in 5 ml MRS liquid medium and BSH liquid medium at 30° C. for 72 hours and cultured without shaking. The microorganism which form a membrane shape on upper layer of the liquid medium and the microorganism which form capsule-shaped extracellular polysaccharide and of which medium was transparent, were selected. These microorganisms were inoculated again in 5 ml of MRS liquid medium and BSH liquid medium and stirred at 30° C. and the absorbance thereof was measured at 600 nm by spectrophotometer. Microorganisms were diluted with BSH liquid medium until the absorbance thereof reached to 0.2. 10 ml of microorganism thus diluted was inoculated into 100 ml of BSH liquid medium at 30° C. for 72 hours and cultured without shaking.
- In order to measure the amount of extracellular polysaccharide (dietary fibers) thus produced, each medium were centrifuged at 6,000 rpm in 4° C. to obtain the precipitation of microorganisms. Cell membrane were disrupted by alkali lysis in 0.1 N NaOH solution and left alone in 800° C. for 30 minutes and centrifuged at 6,000 rpm in 4° C. and repeated multiple times, the above process in entirety. Extracellular polysaccharide entangled like white strings were isolated and lyophilized to be measured the amount thereof. Microorganisms with high extracellular polysaccharide productivity were selected and extracellular polysaccharide productivity was compared with each other (Table 1).
TABLE 1 Comparison of extracellular polysaccharide productivity Amount of produced extracellular Selection polysaccharide Number (dryweight g/l BSH) BC- Y 0093.8 BC-Y 002 4.2 BC-Y 015 3.2 BC-Y 026 4.1 BC- Y 0584.8 BC-Y 112 3.0 BC- Y 1303.4 BC-Y 201 3.3 - The Morphological Determination and Characteristics of the Selected BC-Y009 and BC-Y058
- Microorganisms which show high polysaccharide productivity selected from the Example 1 were BC-YO09, BC-Y002, BC-Y015, BC-Y026, BC-Y058, BC-Y112, BC-Y130, and BC-Y201. Upon observing partial DNA sequences, BC-YO09, BC-Y002, BC-Y015 and BC-Y026 were microorganisms of Lactobacillus genus, and BC-Y058, BC-Y112, BC-Y130 and BC-Y201 were microorganisms of Acetobacter genus.
- Among these bacteria, BC-Y009 and BC-Y058 which show high polysaccharide productivity were inoculated in MRS and BSH liquid mediums at 30° C. for 72 hours and cultured in suspension. Cultured mediums were centrifuged at 6,000 rpm in 4° C. to obtain microorganisms and the nucleic acids thereof were isolated by means of using the CTAB/NaCl method. By using 16 s rRNA consensus primer, 16 s rRNA was amplified by means of PCR method, and the sequence thus obtained, was determined. BLAST analysis (NCBI, USA) on the sequence thus determined, was performed and its result showed high percentage of sequence homology with sequence of Lactobacillus hilgardii, Acetobacter xylinum, Gluconobacter sp., numerous other Lactobacillus sp. and Acetobacter sp. (Tables 2 and 3).
TABLE 2 Comparison of 16S rRNA nucleotide sequence of Lactobacillus sp. BC- Y 009L. delbrueckii Lactobacillus subsp. L. helveticus L. acidophillus L. hilgardii sp. BC-Y009 ATCC9649 NCDO2712T ATCC4356 NCDO264 ATCC13133 BC-Y009 — 145 136 146 3 4 L. delbrueckii 88.93 — 76 73 142 143 sp. ATCC9649 L. helveticus 89.16 93.94 — 21 134 134 NCDO2712T L. acidophillus 88.85 94.43 98.33 — 144 144 ATCC4356 L. hilgardii 99.77 89.07 89.26 88.93 — 1 NCDO264 Lactobacillus 99.69 88.97 89.21 88.90 99.92 — sp. ATCC13133 - Among 1,400 base pairs which are included in comparison, top right of table indicates number of base pairs which show difference, bottom left of table indicates % homology
TABLE 3 Comparison of 16S rRNA nucleotide sequence of Acetobacter sp. BC- Y 058BC- Y 058A. diazotrificus A. liqfaciens A. hansenii A. xylinum A. europaeus BC- Y 058— 37 34 10 13 14 A. diazotrificus 97.20 — 17 37 35 36 A. liqfaciens 97.42 98.71 — 34 32 33 A. hansenii 99.24 97.20 97.42 — 15 16 A. xylinum 99.02 97.35 97.58 98.86 — 3 A. europaeus 98.94 97.27 97.50 98.79 99.77 — - Among 1,320 base pairs which are included in comparison, top right of table indicates number of base pairs which show difference, bottom left of table indicates % homology
- BC-Y009 is a gram-positive bacteria and 0.5 to 3.0 μm in size. It is a non-motile & short-rod shaped bacteria. It does not form spores and is facultative anaerobic. The growth temperature is between 20° C. to 37° C. and pH level is 2.0 to 8.0 and optimal pH level is 4.0 to 7.0. The experimental results showed that this microorganism was condensed in milk and was negative (non-reactive) to catalase and formed white colored colony in complex medium. It was precipitated in MRS liquid medium and BSH liquid medium in form of white colored capsule. The turbidity of the liquid medium was clear and the microorganism produced extracellular polysacchardie in clear medium and in case liquid medium was shaken, the extracellular polysacchride (dietary fiber) were broken into small particles.
- BC-Y058 is a gram-negative bacteria, rod shaped bacteria and 0.6 to 0.8 μm in size and exists as single or a pair. It is also a non-motile and does not form spores. Growth rate thereof is slow, therefore 5 to 7 days of incubation time is needed and colonies formed are small and hard. In liquid medium, clear cellulose pellicle is formed. Ethanol, acetic acid, or lactic acid can be used as substrates and showed positive response to catalase. This microorganism produces acid by using glucose and in Hoier medium, it can not grow.
- Upon consideration of the result of analysis of phenotype and 16s rRNA DNA sequence, BC-Y009 was named as Lactobacillus sp. BC-Y009 and BC-Y058 as Acetobacter sp. BC-Y058. They were deposited in KCTC(Korean Collection for Type Cultures) on May 30, 2000, and the deposit number were granted as KCTC BC-Y009, KCTC BC-Y058, respectively.
- The Degree of Decomposition of Extracellular Polysacchride (Dietary Fiber) bV Intestinal Digestive Enzymes
- In order to determine whether or not dietary fiber produced by said microorganisms is decomposed by intestinal digestive enzyme, 1 g of porcine pancreatin that shows the activity of 3×U.S.Pharmacopia (manufactured by Sigma) and comprises amylase, lipase, protease and nuclease, was suspended in buffer solution (pH7.5) of 1 g of dried dietary fiber. This suspension was incubated for 7 days at 40° C. and the suspension was collected once a day and the glucose therein was analyzed quantitatively by using DNS(3,5-dinitrosalicylic acid). The result thereof showed that dietary fibers has never been decomposed at all.
- Therefore, it was confirmed that the dietary fibers produced by the microorganisms of the present invention do not decompose within the intestine.
- Glucose Absorption Rate of Bacteria
- Glucose absorption rates of Lactobacillus acidophilus (KCTC3140), L. hilgardii (KCTC3500) known as probiotics, and the said Lactobacillus BC-Y009, Acetobacter BC-Y002, Acetobacter BC-Y058 and E. coli., were measured in the condition of the intestine. The results are represented in
FIG. 1 and Table 4. - As illustrated in
FIG. 1 and Table 4, the microorganisms of the present invention are superior to the other lactic acid bacteria in terms of glucose absorption rate.TABLE 4 Glucose concentration decreased by the bacteria of unit O.D. per unit time. glucose concentration initial glucose glucose decreased per initial concentration concentration unit time and unit O.D.600 nm (mM) after 1 hour(mM) O.D.(mM/hr/O.D.) E. coli 3.0 ± 0.1 110 85 ± 0.5 8.3 ± 0.44 BC-Y009 3.0 ± 0.2 110 50 ± 0.3 20 ± 1.5 BC-Y002 3.0 ± 0.1 110 30 ± 0.7 26.6 ± 1.1 BC-Y058 3.0 ± 0.2 110 38.6 ± 0.3 23.8 ± 0.1 KCTC3500 3.0 ± 0.2 110 67.2 ± 0.3 14.2 ± 0.4 KCTC3140 3.0 ± 0.1 110 65.2 ± 0.4 14.4 ± 0.1 - Concentration and Survival Rate of Microorganisms in the Intestine After Adminstering Microorganisms
- Mouse C57BL/6J Lepob ob/ob genetically induced of obesity and diabetes mellitus(hereinafter, “OB Mouse”), was starved for 18. hours and fed the composition of the present invention (the number of microorganism of the composition was 1.0×1013 CFU/g) containing 1% of Lactobacillus BC-Y009, Acetobacter BC-Y058 (w/w, drying weight) for 7 days, and then the bacterial concentration in the duodenum, the jejunum, and the large intestine of these mice were analyzed. In addition, the bacterial concentration in the duodenum, the jejunum, and the large intestine of the control OB mouse that had been fed the feed without containing the microorganisms of the present invention, was analyzed.
- In order to measure the amount of Lactobacillus, the duodenum, the jejunum, and the large intestine of the mouse that had been fed Lactobacillus feed and the control mice were cut out. Each surfaces of the organs were rinsed with physiological saline solution and the contents were suspended in physiological saline solution. Then, inoculated in MRS agar medium and incubated at 37° C. Three (3) days later, the amount of bacteria was measured by counting floc and by subtracting the amount of Lactobacillus in the control group to determine the change of the amount of bacteria (Table 5).
- In order to confirm the existence of Acetobacter, the each organs of mouse were cut out, then rinsed the surfaces of the organs with physiological saline solution. The contents were suspended in physiological saline solution, then inoculated in BSH liquid medium and cultured at 37° C. for 3 days. By checking the pellicle appeared on top layer of the liquid medium, the existence of fiber-producing Acetobacter was confirmed (Table 6).
- According to the results represented in Table 5 and Table 6, the said two kinds of microorganisms were both able to proliferate in the intestine.
TABLE 5 The amount of Lactobacillus sp. in the duodenum, the jejunum, and the large intestine of mouse Existence of the region of membrane intestine weight (g) bacterial number (CFU/g) formation Duodenum 0.18 ± 0.03 83 ± 20 no Jejunum 0.29 ± 0.05 1.2 × 103 ± 50 no large intestine 0.36 ± 0.07 5.1 × 103 ± 30 yes -
TABLE 6 The amount of Acetobacter sp. in the duodenum, the jejunum, and the large intestine of mouse the region existence of of intestine weight (g) membrane formation duodenum 0.20 ± 0.02 no jejunum 0.28 ± 0.04 yes large intestine 0.35 ± 0.03 yes - EXAMPLE 6
- The Change in Blood Glucose Level Upon Feeding of BC-Y009 and BC-Y058
- 100 g of mouse feed purchased from SAMYANG Co. and 400 g of Korean rice were mixed to make a composition in which carbohydrate content was 60%, then 5 g of dried Lactobaccillus BC-Y009 or Acetobacter BC-Y058 were added thereto to prepare a lyophilized tablet. Mice were fed this tablet with water.
- All mice tested in this Example were female and OB mice. Acetobacter feed group (OB-058), Lactobacillus feed group (OB-009), and the control group (OB-con, which has no microorganism of the present invention in the feed) were bred separately. The breeding condition was that there was light every 12 hour intervals (9:00-21:00 lighted, 21:00-9:00 no lighted) and maintained 20 to 24° C. and 40 to 60% humidity.
- Additionally, enteric coating solution was sprayed on dried Lactobacillus BC-Y009 or Acetobacter BC-Y058 to produce the compostion of the present invention which comprises enteric coated microorganisms. The weight of the enteric coating of material on the composition was approximately 16 to 30 mg or less per tablet. The materials for the enteric coating were selected from common high molecular weight materials, such as, cellulose acetate phthalate, trimelitate, copolymer of methacrylic acid (
Methylacrylic acid 40% or more, especially methylacrylic acid including hydroxypropyl methylcellulose phthalate and its ester derivatives), or mixture thereof. - Methylacrylate used in the Example was Endragit L 100-55 manufactured by Rohm GmbH(Germany), cellulose acetate phthalate with about 45 to 90 cP of viscosity, 17 to 26% of acetyl content and 30 to 40% of phthalate content, or cellulose acetate trimelitate manufactured by the Eastman Kodak Company (approximately 15 to 20 cS of viscosity, 17 to 26% of acetyl content and 25 to 35% of trimelityl content).
- The enteric coating was produced by a conventional coating process wherein the enteric coating solution was sprayed on a core. Ethanol and acetone mixture was used as solvent and a softening agent was added to the coating solution in a ratio of 1 to approximately 0.005 or 0.3.
- The enteric coating composition of the present invention produced by means of the process was provided to the mice with water for unrestricted taking. The blood glucose level of the mouse which has taken the enteric coating composition, was measured.
- Before measuring the blood glucose level of each mouse group, each mouse was starved for 18 hours. Following 60 minutes after starvation, sufficient amounts of feed were provided and after a 60 minute period, serum was collected from the retroorbital venous plexus by using anti-coagulating agent-free capillary tubes.
- The blood glucose level was measured by absorbance at 505 nm, using the Trinder kit (Cat. 315-500, Sigma, USA) which employs enzyme coloring method. The statistical error of the results was indicated by average ± standard deviation per experimental group, and statistical significance of the average difference in each group was tested through ANOVA (p<0.02).
- Data for blood glucose level are illustrated in
FIG. 2 . As illustrated in theFIG. 2 , the blood glucose level for OB-con group is approximately 500 mg/dl, whereas OB-058 blood glucose level is low. Additionally, due to administration of Acetobacter BC-Y058 and Lactobacillus BC-Y009, the blood glucose levels of each mouse had been decreased to approximately 70% and 53% each (Table 7).TABLE 7 The change of blood glucose level after administration of Acetobacter BC-Y058 and Lactobacillus BC-Y009 OB-009 OB-058 OB-con Blood glucose 229 ± 16 141 ± 19 492 ± 60 level(mg/dl) - The Change of Weight and Amount of Diet Due to Taking BC-Y058 and BC-Y009 and in Metabolic Efficiency
- Mice were classified as OB-058 group, OB-009 group, OB-con group, and Acetobacter BC-Y058 and Lactobacillus BC-Y009 were administered on each group and the weight of each mouse was measured in weekly intervals. Along with the measuring of changes in weight, the weight of feed consumed by the mice was also measured, therefore changes of metabolic efficiency of each group were investigated.
- The difference of weight change was apparent in each species whose genetic characteristics were different, but the difference of weight change, within the group having the same genetic characteristics was negligible.
- As indicated in Table 8, the weight change of OB mice within the period of 7 weeks, regardless of the administration of Acetobacter BC-Y058 or Lactobacillus BC-Y009, was approximately 47% increase of weight. However, on the contrary, as indicated in Tables 9 and 10, feed consumption percentage, depending on microorganism administration, increased 17 to 24% in OB mice group.
- That is, the weight increase of the mice fed feed which comprises the microorganisms of the prevent invention was the same as that of the mice fed that does not contain the microorganism of the prevent invention. The results indicate that because Acetobacter BC-Y058 and Lactobacillus BC-Y009 suppress increase of blood glucose levels after meal, increase of feed consumption occurs as its compensation. In other words, with the same amount of feed, increase of weight can be decreased by feeding the microorganism of the present invention without causing no further weight increase because of lower metabolic efficiency. Because of the conversion of glucose into dietary fiber by BC-Y058 and BC-Y009 microorganism, metabolic efficiency has changed.
- According to the formula represented below, the change of energy efficiency depending on feed consumption, was calculated and represented in Table 10.
- energy metabolic efficiency=
-
- (weight gain(g)/amount of feeding(g))×1,000
- As represented in Table 10, when microorganisms were administered to OB mouse, the energy metabolic efficiency was from 75 to 85% (
FIG. 3 ) compared to that of the control group which was not administered with the microorganisms of the present invention (FIG. 4 ).TABLE 8 Change of the mouse weight(g) 1 2 3 4 5 6 7 week week week week week week week OB-009 21.5 ± 3.21 26.53 ± 2.72 31.52 ± 3.01 34.91 ± 2.5 37.6 ± 2.53 40.1 ± 1.74 41.4 ± 1.47 OB-058 21.95 ± 5.3 26.75 ± 4.60 31.65 ± 2.33 35.8 ± 1.27 38.25 ± 0.78 40.35 ± 0.64 41.25 ± 0.21 OB-con 21.4 ± 2.83 26.3 ± 1.56 31.9 ± 0.99 35.8 ± 2.12 38.35 ± 2.33 40.1 ± 2.69 41.75 ± 3.61 -
TABLE 9 Change of amount of feed consumption according to the administration of Acetobacter BC-Y058, Lactobacillus BC-Y009(g) 0-16 days 16-21 days 21-34 days 34-41 days Total OB-009 146.3 32.4 110.7 38.6 328 OB-058 157.4 34.3 115.3 41 348 OB-con 128.1 34.8 80.3 36.5 279.7 -
TABLE 10 Energy metabolic efficiency energy rate of Amount of weight gain metabolic average weight feed (g) (g) efficiency weight (g) increase OB-009 328 19.9 121 41.4 0.48 OB-058 348 19.3 111 41.25 0.47 OB-con 279.7 20.35 146 41.75 0.49 - Change of Weight and Diet Amount of Obesity Mouse Induced by GTG and Subsequent Change in M-tabolic Efficiency
- Before feeding Acetobacter BC-Y058 and Lactobacillus BC-Y009, each mouse was administered with 1 g/kg of goldthioglucose (Cat. A-0632, Sigma, USA) in order to induce obesity. And every 3 or 4 weeks, weight change was measured and only obesity-induced mice were selected. For accuracy of the experiment, a mouse of which weight increase was too great or too little relatively, was excluded from the experiment.
- The target was female C57BL/6J mice and breeding environment and conditions were the same as those in Example 6. The test subjects were classified into BC-Y058 group, KCTC3140 group, KCTC3500 group, and BC-Y009 group depending on microorganisms.
- The weight changes of mice depending on microorganisms administered with, are illustrated in
FIG. 5 and it is confirmed that when Acetobacter BC-YO58 and Lactobacillus BC-Y009 were administered, the weight increase rate has decreased. - Additionally, as represented in Table 11 and
FIG. 6 , in case that KCTC3140 and KCTC3500 which consume glucose but do not produce dietary fibers, were administered, the energy efficiency of obesity-induced mice was higher than that of the control group which was not administered with the microorganisms of the present invention. However, the mouse group which was administered with BC-Y009 and BC-Y058 which produce dietary fibers, showed relatively low energy efficiency, especially in case of BC-Y058. That is the energy efficiency decreased to 55% compared with that of the control group (Table 12).TABLE 11 Metabolism efficiency of obese mouse induced with drug administration(g) energy metabolic Weight gain(g) amount of feed(g) efficiency Carbohydrate 5.43 103.7 52 KCTC3140 6.65 92.4 72 KCTC3500 5.67 102.2 55 BC-Y009 4.38 104.4 42 BC-Y058 2.98 102.7 29 - Lipid Level Changes when BC-Y058 and BC-Y009 were Administered
- After administration of the microorganisms of the present invention, the change of blood lipid, especially cholesterol change, was analyzed and confirmed whether or not the microorganisms affected the circulatory disease, such as, artheriosclerosis and myocardial infarction besides diabetes mellitus and obesity.
- Lipid analysis was performed by means of enzyme coloring method as in Example 6, using TG-glycezyme-V (Young-Yeoun Chemical Co., Japan), HDL-zyme-V (Young-Yeoun Chemical Co., Japan), Cholestezyme-V (Young-Yeoun Co., Japan), LDL cholesterol (Cat. 61532, BioMeriux, France), to measure the absorbance at 505 to 570 nm with standard solution, and the amount of lipid in blood was calculated.
- As represented in Table 12, lipid concentration before feed administration did not show any differences in obese mouse. However, after Acetobacter BC-Y058 and Lactobacillus BC-Y009 were administered, as indicated in Table 12, the change of lipid concentration was apparent after 7 weeks.
- In case of obese mice that have taken the microorganism, the lipid level did not change in comparison with the data of early steps in the present experiment and however, in case of control mouse which had not been administered with the microorganisms, overall lipid content in blood was increased.
TABLE 12 Lipid amount in blood before administration of feed(mg/dl) total cholesterol TG HDL-C LDL-C OB-009 130.22 ± 4.11 98.1 ± 11.4 98.73 ± 9.7 4.18 ± 2.36 OB-058 129.37 ± 4.24 101.6 ± 10.36 113.52 ± 15.47 3.35 ± 2.08 OB-con 127.57 ± 4.32 97.13 ± 14.64 96.86 ± 7.61 6.62 ± 2.78
n = 4
TG: Triglyceride
HDL-C: High Density Lipoprotein Cholesterol
LDL-C: Low Density Lipoprotein Cholesterol
-
TABLE 13 Lipid amount in blood after administration of feed(mg/dl) Total cholesterol TG HDL-C LDL-C OB-009 167.04 ± 1.12 100.76 ± 3.2 157.71 ± 2.4 4.2 ± 2.08 OB-058 *135.25 ± 2.47 98.5 ± 2.83 135 ± 1.41 3.36 ± 1.31 OB-con *174 ± 1.41 110.5 ± 1.06 165.25 ± 1.06 3.19 ± 0.36
n = 4,
*p < 0.05
TG: Triglyceride
HDL-C: High Density Lipoprotein Cholesterol
LDL-C: Low Density Lipoprotein Cholesterol
The Industrial Applicability of the Present Invention - The microorganisms of the present invention are capable of living within the intestine and converting monosaccharides and disaccharides into high molecular weight materials which cannot be absorbed and hardly digestible in the intestine, thereby remarkably reducing the amount of monosaccharide to be absorbed. Therefore, the energy required for metabolic activity is provided from lipids and protein accumulated in the body, thus effectively suppressesing obesity and diabetes mellitus. In addition, the microorganisms of the present invention produce dietary fibers within the intestine and excreting harmful materials along with these dietary fibers, to prevent appendicitis or large intestinal cancer, to suppress cholesterol absorption and to clean the intestine.
- While the present invention has been particularly shown and described with reference to particular examples thereof, it will be understood by those skilled in the art that various changes in form and details may be conceived therefrom without departing from the spirit and scope of the present invention as defined by the appended claims.
- This application claims priority from the Korean Patent Application Nos. 10- 2000-0026379 (filed May 17, 2000) and 10-2000-0049805 (filed Aug. 26, 2000), the contents of which are hereby incorporated by reference in their entirety, including the specification, drawings and claims.
Claims (45)
1. (canceled)
2. (canceled)
3. A pharmaceutical composition comprising at least one microorganism selected from the group consisting of Acetobacter sp., Leuconostoc sp., Bacillus sp., Lactobacillus sp., Streptococcus sp., Bifidobactedum sp., Lactococcus sp. and Pediococcus sp. bacteria in an amount effective to prevent or treat obesity and a pharmaceutically acceptable carrier, wherein the microorganism converts an oligosaccharide into a polysaccharide:
4. The pharmaceutical composition according to claim 3 , wherein said microorganism is selected from the group consisting of Acetobactor sp., Lactobacillus sp. and Lactococcus sp. bacteria.
5. The pharmaceutical composition according to claim 3 , wherein said microorganism is selected from the group consisting of Acetobacter xylinum, Acetobacter hansenii, Acetobacter pasteurianus, Acetobacter aceti, Leuconostoc sp., Bacillus sp., Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus kefir, Lactobacillus keriranofaciens, Lactobacillus bifidus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii, Lactobacillus helveticusglucos var. jugurti., Lactococcus cremoris, Bifidobacterium bifidium, Streptococcus thermophilus and Pediococcus sp.
6. (canceled)
7. The pharmaceutical composition according to claim 3 , which is a formulation suitable for oral administration.
8. The pharmaceutical composition according to claim 3 , which is a formulation coated with enteric coating materials.
9. The pharmaceutical composition according to claim 7 , which is a formulation coated with enteric coating materials.
10. A pharmaceutical composition comprising at least one microorganism selected from the group consisting of Acetobacter sp., Leuconostoc sp., Bacillus sp., Lactobacillus sp., Streptococcus sp., Bifidobactedum sp., Lactococcus sp. and Pediococcus sp. bacteria in an amount effective to prevent or treat diabetes mellitus and a pharmaceutically acceptable carrier, wherein the microorganism converts an oligosaccharide into a polysaccharide.
11. The pharmaceutical composition according to claim 10 , wherein said microorganism is selected from the group consisting of Acetobactor sp., Lactobacillus sp. and Lactococcus sp. bacteria.
12. The pharmaceutical composition according to claim 10 , wherein said microorganism is selected from the group consisting of Acetobacter xylinum, Acetobacter hansenii, Acetobacter pasteurianus, Acetobacter aceti, Leuconostoc sp., Bacillus sp., Lactobacillus brevis, Lactobacillus helveticus, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus kefir, Lactobacillus keriranofaciens, Lactobacillus bifidus, Lactobacillus sake, Lactobacillus reuteri, Lactobacillus lactis, Lactobacillus delbrueckii, Lactobacillus helveticusglucos var. jugurti., Lactococcus cremoris, Bifidobacterium bifidium, Streptococcus thermophilus and Pediococcus sp.
13. (canceled)
14. The pharmaceutical composition according to claim 10 , which is a formulation suitable for oral administration.
15. The pharmaceutical composition according to claim 10 , which is a formulation coated with enteric coating materials.
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. (canceled)
33. (canceled)
34. (canceled)
35. (canceled)
36. (canceled)
37. (canceled)
38. (canceled)
39. (canceled)
40. (canceled)
41. (canceled)
42. (canceled)
43. (canceled)
44. (canceled)
45. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/971,116 US20050112112A1 (en) | 2000-05-17 | 2004-10-25 | Microorganism for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20000026379 | 2000-05-17 | ||
KR10-2000-0026379 | 2000-05-17 | ||
KR10-2000-0049805A KR100404236B1 (en) | 2000-05-17 | 2000-08-26 | Microorganisms for Corpulence or Diabetes Mellitus, or a pharmaceutical composition containing the same |
KR10-2000-0049805 | 2000-08-26 | ||
US09/855,836 US6808703B2 (en) | 2000-05-17 | 2001-05-16 | Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus |
US10/971,116 US20050112112A1 (en) | 2000-05-17 | 2004-10-25 | Microorganism for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/855,836 Continuation US6808703B2 (en) | 2000-05-17 | 2001-05-16 | Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050112112A1 true US20050112112A1 (en) | 2005-05-26 |
Family
ID=26637996
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/855,836 Expired - Lifetime US6808703B2 (en) | 2000-05-17 | 2001-05-16 | Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus |
US10/356,542 Abandoned US20030180273A1 (en) | 2000-05-17 | 2003-02-03 | Microorganisms for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
US10/356,520 Abandoned US20030180271A1 (en) | 2000-05-17 | 2003-02-03 | Microorganisms for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
US10/971,116 Abandoned US20050112112A1 (en) | 2000-05-17 | 2004-10-25 | Microorganism for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/855,836 Expired - Lifetime US6808703B2 (en) | 2000-05-17 | 2001-05-16 | Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus |
US10/356,542 Abandoned US20030180273A1 (en) | 2000-05-17 | 2003-02-03 | Microorganisms for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
US10/356,520 Abandoned US20030180271A1 (en) | 2000-05-17 | 2003-02-03 | Microorganisms for treatment or prevention of corpulence and diabetes mellitus, and pharmaceutical composition containing the same |
Country Status (8)
Country | Link |
---|---|
US (4) | US6808703B2 (en) |
EP (1) | EP1282687B1 (en) |
JP (1) | JP4580542B2 (en) |
CN (1) | CN1380902B (en) |
AT (1) | ATE349511T1 (en) |
AU (1) | AU3617001A (en) |
DE (1) | DE60125529T2 (en) |
WO (1) | WO2001088095A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012076739A1 (en) | 2010-12-07 | 2012-06-14 | Consejo Superior De Investigaciones Científicas C.S.I.C. | Bifidobacterium cect 7765 and use thereof in the prevention and/or treatment of excess weight, obesity and related pathologies |
US9387228B2 (en) | 2009-02-27 | 2016-07-12 | Hiroshima University | Agent for prevention or amelioration of obesity |
WO2016149687A1 (en) * | 2015-03-18 | 2016-09-22 | Whole Biome, Inc. | Methods and compositions relating to microbial treatment and diagnosis of skin disorders |
US9486487B2 (en) | 2014-10-31 | 2016-11-08 | Whole Biome Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
EP3018199A4 (en) * | 2013-04-17 | 2016-11-30 | Suntory Holdings Ltd | COMPOSITION CONTAINING A BACTERIUM BELONGING TO THE GENUS LACTOBACILLUS |
US10149870B2 (en) | 2012-02-29 | 2018-12-11 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
KR20190127572A (en) * | 2018-05-03 | 2019-11-13 | 그린인 바이오테크놀로지 컴퍼니 리미티드 | Method for producing low-sugar vegetable and fruit enzyme product |
US10653728B2 (en) | 2016-10-17 | 2020-05-19 | New York University | Probiotic compositions for improving metabolism and immunity |
US11583558B2 (en) | 2017-08-30 | 2023-02-21 | Pendulum Therapeutics, Inc. | Methods and compositions for treatment of microbiome-associated disorders |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1533430A (en) * | 2000-12-21 | 2004-09-29 | �Ʒ� | Lactobacillus strain producing levan and its use in human or pet food products |
US6942857B2 (en) * | 2002-08-09 | 2005-09-13 | Bioneer Corporation | Microorganisms for preventing and/or treating obesity or diabetes mellitus |
AU2003263664B2 (en) * | 2002-09-09 | 2008-03-06 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Branched alpha-glucans for weight management |
US7939061B2 (en) | 2003-02-28 | 2011-05-10 | Micropharma Limited | Cell and enzyme compositions for modulating bile acids, cholesterol and triglycerides |
ES2496965T3 (en) * | 2005-02-11 | 2014-09-22 | Biolactis Inc. | Use of Lactobacillus kefiranofaciens as a probiotic and a symbiotic |
ES2532481T3 (en) * | 2005-07-26 | 2015-03-27 | Nestec Ltd. | Anti-obesity agent and anti-obesity food |
SE529185C2 (en) * | 2005-10-07 | 2007-05-22 | Arla Foods Amba | Use of probiotic bacteria for the manufacture of food or drugs for the prevention of obesity |
WO2007084059A1 (en) * | 2006-01-20 | 2007-07-26 | Bjoerk Inger | A food composition comprising amino acids |
WO2007085970A2 (en) * | 2006-01-27 | 2007-08-02 | Danisco A/S | Use of probiotic microorganisms for the treatment and prevention of obesity and related disorders |
US8309076B2 (en) * | 2006-08-04 | 2012-11-13 | Bioneer Corporation | Lactic acid bacteria isolated from mother's milk with probiotic activity and inhibitory activity against body weight augmentation |
JP5089942B2 (en) * | 2006-09-04 | 2012-12-05 | 雪印メグミルク株式会社 | Visceral fat accumulation inhibitor |
WO2008029505A1 (en) * | 2006-09-04 | 2008-03-13 | Snow Brand Milk Products Co., Ltd. | Agent for accelerating the increase in and/or preventing the decrease in blood adiponectin level, and visceral fat accumulation inhibitor |
WO2008046625A2 (en) * | 2006-10-18 | 2008-04-24 | Dsm Ip Assets B.V. | Encapsulation of heat and moisture sensitive substances |
EP1987726A1 (en) * | 2007-05-01 | 2008-11-05 | Friesland Brands B.V. | Good tasting food product containing a neutralisation agent for adverse compounds |
EP2011506A1 (en) | 2007-07-05 | 2009-01-07 | Nestec S.A. | Supplementation of maternal diet |
JP2009114163A (en) * | 2007-11-05 | 2009-05-28 | Nippon Energy Kenkyusho:Kk | Hypoglycemic agent and hypoglycemic functional food comprising cultivation product of complex microorganism as active ingredient |
EP2223697B1 (en) * | 2007-11-19 | 2016-04-06 | Kaneka Corporation | Lactic acid bacterium-containing preparation |
EP2065048A1 (en) * | 2007-11-30 | 2009-06-03 | Institut Pasteur | Use of a L. casei strain, for the preparation of a composition for inhibiting mast cell activation |
PL2262514T3 (en) * | 2008-03-07 | 2020-06-15 | Savencia Sa | Agents for promoting secretion and/or suppressing decrease of adiponectin |
DK2100604T3 (en) | 2008-03-10 | 2012-07-23 | Nestec Sa | Medium chain dicarboxylic acids and their derivatives and metabolic disorders |
US20110189149A1 (en) * | 2008-06-20 | 2011-08-04 | Remy Burcelin | New Uses of Lactic Acid Bacteria and Bifidobacteria |
WO2010096550A2 (en) | 2009-02-18 | 2010-08-26 | University Of Florida Research Foundation, Inc. | Lactobacillus supplement for alleviating type 1 diabetes |
MX2011009508A (en) * | 2009-03-10 | 2011-10-24 | Stable Solutions Llc | Prevention and treatment of obesity and metabolic diseases induced by obesity using microorganisms. |
DK2442814T3 (en) * | 2009-06-19 | 2019-01-14 | Dupont Nutrition Biosci Aps | BIFIDOBACTERIA FOR TREATING DIABETES AND RELATED CONDITIONS |
CN101703528B (en) * | 2009-11-25 | 2012-07-04 | 王立平 | Compound microbial preparation for treating diabetes, preparation method thereof and application thereof |
CN102935092B (en) * | 2010-06-09 | 2014-03-26 | 景岳生物科技股份有限公司 | Novel lactobacillus and its composition and its application in the preparation of drugs for improving diabetes and its complications |
KR101234582B1 (en) * | 2011-04-22 | 2013-02-19 | 전남대학교산학협력단 | Composition for α-glucosidase inhibitory activity |
KR101228035B1 (en) * | 2011-06-29 | 2013-01-30 | 주식회사 쎌바이오텍 | New lactobacillus strains and compositions for preventing or treating diabetes comprising the same |
CN102533588B (en) * | 2011-12-06 | 2013-12-11 | 光明乳业股份有限公司 | Lactobacillus brevis for producing extracellular exopolysaccharide and application thereof |
JP5967527B2 (en) * | 2012-06-22 | 2016-08-10 | 国立研究開発法人産業技術総合研究所 | Appetite increase and weight gain inhibitor |
US9171343B1 (en) | 2012-09-11 | 2015-10-27 | Aseko, Inc. | Means and method for improved glycemic control for diabetic patients |
US9897565B1 (en) | 2012-09-11 | 2018-02-20 | Aseko, Inc. | System and method for optimizing insulin dosages for diabetic subjects |
WO2014046804A1 (en) * | 2012-09-20 | 2014-03-27 | Prothera, Inc. | Probiotic compositions and methods for the treatment of obesity and obesity-related conditions |
CN103275905B (en) * | 2013-05-31 | 2014-12-10 | 江南大学 | Lactobacillus rhamnosus CCFM0528 having diabetes preventing effect |
WO2015013214A2 (en) | 2013-07-21 | 2015-01-29 | Whole Biome, Inc. | Methods and systems for microbiome characterization, monitoring and treatment |
US9486580B2 (en) | 2014-01-31 | 2016-11-08 | Aseko, Inc. | Insulin management |
US9898585B2 (en) | 2014-01-31 | 2018-02-20 | Aseko, Inc. | Method and system for insulin management |
EP3933845A3 (en) | 2014-10-27 | 2022-06-22 | Aseko, Inc. | Subcutaneous outpatient management |
US11081226B2 (en) | 2014-10-27 | 2021-08-03 | Aseko, Inc. | Method and controller for administering recommended insulin dosages to a patient |
US20160353774A1 (en) * | 2015-06-02 | 2016-12-08 | Mead Johnson Nutrition Company | Nutritional compositions comprising spore-forming probiotics |
WO2017031440A1 (en) | 2015-08-20 | 2017-02-23 | Aseko, Inc. | Diabetes management therapy advisor |
CN107028985A (en) * | 2016-02-04 | 2017-08-11 | 深圳华大基因研究院 | Application of the heavy wall mushroom probiotics in preventing and/or treating diabetes and its relevant disease |
CN108778292B (en) * | 2016-02-24 | 2022-05-03 | 内斯托尔株式会社 | Composition for preventing or treating metabolic disorders comprising leuconostoc mesenteroides-produced exopolysaccharide as active ingredient |
CA3046705A1 (en) | 2017-02-10 | 2018-08-16 | Perfect (China) Co., Ltd. | Novel probiotics bifidobacteria strains |
SG11202001051SA (en) * | 2017-08-06 | 2020-03-30 | Second Genome Inc | Streptococcus australis as a biotherapeutics |
EP3688196A4 (en) | 2017-09-26 | 2021-07-14 | Second Genome, Inc. | Gemella sanguinis as a biotherapeutics |
JP7219026B2 (en) * | 2018-07-11 | 2023-02-07 | 雪印メグミルク株式会社 | Composition for suppressing elevation of postprandial blood glucose level and method for producing the same |
JP7267020B2 (en) * | 2019-01-24 | 2023-05-01 | 株式会社明治 | Fermented milk with inhibitory effect on blood sugar level elevation |
SG11202109231WA (en) * | 2019-02-26 | 2021-09-29 | Univ Nat Chonnam Ind Found | Composition comprising lactobacillus sakei cvl-001 or culture liquid thereof for alleviating, preventing, or treating bone diseases or metabolic diseases |
CN110144311B (en) * | 2019-05-21 | 2022-07-01 | 黑龙江大学 | A kind of Lactobacillus kefir and bacterial preparation thereof |
CN110184214B (en) * | 2019-05-21 | 2022-07-01 | 黑龙江大学 | Lactobacillus kefir and bacterial preparation thereof |
CN111587952A (en) * | 2020-05-27 | 2020-08-28 | 佛山科学技术学院 | Probiotic additive for reducing fat deposition of dogs |
CN111661933B (en) * | 2020-06-30 | 2022-08-16 | 武汉合缘绿色生物股份有限公司 | Biological agent for adjusting water body nutrition and preventing diseases and preparation method thereof |
CN113512520B (en) * | 2021-04-29 | 2022-04-26 | 右江民族医学院 | Chromium-and zinc-rich acetobacter and preparation method and application thereof |
EP4183403A1 (en) * | 2021-11-19 | 2023-05-24 | Lietuvos Sveikatos Mokslu Universitetas | Modification of fecal microbiota with capsules containing gram-positive bacteria |
CN116121154B (en) * | 2023-04-10 | 2023-06-27 | 四川厌氧生物科技有限责任公司 | Leuconostoc lactis and application thereof |
CN117925484B (en) * | 2024-03-19 | 2024-07-09 | 山东中科嘉亿生物工程有限公司 | A strain of Lactobacillus reuteri JYLB-101 for improving sleep apnea and its products and applications |
CN118374560B (en) * | 2024-06-26 | 2024-09-20 | 天津科技大学 | Fermented lactobacillus mucilaginosus extracellular polysaccharide and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6042823A (en) * | 1998-07-02 | 2000-03-28 | Amano Pharmaceuticals Co., Ltd. | Enzyme composition and use thereof |
US6080401A (en) * | 1998-11-19 | 2000-06-27 | Reddy; Malireddy S. | Herbal and pharmaceutical drugs enhanced with probiotics |
US6464607B1 (en) * | 1999-12-15 | 2002-10-15 | The Goodyear Tire & Rubber Company | Power transmission belt |
US6942857B2 (en) * | 2002-08-09 | 2005-09-13 | Bioneer Corporation | Microorganisms for preventing and/or treating obesity or diabetes mellitus |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0075604A1 (en) * | 1981-09-24 | 1983-04-06 | Asahi Kasei Kogyo Kabushiki Kaisha | Blood glucose level-lowering agent |
US4568557A (en) * | 1983-05-11 | 1986-02-04 | Warner-Lambert Company | Process for producing snack food product with high dietary fiber content |
JPS615019A (en) * | 1984-06-18 | 1986-01-10 | Nakano Vinegar Co Ltd | Hypoglycemic agent |
EP0194794A3 (en) * | 1985-03-08 | 1986-12-17 | Takeda Chemical Industries, Ltd. | Saccharide digestion inhibiting composition |
US5527772A (en) * | 1987-10-20 | 1996-06-18 | Holick; Michael F. | Regulation of cell proliferation and differentiation using peptides |
JP2928335B2 (en) * | 1989-06-26 | 1999-08-03 | 株式会社ヤクルト本社 | Antihypertensives and foods and beverages |
JP2939491B2 (en) * | 1989-12-11 | 1999-08-25 | 株式会社アドバンス | Functional food |
JPH0735339B2 (en) * | 1991-09-09 | 1995-04-19 | 雪印乳業株式会社 | Serum cholesterol elevation inhibitor and food and drink |
JP3187502B2 (en) * | 1992-01-09 | 2001-07-11 | カネボウ株式会社 | Enteric granules |
JP3202053B2 (en) * | 1992-01-09 | 2001-08-27 | カネボウ株式会社 | Enteric granules |
CA2127392C (en) * | 1993-07-08 | 2008-05-27 | Hideki Sunohara | Process for producing capsule and capsule obtained thereby |
JPH107577A (en) * | 1996-06-17 | 1998-01-13 | Yakult Honsha Co Ltd | Hypoglycemic agent |
ES2258841T3 (en) * | 1998-04-01 | 2006-09-01 | Ganeden Biotech, Inc. | PROCEDURES TO REDUCE CHOLESTEROL WITH SPACES OF BACILLUS COAGULANS, SYSTEMS AND ASSOCIATED COMPOSITIONS. |
EP0956867A1 (en) * | 1998-05-12 | 1999-11-17 | Franz-Peter Dr. Liebel | Use of flavonoid glycosides, tanning agents and microorganisms for the therapy and prophylaxis of diabetes mellitus |
US6461607B1 (en) * | 1998-08-24 | 2002-10-08 | Ganeden Biotech, Inc. | Probiotic, lactic acid-producing bacteria and uses thereof |
US6641808B1 (en) * | 1999-09-22 | 2003-11-04 | Lacpro Industries, Llc | Composition for treatment of obesity |
US6486314B1 (en) * | 2000-05-25 | 2002-11-26 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Glucan incorporating 4-, 6-, and 4, 6- linked anhydroglucose units |
-
2000
- 2000-11-30 JP JP2000364295A patent/JP4580542B2/en not_active Expired - Lifetime
-
2001
- 2001-02-23 DE DE60125529T patent/DE60125529T2/en not_active Expired - Lifetime
- 2001-02-23 EP EP01908427A patent/EP1282687B1/en not_active Expired - Lifetime
- 2001-02-23 AT AT01908427T patent/ATE349511T1/en not_active IP Right Cessation
- 2001-02-23 CN CN018012868A patent/CN1380902B/en not_active Expired - Lifetime
- 2001-02-23 WO PCT/KR2001/000269 patent/WO2001088095A1/en active IP Right Grant
- 2001-02-23 AU AU36170/01A patent/AU3617001A/en not_active Abandoned
- 2001-05-16 US US09/855,836 patent/US6808703B2/en not_active Expired - Lifetime
-
2003
- 2003-02-03 US US10/356,542 patent/US20030180273A1/en not_active Abandoned
- 2003-02-03 US US10/356,520 patent/US20030180271A1/en not_active Abandoned
-
2004
- 2004-10-25 US US10/971,116 patent/US20050112112A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6042823A (en) * | 1998-07-02 | 2000-03-28 | Amano Pharmaceuticals Co., Ltd. | Enzyme composition and use thereof |
US6080401A (en) * | 1998-11-19 | 2000-06-27 | Reddy; Malireddy S. | Herbal and pharmaceutical drugs enhanced with probiotics |
US6464607B1 (en) * | 1999-12-15 | 2002-10-15 | The Goodyear Tire & Rubber Company | Power transmission belt |
US6942857B2 (en) * | 2002-08-09 | 2005-09-13 | Bioneer Corporation | Microorganisms for preventing and/or treating obesity or diabetes mellitus |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9387228B2 (en) | 2009-02-27 | 2016-07-12 | Hiroshima University | Agent for prevention or amelioration of obesity |
WO2012076739A1 (en) | 2010-12-07 | 2012-06-14 | Consejo Superior De Investigaciones Científicas C.S.I.C. | Bifidobacterium cect 7765 and use thereof in the prevention and/or treatment of excess weight, obesity and related pathologies |
US10729732B2 (en) | 2012-02-29 | 2020-08-04 | Ethicon Endo Surgery, Inc. | Compositions of microbiota and methods related thereto |
US12048721B2 (en) | 2012-02-29 | 2024-07-30 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
US11590176B2 (en) | 2012-02-29 | 2023-02-28 | Johnson & Johnson Consumer Inc. | Compositions of microbiota and methods related thereto |
US10149870B2 (en) | 2012-02-29 | 2018-12-11 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
US10149867B2 (en) | 2012-02-29 | 2018-12-11 | The General Hospital Corporation | Compositions of microbiota and methods related thereto |
EP3018199A4 (en) * | 2013-04-17 | 2016-11-30 | Suntory Holdings Ltd | COMPOSITION CONTAINING A BACTERIUM BELONGING TO THE GENUS LACTOBACILLUS |
US9603880B2 (en) | 2013-04-17 | 2017-03-28 | Suntory Holdings Limited | Composition containing bacterium belonging to genus lactobacillus |
US10159269B2 (en) | 2013-04-17 | 2018-12-25 | Suntory Holdings Limited | Composition containing bacterium belonging to genus Lactobacillus |
US11213556B2 (en) | 2014-10-31 | 2022-01-04 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US9486487B2 (en) | 2014-10-31 | 2016-11-08 | Whole Biome Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10668116B2 (en) | 2014-10-31 | 2020-06-02 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10675312B2 (en) | 2014-10-31 | 2020-06-09 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10842831B2 (en) | 2014-10-31 | 2020-11-24 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US10842830B2 (en) | 2014-10-31 | 2020-11-24 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11931387B2 (en) | 2014-10-31 | 2024-03-19 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11278580B2 (en) | 2014-10-31 | 2022-03-22 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
US11364270B2 (en) | 2014-10-31 | 2022-06-21 | Pendulum Therapeutics, Inc. | Methods and compositions relating to microbial treatment and diagnosis of disorders |
WO2016149687A1 (en) * | 2015-03-18 | 2016-09-22 | Whole Biome, Inc. | Methods and compositions relating to microbial treatment and diagnosis of skin disorders |
GB2553701A (en) * | 2015-03-18 | 2018-03-14 | Whole Biome Inc | Methods and compositions relating to microbial treatment and diagnosis of skin disorders |
US10653728B2 (en) | 2016-10-17 | 2020-05-19 | New York University | Probiotic compositions for improving metabolism and immunity |
US11583558B2 (en) | 2017-08-30 | 2023-02-21 | Pendulum Therapeutics, Inc. | Methods and compositions for treatment of microbiome-associated disorders |
US12233095B2 (en) | 2017-08-30 | 2025-02-25 | Pendulum Therapeutics Inc | Methods and compositions for treatment of microbiome associated disorders |
KR20190127572A (en) * | 2018-05-03 | 2019-11-13 | 그린인 바이오테크놀로지 컴퍼니 리미티드 | Method for producing low-sugar vegetable and fruit enzyme product |
KR102236987B1 (en) | 2018-05-03 | 2021-04-07 | 그린인 바이오테크놀로지 컴퍼니 리미티드 | Method for producing low-sugar vegetable and fruit enzyme product |
Also Published As
Publication number | Publication date |
---|---|
US6808703B2 (en) | 2004-10-26 |
CN1380902B (en) | 2010-10-27 |
US20030180273A1 (en) | 2003-09-25 |
CN1380902A (en) | 2002-11-20 |
AU3617001A (en) | 2001-11-26 |
ATE349511T1 (en) | 2007-01-15 |
EP1282687B1 (en) | 2006-12-27 |
JP4580542B2 (en) | 2010-11-17 |
US20030180271A1 (en) | 2003-09-25 |
DE60125529T2 (en) | 2007-10-04 |
JP2001321163A (en) | 2001-11-20 |
US20020037577A1 (en) | 2002-03-28 |
WO2001088095A1 (en) | 2001-11-22 |
DE60125529D1 (en) | 2007-02-08 |
EP1282687A1 (en) | 2003-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6808703B2 (en) | Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus | |
US6942857B2 (en) | Microorganisms for preventing and/or treating obesity or diabetes mellitus | |
US4579733A (en) | Hypocholesterolemically and/or hypotriglyceridemically active products | |
Bouhnik et al. | Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk | |
US11026983B2 (en) | Bifidobacterium breve CBT BR3 strain for promotion of growth and nutraceutical composition for promotion of growth containing the same | |
KR100794702B1 (en) | Microorganisms for preventing and / or treating obesity or diabetes | |
CN117004503B (en) | Saliva combined lactobacillus MB1 and application thereof in preparation of food and medicine for assisting sleep and regulating intestines and stomach | |
KR100404236B1 (en) | Microorganisms for Corpulence or Diabetes Mellitus, or a pharmaceutical composition containing the same | |
KR100794701B1 (en) | Microorganisms for the prevention and treatment of obesity or diabetes | |
Rambaud et al. | Manipulation of the human gut microflora | |
CN116376770B (en) | Application of lactobacillus rhamnosus RH0121 in preparation of hypoglycemic products | |
KR100609779B1 (en) | Lactic acid bacteria that break down alcohol and acetaldehyde | |
Chaia et al. | Dairy propionibacteria from milk or cheese diets remain viable and enhance propionic acid production in the mouse cecum | |
CN118440835A (en) | Saliva combined lactobacillus SM4 and application thereof in preparing food and medicine for promoting digestion and improving constipation | |
CN118652787B (en) | A strain of Lactobacillus delbrueckii subsp. lactis MB4 and its application in preparing blood sugar lowering and sleep-inducing food and medicine | |
CN117363524B (en) | Lactobacillus gasseri MY4 and application thereof in preparation of sleep-aiding and whitening medicines | |
CN115804795A (en) | Bacillus subtilis microbial inoculum and application thereof in preparation of diabetes prevention product | |
CN117384798A (en) | Lactobacillus rhamnosus capable of regulating glycolipid metabolism and application thereof | |
Simopoulos | The Fate and Effects of Transiting, Nonpathogenic Microorganisms in the |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |