US20050098473A1 - Container for containing semiconductor wafers - Google Patents
Container for containing semiconductor wafers Download PDFInfo
- Publication number
- US20050098473A1 US20050098473A1 US10/705,499 US70549903A US2005098473A1 US 20050098473 A1 US20050098473 A1 US 20050098473A1 US 70549903 A US70549903 A US 70549903A US 2005098473 A1 US2005098473 A1 US 2005098473A1
- Authority
- US
- United States
- Prior art keywords
- container
- wafer
- container body
- support plate
- semiconductor wafers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67369—Closed carriers characterised by shock absorbing elements, e.g. retainers or cushions
Definitions
- the present invention relates to a container for containing semiconductor wafers.
- the present invention relates more particularly to a container for containing semiconductor wafers that includes a first container body including a base and a wall connected to the base, a first wafer support plate located inside the first container body; and at least one semiconductor wafer between the base of the first container body and the first wafer support plate, wherein the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- Entegris, Inc. based in Chaska, Minn., offers wafer shipper systems for shipping various sized wafers ranging from 125 mm to 300 mm (4.92 in to 11.81 in.) in diameter, where the wafers are either stacked horizontally or vertically in a carrier.
- SPI/Semicon based in Ogden, Utah offers wafer storage and shipping systems for shipping various sized wafers ranging from 3 inches to 8 inches (76.2 mm to 203.2 mm) in diameter, where the wafers are typically stacked horizontally in a wafer jar and lid, including foam liners, foam cushion discs, and wafer interleaf discs between the wafers.
- Central Corporation based in Yamanashi, Japan offers horizontal wafer shippers, where the wafers are stacked horizontally in a container including polyurethane cushions and spacers between the wafers.
- Malaster Company, Inc. based in Sunnyvale, Calif.
- 3M Company based in St. Paul, Minn. offers reusable semiconductor wafer transport systems and services where the wafers are stacked horizontally in a container with foam-cushioning and wafer separators between the wafers.
- the 3M containers are inserted into an air cushioning packaging and then placed in a box for shipping.
- the container for containing semiconductor wafers comprises: a first container body including a base and a wall connected to the base; a first wafer support plate located inside the first container body; and at least one semiconductor wafer between the base of the first container body and the first wafer support plate, where the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- the container further comprises: a second wafer support plate located inside the first container body, where the second wafer support plate is between the base of the first container body and the semiconductor wafer, and where the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate.
- the container further comprises: a second container body opposite the first container body, where the second container body includes a base and a wall connected to the base, and where the first container body is operatively connected to the first container body.
- the container further comprises: an internal cushioning member between the base of the second container body and the base of the first container body.
- the internal cushioning member is a foam-cushioning member.
- the internal cushioning member is an air-cushioning member.
- the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area, the first wafer support plate has a first major surface and a second major surface opposite the first major surface, the second major surface has a second surface area, the first major surface of the semiconductor wafer is opposite the second major surface of the first wafer support plate, and the first surface area of the semiconductor wafer is less than the second surface area of the first wafer support plate.
- the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate.
- the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
- the container further comprises a plurality of semiconductor wafers inside the first container body.
- the container further comprises a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers.
- the semiconductor wafer when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
- This container for containing semiconductor wafers comprises: a first container body including a base and a wall connected to the base; at least one semiconductor wafer where the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area; a first wafer support plate located inside the first container body, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area; and where the semiconductor wafer is between the base of the first container body and second major surface of the first wafer support plate, where the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate, and where the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- the container further comprises: a second wafer support plate located inside the first container body, where the second wafer support plate is between the base of the first container body and the semiconductor wafer, and where the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate.
- the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
- the container further comprises: a second container body opposite the first container body, where the second container body includes a base and a wall connected to the base, and where the first container body is operatively connected to the first container body.
- the container further comprises: an internal cushioning member between the base of the second container body and the base of the first container body.
- the internal cushioning member is a foam-cushioning member.
- the internal cushioning member is an air-cushioning member.
- the container of further comprises a plurality of semiconductor wafers inside the first container body.
- the container further comprising a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers.
- the semiconductor wafer when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
- This container for containing semiconductor wafers comprises: a first container body including a base and a wall connected to the base; a plurality of semiconductor wafer, where each semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area; a first wafer support plate located inside the first container body, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area; and where the plurality semiconductor wafers is between the base of the first container body and second major surface of the first wafer support plate, and where the first surface area of the semiconductor wafers is at least 10% less than the second surface area of the first wafer support plate; a second wafer support plate located inside the first container body, where the second wafer support plate has a first major surface and a second major surface opposite the first major surface, where the plurality semiconductor wafer is between the second major
- Another aspect of the present invention provides a method of safely shipping semiconductor wafers.
- This method comprises the steps of: a) providing a container for containing semiconductor wafers, where the container comprises: a first container body including a base and a wall connected to the base; a second container body including a base and a wall connected to the base; a first wafer support plate located inside the first container body; b) providing a plurality of semiconductor wafers; c) stacking the plurality of semiconductor wafers in a stack and placing the stack of semiconductor wafers inside the first container body; d) placing the first wafer support plate on the stack of semiconductor wafers inside the first container body; e) operatively connecting the first container body with the second container body so as to enclose the wafer support plate and stack of semiconductor wafers inside the container and to stabilize the stack of semiconductor wafers between the base of the first container body and the first wafer support plate.
- the container further comprises a second wafer support plate, step c).further comprises placing the second wafer support plate inside the first container body and placing the stack of semiconductor wafers on the second wafer support body inside the first container body, and the stack of semiconductor wafers is stabilized between the first wafer support plate and the second wafer support plate.
- the semiconductor wafers have a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area, and where the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate. In another aspect of the above method, the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate. In another aspect of the above method, when the container is dropped, the semiconductor wafers do not contact the wall of the first container body.
- step b) further comprises providing a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers, step c) further comprising stacking the plurality of semiconductor wafers and the plurality of wafer separator sheets in a stack, a wafer separator sheet is between two adjacent semiconductor wafers, and placing the stack of semiconductor wafers and separator sheets inside the first container body.
- the method further includes the steps of: f) transporting the container and stack of semiconductor wafers to a new location; g) separating the second container body from the first container body to remove the stack of semiconductor wafers from the container; h) inspecting the stack of semiconductor wafers and observing that the stack of semiconductor wafers are not damaged or broken.
- FIG. 1 illustrates a cross-sectional view of prior art system for containing and transporting semiconductor wafers
- FIG. 2 a illustrates an expanded, cross sectional view of one preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention
- FIG. 2 b illustrates a cross sectional view of the wafer transport system of FIG. 2 a with the semiconductor wafers and other supporting materials enclosed within the container;
- FIG. 3 illustrates a cross sectional view of another preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention
- FIG. 4 illustrates a cross sectional view of another alternative, preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention.
- FIG. 5 illustrates a cross sectional view of yet another alternative, preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention.
- Integrated circuits are manufactured from semiconductor wafers that are typically round in shape and made of highly brittle silicon. Such wafers are subjected to a variety of processing steps in transforming the semiconductor wafers into integrated circuit components.
- semiconductor wafers When semiconductor wafers are manufactured, they are typically transported between different locations where different fabrication steps are performed. For example, a semiconductor wafer may be transported from a raw wafer manufacturing location to a semi-finished processing fabrication location, where the front side of the wafer is fabricated, and then to an assembly site where the wafer is diced into chips and packaged.
- These different processing locations may be as close as different buildings in the same plant, or may be geographically remote from each other, such as located in different states or even in different countries.
- the wafers are supported vertically in containers and constrained at their edges to prevent any contact between the wafers and possible damage or contamination to the faces of the wafers having the circuits thereon.
- the wafers are held vertically in the carrier by their edges (as opposed to lying flat) separated from each other by guides.
- These types of transport systems are typically known as “vertical shippers.” Most of these vertical shippers require additional cushioning on the outside of the container, such as air cushioning packaging or traditional foam packaging. Usually, the vertical shippers and its accompanying external cushioning materials are placed in another container, and shipped to its next location.
- a vertical shipper system is offered by Entegris, Inc. based in Chaska, Minn., and is referenced in the Background section of this application.
- FIG. 1 One example of a prior art, horizontal shipper system is illustrated in FIG. 1 .
- 3M Company based in St. Paul, Minn. offers this horizontal shipper system as the 3MTM Wafer Transport System.
- the wafer transport system 5 includes a container 11 made from a first container body 12 and a second container body 14 .
- the first container body 12 and second container body 14 are sized and shaped to fit together, and may be held together by cooperative latches (not shown).
- One example of a suitable container 11 is taught in U.S. Pat. No. 6,193,090, “Reusable Container,” (Connors et al.), which is hereby incorporated by reference.
- Each container body 12 , 14 includes a base 18 attached to a wall 16 .
- the base 18 and the wall 16 are both cylindrically shaped to closely fit the outer edges of the circular semiconductor wafers 20 .
- a plurality of semiconductor wafers 20 is stacked within the container 11 , with each wafer 20 separated from the other by a separator sheet 22 .
- the separator support sheets help protect the faces of the semiconductor wafers 20 .
- Separator sheets may be flexible and made of a film.
- An example of a suitable separate sheet is made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del.
- the container 11 further includes a plurality of circular-shaped, internal cushioning members 24 or spacing members 24 between the base 18 of the container bodies 12 , 14 and the stack of semiconductor wafers 20 and separator sheets 22 .
- the internal cushioning members 24 are foam-cushioning pads made from polyurethane open cell foam or polyethylene closed cell foam.
- an external cushioning member 26 Surrounding the container 11 is an external cushioning member 26 .
- the external cushioning member 26 is an air inflatable cushioning member.
- suitable air inflatable cushioning members are taught in U.S. Pat. No. 4,872,558, “Bag-In-Bag Packaging System,” U.S. Pat. No. 6,283,296, “Quilted Inflatable Packaging Device,” and U.S. Pat. No. 6,464,079, “Suspension Air Packaging Device, all of which are hereby incorporated by reference.
- the container 11 (along with its contents of semiconductor wafers 20 , separator sheets 22 , and internal foam-cushioning members 24 ) is placed inside the air cushioning packaging 26 and then the air cushioning packaging is inflated around the container, to provide cushioning to the container 11 and its contents. Then, the inflated air cushioning packaging 26 and container 11 are placed in a corrugated cardboard box, and the box is shipped to its destination. The box may include additional packaging materials inside the box to provide further cushioning of the container 11 . After the box arrives, a user may deflate the air cushioning packaging 26 , withdraw the container 11 from the packaging 26 , and open up the container 11 to remove the semiconductor wafers 20 .
- the prior art vertical shippers and horizontal shippers for transporting the semiconductor wafers all generally require some external cushioning, such as air cushioning or foam-cushioning, outside of the wafer shipping containers to ensure that the semiconductor wafers make it safely to their destinations without damaging or breaking the semiconductor wafers.
- this external packaging can be more than two inches thick, which adds the overall shipping volume of the shipping box that holds the shipping container and external packaging.
- the present invention provides a shipping container that does not require external packaging outside of the shipping container, but instead relies on the configuration inside of the inventive shipping container to protect the semiconductor wafers from damage or breakage.
- the present inventive container allows semiconductor wafers to be shipped inside the container within a simple, inexpensive, padded envelope or small, corrugated box without the need for significant, additional external packaging.
- the prior art wafer shippers are shaped similarly to the shape of the wafers they contain.
- the vertical shipping containers are approximately the same height as the height of the semiconductor wafers when they are stood up on their edges inside the containers.
- the circumference of the horizontal shipping containers match closely to the circumference of the semiconductor wafers.
- the prior art wafer shippers, both vertical and horizontal are sold according to what size of wafers is to be shipped inside of them.
- the 200 mm Horizontal Wafer Shipper System sold by Entegris, Inc. based in Chaska, Minn. and the 200 mm Wafer Transport System sold by 3M Company based in St. Paul, Minn. are both designed for shipping 200 mm (8 diameter semiconductor wafers.
- the inventors of this patent application have discovered that the damage to or breakage of the semiconductor wafers during shipping is frequently caused by the edge of the wafer contacting or impacting the edge of the carrier causing the edge of the wafer to become distorted, damaged, or crushed. Often when the semiconductor wafer contacts the edge of the carrier, it may cause a break along the edge of the wafer that may eventually propagate throughout the entire wafer, causing the wafer to break into pieces.
- the present invention offers improved protection of the edges of the semiconductor wafers, thus avoiding damage to or breakage of the wafers during shipping.
- the wafer transport system of present invention protects the semiconductor wafers from mechanical shock, damage, or breakage while the wafers are being shipped between various locations, thus avoiding unnecessary costs resulting from damaged wafers occurring during shipping.
- the inventive wafer transport system also helps reduce overall shipping volume for shipping the semiconductor wafers, which eliminates unnecessary associated packaging components and results in overall savings in the packaging and shipping of the semiconductor wafers.
- FIGS. 2 a and 2 b One embodiment of the wafer transport system 10 a of the present invention is illustrated in FIGS. 2 a and 2 b.
- FIG. 2 a illustrates an expanded view of the wafer transport system 10 a
- FIG. 2 b illustrates the semiconductors and other supporting materials enclosed within the container.
- the wafer transport system 10 a includes some of the same components as the prior art wafer transport system 5 illustrated in FIG. 1 .
- the system 10 a includes the container 11 made from a first container body 12 and a second container body 14 .
- the first container body 12 and second container body 14 are sized and shaped to fit together, and may be held together by cooperative latches (not shown).
- One example of a suitable container 11 is taught in U.S. Pat. No. 6,193,090, “Reusable Container,” (Connors et al.), which is hereby incorporated by reference.
- Each container body 12 , 14 includes a base 18 attached to a wall 16 .
- the container bodies 12 , 14 are cylindrically shaped.
- the base 18 is the shape of a circle and the wall 16 is in the shape of a cylinder.
- the surface area of the bases 18 is larger than the surface area of the semiconductor wafers 20 .
- the inside circumference of the wall 16 is larger than the outer circumference of the semiconductor wafers 20 .
- the inside diameter of the base 18 may be 200 mm and the diameter of the semiconductor wafers may be 150 mm.
- the container bodies may be any shape or size.
- the container bodies may be octagonal shaped.
- the surface area of the base 18 is larger than the surface area of the semiconductor wafers 20 .
- the container 11 may be injected molded or blow molded plastic material.
- the container 11 is designed for special cleanliness or reduced static discharge, for example by choosing materials, cleaning procedures, and process controls
- a plurality of semiconductor wafers 20 is stacked within the container 11 .
- Each semiconductor wafer 20 has a first major surface 21 and a second major surface 23 opposite the first major surface.
- Each semiconductor wafer 20 is separated from the other by a wafer separator sheet 22 .
- An example of a suitable wafer separator sheet is made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del.
- the separator support sheets help protect the faces of the semiconductor wafers.
- the surface area of the major surfaces of the separator sheets 22 is larger than the surface area of the major surfaces 21 , 23 of the semiconductor wafers 20 .
- the large separator sheets also help protect the edges of the semiconductor wafers 20 .
- the separator sheets are sized to fit the surface area inside the container bodies 12 , 14 .
- the separator sheets 22 may be of any size or shape, so long as they protect the faces of the semiconductor wafers 20 .
- the separator sheets 22 may be selected such that the material the sheets 22 are made of have a high coefficient of friction. This has the benefit of helping the semiconductor wafers 20 between the separator sheets 22 resist lateral movement, and helps to stabilize the stack of semiconductor wafers 20 and sheets 20 inside the container 11 .
- the container 11 further includes a plurality of internal cushioning members 24 between the bases 18 of the container bodies 12 , 14 and the stack of semiconductor wafers 20 and separator sheets 22 .
- the internal cushioning members 24 are foam-cushioning pads made from polyurethane open cell foam.
- the internal cushioning members 24 have a larger surface area than the surface area of the semiconductor wafers 20 .
- the internal cushioning members 24 are sized and shaped to fit closely inside the container bodies 12 , 14 .
- the system 10 a may include any number of internal cushioning members 20 .
- the internal cushioning members 24 function to help fill up volume inside the container 11 to assist in applying pressure between the bases 18 of the container bodies 12 , 14 and the wafer support plates 28 .
- the wafer transport system 10 a preferably includes at least one wafer support plate 28 .
- the wafer transport system 10 a may include any number of wafer support plates 28 .
- the system 10 a is illustrated as having a first wafer support plate 28 a and a second wafer support plate 28 b.
- the first wafer support plate 28 a is between one end of the stack of semiconductor wafers 20 and separator sheets 22 and the base 18 of the second container body 14 .
- the second wafer support plate 28 b is between the opposite end of the stack of semiconductor wafer 20 and separator sheets 22 and the base 18 of the first container body 12 .
- Each surface support plate includes a first major surface 30 and a second major surface 32 opposite the first major surface.
- the wafer support plates 28 are rigid and not easily bendable.
- a suitable wafer support plate 28 is made of steel, plywood, or a hard plastic.
- the wafer support plates 28 may be made of metal, ceramic, a hard plastic depending on the specific needs for rigidity, cleanliness, chemical compatibility and static dissipative characteristics. Examples of suitable plastic materials include polypropylene, polycarbonate, and an acetal resin plastic sold under the trade name DELRIN, which is commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del.
- the rigid support plates 28 are at least five times as thick as the semiconductor wafers 20 .
- the major surfaces 30 , 32 of the rigid support plates 28 respectively have a surface area larger than the surface areas of the major surfaces 21 , 23 respectively of the semiconductor wafers.
- the rigid support plates 28 may have a diameter of 175 mm and the semiconductor wafers 20 may have a diameter of 150 mm.
- the rigid support plates 28 may be sized to fit closely inside the container bodies 12 , 14 .
- the rigid support plates 28 may have a diameter of 298 mm and the inside diameter of the base 18 of the container bodies 12 , 14 may have a diameter of 300 mm.
- the rigid support plates 28 function to stabilize the stack of semiconductor wafers 20 within the container 11 to prevent damage to or breakage of the wafers 20 during shipping or transport of the container 11 .
- stabilized as used in reference to the stack of semiconductor wafers, including the claims, it is meant that that stack of semiconductor wafers is resistant to change its relative position.
- the thicknesses of the foam internal cushioning members 24 , the rigid support plates 28 , and stack of semiconductor wafers 20 and wafer separator sheets 22 are all configured such that all of the components together tightly fit into the container 11 when the first container body 12 and second container body 14 are closed together.
- the first rigid support plate 28 a presses down upon the stack of semiconductor wafers 20 , pressing the stack of wafers against the base 18 of the first container body 12 .
- the second rigid support plate 28 b presses against the stack of semiconductor wafers 20 , pressing the stack of wafers against the base 18 of the second container body 14 . Because the stack of semiconductor wafers 20 is tightly held between the first and second rigid plates 28 a, 28 b, this helps prevent the movement or rotation of the semiconductor wafers 20 within the container 11 , even when the container is shaken or dropped.
- the forces applied to the semiconductor wafers 20 by the rigid plates 28 are in a direction that is at a 90° angle relative to the major surface of the semiconductor wafers, which helps prevent the semiconductor wafers from slipping in the direction of their major surface.
- the normal force on the support plates 28 and stack of wafers and separator sheets also helps keep the wafers 20 stabilized within the container 11 .
- the first and second rigid plates 28 a, 28 b apply equal or substantially equal forces on the wafers, which helps keep the semiconductor wafers 20 rigid, so they will not flex. This feature is especially useful with protecting semiconductor wafers from damage or breaking because semiconductor wafers will often bend and commonly break because they are so thin.
- the uniform or substantially uniform pressure applied to the stack of semiconductor wafers 20 by the rigid support plates 28 a, 28 b helps prevent the relative position of the wafers from changing within the container 11 , which assists in safely transporting them without damage to or breakage of the wafers.
- the surface area of the major surfaces 21 , 23 of the semiconductors 20 is smaller than the diameter of the rigid support plates 28 to help protect the edges of the semiconductor wafers 20 .
- the inventors of this patent application have discovered that the damage or breakage of the semiconductor wafers during shipping is frequently caused by the edge of the wafer contacting or impacting the edge of the carrier causing the edge of the wafer to become distorted, damaged, or crushed. Often when the wafer contacts the edge of the carrier, it may cause a break along the edge of the wafer that may eventually propagate throughout the entire wafer, causing the wafer to break into pieces.
- this configuration helps prevent the wafers from contacting or impacting the walls 16 of the container bodies 12 , 14 , thus helping to prevent damage or breakage of the semiconductor wafers during shipping or transport.
- the surface area of the major surfaces 21 , 23 of the semiconductor wafers 20 is smaller than the surface areas of the major surface 30 , 32 of the rigid support plate 28 .
- the surface area of the major surfaces 21 , 23 of the semiconductor wafers 20 is smaller than the surface areas of the bases 18 of the container bodies 12 , 14 .
- the area of the major surfaces 21 , 23 of the semiconductor wafer 20 is at least 10% less than the area of the second surface 30 , 32 of the wafer support plates 28 a, 28 b.
- the area of the major surfaces 21 , 23 of the semiconductor wafer 20 is at least 25% less than the area of the second surface 30 , 32 of the wafer support plates 28 a, 28 b.
- the diameter of the rigid support plate be at least 175 mm diameter (which is an approximate surface area of 24,053 mm 2 ), or at least 200 mm (which is an approximate surface area of 31416 mm 2 ).
- the major surfaces 30 , 32 of the wafer support plates 28 a, 28 b may be any size or shape, so long as they have a larger surface area than the surface area of the semiconductor wafers 20 to adequately protect the edges of the wafers from contacting the side walls 16 of the container 11 to help prevent damage to or breakage of the wafers.
- Prior art shipping containers such as those described above, typically are sized to be just slightly bigger than the diameter of the semiconductor wafers they are to receive, for instance just a few millimeters larger than the diameter of the wafer, so as to allow the wafers to fit inside of the container. However, this is in sharp contrast to the present invention, where the containers are purposefully designed to allow a certain amount of space between the edges of the semiconductor wafers 20 and the side walls 16 of the container to adequately protect the edges of the wafers from contacting the walls 16 .
- the rigid support plates 28 may be selected such that the material the sheets 28 are made of have a high coefficient of friction. This has the benefit of helping the stack of semiconductor wafers 20 between the support plates 28 resist lateral movement, and helps to stabilize the stack of semiconductor wafers 20 and sheets 20 inside the container 11 .
- FIG. 3 illustrates an alternative wafer transport system 10 b for the storage and transport of semiconductor wafers safely without damage or breakage.
- the system 10 b is very similar to the system 10 a illustrated in FIGS. 2 a and 2 b and functions similarly.
- System 10 b includes the same stack of semiconductor wafers 20 and separator sheets 22 , and the same support plates 28 as system 10 a.
- the container 11 of system 10 b is made from container bodies 12 , 14 similar to the system 10 a.
- the system 10 b differs from system 10 a in that it does not include the internal cushioning members. Instead, the depth of the container 11 is configured to closely hold a stack of semiconductor wafers 20 , separator sheets 22 , and at least one rigid support plate 28 a.
- the first container body 12 and second container body 14 both have latches to allow for a snap fit between the container bodies 12 , 14 .
- a user may insert a stack of semiconductor wafers 20 and separator sheets 22 inside the first container body 12 , and then press fit the second container body 14 onto the first container body 12 until adequate pressure is applied by the rigid support plate 28 a against the stack of semiconductor wafers.
- the first rigid support plate 28 a applies a force to the stack of semiconductor wafers 20 and separator sheets 22 , pinning the stack against the base 18 of the first container body 12 , so as to stabilize the semiconductor wafers 20 and to prevent the movement of the semiconductor wafers 20 within the container 11 , even when the container 11 is tilted or dropped, for example during transport or shipping.
- the support plate 28 a and separator sheets 22 are both preferably of larger surface area compared the surface area of the semiconductor wafers to protect the edges of the semiconductor wafers 20 from contacting the side walls 16 of the container 11 .
- the surface area of the bases 18 of the container bodies 12 , 14 are also larger than the surface area of the semiconductor wafers 20 to accommodate the support plates 28 .
- the system 10 b may include a second rigid support plate 28 b between the stack of semiconductor wafers 20 and the base 18 of the first container body 12 .
- a second support plate 28 b is not necessary.
- the support plates 28 may be separate from the container bodies 12 , 14 , or integrally molded as part of the container bodies 12 , 14 .
- the wafer transport system 10 b may optionally include any number of internal cushioning members.
- FIG. 4 illustrates an alternative wafer transport system 10 c for the storage and transport of semiconductor wafers safely without damage or breakage.
- the system 10 c is very similar to the system 10 a illustrated in FIGS. 2 a and 2 b and functions similarly.
- System 10 c includes the same stack of semiconductor wafers 20 and separator sheets 22 , the same support plates 28 , and the same container 11 as system 10 a.
- the wafer transport system 10 c differs from wafer transport system 10 a in that it does not include the internal cushioning members 24 .
- the wafer transport system 10 c includes an internal, inflatable air-cushioning member 36 , which may be inflated after the first container body 12 and second container body 14 are closed together.
- the second container body 14 has a hole in its base 18 to accommodate the valve and air supply tube 38 to the internal air-cushioning member 36 .
- the air-cushioning member 36 allows for the convenience of placing stacks of semiconductors 20 and separator sheets 22 of varying heights inside of the container 11 without the need for varying containers of different depths.
- the air-cushioning member 36 may be inflated to its proper size prior to placing it inside the container 11 , and then attaching the second container body 14 to the first container body 12 .
- the first rigid support plate 28 a is place on top of the stack and the deflated, the internal, air cushioning member 36 is placed on top of the rigid wafer support plate.
- the valve and air hose is pulled through the hole in the second container body 14 and the second container body 14 is attached to the first container body 12 .
- the internal, air cushioning member 36 is inflated until the member 36 is pressing sufficient force against the first rigid wafer support plate 28 a, such that the semiconductor wafers 20 are stabilized between the support page 28 a and the base 18 of the first container body.
- the major surfaces of the support plate 28 a and separator sheets 22 are all preferably of larger surface area compared the surface area of the major surfaces 21 , 23 of the semiconductor wafers to protect the edges of the semiconductor wafers 20 from contacting the side walls 16 of the container 11 .
- the surface area of the bases 18 of the container bodies 12 , 14 are also preferably larger than the surface area of the major surfaces 21 , 23 of the semiconductor wafers 20 to accommodate the support plates 28 .
- the system 10 c may include a second rigid support plate 28 b between the stack of semiconductor wafers 20 and the base 18 of the first container body 12 .
- a second support plate is not necessary.
- the second support plate 28 b may be separate from the first container bodies 12 or integrally molded as part of the first container bodies 12 .
- FIG. 5 illustrates an alternative wafer transport system 10 d for the storage and transport of semiconductor wafers safely without damage or breakage.
- the system 10 d is very similar to the system 10 c illustrated in FIG. 4 and functions similarly.
- System 10 d includes the same stack of semiconductor wafers 20 and separator sheets 22 , and the same support plates 28 as system 10 a.
- the container 11 of system 10 d is made from the first container body 12 similar to the system 10 c.
- the system 10 d differs from system 10 c in that the air cushioning member 40 completely surrounds the container 11 and the air cushioning member 40 and container 11 are enclosed inside another container, such as a box 42 .
- a user may insert a stack of semiconductor wafers 20 and separator sheets 22 inside the first container body 12 and then place the first wafer support plated 28 a on top of the stack.
- the container 11 is then placed inside an uninflated air-cushioning member 40 .
- the air cushioning packaging member 40 is inflated until the first rigid support plate 28 a applies a force to the stack of semiconductor wafers 20 and separator sheets 22 , pinning the stack against the base 18 of the first container body 12 , so as to stabilize the semiconductor wafers 20 and to prevent the movement of the semiconductor wafers 20 within the container 11 , even when the container 11 is tilted or dropped, for example during transport or shipping.
- the support plate 28 a and separator sheets 22 are both preferably of larger surface area compared the surface area of the semiconductor wafers to protect the edges of the semiconductor wafers 20 from contacting the side walls 16 of the container 11 .
- the surface area of the bases 18 of the container bodies 12 , 14 are also larger than the surface area of the semiconductor wafers 20 to accommodate the support plates 28 .
- the air cushioning member 40 and container 11 may be placed inside another container 42 and shipped to its destination.
- the system 10 d may include a second rigid support plate 28 b between the stack of semiconductor wafers 20 and the base 18 of the first container body 12 .
- a second support plate 28 b is not necessary.
- the first support plate 28 b may be separate from the first container body 12 or integrally molded as part of the container body 12 .
- the wafer transport systems 10 a - 10 d are all illustrated as horizontal type shippers, where the semiconductor wafers are stacked horizontally. However, the wafer transport systems 10 a - 10 d may just as easily carry the semiconductor wafers vertically by turning the systems 90°.
- All of the wafer transport systems 10 a, 10 b, 10 c, 10 d are designed to not require external air cushioning or foam packaging outside of the containers 11 , such as illustrated in FIG. 1 , to protect the semiconductor wafers. Instead it is recommended that the systems 10 , 10 b, 10 c, 10 d may be used with a simple padded envelope or corrugated box to ship semiconductor wafers safely without damage or breakage.
- the system 10 of the present invention has been described above as being particularly useful for shipping semiconductor wafers. However, the system may be used for shipping a variety of objects, such as records, CDs, DVDs, or any flat, fragile items made of glass, ceramic, or other similar materials.
- the embodiment of the container for semiconductor wafers of the present invention was prepared.
- the embodiment of the container was similar to the containers described above.
- the outside of the container was in the shape of an octagon, while the inside of the container (the base and the walls) was in the shape of a circle.
- the container was prepared as described below having semiconductor wafers stored therein, and was placed inside a bubble mailer, which was commercially available under the Jiffylite brand from Sealed Air Corporation located in Saddle Brook, N.J., and evaluated as described in ASTM D 5276-98, “Standard Test Method for Drop Test of Loaded Containers by Free Fall.”
- the impact surface was steel. One of two different procedures was employed.
- the first procedure used the “Six Flat Drop Cycle” wherein the article to be tested was dropped six times from a height of 48 inches (122 centimeters (cm)), such that it landed one time on each face surface of the article, which included the two major surfaces of the mailer and the four edges of the mailer. Two test sets were run. After completion of this test, the container for semiconductor wafers was opened and the semiconductor wafers inspected for damage to or breakage of the wafers. Undamaged semiconductor wafers from the first test set were employed in the second test set.
- the second procedure used the “Ten Drop Cycle,” where the same container from the Six Flat Drop Cycle and semiconductor wafers were placed inside a corrugated box and then were dropped a total of ten times from a height of 30 inches (76 cm): once so it landed on a corner, three times on each edge forming that corner, and once on each of the six different face surfaces of the container.
- a sample of the rigid support plates of the container for semiconductor wafers of the present invention having semiconductor wafers stored therein was evaluated as described in ASTM D 3332-99, “Standard Test Method for Mechanical-Shock Fragility of Products, Using Shock Machines.” Specifically, “Test Method A—Critical Velocity Change Shock Test” of ASTMD 3332-99 was employed using a shock machine (Model 846 MTS Shock Machine commercially available from MTS Systems Corp, located in Eden Prairie, Minn.). The carriage was aluminum.
- the wafers were held between rigid plates on the shock testing machine, in either a horizontal or vertical orientation and tested at equivalent free fall drop heights of from 18 inches (45.72 cm.) to 66 (167.64 cm.) inches in increments of 6 inches (15.2 cm).
- One embodiment of the container for semiconductor wafers of the present invention was used in Examples 1-7.
- This container was similar to the container illustrated in FIGS. 2 a and 2 b.
- the outside of the container was in the shape of an octagon, while the inside of the container (the base and the walls) was in the shape of a circle.
- the rigid plates were also in the shape of a circle
- the first container body and second container body were joined together, having a wafer holding area therein, with 150 mm diameter semiconductor wafers stored inside and prepared as follows. The following materials were placed in a horizontal position, ordered from bottom to top, in the wafer holding area of the first container body:
- the second container body of the container was then securely fastened to the first container body using cooperative latches attached to the first and second container bodies, such that sufficient pressure was applied to the contents, so that the lateral movement of the items was minimized.
- the container was then placed inside a bubble mailer, which was commercially available under the Jiffylite brand from Sealed Air Corporation located in Saddle Brook, N.J. Then, the container and bubble mailer was evaluated using the “Six Flat Drop Cycle” test as described in the test method “Free Fall Drop Test” above. The results are shown in Table 1 below. TABLE 1 No. of Wafer No. of Test Set 1 Test Set 2 Wafer Support Foam (No. of (No.
- Example 1-5 and comparative examples 1-2 above help illustrate some unexpected benefits of the present invention.
- Examples 1-5 were repeated with the following modification to perform Examples 6-10 with the modification that the thickness of the semiconductor wafers was 0.008 inches (200 micrometers).
- the results are shown in Table 2 below.
- Examples 6-10 above help illustrate some unexpected benefits of the present invention.
- no rigid wafer support plates were included in the container at least one of the wafers was broken in all of the Comparative Examples 3 and 4, except Test Set 1 of Comparative Example 4.
- Example 11 A sample of another embodiment of the container for semiconductor wafers of the present invention was used for Example 11.
- This container was similar to the container illustrated in FIG. 5 .
- the outside of the container was in the shape of a circle, and the inside of the container (the base and the walls) was also in the shape of a circle.
- the rigid plates were also in the shape of a circle.
- the container was formed from a first container body having a wafer holding area therein and a flat, circular-shaped rigid wafer support plate on top.
- the wafer support plate was prepared from plywood having a thickness of 0.50 inches (1.3 centimeters).
- a container containing semiconductor wafers was prepared as follows. The following materials were placed in a horizontal position, ordered from bottom to top, in the wafer holding area of the container body:
- the air packaging cushioning member was inflated to 1.25 psi and as a result, the wafer support plate of the wafer transport system was held in place by the pressure of the inflated air-cushioning member surrounding the wafer transport system.
- Example 11 above helps illustrate that the semiconductor wafers did not break and were not damaged when they were held between two rigid, wafer support plates that had a larger surface area than the surface area of the semiconductor wafers.
- a portion of the wafer transport system described above was assembled, fixed in both a vertical and horizontal manner, and tested for drop shock sensitivity. More specifically, the following materials were assembled, ordered from bottom to top, as follows:
- test results described above are intended solely to be illustrative, rather than predictive, and variations in the testing procedure can be expected to yield different results.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Packaging Frangible Articles (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A container for containing semiconductor wafers. A preferred embodiment of the invention provides a container for containing semiconductor wafers that includes a first container body including a base and a wall connected to the base, a first wafer support plate located inside the first container body; and at least one semiconductor wafer between the base of the first container body and the first wafer support plate, wherein the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
Description
- The present invention relates to a container for containing semiconductor wafers. The present invention relates more particularly to a container for containing semiconductor wafers that includes a first container body including a base and a wall connected to the base, a first wafer support plate located inside the first container body; and at least one semiconductor wafer between the base of the first container body and the first wafer support plate, wherein the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- In the semiconductor industry, many types of semiconductor wafer containers have been utilized. These containers typically are supposed to protect the brittle wafers, minimize contamination from particulates, and minimize static electricity buildup. Some examples of such containers or systems maybe found in the following references: U.S. Pat. No. 4,787,508, U.S. Pat. No. 5,366,079, U.S. Pat. No. 5,553,711, U.S. Pat. No. 5,699,916, U.S. Pat. No. 6,119,865, U.S. Pat. No. 6,193,090, U.S. Pat. No. 6,193,068, U.S. Pat. No. 6,286,684, and PCT Publication WO 01/92135 A1.
- In addition, various companies offer various containers for transporting semiconductor wafers between different locations, for example between raw wafer processing locations and finished wafer processing locations. As one example, Entegris, Inc. based in Chaska, Minn., offers wafer shipper systems for shipping various sized wafers ranging from 125 mm to 300 mm (4.92 in to 11.81 in.) in diameter, where the wafers are either stacked horizontally or vertically in a carrier. As another example, SPI/Semicon based in Ogden, Utah offers wafer storage and shipping systems for shipping various sized wafers ranging from 3 inches to 8 inches (76.2 mm to 203.2 mm) in diameter, where the wafers are typically stacked horizontally in a wafer jar and lid, including foam liners, foam cushion discs, and wafer interleaf discs between the wafers. As another example, Central Corporation based in Yamanashi, Japan offers horizontal wafer shippers, where the wafers are stacked horizontally in a container including polyurethane cushions and spacers between the wafers. As another example, Malaster Company, Inc. based in Sunnyvale, Calif. offers horizontal wafer shippers, where the wafers are stacked horizontally in a container that has an internal cushion of foam along the outside of the wafers. As another example, 3M Company based in St. Paul, Minn. offers reusable semiconductor wafer transport systems and services where the wafers are stacked horizontally in a container with foam-cushioning and wafer separators between the wafers. Typically, the 3M containers are inserted into an air cushioning packaging and then placed in a box for shipping.
- One aspect of the present invention provides a container for containing semiconductor wafers. The container for containing semiconductor wafers comprises: a first container body including a base and a wall connected to the base; a first wafer support plate located inside the first container body; and at least one semiconductor wafer between the base of the first container body and the first wafer support plate, where the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- In one preferred embodiment of the above container further comprises: a second wafer support plate located inside the first container body, where the second wafer support plate is between the base of the first container body and the semiconductor wafer, and where the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate. In another preferred embodiment of the above container, the container further comprises: a second container body opposite the first container body, where the second container body includes a base and a wall connected to the base, and where the first container body is operatively connected to the first container body. In another aspect of this embodiment, the container further comprises: an internal cushioning member between the base of the second container body and the base of the first container body. In another aspect of this embodiment, the internal cushioning member is a foam-cushioning member. In another aspect of this embodiment, the internal cushioning member is an air-cushioning member.
- In another preferred embodiment of the above container, the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area, the first wafer support plate has a first major surface and a second major surface opposite the first major surface, the second major surface has a second surface area, the first major surface of the semiconductor wafer is opposite the second major surface of the first wafer support plate, and the first surface area of the semiconductor wafer is less than the second surface area of the first wafer support plate. In another aspect of this embodiment, the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate. In another aspect of this embodiment, the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
- In another preferred embodiment of the above container, the container further comprises a plurality of semiconductor wafers inside the first container body. In another aspect of this embodiment, the container further comprises a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers. In another preferred embodiment of the above container, when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
- Another aspect of the present invention provides an alternative container for containing semiconductor wafers. This container for containing semiconductor wafers, comprises: a first container body including a base and a wall connected to the base; at least one semiconductor wafer where the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area; a first wafer support plate located inside the first container body, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area; and where the semiconductor wafer is between the base of the first container body and second major surface of the first wafer support plate, where the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate, and where the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
- In one preferred embodiment of the above container, the container further comprises: a second wafer support plate located inside the first container body, where the second wafer support plate is between the base of the first container body and the semiconductor wafer, and where the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate. In another aspect of this embodiment, the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate. In another aspect of this embodiment, the container further comprises: a second container body opposite the first container body, where the second container body includes a base and a wall connected to the base, and where the first container body is operatively connected to the first container body. In another aspect of this embodiment, the container further comprises: an internal cushioning member between the base of the second container body and the base of the first container body. In another aspect of this embodiment, the internal cushioning member is a foam-cushioning member. In another aspect of this embodiment, the internal cushioning member is an air-cushioning member.
- In one preferred embodiment of the above container, the container of further comprises a plurality of semiconductor wafers inside the first container body. In another aspect of this embodiment, the container further comprising a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers. In another aspect of this embodiment, when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
- Another aspect of the present invention provides yet another alternative container for containing semiconductor wafers. This container for containing semiconductor wafers, comprises: a first container body including a base and a wall connected to the base; a plurality of semiconductor wafer, where each semiconductor wafer has a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area; a first wafer support plate located inside the first container body, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area; and where the plurality semiconductor wafers is between the base of the first container body and second major surface of the first wafer support plate, and where the first surface area of the semiconductor wafers is at least 10% less than the second surface area of the first wafer support plate; a second wafer support plate located inside the first container body, where the second wafer support plate has a first major surface and a second major surface opposite the first major surface, where the plurality semiconductor wafer is between the second major surface of the first wafer support and first major surface of the second wafer support plate, where the first major surface of the second wafer support plate has a first surface area, where the first surface area of the semiconductor wafers is at least 10% less than the first surface area of the second wafer support plate, and where the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate; a second container body opposite the first container body, where the second container body includes a base and a wall connected to the base, and where the first container body is operatively connected to the first container body; and an internal cushioning member between the base of the second container body and the base of the first container body, where the internal cushioning member is a foam-cushioning member; and a plurality of wafer separator sheets, where a separator sheet is between adjacent semiconductor wafers.
- Another aspect of the present invention provides a method of safely shipping semiconductor wafers. This method comprises the steps of: a) providing a container for containing semiconductor wafers, where the container comprises: a first container body including a base and a wall connected to the base; a second container body including a base and a wall connected to the base; a first wafer support plate located inside the first container body; b) providing a plurality of semiconductor wafers; c) stacking the plurality of semiconductor wafers in a stack and placing the stack of semiconductor wafers inside the first container body; d) placing the first wafer support plate on the stack of semiconductor wafers inside the first container body; e) operatively connecting the first container body with the second container body so as to enclose the wafer support plate and stack of semiconductor wafers inside the container and to stabilize the stack of semiconductor wafers between the base of the first container body and the first wafer support plate.
- In another aspect of this method, the container further comprises a second wafer support plate, step c).further comprises placing the second wafer support plate inside the first container body and placing the stack of semiconductor wafers on the second wafer support body inside the first container body, and the stack of semiconductor wafers is stabilized between the first wafer support plate and the second wafer support plate. In another aspect of the above method, the semiconductor wafers have a first major surface and a second major surface opposite the first major surface, where the first major surface has a first surface area, where the first wafer support plate has a first major surface and a second major surface opposite the first major surface, where the second major surface has a second surface area, and where the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate. In another aspect of the above method, the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate. In another aspect of the above method, when the container is dropped, the semiconductor wafers do not contact the wall of the first container body.
- In yet another aspect of the above method, step b) further comprises providing a plurality of wafer separator sheets, where a wafer separator sheet is between adjacent semiconductor wafers, step c) further comprising stacking the plurality of semiconductor wafers and the plurality of wafer separator sheets in a stack, a wafer separator sheet is between two adjacent semiconductor wafers, and placing the stack of semiconductor wafers and separator sheets inside the first container body. In another aspect of the above method, the method, further includes the steps of: f) transporting the container and stack of semiconductor wafers to a new location; g) separating the second container body from the first container body to remove the stack of semiconductor wafers from the container; h) inspecting the stack of semiconductor wafers and observing that the stack of semiconductor wafers are not damaged or broken.
- The present invention will be further explained with reference to the appended Figures, wherein like structure is referred to by like numerals throughout the several views, and wherein:
-
FIG. 1 illustrates a cross-sectional view of prior art system for containing and transporting semiconductor wafers; -
FIG. 2 a illustrates an expanded, cross sectional view of one preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention; -
FIG. 2 b illustrates a cross sectional view of the wafer transport system ofFIG. 2 a with the semiconductor wafers and other supporting materials enclosed within the container; -
FIG. 3 illustrates a cross sectional view of another preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention; -
FIG. 4 illustrates a cross sectional view of another alternative, preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention; and -
FIG. 5 illustrates a cross sectional view of yet another alternative, preferred embodiment of the wafer transport system for containing and transporting semiconductor wafers of the present invention. - Integrated circuits are manufactured from semiconductor wafers that are typically round in shape and made of highly brittle silicon. Such wafers are subjected to a variety of processing steps in transforming the semiconductor wafers into integrated circuit components. When semiconductor wafers are manufactured, they are typically transported between different locations where different fabrication steps are performed. For example, a semiconductor wafer may be transported from a raw wafer manufacturing location to a semi-finished processing fabrication location, where the front side of the wafer is fabricated, and then to an assembly site where the wafer is diced into chips and packaged. These different processing locations may be as close as different buildings in the same plant, or may be geographically remote from each other, such as located in different states or even in different countries.
- As the semiconductor wafers are getting larger in scale, now up to 300 millimeters in diameter, the density of the components is getting significantly greater. Moreover, semiconductor wafers are also getting thinner, providing much thinner completed integrated circuit packages. This has been driven, at least in part, by the cellular phone industry. Accompanying the trend towards larger, more dense and thinner wafers, the wafers are becoming more valuable, more brittle, and more easily damaged during shipment. Due to the fragility of the semiconductor wafer, care must be taken in transporting the wafers to avoid damaging or breaking the wafers, which can be very expensive.
- Traditionally, during the processing, storage, and shipping of the semiconductor wafers, the wafers are supported vertically in containers and constrained at their edges to prevent any contact between the wafers and possible damage or contamination to the faces of the wafers having the circuits thereon. Typically, the wafers are held vertically in the carrier by their edges (as opposed to lying flat) separated from each other by guides. These types of transport systems are typically known as “vertical shippers.” Most of these vertical shippers require additional cushioning on the outside of the container, such as air cushioning packaging or traditional foam packaging. Usually, the vertical shippers and its accompanying external cushioning materials are placed in another container, and shipped to its next location. One example of a vertical shipper system is offered by Entegris, Inc. based in Chaska, Minn., and is referenced in the Background section of this application.
- Alternatively, semiconductor wafers may be transported horizontally and supported in what are traditionally known as “horizontal shippers.” One example of a prior art, horizontal shipper system is illustrated in
FIG. 1 . 3M Company based in St. Paul, Minn. offers this horizontal shipper system as the 3M™ Wafer Transport System. Thewafer transport system 5 includes acontainer 11 made from afirst container body 12 and asecond container body 14. Thefirst container body 12 andsecond container body 14 are sized and shaped to fit together, and may be held together by cooperative latches (not shown). One example of asuitable container 11 is taught in U.S. Pat. No. 6,193,090, “Reusable Container,” (Connors et al.), which is hereby incorporated by reference. Eachcontainer body wall 16. Preferably, thebase 18 and thewall 16 are both cylindrically shaped to closely fit the outer edges of thecircular semiconductor wafers 20. - A plurality of
semiconductor wafers 20 is stacked within thecontainer 11, with eachwafer 20 separated from the other by aseparator sheet 22. The separator support sheets help protect the faces of thesemiconductor wafers 20. Separator sheets may be flexible and made of a film. An example of a suitable separate sheet is made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del. Thecontainer 11 further includes a plurality of circular-shaped,internal cushioning members 24 orspacing members 24 between the base 18 of thecontainer bodies semiconductor wafers 20 andseparator sheets 22. Preferably, theinternal cushioning members 24 are foam-cushioning pads made from polyurethane open cell foam or polyethylene closed cell foam. - Surrounding the
container 11 is anexternal cushioning member 26. For the 3M™ Wafer Transport System, theexternal cushioning member 26 is an air inflatable cushioning member. Examples of suitable air inflatable cushioning members are taught in U.S. Pat. No. 4,872,558, “Bag-In-Bag Packaging System,” U.S. Pat. No. 6,283,296, “Quilted Inflatable Packaging Device,” and U.S. Pat. No. 6,464,079, “Suspension Air Packaging Device, all of which are hereby incorporated by reference. Typically, the container 11 (along with its contents ofsemiconductor wafers 20,separator sheets 22, and internal foam-cushioning members 24) is placed inside theair cushioning packaging 26 and then the air cushioning packaging is inflated around the container, to provide cushioning to thecontainer 11 and its contents. Then, the inflatedair cushioning packaging 26 andcontainer 11 are placed in a corrugated cardboard box, and the box is shipped to its destination. The box may include additional packaging materials inside the box to provide further cushioning of thecontainer 11. After the box arrives, a user may deflate theair cushioning packaging 26, withdraw thecontainer 11 from thepackaging 26, and open up thecontainer 11 to remove thesemiconductor wafers 20. - The prior art vertical shippers and horizontal shippers for transporting the semiconductor wafers all generally require some external cushioning, such as air cushioning or foam-cushioning, outside of the wafer shipping containers to ensure that the semiconductor wafers make it safely to their destinations without damaging or breaking the semiconductor wafers. Often this external packaging can be more than two inches thick, which adds the overall shipping volume of the shipping box that holds the shipping container and external packaging. As illustrated by the examples, the present invention provides a shipping container that does not require external packaging outside of the shipping container, but instead relies on the configuration inside of the inventive shipping container to protect the semiconductor wafers from damage or breakage. By minimizing the amount of external cushioning or eliminating the need for external cushioning outside of the semiconductor wafer shipping container, additional packaging materials are eliminated and the overall package volume is reduced, which results in lower overall costs of shipping semiconductor wafers, in comparison to prior art shipping containers or wafer transport systems. The present inventive container allows semiconductor wafers to be shipped inside the container within a simple, inexpensive, padded envelope or small, corrugated box without the need for significant, additional external packaging.
- In addition, most of the prior art wafer shippers are shaped similarly to the shape of the wafers they contain. For example, the vertical shipping containers are approximately the same height as the height of the semiconductor wafers when they are stood up on their edges inside the containers. As another example, the circumference of the horizontal shipping containers match closely to the circumference of the semiconductor wafers. In fact, the prior art wafer shippers, both vertical and horizontal, are sold according to what size of wafers is to be shipped inside of them. For example, the 200 mm Horizontal Wafer Shipper System sold by Entegris, Inc. based in Chaska, Minn. and the 200 mm Wafer Transport System sold by 3M Company based in St. Paul, Minn. are both designed for shipping 200 mm (8 diameter semiconductor wafers. The configuration of these prior art vertical and horizontal shippers to generally match the shape and circumference of the semiconductor wafers help to distribute the stress of holding the wafers evenly along the outside circumference of the wafers. Since the edges of semiconductor wafer correspond to the circumference of the carrier, there is no concentration of stress at any particular point along the semiconductor wafer because of the close fit between the wafer and its carrier, which helps minimize damage to the semiconductor wafers, so long as the wafer containers are shipped in appropriate cushioning materials outside the containers
- The inventors of this patent application have discovered that the damage to or breakage of the semiconductor wafers during shipping is frequently caused by the edge of the wafer contacting or impacting the edge of the carrier causing the edge of the wafer to become distorted, damaged, or crushed. Often when the semiconductor wafer contacts the edge of the carrier, it may cause a break along the edge of the wafer that may eventually propagate throughout the entire wafer, causing the wafer to break into pieces. The present invention offers improved protection of the edges of the semiconductor wafers, thus avoiding damage to or breakage of the wafers during shipping.
- Overall, the wafer transport system of present invention protects the semiconductor wafers from mechanical shock, damage, or breakage while the wafers are being shipped between various locations, thus avoiding unnecessary costs resulting from damaged wafers occurring during shipping. The inventive wafer transport system also helps reduce overall shipping volume for shipping the semiconductor wafers, which eliminates unnecessary associated packaging components and results in overall savings in the packaging and shipping of the semiconductor wafers.
- One embodiment of the
wafer transport system 10 a of the present invention is illustrated inFIGS. 2 a and 2 b.FIG. 2 a illustrates an expanded view of thewafer transport system 10 a andFIG. 2 b illustrates the semiconductors and other supporting materials enclosed within the container. - The
wafer transport system 10 a includes some of the same components as the prior artwafer transport system 5 illustrated inFIG. 1 . Thesystem 10 a includes thecontainer 11 made from afirst container body 12 and asecond container body 14. Thefirst container body 12 andsecond container body 14 are sized and shaped to fit together, and may be held together by cooperative latches (not shown). One example of asuitable container 11 is taught in U.S. Pat. No. 6,193,090, “Reusable Container,” (Connors et al.), which is hereby incorporated by reference. Eachcontainer body wall 16. Preferably, thecontainer bodies base 18 is the shape of a circle and thewall 16 is in the shape of a cylinder. Preferably, the surface area of thebases 18 is larger than the surface area of thesemiconductor wafers 20. Likewise, the inside circumference of thewall 16 is larger than the outer circumference of thesemiconductor wafers 20. For example, the inside diameter of the base 18 may be 200 mm and the diameter of the semiconductor wafers may be 150 mm. Alternatively, the container bodies may be any shape or size. For instance, the container bodies may be octagonal shaped. However, it is preferred that the surface area of thebase 18 is larger than the surface area of thesemiconductor wafers 20. Thecontainer 11 may be injected molded or blow molded plastic material. Preferably, thecontainer 11 is designed for special cleanliness or reduced static discharge, for example by choosing materials, cleaning procedures, and process controls - A plurality of
semiconductor wafers 20 is stacked within thecontainer 11. Eachsemiconductor wafer 20 has a firstmajor surface 21 and a secondmajor surface 23 opposite the first major surface. Eachsemiconductor wafer 20 is separated from the other by awafer separator sheet 22. An example of a suitable wafer separator sheet is made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del. The separator support sheets help protect the faces of the semiconductor wafers. Preferably, the surface area of the major surfaces of theseparator sheets 22 is larger than the surface area of themajor surfaces semiconductor wafers 20. The large separator sheets also help protect the edges of thesemiconductor wafers 20. Preferably, the separator sheets are sized to fit the surface area inside thecontainer bodies separator sheets 22 may be of any size or shape, so long as they protect the faces of thesemiconductor wafers 20. - The
separator sheets 22 may be selected such that the material thesheets 22 are made of have a high coefficient of friction. This has the benefit of helping thesemiconductor wafers 20 between theseparator sheets 22 resist lateral movement, and helps to stabilize the stack ofsemiconductor wafers 20 andsheets 20 inside thecontainer 11. - The
container 11 further includes a plurality ofinternal cushioning members 24 between thebases 18 of thecontainer bodies semiconductor wafers 20 andseparator sheets 22. Preferably, theinternal cushioning members 24 are foam-cushioning pads made from polyurethane open cell foam. Preferably, theinternal cushioning members 24 have a larger surface area than the surface area of thesemiconductor wafers 20. Preferably, theinternal cushioning members 24 are sized and shaped to fit closely inside thecontainer bodies system 10 a may include any number ofinternal cushioning members 20. Theinternal cushioning members 24 function to help fill up volume inside thecontainer 11 to assist in applying pressure between thebases 18 of thecontainer bodies - The
wafer transport system 10 a preferably includes at least one wafer support plate 28. However, thewafer transport system 10 a may include any number of wafer support plates 28. Thesystem 10 a is illustrated as having a firstwafer support plate 28 a and a secondwafer support plate 28 b. The firstwafer support plate 28 a is between one end of the stack ofsemiconductor wafers 20 andseparator sheets 22 and thebase 18 of thesecond container body 14. The secondwafer support plate 28 b is between the opposite end of the stack ofsemiconductor wafer 20 andseparator sheets 22 and thebase 18 of thefirst container body 12. Each surface support plate includes a firstmajor surface 30 and a secondmajor surface 32 opposite the first major surface. - Preferably, the wafer support plates 28 are rigid and not easily bendable. A suitable wafer support plate 28 is made of steel, plywood, or a hard plastic. The wafer support plates 28 may be made of metal, ceramic, a hard plastic depending on the specific needs for rigidity, cleanliness, chemical compatibility and static dissipative characteristics. Examples of suitable plastic materials include polypropylene, polycarbonate, and an acetal resin plastic sold under the trade name DELRIN, which is commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del. Preferably, the rigid support plates 28 are at least five times as thick as the
semiconductor wafers 20. Preferably, themajor surfaces major surfaces semiconductor wafers 20 may have a diameter of 150 mm. However, the rigid support plates 28 may be sized to fit closely inside thecontainer bodies base 18 of thecontainer bodies - The rigid support plates 28 function to stabilize the stack of
semiconductor wafers 20 within thecontainer 11 to prevent damage to or breakage of thewafers 20 during shipping or transport of thecontainer 11. When using the term “stabilized” as used in reference to the stack of semiconductor wafers, including the claims, it is meant that that stack of semiconductor wafers is resistant to change its relative position. The thicknesses of the foaminternal cushioning members 24, the rigid support plates 28, and stack ofsemiconductor wafers 20 andwafer separator sheets 22 are all configured such that all of the components together tightly fit into thecontainer 11 when thefirst container body 12 andsecond container body 14 are closed together. With this configuration, the firstrigid support plate 28 a presses down upon the stack ofsemiconductor wafers 20, pressing the stack of wafers against thebase 18 of thefirst container body 12. At the same time, the secondrigid support plate 28 b presses against the stack ofsemiconductor wafers 20, pressing the stack of wafers against thebase 18 of thesecond container body 14. Because the stack ofsemiconductor wafers 20 is tightly held between the first and secondrigid plates semiconductor wafers 20 within thecontainer 11, even when the container is shaken or dropped. The forces applied to thesemiconductor wafers 20 by the rigid plates 28 are in a direction that is at a 90° angle relative to the major surface of the semiconductor wafers, which helps prevent the semiconductor wafers from slipping in the direction of their major surface. The normal force on the support plates 28 and stack of wafers and separator sheets also helps keep thewafers 20 stabilized within thecontainer 11. The first and secondrigid plates semiconductor wafers 20 rigid, so they will not flex. This feature is especially useful with protecting semiconductor wafers from damage or breaking because semiconductor wafers will often bend and commonly break because they are so thin. Lastly, the uniform or substantially uniform pressure applied to the stack ofsemiconductor wafers 20 by therigid support plates container 11, which assists in safely transporting them without damage to or breakage of the wafers. - Preferably, the surface area of the
major surfaces semiconductors 20 is smaller than the diameter of the rigid support plates 28 to help protect the edges of thesemiconductor wafers 20. As explained above, the inventors of this patent application have discovered that the damage or breakage of the semiconductor wafers during shipping is frequently caused by the edge of the wafer contacting or impacting the edge of the carrier causing the edge of the wafer to become distorted, damaged, or crushed. Often when the wafer contacts the edge of the carrier, it may cause a break along the edge of the wafer that may eventually propagate throughout the entire wafer, causing the wafer to break into pieces. By shipping thesemiconductor wafers 20 with at least one rigid support plates 28 that have a larger surface area than the semiconductor wafers, this configuration helps prevent the wafers from contacting or impacting thewalls 16 of thecontainer bodies - Preferably, the surface area of the
major surfaces semiconductor wafers 20 is smaller than the surface areas of themajor surface major surfaces semiconductor wafers 20 is smaller than the surface areas of thebases 18 of thecontainer bodies major surfaces semiconductor wafer 20 is at least 10% less than the area of thesecond surface wafer support plates major surfaces semiconductor wafer 20 is at least 25% less than the area of thesecond surface wafer support plates shipping semiconductor wafers 20 with a 150 mm diameter, (which is an approximate surface area of 17671 mm2), it is recommended that the diameter of the rigid support plate be at least 175 mm diameter (which is an approximate surface area of 24,053 mm2), or at least 200 mm (which is an approximate surface area of 31416 mm2). Preferably there should be about 10 mm or more of distance between the edge of thesemiconductor wafers 20 and thewalls 16 of thecontainer bodies semiconductor wafer 20. However, themajor surfaces wafer support plates semiconductor wafers 20 to adequately protect the edges of the wafers from contacting theside walls 16 of thecontainer 11 to help prevent damage to or breakage of the wafers. Prior art shipping containers, such as those described above, typically are sized to be just slightly bigger than the diameter of the semiconductor wafers they are to receive, for instance just a few millimeters larger than the diameter of the wafer, so as to allow the wafers to fit inside of the container. However, this is in sharp contrast to the present invention, where the containers are purposefully designed to allow a certain amount of space between the edges of thesemiconductor wafers 20 and theside walls 16 of the container to adequately protect the edges of the wafers from contacting thewalls 16. - The rigid support plates 28 may be selected such that the material the sheets 28 are made of have a high coefficient of friction. This has the benefit of helping the stack of
semiconductor wafers 20 between the support plates 28 resist lateral movement, and helps to stabilize the stack ofsemiconductor wafers 20 andsheets 20 inside thecontainer 11. -
FIG. 3 illustrates an alternativewafer transport system 10 b for the storage and transport of semiconductor wafers safely without damage or breakage. Thesystem 10 b is very similar to thesystem 10 a illustrated inFIGS. 2 a and 2 b and functions similarly.System 10 b includes the same stack ofsemiconductor wafers 20 andseparator sheets 22, and the same support plates 28 assystem 10 a. Thecontainer 11 ofsystem 10 b is made fromcontainer bodies system 10 a. However, thesystem 10 b differs fromsystem 10 a in that it does not include the internal cushioning members. Instead, the depth of thecontainer 11 is configured to closely hold a stack ofsemiconductor wafers 20,separator sheets 22, and at least onerigid support plate 28 a. Thefirst container body 12 andsecond container body 14 both have latches to allow for a snap fit between thecontainer bodies semiconductor wafers 20 andseparator sheets 22 inside thefirst container body 12, and then press fit thesecond container body 14 onto thefirst container body 12 until adequate pressure is applied by therigid support plate 28 a against the stack of semiconductor wafers. The firstrigid support plate 28 a applies a force to the stack ofsemiconductor wafers 20 andseparator sheets 22, pinning the stack against thebase 18 of thefirst container body 12, so as to stabilize thesemiconductor wafers 20 and to prevent the movement of thesemiconductor wafers 20 within thecontainer 11, even when thecontainer 11 is tilted or dropped, for example during transport or shipping. In addition, similar to thesystem 10 a described above, thesupport plate 28 a andseparator sheets 22 are both preferably of larger surface area compared the surface area of the semiconductor wafers to protect the edges of thesemiconductor wafers 20 from contacting theside walls 16 of thecontainer 11. The surface area of thebases 18 of thecontainer bodies semiconductor wafers 20 to accommodate the support plates 28. - Alternatively, the
system 10 b may include a secondrigid support plate 28 b between the stack ofsemiconductor wafers 20 and thebase 18 of thefirst container body 12. However, asecond support plate 28 b is not necessary. In addition, the support plates 28 may be separate from thecontainer bodies container bodies wafer transport system 10 b may optionally include any number of internal cushioning members. -
FIG. 4 illustrates an alternativewafer transport system 10 c for the storage and transport of semiconductor wafers safely without damage or breakage. Thesystem 10 c is very similar to thesystem 10 a illustrated inFIGS. 2 a and 2 b and functions similarly.System 10 c includes the same stack ofsemiconductor wafers 20 andseparator sheets 22, the same support plates 28, and thesame container 11 assystem 10 a. However, thewafer transport system 10 c differs fromwafer transport system 10 a in that it does not include theinternal cushioning members 24. Instead, thewafer transport system 10 c includes an internal, inflatable air-cushioningmember 36, which may be inflated after thefirst container body 12 andsecond container body 14 are closed together. Thesecond container body 14 has a hole in itsbase 18 to accommodate the valve andair supply tube 38 to the internal air-cushioningmember 36. The air-cushioningmember 36 allows for the convenience of placing stacks ofsemiconductors 20 andseparator sheets 22 of varying heights inside of thecontainer 11 without the need for varying containers of different depths. Alternatively, the air-cushioningmember 36 may be inflated to its proper size prior to placing it inside thecontainer 11, and then attaching thesecond container body 14 to thefirst container body 12. - After the stack of
semiconductors 20 andseparate sheets 22 is placed inside thefirst body container 12, the firstrigid support plate 28 a is place on top of the stack and the deflated, the internal,air cushioning member 36 is placed on top of the rigid wafer support plate. The valve and air hose is pulled through the hole in thesecond container body 14 and thesecond container body 14 is attached to thefirst container body 12. Next, the internal,air cushioning member 36 is inflated until themember 36 is pressing sufficient force against the first rigidwafer support plate 28 a, such that thesemiconductor wafers 20 are stabilized between thesupport page 28 a and thebase 18 of the first container body. Preferably, enough air is pumped into theair cushioning packaging 36 to apply pressure against the firstwafer support plate 28 a and thus apply pressure against the stack of semiconductor wafers, so as to prevent the movement of thesemiconductor wafers 20 within thecontainer 11, even when the container is tilted or dropped, for example during shipping or transport of the container . In addition, similar thesystem 10 a described above, the major surfaces of thesupport plate 28 a andseparator sheets 22 are all preferably of larger surface area compared the surface area of themajor surfaces semiconductor wafers 20 from contacting theside walls 16 of thecontainer 11. The surface area of thebases 18 of thecontainer bodies major surfaces semiconductor wafers 20 to accommodate the support plates 28. - Alternatively, the
system 10 c may include a secondrigid support plate 28 b between the stack ofsemiconductor wafers 20 and thebase 18 of thefirst container body 12. However, a second support plate is not necessary. In addition, thesecond support plate 28 b may be separate from thefirst container bodies 12 or integrally molded as part of thefirst container bodies 12. -
FIG. 5 illustrates an alternativewafer transport system 10 d for the storage and transport of semiconductor wafers safely without damage or breakage. Thesystem 10 d is very similar to thesystem 10 c illustrated inFIG. 4 and functions similarly.System 10 d includes the same stack ofsemiconductor wafers 20 andseparator sheets 22, and the same support plates 28 assystem 10 a. Thecontainer 11 ofsystem 10 d is made from thefirst container body 12 similar to thesystem 10 c. However, thesystem 10 d differs fromsystem 10 c in that theair cushioning member 40 completely surrounds thecontainer 11 and theair cushioning member 40 andcontainer 11 are enclosed inside another container, such as abox 42. A user may insert a stack ofsemiconductor wafers 20 andseparator sheets 22 inside thefirst container body 12 and then place the first wafer support plated 28 a on top of the stack. Thecontainer 11 is then placed inside an uninflated air-cushioningmember 40. Next, the aircushioning packaging member 40 is inflated until the firstrigid support plate 28 a applies a force to the stack ofsemiconductor wafers 20 andseparator sheets 22, pinning the stack against thebase 18 of thefirst container body 12, so as to stabilize thesemiconductor wafers 20 and to prevent the movement of thesemiconductor wafers 20 within thecontainer 11, even when thecontainer 11 is tilted or dropped, for example during transport or shipping. In addition, similar thesystem 10 c described above, thesupport plate 28 a andseparator sheets 22 are both preferably of larger surface area compared the surface area of the semiconductor wafers to protect the edges of thesemiconductor wafers 20 from contacting theside walls 16 of thecontainer 11. The surface area of thebases 18 of thecontainer bodies semiconductor wafers 20 to accommodate the support plates 28. Lastly, theair cushioning member 40 andcontainer 11 may be placed inside anothercontainer 42 and shipped to its destination. - Alternatively, the
system 10 d may include a secondrigid support plate 28 b between the stack ofsemiconductor wafers 20 and thebase 18 of thefirst container body 12. However, asecond support plate 28 b is not necessary. In addition, thefirst support plate 28 b may be separate from thefirst container body 12 or integrally molded as part of thecontainer body 12. - The wafer transport systems 10 a-10 d are all illustrated as horizontal type shippers, where the semiconductor wafers are stacked horizontally. However, the wafer transport systems 10 a-10 d may just as easily carry the semiconductor wafers vertically by turning the systems 90°.
- All of the
wafer transport systems containers 11, such as illustrated inFIG. 1 , to protect the semiconductor wafers. Instead it is recommended that thesystems - The system 10 of the present invention has been described above as being particularly useful for shipping semiconductor wafers. However, the system may be used for shipping a variety of objects, such as records, CDs, DVDs, or any flat, fragile items made of glass, ceramic, or other similar materials.
- The operation of the present invention will be further described with regard to the following detailed examples. These examples are offered to further illustrate the various specific and preferred embodiments and techniques. It should be understood, however, that many variations and modifications may be made while remaining within the scope of the present invention.
- Free Fall Drop Test
- One embodiment of the container for semiconductor wafers of the present invention was prepared. The embodiment of the container was similar to the containers described above. The outside of the container was in the shape of an octagon, while the inside of the container (the base and the walls) was in the shape of a circle. The container was prepared as described below having semiconductor wafers stored therein, and was placed inside a bubble mailer, which was commercially available under the Jiffylite brand from Sealed Air Corporation located in Saddle Brook, N.J., and evaluated as described in ASTM D 5276-98, “Standard Test Method for Drop Test of Loaded Containers by Free Fall.” The impact surface was steel. One of two different procedures was employed. The first procedure used the “Six Flat Drop Cycle” wherein the article to be tested was dropped six times from a height of 48 inches (122 centimeters (cm)), such that it landed one time on each face surface of the article, which included the two major surfaces of the mailer and the four edges of the mailer. Two test sets were run. After completion of this test, the container for semiconductor wafers was opened and the semiconductor wafers inspected for damage to or breakage of the wafers. Undamaged semiconductor wafers from the first test set were employed in the second test set.
- The second procedure used the “Ten Drop Cycle,” where the same container from the Six Flat Drop Cycle and semiconductor wafers were placed inside a corrugated box and then were dropped a total of ten times from a height of 30 inches (76 cm): once so it landed on a corner, three times on each edge forming that corner, and once on each of the six different face surfaces of the container.
- Controlled Shock Test
- A sample of the rigid support plates of the container for semiconductor wafers of the present invention having semiconductor wafers stored therein was evaluated as described in ASTM D 3332-99, “Standard Test Method for Mechanical-Shock Fragility of Products, Using Shock Machines.” Specifically, “Test Method A—Critical Velocity Change Shock Test” of ASTMD 3332-99 was employed using a shock machine (Model 846 MTS Shock Machine commercially available from MTS Systems Corp, located in Eden Prairie, Minn.). The carriage was aluminum. The wafers were held between rigid plates on the shock testing machine, in either a horizontal or vertical orientation and tested at equivalent free fall drop heights of from 18 inches (45.72 cm.) to 66 (167.64 cm.) inches in increments of 6 inches (15.2 cm).
- One embodiment of the container for semiconductor wafers of the present invention was used in Examples 1-7. This container was similar to the container illustrated in
FIGS. 2 a and 2 b. The outside of the container was in the shape of an octagon, while the inside of the container (the base and the walls) was in the shape of a circle. The rigid plates were also in the shape of a circle The first container body and second container body were joined together, having a wafer holding area therein, with 150 mm diameter semiconductor wafers stored inside and prepared as follows. The following materials were placed in a horizontal position, ordered from bottom to top, in the wafer holding area of the first container body: - 1. 0.25 inch (6.35 millimeters (mm)) thick, circular shaped polyurethane open cell foam cushion pads;
- 2. (where employed) a flat 0.125 inch (3.18 mm) thick, circular shaped, plastic support plate made from acetal resin material sold under the trade name DELRIN, commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del.;
- 3. a stack of 0.006 inch (152 micrometers) thick, circular shaped separator sheets made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del.) and 0.0177 inch (450 μm) thick semiconductor wafers, arranged such that 12 wafers were separated from each other and covered by 13 separator sheets;
- 4. (where employed) a second support plate as described above in #2; and
- 5. additional foam pads as described above in #1.
- The second container body of the container was then securely fastened to the first container body using cooperative latches attached to the first and second container bodies, such that sufficient pressure was applied to the contents, so that the lateral movement of the items was minimized. The container was then placed inside a bubble mailer, which was commercially available under the Jiffylite brand from Sealed Air Corporation located in Saddle Brook, N.J. Then, the container and bubble mailer was evaluated using the “Six Flat Drop Cycle” test as described in the test method “Free Fall Drop Test” above. The results are shown in Table 1 below.
TABLE 1 No. of Wafer No. of Test Set 1 Test Set 2 Wafer Support Foam (No. of (No. of Holding Plates Pads and Separator Broken Broken Area Wafer and Plate Pad Sheet Wafers Wafers Diameter Diameter Diameter Diameter Diameter out of out of Ex. (mm) (mm) (mm) (mm) (mm) 12) 12) CE1 150 150 None 7 @ 150 150 4 2 1 150 150 2 @ 150 6 @ 150 150 2 2 2 200 150 2 @ 175 6 @ 200 200 0 0 3 200 150 1 @ 175 6 @ 200 200 0 0 4 200 150 2 @ 200 6 @ 200 200 0 0 5 200 150 1 @ 200 6 @ 200 200 0 0 CE2 200 150 None 7 @ 200 200 0 3 - Example 1-5 and comparative examples 1-2 above help illustrate some unexpected benefits of the present invention. First, when either one or two of the rigid wafer support plates were included in the semiconductor wafer container, the number of broken semiconductor wafers was reduced by half in Test Set 1 (from 4 broken wafers to 2 broken wafers in comparison to the Comparative Example 1) and no semiconductor wafers were broken in Examples 2-5, Test Sets 1 and 2. Second, when either one or two of the rigid wafer support plates having diameters larger than diameters of the semiconductor wafer (and thus greater surface area) were included in the semiconductor wafer container, the number of broken semiconductor wafers dropped to zero in all of the test sets for Examples 2-5. In contrast, when the container did not include any rigid support plates, the wafers were broken in all of the Comparative Examples, except for Test Set 1 of Comparative Example 2.
- Examples 1-5 were repeated with the following modification to perform Examples 6-10 with the modification that the thickness of the semiconductor wafers was 0.008 inches (200 micrometers). The results are shown in Table 2 below.
TABLE 2 Test Test No. of Wafer No. of Set 1 Set 2 Wafer Support Foam (No. of (No. of Holding Plates Pads and Separator Broken Broken Area Wafer and Plate Pad Sheet Wafers Wafers Diameter Diameter Diameter Diameter Diameter out of out of Ex. (mm) (mm) (mm) (mm) (mm) 12) 12) CE3 150 150 None 7 @ 150 150 4 8 6 150 150 2 @ 150 6 @ 150 150 9 10 7 200 150 2 @ 175 6 @ 200 200 0 0 8 200 150 1 @ 175 6 @ 200 200 0 0 9 200 150 2 @ 200 6 @ 200 200 0 0 10 200 150 1 @ 200 6 @ 200 200 0 0 CE4 200 150 None 7 @ 200 200 0 1 - Examples 6-10 above help illustrate some unexpected benefits of the present invention. First, when at least one or two rigid wafer support plates were included in the container, the number of broken semiconductor wafers was reduced to zero in all of the Examples, except for Example 6. Second, when the diameter of the rigid wafer support plate was larger than the diameter of the semiconductor wafers (and thus, had a larger surface area), the number of broken semiconductor wafers was reduced to zero in Examples 7-10. In contrast, when no rigid wafer support plates were included in the container, at least one of the wafers was broken in all of the Comparative Examples 3 and 4, except Test Set 1 of Comparative Example 4.
- A sample of another embodiment of the container for semiconductor wafers of the present invention was used for Example 11. This container was similar to the container illustrated in
FIG. 5 . The outside of the container was in the shape of a circle, and the inside of the container (the base and the walls) was also in the shape of a circle. The rigid plates were also in the shape of a circle. The container was formed from a first container body having a wafer holding area therein and a flat, circular-shaped rigid wafer support plate on top. The wafer support plate was prepared from plywood having a thickness of 0.50 inches (1.3 centimeters). A container containing semiconductor wafers was prepared as follows. The following materials were placed in a horizontal position, ordered from bottom to top, in the wafer holding area of the container body: - 1. a 0.25 inch (6.35 millimeters (mm)) thick, circular shaped polyurethane open cell foam cushion pad;
- 2. an stack of 0.006 inch (152 micrometers) thick, circular shaped separator sheets made of a spun-bonded olefin material sold under the trade name TYVEK commercially available from E.I. du Pont de Nemours and Company, located in Wilmington, Del. and 0.0177 inch (450 micrometers) thick semiconductor wafers, 150 mm diameter, arranged such that 3 wafers were separated from each other and covered by 4 separator sheets; and
- 3. a 0.25 inch (6.35 millimeters (mm)) thick, circular shaped polyurethane open cell foam cushion pad; and
- 4. the 0.50 inches (1.3 cm) thick plywood wafer support plate.
- The base of the wafer holding area in the container body and the wafer support plate both had a diameter of 200 millimeters. Next, the assembly of the container and its components therein was placed inside a 3M™ Air Cushion Packaging system (available from 3M Company, St. Paul, Minn.) having a un-inflated size of 16 inches×16 inches (40.6 centimeters×40.6 centimeters). The air packaging cushioning member was inflated to 1.25 psi and as a result, the wafer support plate of the wafer transport system was held in place by the pressure of the inflated air-cushioning member surrounding the wafer transport system. Next, wafer transport system and inflated air cushioning member was placed inside a closely fitting, corrugated cardboard box, having inside dimensions of 14 inches by 12 inches by 9 inches (35.6 cm by 30.5 cm by 22.9 cm). This entire article was then evaluated using the “Ten Drop Cycle” test as described in the test method “Free Fall Drop Test” above. The results are shown in Table 3 below.
TABLE 3 Test Test Set 1 Set 2 No. of (No. of (No. of Wafer No. of Broken Damaged Wafer Support Foam or or Holding Plates Pads and Separator Damaged Broken Area Wafer and Plate Pad Sheet Wafers Wafers Diameter Diameter Diameter Diameter Diameter out of out of Ex. (mm) (mm) (mm) (mm) (mm) 3) 3) 11 200 150 1 @ 200 2 @ 200 4 @ 200 0 0 - Example 11 above helps illustrate that the semiconductor wafers did not break and were not damaged when they were held between two rigid, wafer support plates that had a larger surface area than the surface area of the semiconductor wafers.
- A portion of the wafer transport system described above was assembled, fixed in both a vertical and horizontal manner, and tested for drop shock sensitivity. More specifically, the following materials were assembled, ordered from bottom to top, as follows:
- 1. a 0.50 inch (1.25 cm) thick, 8 inch (20.3 cm) diameter aluminum plate;
- 2. a stack of 0.006 inch (152 micrometers) thick, 200 millimeter diameter, circular shaped separator sheets of TYVEK (a spun-bonded olefin material available from E.I. du Pont de Nemours and Company, Wilmington, Del.) and semiconductor wafers having a diameter of 200 mm and a thickness of 280 micrometers, arranged such that 2 wafers were separated and covered by 3 separator sheets; and
- 3. a 0.50 inch (1.25 cm) thick, 8 inch (20.3 cm) diameter aluminum plate.
- The assembly described above was then tightly joined together with C-clamps and locked on the shock testing machine in either a vertical or horizontal orientation and evaluated for drop shock sensitivity as described in the test method “Controlled Shock Test” above. Then, the semiconductor wafers were inspected for damage to or breakage of the wafers. The results are shown in Table 4 below.
TABLE 4 Damage Damage to or to or Equivalent Breakage Breakage Free Fall of Wafers of Wafers Drop Velocity Peak Pulse in in Drop Height Change Acceleration Duration Horizontal Vertical Ex. No. (inches) (in./sec.) (G-sec.) (milliseconds) mode mode 12 1 18 116.6 255.7 1.58 None None 13 2 24 135.4 316.2 1.89 None None 14 3 30 155.4 384.6 1.89 None None 15 4 36 167.6 423.9 1.93 None None 16 5 42 182.8 474.6 1.62 None None 17 6 48 191.4 514.2 1.54 None None 18 7 54 206.3 548.7 1.62 None None 19 8 60 215.8 578.7 1.58 None None 20 9 66 225.5 621.5 1.54 None None - The same two semiconductor wafers were used for all the tests run. The maximum shock level of the machine was reached without any damage to the wafers being observed.
- The tests and test results described above are intended solely to be illustrative, rather than predictive, and variations in the testing procedure can be expected to yield different results.
- The present invention has now been described with reference to several embodiments thereof. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. All patents and patent applications cited herein are hereby incorporated by reference. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the present invention should not be limited to the exact details and structures described herein, but rather by the structures described by the language of the claims, and the equivalents of those structures.
Claims (30)
1. A container for containing semiconductor wafers, comprising:
a first container body including a base and a wall connected to the base;
a first wafer support plate located inside the first container body; and
at least one semiconductor wafer between the base of the first container body and the first wafer support plate, wherein the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
2. The container of claim 1 further comprising:
a second wafer support plate located inside the first container body, wherein the second wafer support plate is between the base of the first container body and the semiconductor wafer, and wherein the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate.
3. The container of claim 1 further comprising:
a second container body opposite the first container body, wherein the second container body includes a base and a wall connected to the base, and wherein the first container body is operatively connected to the first container body.
4. The container of claim 3 further comprising:
an internal cushioning member between the base of the second container body and the base of the first container body.
5. The container of claim 4 , wherein the internal cushioning member is a foam-cushioning member.
6. The container of claim 4 , wherein the internal cushioning member is an air-cushioning member.
7. The container of claim 1 , wherein the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, wherein the first major surface has a first surface area, wherein the first wafer support plate has a first major surface and a second major surface opposite the first major surface, wherein the second major surface has a second surface area, wherein the first major surface of the semiconductor wafer is opposite the second major surface of the first wafer support plate, and wherein the first surface area of the semiconductor wafer is less than the second surface area of the first wafer support plate.
8. The container of claim 7 , wherein the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate.
9. The container of claim 8 , wherein the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
10. The container of claim 1 further comprising a plurality of semiconductor wafers inside the first container body.
11. The container of claim 10 , further comprising a plurality of wafer separator sheets, wherein a wafer separator sheet is between adjacent semiconductor wafers.
12. The container of claim 2 , wherein when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
13. A container for containing semiconductor wafers, comprising:
a first container body including a base and a wall connected to the base;
at least one semiconductor wafer wherein the semiconductor wafer has a first major surface and a second major surface opposite the first major surface, wherein the first major surface has a first surface area;
a first wafer support plate located inside the first container body, wherein the first wafer support plate has a first major surface and a second major surface opposite the first major surface, wherein the second major surface has a second surface area; and
wherein the semiconductor wafer is between the base of the first container body and second major surface of the first wafer support plate, wherein the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate, and wherein the semiconductor wafer is stabilized between the first wafer support plate and the first container body.
14. The container of claim 10 further comprising:
a second wafer support plate located inside the first container body, wherein the second wafer support plate is between the base of the first container body and the semiconductor wafer, and wherein the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate.
15. The container of claim 13 , wherein the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
16. The container of claim 13 further comprising:
a second container body opposite the first container body, wherein the second container body includes a base and a wall connected to the base, and wherein the first container body is operatively connected to the first container body.
17. The container of claim 16 further comprising:
an internal cushioning member between the base of the second container body and the base of the first container body.
18. The container of claim 17 , wherein the internal cushioning member is a foam-cushioning member.
19. The container of claim 17 , wherein the internal cushioning member is an air-cushioning member.
20. The container of claim 10 further comprising a plurality of semiconductor wafers inside the first container body.
21. The container of claim 20 , further comprising a plurality of wafer separator sheets, wherein a wafer separator sheet is between adjacent semiconductor wafers.
22. The container of claim 14 , wherein when the container is dropped, the semiconductor wafer does not contact the wall of the first container body.
23. A container for containing semiconductor wafers, comprising:
a first container body including a base and a wall connected to the base;
a plurality of semiconductor wafer, wherein each semiconductor wafer has a first major surface and a second major surface opposite the first major surface, wherein the first major surface has a first surface area;
a first wafer support plate located inside the first container body, wherein the first wafer support plate has a first major surface and a second major surface opposite the first major surface, wherein the second major surface has a second surface area; and wherein the plurality semiconductor wafers is between the base of the first container body and second major surface of the first wafer support plate, and wherein the first surface area of the semiconductor wafers is at least 10% less than the second surface area of the first wafer support plate;
a second wafer support plate located inside the first container body, wherein the second wafer support plate has a first major surface and a second major surface opposite the first major surface, wherein the plurality semiconductor wafer is between the second major surface of the first wafer support and first major surface of the second wafer support plate, wherein the first major surface of the second wafer support plate has a first surface area, wherein the first surface area of the semiconductor wafers is at least 10% less than the first surface area of the second wafer support plate, and wherein the semiconductor wafer is stabilized between the first wafer support plate and the second wafer support plate;
a second container body opposite the first container body, wherein the second container body includes a base and a wall connected to the base, and wherein the first container body is operatively connected to the first container body; and
an internal cushioning member between the base of the second container body and the base of the first container body, wherein the internal cushioning member is a foam-cushioning member; and a plurality of wafer separator sheets, wherein a separator sheet is between adjacent semiconductor wafers.
24. A method of safely shipping semiconductor wafers, comprising the steps of:
a) providing a container for containing semiconductor wafers, wherein the container comprises:
a first container body including a base and a wall connected to the base;
a second container body including a base and a wall connected to the base;
a first wafer support plate located inside the first container body;
b) providing a plurality of semiconductor wafers;
c) stacking the plurality of semiconductor wafers in a stack and placing the stack of semiconductor wafers inside the first container body;
d) placing the first wafer support plate on the stack of semiconductor wafers inside the first container body;
e) operatively connecting the first container body with the second container body so as to enclose the wafer support plate and stack of semiconductor wafers inside the container and to stabilize the stack of semiconductor wafers between the base of the first container body and the first wafer support plate.
25. The method of claim 24 , wherein the container further comprises a second wafer support plate, wherein step c) further comprises placing the second wafer support plate inside the first container body and placing the stack of semiconductor wafers on the second wafer support body inside the first container body, and wherein the stack of semiconductor wafers is stabilized between the first wafer support plate and the second wafer support plate.
26. The method of claim 24 , wherein the semiconductor wafers have a first major surface and a second major surface opposite the first major surface, wherein the first major surface has a first surface area, wherein the first wafer support plate has a first major surface and a second major surface opposite the first major surface, wherein the second major surface has a second surface area, and wherein the first surface area of the semiconductor wafer is at least 10% less than the second surface area of the first wafer support plate.
27. The method of claim 26 , wherein the first surface area of the semiconductor wafer is at least 25% less than the second surface area of the first wafer support plate.
28. The method of claim 26 , wherein when the container is dropped, the semiconductor wafers do not contact the wall of the first container body.
29. The method of claim 24 , wherein step b) further comprises providing a plurality of wafer separator sheets, wherein a wafer separator sheet is between adjacent semiconductor wafers, wherein step c) further comprising stacking the plurality of semiconductor wafers and the plurality of wafer separator sheets in a stack, wherein a wafer separator sheet is between two adjacent semiconductor wafers, and placing the stack of semiconductor wafers and separator sheets inside the first container body.
30. The method of claim 24 , further including the steps of:
f) transporting the container and stack of semiconductor wafers to a new location;
g) separating the second container body from the first container body to remove the stack of semiconductor wafers from the container;
h) inspecting the stack of semiconductor wafers and observing that the stack of semiconductor wafers are not damaged or broken.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/705,499 US20050098473A1 (en) | 2003-11-10 | 2003-11-10 | Container for containing semiconductor wafers |
PCT/US2004/033633 WO2005048321A1 (en) | 2003-11-10 | 2004-10-12 | A container for containing semiconductor wafers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/705,499 US20050098473A1 (en) | 2003-11-10 | 2003-11-10 | Container for containing semiconductor wafers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050098473A1 true US20050098473A1 (en) | 2005-05-12 |
Family
ID=34552375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/705,499 Abandoned US20050098473A1 (en) | 2003-11-10 | 2003-11-10 | Container for containing semiconductor wafers |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050098473A1 (en) |
WO (1) | WO2005048321A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060032784A1 (en) * | 2004-08-12 | 2006-02-16 | Forsyth Valoris L | Foam laminate system for semiconductor wafers |
US20100101635A1 (en) * | 2008-10-14 | 2010-04-29 | Christian Senning Verpackungsmaschinen Gmbh & Co. | Packagings for thin-layer slice-form products |
US20130240398A1 (en) * | 2010-11-30 | 2013-09-19 | Corning Incorporated | Packages and methods of packaging glass sheets |
US20130251494A1 (en) * | 2004-01-07 | 2013-09-26 | Nikon Corporation | Wh (wafer-holder) process |
US20130299376A1 (en) * | 2012-05-10 | 2013-11-14 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Packaging Device |
US20150076015A1 (en) * | 2013-09-19 | 2015-03-19 | Christopher Dabney | Contoured footwear storage device |
US20150076029A1 (en) * | 2013-09-19 | 2015-03-19 | International Business Machines Corporation | Package assembly for thin wafer shipping |
US20150083638A1 (en) * | 2013-09-25 | 2015-03-26 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
CN108001856A (en) * | 2016-10-28 | 2018-05-08 | 上海艾尔贝包装科技发展有限公司 | Packing device and its packing method |
CN109229771A (en) * | 2018-09-18 | 2019-01-18 | 郑州云海信息技术有限公司 | A kind of memory bar shock-proof packaging box |
WO2019046477A1 (en) * | 2017-08-29 | 2019-03-07 | Daewon Semiconductor Packaging Industrial Company | Separators for handling, transporting, or storing semiconductor wafers |
US20190218493A1 (en) * | 2016-07-20 | 2019-07-18 | Xebios Diagnostics Gmbh | Pack |
CN111092038A (en) * | 2019-12-10 | 2020-05-01 | 许正根 | Combined wafer box |
US20220017282A1 (en) * | 2018-11-14 | 2022-01-20 | Denka Company Limited | Package accommodating heat dissipation substrate and packing box |
US20230090955A1 (en) * | 2021-09-20 | 2023-03-23 | Polaris Industries Inc. | Cooler with open volume control and contents securement |
CN116323400A (en) * | 2020-11-17 | 2023-06-23 | 肖特股份有限公司 | Method for packaging and unpacking flat substrates and package for flat substrates |
CN117885958A (en) * | 2024-03-15 | 2024-04-16 | 江苏福旭科技有限公司 | Monocrystalline silicon stacking system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110723417B (en) * | 2019-11-11 | 2020-09-08 | 乐清市天成企业管理咨询有限公司 | Long-range transportation shock attenuation equipment |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788082A (en) * | 1996-07-12 | 1998-08-04 | Fluoroware, Inc. | Wafer carrier |
US5788304A (en) * | 1996-05-17 | 1998-08-04 | Micron Technology, Inc. | Wafer carrier having both a rigid structure and resistance to corrosive environments |
US5833067A (en) * | 1997-03-10 | 1998-11-10 | Seagate Technologies, Inc. | Disk caddy and lid with barrier means |
US5875896A (en) * | 1996-11-05 | 1999-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Unified semiconductor wafer packaging system to unify irregular shape buffer materials |
US6119865A (en) * | 1998-11-12 | 2000-09-19 | Oki Electric Industry Co., Ltd. | Accommodation container and accommodating method |
US6193090B1 (en) * | 1999-04-06 | 2001-02-27 | 3M Innovative Properties Company | Reusable container |
US6193068B1 (en) * | 1998-05-07 | 2001-02-27 | Texas Instruments Incorporated | Containment device for retaining semiconductor wafers |
US6283296B1 (en) * | 1998-12-29 | 2001-09-04 | Air Packaging Technologies, Inc. | Quilted inflatable packaging device |
US6286684B1 (en) * | 1999-07-23 | 2001-09-11 | Ray G. Brooks | Protective system for integrated circuit (IC) wafers retained within containers designed for storage and shipment |
US6464079B1 (en) * | 1999-12-07 | 2002-10-15 | Air Packaging Technologies, Inc. | Suspension air packaging device |
US20030066780A1 (en) * | 2001-10-04 | 2003-04-10 | Entegris, Inc. | System for cushioning wafer in wafer carrier |
US6550619B2 (en) * | 2000-05-09 | 2003-04-22 | Entergris, Inc. | Shock resistant variable load tolerant wafer shipper |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129719A (en) * | 1995-08-30 | 1997-05-16 | Achilles Corp | Semiconductor wafer housing structure and semiconductor wafer housing and take-out method |
JP2002362736A (en) * | 2001-06-06 | 2002-12-18 | Nitto Denko Corp | Taking-out conveying method for sheet-shaped inorganic material and storing/conveying tray |
-
2003
- 2003-11-10 US US10/705,499 patent/US20050098473A1/en not_active Abandoned
-
2004
- 2004-10-12 WO PCT/US2004/033633 patent/WO2005048321A1/en not_active Application Discontinuation
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5788304A (en) * | 1996-05-17 | 1998-08-04 | Micron Technology, Inc. | Wafer carrier having both a rigid structure and resistance to corrosive environments |
US5788082A (en) * | 1996-07-12 | 1998-08-04 | Fluoroware, Inc. | Wafer carrier |
US5875896A (en) * | 1996-11-05 | 1999-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Unified semiconductor wafer packaging system to unify irregular shape buffer materials |
US5833067A (en) * | 1997-03-10 | 1998-11-10 | Seagate Technologies, Inc. | Disk caddy and lid with barrier means |
US6193068B1 (en) * | 1998-05-07 | 2001-02-27 | Texas Instruments Incorporated | Containment device for retaining semiconductor wafers |
US6119865A (en) * | 1998-11-12 | 2000-09-19 | Oki Electric Industry Co., Ltd. | Accommodation container and accommodating method |
US6283296B1 (en) * | 1998-12-29 | 2001-09-04 | Air Packaging Technologies, Inc. | Quilted inflatable packaging device |
US6193090B1 (en) * | 1999-04-06 | 2001-02-27 | 3M Innovative Properties Company | Reusable container |
US6286684B1 (en) * | 1999-07-23 | 2001-09-11 | Ray G. Brooks | Protective system for integrated circuit (IC) wafers retained within containers designed for storage and shipment |
US6464079B1 (en) * | 1999-12-07 | 2002-10-15 | Air Packaging Technologies, Inc. | Suspension air packaging device |
US6550619B2 (en) * | 2000-05-09 | 2003-04-22 | Entergris, Inc. | Shock resistant variable load tolerant wafer shipper |
US20030066780A1 (en) * | 2001-10-04 | 2003-04-10 | Entegris, Inc. | System for cushioning wafer in wafer carrier |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9105675B2 (en) * | 2004-01-07 | 2015-08-11 | Nikon Corporation | WH (wafer-holder) process |
US20130251494A1 (en) * | 2004-01-07 | 2013-09-26 | Nikon Corporation | Wh (wafer-holder) process |
US20060032784A1 (en) * | 2004-08-12 | 2006-02-16 | Forsyth Valoris L | Foam laminate system for semiconductor wafers |
US20100101635A1 (en) * | 2008-10-14 | 2010-04-29 | Christian Senning Verpackungsmaschinen Gmbh & Co. | Packagings for thin-layer slice-form products |
EP2178114A3 (en) * | 2008-10-14 | 2011-11-23 | Christian Senning Verpackungsmaschinen GmbH & Co. | Packaging for thin, disk-shaped products |
US20130240398A1 (en) * | 2010-11-30 | 2013-09-19 | Corning Incorporated | Packages and methods of packaging glass sheets |
US9701461B2 (en) | 2010-11-30 | 2017-07-11 | Corning Incorporated | Packages and methods of packaging glass sheets |
US9321574B2 (en) * | 2010-11-30 | 2016-04-26 | Corning Incorporated | Packages and methods of packaging glass sheets |
US20130299376A1 (en) * | 2012-05-10 | 2013-11-14 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Packaging Device |
US20150076029A1 (en) * | 2013-09-19 | 2015-03-19 | International Business Machines Corporation | Package assembly for thin wafer shipping |
US20150076015A1 (en) * | 2013-09-19 | 2015-03-19 | Christopher Dabney | Contoured footwear storage device |
US20150083638A1 (en) * | 2013-09-25 | 2015-03-26 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US9543175B2 (en) * | 2013-09-25 | 2017-01-10 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US20170025295A1 (en) * | 2013-09-25 | 2017-01-26 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US10622235B2 (en) * | 2013-09-25 | 2020-04-14 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US10090180B2 (en) | 2013-09-25 | 2018-10-02 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US10784137B2 (en) | 2013-09-25 | 2020-09-22 | Elpis Technologies Inc. | Package assembly for thin wafer shipping and method of use |
US10468280B2 (en) | 2013-09-25 | 2019-11-05 | International Business Machines Corporation | Package assembly for thin wafer shipping and method of use |
US11066631B2 (en) * | 2016-07-20 | 2021-07-20 | Xebios Diagnostics Gmbh | Pack |
US20190218493A1 (en) * | 2016-07-20 | 2019-07-18 | Xebios Diagnostics Gmbh | Pack |
CN108001856A (en) * | 2016-10-28 | 2018-05-08 | 上海艾尔贝包装科技发展有限公司 | Packing device and its packing method |
WO2019046477A1 (en) * | 2017-08-29 | 2019-03-07 | Daewon Semiconductor Packaging Industrial Company | Separators for handling, transporting, or storing semiconductor wafers |
US11257700B2 (en) | 2017-08-29 | 2022-02-22 | Daewon Semiconductor Packaging Industrial Company | Separators for handling, transporting, or storing semiconductor wafers |
US12106988B2 (en) | 2017-08-29 | 2024-10-01 | Daewon Semiconductor Packaging Industrial Company | Separators for handling, transporting, or storing semiconductor wafers |
CN109229771A (en) * | 2018-09-18 | 2019-01-18 | 郑州云海信息技术有限公司 | A kind of memory bar shock-proof packaging box |
US20220017282A1 (en) * | 2018-11-14 | 2022-01-20 | Denka Company Limited | Package accommodating heat dissipation substrate and packing box |
US11912489B2 (en) * | 2018-11-14 | 2024-02-27 | Denka Company Limited | Package accommodating heat dissipation substrate and packing box |
CN111092038A (en) * | 2019-12-10 | 2020-05-01 | 许正根 | Combined wafer box |
CN116323400A (en) * | 2020-11-17 | 2023-06-23 | 肖特股份有限公司 | Method for packaging and unpacking flat substrates and package for flat substrates |
US20230090955A1 (en) * | 2021-09-20 | 2023-03-23 | Polaris Industries Inc. | Cooler with open volume control and contents securement |
CN117885958A (en) * | 2024-03-15 | 2024-04-16 | 江苏福旭科技有限公司 | Monocrystalline silicon stacking system |
Also Published As
Publication number | Publication date |
---|---|
WO2005048321A1 (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050098473A1 (en) | Container for containing semiconductor wafers | |
CN107665844B (en) | Wafer cassette, method of arranging wafers in wafer cassette, wafer protection plate, and method of protecting wafers | |
KR100446842B1 (en) | Storage container, storage structure and storage of semiconductor wafers | |
US6550619B2 (en) | Shock resistant variable load tolerant wafer shipper | |
EP1950151B1 (en) | Packaged body | |
US7040487B2 (en) | Protective shipper | |
US5553711A (en) | Storage container for integrated circuit semiconductor wafers | |
KR101910850B1 (en) | Pellicle packing box | |
JP4330761B2 (en) | Wafer transport container support | |
KR20080035436A (en) | Buffer packing and packing method for pellicle packing | |
JP4329536B2 (en) | Semiconductor wafer storage | |
CN214567266U (en) | Lens packing box | |
US20100224517A1 (en) | Disk separator device | |
US5577616A (en) | Cushioning package for transporting or storing semiconductor wafers | |
JP2010064775A (en) | Pellicle packing structure | |
US20030213716A1 (en) | Wafer shipping and storage container | |
JP2002145380A (en) | Wafer packing method | |
JP2004311779A (en) | Semiconductor wafer storage container and method for conveying semiconductor wafer | |
JP2010064780A (en) | Packing body of pellicle storing container | |
JP2005041503A (en) | Cushioning body for use in transporting semiconductor wafer | |
CN217806076U (en) | Wafer box packing box | |
KR100823902B1 (en) | Plate-shaped packing box, plate-shaped conveying method and plate-shaped body loading and taking out method | |
CN222699020U (en) | A kind of carrying tool for IC product packaging | |
JP2005075428A (en) | Packing container | |
CN211088229U (en) | Multi-wafer horizontally-placed wafer box and isolating ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |