US20050079593A1 - Modified enzymes having polymer conjugates - Google Patents
Modified enzymes having polymer conjugates Download PDFInfo
- Publication number
- US20050079593A1 US20050079593A1 US10/623,292 US62329203A US2005079593A1 US 20050079593 A1 US20050079593 A1 US 20050079593A1 US 62329203 A US62329203 A US 62329203A US 2005079593 A1 US2005079593 A1 US 2005079593A1
- Authority
- US
- United States
- Prior art keywords
- ala
- tib
- savi8
- gly
- subset
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 59
- 102000004190 Enzymes Human genes 0.000 title description 68
- 108090000790 Enzymes Proteins 0.000 title description 68
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000006467 substitution reaction Methods 0.000 claims description 69
- 239000004367 Lipase Substances 0.000 claims description 44
- 108090001060 Lipase Proteins 0.000 claims description 43
- 102000004882 Lipase Human genes 0.000 claims description 43
- 235000019421 lipase Nutrition 0.000 claims description 43
- 229920001223 polyethylene glycol Polymers 0.000 claims description 42
- 125000003277 amino group Chemical group 0.000 claims description 25
- 241000223258 Thermomyces lanuginosus Species 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 239000003599 detergent Substances 0.000 claims description 7
- 239000004615 ingredient Substances 0.000 claims description 7
- 150000007513 acids Chemical class 0.000 claims description 6
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 6
- 229920002307 Dextran Polymers 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 4
- 150000002334 glycols Chemical class 0.000 claims description 4
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 4
- 229920001451 polypropylene glycol Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 102220494450 39S ribosomal protein L16, mitochondrial_T64K_mutation Human genes 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 102220568582 LIM and senescent cell antigen-like-containing domain protein 2_N92K_mutation Human genes 0.000 claims description 3
- 102220526321 NHP2-like protein 1_G38K_mutation Human genes 0.000 claims description 3
- 102220576015 Nucleotide-binding oligomerization domain-containing protein 1_D48K_mutation Human genes 0.000 claims description 3
- 102220576014 Nucleotide-binding oligomerization domain-containing protein 1_E56K_mutation Human genes 0.000 claims description 3
- 239000004373 Pullulan Substances 0.000 claims description 3
- 229920001218 Pullulan Polymers 0.000 claims description 3
- 102220599959 Transforming growth factor-beta-induced protein ig-h3_D62K_mutation Human genes 0.000 claims description 3
- 102220482639 Uncharacterized protein EXOC3-AS1_D57K_mutation Human genes 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 235000010980 cellulose Nutrition 0.000 claims description 3
- 235000019423 pullulan Nutrition 0.000 claims description 3
- 102200148786 rs1008642 Human genes 0.000 claims description 3
- 102200017393 rs104894299 Human genes 0.000 claims description 3
- 229920000936 Agarose Polymers 0.000 claims description 2
- 102000009027 Albumins Human genes 0.000 claims description 2
- 108010088751 Albumins Proteins 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 229920002527 Glycogen Polymers 0.000 claims description 2
- 229920002907 Guar gum Polymers 0.000 claims description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 2
- 229920001612 Hydroxyethyl starch Polymers 0.000 claims description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 2
- 229920001202 Inulin Polymers 0.000 claims description 2
- 150000008575 L-amino acids Chemical class 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 239000000783 alginic acid Substances 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 229960001126 alginic acid Drugs 0.000 claims description 2
- 150000004781 alginic acids Chemical class 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 229920003064 carboxyethyl cellulose Polymers 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 229940096919 glycogen Drugs 0.000 claims description 2
- 239000000665 guar gum Substances 0.000 claims description 2
- 235000010417 guar gum Nutrition 0.000 claims description 2
- 229960002154 guar gum Drugs 0.000 claims description 2
- 229920000669 heparin Polymers 0.000 claims description 2
- 229960002897 heparin Drugs 0.000 claims description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 2
- 235000013828 hydroxypropyl starch Nutrition 0.000 claims description 2
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 claims description 2
- 229940029339 inulin Drugs 0.000 claims description 2
- 239000001630 malic acid Substances 0.000 claims description 2
- 229920000609 methyl cellulose Polymers 0.000 claims description 2
- 239000001923 methylcellulose Substances 0.000 claims description 2
- 235000010981 methylcellulose Nutrition 0.000 claims description 2
- 229920001277 pectin Polymers 0.000 claims description 2
- 239000001814 pectin Substances 0.000 claims description 2
- 235000010987 pectin Nutrition 0.000 claims description 2
- 229920000768 polyamine Polymers 0.000 claims description 2
- 229920005862 polyol Polymers 0.000 claims description 2
- 150000003077 polyols Chemical class 0.000 claims description 2
- 229920001285 xanthan gum Polymers 0.000 claims description 2
- 239000000230 xanthan gum Substances 0.000 claims description 2
- 235000010493 xanthan gum Nutrition 0.000 claims description 2
- 229940082509 xanthan gum Drugs 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 150000007942 carboxylates Chemical class 0.000 claims 1
- 229920000140 heteropolymer Polymers 0.000 claims 1
- 229920001519 homopolymer Polymers 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 claims 1
- 102220190722 rs770199288 Human genes 0.000 claims 1
- 239000004094 surface-active agent Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 59
- 238000010168 coupling process Methods 0.000 abstract description 33
- 230000008878 coupling Effects 0.000 abstract description 30
- 238000005859 coupling reaction Methods 0.000 abstract description 30
- 230000005847 immunogenicity Effects 0.000 abstract description 15
- 210000004896 polypeptide structure Anatomy 0.000 abstract description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 173
- 102000004196 processed proteins & peptides Human genes 0.000 description 167
- 229920001184 polypeptide Polymers 0.000 description 162
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 132
- 102100028449 Arginine-glutamic acid dipeptide repeats protein Human genes 0.000 description 114
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 104
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 83
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 77
- 229940088598 enzyme Drugs 0.000 description 67
- 239000000178 monomer Substances 0.000 description 64
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 61
- 108090000623 proteins and genes Proteins 0.000 description 53
- 102000004169 proteins and genes Human genes 0.000 description 49
- 235000018102 proteins Nutrition 0.000 description 48
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 40
- 230000003068 static effect Effects 0.000 description 39
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 35
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 27
- 125000000539 amino acid group Chemical group 0.000 description 26
- 108091005804 Peptidases Proteins 0.000 description 25
- 235000018977 lysine Nutrition 0.000 description 25
- 102000035195 Peptidases Human genes 0.000 description 24
- 239000002202 Polyethylene glycol Substances 0.000 description 24
- 230000035772 mutation Effects 0.000 description 24
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 22
- 230000004913 activation Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 22
- 230000028993 immune response Effects 0.000 description 20
- 239000004365 Protease Substances 0.000 description 19
- 230000021615 conjugation Effects 0.000 description 19
- 108010020132 microbial serine proteinases Proteins 0.000 description 17
- -1 polyethylene Polymers 0.000 description 17
- 241000699670 Mus sp. Species 0.000 description 16
- 239000000872 buffer Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 230000029087 digestion Effects 0.000 description 14
- 235000019419 proteases Nutrition 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000004472 Lysine Substances 0.000 description 11
- 102000003992 Peroxidases Human genes 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 235000009697 arginine Nutrition 0.000 description 11
- 102220012637 rs397516237 Human genes 0.000 description 11
- 102220364412 c.185G>A Human genes 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 10
- 230000002255 enzymatic effect Effects 0.000 description 10
- 238000002703 mutagenesis Methods 0.000 description 10
- 231100000350 mutagenesis Toxicity 0.000 description 10
- 102220095190 rs876658581 Human genes 0.000 description 10
- 238000002965 ELISA Methods 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000002163 immunogen Effects 0.000 description 9
- 108040007629 peroxidase activity proteins Proteins 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000004475 Arginine Substances 0.000 description 8
- 229920001213 Polysorbate 20 Polymers 0.000 description 8
- 150000001408 amides Chemical class 0.000 description 8
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 8
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 8
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- 238000001712 DNA sequencing Methods 0.000 description 7
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 7
- 108010029541 Laccase Proteins 0.000 description 7
- 230000005714 functional activity Effects 0.000 description 7
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 7
- 125000005647 linker group Chemical group 0.000 description 7
- 102200026915 rs776679653 Human genes 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 230000002009 allergenic effect Effects 0.000 description 6
- 229920001222 biopolymer Polymers 0.000 description 6
- PFYXSUNOLOJMDX-UHFFFAOYSA-N bis(2,5-dioxopyrrolidin-1-yl) carbonate Chemical compound O=C1CCC(=O)N1OC(=O)ON1C(=O)CCC1=O PFYXSUNOLOJMDX-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 230000000241 respiratory effect Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 5
- 101000734008 Arthromyces ramosus Peroxidase Proteins 0.000 description 5
- 235000014469 Bacillus subtilis Nutrition 0.000 description 5
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- 108010056079 Subtilisins Proteins 0.000 description 5
- 102000005158 Subtilisins Human genes 0.000 description 5
- 108060008539 Transglutaminase Proteins 0.000 description 5
- 239000013566 allergen Substances 0.000 description 5
- 229940009098 aspartate Drugs 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000002366 lipolytic effect Effects 0.000 description 5
- 102000003601 transglutaminase Human genes 0.000 description 5
- 239000011534 wash buffer Substances 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- LZKGFGLOQNSMBS-UHFFFAOYSA-N 4,5,6-trichlorotriazine Chemical compound ClC1=NN=NC(Cl)=C1Cl LZKGFGLOQNSMBS-UHFFFAOYSA-N 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 241000241037 Asphodelus ramosus Species 0.000 description 4
- 241000700198 Cavia Species 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000004230 Fast Yellow AB Substances 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 4
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 235000010210 aluminium Nutrition 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 239000004176 azorubin Substances 0.000 description 4
- 235000012733 azorubine Nutrition 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000004301 calcium benzoate Substances 0.000 description 4
- 150000001718 carbodiimides Chemical class 0.000 description 4
- 125000002843 carboxylic acid group Chemical group 0.000 description 4
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000013024 dilution buffer Substances 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 235000013922 glutamic acid Nutrition 0.000 description 4
- 239000004220 glutamic acid Substances 0.000 description 4
- 238000011597 hartley guinea pig Methods 0.000 description 4
- 230000009851 immunogenic response Effects 0.000 description 4
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 4
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 4
- 108020003519 protein disulfide isomerase Proteins 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 150000003461 sulfonyl halides Chemical class 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- CXCHEKCRJQRVNG-UHFFFAOYSA-N 2,2,2-trifluoroethanesulfonyl chloride Chemical compound FC(F)(F)CS(Cl)(=O)=O CXCHEKCRJQRVNG-UHFFFAOYSA-N 0.000 description 3
- BTUDGPVTCYNYLK-UHFFFAOYSA-N 2,2-dimethylglutaric acid Chemical compound OC(=O)C(C)(C)CCC(O)=O BTUDGPVTCYNYLK-UHFFFAOYSA-N 0.000 description 3
- 108010001478 Bacitracin Proteins 0.000 description 3
- 101100069975 Caenorhabditis elegans his-72 gene Proteins 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108010022999 Serine Proteases Proteins 0.000 description 3
- 102000012479 Serine Proteases Human genes 0.000 description 3
- 108090000787 Subtilisin Proteins 0.000 description 3
- 102000004357 Transferases Human genes 0.000 description 3
- 108090000992 Transferases Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 229960003071 bacitracin Drugs 0.000 description 3
- 229930184125 bacitracin Natural products 0.000 description 3
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000001752 chlorophylls and chlorophyllins Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 150000002307 glutamic acids Chemical class 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 150000003278 haem Chemical group 0.000 description 3
- 235000014304 histidine Nutrition 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229960005431 ipriflavone Drugs 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 150000004804 polysaccharides Chemical class 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 3
- 102200033974 rs1555427497 Human genes 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 235000020183 skimmed milk Nutrition 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- UYBWIEGTWASWSR-UHFFFAOYSA-N 1,3-diaminopropan-2-ol Chemical compound NCC(O)CN UYBWIEGTWASWSR-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- IEJPPSMHUUQABK-UHFFFAOYSA-N 2,4-diphenyl-4h-1,3-oxazol-5-one Chemical class O=C1OC(C=2C=CC=CC=2)=NC1C1=CC=CC=C1 IEJPPSMHUUQABK-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- LKDMKWNDBAVNQZ-WJNSRDFLSA-N 4-[[(2s)-1-[[(2s)-1-[(2s)-2-[[(2s)-1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-WJNSRDFLSA-N 0.000 description 2
- JVVRCYWZTJLJSG-UHFFFAOYSA-N 4-dimethylaminophenol Chemical compound CN(C)C1=CC=C(O)C=C1 JVVRCYWZTJLJSG-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-dimethylaminopyridine Substances CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- 102220635300 Adenylate kinase isoenzyme 6_D43K_mutation Human genes 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 239000004229 Alkannin Substances 0.000 description 2
- 102220618024 Arginine-glutamic acid dipeptide repeats protein_T32K_mutation Human genes 0.000 description 2
- CKAJHWFHHFSCDT-WHFBIAKZSA-N Asp-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O CKAJHWFHHFSCDT-WHFBIAKZSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000194103 Bacillus pumilus Species 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 101100228210 Caenorhabditis elegans gly-7 gene Proteins 0.000 description 2
- 101100533230 Caenorhabditis elegans ser-2 gene Proteins 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 241000242346 Constrictibacter antarcticus Species 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004398 Ethyl lauroyl arginate Substances 0.000 description 2
- 102220563898 Forkhead box protein O3_R250K_mutation Human genes 0.000 description 2
- FYYSIASRLDJUNP-WHFBIAKZSA-N Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O FYYSIASRLDJUNP-WHFBIAKZSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 102000004157 Hydrolases Human genes 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 2
- 125000003338 L-glutaminyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108010049190 N,N-dimethylcasein Proteins 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 101100205180 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-6 gene Proteins 0.000 description 2
- BXEFQPCKQSTMKA-UHFFFAOYSA-N OC(=O)C=[N+]=[N-] Chemical compound OC(=O)C=[N+]=[N-] BXEFQPCKQSTMKA-UHFFFAOYSA-N 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 102220475921 Peroxisome assembly protein 12_R170K_mutation Human genes 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 102220473140 R3H and coiled-coil domain-containing protein 1_R145K_mutation Human genes 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 239000004288 Sodium dehydroacetate Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 description 2
- 108010012715 Superoxide dismutase Proteins 0.000 description 2
- 101150006914 TRP1 gene Proteins 0.000 description 2
- 102220474848 Thioredoxin-like protein 4A_R186K_mutation Human genes 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 102220641958 Toll-like receptor 6_R247K_mutation Human genes 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- LVTKHGUGBGNBPL-UHFFFAOYSA-N Trp-P-1 Chemical compound N1C2=CC=CC=C2C2=C1C(C)=C(N)N=C2C LVTKHGUGBGNBPL-UHFFFAOYSA-N 0.000 description 2
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 2
- 102220473348 Ubiquitin-conjugating enzyme E2 D3_D87K_mutation Human genes 0.000 description 2
- 102220522013 Uncharacterized protein C10orf95_R121K_mutation Human genes 0.000 description 2
- 239000004234 Yellow 2G Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 2
- 235000019232 alkannin Nutrition 0.000 description 2
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 2
- 150000008052 alkyl sulfonates Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 108010062796 arginyllysine Proteins 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000005228 aryl sulfonate group Chemical group 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 108010038633 aspartylglutamate Proteins 0.000 description 2
- 239000001654 beetroot red Substances 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 239000004161 brilliant blue FCF Substances 0.000 description 2
- 235000012745 brilliant blue FCF Nutrition 0.000 description 2
- 239000001678 brown HT Substances 0.000 description 2
- 235000010237 calcium benzoate Nutrition 0.000 description 2
- 239000004294 calcium hydrogen sulphite Substances 0.000 description 2
- 235000010260 calcium hydrogen sulphite Nutrition 0.000 description 2
- 239000004295 calcium sulphite Substances 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 235000012698 chlorophylls and chlorophyllins Nutrition 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000007979 citrate buffer Substances 0.000 description 2
- 239000001679 citrus red 2 Substances 0.000 description 2
- 210000001520 comb Anatomy 0.000 description 2
- 230000001609 comparable effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 108010005400 cutinase Proteins 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 2
- 229910000071 diazene Inorganic materials 0.000 description 2
- 239000012954 diazonium Substances 0.000 description 2
- 150000001989 diazonium salts Chemical class 0.000 description 2
- 238000006193 diazotization reaction Methods 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 239000004174 erythrosine Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 2
- 235000019233 fast yellow AB Nutrition 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N formic acid Substances OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 2
- 150000002411 histidines Chemical group 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004407 iron oxides and hydroxides Substances 0.000 description 2
- 235000010213 iron oxides and hydroxides Nutrition 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002540 isothiocyanates Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000004309 nisin Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Substances [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 239000000813 peptide hormone Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 239000004300 potassium benzoate Substances 0.000 description 2
- 235000010235 potassium benzoate Nutrition 0.000 description 2
- 239000004293 potassium hydrogen sulphite Substances 0.000 description 2
- 235000010259 potassium hydrogen sulphite Nutrition 0.000 description 2
- 239000004302 potassium sorbate Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004172 quinoline yellow Substances 0.000 description 2
- 235000012752 quinoline yellow Nutrition 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 102200090662 rs137852491 Human genes 0.000 description 2
- 102220286716 rs1408915250 Human genes 0.000 description 2
- 102200006436 rs17183814 Human genes 0.000 description 2
- 102220230803 rs370983323 Human genes 0.000 description 2
- 102220170946 rs567155861 Human genes 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 239000004402 sodium ethyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010226 sodium ethyl p-hydroxybenzoate Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Substances [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 235000010288 sodium nitrite Nutrition 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- 239000004173 sunset yellow FCF Substances 0.000 description 2
- 235000012751 sunset yellow FCF Nutrition 0.000 description 2
- 239000004149 tartrazine Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 150000003585 thioureas Chemical class 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 2
- 125000005490 tosylate group Chemical group 0.000 description 2
- 150000003672 ureas Chemical class 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- CSCSROFYRUZJJH-UHFFFAOYSA-N 1-methoxyethane-1,2-diol Chemical class COC(O)CO CSCSROFYRUZJJH-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- DUHQIGLHYXLKAE-UHFFFAOYSA-N 3,3-dimethylglutaric acid Chemical compound OC(=O)CC(C)(C)CC(O)=O DUHQIGLHYXLKAE-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 1
- 241000170282 Absidia sp. (in: Fungi) Species 0.000 description 1
- 102220566248 Acid-sensing ion channel 2_R190K_mutation Human genes 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 102000035101 Aspartic proteases Human genes 0.000 description 1
- 108091005502 Aspartic proteases Proteins 0.000 description 1
- 241000532370 Atla Species 0.000 description 1
- 241000193422 Bacillus lentus Species 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 101100392772 Caenorhabditis elegans gln-2 gene Proteins 0.000 description 1
- 101100228206 Caenorhabditis elegans gly-6 gene Proteins 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- 235000001673 Coprinus macrorhizus Nutrition 0.000 description 1
- 101800000414 Corticotropin Proteins 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- 206010012442 Dermatitis contact Diseases 0.000 description 1
- 101100398686 Drosophila melanogaster larp gene Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 239000004214 Fast Green FCF Substances 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 239000004284 Heptyl p-hydroxybenzoate Substances 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- 239000004233 Indanthrene blue RS Substances 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 102220638933 Lactoylglutathione lyase_Q34E_mutation Human genes 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 101710098556 Lipase A Proteins 0.000 description 1
- 101710098554 Lipase B Proteins 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 101710099648 Lysosomal acid lipase/cholesteryl ester hydrolase Proteins 0.000 description 1
- 102100026001 Lysosomal acid lipase/cholesteryl ester hydrolase Human genes 0.000 description 1
- 241001330975 Magnaporthe oryzae Species 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 101100510663 Mus musculus Larp1 gene Proteins 0.000 description 1
- 241000226677 Myceliophthora Species 0.000 description 1
- 241000863421 Myxococcaceae Species 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004235 Orange GGN Substances 0.000 description 1
- 239000004218 Orcein Substances 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 102220468814 Peptidyl-tRNA hydrolase ICT1, mitochondrial_N76K_mutation Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000222640 Polyporus Species 0.000 description 1
- 239000004237 Ponceau 6R Substances 0.000 description 1
- 239000004236 Ponceau SX Substances 0.000 description 1
- 239000004285 Potassium sulphite Substances 0.000 description 1
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 102000003743 Relaxin Human genes 0.000 description 1
- 108090000103 Relaxin Proteins 0.000 description 1
- 101000968489 Rhizomucor miehei Lipase Proteins 0.000 description 1
- 239000004231 Riboflavin-5-Sodium Phosphate Substances 0.000 description 1
- 241000223255 Scytalidium Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 239000004283 Sodium sorbate Substances 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 102000007501 Thymosin Human genes 0.000 description 1
- 108010046075 Thymosin Proteins 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 102220533700 Tumor necrosis factor-inducible gene 6 protein_H39K_mutation Human genes 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 208000002029 allergic contact dermatitis Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000028004 allergic respiratory disease Diseases 0.000 description 1
- 230000037446 allergic sensitization Effects 0.000 description 1
- 239000004191 allura red AC Substances 0.000 description 1
- 235000012741 allura red AC Nutrition 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000004178 amaranth Substances 0.000 description 1
- 235000012735 amaranth Nutrition 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 235000012677 beetroot red Nutrition 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000004126 brilliant black BN Substances 0.000 description 1
- 235000012709 brilliant black BN Nutrition 0.000 description 1
- 239000004109 brown FK Substances 0.000 description 1
- 235000012713 brown FK Nutrition 0.000 description 1
- 235000012670 brown HT Nutrition 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 102220363778 c.97C>G Human genes 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000004303 calcium sorbate Substances 0.000 description 1
- 235000010244 calcium sorbate Nutrition 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004106 carminic acid Substances 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 235000013986 citrus red 2 Nutrition 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000004121 copper complexes of chlorophylls and chlorophyllins Substances 0.000 description 1
- 235000012700 copper complexes of chlorophylls and chlorophyllins Nutrition 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- XTDYIOOONNVFMA-UHFFFAOYSA-N dimethyl pentanedioate Chemical compound COC(=O)CCCC(=O)OC XTDYIOOONNVFMA-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 235000012732 erythrosine Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000019240 fast green FCF Nutrition 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- 235000010193 gold Nutrition 0.000 description 1
- 239000004333 gold (food color) Substances 0.000 description 1
- 239000004120 green S Substances 0.000 description 1
- 235000012701 green S Nutrition 0.000 description 1
- 238000011554 guinea pig model Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019251 heptyl p-hydroxybenzoate Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008076 immune mechanism Effects 0.000 description 1
- 230000000899 immune system response Effects 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- 239000004179 indigotine Substances 0.000 description 1
- 235000012738 indigotine Nutrition 0.000 description 1
- 231100000037 inhalation toxicity test Toxicity 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000010412 laundry washing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004335 litholrubine BK Substances 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 108010009355 microbial metalloproteinases Proteins 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000010297 nisin Nutrition 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000019236 orange GGN Nutrition 0.000 description 1
- 235000019248 orcein Nutrition 0.000 description 1
- 239000004306 orthophenyl phenol Substances 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000004177 patent blue V Substances 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004175 ponceau 4R Substances 0.000 description 1
- 235000012731 ponceau 4R Nutrition 0.000 description 1
- 235000019238 ponceau 6R Nutrition 0.000 description 1
- 235000019237 ponceau SX Nutrition 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Substances [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000004297 potassium metabisulphite Substances 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108010056508 proteinase R Proteins 0.000 description 1
- 108010056534 proteinase T Proteins 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000004180 red 2G Substances 0.000 description 1
- 235000012739 red 2G Nutrition 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 108010056587 rennilase Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 201000004335 respiratory allergy Diseases 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 235000019234 riboflavin-5-sodium phosphate Nutrition 0.000 description 1
- 102200134190 rs121918681 Human genes 0.000 description 1
- 102220089047 rs145186308 Human genes 0.000 description 1
- 102220341170 rs199565868 Human genes 0.000 description 1
- 102200082814 rs33922842 Human genes 0.000 description 1
- 102220096723 rs587778171 Human genes 0.000 description 1
- 102200164344 rs63751661 Human genes 0.000 description 1
- 102220126814 rs886044376 Human genes 0.000 description 1
- 102220329691 rs892807467 Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000010191 silver Nutrition 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 235000011091 sodium acetates Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- 235000019259 sodium dehydroacetate Nutrition 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000004296 sodium metabisulphite Substances 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000004290 sodium methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010268 sodium methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004307 sodium orthophenyl phenol Substances 0.000 description 1
- 235000010294 sodium orthophenyl phenol Nutrition 0.000 description 1
- 239000004404 sodium propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010230 sodium propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 235000019250 sodium sorbate Nutrition 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulphite Substances [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 235000012756 tartrazine Nutrition 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 239000004308 thiabendazole Substances 0.000 description 1
- 235000010296 thiabendazole Nutrition 0.000 description 1
- LCJVIYPJPCBWKS-NXPQJCNCSA-N thymosin Chemical compound SC[C@@H](N)C(=O)N[C@H](CO)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CO)C(=O)N[C@H](CO)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@H]([C@H](C)O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCCCN)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](C(C)C)C(=O)N[C@H](C(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@H](CCC(O)=O)C(O)=O LCJVIYPJPCBWKS-NXPQJCNCSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000004108 vegetable carbon Substances 0.000 description 1
- 235000012712 vegetable carbon Nutrition 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 235000019235 yellow 2G Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
Definitions
- the present invention relates to polypeptide-polymer conjugates having added and/or removed one or more attachment groups for coupling polymeric molecules on the surface of the 3D structure of the polypeptide, a method for preparing polypeptide-polymer conjugates of the invention, the use of said conjugated for reducing the immunogenicity and allergenicity, and compositions comprising said conjugate.
- polypeptides including enzymes
- the use of polypeptides, including enzymes, in the circulatory system to obtain a particular physiological effect is well-known in the medical arts.
- industrial applications such as laundry washing, textile bleaching, person care, contact lens cleaning, food and feed preparation enzymes are used as a functional ingredient.
- the polypeptides are not intended to enter into the circulatory system of the body.
- Certain polypeptides and enzymes have an unsatisfactory stability and may under certain circumstances—dependent on the way of challenge—cause an immune response, typically an IgG and/or IgE response.
- GB patent no. 1,183,257 (Crook et al.) describes chemistry for conjugation of enzymes to polysaccharides via a triazine ring.
- WO 93/15189 (Veronese et al.) concerns a method for maintaining the activity in polyethylene glycol-modified proteolytic enzymes by linking the proteolytic enzyme to a macromolecularized inhibitor.
- the conjugates are intended for medical applications.
- EP 183 503 (Beecham Group PLC) discloses a development of the above concept by providing conjugates comprising pharmaceutically useful proteins linked to at least one water-soluble polymer by means of a reversible linking group.
- EP 471,125 discloses skin care products comprising a parent protease ( Bacillus protease with the trade name Esperase®) coupled to polysaccharides through a triazine ring to improve the thermal and preservation stability.
- a parent protease Bacillus protease with the trade name Esperase®
- the coupling technique used is also described in the above mentioned GB patent no. 1,183,257 (Crook et al.).
- JP 3083908 describes a skin cosmetic material which contains a transglutaminase from guinea pig liver modified with one or more water-soluble substances such as PEG, starch, cellulose etc. The modification is performed by activating the polymeric molecules and coupling them to the enzyme. The composition is stated to be mild to the skin.
- improved polypeptide-polymer conjugates means in the context of the present invention conjugates having a reduced immune response in humans and animals and/or an improved stability. As will be described further below the immune response is dependent on the way of challenge.
- polypeptides such as enzymes
- polypeptides may be made less immunogenic and/or allergenic by adding and/or removing one or more attachment groups on the surface of the parent polypeptide to be coupled to polymeric molecules.
- the potential risk is an immunogenic response in the form of mainly IgG, IgA and/or IgM antibodies.
- industrial polypeptides such as enzymes used as a functional ingredient in e.g. detergents, are not intended to enter the circulatory system.
- the potential risk in connection with industrial polypeptides is inhalation causing an allergenic response in the form of mainly IgE antibody formation.
- the potential risk is respiratory allergenicity caused by inhalation, intratracheal and intranasal presentation of polypeptides.
- the main potential risk of pharmaceutical polypeptides is immunogenicity caused by intradermal, intravenous or subcutaneous presentation of the polypeptide.
- allergic contact dermatitis in a clinical setting and is a cell mediated delayed immune response to chemicals that contact and penetrate the skin.
- This cell mediated reaction is also termed delayed contact hypersensitivity (type IV reaction according to Gell and Combs classification of immune mechanisms in tissue damage).
- allergenicity or “respiratory allergenicity” is an immediate anaphylactic reaction (type I antibody-mediated reaction according to Gell and Combs) following inhalation of e.g. polypeptides.
- polypeptides with a reduced immune response and/or improved stability, which has a substantially retained residual activity.
- the allergic and the immunogenic response are in one term, at least in the context of the present invention called the “immune response”.
- the invention relates to a polypeptide-polymer conjugate having
- parent polypeptide refers to the polypeptide to be modified by coupling to polymeric molecules.
- the parent polypeptide may be a naturally-occurring (or wild-type) polypeptide or may be a variant thereof prepared by any suitable means.
- the parent polypeptide may be a variant of a naturally-occurring polypeptide which has been modified by substitution, deletion or truncation of one or more amino acid residues or by addition or insertion of one or more amino acid residues to the amino acid sequence of a naturally-occurring polypeptide.
- a “suitable attachment group” means in the context of the present invention any amino acid residue group on the surface of the polypeptide capable of coupling to the polymeric molecule in question.
- Preferred attachment groups are amino groups of lysine residues and the N-terminal amino group.
- Polymeric molecules may also be coupled to the carboxylic acid groups (—COOH) of amino acid residues in the polypeptide chain located on the surface.
- Carboxylic acid attachment groups may be the carboxylic acid group of aspartate or glutamate and the C-terminal COOH-group.
- a “functional site” means any amino acid residues and/or cofactors which are known to be essential for the performance of the polypeptide, such as catalytic activity, e.g. the catalytic triad residues, histidine, aspartate and serine in serine proteases, or e.g. the heme group and the distal and proximal histidines in a peroxidase such as the Arthromyces ramosus peroxidase.
- catalytic activity e.g. the catalytic triad residues, histidine, aspartate and serine in serine proteases, or e.g. the heme group and the distal and proximal histidines in a peroxidase such as the Arthromyces ramosus peroxidase.
- the invention relates to a method for preparing improved polypeptide-polymer conjugates comprising the steps of:
- the invention also relates to the use of a conjugate of the invention and the method of the invention for reducing the immunogenicity of pharmaceuticals and reducing the allergenicity of industrial products.
- compositions comprising a conjugate of the invention and further ingredients used in industrial products or pharmaceuticals.
- FIG. 1 shows the anti-lipase serum antibody levels after 5 weekly immunizations with i) control ii) unmodified lipase variant, iii) lipase variant-SPEG. (X: log(serum dilution); Y Optical Density (490/620)).
- polypeptides used for pharmaceutical applications and industrial application can be quite different the principle of the present invention may be tailored to the specific type of parent polypeptide (i.e. enzyme, hormone peptides etc.).
- the inventors of the present invention have provided improved polypeptide-polymer conjugates with a reduced immune response in comparison to conjugates prepared from the corresponding parent polypeptides.
- polypeptides such as enzymes
- polypeptides may be made less immunogenic and/or less allergenic by adding one or more attachment groups on the surface of the parent polypeptide.
- the inventors have found that a higher percentage of maintained residual functional activity may be obtained by removing attachment groups at or close to the functional site(s).
- the invention relates to an improved polypeptide-polymer conjugate having
- attachment groups should be added and/or removed depends on the specific parent polypeptide.
- Any available amino acid residues on the surface of the polypeptide may in principle be subject to substitution and/or insertion to provide additional attachment groups.
- the location of the additional coupled polymeric molecules may be of importance for the reduction of the immune response and the percentage of maintained residual functional activity of the polypeptide itself.
- a conjugate of the invention may typically have from 1 to 25, preferentially 1 to 10 or more additional polymeric molecules coupled to the surface of the polypeptide in comparison to the number of polymeric molecules of a conjugate prepared on the basis of the corresponding parent polypeptide.
- the optimal number of attachment groups to be added depends (at least partly) on the surface area (i.e. molecular weight) of the parent polypeptide to be shielded by the coupled polymeric molecules, and also on the number of already available attachment groups on the parent polypeptide.
- polymeric molecules coupled to the polypeptide might be impeded by the interaction between the polypeptide and its substrate or the like, if they are coupled at or close to the functional site(s) (i.e. active site of enzymes). This will most probably cause reduced activity.
- conjugates may be constructed to maintain a higher percentage of residual enzymatic activity in comparison to a corresponding conjugates prepared on the basis of the parent enzyme in question. This may be done by substituting and/or deleting attachment groups at or close to the active site, hereby increasing the substrate affinity by improving the accessibility of the substrate in the catalytic cleft.
- An enzyme-polymer conjugate of the invention may typically have from 1 to 25, preferably 1 to 10 fewer polymeric molecules coupled at or close to the active site in comparison to the number of polymeric molecules of a conjugate prepared on the basis of the corresponding parent polypeptide.
- the functional site(s) means that no polymeric molecule(s) should be coupled within 5 Angstroms, preferably 8 Angstroms, especially 10 Angstroms of the functional site(s).
- Removal of attachment groups at or close to the functional site(s) of the polypeptide may advantageously be combined with addition of attachment groups in other parts of the surface of the polypeptide.
- the total number of attachment groups may this way be unchanged, increased or decreased. However the location(s) of the total number of attachment group(s) is(are) improved assessed by the reduction of the immune response and/or percentage of maintained residual activity. Improved stability may also be obtained this way.
- the number of attachment groups should be balanced to the molecular weight and/or surface area of the polypeptide. The more heavy the polypeptide is the more polymeric molecules should be coupled to the polypeptide to obtain sufficient shielding of the epitope(s) responsible for antibody formation.
- the parent polypeptide molecule is relatively light (e.g. 1 to 35 kDa) it may be advantageous to increase the total number of coupled polymeric molecules (outside the functional site(s)) to a total between 4 and 20.
- the number of coupled polymeric molecules may advantageously be increased to 7 to 40, and so on.
- the ratio between the molecular weight (Mw) of the polypeptide in question and the number of coupled polymeric molecules considered to be suitable by the inventors is listed below in Table 1.
- TABLE 1 Molecular weight of parent Number of polymeric molecules polypeptide (M w ) kDa coupled to the polypeptide 1 to 35 4-20 35 to 60 7-40 60 to 80 10-50 80 to 100 15-70 More than 100 more than 20 Reduced Immune Response vs. Maintained Residual Enzymatic Activity
- the loss of enzymatic activity of enzyme-polymer conjugates might be a consequence of impeded access of the substrate to the active site in the form of spatial hindrance of the substrate by especially bulky and/or heavy polymeric molecules to the catalytic cleft. It might also, at least partly, be caused by disadvantageous minor structural changes of the 3D structure of the enzyme due to the stress made by the coupling of the polymeric molecules.
- a polypeptide-polymer conjugates of the invention has a substantially maintained functional activity.
- a “substantially” maintained functional activity is in the context of the present invention defined as an activity which is at least between 20% and 30%, preferably between 30% and 40%, more preferably between 40% and 60%, better from 60% up to 80%, even better from 80% up to about 100%, in comparison to the activity of the conjugates prepared on the basis of corresponding parent polypeptides.
- polypeptide-polymer conjugates of the invention where no polymeric molecules are coupled at or close to the functional site(s) the residual activity may even be up to 100% or very close thereto. If attachment group(s) of the parent polypeptide is(are) removed from the functional site the activity might even be more than 100% in comparison to modified (i.e. polymer coupled) parent polypeptide conjugate.
- the polymeric molecules coupled to the surface of the polypeptide in question should be located in a suitable distance from each other.
- the parent polypeptide is modified in a manner whereby the polymeric molecules are spread broadly over the surface of the polypeptide.
- the polypeptide in question has enzymatic activity it is preferred to have as few as possible, especially none, polymeric molecules coupled at or close to the area of the active site.
- “spread broadly over the surface of the polypeptide” means that the available attachment groups are located so that the polymeric molecules shield different parts of the surface, preferably the whole or close to the whole surface area away from the functional site(s), to make sure that epitope(s) are shielded and hereby not recognized by the immune system or its antibodies.
- the area of antibody-polypeptide interaction typically covers an area of 500 Angstroms 2 , as described by Sheriff et al., 1987, Proc. Natl. Acad. Sci. USA, 84, 8075-8079.
- 500 Angstroms 2 corresponds to a rectangular box of 25 Angstroms ⁇ 20 Angstroms or a circular region of radius 12.6 Angstroms. Therefore, to prevent binding of antibodies to the epitope(s) to the polypeptide in question it is preferred to have a maximum distance between two attachment groups around 10 Angstroms.
- amino acid residues which are located in excess of 10 Angstroms away from already available attachment groups are suitable target residues. If two or more attachment groups on the polypeptide are located very close to each other it will in most cases result in that only one polymeric molecule will be coupled. To ensure a minimal loss of functional activity it is preferred not to couple polymeric molecules at or close to the functional site(s). Said distance depends at least partly on the bulkiness of the polymeric molecules to be coupled, as impeded access by the bulky polymeric molecules to the functional site is undesired. Therefore, the more bulky the polymeric molecules are the longer should the distance from the functional site to the coupled polymeric molecules be.
- polypeptide having coupled polymeric molecules at (a) known epitope(s) recognizable by the immune system or close to said epitope(s) specific mutations at such sites are also considered advantageous according to the invention. If the position of the epitope(s) is(are) unknown it is advantageous to couple several or many polymeric molecules to the polypeptide.
- said attachment groups are spread broadly over the surface.
- Virtually all ionized groups such as the amino groups of lysine residues, are located on the surface of the polypeptide molecule (see for instance Thomas E. Creighton, 1993, “Proteins”, W.H. Freeman and Company, New York).
- the number of readily accessible attachment groups (e.g. amino groups) on a modified or parent polypeptide equals generally seen the number of lysine residues in the primary structure of the polypeptide plus the N-terminus amino group.
- Polymeric molecules may also be coupled to the carboxylic groups (—COOH) of amino acid residues on the surface of the polypeptide. Therefore, if using carboxylic groups (including the C-terminal group) as attachment groups addition and/or removal of aspartate and glutamate residues may also be suitable according to the invention.
- carboxylic groups including the C-terminal group
- addition and/or removal of aspartate and glutamate residues may also be suitable according to the invention.
- attachment groups such as —SH groups
- they may be added and/or removed analogously.
- substitutions are conservative substitutions.
- the substitution may advantageously be performed at a location having a distance of 5 Angstroms, preferred 8 Angstroms, especially 10 Angstroms from the functional site(s) (active site for enzymes).
- An example of a suitable conservative substitution to obtain an additional amino attachment group is an arginine to lysine substitution.
- Examples of conservative substitutions to obtain additional carboxylic attachment groups are aspargine to aspartate/glutamate or glutamine to aspartate/glutamate substitutions.
- a lysine residue may be substituted with an arginine and so on.
- polypeptides includes proteins, peptides and/or enzymes for pharmaceutical or industrial applications.
- the polypeptides in question have a molecular weight in the range between about 1 to 100 kDa, often 15 kDa and 100 kDa.
- pharmaceutical polypeptides is defined as polypeptides, including peptides, such as peptide hormones, proteins and/or enzymes, being physiologically active when introduced into the circulatory system of the body of humans and/or animals.
- compositions are potentially immunogenic as they are introduced into the circulatory system.
- “pharmaceutical polypeptides” contemplated according to the invention include insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietin (TPO) and prolactin.
- Polypeptides used for industrial applications often have an enzymatic activity.
- Industrial polypeptides e.g. enzymes
- industrial polypeptides such as enzymes used as ingredients in industrial compositions and/or products, such as detergents and personal care products, including cosmetics, come into direct contact with the circulatory system of the body of humans or animals, as such enzymes (or products comprising such enzymes) are not injected (or the like) into the bloodstream.
- the potential risk is respiratory allergy (i.e. IgE response) as a consequence of inhalation to polypeptides through the respiratory passage.
- industrial polypeptides are defined as polypeptides, including peptides, proteins and/or enzymes, which are not intended to be introduced into the circulatory system of the body of humans and/or animals.
- polypeptides examples include polypeptides, especially enzymes, used in products such as detergents, household article products, agrochemicals, personal care products, such as skin care products, including cosmetics and toiletries, oral and dermal pharmaceuticals, composition use for processing textiles, compositions for hard surface cleaning, and compositions used for manufacturing food and feed etc.
- Oxidoreductases E.C. 1, “Enzyme Nomenclature, (1992), Academic Press, Inc.), such as laccase and Superoxide dismutase (SOD); Transferases, (E.C. 2), such as transglutaminases (TGases); Hydrolases (E.C. 3), including proteases, especially subtilisins, and lipolytic enzymes; Isomerases (E.C. 5), such as Protein disulfide Isomerases (PDI).
- Oxidoreductases E.C. 1, “Enzyme Nomenclature, (1992), Academic Press, Inc.), such as laccase and Superoxide dismutase (SOD); Transferases, (E.C. 2), such as transglutaminases (TGases); Hydrolases (E.C. 3), including proteases, especially subtilisins, and lipolytic enzymes; Isomerases (E.C. 5), such as Protein disulfide Isomerases (PDI).
- Contemplated proteolytic enzymes include proteases selected from the group of Aspartic proteases, such pepsins, cysteine proteases, such as papain, serine proteases, such as subtilisins, or metallo proteases, such as NEUTRASE®.
- parent proteases include PD498 (WO 93/24623 and SEQ ID NO: 2), SAVINASE® (von der Osten et al., 1993, Journal of Biotechnology, 28, 55+, SEQ ID NO: 3), Proteinase K (Gunkel et al., 1989, Eur. J. Biochem, 179, 185-194), Proteinase R (Samal et al, 1990, Mol. Microbiol, 4, 1789-1792), Proteinase T (Samal et al., 1989, Gene, 85, p. 329-333), Subtilisin DY (Betzel et al. 1993, Arch.
- Contemplated lipolytic enzymes include Humicola lanuginosa lipases, e.g. the one described in EP 258 068 and EP 305 216 (See SEQ ID NO: 6 below), Humicola insolens , a Rhizomucor miehei lipase, e.g. as described in EP 238 023, Absidia sp. lipolytic enzymes (WO 96/13578), a Candida lipase, such as a C. antarctica lipase, e.g. the C. antarctica lipase A or B described in EP 214 761, a Pseudomonas lipase such as a P. alcaligenes and P.
- Humicola lanuginosa lipases e.g. the one described in EP 258 068 and EP 305 216 (See SEQ ID NO: 6 below
- Humicola insolens e.g. as described in EP 238 023
- pseudoalcaligenes lipase e.g. as described in EP 218 272
- a P. cepacia lipase e.g. as described in EP 331 376
- a Pseudomonas sp. lipase as disclosed in WO 95/14783
- Bacillus lipase e.g. a B. subtilis lipase (Dartois et al., 1993 Biochemica et Biophysica Acta 1131, 253-260)
- a B. stearothermophilus lipase JP 64/744992
- a B. pumilus lipase WO 91/16422
- lipolytic enzymes include cutinases, e.g. derived from Pseudomonas mendocina as described in WO 88/09367, or a cutinase derived from Fusarium solani pisi (e.g. described in WO 90/09446).
- Contemplated laccases include Polyporus pinisitus laccase (WO 96/00290), Myceliophthora laccase (WO 95/33836), Scytalidium laccase (WO 95/338337), and Pyricularia oryzae laccase (Available from Sigma).
- Contemplated peroxidases include B. pumilus peroxidases (WO 91/05858), Myxococcaceae peroxidase (WO 95/11964), Coprinus cinereus (WO 95/10602) and Arthromyces ramosus peroxidase (Kunishima et al. 1994, J. Mol. Biol., 235, 331-344).
- Suitable transferases include any transglutaminases disclosed in WO 96/06931 (Novo Nordisk A/S) and WO 96/22366 (Novo Nordisk A/S).
- suitable protein disulfide isomerases include PDIs described in WO 95/01425 (Novo Nordisk A/S).
- the polymeric molecules coupled to the polypeptide may be any suitable polymeric molecule, including natural and synthetic homo-polymers, such as polyols (i.e. poly-OH), polyamines (i.e. poly-NH 2 ) and polycarboxyl acids (i.e. poly-COOH), and further hetero-polymers i.e. polymers comprising one or more different coupling groups e.g. a hydroxyl group and amine groups.
- polyols i.e. poly-OH
- polyamines i.e. poly-NH 2
- polycarboxyl acids i.e. poly-COOH
- hetero-polymers i.e. polymers comprising one or more different coupling groups e.g. a hydroxyl group and amine groups.
- polymeric molecules include polymeric molecules selected from the group comprising polyalkylene oxides (PAO), such as polyalkylene glycols (PAG), including polyethylene glycols (PEG), methoxypolyethylene glycols (mPEG) and polypropylene glycols, PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylates, polyvinylpyrolidones, poly-D,L-amino acids, polyethylene-co-maleic acid anhydride, polystyrene-co-malic acid anhydride, dextrans including carboxymethyl-dextrans, heparin, homologous albumin, celluloses, including methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose carboxyethylcellulose and hydroxypropylcellulose, hydrolysates of chi
- Preferred polymeric molecules are non-toxic polymeric molecules such as (m)polyethylene glycol ((m)PEG) which further requires a relatively simple chemistry for its covalently coupling to attachment groups on the enzyme's surface.
- polyalkylene oxides such as polyethylene oxides, such as PEG and especially mPEG
- PEO polyalkylene oxides
- mPEG polyethylene oxides
- PEG and especially mPEG are the preferred polymeric molecules, as these polymeric molecules, in comparison to polysaccharides such as dextran, pullulan and the like, have few reactive groups capable of cross-linking.
- methoxypolyethylene glycols may advantageously be used. This arises from the fact that methoxyethylene glycols have only one reactive end capable of conjugating with the enzyme. Consequently, the risk of cross-linking is less pronounced. Further, it makes the product more homogeneous and the reaction of the polymeric molecules with the enzyme easier to control.
- Enzyme variants to be conjugated may be constructed by any suitable method. A number of methods are well established in the art. For instance enzyme variants according to the invention may be generated using the same materials and methods described in e.g. WO 89/06279 (Novo Nordisk A/S), EP 130,756 (Genentech), EP 479,870 (Novo Nordisk A/S), EP 214,435 (Henkel), WO 87/04461 (Amgen), WO 87/05050 (Genex), EP application no.
- the gene encoding the polypeptide of interest Prior to mutagenesis the gene encoding the polypeptide of interest must be cloned in a suitable vector. Methods for generating mutations in specific sites are described below.
- these mutations can be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligo-nucleotide synthesis.
- Site-directed mutagenesis is carried out by SOE-PCR mutagenesis technique described by Kammann et al., 1989, Nucleic Acids Research, 17(13), 5404, and by Sarkar G. and Sommer, S. S., 1990, Biotechniques, 8, 404-407.
- polymeric molecules to be conjugated with the polypeptide in question are not active it must be activated by the use of a suitable technique. It is also contemplated according to the invention to couple the polymeric molecules to the polypeptide through a linker. Suitable linkers are well-known to the skilled person.
- Some of the methods concern activation of insoluble polymers but are also applicable to activation of soluble polymers e.g. periodate, trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide etc.
- the functional groups being amino, hydroxyl, thiol, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry which normally consist of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.
- Coupling polymeric molecules to the free acid groups of polypeptides may be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., 1976, J. Amr. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press).
- Coupling polymeric molecules to hydroxy groups are generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.
- Coupling polymeric molecules to free sulfhydryl groups can be reached with special groups like maleimido or the ortho-pyridyl disulfide.
- vinylsulfone U.S. Pat. No. 5,414,135, (1995), Snow et al.
- Accessible arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.
- Organic sulfonyl chlorides e.g. tresyl chloride
- hydroxy groups in a number of polymers e.g. PEG
- good leaving groups sulfonates
- nucleophiles like amino groups in polypeptides allow stable linkages to be formed between polymer and polypeptide.
- the reaction conditions are in general mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.
- Tosylate is more reactive than the mesylate but also more unstable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, 1995, Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the above mentioned groups.
- isocyanates and isothiocyanates may be employed yielding ureas and thioureas, respectively.
- Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imide thrones (U.S. Pat. No. 5,349,001 (1994), Greenwald et al.). The reactivity of these compounds is very high but may make the hydrolysis to fast.
- PEG succinate made from reaction with succinic anhydride can also be used.
- the hereby comprised ester group make the conjugate much more susceptible to hydrolysis (U.S. Pat. No. 5,122,614, 1992, Zalipsky). This group may be activated with N-hydroxy succinimide.
- Coupling of PEG to an aromatic amine followed by diazotization yields a very reactive diazonium salt which in situ can be reacted with a peptide.
- An amide linkage may also be obtained by reacting an azlactone derivative of PEG (U.S. Pat. No. 5,321,095, 1994, Greenwald, R. B.) thus introducing an additional amide linkage.
- peptides do not comprise many lysines, it may be advantageous to attach more than one PEG to the same lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.
- PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.
- the coupling technique used in the examples is the N-succinimidyl carbonate conjugation technique described in WO 90/13590 (Enzon).
- a 3-dimensional structure of the parent polypeptide in question is required.
- This structure may for example be an X-ray structure, an NMR structure or a model-built structure.
- the Brookhaven Databank is a source of X-ray- and NMR-structures.
- a model-built structure may be produced by the person skilled in the art if one or more 3D-structure(s) exist(s) of homologous polypeptide(s) sharing at least 30% sequence identity with the polypeptide in question.
- 3D-structure(s) may be produced by the person skilled in the art if one or more 3D-structure(s) exist(s) of homologous polypeptide(s) sharing at least 30% sequence identity with the polypeptide in question.
- Several software packages exist which may be employed to construct a model structure One example is the Homology 95.0 package from Biosym.
- Typical actions required for the construction of a model structure are: alignment of homologous sequences for which 3D-structures exist, definition of Structurally conserveed Regions (SCRs), assignment of coordinates to SCRs, search for structural fragments/loops in structure databases to replace Variable Regions, assignment of coordinates to these regions, and structural refinement by energy minimization. Regions containing large inserts (>3 residues) relative to the known 3D-structures are known to be quite difficult to model, and structural predictions must be considered with care.
- this structure serves as an essential prerequisite for the fulfillment of the method described below.
- Target amino acid residues to be mutated are according to the invention selected in order to obtain additional or fewer attachment groups, such as free amino groups (—NH 2 ) or free carboxylic acid groups (—COOH), on the surface of the polypeptide and/or to obtain a more complete and broadly spread shielding of the epitope(s) on the surface of the polypeptide.
- attachment groups such as free amino groups (—NH 2 ) or free carboxylic acid groups (—COOH
- this may be done by substitution of arginine to lysine, which are both positively charged, but only the lysine having a free amino group suitable as an attachment group.
- the conservative substitution may for instance be an aspargine to aspartic acid or glutamine to glutamic acid substitution. These residues resemble each other in size and shape, except from the carboxylic groups being present on the acidic residues.
- a lysine may be substituted with an arginine, and so on.
- the mutation may also be on target amino acid residues which are less/non-conservative. Such mutation is suitable for obtaining a more complete and broadly spread shielding of the polypeptide surface than can be obtained by the conservative substitutions.
- Attachment_residue residue(s) which can bind polymeric molecules, e.g. lysines (amino group) or aspartic/glutamic acids (carboxylic groups). N- or C-terminal amino/carboxylic groups are to be included where relevant.
- Mutation_residue residue(s) which is to be mutated, e.g. arginine or aspargine/glutamine.
- Essential_catalytic_residues residues which are known to be essential for catalytic function, e.g. the catalytic triad in serine proteases.
- Solvent_exposed_residues are defined as residues which are at least 5% exposed according to the BIOSYM/INSIGHT algorithm found in the module Homology 95.0.
- the file filename_area.tab is produced. Note: For this program to function properly all water molecules must first be removed from the structure.
- step c) The mutation(s) performed in step c) may be performed by standard techniques well known in the art, such as site-directed mutagenesis (see, e.g., Sambrook et al., 1989, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, N.Y.
- nucleotide substitution can be found in e.g. Ford et al., 1991, Protein Expression and Purification, 2, 95-107.
- Polypeptide-polymer conjugates of the invention may be prepared by any coupling method known in the art including the above mentioned techniques.
- polymeric molecules to be conjugated with the polypeptide are not active it must be activated by the use of a suitable method.
- the polymeric molecules may be coupled to the polypeptide through a linker. Suitable linkers are well known to the skilled person.
- Some of the methods concern activation of insoluble polymers but are also applicable to activation of soluble polymers e.g. periodate, trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide etc.
- the functional groups being amino, hydroxyl, thiol, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry which normally consists of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.
- Coupling polymeric molecules to the free acid groups of enzymes can be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., 1976, J. Amr. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press).
- Coupling polymeric molecules to hydroxy groups are generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.
- Coupling polymeric molecules to free sulfhydryl groups can be reached wih special groups like maleimido or the ortho-pyridyl disulfide.
- vinylsulfone U.S. Pat. No. 5,414,135 (1995), Snow et al.
- Accessible arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.
- Organic sulfonyl chlorides e.g. tresyl chloride
- hydroxy groups in a number of polymers e.g. PEG
- good leaving groups sulfonates
- nucleophiles like amino groups in polypeptides allow stable linkages to be formed between polymer and polypeptide.
- the reaction conditions are in general mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.
- Tosylate is more reactive than the mesylate but also more unstable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, 1995, Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the above mentioned groups.
- isocyanates and isothiocyanates may be employed yielding ureas and thioureas, respectively.
- Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imide thrones (U.S. Pat. No. 5,349,001 (1994), Greenwald et al.). The reactivity of these compounds is very high but may make the hydrolysis to fast.
- PEG succinate made from reaction with succinic anhydride can also be used.
- the hereby comprised ester group makes the conjugate much more susceptible to hydrolysis (U.S. Pat. No. 5,122,614, (1992), Zalipsky). This group may be activated with N-hydroxy succinimide.
- Coupling of PEG to an aromatic amine followed by diazotization yields a very reactive diazonium salt which in situ can be reacted with a peptide.
- An amide linkage may also be obtained by reacting an azlactone derivative of PEG (U.S. Pat. No. 5,321,095, (1994), Greenwald, R. B.) thus introducing an additional amide linkage.
- peptides do not comprise many lysines, it may be advantageous to attach more than one PEG to the same lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.
- PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.
- a specific example of a protease is the parent PD498 (WO 93/24623 and SEQ ID NO: 2).
- the parent PD498 has a molecular weight of 29 kDa.
- Lysine and arginine residues are located as follows: Distance from the active site Arginine Lysine 0-5 Angstroms 1 5-10 Angstroms 10-15 Angstroms 5 6 15-20 Angstroms 2 3 20-25 Angstroms 1 3 Total 9 12
- Suitable conservative arginine to lysine substitutions in parent PD498 may be any of R51K, R62K, R121K, R169K, R250K, R28K, R190K.
- Suitable non-conservative substitutions in parent PD498 may be any of P6K, Y7K, S9K, A10K, Y11K, Q12K, D43K, Y44K, N45K, N65K, G87K, 188K, N209K, A211K, N216K, N217K, G218K, Y219K, S220K, Y221K, G262K.
- PD498 variant-SPEG conjugates may be prepared using any of the above mentioned PD498 variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme. A specific example is described below.
- BPN′ A specific example of a protease having an attachment group in the active site is BPN′ which has 11 attachment groups (plus an N-terminal amino group): BPN′ has a molecular weight of 28 kDa.
- Lysine and arginine residues are located as follows: Distance from the active site Arginine Lysine 0-5 Angstroms 1 5-10 Angstroms 10-15 Angstroms 1 4 15-20 Angstroms 1 4 20-25 Angstroms 2 Total 2 11
- the lysine residue located within 0-5 Angstroms of the active site can according to the invention advantageously be removed. Specifically this may be done by a K94R substitution.
- BPN′ variant-SPEG conjugates may be prepared using the above mentioned BPN′ variant as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme.
- SAVINASE® von der Osten et al., 1993, Journal of Biotechnology, 28, 55+ and SEQ ID NO: 3 may according to the invention have added a number of amino attachment groups to the surface and removed an amino attachment group close to the active site.
- substitutions in SAVINASE® are sites for mutagenesis: R10K, R19K, R45K, R145K, R170K, R186K and R247K.
- substitution K94R is identified as a mutation suitable for preventing attachment of polymers close to active site.
- SAVINASE® variant-SPEG conjugates may be prepared using any of the above mentioned SAVINASE® variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme.
- lipase variants with reduced immunogenicity using the parent Huminocal lanuginosa DSM 4109 lipase see SEQ ID NO: 6 as the backbone for substitutions are listed below.
- the parent unmodified Humicola lanuginosa lipase has 8 attachment groups including the N-terminal NH 2 group and a molecular weight of about 29 kDa.
- Suitable conservative arginine to lysine substitutions in the parent lipase may be any of R133K, R139K, R160K, R179K, R209K, R118K and R125K.
- Suitable non-conservative substitutions in the parent lipase may be any of: A18K, G31K, T32K, N33K, G38K, A40K, D48K, T50K, E56K, D57K, S58K, G59K, V60K, G61K, D62K, T64K, L78K, N88K, G91K, N92K, L93K, S105K, G106K, V120K, P136K, G225K, L227K, V228K, P229K, P250K, F262K.
- Non-conservative substitution in the Humicola lanuginosa lipase include: E87K or D254K.
- Lipase variant-SPEG conjugates may be prepared using any of the above mentioned lipase variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme. A specific example is described below.
- Example 12 it is shown that a conjugate of the Humicola lanuginosa lipase variant with E87K + D254K substitutions coupled to S-PEG 15,000 has reduced immunogenic response in Balb/C mice in comparison to the corresponding parent unmodified enzyme.
- Immunogenicity is a broader term than “antigenicity” and “allergenicity”, and expresses the immune system's response to the presence of foreign substances. Said foreign substances are called immunogens, antigens and allergens depending of the type of immune response they elicit.
- immunoglobulin may be defined as a substance which, when introduced into circulatory system of animals and humans, is capable of stimulating an immunologic response resulting in formation of immunoglobulin.
- antigen refers to substances which by themselves are capable of generating antibodies when recognized as a non-self molecule.
- an “allergen” may be defined as an antigen which may give rise to allergic sensitization or an allergic response by IgE antibodies (in humans, and molecules with comparable effects in animals).
- Assessment of the immunogenicity may be made by injecting animal subcutaneously to enter the immunogen into the circulation system and comparing the response with the response of the corresponding parent polypeptide.
- the “circulatory system” of the body of humans and animals means, in the context of the present invention, the system which mainly consists of the heart and blood vessels.
- the heart delivers the necessary energy for maintaining blood circulation in the vascular system.
- the circulation system functions as the organism's transportation system, when the blood transports O 2 , nutritious matter, hormones, and other substances of importance for the cell regulation into the tissue. Further the blood removes CO 2 from the tissue to the lungs and residual substances to e.g. the kidneys. Furthermore, the blood is of importance for the temperature regulation and the defense mechanisms of the body, which include the immune system.
- This model seeks to identify the immunogenic response in the form of the IgG response in Balb/C mice being injected subcutaneously with modified and unmodified polypeptides.
- animal models can be used for assessment of the immunogenic potential.
- a polypeptide having “reduced immunogenicity” according to the invention indicates that the amount of produced antibodies, e.g. immunoglobulin in humans, and molecules with comparable effects in specific animals, which can lead to an immune response, is significantly decreased, when introduced into the circulatory system, in comparison to the corresponding parent polypeptide.
- mice For Balb/C mice the IgG response gives a good indication of the immunigenic potential of polypeptides.
- Assessment of allergenicity may be made by inhalation tests, comparing the effect of intratracheally (into the trachea) administrated parent enzymes with the corresponding modified enzymes according to the invention.
- a suitable strain of guinea pigs does not as humans, produce IgE antibodies in connection with the allergic response. However, they produce another type of antibody the IgG1A and IgG1B (see e.g. Prent ⁇ , ATLA, 19, 8-14, 1991), which are responsible for their allergenic response to inhaled polypeptides including enzymes. Therefore, when using the Dunkin Hartley animal model, the relative amount of IgG1A and IgG1B is a measure of the allergenicity level.
- Balb/C mice strain is suitable for intratracheal exposure.
- Balb/C mice produce IgE as the allergic response.
- mice such as rats, rabbits etc. may also be used for comparable studies.
- the invention relates to a composition comprising a polypeptide-polymer conjugate of the invention.
- the composition may be a pharmaceutical or industrial composition.
- the composition may further comprise other polypeptides, proteins or enzymes and/or ingredients normally used in e.g. detergents, including soap bars, household articles, agrochemicals, personal care products, including skin care compositions, cleaning compositions for e.g. contact lenses, oral and dermal pharmaceuticals, composition use for treating textiles, compositions used for manufacturing food, e.g. baking, and feed etc.
- detergents including soap bars, household articles, agrochemicals, personal care products, including skin care compositions, cleaning compositions for e.g. contact lenses, oral and dermal pharmaceuticals, composition use for treating textiles, compositions used for manufacturing food, e.g. baking, and feed etc.
- the invention also relates to the use of the method of the invention for reducing the immune response of polypeptides.
- industrial products such as detergents, such as laundry, dish wash and hard surface cleaning detergents, and food or feed products.
- B. subtilis 309 and 147 are variants of Bacillus lentus , deposited with the NCIB and accorded the accession numbers NCIB 10309 and 10147, and described in U.S. Pat. No. 3,723,250 incorporated by reference herein.
- E. coli MC 1000 (M. J. Casadaban and S. N. Cohen (1980); J. Mol. Biol. 138 179-207), was made r ⁇ ,m + by conventional methods and is also described in US Patent Application Serial No. 039,298.
- pPD498 E. coli - B. subtilis shuttle vector (described in U.S. Pat. No. 5,621,089 under section 6.2.1.6) containing the wild-type gene encoding for PD498 protease (SEQ ID NO: 2). The same vector is used for mutagenesis in E. coli as well as for expression in B. subtilis.
- Horse Radish Peroxidase labeled anti-rat-Ig (Dako, DK, P162, # 031; dilution 1:1000).
- Mouse anti-rat IgE (Serotec MCA193; dilution 1:200).
- Rat anti-mouse IgE (Serotec MCA419; dilution 1:100).
- Biotin-labeled mouse anti-rat IgG1 monoclonal antibody (Zymed 03-9140; dilution 1:1000)
- Biotin-labeled rat anti-mouse IgG1 monoclonal antibody (Serotec MCA336B; dilution 1:1000)
- Rat anti-Mouse IgG1, biotin (SeroTec, Cat# MCA336B)
- Ortho-Phenylene-diamine (Kem-en-Tec)
- Preactivated plates can be stored at room temperature for 3 weeks when kept in a plastic bag.
- ELISA microtiter plates are coated with rabbit anti-PD498 1:8000 in carbonate buffer and incubated overnight at 4° C. The next day the plates are blocked with 2% BSA for 1 hour and washed 3 times with PBS Tween 20.
- Alkaline phosphatase marked rabbit anti-goat 1:8000 (Sigma A4187) is applied and incubated for 1 hour, washed 2 times in PBS Tween20 and 1 time with diethanol amine buffer.
- the marked alkaline phosphatase is developed using p-nitrophenyl phosphate for 30 minutes at 37° C. or until appropriate color has developed.
- the reaction is stopped using stop medium (K 2 HPO 4 /HaH 3 buffer comprising EDTA (pH 10)) and read at OD 405/650 using an ELISA reader.
- stop medium K 2 HPO 4 /HaH 3 buffer comprising EDTA (pH 10)
- Double blinds are included on all ELISA plates.
- Electrophoretic separation of proteins was performed by standard methods using 4-20% gradient SDS poly acrylamide gels (Novex). Proteins were detected by silver staining. The molecule weight was measured relative to the mobility of Mark-12@ wide range molecule weight standards from Novex.
- Proteases cleave the bond between the peptide and p-nitroaniline to give a visible yellow color absorbing at 405 nm.
- Buffer e.g. Britton and Robinson buffer pH 8.3.
- Substrate 100 mg suc-AAPF-pNa is dissolved into 1 ml dimethyl sulfoxide (DMSO). 100 microliters of this is diluted into 10 ml with Britton and Robinson buffer.
- DMSO dimethyl sulfoxide
- the substrate and protease solution is mixed and the absorbance is monitored at 405 nm as a function of time and ABS 405 nm /min.
- the temperature should be controlled (20-50° C. depending on protease). This is a measure of the protease activity in the sample.
- proteolytic activity is expressed in Kilo NOVO Protease Units (KNPU).
- KNPU Kilo NOVO Protease Units
- the activity is determined relatively to an enzyme standard (SAVINASE®), and the determination is based on the digestion of a dimethyl casein (DMC) solution by the proteolytic enzyme at standard conditions, i.e. 50° C., pH 8.3, 9 min. reaction time, 3 min. measuring time.
- DMC dimethyl casein
- a folder AF 220/1 is available upon request to Novo Nordisk A/S, Denmark, which folder is hereby included by reference.
- a Glycine Unit is defined as the proteolytic enzyme activity which, under standard conditions, during a 15-minute incubation at 40° C., with N-acetyl casein as substrate, produces an amount of NH 2 -group equivalent to 1 mmole of glycine.
- Enzyme activity can also be measured using the PNA assay, according to reaction with the soluble substrate succinyl-alanine-alanine-proline-phenyl-alanine-para-nitrophenol, which is described in Rothgeb, T. M., Goodlander, B. D., Garrison, P. H., and Smith, L. A., 1988 Journal of American Oil Chemists Society.
- Fermentation of PD498 variants in B. subtilis are performed at 30° C. on a rotary shaking table (300 r.p.m.) in 500 ml baffled Erlenmeyer flasks containing 100 ml BPX medium for 5 days. In order to make an e.g. 2 liter broth 20 Erlenmeyer flasks are fermented simultaneously.
- BPX Composition (per liter) Potato starch 100 g Ground barley 50 g Soybean flour 20 g Na 2 HPO 4 ⁇ 12 H 2 O 9 g Pluronic 0.1 g Sodium caseinate 10 g
- the starch in the medium is liquefied with alpha-amylase and the medium is sterilized by heating at 120° C. for 45 minutes. After sterilization the pH of the medium is adjusted to 9 by addition of NaHCO 3 to 0.1 M.
- Approximately 1.6 liters of PD498 variant fermentation broth are centrifuged at 5000 rpm for 35 minutes in 1 liter beakers.
- the supernatants are adjusted to pH 7.0 using 10% acetic acid and filtered on Seitz Supra S100 filter plates.
- the filtrates are concentrated to approximately 400 ml using an Amicon CH2A UF unit equipped with an Amicon S1Y10 UF cartridge.
- the UF concentrate is centrifuged and filtered prior to absorption at room temperature on a Bacitracin affinity column at pH 7.
- the PD498 variant is eluted from the Bacitracin column at room temperature using 25% 2-propanol and 1 M sodium chloride in a buffer solution with 0.01 dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7.
- fractions with protease activity from the Bacitracin purification step are combined and applied to a 750 ml Sephadex G25 column (5 cm diameter) equilibrated with a buffer containing 0.01 dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 6.0.
- Fractions with proteolytic activity from the Sephadex G25 column are combined and applied to a 150 ml CM Sepharose CL 6B cation exchange column (5 cm diameter) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.1 M boric acid, and 0.002 M calcium chloride adjusted to pH 6.0.
- the protease is eluted using a linear gradient of 0-0.5 M sodium chloride in 1 liter of the same buffer.
- Protease containing fractions from the CM Sepharose column are combined and filtered through a 2 micron filter.
- the antigen is diluted to 1 mg/ml in carbonate buffer.
- the plates are coated overnight at 4° C.
- Unspecific adsorption is blocked by incubating each well for 1 hour at room temperature with 200 ml blocking buffer.
- the plates are washed 3 ⁇ with 300 ml washing buffer.
- Unknown mouse sera are diluted in dilution buffer, typically 10 ⁇ , 20 ⁇ and 40 ⁇ , or higher.
- Unbound material is removed by washing 3 ⁇ with washing buffer.
- the anti-Mouse IgG1 antibody is diluted 2000 ⁇ in dilution buffer.
- Unbound material is removed by washing 3 ⁇ with washing buffer.
- Streptavidine is diluted 1000 ⁇ in dilution buffer.
- Unbound material is removed by washing 3 ⁇ with 300 ml washing buffer.
- OPD 0.6 mg/ml
- H 2 O 2 0.4 ml/ml
- the reaction is stopped by adding 100 ml H 2 SO 4 .
- the plates are read at 492 nm with 620 nm as reference.
- Balb/C mice (20 grams) are immunized 10 times (intervals of 14 days) by subcutaneous injection of the modified or unmodified polypeptide in question, respectively by standard procedures known in art.
- the 3D structure of parent PD498 was modeled as described above based on 59% sequence identity with Thermitase® (2tec.pdb).
- the sequence of PD498 is SEQ ID NO: 2.
- PD498 residue numbering is used, 1-280.
- Lines 1-8 The subset ALLZONE is defined as those residues which are either within 10 Angstroms of the free amino groups on lysines or the N-terminal, or within 8 Angstroms of the catalytic triad residues 39, 72 and 226.
- Line 10 The subset REST is defined as those residues not included in ALLZONE.
- Subset SUB5B is defined as those residues in a 5 Angstroms shell around REST, excluding residues within 8 Angstroms of the catalytic residues.
- REST contains Arg62 and Arg169
- SUB5B contains Arg51, Arg121, and Arg250.
- ACTSITE contains Arg103, but position 103 is within 8 Angstroms from essential_catalytic_residues, and thus not relevant.
- substitutions R51K, R62K, R121K, R169K and R250K are identified in parent PD498 as suitable sites for mutagenesis.
- the residues are substituted below in section 2, and further analysis done:
- Lines 1-15 Solvent exposed arginines in subsets REST and SUB5B are replaced by lysines. Solvent accessibilities are recalculated following arginine replacement.
- Lines 16-23 The subset ALLZONEx is defined as those residues which are either within 10 Angstroms of the free amino groups on lysines (after replacement) or the N-terminal, or within 8 Angstroms of the catalytic triad residues 39, 72 and 226.
- SAVINASE® The 3D structure of SAVINASE® is available in the Brookhaven Databank as lsvn.pbd.
- a related subtilisin is available as 1st3.pdb.
- SAVINASE® The sequence of SAVINASE® is shown in SEQ ID NO: 3.
- the sequence numbering used is that of subtilisin BPN′, SAVINASE® having deletions relative to BPN′ at positions 36, 56, 158-159 and 163-164.
- the active site residues (functional site) are D32, H64 and S221.
- SAVINASE® REST contains the arginines Arg10, Arg170 and Arg 186, and SUB5B contains Arg19, Arg45, Arg145 and Arg247.
- the substitution K94R is a mutation removing lysine as attachment group close to the active site.
- SAVINASE® P5K, P14K, T22K, T38K, H39K, P40K, L42K, L75K, N76K, L82K, P86K, S103K, V104K, S105K, A108K, A133K, T134K, L135K, Q137K, N140K, N173K, N204K, Q206K, G211K, S212K, T213K, A215K, S216K, N269K.
- the subset REST contains Gln33 and Asn245, SUB5B contains Gln12, Gln126, Asn209, Gln242, Asn246, Gln248 and Asn266, all of which are solvent exposed.
- substitutions Q12E or Q12D, Q33E or Q33D, Q126E or Q126D, N209D or N209E, Q242E or Q242D, N245D or N245E, N246D or N246E, Q248E or Q248D and N266D or N266E are identified in PD498 as sites for mutagenesis within the scope of this invention. Residues are substituted below in section 2, and further analysis done:
- the subset RESTx contains only two residues: A233 and G234, none of which are solvent exposed. No further mutagenesis is required to obtain complete protection of the surface. However, it may be necessary to remove some of the reactive carboxylic groups in the active site region to ensure access to the active site of PD498. Acidic residues within the subset ACTSITE are: D39, D58, D68 and D106. Of these only the two latter are solvent exposed and D39 is a functional residue. The mutations D68N, D68Q, D106N and D106Q were found suitable according to the present invention.
- Arthromyces ramosus peroxidase Suitable substitutions in the Arthromyces ramosus peroxidase for addition of carboxylic acid attachment groups (—COOH) Suitable locations for addition of carboxylic attachment groups (aspartatic acids and glutamic acids) in a non-hydrolytic enzyme, Arthromyces ramosus peroxidase were found as follows.
- This oxido-reductase contains 344 amino acid residues. The first eight residues are not visible in the X-ray structure: QGPGGGGG, and N143 is glycosylated.
- the commands performed in Insight are shown in the command files makeDEzone.bcl and makeDEzone2.bcl below.
- the C-terminal residue is P344, the ACTSITE is defined as the heme group and the two histidines coordinating it (H56 & H184).
- the subset REST contains Gln70, and SUB5B contains Gln34, Asn128, Asn303 all of which are solvent exposed.
- the substitutions Q34E or Q34D, Q70E or Q70D, N128D or N128E and N303D or N303E are identified in A. ramosus peroxidase as sites for mutagenesis. Residues are substituted below and further analysis done:
- the subset RESTx contains only four residues: S9, S334, G335 and P336, all of which are >5% solvent exposed.
- the mutations S9D, S9E, S334D, S334E, G335D, G335E, P336D and P336E are proposed in A. ramosus peroxidase.
- Acidic residues within the subset ACTSITE are: E44, D57, D77, E87, E176, D179, E190, D202, D209, D246 and the N-terminal carboxylic acid on P344. Of these only E44, D77, E176, D179, E190, D209, D246 and the N-terminal carboxylic acid on P344 are solvent exposed.
- Suitable sites for mutations are E44Q, D77N, E176Q, D179N, E190Q, D209N and D246N.
- D246N and D246E are risky mutations due to D246's importance for binding of heme.
- the N-terminal 8 residues were not included in the calculations above, as they do not appear in the structure. None of these 8 residues, QGPGGGG, contain carboxylic groups. The following variants are proposed as possible mutations to enable attachment to this region: Q1E, Q1D, G2E, G2D, P3E, P3D, G4E, G4D, G5E, G5D, G6E, G6D, G7E, G7D, G8E, G8D.
- mPEG 15,000 was suspended in toluene (4 ml/g of mPEG) 20% was distilled off at normal pressure to dry the reactants azeotropically.
- Dichloromethane dry 1 ml/g mPEG
- phosgene in toluene (1.93 M 5 mole/mole mPEG) was added and mixture stirred at room temperature overnight. The mixture was evaporated to dryness and the desired product was obtained as waxy lumps.
- PD498 site-directed variants were constructed using the “maxi-oligonucleotide-PCR” method described by Sarkar et al., 1990, BioTechniques, 8, 404-407.
- the template plasmid was shuttle vector pPD498 or an analogue of this containing a variant of the PD498 protease gene.
- a PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl digestion and verified by DNA sequencing of the total 769 bp insert.
- a PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by ClaI digestion and verified by DNA sequencing of the total 769 bp insert.
- a PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by the absence of an Rsa I restriction site and verified by DNA sequencing of the total 769 bp insert.
- synthetic oligonucleotides having the sequence GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7) and the sequence CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) were used simultaneously.
- a PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl and ClaI digestion and verified by DNA sequencing of the total 769 bp insert.
- synthetic oligonucleotides having the sequence GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7), the sequence CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) and the sequence CAA TGT ATC CAA AAC GTT CCA ACC AGC (SEQ ID NO: 9) were used simultaneously.
- a PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl and ClaI digestion and absence of an Rsa I site. The variant was verified by DNA sequencing of the total 769 bp insert.
- Vectors hosting the above mentioned PD498 variants were purified from E. coli cultures and transformed into B. subtilis in which organism the variants were fermented, expressed and purified as described in the “Materials and Methods” section above.
- the molecule weight of the obtained derivative was approximately 120 kDa, corresponding to about 16 moles of mPEG attached per mole enzyme.
- Dunkin Hartley guinea pigs are stimulated with 1.0 microgram PD498-SPEG 5,000 and 1.0 microgram modified variant PD498-SPEG 5,000 by intratracheal installation.
- the IgG 1 levels of Dunkin Hartley guinea pigs during the trial period of 10 weeks are observed.
- Humicola lanuginosa lipase (SEQ ID NO: 6) is available in Brookhaven Databank as ltib.pdb.
- the lipase consists of 269 amino acids.
- H. lanuginosa lipase The procedure described in Example 1 was followed.
- the sequence of H. lanuginosa lipase is shown below in the table listing solvent accessibility data for H. lanuginosa lipase.
- H. lanuginosa residue numbering is used (1-269), and the active site residues (functional site) are S146, S201 and H258.
- the synonym TIB is used for H. lanuginosa lipase.
- REST contains the arginines Arg133, Arg139, Arg160, Arg179 and Arg 209
- SUB5B contains Arg118 and R125.
- lanuginosa lipase A18K, G31K, T32K, N33K, G38K, A40K, D48K, T50K, E56K, D57K, S58K, G59K, V60K, G61K, D62K, T64K, L78K, N88K, G91K, N92K, L93K, S105K, G106K, V120K, P136K, G225K, L227K, V228K, P229K, P250K, F262K.
- the Humicola lanuginosa lipase variant E87K + D254K was constructed, expressed and purified as described in WO 92/05249.
- the lipase variant E87K + D254K-SPEG conjugate was prepared as described in Example 7, except that the enzyme is the Humicola lanuginosa lipase variant (E87K + D254K) described in Example 11 and the polymer is mPEG 15,000.
- mice were immunized by subcutaneous injection of:
- the amount of protein for each batch was measured by optical density measurements. Blood samples (200 microliters) were collected from the eyes one week after the immunization, but before the following immunization. Serum was obtained by blood clotting, and centrifugation.
- the IgG 1 response was determined by use of the Balb/C mice IgG 1 ELISA method as described above.
- the antibody titers elicited by the conjugate i.e. lipase-SPEG15,000 ranged between 960 and 1920, and were only 2 to 4 ⁇ lower than the antibody titer of 3840 that was elicited by unmodified HL82-LIPOLASE (figure to the left).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Enzymes And Modification Thereof (AREA)
- Detergent Compositions (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
The present invention relates to polypeptide-polymer conjugates having added and/or removed one or more attachment groups for coupling polymeric molecules on the surface of the polypeptide structure, a method for preparing polypeptide-polymer conjugates of the invention, the use of said conjugated for reducing the immunogenicity and allergenicity and compositions comprising said conjugate.
Description
- This application is divisional of application Ser. No. 09/705,185 filed Nov. 2, 2000, which is a divisional of application Ser. No. 09/024,532 filed Feb. 17, 1998 which is a continuation of PCT/DK98/00046 filed Feb. 6, 1998, which claims priority under 35 U.S.C. 119 of Danish application no. 0135/97 filed Feb. 6, 1997.
- 1. Field of the Invention
- The present invention relates to polypeptide-polymer conjugates having added and/or removed one or more attachment groups for coupling polymeric molecules on the surface of the 3D structure of the polypeptide, a method for preparing polypeptide-polymer conjugates of the invention, the use of said conjugated for reducing the immunogenicity and allergenicity, and compositions comprising said conjugate.
- 2. Description of Related Art
- The use of polypeptides, including enzymes, in the circulatory system to obtain a particular physiological effect is well-known in the medical arts. Further, within the arts of industrial applications, such as laundry washing, textile bleaching, person care, contact lens cleaning, food and feed preparation enzymes are used as a functional ingredient. One of the important differences between pharmaceutical and industrial application is that for the latter type of applications (i.e. industrial applications) the polypeptides (often enzymes) are not intended to enter into the circulatory system of the body.
- Certain polypeptides and enzymes have an unsatisfactory stability and may under certain circumstances—dependent on the way of challenge—cause an immune response, typically an IgG and/or IgE response.
- It is today generally recognized that the stability of polypeptides is improved and the immune response is reduced when polypeptides, such as enzymes, are coupled to polymeric molecules. It is believed that the reduced immune response is a result of the shielding of (the) epitope(s) on the surface of the polypeptide responsible for the immune response leading to antibody formation by the coupled polymeric molecules.
- Techniques for conjugating polymeric molecules to polypeptides are well-known in the art.
- One of the first commercially suitable techniques was described back in the early 1970's and disclosed in e.g. U.S. Pat. No. 4,179,337. Said patent concerns non-immunogenic polypeptides, such as enzymes and peptide hormones coupled to polyethylene glycol (PEG) or polypropylene glycol (PPG). At least 15% of polypeptides' physiological activity is maintained.
- GB patent no. 1,183,257 (Crook et al.) describes chemistry for conjugation of enzymes to polysaccharides via a triazine ring.
- Further, techniques for maintaining of the enzymatic activity of enzyme-polymer conjugates are also known in the art.
- WO 93/15189 (Veronese et al.) concerns a method for maintaining the activity in polyethylene glycol-modified proteolytic enzymes by linking the proteolytic enzyme to a macromolecularized inhibitor. The conjugates are intended for medical applications.
- It has been found that the attachment of polymeric molecules to a polypeptide often has the effect of reducing the activity of the polypeptide by interfering with the interaction between the polypeptide and its substrate. EP 183 503 (Beecham Group PLC) discloses a development of the above concept by providing conjugates comprising pharmaceutically useful proteins linked to at least one water-soluble polymer by means of a reversible linking group.
- EP 471,125 (Kanebo) discloses skin care products comprising a parent protease (Bacillus protease with the trade name Esperase®) coupled to polysaccharides through a triazine ring to improve the thermal and preservation stability. The coupling technique used is also described in the above mentioned GB patent no. 1,183,257 (Crook et al.).
- JP 3083908 describes a skin cosmetic material which contains a transglutaminase from guinea pig liver modified with one or more water-soluble substances such as PEG, starch, cellulose etc. The modification is performed by activating the polymeric molecules and coupling them to the enzyme. The composition is stated to be mild to the skin.
- However, it is not always possible to readily couple polymeric molecules to polypeptides and enzymes. Further, there is still a need for polypeptide-polymer conjugates with an even more reduced immunogenicity and/or allergenicity.
- It is the object of the present invention to provide improved polypeptide-polymer conjugates suitable for industrial and pharmaceutical applications.
- The term “improved polypeptide-polymer conjugates” means in the context of the present invention conjugates having a reduced immune response in humans and animals and/or an improved stability. As will be described further below the immune response is dependent on the way of challenge.
- The present inventors have found that polypeptides, such as enzymes, may be made less immunogenic and/or allergenic by adding and/or removing one or more attachment groups on the surface of the parent polypeptide to be coupled to polymeric molecules.
- When introducing pharmaceutical polypeptide directly into the circulatory system (i.e. bloodstream) the potential risk is an immunogenic response in the form of mainly IgG, IgA and/or IgM antibodies. In contrast hereto, industrial polypeptides, such as enzymes used as a functional ingredient in e.g. detergents, are not intended to enter the circulatory system. The potential risk in connection with industrial polypeptides is inhalation causing an allergenic response in the form of mainly IgE antibody formation.
- Therefore, in connection with industrial polypeptides the potential risk is respiratory allergenicity caused by inhalation, intratracheal and intranasal presentation of polypeptides.
- The main potential risk of pharmaceutical polypeptides is immunogenicity caused by intradermal, intravenous or subcutaneous presentation of the polypeptide.
- It is to be understood that reducing the “immunogenicity” and reducing the “respiratory allergenicity” are two very different problems based on different routes of exposure and on two very different immunological mechanisms:
- The term “immunogenicity” used in connection with the present invention may be referred to as allergic contact dermatitis in a clinical setting and is a cell mediated delayed immune response to chemicals that contact and penetrate the skin. This cell mediated reaction is also termed delayed contact hypersensitivity (type IV reaction according to Gell and Combs classification of immune mechanisms in tissue damage).
- The term “allergenicity” or “respiratory allergenicity” is an immediate anaphylactic reaction (type I antibody-mediated reaction according to Gell and Combs) following inhalation of e.g. polypeptides.
- According to the present invention it is possible to provide polypeptides with a reduced immune response and/or improved stability, which has a substantially retained residual activity.
- The allergic and the immunogenic response are in one term, at least in the context of the present invention called the “immune response”.
- In the first aspect the invention relates to a polypeptide-polymer conjugate having
-
- a) one or more additional polymeric molecules coupled to the polypeptide having been modified in a manner to increase the number of attachment groups on the surface of the polypeptide in comparison to the number of attachment groups available on the corresponding parent polypeptide, and/or
- b) one or more fewer polymeric molecules coupled to the polypeptide having been modified in a manner to decrease the number of attachment groups at or close to the functional site(s) of the polypeptide in comparison to the number of attachment groups available on the corresponding parent polypeptide.
- The term “parent polypeptide” refers to the polypeptide to be modified by coupling to polymeric molecules. The parent polypeptide may be a naturally-occurring (or wild-type) polypeptide or may be a variant thereof prepared by any suitable means. For instance, the parent polypeptide may be a variant of a naturally-occurring polypeptide which has been modified by substitution, deletion or truncation of one or more amino acid residues or by addition or insertion of one or more amino acid residues to the amino acid sequence of a naturally-occurring polypeptide.
- A “suitable attachment group” means in the context of the present invention any amino acid residue group on the surface of the polypeptide capable of coupling to the polymeric molecule in question.
- Preferred attachment groups are amino groups of lysine residues and the N-terminal amino group. Polymeric molecules may also be coupled to the carboxylic acid groups (—COOH) of amino acid residues in the polypeptide chain located on the surface. Carboxylic acid attachment groups may be the carboxylic acid group of aspartate or glutamate and the C-terminal COOH-group.
- A “functional site” means any amino acid residues and/or cofactors which are known to be essential for the performance of the polypeptide, such as catalytic activity, e.g. the catalytic triad residues, histidine, aspartate and serine in serine proteases, or e.g. the heme group and the distal and proximal histidines in a peroxidase such as the Arthromyces ramosus peroxidase.
- In the second aspect the invention relates to a method for preparing improved polypeptide-polymer conjugates comprising the steps of:
-
- a) identifying amino acid residues located on the surface of the 3D structure of the parent polypeptide in question,
- b) selecting target amino acid residues on the surface of said 3D structure of said parent polypeptide to be mutated,
- c) i) substituting or inserting one or more amino acid residues selected in step b) with an amino acid residue having a suitable attachment group, and/or ii) substituting or deleting one or more amino acid residues selected in step b) at or close to the functional site(s),
- d) coupling polymeric molecules to the mutated polypeptide.
- The invention also relates to the use of a conjugate of the invention and the method of the invention for reducing the immunogenicity of pharmaceuticals and reducing the allergenicity of industrial products.
- Finally the invention relates to compositions comprising a conjugate of the invention and further ingredients used in industrial products or pharmaceuticals.
-
FIG. 1 shows the anti-lipase serum antibody levels after 5 weekly immunizations with i) control ii) unmodified lipase variant, iii) lipase variant-SPEG. (X: log(serum dilution); Y Optical Density (490/620)). - It is the object of the present invention to provide improved polypeptide-polymer conjugates suitable for industrial and pharmaceutical applications.
- Even though polypeptides used for pharmaceutical applications and industrial application can be quite different the principle of the present invention may be tailored to the specific type of parent polypeptide (i.e. enzyme, hormone peptides etc.).
- The inventors of the present invention have provided improved polypeptide-polymer conjugates with a reduced immune response in comparison to conjugates prepared from the corresponding parent polypeptides.
- The present inventors have found that polypeptides, such as enzymes, may be made less immunogenic and/or less allergenic by adding one or more attachment groups on the surface of the parent polypeptide. In addition thereto the inventors have found that a higher percentage of maintained residual functional activity may be obtained by removing attachment groups at or close to the functional site(s).
- In the first aspect the invention relates to an improved polypeptide-polymer conjugate having
-
- a) one or more additional polymeric molecules coupled to the polypeptide having been modified in a manner to increase the number of attachment groups on the surface of the polypeptide in comparison to the number of attachment groups available on the corresponding parent polypeptide, and/or
- b) one or more fewer polymeric molecules coupled to the polypeptide having been modified in a manner to decrease the number of attachment groups at or close to the functional site(s) of the polypeptide in comparison to the number of attachment groups available on the corresponding parent polypeptide.
- Whether the attachment groups should be added and/or removed depends on the specific parent polypeptide.
- a) Addition of Attachment Groups
- There may be a need for further attachment groups on the polypeptide if only few attachment groups are available on the surface of the parent polypeptide. The addition of one or more attachment groups by substituting or inserting one or more amino acid residues on the surface of the parent polypeptide increases the number of polymeric molecules which may be attached in comparison to the corresponding parent polypeptide. Conjugates with an increased number of polymeric molecules attached thereto are generally seen to have a reduced immune response in comparison to the corresponding conjugates having fewer polymeric molecules coupled thereto.
- Any available amino acid residues on the surface of the polypeptide, preferentially not being at or close to the functional site(s), such as the active site(s) of enzymes, may in principle be subject to substitution and/or insertion to provide additional attachment groups.
- As will be described further below the location of the additional coupled polymeric molecules may be of importance for the reduction of the immune response and the percentage of maintained residual functional activity of the polypeptide itself.
- A conjugate of the invention may typically have from 1 to 25, preferentially 1 to 10 or more additional polymeric molecules coupled to the surface of the polypeptide in comparison to the number of polymeric molecules of a conjugate prepared on the basis of the corresponding parent polypeptide.
- However, the optimal number of attachment groups to be added depends (at least partly) on the surface area (i.e. molecular weight) of the parent polypeptide to be shielded by the coupled polymeric molecules, and also on the number of already available attachment groups on the parent polypeptide.
- b) Removing Attachment Groups
- In the case of enzymes or other polypeptides performing their function by interaction with a substrate or the like, polymeric molecules coupled to the polypeptide might be impeded by the interaction between the polypeptide and its substrate or the like, if they are coupled at or close to the functional site(s) (i.e. active site of enzymes). This will most probably cause reduced activity.
- In the case of enzymes having one or more polymeric molecules coupled at or close to the active site a substantial loss of residual enzymatic activity can be expected. Therefore, according to the invention conjugates may be constructed to maintain a higher percentage of residual enzymatic activity in comparison to a corresponding conjugates prepared on the basis of the parent enzyme in question. This may be done by substituting and/or deleting attachment groups at or close to the active site, hereby increasing the substrate affinity by improving the accessibility of the substrate in the catalytic cleft.
- An enzyme-polymer conjugate of the invention may typically have from 1 to 25, preferably 1 to 10 fewer polymeric molecules coupled at or close to the active site in comparison to the number of polymeric molecules of a conjugate prepared on the basis of the corresponding parent polypeptide.
- As will be explained below “at or close to” the functional site(s) means that no polymeric molecule(s) should be coupled within 5 Angstroms, preferably 8 Angstroms, especially 10 Angstroms of the functional site(s).
- Removal of attachment groups at or close to the functional site(s) of the polypeptide may advantageously be combined with addition of attachment groups in other parts of the surface of the polypeptide.
- The total number of attachment groups may this way be unchanged, increased or decreased. However the location(s) of the total number of attachment group(s) is(are) improved assessed by the reduction of the immune response and/or percentage of maintained residual activity. Improved stability may also be obtained this way.
- The Number of Attachment Groups
- Generally seen the number of attachment groups should be balanced to the molecular weight and/or surface area of the polypeptide. The more heavy the polypeptide is the more polymeric molecules should be coupled to the polypeptide to obtain sufficient shielding of the epitope(s) responsible for antibody formation.
- Therefore, if the parent polypeptide molecule is relatively light (e.g. 1 to 35 kDa) it may be advantageous to increase the total number of coupled polymeric molecules (outside the functional site(s)) to a total between 4 and 20.
- If the parent polypeptide molecules are heavier, for instance 35 to 60 kDa, the number of coupled polymeric molecules (outside the functional site(s)) may advantageously be increased to 7 to 40, and so on.
- The ratio between the molecular weight (Mw) of the polypeptide in question and the number of coupled polymeric molecules considered to be suitable by the inventors is listed below in Table 1.
TABLE 1 Molecular weight of parent Number of polymeric molecules polypeptide (Mw) kDa coupled to the polypeptide 1 to 35 4-20 35 to 60 7-40 60 to 80 10-50 80 to 100 15-70 More than 100 more than 20
Reduced Immune Response vs. Maintained Residual Enzymatic Activity - Especially for enzymes, in comparison to many other types of polypeptides, there is a conflict between reducing the immune response and maintaining a substantial residual enzymatic activity as the activity of enzymes are connected with interaction between a substrate and the active site often present as a cleft in the enzyme structure.
- Without being limited to any theory it is believed that the loss of enzymatic activity of enzyme-polymer conjugates might be a consequence of impeded access of the substrate to the active site in the form of spatial hindrance of the substrate by especially bulky and/or heavy polymeric molecules to the catalytic cleft. It might also, at least partly, be caused by disadvantageous minor structural changes of the 3D structure of the enzyme due to the stress made by the coupling of the polymeric molecules.
- Maintained Residual Activity
- A polypeptide-polymer conjugates of the invention has a substantially maintained functional activity.
- A “substantially” maintained functional activity is in the context of the present invention defined as an activity which is at least between 20% and 30%, preferably between 30% and 40%, more preferably between 40% and 60%, better from 60% up to 80%, even better from 80% up to about 100%, in comparison to the activity of the conjugates prepared on the basis of corresponding parent polypeptides.
- In the case of polypeptide-polymer conjugates of the invention where no polymeric molecules are coupled at or close to the functional site(s) the residual activity may even be up to 100% or very close thereto. If attachment group(s) of the parent polypeptide is(are) removed from the functional site the activity might even be more than 100% in comparison to modified (i.e. polymer coupled) parent polypeptide conjugate.
- Position of Coupled Polymeric Molecules
- To obtain an optimally reduced immune response (i.e. immunogenic and allergenic response) the polymeric molecules coupled to the surface of the polypeptide in question should be located in a suitable distance from each other.
- In a preferred embodiment of the invention the parent polypeptide is modified in a manner whereby the polymeric molecules are spread broadly over the surface of the polypeptide. In the case of the polypeptide in question has enzymatic activity it is preferred to have as few as possible, especially none, polymeric molecules coupled at or close to the area of the active site.
- In the present context “spread broadly over the surface of the polypeptide” means that the available attachment groups are located so that the polymeric molecules shield different parts of the surface, preferably the whole or close to the whole surface area away from the functional site(s), to make sure that epitope(s) are shielded and hereby not recognized by the immune system or its antibodies.
- The area of antibody-polypeptide interaction typically covers an area of 500 Angstroms2, as described by Sheriff et al., 1987, Proc. Natl. Acad. Sci. USA, 84, 8075-8079. 500 Angstroms2 corresponds to a rectangular box of 25 Angstroms×20 Angstroms or a circular region of radius 12.6 Angstroms. Therefore, to prevent binding of antibodies to the epitope(s) to the polypeptide in question it is preferred to have a maximum distance between two attachment groups around 10 Angstroms.
- Consequently, amino acid residues which are located in excess of 10 Angstroms away from already available attachment groups are suitable target residues. If two or more attachment groups on the polypeptide are located very close to each other it will in most cases result in that only one polymeric molecule will be coupled. To ensure a minimal loss of functional activity it is preferred not to couple polymeric molecules at or close to the functional site(s). Said distance depends at least partly on the bulkiness of the polymeric molecules to be coupled, as impeded access by the bulky polymeric molecules to the functional site is undesired. Therefore, the more bulky the polymeric molecules are the longer should the distance from the functional site to the coupled polymeric molecules be.
- To maintain a substantial functional activity of the polypeptide in question attachment groups located within 5 Angstroms, preferred 8 Angstroms, especially 10 Angstroms from such functional site(s) should be left uncoupled and may therefore advantageously be removed or changed by mutation. Functional residues should normally not be mutated/removed, even though they potentially can be the target for coupling polymeric molecules. In said case it may thus be advantageous to choose a coupling chemistry involving different attachment groups.
- Further, to provide a polypeptide having coupled polymeric molecules at (a) known epitope(s) recognizable by the immune system or close to said epitope(s) specific mutations at such sites are also considered advantageous according to the invention. If the position of the epitope(s) is(are) unknown it is advantageous to couple several or many polymeric molecules to the polypeptide.
- As also mentioned above it is preferred that said attachment groups are spread broadly over the surface.
- The Attachment Group
- Virtually all ionized groups, such as the amino groups of lysine residues, are located on the surface of the polypeptide molecule (see for instance Thomas E. Creighton, 1993, “Proteins”, W.H. Freeman and Company, New York).
- Therefore, the number of readily accessible attachment groups (e.g. amino groups) on a modified or parent polypeptide equals generally seen the number of lysine residues in the primary structure of the polypeptide plus the N-terminus amino group.
- The chemistry of coupling polymeric molecules to amino groups are quite simple and well established in the art. Therefore, it is preferred to add and/or remove lysine residues (i.e. attachment groups) to/from the parent polypeptide in question to obtain improved conjugates with reduced immunogenicity and/or allergenicity and/or improved stability and/or high percentage maintained functional activity.
- Polymeric molecules may also be coupled to the carboxylic groups (—COOH) of amino acid residues on the surface of the polypeptide. Therefore, if using carboxylic groups (including the C-terminal group) as attachment groups addition and/or removal of aspartate and glutamate residues may also be suitable according to the invention.
- If using other attachment groups, such as —SH groups, they may be added and/or removed analogously.
- Substitution of the amino acid residues is preferred over insertion, as the impact on the 3D structure of the polypeptide normally will be less pronounced.
- Preferred substitutions are conservative substitutions. In the case of increasing the number of attachment groups the substitution may advantageously be performed at a location having a distance of 5 Angstroms, preferred 8 Angstroms, especially 10 Angstroms from the functional site(s) (active site for enzymes).
- An example of a suitable conservative substitution to obtain an additional amino attachment group is an arginine to lysine substitution. Examples of conservative substitutions to obtain additional carboxylic attachment groups are aspargine to aspartate/glutamate or glutamine to aspartate/glutamate substitutions. To remove attachment groups a lysine residue may be substituted with an arginine and so on.
- The Parent Polypeptide
- In the context of the present invention the term “polypeptides” includes proteins, peptides and/or enzymes for pharmaceutical or industrial applications. Typically the polypeptides in question have a molecular weight in the range between about 1 to 100 kDa, often 15 kDa and 100 kDa.
- Pharmaceutical Polypeptides
- The term “pharmaceutical polypeptides” is defined as polypeptides, including peptides, such as peptide hormones, proteins and/or enzymes, being physiologically active when introduced into the circulatory system of the body of humans and/or animals.
- Pharmaceutical polypeptides are potentially immunogenic as they are introduced into the circulatory system.
- Examples of “pharmaceutical polypeptides” contemplated according to the invention include insulin, ACTH, glucagon, somatostatin, somatotropin, thymosin, parathyroid hormone, pigmentary hormones, somatomedin, erythropoietin, luteinizing hormone, chorionic gonadotropin, hypothalmic releasing factors, antidiuretic hormones, thyroid stimulating hormone, relaxin, interferon, thrombopoietin (TPO) and prolactin.
- Industrial Polypeptides
- Polypeptides used for industrial applications often have an enzymatic activity. Industrial polypeptides (e.g. enzymes) are (in contrast to pharmaceutical polypeptides) not intended to be introduced into the circulatory system of the body.
- It is not very like that industrial polypeptides, such as enzymes used as ingredients in industrial compositions and/or products, such as detergents and personal care products, including cosmetics, come into direct contact with the circulatory system of the body of humans or animals, as such enzymes (or products comprising such enzymes) are not injected (or the like) into the bloodstream.
- Therefore, in the case of the industrial polypeptide the potential risk is respiratory allergy (i.e. IgE response) as a consequence of inhalation to polypeptides through the respiratory passage.
- In the context of the present invention “industrial polypeptides” are defined as polypeptides, including peptides, proteins and/or enzymes, which are not intended to be introduced into the circulatory system of the body of humans and/or animals.
- Examples of such polypeptides are polypeptides, especially enzymes, used in products such as detergents, household article products, agrochemicals, personal care products, such as skin care products, including cosmetics and toiletries, oral and dermal pharmaceuticals, composition use for processing textiles, compositions for hard surface cleaning, and compositions used for manufacturing food and feed etc.
- Enzymatic Activity
- Pharmaceutical or industrial polypeptides exhibiting enzymatic activity will often belong to one of the following groups of enzymes including Oxidoreductases (E.C. 1, “Enzyme Nomenclature, (1992), Academic Press, Inc.), such as laccase and Superoxide dismutase (SOD); Transferases, (E.C. 2), such as transglutaminases (TGases); Hydrolases (E.C. 3), including proteases, especially subtilisins, and lipolytic enzymes; Isomerases (E.C. 5), such as Protein disulfide Isomerases (PDI).
- Hydrolases
- Proteolytic Enzymes
- Contemplated proteolytic enzymes include proteases selected from the group of Aspartic proteases, such pepsins, cysteine proteases, such as papain, serine proteases, such as subtilisins, or metallo proteases, such as NEUTRASE®.
- Specific examples of parent proteases include PD498 (WO 93/24623 and SEQ ID NO: 2), SAVINASE® (von der Osten et al., 1993, Journal of Biotechnology, 28, 55+, SEQ ID NO: 3), Proteinase K (Gunkel et al., 1989, Eur. J. Biochem, 179, 185-194), Proteinase R (Samal et al, 1990, Mol. Microbiol, 4, 1789-1792), Proteinase T (Samal et al., 1989, Gene, 85, p. 329-333), Subtilisin DY (Betzel et al. 1993, Arch. Biophys, 302(2), 499-502), Lion Y (JP 04197182-A), RENNILASE® (Available from Novo Nordisk A/S), JA16 (WO 92/17576), ALCALASE® (a natural subtilisin Carlberg variant) (von der Osten et al., 1993, Journal of Biotechnology, 28, 55+).
- Lipolytic Enzymes
- Contemplated lipolytic enzymes include Humicola lanuginosa lipases, e.g. the one described in EP 258 068 and EP 305 216 (See SEQ ID NO: 6 below), Humicola insolens, a Rhizomucor miehei lipase, e.g. as described in EP 238 023, Absidia sp. lipolytic enzymes (WO 96/13578), a Candida lipase, such as a C. antarctica lipase, e.g. the C. antarctica lipase A or B described in EP 214 761, a Pseudomonas lipase such as a P. alcaligenes and P. pseudoalcaligenes lipase, e.g. as described in EP 218 272, a P. cepacia lipase, e.g. as described in EP 331 376, a Pseudomonas sp. lipase as disclosed in WO 95/14783, a Bacillus lipase, e.g. a B. subtilis lipase (Dartois et al., 1993 Biochemica et Biophysica Acta 1131, 253-260), a B. stearothermophilus lipase (JP 64/744992) and a B. pumilus lipase (WO 91/16422). Other types of lipolytic enzymes include cutinases, e.g. derived from Pseudomonas mendocina as described in WO 88/09367, or a cutinase derived from Fusarium solani pisi (e.g. described in WO 90/09446).
- Oxidoreductases
- Laccases
- Contemplated laccases include Polyporus pinisitus laccase (WO 96/00290), Myceliophthora laccase (WO 95/33836), Scytalidium laccase (WO 95/338337), and Pyricularia oryzae laccase (Available from Sigma).
- Peroxidase
- Contemplated peroxidases include B. pumilus peroxidases (WO 91/05858), Myxococcaceae peroxidase (WO 95/11964), Coprinus cinereus (WO 95/10602) and Arthromyces ramosus peroxidase (Kunishima et al. 1994, J. Mol. Biol., 235, 331-344).
- Transferases
- Transglutaminases
- Suitable transferases include any transglutaminases disclosed in WO 96/06931 (Novo Nordisk A/S) and WO 96/22366 (Novo Nordisk A/S).
- Isomerases
- Protein Disulfide Isomerase
- Without being limited thereto suitable protein disulfide isomerases include PDIs described in WO 95/01425 (Novo Nordisk A/S).
- The Polymeric Molecule
- The polymeric molecules coupled to the polypeptide may be any suitable polymeric molecule, including natural and synthetic homo-polymers, such as polyols (i.e. poly-OH), polyamines (i.e. poly-NH2) and polycarboxyl acids (i.e. poly-COOH), and further hetero-polymers i.e. polymers comprising one or more different coupling groups e.g. a hydroxyl group and amine groups.
- Examples of suitable polymeric molecules include polymeric molecules selected from the group comprising polyalkylene oxides (PAO), such as polyalkylene glycols (PAG), including polyethylene glycols (PEG), methoxypolyethylene glycols (mPEG) and polypropylene glycols, PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG), branched PEGs, polyvinyl alcohol (PVA), polycarboxylates, polyvinylpyrolidones, poly-D,L-amino acids, polyethylene-co-maleic acid anhydride, polystyrene-co-malic acid anhydride, dextrans including carboxymethyl-dextrans, heparin, homologous albumin, celluloses, including methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose carboxyethylcellulose and hydroxypropylcellulose, hydrolysates of chitosan, starches such as hydroxyethyl-starches and hydroxy propyl-starches, glycogen, agaroses and derivatives thereof, guar gum, pullulan, inulin, xanthan gum, carrageenin, pectin, alginic acid hydrolysates and bio-polymers.
- Preferred polymeric molecules are non-toxic polymeric molecules such as (m)polyethylene glycol ((m)PEG) which further requires a relatively simple chemistry for its covalently coupling to attachment groups on the enzyme's surface.
- Generally seen polyalkylene oxides (PAO), such as polyethylene oxides, such as PEG and especially mPEG, are the preferred polymeric molecules, as these polymeric molecules, in comparison to polysaccharides such as dextran, pullulan and the like, have few reactive groups capable of cross-linking.
- Even though all of the above mentioned polymeric molecules may be used according to the invention the methoxypolyethylene glycols (mPEG) may advantageously be used. This arises from the fact that methoxyethylene glycols have only one reactive end capable of conjugating with the enzyme. Consequently, the risk of cross-linking is less pronounced. Further, it makes the product more homogeneous and the reaction of the polymeric molecules with the enzyme easier to control.
- Preparation of Enzyme Variants
- Enzyme variants to be conjugated may be constructed by any suitable method. A number of methods are well established in the art. For instance enzyme variants according to the invention may be generated using the same materials and methods described in e.g. WO 89/06279 (Novo Nordisk A/S), EP 130,756 (Genentech), EP 479,870 (Novo Nordisk A/S), EP 214,435 (Henkel), WO 87/04461 (Amgen), WO 87/05050 (Genex), EP application no. 87303761 (Genentech), EP 260,105 (Genencor), WO 88/06624 (Gist-Brocades NV), WO 88/07578 (Genentech), WO 88/08028 (Genex), WO 88/08033 (Amgen), WO 88/08164 (Genex), Thomas et al., 1985, Nature, 318, 375-376; Thomas et al., 1987, J. Mol. Biol., 193, 803-813; Russel and Fersht, 1987, Nature, 328, 496-500.
- Generation of Site Directed Mutations
- Prior to mutagenesis the gene encoding the polypeptide of interest must be cloned in a suitable vector. Methods for generating mutations in specific sites are described below.
- Once the polypeptide encoding gene has been cloned, and desirable sites for mutation identified and the residue to substitute for the original ones have been decided, these mutations can be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligo-nucleotide synthesis. In a preferred method, Site-directed mutagenesis is carried out by SOE-PCR mutagenesis technique described by Kammann et al., 1989, Nucleic Acids Research, 17(13), 5404, and by Sarkar G. and Sommer, S. S., 1990, Biotechniques, 8, 404-407.
- Activation of Polymers
- If the polymeric molecules to be conjugated with the polypeptide in question are not active it must be activated by the use of a suitable technique. It is also contemplated according to the invention to couple the polymeric molecules to the polypeptide through a linker. Suitable linkers are well-known to the skilled person.
- Methods and chemistry for activation of polymeric molecules as well as for conjugation of polypeptides are intensively described in the literature. Commonly used methods for activation of insoluble polymers include activation of functional groups with cyanogen bromide, periodate, glutaraldehyde, biepoxides, epichlorohydrin, divinylsulfone, carbodiimide, sulfonyl halides, trichlorotriazine etc. (see R. F. Taylor, (1991), “Protein Immobilisation. Fundamentals and Applications”, Marcel Dekker, N.Y.; S. S. Wong, 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press, Boca Raton; G. T. Hermanson et al., 1993, “Immobilized Affinity Ligand Techniques”, Academic Press, N.Y.). Some of the methods concern activation of insoluble polymers but are also applicable to activation of soluble polymers e.g. periodate, trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide etc. The functional groups being amino, hydroxyl, thiol, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry which normally consist of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.
- In the following a number of suitable polymer activation methods will be described shortly. However, it is to be understood that also other methods may be used.
- Coupling polymeric molecules to the free acid groups of polypeptides may be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., 1976, J. Amr. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press).
- Coupling polymeric molecules to hydroxy groups are generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.
- Coupling polymeric molecules to free sulfhydryl groups can be reached with special groups like maleimido or the ortho-pyridyl disulfide. Also vinylsulfone (U.S. Pat. No. 5,414,135, (1995), Snow et al.) has a preference for sulfhydryl groups but is not as selective as the other mentioned.
- Accessible arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.
- Techniques involving coupling electrophilically activated PEGs to the amino groups of lysines may also be useful. Many of the usual leaving groups for alcohols give rise to an amine linkage. For instance, alkyl sulfonates, such as tresylates (Nilsson et al., 1984, Methods in Enzymology, 104, Jacoby, W. B., Ed., Academic Press: Orlando, 56-66; Nilsson et al., 1987, Methods in Enzymology, 135; Mosbach, K., Ed.; Academic Press: Orlando, 65-79; Scouten et al., 1987, Methods in Enzymology, 135, Mosbach, K., Ed., Academic Press: Orlando, 1987, 79-84; Crossland et al., 1971, J. Amr. Chem. Soc., 93, 4217-4219), mesylates (Harris, (1985), supra; Harris et al., 1984, J. Polym. Sci. Polym. Chem. Ed., 22, 341-352), aryl sulfonates like tosylates, and para-nitrobenzene sulfonates can be used.
- Organic sulfonyl chlorides, e.g. tresyl chloride, effectively converts hydroxy groups in a number of polymers, e.g. PEG, into good leaving groups (sulfonates) that, when reacted with nucleophiles like amino groups in polypeptides allow stable linkages to be formed between polymer and polypeptide. In addition to high conjugation yields, the reaction conditions are in general mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.
- Tosylate is more reactive than the mesylate but also more unstable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, 1995, Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the above mentioned groups.
- Converting PEG into a chloroformate with phosgene gives rise to carbamate linkages to lysines. This theme can be played in many variants substituting the chlorine with N-hydroxy succinimide (U.S. Pat. No. 5,122,614, (1992); Zalipsky et al., 1992, Biotechnol. Appl. Biochem., 15, 100-114; Monfardini et al., 1995, Bioconjugate Chem., 6, 62-69, with imidazole (Allen et al., 1991, Carbohydr. Res., 213, 309-319), with para-nitrophenol, DMAP (EP 632 082, 1993, Looze, Y.) etc. The derivatives are usually made by reacting the chloroformate with the desired leaving group. All these groups give rise to carbamate linkages to the peptide.
- Furthermore, isocyanates and isothiocyanates may be employed yielding ureas and thioureas, respectively.
- Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imide thrones (U.S. Pat. No. 5,349,001 (1994), Greenwald et al.). The reactivity of these compounds is very high but may make the hydrolysis to fast.
- PEG succinate made from reaction with succinic anhydride can also be used. The hereby comprised ester group make the conjugate much more susceptible to hydrolysis (U.S. Pat. No. 5,122,614, 1992, Zalipsky). This group may be activated with N-hydroxy succinimide.
- Furthermore, a special linker can be introduced. The oldest being cyanuric chloride (Abuchowski et al., 1977, J. Biol. Chem., 252, 3578-3581; U.S. Pat. No. 4,179,337, 1979, Davis et al.; Shafer et al., 1986, J. Polym. Sci. Polym. Chem. Ed., 24, 375-378.
- Coupling of PEG to an aromatic amine followed by diazotization yields a very reactive diazonium salt which in situ can be reacted with a peptide. An amide linkage may also be obtained by reacting an azlactone derivative of PEG (U.S. Pat. No. 5,321,095, 1994, Greenwald, R. B.) thus introducing an additional amide linkage.
- As some peptides do not comprise many lysines, it may be advantageous to attach more than one PEG to the same lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.
- PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.
- The coupling technique used in the examples is the N-succinimidyl carbonate conjugation technique described in WO 90/13590 (Enzon).
- Method for Preparing Improved Conjugates
- It is also an object of the invention to provide a method for preparing improved polypeptide-polymer conjugates comprising the steps of:
-
- a) identifying amino acid residues located on the surface of the 3D structure of the parent polypeptide in question,
- b) selecting target amino acid residues on the surface of said 3D structure of said parent polypeptide to be mutated,
- c) i) substituting or inserting one or more amino acid residues selected in step b) with an amino acid residue having a suitable attachment group, and/or ii) substituting or deleting one or more amino acid residues selected in step b) at or close to the functional site(s),
- d) coupling polymeric molecules to the mutated polypeptide.
Step a) Identifying Amino Acid Residues Located on the Surface of the Parent Polypeptide
3-Dimensional Structure (3D-Structure)
- To perform the method of the invention a 3-dimensional structure of the parent polypeptide in question is required. This structure may for example be an X-ray structure, an NMR structure or a model-built structure. The Brookhaven Databank is a source of X-ray- and NMR-structures.
- A model-built structure may be produced by the person skilled in the art if one or more 3D-structure(s) exist(s) of homologous polypeptide(s) sharing at least 30% sequence identity with the polypeptide in question. Several software packages exist which may be employed to construct a model structure. One example is the Homology 95.0 package from Biosym.
- Typical actions required for the construction of a model structure are: alignment of homologous sequences for which 3D-structures exist, definition of Structurally Conserved Regions (SCRs), assignment of coordinates to SCRs, search for structural fragments/loops in structure databases to replace Variable Regions, assignment of coordinates to these regions, and structural refinement by energy minimization. Regions containing large inserts (>3 residues) relative to the known 3D-structures are known to be quite difficult to model, and structural predictions must be considered with care.
- Having obtained the 3D-structure of the polypeptide in question, or a model of the structure based on homology to known structures, this structure serves as an essential prerequisite for the fulfillment of the method described below.
- Step b) Selection of Target Amino Acid Residues for Mutation
- Target amino acid residues to be mutated are according to the invention selected in order to obtain additional or fewer attachment groups, such as free amino groups (—NH2) or free carboxylic acid groups (—COOH), on the surface of the polypeptide and/or to obtain a more complete and broadly spread shielding of the epitope(s) on the surface of the polypeptide.
- Conservative Substitution
- It is preferred to make conservative substitutions in the polypeptide, as conservative substitutions secure that the impact of the mutation on the polypeptide structure is limited.
- In the case of providing additional amino groups this may be done by substitution of arginine to lysine, which are both positively charged, but only the lysine having a free amino group suitable as an attachment group.
- In the case of providing additional carboxylic acid groups the conservative substitution may for instance be an aspargine to aspartic acid or glutamine to glutamic acid substitution. These residues resemble each other in size and shape, except from the carboxylic groups being present on the acidic residues.
- In the case of providing fewer attachment groups, e.g. at or close to the active site, a lysine may be substituted with an arginine, and so on.
- Which amino acids to substitute depends in principle on the coupling chemistry to be applied.
- Non-Conservative Substitution
- The mutation may also be on target amino acid residues which are less/non-conservative. Such mutation is suitable for obtaining a more complete and broadly spread shielding of the polypeptide surface than can be obtained by the conservative substitutions.
- The method of the invention is first described in general terms, and subsequently using specific examples.
- Note the use of the following terms:
- Attachment_residue: residue(s) which can bind polymeric molecules, e.g. lysines (amino group) or aspartic/glutamic acids (carboxylic groups). N- or C-terminal amino/carboxylic groups are to be included where relevant.
- Mutation_residue: residue(s) which is to be mutated, e.g. arginine or aspargine/glutamine.
- Essential_catalytic_residues: residues which are known to be essential for catalytic function, e.g. the catalytic triad in serine proteases.
- Solvent_exposed_residues: These are defined as residues which are at least 5% exposed according to the BIOSYM/INSIGHT algorithm found in the module Homology 95.0. The sequence of commands is as follows: Homology=>ProStat=>Access_Surf=>Solv_Radius 1.4; Heavy atoms only; Radii source VdW; Output: Fractional Area; Polarity source: Default. The file filename_area.tab is produced. Note: For this program to function properly all water molecules must first be removed from the structure.
- It looks for example like:
# PD498FINALMODEL # residue area TRP_1 136.275711 SER_2 88.188095 PRO_3 15.458788 ASN_4 95.322319 ASP_5 4.903404 PRO_6 68.096909 TYR_7 93.333252 TYR_8 31.791576 SER_9 95.983139 . . . continued - 1. Identification of residues which are more than 10 Angstroms away from the closest attachment_residue, and which are located at least 8 Angstroms away from essential_catalytic_residues. This residue subset is called REST, and is the primary region for conservative mutation_residue to attachment_residue substitutions.
- 2. Identification of residues which are located in a 0-5 Angstroms shell around subset REST, but at least 8 Angstroms away from essential_catalytic_residues. This residue subset is called SUB5B. This is a secondary region for conservative mutation_residue to attachment_residue substitutions, as a ligand bound to an attachment_residue in SUB5B will extend into the REST region and potentially prevent epitope recognition.
- 3. Identification of solvent_exposed mutation_residues in REST and SUB5B as potential mutation sites for introduction of attachment_residues.
- 4. Use BIOSYM/INSIGHT's Biopolymer module and replace residues identified under action 3.
- 5. Repeat 1-2 above producing the subset RESTx. This subset includes residues which are more than 10 Angstroms away from the nearest attachment_residue, and which are located at least 8 Angstroms away from essential catalytic residues.
- 6. Identify solvent_exposed residues in RESTx. These are potential sites for less/non-conservative mutations to introduce atttachment_residues.
Step c) Substituting, Inserting or Deleting Amino Acid Residues - The mutation(s) performed in step c) may be performed by standard techniques well known in the art, such as site-directed mutagenesis (see, e.g., Sambrook et al., 1989, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, N.Y.
- A general description of nucleotide substitution can be found in e.g. Ford et al., 1991, Protein Expression and Purification, 2, 95-107.
- Step d) Coupling Polymeric Molecules to the Modified Parent Enzyme
- Polypeptide-polymer conjugates of the invention may be prepared by any coupling method known in the art including the above mentioned techniques.
- Coupling of Polymeric Molecules to the Polypeptide in Question
- If the polymeric molecules to be conjugated with the polypeptide are not active it must be activated by the use of a suitable method. The polymeric molecules may be coupled to the polypeptide through a linker. Suitable linkers are well known to the skilled person.
- Methods and chemistry for activation of polymeric molecules as well as for conjugation of polypeptides are intensively described in the literature. Commonly used methods for activation of insoluble polymers include activation of functional groups with cyanogen bromide, periodate, glutaraldehyde, biepoxides, epichlorohydrin, divinylsulfone, carbodiimide, sulfonyl halides, trichlorotriazine etc. (see R. F. Taylor, 1991, “Protein Immobilisation. Fundamentals and Applications”, Marcel Dekker, N.Y.; S. S. Wong, 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press, Boca Raton; G. T. Hermanson et al., 1993, “Immobilized Affinity Ligand Techniques”, Academic Press, N.Y.). Some of the methods concern activation of insoluble polymers but are also applicable to activation of soluble polymers e.g. periodate, trichlorotriazine, sulfonylhalides, divinylsulfone, carbodiimide etc. The functional groups being amino, hydroxyl, thiol, carboxyl, aldehyde or sulfydryl on the polymer and the chosen attachment group on the protein must be considered in choosing the activation and conjugation chemistry which normally consists of i) activation of polymer, ii) conjugation, and iii) blocking of residual active groups.
- In the following a number of suitable polymer activation methods will be described shortly. However, it is to be understood that also other methods may be used.
- Coupling polymeric molecules to the free acid groups of enzymes can be performed with the aid of diimide and for example amino-PEG or hydrazino-PEG (Pollak et al., 1976, J. Amr. Chem. Soc., 98, 289-291) or diazoacetate/amide (Wong et al., 1992, “Chemistry of Protein Conjugation and Crosslinking”, CRC Press).
- Coupling polymeric molecules to hydroxy groups are generally very difficult as it must be performed in water. Usually hydrolysis predominates over reaction with hydroxyl groups.
- Coupling polymeric molecules to free sulfhydryl groups can be reached wih special groups like maleimido or the ortho-pyridyl disulfide. Also vinylsulfone (U.S. Pat. No. 5,414,135 (1995), Snow et al.) has a preference for sulfhydryl groups but is not as selective as the other mentioned.
- Accessible arginine residues in the polypeptide chain may be targeted by groups comprising two vicinal carbonyl groups.
- Techniques involving coupling electrophilically activated PEGs to the amino groups of lysines are also useful. Many of the usual leaving groups for alcohols give rise to an amine linkage. For instance, alkyl sulfonates, such as tresylates (Nilsson et al., 1984, Methods in Enzymology, 104, Jacoby, W. B., Ed., Academic Press: Orlando, 56-66; Nilsson et al., (1987), Methods in Enzymology, 135; Mosbach, K., Ed.; Academic Press: Orlando, 65-79; Scouten et al., 1987, Methods in Enzymology, 135, Mosbach, K., Ed., Academic Press: Orlando, 1987; 79-84; Crossland et al., 1971, J. Amr. Chem. Soc., 1971, 93, 4217-4219), mesylates (Harris, 1985, supra; Harris et al., 1984, J. Polym. Sci. Polym. Chem. Ed., 22, 341-352), aryl sulfonates like tosylates, and para-nitrobenzene sulfonates can be used.
- Organic sulfonyl chlorides, e.g. tresyl chloride, effectively converts hydroxy groups in a number of polymers, e.g. PEG, into good leaving groups (sulfonates) that, when reacted with nucleophiles like amino groups in polypeptides allow stable linkages to be formed between polymer and polypeptide. In addition to high conjugation yields, the reaction conditions are in general mild (neutral or slightly alkaline pH, to avoid denaturation and little or no disruption of activity), and satisfy the non-destructive requirements to the polypeptide.
- Tosylate is more reactive than the mesylate but also more unstable decomposing into PEG, dioxane, and sulfonic acid (Zalipsky, 1995, Bioconjugate Chem., 6, 150-165). Epoxides may also been used for creating amine bonds but are much less reactive than the above mentioned groups.
- Converting PEG into a chloroformate with phosgene gives rise to carbamate linkages to lysines. This theme can be played in many variants substituting the chlorine with N-hydroxy succinimide (U.S. Pat. No. 5,122,614 (1992); Zalipsky et al., 1992, Biotechnol. Appl. Biochem., 15, 100-114; Monfardini et al., 1995, Bioconjugate Chem., 6, 62-69, with imidazole (Allen et al., 1991, Carbohydr. Res., 213, 309-319), with para-nitrophenol, DMAP (EP 632 082, 1993, Looze, Y.) etc. The derivatives are usually made by reacting the chloroformate with the desired leaving group. All these groups give rise to carbamate linkages to the peptide.
- Furthermore, isocyanates and isothiocyanates may be employed yielding ureas and thioureas, respectively.
- Amides may be obtained from PEG acids using the same leaving groups as mentioned above and cyclic imide thrones (U.S. Pat. No. 5,349,001 (1994), Greenwald et al.). The reactivity of these compounds is very high but may make the hydrolysis to fast.
- PEG succinate made from reaction with succinic anhydride can also be used. The hereby comprised ester group makes the conjugate much more susceptible to hydrolysis (U.S. Pat. No. 5,122,614, (1992), Zalipsky). This group may be activated with N-hydroxy succinimide.
- Furthermore, a special linker can be introduced. The oldest being cyanuric chloride (Abuchowski et al., 1977, J. Biol. Chem., 252, 3578-3581; U.S. Pat. No. 4,179,337, 1979, Davis et al.; Shafer et al., 1986, J. Polym. Sci. Polym. Chem. Ed., 24, 375-378).
- Coupling of PEG to an aromatic amine followed by diazotization yields a very reactive diazonium salt which in situ can be reacted with a peptide. An amide linkage may also be obtained by reacting an azlactone derivative of PEG (U.S. Pat. No. 5,321,095, (1994), Greenwald, R. B.) thus introducing an additional amide linkage.
- As some peptides do not comprise many lysines, it may be advantageous to attach more than one PEG to the same lysine. This can be done e.g. by the use of 1,3-diamino-2-propanol.
- PEGs may also be attached to the amino-groups of the enzyme with carbamate linkages (WO 95/11924, Greenwald et al.). Lysine residues may also be used as the backbone.
- Addition of Attachment Groups
- Specific Examples of PD498 Variant-SPEG Conjugates
- A specific example of a protease is the parent PD498 (WO 93/24623 and SEQ ID NO: 2). The parent PD498 has a molecular weight of 29 kDa.
- Lysine and arginine residues are located as follows:
Distance from the active site Arginine Lysine 0-5 Angstroms 1 5-10 Angstroms 10-15 Angstroms 5 6 15-20 Angstroms 2 3 20-25 Angstroms 1 3 Total 9 12 - The inventors examined which parent PD498 sites on the surface may be suitable for introducing additional attachment groups.
- A. Suitable conservative arginine to lysine substitutions in parent PD498 may be any of R51K, R62K, R121K, R169K, R250K, R28K, R190K.
- B. Suitable non-conservative substitutions in parent PD498 may be any of P6K, Y7K, S9K, A10K, Y11K, Q12K, D43K, Y44K, N45K, N65K, G87K, 188K, N209K, A211K, N216K, N217K, G218K, Y219K, S220K, Y221K, G262K.
- As there are no lysine residues at or close to the active site there is no need for removing any attachment group.
- PD498 variant-SPEG conjugates may be prepared using any of the above mentioned PD498 variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme. A specific example is described below.
- Removal of Attachment Groups
- Specific Examples of BPN′ Variant-SPEG Conjugates
- A specific example of a protease having an attachment group in the active site is BPN′ which has 11 attachment groups (plus an N-terminal amino group): BPN′ has a molecular weight of 28 kDa.
- Lysine and arginine residues are located as follows:
Distance from the active site Arginine Lysine 0-5 Angstroms 1 5-10 Angstroms 10-15 Angstroms 1 4 15-20 Angstroms 1 4 20-25 Angstroms 2 Total 2 11 - The lysine residue located within 0-5 Angstroms of the active site can according to the invention advantageously be removed. Specifically this may be done by a K94R substitution.
- BPN′ variant-SPEG conjugates may be prepared using the above mentioned BPN′ variant as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme.
- Addition and Removal of Attachment Groups
- Specific Example of SAVINASE®-SPEG Conjugates
- As described in Example 2 parent SAVINASE® (von der Osten et al., 1993, Journal of Biotechnology, 28, 55+ and SEQ ID NO: 3) may according to the invention have added a number of amino attachment groups to the surface and removed an amino attachment group close to the active site.
- Any of the following substitutions in SAVINASE® are sites for mutagenesis: R10K, R19K, R45K, R145K, R170K, R186K and R247K.
- The substitution K94R is identified as a mutation suitable for preventing attachment of polymers close to active site.
- SAVINASE® variant-SPEG conjugates may be prepared using any of the above mentioned SAVINASE® variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme.
- Addition of Attachment Groups
- Specific Examples of Humicola lanuginosa Lipase Variants-SPEG Conjugates
- Specific examples of lipase variants with reduced immunogenicity using the parent Huminocal lanuginosa DSM 4109 lipase (see SEQ ID NO: 6) as the backbone for substitutions are listed below.
- The parent unmodified Humicola lanuginosa lipase has 8 attachment groups including the N-terminal NH2 group and a molecular weight of about 29 kDa.
- Suitable conservative arginine to lysine substitutions in the parent lipase may be any of R133K, R139K, R160K, R179K, R209K, R118K and R125K.
- Suitable non-conservative substitutions in the parent lipase may be any of: A18K, G31K, T32K, N33K, G38K, A40K, D48K, T50K, E56K, D57K, S58K, G59K, V60K, G61K, D62K, T64K, L78K, N88K, G91K, N92K, L93K, S105K, G106K, V120K, P136K, G225K, L227K, V228K, P229K, P250K, F262K.
- Further suitable non-conservative substitution in the Humicola lanuginosa lipase include: E87K or D254K.
- Lipase variant-SPEG conjugates may be prepared using any of the above mentioned lipase variants as the starting material by any conjugation technique known in the art for coupling polymeric molecules to amino groups on the enzyme. A specific example is described below.
- In Example 12 below it is shown that a conjugate of the Humicola lanuginosa lipase variant with E87K+ D254K substitutions coupled to S-PEG 15,000 has reduced immunogenic response in Balb/C mice in comparison to the corresponding parent unmodified enzyme.
- Immunogenicity and Allergenicity
- “Immunogenicity” is a broader term than “antigenicity” and “allergenicity”, and expresses the immune system's response to the presence of foreign substances. Said foreign substances are called immunogens, antigens and allergens depending of the type of immune response they elicit.
- An “immunogen” may be defined as a substance which, when introduced into circulatory system of animals and humans, is capable of stimulating an immunologic response resulting in formation of immunoglobulin.
- The term “antigen” refers to substances which by themselves are capable of generating antibodies when recognized as a non-self molecule.
- Further, an “allergen” may be defined as an antigen which may give rise to allergic sensitization or an allergic response by IgE antibodies (in humans, and molecules with comparable effects in animals).
- Assessment of Immunogenicity
- Assessment of the immunogenicity may be made by injecting animal subcutaneously to enter the immunogen into the circulation system and comparing the response with the response of the corresponding parent polypeptide.
- The “circulatory system” of the body of humans and animals means, in the context of the present invention, the system which mainly consists of the heart and blood vessels. The heart delivers the necessary energy for maintaining blood circulation in the vascular system. The circulation system functions as the organism's transportation system, when the blood transports O2, nutritious matter, hormones, and other substances of importance for the cell regulation into the tissue. Further the blood removes CO2 from the tissue to the lungs and residual substances to e.g. the kidneys. Furthermore, the blood is of importance for the temperature regulation and the defense mechanisms of the body, which include the immune system.
- A number of in vitro animal models exist for assessment of the immunogenic potential of polypeptides. Some of these models give a suitable basis for hazard assessment in man. Suitable models include a mice model.
- This model seeks to identify the immunogenic response in the form of the IgG response in Balb/C mice being injected subcutaneously with modified and unmodified polypeptides.
- Also other animal models can be used for assessment of the immunogenic potential.
- A polypeptide having “reduced immunogenicity” according to the invention indicates that the amount of produced antibodies, e.g. immunoglobulin in humans, and molecules with comparable effects in specific animals, which can lead to an immune response, is significantly decreased, when introduced into the circulatory system, in comparison to the corresponding parent polypeptide.
- For Balb/C mice the IgG response gives a good indication of the immunigenic potential of polypeptides.
- Assessment of Allergenicity
- Assessment of allergenicity may be made by inhalation tests, comparing the effect of intratracheally (into the trachea) administrated parent enzymes with the corresponding modified enzymes according to the invention.
- A number of in vivo animal models exist for assessment of the allegenicity of enzymes. Some of these models give a suitable basis for hazard assessment in man. Suitable models include a guinea pig model and a mouse model. These models seek to identify respiratory allergens as a function of elicitation reactions induced in previously sensitized animals. According to these models the alleged allergens are introduced intratracheally into the animals.
- A suitable strain of guinea pigs, the Dunkin Hartley strain, does not as humans, produce IgE antibodies in connection with the allergic response. However, they produce another type of antibody the IgG1A and IgG1B (see e.g. Prentø, ATLA, 19, 8-14, 1991), which are responsible for their allergenic response to inhaled polypeptides including enzymes. Therefore, when using the Dunkin Hartley animal model, the relative amount of IgG1A and IgG1B is a measure of the allergenicity level.
- The Balb/C mice strain is suitable for intratracheal exposure. Balb/C mice produce IgE as the allergic response.
- More details on assessing respiratory allergens in guinea pigs and mice are described by Kimber et al., 1996, Fundamental and Applied Toxicology, 33, 1-10.
- Other animals such as rats, rabbits etc. may also be used for comparable studies.
- Composition
- The invention relates to a composition comprising a polypeptide-polymer conjugate of the invention.
- The composition may be a pharmaceutical or industrial composition.
- The composition may further comprise other polypeptides, proteins or enzymes and/or ingredients normally used in e.g. detergents, including soap bars, household articles, agrochemicals, personal care products, including skin care compositions, cleaning compositions for e.g. contact lenses, oral and dermal pharmaceuticals, composition use for treating textiles, compositions used for manufacturing food, e.g. baking, and feed etc.
- Use of the Polypeptide-Polymer Conjugate
- The invention also relates to the use of the method of the invention for reducing the immune response of polypeptides.
- It is also an object of the invention to use the polypeptide-polymer conjugate of the invention to reduce the allergenicity of industrial products, such as detergents, such as laundry, dish wash and hard surface cleaning detergents, and food or feed products.
- Material and Methods
- Materials
- Enzymes:
-
- PD498: Protease of subtilisin type shown in WO 93/24623. The sequence of PD498 is shown in SEQ ID NOS: 1 and 2.
- SAVINASE® (Available from Novo Nordisk A/S)
- Humicola lanuginosa lipase: Available from Novo Nordisk as LIPOLASE® and is further described in EP 305,216. The DNA and protein sequence is shown in SEQ ID NOS: 5 and 6, respectively.
Strains: - B. subtilis 309 and 147 are variants of Bacillus lentus, deposited with the NCIB and accorded the accession numbers NCIB 10309 and 10147, and described in U.S. Pat. No. 3,723,250 incorporated by reference herein.
- E. coli MC 1000 (M. J. Casadaban and S. N. Cohen (1980); J. Mol. Biol. 138 179-207), was made r−,m+ by conventional methods and is also described in US Patent Application Serial No. 039,298.
- Vectors:
- pPD498: E. coli-B. subtilis shuttle vector (described in U.S. Pat. No. 5,621,089 under section 6.2.1.6) containing the wild-type gene encoding for PD498 protease (SEQ ID NO: 2). The same vector is used for mutagenesis in E. coli as well as for expression in B. subtilis.
- General Molecular Biology Methods:
- Unless otherwise mentioned the DNA manipulations and transformations were performed using standard methods of molecular biology (Sambrook et al., 1989, Molecular cloning: A laboratory Manual, Cold Spring Harbor lab., Cold Spring Harbor, N.Y.; Ausubel, F. M. et al. (eds.) “Current protocols in Molecular Biology”. John Wiley and Sons, 1995; Harwood, C. R., and Cutting, S. M. (eds.) “Molecular Biological Methods for Bacillus”. John Wiley and Sons, 1990).
- Enzymes for DNA manipulations were used according to the specifications of the suppliers.
- Materials, Chemicals and Solutions:
- Horse Radish Peroxidase labeled anti-rat-Ig (Dako, DK, P162, # 031; dilution 1:1000).
- Mouse anti-rat IgE (Serotec MCA193; dilution 1:200).
- Rat anti-mouse IgE (Serotec MCA419; dilution 1:100).
- Biotin-labeled mouse anti-rat IgG1 monoclonal antibody (Zymed 03-9140; dilution 1:1000)
- Biotin-labeled rat anti-mouse IgG1 monoclonal antibody (Serotec MCA336B; dilution 1:1000)
- Streptavidin-horse radish peroxidase (Kirkegård & Perry 14-30-00; dilution 1:1000).
- CovaLink NH2 plates (Nunc, Cat# 459439)
- Cyanuric chloride (Aldrich)
- Acetone (Merck)
- Rat anti-Mouse IgG1, biotin (SeroTec, Cat# MCA336B)
- Streptavidin, peroxidase (KPL)
- Ortho-Phenylene-diamine (OPD) (Kem-en-Tec)
- H2O2, 30% (Merck)
- Tween 20 (Merck)
- Skim Milk powder (Difco)
- H2SO4 (Merck).
- Buffers and Solutions:
Carbonate buffer (0.1 M, pH 10 (1 liter)) Na2CO3 10.60 g PBS (pH 7.2 (1 liter)) NaCl 8.00 g KCl 0.20 g K2HPO4 1.04 g KH2PO4 0.32 g Washing buffer PBS, 0.05% (v/v) Tween 20 Blocking buffer PBS, 2% (wt/v) Skim Milk powder Dilution buffer PBS, 0.05% (v/v) Tween 20, 0.5% (wt/v) Skim Milk powder Citrate buffer (0.1 M, pH 5.0-5.2 (1 liter)) NaCitrate 20.60 g Citric acid 6.30 g - Activation of CovaLink Plates:
- Make a fresh stock solution of 10 mg cyanuric chloride per ml acetone.
- Just before use, dilute the cyanuric chloride stock solution into PBS, while stirring, to a final concentration of 1 mg/ml.
- Add 100 ml of the dilution to each well of the CovaLink NH2 plates, and incubate for 5 minutes at room temperature.
- Wash 3 times with PBS.
- Dry the freshly prepared activated plates at 50° C. for 30 minutes.
- Immediately seal each plate with sealing tape.
- Preactivated plates can be stored at room temperature for 3 weeks when kept in a plastic bag.
- Sodium Borate, borax (Sigma)
- 3,3-Dimethyl glutaric acid (Sigma)
- CaCl2 (Sigma)
- Tresyl chloride (2,2,2-triflouroethansulfonyl chloride) (Fluka)
- 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Fluka)
- N-Hydroxy succinimide (Fluka art. 56480))
- Phosgene (Fluka art. 79380)
- Lactose (Merck 7656)
- PMSF (phenyl methyl sulfonyl flouride) from Sigma
- Succinyl-Alanine-Alanine-Proline-Phenylalanine-para-nitroanilide (Suc-AAPF-pNP) Sigma no. S-7388, Mw 624.6 g/mole.
Coloring Substrate: - OPD: o-phenylene-diamine, (Kementec cat no. 4260).
Test Animals: - Dunkin Hartley guinea pigs (from Charles River, DE)
- Female Balb/C mice (about 20 grams) purchased from Bomholdtgaard, Ry, Denmark.
Equipment: - XCEL II (Novex)
- ELISA reader (UVmax, Molecular Devices)
- HPLC (Waters)
- PFLC (Pharmacia)
- Superdex-75 column, Mono-Q, Mono S from Pharmacia, SW.
- SLT: Fotometer from SLT LabInstruments
- Size-exclusion chromatograph (Spherogel TSK-G2000 SW).
- Size-exclusion chromatograph (Superdex 200, Pharmacia, SW)
- Amicon Cell.
Enzymes for DNA Manipulations - Unless otherwise mentioned all enzymes for DNA manipulations, such as e.g. restriction endonucleases, ligases etc., are obtained from New England Biolabs, Inc.
- Methods
- ELISA Procedure for Determination of IgG1 Positive Guinea Pigs
- ELISA microtiter plates are coated with rabbit anti-PD498 1:8000 in carbonate buffer and incubated overnight at 4° C. The next day the plates are blocked with 2% BSA for 1 hour and washed 3 times with PBS Tween 20.
- 1 microgram/ml PD498 is added to the plates and incubated for 1 hour, then washed 3 times with PBS Tween 20.
- All guinea pig sera samples and controls are applied to the ELISA plates with 2 microliters sera and 98 microliters PBS, incubated for 1 hour and washed 3 times with PBS Tween 20.
- Then goat anti-guinea pig IgG1 (1:4000 in PBS buffer (Nordic Immunology, 44-682)) is applied to the plates, incubated for 1 hour and washed with PBS tween 20.
- Alkaline phosphatase marked rabbit anti-goat 1:8000 (Sigma A4187) is applied and incubated for 1 hour, washed 2 times in PBS Tween20 and 1 time with diethanol amine buffer.
- The marked alkaline phosphatase is developed using p-nitrophenyl phosphate for 30 minutes at 37° C. or until appropriate color has developed.
- The reaction is stopped using stop medium (K2HPO4/HaH3 buffer comprising EDTA (pH 10)) and read at OD 405/650 using an ELISA reader.
- Double blinds are included on all ELISA plates.
- Positive and negative sera values are calculated as the average blind values added 2 times the standard deviation. This gives an accuracy of 95%.
- Determination of the Molecule Weight
- Electrophoretic separation of proteins was performed by standard methods using 4-20% gradient SDS poly acrylamide gels (Novex). Proteins were detected by silver staining. The molecule weight was measured relative to the mobility of Mark-12@ wide range molecule weight standards from Novex.
- Protease Activity
- Analysis with Suc-Ala-Ala-Pro-Phe-pNa:
- Proteases cleave the bond between the peptide and p-nitroaniline to give a visible yellow color absorbing at 405 nm.
- Buffer: e.g. Britton and Robinson buffer pH 8.3.
- Substrate: 100 mg suc-AAPF-pNa is dissolved into 1 ml dimethyl sulfoxide (DMSO). 100 microliters of this is diluted into 10 ml with Britton and Robinson buffer.
- The substrate and protease solution is mixed and the absorbance is monitored at 405 nm as a function of time and ABS405 nm/min. The temperature should be controlled (20-50° C. depending on protease). This is a measure of the protease activity in the sample.
- Proteolytic Activity
- In the context of this invention proteolytic activity is expressed in Kilo NOVO Protease Units (KNPU). The activity is determined relatively to an enzyme standard (SAVINASE®), and the determination is based on the digestion of a dimethyl casein (DMC) solution by the proteolytic enzyme at standard conditions, i.e. 50° C., pH 8.3, 9 min. reaction time, 3 min. measuring time. A folder AF 220/1 is available upon request to Novo Nordisk A/S, Denmark, which folder is hereby included by reference.
- A Glycine Unit (GU) is defined as the proteolytic enzyme activity which, under standard conditions, during a 15-minute incubation at 40° C., with N-acetyl casein as substrate, produces an amount of NH2-group equivalent to 1 mmole of glycine.
- Enzyme activity can also be measured using the PNA assay, according to reaction with the soluble substrate succinyl-alanine-alanine-proline-phenyl-alanine-para-nitrophenol, which is described in Rothgeb, T. M., Goodlander, B. D., Garrison, P. H., and Smith, L. A., 1988 Journal of American Oil Chemists Society.
- Fermentation of PD498 Variants
- Fermentation of PD498 variants in B. subtilis are performed at 30° C. on a rotary shaking table (300 r.p.m.) in 500 ml baffled Erlenmeyer flasks containing 100 ml BPX medium for 5 days. In order to make an e.g. 2 liter broth 20 Erlenmeyer flasks are fermented simultaneously.
- Media:
BPX: Composition (per liter) Potato starch 100 g Ground barley 50 g Soybean flour 20 g Na2HPO4 × 12 H2O 9 g Pluronic 0.1 g Sodium caseinate 10 g - The starch in the medium is liquefied with alpha-amylase and the medium is sterilized by heating at 120° C. for 45 minutes. After sterilization the pH of the medium is adjusted to 9 by addition of NaHCO3 to 0.1 M.
- Purification of PD498 Variants
- Approximately 1.6 liters of PD498 variant fermentation broth are centrifuged at 5000 rpm for 35 minutes in 1 liter beakers. The supernatants are adjusted to pH 7.0 using 10% acetic acid and filtered on Seitz Supra S100 filter plates.
- The filtrates are concentrated to approximately 400 ml using an Amicon CH2A UF unit equipped with an Amicon S1Y10 UF cartridge. The UF concentrate is centrifuged and filtered prior to absorption at room temperature on a Bacitracin affinity column at pH 7. The PD498 variant is eluted from the Bacitracin column at room temperature using 25% 2-propanol and 1 M sodium chloride in a buffer solution with 0.01 dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 7.
- The fractions with protease activity from the Bacitracin purification step are combined and applied to a 750 ml Sephadex G25 column (5 cm diameter) equilibrated with a buffer containing 0.01 dimethylglutaric acid, 0.1 M boric acid and 0.002 M calcium chloride adjusted to pH 6.0.
- Fractions with proteolytic activity from the Sephadex G25 column are combined and applied to a 150 ml CM Sepharose CL 6B cation exchange column (5 cm diameter) equilibrated with a buffer containing 0.01 M dimethylglutaric acid, 0.1 M boric acid, and 0.002 M calcium chloride adjusted to pH 6.0.
- The protease is eluted using a linear gradient of 0-0.5 M sodium chloride in 1 liter of the same buffer.
- Protease containing fractions from the CM Sepharose column are combined and filtered through a 2 micron filter.
- Balb/C Mice IgG ELISA Procedure:
- The antigen is diluted to 1 mg/ml in carbonate buffer.
- 100 ml is added to each well.
- The plates are coated overnight at 4° C.
- Unspecific adsorption is blocked by incubating each well for 1 hour at room temperature with 200 ml blocking buffer.
- The plates are washed 3× with 300 ml washing buffer.
- Unknown mouse sera are diluted in dilution buffer, typically 10×, 20× and 40×, or higher.
- 100 ml is added to each well.
- Incubation is for 1 hour at room temperature.
- Unbound material is removed by washing 3× with washing buffer.
- The anti-Mouse IgG1 antibody is diluted 2000× in dilution buffer.
- 100 ml is added to each well.
- Incubation is for 1 hour at room temperature.
- Unbound material is removed by washing 3× with washing buffer.
- Streptavidine is diluted 1000× in dilution buffer.
- 100 ml is added to each well.
- Incubation is for 1 hour at room temperature.
- Unbound material is removed by washing 3× with 300 ml washing buffer.
- OPD (0.6 mg/ml) and H2O2 (0.4 ml/ml) is dissolved in citrate buffer.
- 100 ml is added to each well.
- Incubation is for 10 minutes at room temperature.
- The reaction is stopped by adding 100 ml H2SO4.
- The plates are read at 492 nm with 620 nm as reference.
- Immunization of Mice
- Balb/C mice (20 grams) are immunized 10 times (intervals of 14 days) by subcutaneous injection of the modified or unmodified polypeptide in question, respectively by standard procedures known in art.
- Suitable Substitutions in PD498 for Addition of Amino Attachment Groups (—NH2)
- The 3D structure of parent PD498 was modeled as described above based on 59% sequence identity with Thermitase® (2tec.pdb).
- The sequence of PD498 is SEQ ID NO: 2. PD498 residue numbering is used, 1-280.
- The commands performed in Insight (BIOSYM) are shown in the command files makeKzone.bcl and makeKzone2.bcl below:
- Conservative Substitutions:
-
- makeKzone.bcl
- 1 Delete Subset *
- 2 Color Molecule Atoms * Specified Specification 55,0,255
- 3 Zone Subset LYS :lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - 4 Zone Subset NTERM :1:N Static monomer/
residue 10 Color_Subset 255,255,0 - 5 #NOTE: editnextline ACTSITE residues according to the protein
- 6 Zone Subset ACTSITE :39,72,226 Static monomer/residue 8 Color_Subset 255,255,0
- 7 Combine Subset ALLZONE Union LYS NTERM
- 8 Combine Subset ALLZONE Union ALLZONE ACTSITE
- 9 #NOTE: editnextline object name according to the protein
- 10 Combine Subset REST Difference PD498FINALMODEL ALLZONE
- 11 List Subset REST Atom Output_File restatom.list
- 12 List Subset REST monomer/residue Output_File restmole.list
- 13 Color Molecule Atoms ACTSITE Specified Specification 255,0,0
- 14 List Subset ACTSITE Atom Output_File actsiteatom.list
- 15 List Subset ACTSITE monomer/residue Output_File actsitemole.list
- 16 #
- 17 Zone Subset REST5A REST Static Monomer/Residue 5-Color_Subset
- 18 Combine Subset SUB5A Difference REST5A ACTSITE
- 19 Combine Subset SUB5B Difference SUB5A REST
- 20 Color Molecule Atoms SUB5B Specified Specification 255,255,255
- 21 List Subset SUB5B Atom Output_File sub5batom.list
- 22 List Subset SUB5B monomer/residue Output_File sub5bmole.list
- 23 #Now identify sites for lys->arg substitutions and continue with makezone2.bcl
- 24 #Use grep command to identify ARG in restatom.list, sub5batom.list & accsiteatom.list.
Comments: - Lines 1-8: The subset ALLZONE is defined as those residues which are either within 10 Angstroms of the free amino groups on lysines or the N-terminal, or within 8 Angstroms of the catalytic triad residues 39, 72 and 226.
- Line 10: The subset REST is defined as those residues not included in ALLZONE.
- Lines 17-20: Subset SUB5B is defined as those residues in a 5 Angstroms shell around REST, excluding residues within 8 Angstroms of the catalytic residues.
- Line 23-24: REST contains Arg62 and Arg169, SUB5B contains Arg51, Arg121, and Arg250. ACTSITE contains Arg103, but position 103 is within 8 Angstroms from essential_catalytic_residues, and thus not relevant.
- The color codes are: (255,0,255)=magenta, (255,255,0) yellow, (255,0,0) red, and (255, 255, 255)=white.
- The substitutions R51K, R62K, R121K, R169K and R250K are identified in parent PD498 as suitable sites for mutagenesis. The residues are substituted below in section 2, and further analysis done:
- Non-Conservative Substitutions:
-
- makeKzone2.bcl
- 1 #sourcefile makezone2.bcl Claus von der Osten 961128
- 2 #
- 3 #having scanned lists (grep arg command) and identified sites for lys->arg substitutions
- 4 #NOTE: editnextline object name according to protein
- 5 Copy Object -To_Clipboard -Displace PD498FINALMODEL newmodel 6 Biopolymer
- 7 #NOTE: editnextline object name according to protein
- 8 Blank Object On PD498FINALMODEL
- 9 #NOTE: editnextlines with lys->arg positions Replace Residue newmodel:51 lys L
- 11 Replace Residue newmodel:62 lys L
- 12 Replace Residue newmodel:121 lys L
- 13 Replace Residue newmodel:169 lys L
- 14 Replace Residue newmodel:250 lys L
- 15 #
- 16 #Now repeat analysis done prior to arg->lys, now including introduced lysines
- 17 Color Molecule Atoms newmodel Specified Specification 255,0,255
- 18 Zone Subset LYSx newmodel:lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - 19 Zone Subset NTERMx newmodel:l:N Static monomer/
residue 10 Color_Subset 255,255,0 - 20 #NOTE: editnextline ACTSITEx residues according to the protein
- 21 Zone Subset ACTSITEx newmodel:39,72,226 Static monomer/residue 8 Color_Subset 255,255,0
- 22 Combine Subset ALLZONEx Union LYSx NTERMx
- 23 Combine Subset ALLZONEx Union ALLZONEx ACTSITEx
- 24 Combine Subset RESTx Difference newmodel ALLZONEx List Subset RESTx Atom Output_File restxatom.list
- 26 List Subset RESTx monomer/residue Output_File restxmole.list
- 27 #
- 28 Color Molecule Atoms ACTSITEx Specified Specification 255,0,0
- 29 List Subset ACTSITEx Atom Output_File actsitexatom.list
- 30 List Subset ACTSITEx monomer/residue Output_File actsitexmole.list
- 31 #
- 32 #read restxatom.list or restxmole.list to identify sites for (not_arg)->lys subst. if needed.
Comments: - Lines 1-15: Solvent exposed arginines in subsets REST and SUB5B are replaced by lysines. Solvent accessibilities are recalculated following arginine replacement.
- Lines 16-23: The subset ALLZONEx is defined as those residues which are either within 10 Angstroms of the free amino groups on lysines (after replacement) or the N-terminal, or within 8 Angstroms of the catalytic triad residues 39, 72 and 226.
- Line 24-26: The subset RESTx is defined as those residues not included in ALLZONEx, i.e. residues which are still potential epitope contributors. Of the residues in RESTx, the following are >5% exposed (see lists below): 6-7,9-12, 43-45, 65, 87-88, 209, 211, 216-221, 262.
- The following mutations are proposed in parent PD498: P6K, Y7K, S9K, A10K, Y11K, Q12K, D43K, Y44K, N45K, N65K, G87K, 188K, N209K, A211K, N216K, N217K, G218K, Y219K, S220K, Y221K, G262K.
- Relevant Data for Example 1:
- Solvent Accessibility Data for PD498MODEL:
# PD498MODEL Fri Nov 29 10:24:48 MET 1996 # residue area TRP_1 136.275711 SER_2 88.188095 PRO_3 15.458788 ASN_4 95.322319 ASP_5 4.903404 PRO_6 68.096909 TYR_7 93.333252 TYR_8 31.791576 SER_9 95.983139 ALA_10 77.983536 TYR_11 150.704727 GLN_12 26.983349 TYR_13 44.328232 GLY_14 3.200084 PRO_15 2.149547 GLN_16 61.385445 ASN_17 37.776707 THR_18 1.237873 SER_19 41.031750 THR_20 4.321402 PRO_21 16.658991 ALA_22 42.107288 ALA_23 0.000000 TRP_24 3.713619 ASP_25 82.645493 VAL_26 74.397812 THR_27 14.950654 ARG_28 110.606209 GLY_29 0.242063 SER_30 57.225292 SER_31 86.986198 THR_32 1.928865 GLN_33 42.008949 THR_34 0.502189 VAL_35 0.268693 ALA_36 0.000000 VAL_37 5.255383 LEU_38 1.550332 ASP_39 3.585718 SER_40 2.475746 GLY_41 4.329043 VAL_42 1.704864 ASP_43 25.889742 TYR_44 89.194855 ASN_45 109.981819 HIS_46 0.268693 PRO_47 66.580925 ASP_48 0.000000 LEU_49 0.770882 ALA_50 49.618046 ARG_51 218.751709 LYS_52 18.808538 VAL_53 39.937984 ILE_54 98.478104 LYS_55 103.612228 GLY_56 17.199390 TYR_57 67.719147 ASP_58 0.000000 PHE_59 40.291119 ILE_60 50.151962 ASP_61 70.078888 ARG_62 166.777557 ASP_63 35.892376 ASN_64 120.641953 ASN_65 64.982895 PRO_66 6.986028 MET_67 58.504269 ASP_68 28.668840 LEU_69 104.467468 ASN_70 78.460953 GLY_71 5.615932 HIS_72 43.158905 GLY_73 0.268693 THR_74 0.000000 HIS_75 0.484127 VAL_76 1.880854 ALA_77 0.000000 GLY_78 0.933982 THR_79 9.589676 VAL_80 0.000000 ALA_81 0.000000 ALA_82 0.000000 ASP_83 46.244987 THR_84 27.783333 ASN_85 75.924225 ASN_86 44.813908 GLY_87 50.453152 ILE_88 74.428070 GLY_89 4.115077 VAL_90 6.717335 ALA_91 2.872341 GLY_92 0.233495 MET_93 5.876057 ALA_94 0.000000 PRO_95 17.682203 ASP_96 83.431740 THR_97 1.506567 LYS_98 72.674973 ILE_99 4.251006 LEU_100 6.717335 ALA_101 0.806080 VAL_102 1.426676 ARG_103 2.662697 VAL_104 2.171855 LEU_105 18.808538 ASP_106 52.167435 ALA_107 52.905663 ASN_108 115.871315 GLY_109 30.943356 SER_110 57.933651 GLY_111 50.705326 SER_112 56.383320 LEU_113 71.312195 ASP_114 110.410919 SER_115 13.910152 ILE_116 22.570246 ALA_117 5.642561 SER_118 29.313131 GLY_119 0.000000 ILE_120 1.343467 ARG_121 118.391129 TYR_122 44.203033 ALA_123 0.000000 ALA_124 7.974043 ASP_125 83.851639 GLN_126 64.311974 GLY_127 36.812618 ALA_128 4.705107 LYS_129 90.886139 VAL_130 1.039576 LEU_131 2.149547 ASN_132 4.315227 LEU_133 1.880854 SER_134 3.563334 LEU_135 26.371397 GLY_136 59.151070 CYS_137 63.333755 GLU_138 111.553314 CYS_139 83.591461 ASN_140 80.757843 SER_141 25.899158 THR_142 99.889725 THR_143 73.323814 LEU_144 5.589301 LYS_145 94.708755 SER_146 72.636993 ALA_147 9.235920 VAL_148 1.612160 ASP_149 57.431465 TYR_150 106.352493 ALA_151 0.268693 TRP_152 43.133667 ASN_153 112.864975 LYS_154 110.009468 GLY_155 33.352180 ALA_156 3.493014 VAL_157 1.048144 VAL_158 2.043953 VAL_159 0.000000 ALA_160 0.537387 ALA_161 10.872165 ALA_162 7.823834 GLY_163 12.064573 ASN_164 81.183388 ASP_165 64.495300 ASN_166 83.457443 VAL_167 68.516815 SER_168 78.799652 ARG_169 116.937134 THR_170 57.275074 PHE_171 51.416462 GLN_172 18.934589 PRO_173 1.880854 ALA_174 6.522357 SER_175 26.184139 TYR_176 21.425076 PRO_177 85.613541 ASN_178 34.700817 ALA_179 0.268693 ILE_180 1.074774 ALA_181 3.761708 VAL_182 0.000000 GLY_183 2.149547 ALA_184 0.951118 ILE_185 0.806080 ASP_186 30.022263 SER_187 72.518509 ASN_188 117.128021 ASP_189 47.601345 ARG_190 150.050873 LYS_191 64.822807 ALA_192 2.686934 SER_193 96.223808 PHE_194 51.482613 SER_195 1.400973 ASN_196 4.148808 TYR_197 80.937309 GLY_198 10.747736 THR_199 93.221252 TRP_200 169.943604 VAL_201 15.280325 ASP_202 12.141763 VAL_203 0.268693 THR_204 3.409728 ALA_205 0.000000 PRO_206 0.000000 GLY_207 0.000000 VAL_208 37.137192 ASN_209 78.286270 ILE_210 9.404268 ALA_211 25.938599 SER_212 5.037172 THR_213 0.000000 VAL_214 22.301552 PRO_215 45.251030 ASN_216 131.014160 ASN_217 88.383461 GLY_218 21.226780 TYR_219 88.907570 SER_220 39.966541 TYR_221 166.037018 MET_222 50.951096 SER_223 54.435001 GLY_224 1.880854 THR_225 1.634468 SER_226 17.432346 MET_227 7.233279 ALA_228 0.000000 SER_229 0.000000 PRO_230 0.268693 HIS_231 2.680759 VAL_232 0.000000 ALA_233 0.000000 GLY_234 1.074774 LEU_235 11.500556 ALA_236 0.000000 ALA_237 0.000000 LEU_238 1.612160 LEU_239 0.000000 ALA_240 10.648088 SER_241 39.138004 GLN_242 71.056175 GLY_243 66.487144 LYS_244 43.256012 ASN_245 80.728127 ASN_246 34.859673 VAL_247 84.145645 GLN_248 51.819775 ILE_249 8.598188 ARG_250 35.055809 GLN_251 71.928093 ALA_252 0.000000 ILE_253 4.845899 GLU_254 13.344438 GLN_255 81.705254 THR_256 9.836061 ALA_257 2.810513 ASP_258 44.656136 LYS_259 113.071686 ILE_260 32.089527 SER_261 91.590103 GLY_262 26.450439 THR_263 38.308762 GLY_264 46.870056 THR_265 88.551804 ASN_266 34.698349 PHE_267 7.756911 LYS_268 103.212852 TYR_269 37.638382 GLY_270 0.000000 LYS_271 11.376978 ILE_272 2.885231 ASN_273 19.195255 SER_274 2.651736 ASN_275 38.177547 LYS_276 84.549576 ALA_277 1.074774 VAL_278 4.775503 ARG_279 162.693054 TYR_280 96.572929 CA_281 0.000000 CA_282 0.000000 CA_283 8.803203 Subset REST: restmole.list Subset REST: PD498FINALMODEL: 6-7, 9-12, 43-46, 61-63, 65, 87-89, 111-114, 117-118, 131, PD498FINALMODEL: 137-139, 158-159, 169-171, 173-174, 180-181, 209, 211, PD498FINALMODEL: 216-221, 232-233, 262, E282H restatom.list Subset REST: PD498FINALMODEL: PRO 6: N, CA, CD, C, O, CB, CG PD498FINALMODEL: TYR 7: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: SER 9: N, CA, C, O, CB, OG PD498FINALMODEL: ALA 10: N, CA, C, O, CB PD498FINALMODEL: TYR 11: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: GLN 12: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: ASP 43: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: TYR 44: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ASN 45: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: HIS 46: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 PD498FINALMODEL: ASP 61: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ARG 62: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: ASP 63: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ASN 65: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 87: N, CA, C, O PD498FINALMODEL: ILE 88: N, CA, C, O, CB, CG1, CG2, GD1 PD498FINALMODEL: GLY 89: N, CA, C, O PD498FINALMODEL: GLY 111: N, CA, C, O PD498FINALMODEL: SER 112: N, CA, C, O, CB, OG PD498FINALMODEL: LEU 113: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASP 114: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ALA 117: N, CA, C, O, CB PD498FINALMODEL: SER 118: N, CA, C, O, CB, OG PD498FINALMODEL: LEU 131: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: CYS 137: N, CA, C, O, CB, SG PD498FINALMODEL: GLU 138: N, CA, C, O, CB, CG, CD, OE1, OE2 PD498FINALMODEL: CYS 139: N, CA, C, O, CB, SG PD498FINALMODEL: VAL 158: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: VAL 159: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ARG 169: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: THR 170: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: PHE 171: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: PRO 173: N, CA, CD, C, O, CB, CG PD498FINALMODEL: ALA 174: N, CA, C, O, CB PD498FINALMODEL: ILE 180: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: ALA 181: N, CA, C, O, CB PD498FINALMODEL: ASN 209: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ALA 211: N, CA, C, O, CB PD498FINALMODEL: ASN 216: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ASN 217: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 218: N, CA, C, O PD498FINALMODEL: TYR 219: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: SER 220: N, CA, C, O, CB, OG PD498FINALMODEL: TYR 221: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: VAL 232: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ALA 233: N, CA, C, O, CB PD498FINALMODEL: GLY 262: N, CA, C, O PD498FINALMODEL: CA E282H: CA Subset SUB5B: sub5bmole.list Subset SUB5B: PD498FINALMODEL: 4-5, 8, 13-16, 34-35, 47-51, 53, 64, 83, 85-86, 90-91, 120-124, PD498FINALMODEL: 128-130, 140-141, 143-144, 147-148, 151-152, 156-157, PD498FINALMODEL: 165, 167-168, 172, 175-176, 178-179, 196, 200-205, 208, PD498FINALMODEL: 234-237, 250, 253-254, 260-261, 263-267, 272, E281H, PD498FINALMODEL: E283H sub5batom.list Subset SUB5B: PD498FINALMODEL: ASN 4: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ASP 5: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: TYR 8: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: TYR 13: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: GLY 14: N, CA, C, O PD498FINALMODEL: PRO 15: N, CA, CD, C, O, CB, CG PD498FINALMODEL: GLN 16: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: THR 34: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 35: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: PRO 47: N, CA, CD, C, O, CB, CG PD498FINALMODEL: ASP 48: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: LEU 49: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 50: N, CA, C, O, CB PD498FINALMODEL: ARG 51: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: VAL 53: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ASN 64: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ASP 83: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ASN 85: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ASN 86: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: VAL 90: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ALA 91: N, CA, C, O, CB PD498FINALMODEL: ILE 120: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: ARG 121: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: TYR 122: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ALA 123: N, CA, C, O, CB PD498FINALMODEL: ALA 124: N, CA, C, O, CB PD498FINALMODEL: ALA 128: N, CA, C, O, CB PD498FINALMODEL: LYS 129: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: VAL 130: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ASN 140: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: SER 141: N, CA, C, O, CB, OG PD498FINALMODEL: THR 143: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: LEU 144: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 147: N, CA, C, O, CB PD498FINALMODEL: VAL 148: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ALA 151: N, CA, C, O, CB PD498FINALMODEL: TRP 52: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 PD498FINALMODEL: ALA 156: N, CA, C, O, CB PD498FINALMODEL: VAL 157: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ASP 165: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: VAL 167: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: SER 168: N, CA, C, O, CB, OG PD498FINALMODEL: GLN 172: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: SER 175: N, CA, C, O, CB, OG PD498FINALMODEL: TYR 176: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ASN 178: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ALA 179: N, CA, C, O, CB PD498FINALMODEL: ASN 196: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: TRP 200: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 PD498FINALMODEL: VAL 201: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ASP 202: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: VAL 203: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: THR 204: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: ALA 205: N, CA, C, O, CB PD498FINALMODEL: VAL 208: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: GLY 234: N, CA, C, O PD498FINALMODEL: LEU 235: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 236: N, CA, C, O, CB PD498FINALMODEL: ALA 237: N, CA, C, O, CB PD498FINALMODEL: ARG 250: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: ILE 253: N, CA, C, O, CB, CG1, CG2, GD1 PD498FINALMODEL: GLU 254: N, CA, C, O, CB, CG, CD, OE1, OE2 PD498FINALMODEL: ILE 260: N, CA, C, O, CB, CG1, CG2, GD1 PD498FINALMODEL: SER 261: N, CA, C, O, CB, OG PD498FINALMODEL: THR 263: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: GLY 264: N, CA, C, O PD498FINALMODEL: THR 265: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: ASN 266: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: PHE 267: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: ILE 272: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: CA E281H: CA PD498FINALMODEL: CA E283H: NA Subset ACTSITE: actsitemole.list Subset ACTSITE: PD498FINALMODEL: 36-42, 57-60, 66-80, 100-110, 115-116, 119, 132-136, 160-164, PD498FINALMODEL: 182-184, 194, 206-207, 210, 212-215, 222-231 actsiteatom.list Subset ACTSITE: PD498FINALMODEL: ALA 36: N, CA, C, O, CB PD498FINALMODEL: VAL 37: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 38: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASP 39: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: SER 40: N, CA, C, O, CB, OG PD498FINALMODEL: GLY 41: N, CA, C, O PD498FINALMODEL: VAL 42: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: TYR 57: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ASP 58: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: PHE 59: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: ILE 60: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: PRO 66: N, CA, CD, C, O, CB, CG PD498FINALMODEL: MET 67: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: ASP 68: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: LEU 69: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASN 70: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 71: N, CA, C, O PD498FINALMODEL: HIS 72: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 PD498FINALMODEL: GLY 73: N, CA, C, O PD498FINALMODEL: THR 74: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: HIS 75: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 PD498FINALMODEL: VAL 76: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ALA 77: N, CA, C, O, CB PD498FINALMODEL: GLY 78: N, CA, C, O PD498FINALMODEL: THR 79: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 80: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 100: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 101: N, CA, C, O, CB PD498FINALMODEL: VAL 102: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ARG 103: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: VAL 104: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 105: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASP 106: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ALA 107: N, CA, C, O, CB PD498FINALMODEL: ASN 108: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 109: N, CA, C, O PD498FINALMODEL: SER 110: N, CA, C, O, CB, OG PD498FINALMODEL: SER 115: N, CA, C, O, CB, OG PD498FINALMODEL: ILE 116: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: GLY 119: N, CA, C, O PD498FINALMODEL: ASN 132: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: LEU 133: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: SER 134: N, CA, C, O, CB, OG PD498FINALMODEL: LEU 135: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: GLY 136: N, CA, C, O PD498FINALMODEL: ALA 160: N, CA, C, O, CB PD498FINALMODEL: ALA 161: N, CA, C, O, CB PD498FINALMODEL: ALA 162: N, CA, C, O, CB PD498FINALMODEL: GLY 163: N, CA, C, O PD498FINALMODEL: ASN 164: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: VAL 182: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: GLY 183: N, CA, C, O PD498FINALMODEL: ALA 184: N, CA, C, O, CB PD498FINALMODEL: PHE 194: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: PRO 206: N, CA, CD, C, O, CB, CG PD498FINALMODEL: GLY 207: N, CA, C, O PD498FINALMODEL: ILE 210: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: SER 212: N, CA, C, O, CB, OG PD498FINALMODEL: THR 213: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 214: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: PRO 215: N, CA, CD, C, O, CB, CG PD498FINALMODEL: MET 222: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: SER 223: N, CA, C, O, CB, OG PD498FINALMODEL: GLY 224: N, CA, C, O PD498FINALMODEL: THR 225: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: SER 226: N, CA, C, O, CB, OG PD498FINALMODEL: MET 227: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: ALA 228: N, CA, C, O, CB PD498FINALMODEL: SER 229: N, CA, C, O, CB, OG PD498FINALMODEL: PRO 230: N, CA, CD, C, O, CB, CG PD498FINALMODEL: HIS 231: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 Subset RESTx: restxmole.list Subset RESTX: NEWMODEL: 6-7, 9-12, 43-46, 65, 87-89, 131, 173, 209, 211, 216-221, 232-233, NEWMODEL: 262, E282H restxatom.list Subset RESTX: NEWMODEL: PRO 6: N, CA, CD, C, O, CB, CG NEWMODEL: TYR 7: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: SER 9: N, CA, C, O, CB, OG NEWMODEL: ALA 10: N, CA, C, O, CB NEWMODEL: TYR 11: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: GLN 12: N, CA, C, O, CB, CG, CD, OE1, NE2 NEWMODEL: ASP 43: N, CA, C, O, CB, CG, OD1, OD2 NEWMODEL: TYR 44: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: ASN 45: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: HIS 46: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 NEWMODEL: ASN 65: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: GLY 87: N, CA, C, O NEWMODEL: ILE 88: N, CA, C, O, CB, CG1, CG2, CD1 NEWMODEL: GLY 89: N, CA, C, O NEWMODEL: LEU 131: N, CA, C, O, CB, CG, CD1, CD2 NEWMODEL: PRO 173: N, CA, CD, C, O, CB, CG NEWMODEL: ASN 209: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: ALA 211: N, CA, C, O, CB NEWMODEL: ASN 216: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: ASN 217: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: GLY 218: N, CA, C, O NEWMODEL: TYR 219: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: SER 220: N, CA, C, O, CB, OG NEWMODEL: TYR 221: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: VAL 232: N, CA, C, O, CB, CG1, CG2 NEWMODEL: ALA 233: N, CA, C, O, CB NEWMODEL: GLY 262: N, CA, C, O NEWMODEL: CA E282H: CA - Suitable Substitutions in SAVINASE® for Addition of Amino Attachment Groups (—NH2)
- The known X-ray structure of SAVINASE® was used to find where suitable amino attachment groups may is added (Betzel et al, 1992, J. Mol. Biol., 223, 427-445).
- The 3D structure of SAVINASE® is available in the Brookhaven Databank as lsvn.pbd. A related subtilisin is available as 1st3.pdb.
- The sequence of SAVINASE® is shown in SEQ ID NO: 3. The sequence numbering used is that of subtilisin BPN′, SAVINASE® having deletions relative to BPN′ at positions 36, 56, 158-159 and 163-164. The active site residues (functional site) are D32, H64 and S221.
- The commands performed in Insight (BIOSYM) are shown in the command files makeKzone.bcl and makeKzone2.bcl below:
- Conservative Substitutions:
-
- makeKzone.bcl
- Delete Subset *
- Color Molecule Atoms * Specified Specification 255,0,255
- Zone Subset LYS :lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - Zone Subset NTERM :e1:N Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline ACTSITE residues according to the protein
- Zone Subset ACTSITE :e32,e64,e221 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONE Union LYS NTERM
- Combine Subset ALLZONE Union ALLZONE ACTSITE
- #NOTE: editnextline object name according to the protein
- Combine Subset REST Difference SAVI8 ALLZONE
- List Subset REST Atom Output_File restatom.list
- List Subset REST monomer/residue Output_File restmole.list
- Color Molecule Atoms ACTSITE Specified Specification 255,0,0
- List Subset ACTSITE Atom Output_File actsiteatom.list
- List Subset ACTSITE monomer/residue Output_File actsitemole.list
- #
- Zone Subset REST5A REST Static Monomer/Residue 5-Color_Subset
- Combine Subset SUB5A Difference REST5A ACTSITE
- Combine Subset SUB5B Difference SUB5A REST
- Color Molecule Atoms SUB5B Specified Specification 255,255,255
- List Subset SUB5B Atom Output_File sub5batom.list
- List Subset SUB5B monomer/residue Output_File subsbmole.list
- #Now identify sites for lys->arg substitutions and continue with makezone2.bcl
- #Use grep command to identify ARG in restatom.list, sub5batom.list & accsiteatom.list.
Comments: - In this case of SAVINASE® REST contains the arginines Arg10, Arg170 and Arg 186, and SUB5B contains Arg19, Arg45, Arg145 and Arg247.
- These residues are all solvent exposed. The substitutions R10K, R19K, R45K, R145K, R170K, R186K and R247K are identified in SAVINASE® as sites for mutagenesis within the scope of this invention. The residues are substituted below in section 2, and further analysis done. The subset ACTSITE contains Lys94.
- The substitution K94R is a mutation removing lysine as attachment group close to the active site.
- Non-Conservative Substitutions:
-
- makeKzone2.bcl
- #sourcefile makezone2.bcl Claus von der Osten 961128
- #
- #having scanned lists (grep arg command) and identified sites for lys->arg substitutions
- #NOTE: editnextline object name according to protein
- Copy Object -To_Clipboard -Displace SAVI8 newmodel
- Biopolymer
- #NOTE: editnextline object name according to protein
- Blank Object On SAVI8
- #NOTE: editnextlines with lys->arg positions
- Replace Residue newmodel:e10 lys L
- Replace Residue newmodel:e170 lys L
- Replace Residue newmodel:e186 lys L
- Replace Residue newmodel:e19 lys L
- Replace Residue newmodel:e45 lys L
- Replace Residue newmodel:e145 lys L
- Replace Residue newmodel:e241 lys L
- #
- #Now repeat analysis done prior to arg->lys, now including introduced lysines
- Color Molecule Atoms newmodel Specified Specification 255,0,255
- Zone Subset LYSx newmodel:lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - Zone Subset NTERMx newmodel:e1:N Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline ACTSITEx residues according to the protein
- Zone Subset ACTSITEx newmodel:e32,e64,e221 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONEx Union LYSx NTERMx
- Combine Subset ALLZONEx Union ALLZONEx ACTSITEx
- Combine Subset RESTx Difference newmodel ALLZONEx
- List Subset RESTx Atom Output_File restxatom.list
- List Subset RESTx monomer/residue Output_File restxmole.list
- #
- Color Molecule Atoms ACTSITEx Specified Specification 255,0,0
- List Subset ACTSITEx Atom Output_File actsitexatom.list
- List Subset ACTSITEx monomer/residue Output_File actsitexmole.list
- #
- #read restxatom.list or restxmole.list to identify sites for (not_arg)->lys subst. if needed.
Comments: - Of the residues in RESTx, the following are >5% exposed (see lists below): 5, 14, 22, 38-40, 42, 75-76, 82, 86, 103-105, 108, 133-135, 137, 140, 173, 204, 206, 211-213, 215-216, 269. The following mutations are proposed in SAVINASE®: P5K, P14K, T22K, T38K, H39K, P40K, L42K, L75K, N76K, L82K, P86K, S103K, V104K, S105K, A108K, A133K, T134K, L135K, Q137K, N140K, N173K, N204K, Q206K, G211K, S212K, T213K, A215K, S216K, N269K.
- Relevant Data for Example 2:
- Solvent Accessibility Data for SAVINASE®:
# SAVI8NOH2O Fri Nov 29 13: 32: 07 MET 1996 # residue area ALA_1 118.362808 GLN_2 49.422764 SER_3 61.982887 VAL_4 71.620255 PRO_5 21.737535 TRP_6 58.718731 GLY_7 4.328117 ILE_8 6.664074 SER_9 60.175900 ARG_10 70.928963 VAL_11 2.686934 GLN_12 72.839996 ALA_13 0.000000 PRO_14 52.308453 ALA_15 38.300892 ALA_16 0.000000 HIS_17 41.826324 ASN_18 136.376602 ARG_19 105.678642 GLY_20 48.231510 LEU_21 17.196377 THR_22 36.781742 GLY_23 0.000000 SER_24 64.151276 GLY_25 50.269905 VAL_26 4.030401 LYS_27 54.239555 VAL_28 0.000000 ALA_29 0.000000 VAL_30 3.572827 LEU_31 0.233495 ASP_32 1.074774 THR_33 1.973557 GLY_34 3.638052 ILE_35 8.044439 SER_36 8.514903 THR_37 122.598907 HIS_38 18.834011 PRO_39 76.570526 ASP_40 0.000000 LEU_41 19.684013 ASN_42 88.870216 ILE_43 56.117710 ARG_44 110.647194 GLY_45 26.935413 GLY_46 35.515778 ALA_47 21.495472 SER_48 34.876190 PHE_49 52.647541 VAL_50 23.364208 PRO_51 110.408752 GLY_52 80.282906 GLU_53 43.033707 PRO_54 124.444336 SER_55 60.284889 THR_56 47.103241 GLN_57 120.803505 ASP_58 12.784743 GLY_59 61.742443 ASN_60 56.760231 GLY_61 1.576962 HIS_62 38.590118 GLY_63 0.000000 THR_64 0.537387 HIS_65 0.968253 VAL_66 1.612160 ALA_67 0.000000 GLY_68 2.801945 THR_69 9.074596 ILE_70 0.000000 ALA_71 4.577205 ALA_72 0.000000 LEU_73 47.290039 ASN_74 102.187248 ASN_75 60.210400 SER_76 84.614494 ILE_77 66.098572 GLY_78 17.979534 VAL_79 5.642561 LEU_80 13.025185 GLY_81 0.000000 VAL_82 0.268693 ALA_83 0.000000 PRO_84 18.193810 SER_85 56.839039 ALA_86 13.075745 GLU_87 37.011765 LEU_88 2.149547 TYR_89 30.633518 ALA_90 1.343467 VAL_91 0.779450 LYS_92 5.862781 VAL_93 0.466991 LEU_94 10.747736 GLY_95 8.707102 ALA_96 41.414677 SER_97 96.066040 GLY_98 33.374485 SER_99 67.664116 GLY_100 35.571117 SER_101 54.096992 VAL_102 52.695324 SER_103 62.929684 SER_104 8.683097 ILE_105 15.852910 ALA_106 14.509443 GLN_107 94.463066 GLY_108 0.000000 LEU_109 0.537387 GLU_110 63.227707 TRP_111 55.500740 ALA_112 0.502189 GLY_113 11.908267 ASN_114 107.208527 ASN_115 78.811234 GLY_116 41.453194 MET_117 9.634291 HIS_118 54.022118 VAL_119 5.105174 ALA_120 0.268693 ASN_121 0.233495 LEU_122 0.537387 SER_123 4.004620 LEU_124 21.927265 GLY_125 55.952454 SER_126 40.241180 PRO_127 107.409439 SER_128 57.988609 PRO_129 85.021118 SER_130 20.460915 ALA_131 57.404362 THR_132 74.438805 LEU_133 12.091203 GLU_134 73.382019 GLN_135 114.870010 ALA_136 2.122917 VAL_137 1.074774 ASN_138 55.622704 SER_139 29.174965 ALA_140 0.268693 THR_141 27.962946 SER_142 87.263145 ARG_143 88.201218 GLY_144 38.477882 VAL_145 2.079151 LEU_146 13.703363 VAL_147 2.690253 VAL_148 1.074774 ALA_149 0.000000 ALA_150 4.356600 SER_151 0.000000 GLY_152 12.628590 ASN_153 84.248703 SER_154 77.662354 GLY_155 25.409861 ALA_156 38.074570 GLY_157 40.493744 SER_158 53.915291 ILE_159 4.352278 SER_160 12.458543 TYR_161 29.670284 PRO_162 4.030401 ALA_163 0.968253 ARG_164 84.059120 TYR_165 28.641129 ALA_166 68.193314 ASN_167 61.686481 ALA_168 0.537387 MET_169 0.586837 ALA_170 0.000000 VAL_171 0.000000 GLY_172 0.000000 ALA_173 0.933982 THR_174 3.013133 ASP_175 34.551376 GLN_176 96.873039 ASN_177 98.664368 ASN_178 41.197159 ASN_179 60.263512 ARG_180 64.416336 ALA_181 7.254722 SER_182 91.590881 PHE_183 52.126518 SER_184 2.101459 GLN_185 15.736279 TYR_186 44.287792 GLY_187 5.114592 ALA_188 69.406563 GLY_189 36.926083 LEU_190 16.511177 ASP_191 7.705349 ILE_192 0.268693 VAL_193 4.299094 ALA_194 0.000000 PRO_195 0.806080 GLY_196 0.000000 VAL_197 25.257177 ASN_198 82.177422 VAL_199 10.747736 GLN_200 80.374527 SER_201 2.008755 THR_202 0.000000 TYR_203 80.679886 PRO_204 34.632195 GLY_205 74.536827 SER_206 74.964920 THR_207 57.070065 TYR_208 82.895500 ALA_209 22.838940 SER_210 69.045639 LEU_211 49.708279 ASN_212 86.905457 GLY_213 2.686934 THR_214 4.669909 SER_215 15.225292 MET_216 7.261287 ALA_217 0.000000 THR_218 0.000000 PRO_219 0.806080 HIS_220 2.662697 VAL_221 0.268693 ALA_222 0.000000 GLY_223 0.000000 ALA_224 7.206634 ALA_225 1.039576 ALA_226 0.268693 LEU_227 1.074774 VAL_228 1.541764 LYS_229 39.262505 GLN_230 54.501614 LYS_231 81.154129 ASN_232 30.004124 PRO_233 91.917931 SER_234 102.856705 TRP_235 64.639481 SER_236 51.797619 ASN_237 24.866917 VAL_238 78.458466 GLN_239 73.981461 ILE_240 14.474245 ARG_241 41.242931 ASN_242 64.644814 HIS_243 50.671440 LEU_244 5.127482 LYS_245 48.820000 ASN_246 115.264534 THR_247 22.205376 ALA_248 16.415077 THR_249 60.503101 SER_250 74.511597 LEU_251 48.861599 GLY_252 39.124340 SER_253 49.811481 THR_254 88.421982 ASN_255 72.490181 LEU_256 54.835758 TYR_257 38.798912 GLY_258 3.620916 SER_259 35.017368 GLY_260 0.537387 LEU_261 8.598188 VAL_262 4.519700 ASN_263 16.763659 ALA_264 3.413124 GLU_265 37.942276 ALA_266 15.871746 ALA_267 3.947115 THR_268 2.475746 ARG_269 176.743362 ION_270 0.000000 ION_271 5.197493 Subset REST: restmole.list Subset REST: SAVI8: E5-E15, E17-E18, E22, E38-E40, E42-E43, E73-E76, E82-E86, E103-E105, SAVI8: E108-E109, E111-E112, E115-E116, E122, E128-E144, E149-E150, E156-E157, SAVI8: E160-E162, E165-E168, E170-E171, E173, E180-E188, E190-E192, E200, SAVI8: E203-E204, E206, E211-E213, E215-E216, E227-E230, E255-E259, E261-E262, SAVI8: E267-E269 restatom.list Subset REST: SAVI8: PRO E5: N, CD, CA, CG, CB, C, O SAVI8: TRP E6: N, CA, CD2, CE2, NE1, CD1, CG, CE3, CZ3, CH2, CZ2, CB, C, O SAVI8: GLY E7: N, CA, C, O SAVI8: ILE E8: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: SER E9: N, CA, OG, CB, C, O SAVI8: ARG E10: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: VAL E11: N, CA, CG2, CG1, CB, C, O SAVI8: GLN E12: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: ALA E13: N, CA, CB, C, O SAVI8: PRO E14: N, CD, CA, CG, CB, C, O SAVI8: ALA E15: N, CA, CB, C, O SAVI8: HIS E17: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O SAVI8: ASN E18: N, CA, ND2, OD1, CG, CB, C, O SAVI8: THR E22: N, CA, CG2, OG1, CB, C, O SAVI8: THR E38: N, CA, CG2, OG1, CB, C, O SAVI8: HIS E39: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O SAVI8: PRO E40: N, CD, CA, CG, CB, C, O SAVI8: LEU E42: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ASN E43: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ALA E73: N, CA, CB, C, O SAVI8: ALA E74: N, CA, CB, C, O SAVI8: LEU E75: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ASN E76: N, CA, ND2, OD1, CG, CB, C, O SAVI8: LEU E82: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLY E83: N, CA, C, O SAVI8: VAL E84: N, CA, CG2, CG1, CB, C, O SAVI8: ALA E85: N, CA, CB, C, O SAVI8: PRO E86: N, CD, CA, CG, CB, C, O SAVI8: SER E103: N, CA, OG, CB, C, O SAVI8: VAL E104: N, CA, CG2, CG1, CB, C, O SAVI8: SER E105: N, CA, OG, CB, C, O SAVI8: ALA E108: N, CA, CB, C, O SAVI8: GLN E109: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: LEU E111: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLU E112: N, CA, OE2, OE1, CD, CG, CB, C, O SAVI8: GLY E115: N, CA, C, O SAVI8: ASN E116: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ALA E122: N, CA, CB, C, O SAVI8: SER E128: N, CA, OG, CB, C, O SAVI8: PRO E129: N, CD, CA, CG, CB, C, O SAVI8: SER E130: N, CA, OG, CB, C, O SAVI8: PRO E131: N, CD, CA, CG, CB, C, O SAVI8: SER E132: N, CA, OG, CB, C, O SAVI8: ALA E133: N, CA, CB, C, O SAVI8: THR E134: N, CA, CG2, OG1, CB, C, O SAVI8: LEU E135: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLU E136: N, CA, OE2, OE1, CD, CG, CB, C, O SAVI8: GLN E137: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: ALA E138: N, CA, CB, C, O SAVI8: VAL E139: N, CA, CG2, CG1, CB, C, O SAVI8: ASN E140: N, CA, ND2, OD1, CG, CB, C, O SAVI8: SER E141: N, CA, OG, CB, C, O SAVI8: ALA E142: N, CA, CB, C, O SAVI8: THR E143: N, CA, CG2, OG1, CB, C, O SAVI8: SER E144: N, CA, OG, CB, C, O SAVI8: VAL E149: N, CA, CG2, CG1, CB, C, O SAVI8: VAL E150: N, CA, CG2, CG1, CB, C, O SAVI8: SER E156: N, CA, OG, CB, C, O SAVI8: GLY E157: N, CA, C, O SAVI8: ALA E160: N, CA, CB, C, O SAVI8: GLY E161: N, CA, C, O SAVI8: SER E162: N, CA, OG, CB, C, O SAVI8: ILE E165: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: SER E166: N, CA, OG, CB, C, O SAVI8: TYR E167: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: PRO E168: N, CD, CA, CG, CB, C, O SAVI8: ARG E170: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: TYR E171: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: ASN E173: N, CA, ND2, OD1, CG, CB, C, O SAVI8: THR E180: N, CA, CG2, OG1, CB, C, O SAVI8: ASP E181: N, CA, OD2, OD1, CG, CB, C, O SAVI8: GLN E182: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: ASN E183: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ASN E184: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ASN E185: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ARG E186: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: ALA E187: N, CA, CB, C, O SAVI8: SER E188: N, CA, OG, CB, C, O SAVI8: SER E190: N, CA, OG, CB, C, O SAVI8: GLN E191: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: TYR E192: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: ALA E200: N, CA, CB, C, O SAVI8: VAL E203: N, CA, CG2, CG1, CB, C, O SAVI8: ASN E204: N, CA, ND2, OD1, CG, CB, C, O SAVI8: GLN E206: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: GLY E211: N, CA, C, O SAVI8: SER E212: N, CA, OG, CB, C, O SAVI8: THR E213: N, CA, CG2, OG1, CB, C, O SAVI8: ALA E215: N, CA, CB, C, O SAVI8: SER E216: N, CA, OG, CB, C, O SAVI8: VAL E227: N, CA, CG2, CG1, CB, C, O SAVI8: ALA E228: N, CA, CB, C, O SAVI8: GLY E229: N, CA, C, O SAVI8: ALA E230: N, CA, CB, C, O SAVI8: THR E255: N, CA, CG2, OG1, CB, C, O SAVI8: SER E256: N, CA, OG, CB, C, O SAVI8: LEU E257: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLY E258: N, CA, C, O SAVI8: SER E259: N, CA, OG, CB, C, O SAVI8: ASN E261: N, CA, ND2, OD1, CG, CB, C, O SAVI8: LEU E262: N, CA, CD2, CD1, CG, CB, C, O SAVI8: LEU E267: N, CA, CD2, CD1, CG, CB, C, O SAVI8: VAL E268: N, CA, CG2, CG1, CB, C, O SAVI8: ASN E269: N, CA, ND2, OD1, CG, CB, C, O Subset SUB5B: sub5bmole.list Subset SUB5B: SAVI8: E2-E4, E16, E19-E21, E23-E24, E28, E37, E41, E44-E45, E77-E81, E87-E88, SAVI8: E90, E113-E114, E117-E118, E120-E121, E145-E148, E169, E172, E174-E176, SAVI8: E193-E196, E198-E199, E214, E231-E234, E236, E243, E247, E250, E253-E254, SAVI8: E260, E263-E266, E270-E273, M276H-M277H sub5batom.list Subset SUB5B: SAVI8: GLN E2: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: SER E3: N, CA, OG, CB, C, O SAVI8: VAL E4: N, CA, CG2, CG1, CB, C, O SAVI8: ALA E16: N, CA, CB, C, O SAVI8: ARG E19: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: GLY E20: N, CA, C, O SAVI8: LEU E21: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLY E23: N, CA, C, O SAVI8: SER E24: N, CA, OG, CB, C, O SAVI8: VAL E28: N, CA, CG2, CG1, CB, C, O SAVI8: SER E37: N, CA, OG, CB, C, O SAVI8: ASP E41: N, CA, OD2, OD1, CG, CB, C, O SAVI8: ILE E44: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: ARG E45: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: ASN E77: N, CA, ND2, OD1, CG, CB, C, O SAVI8: SER E78: N, CA, OG, CB, C, O SAVI8: ILE E79: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: GLY E80: N, CA, C, O SAVI8: VAL E81: N, CA, CG2, CG1, CB, C, O SAVI8: SER E87: N, CA, OG, CB, C, O SAVI8: ALA E88: N, CA, CB, C, O SAVI8: LEU E90: N, CA, CD2, CD1, CG, CB, C, O SAVI8: TRP E113: N, CA, CD2, CE2, NE1, CD1, CG, CE3, CZ3, CH2, CZ2, CB, C, O SAVI8: ALA E114: N, CA, CB, C, O SAVI8: ASN E117: N, CA, ND2, OD1, CG, CB, C, O SAVI8: GLY E118: N, CA, C, O SAVI8: HIS E120: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O SAVI8: VAL E121: N, CA, CG2, CG1, CB, C, O SAVI8: ARG E145: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: GLY E146: N, CA, C, O SAVI8: VAL E147: N, CA, CG2, CG1, CB, C, O SAVI8: LEU E148: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ALA E169: N, CA, CB, C, O SAVI8: ALA E172: N, CA, CB, C, O SAVI8: ALA E174: N, CA, CB, C, O SAVI8: MET E175: N, CA, CE, SD, CG, CB, C, O SAVI8: ALA E176: N, CA, CB, C, O SAVI8: GLY E193: N, CA, C, O SAVI8: ALA E194: N, CA, CB, C, O SAVI8: GLY E195: N, CA, C, O SAVI8: LEU E196: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ILE E198: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: VAL E199: N, CA, CG2, CG1, CB, C, O SAVI8: TYR E214: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: ALA E231: N, CA, CB, C, O SAVI8: ALA E232: N, CA, CB, C, O SAVI8: LEU E233: N, CA, CD2, CD1, CG, CB, C, O SAVI8: VAL E234: N, CA, CG2, CG1, CB, C, O SAVI8: GLN E236: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: ASN E243: N, CA, ND2, OD1, CG, CB, C, O SAVI8: ARG E247: N, CA, NH2, NH1, CZ, NE, CD, CG, CB, C, O SAVI8: LEU E250: N, CA, CD2, CD1, CG, CB, C, O SAVI8: THR E253: N, CA, CG2, OG1, CB, C, O SAVI8: ALA E254: N, CA, CB, C, O SAVI8: THR E260: N, CA, CG2, OG1, CB, C, O SAVI8: TYR E263: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: GLY E264: N, CA, C, O SAVI8: SER E265: N, CA, OG, CB, C, O SAVI8: GLY E266: N, CA, C, O SAVI8: ALA E270: N, CA, CB, C, O SAVI8: GLU E271: N, CA, OE2, OE1, CD, CG, CB, C, O SAVI8: ALA E272: N, CA, CB, C, O SAVI8: ALA E273: N, CA, CB, C, O SAVI8: ION M276H: CA SAVI8: ION M277H: CA Subset ACTSITE: actsitemole.list Subset ACTSITE: SAVI8: E29-E35, E48-E51, E54, E58-E72, E91-E102, E106-E107, E110, E123-E127, SAVI8: E151-E155, E177-E179, E189, E201-E202, E205, E207-E210, E217-E226 actsiteatom.list Subset ACTSITE: SAVI8: ALA E29: N, CA, CB, C, O SAVI8: VAL E30: N, CA, CG2, CG1, CB, C, O SAVI8: LEU E31: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ASP E32: N, CA, OD2, OD1, CG, CB, C, O SAVI8: THR E33: N, CA, CG2, OG1, CB, C, O SAVI8: GLY E34: N, CA, C, O SAVI8: ILE E35: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: ALA E48: N, CA, CB, C, O SAVI8: SER E49: N, CA, OG, CB, C, O SAVI8: PHE E50: N, CA, CD2, CE2, CZ, CE1, CD1, CG, CB, C, O SAVI8: VAL E51: N, CA, CG2, CG1, CB, C, O SAVI8: GLU E54: N, CA, OE2, OE1, CD, CG, CB, C, O SAVI8: THR E58: N, CA, CG2, OG1, CB, C, O SAVI8: GLN E59: N, CA, NE2, OE1, CD, CG, CB, C, O SAVI8: ASP E60: N, CA, OD2, OD1, CG, CB, C, O SAVI8: GLY E61: N, CA, C, O SAVI8: ASN E62: N, CA, ND2, OD1, CG, CB, C, O SAVI8: GLY E63: N, CA, C, O SAVI8: HIS E64: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O SAVI8: GLY E65: N, CA, C, O SAVI8: THR E66: N, CA, CG2, OG1, CB, C, O SAVI8: HIS E67: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O SAVI8: VAL E68: N, CA, CG2, CG1, CB, C, O SAVI8: ALA E69: N, CA, CB, C, O SAVI8: GLY E70: N, CA, C, O SAVI8: THR E71: N, CA, CG2, OG1, CB, C, O SAVI8: ILE E72: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: TYR E91: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: ALA E92: N, CA, CB, C, O SAVI8: VAL E93: N, CA, CG2, CG1, CB, C, O SAVI8: LYS E94: N, CA, NZ, CE, CD, CG, CB, C, O SAVI8: VAL E95: N, CA, CG2, CG1, CB, C, O SAVI8: LEU E96: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLY E97: N, CA, C, O SAVI8: ALA E98: N, CA, CB, C, O SAVI8: SER E99: N, CA, OG, CB, C, O SAVI8: GLY E100: N, CA, C, O SAVI8: SER E101: N, CA, OG, CB, C, O SAVI8: GLY E102: N, CA, C, O SAVI8: SER E106: N, CA, OG, CB, C, O SAVI8: ILE E107: N, CA, CD1, CG1, CB, CG2, C, O SAVI8: GLY E110: N, CA, C, O SAVI8: ASN E123: N, CA, ND2, OD1, CG, CB, C, O SAVI8: LEU E124: N, CA, CD2, CD1, CG, CB, C, O SAVI8: SER E125: N, CA, OG, CB, C, O SAVI8: LEU E126: N, CA, CD2, CD1, CG, CB, C, O SAVI8: GLY E127: N, CA, C, O SAVI8: ALA E151: N, CA, CB, C, O SAVI8: ALA E152: N, CA, CB, C, O SAVI8: SER E153: N, CA, OG, CB, C, O SAVI8: GLY E154: N, CA, C, O SAVI8: ASN E155: N, CA, ND2, OD1, CG, CB, C, O SAVI8: VAL E177: N, CA, CG2, CG1, CB, C, O SAVI8: GLY E178: N, CA, C, O SAVI8: ALA E179: N, CA, CB, C, O SAVI8: PHE E189: N, CA, CD2, CE2, CZ, CE1, CD1, CG, CB, C, O SAVI8: PRO E201: N, CD, CA, CG, CB, C, O SAVI8: GLY E202: N, CA, C, O SAVI8: VAL E205: N, CA, CG2, CG1, CB, C, O SAVI8: SER E207: N, CA, OG, CB, C, O SAVI8: THR E208: N, CA, CG2, OG1, CB, C, O SAVI8: TYR E209: N, CA, OH, CZ, CD2, CE2, CE1, CD1, CG, CB, C, O SAVI8: PRO E210: N, CD, CA, CG, CB, C, O SAVI8: LEU E217: N, CA, CD2, CD1, CG, CB, C, O SAVI8: ASN E218: N, CA, ND2, OD1, CG, CB, C, O SAVI8: GLY E219: N, CA, C, O SAVI8: THR E220: N, CA, CG2, OG1, CB, C, O SAVI8: SER E221: N, CA, OG, CB, C, O SAVI8: MET E222: N, CA, CE, SD, CG, CB, C, O SAVI8: ALA E223: N, CA, CB, C, O SAVI8: THR E224: N, CA, CG2, OG1, CB, C, O SAVI8: PRO E225: N, CD, CA, CG, CB, C, O SAVI8: HIS E226: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O Subset RESTx: restxmole.list Subset RESTX: NEWMODEL: E5, E13-E14, E22, E38-E40, E42, E73-E76, E82-E86, E103-E105, NEWMODEL: E108, E122, E133-E135, E137-E140, E149-E150, E173, E204, E206, NEWMODEL: E211-E213, E215-E216, E227-E229, E258, E269 restxatom.list Subset RESTX: NEWMODEL: PRO E5: N, CD, CA, CG, CB, C, O NEWMODEL: ALA E13: N, CA, CB, C, O NEWMODEL: PRO E14: N, CD, CA, CG, CB, C, O NEWMODEL: THR E22: N, CA, CG2, OG1, CB, C, O NEWMODEL: THR E38: N, CA, CG2, OG1, CB, C, O NEWMODEL: HIS E39: N, CA, CD2, NE2, CE1, ND1, CG, CB, C, O NEWMODEL: PRO E40: N, CD, CA, CG, CB, C, O NEWMODEL: LEU E42: N, CA, CD2, CD1, CG, CB, C, O NEWMODEL: ALA E73: N, CA, CB, C, O NEWMODEL: ALA E74: N, CA, CB, C, O NEWMODEL: LEU E75: N, CA, CD2, CD1, CG, CB, C, O NEWMODEL: ASN E76: N, CA, ND2, CD1, CG, CB, C, O NEWMODEL: LEU E82: N, CA, CD2, CD1, CG, CB, C, O NEWMODEL: GLY E83: N, CA, C, O NEWMODEL: VAL E84: N, CA, CG2, CG1, CB, C, O NEWMODEL: ALA E85: N, CA, CB, C, O NEWMODEL: PRO E86: N, CD, CA, CG, CB, C, O NEWMODEL: SER E103: N, CA, OG, CB, C, O NEWMODEL: VAL E104: N, CA, CG2, CG1, CB, C, O NEWMODEL: SER E105: N, CA, OG, CB, C, O NEWMODEL: ALA E108: N, CA, CB, C, O NEWMODEL: ALA E122: N, CA, CB, C, O NEWMODEL: ALA E133: N, CA, CB, C, O NEWMODEL: THR E134: N, CA, CG2, OG1, CB, C, O NEWMODEL: LEU E135: N, CA, CD2, CD1, CG, CB, C, O NEWMODEL: GLN E137: N, CA, NE2, OE1, CD, CG, CB, C, O NEWMODEL: ALA E138: N, CA, CB, C, O NEWMODEL: VAL E139: N, CA, CG2, CG1, CB, C, O NEWMODEL: ASN E140: N, CA, ND2, OD1, CG, CB, C, O NEWMODEL: VAL E149: N, CA, CG2, CG1, CB, C, O NEWMODEL: VAL E150: N, CA, CG2, CG1, CB, C, O NEWMODEL: ASN E173: N, CA, ND2, OD1, CG, CB, C, O NEWMODEL: ASN E204: N, CA, ND2, OD1, CG, CB, C, O NEWMODEL: GLN E206: N, CA, NE2, OE1, CD, CG, CB, C, O NEWMODEL: GLY E211: N, CA, C, O NEWMODEL: SER E212: N, CA, OG, CB, C, O NEWMODEL: THR E213: N, CA, CG2, OG1, CB, C, O NEWMODEL: ALA E215: N, CA, CB, C, O NEWMODEL: SER E216: N, CA, OG, CB, C, O NEWMODEL: VAL E227: N, CA, CG2, CG1, CB, C, O NEWMODEL: ALA E228: N, CA, CB, C, O NEWMODEL: GLY E229: N, CA, C, O NEWMODEL: GLY E258: N, CA, C, O NEWMODEL: ASN E269: N, CA, ND2, OD1, CG, CB, C, O - Suitable Substitutions in PD498 for Addition of Carboxylic Acid Attachment Groups (—COOH)
- The 3D structure of PD498 was modeled as described in Example 1. Suitable locations for addition of carboxylic attachment groups (aspartatic acids and glutamic acids) were found as follows. The procedure described in Example 1 was followed. The commands performed in Insight (BIOSYM) are shown in the command files makeDEzone.bcl and makeDEzone2.bcl below:
- Conservative Substutitions:
-
- makeDEzone.bcl
- Delete Subset *
- Color Molecule Atoms * Specified Specification 255,0,255
- Zone Subset ASP :asp:od* Static monomer/
residue 10 Color_Subset 255,255,0 - Zone Subset GLU :glu:oe* Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline C-terminal residue number according to the protein
- Zone Subset CTERM :280:O Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline ACTSITE residues according to the protein
- Zone Subset ACTSITE :39,72,226 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONE Union ASP GLU
- Combine Subset ALLZONE Union ALLZONE CTERM
- Combine Subset ALLZONE Union ALLZONE ACTSITE
- #NOTE: editnextline object name according to the protein
- Combine Subset REST Difference PD498FINALMODEL ALLZONE
- List Subset REST Atom Output_File restatom.list
- List Subset REST monomer/residue Output_File restmole.list
- Color Molecule Atoms ACTSITE Specified Specification 255,0,0
- List Subset ACTSITE Atom Output_File actsiteatom.list
- List Subset ACTSITE monomer/residue Output_File actsitemole.list
- #
- Zone Subset REST5A REST Static Monomer/Residue 5-Color_Subset
- Combine Subset SUB5A Difference REST5A ACTSITE
- Combine Subset SUB5B Difference SUB5A REST
- Color Molecule Atoms SUB5B Specified Specification 255,255,255
- List Subset SUB5B Atom Output_File sub5batom.list
- List Subset SUB5B monomer/residue Output_File sub5bmole.list
- #Now identify sites for asn->asp & gln->glu substitutions and . . .
- #continue with makezone2.bcl.
- #Use grep command to identify asn/gln in restatom.list . . .
- #sub5batom.list & accsiteatom.list.
Comments: - The subset REST contains Gln33 and Asn245, SUB5B contains Gln12, Gln126, Asn209, Gln242, Asn246, Gln248 and Asn266, all of which are solvent exposed.
- The substitutions Q12E or Q12D, Q33E or Q33D, Q126E or Q126D, N209D or N209E, Q242E or Q242D, N245D or N245E, N246D or N246E, Q248E or Q248D and N266D or N266E are identified in PD498 as sites for mutagenesis within the scope of this invention. Residues are substituted below in section 2, and further analysis done:
- Non-Conservative Substitutions:
-
- makeDEzone2.bcl
- #sourcefile makezone2.bcl Claus von der Osten 961128
- #
- #having scanned lists (grep gln/asn command) and identified sites for
- #asn->asp & gln->glu substitutions
- #NOTE: editnextline object name according to protein
- Copy Object -To_Clipboard -Displace PD498FINALMODEL newmodel
- Biopolymer
- #NOTE: editnextline object name according to protein
- Blank Object On PD498FINALMODEL
- #NOTE: editnextlines with asn->asp & gln->glu positions
- Replace Residue newmodel:33 glu L
- Replace Residue newmodel:245 asp L
- Replace Residue newmodel:12 glu L
- Replace Residue newmodel:126 glu L
- Replace Residue newmodel:209 asp L
- Replace Residue newmodel:242 glu L
- Replace Residue newmodel:246 asp L
- Replace Residue newmodel:248 glu L
- Replace Residue newmodel:266 asp L
- #
- #Now repeat analysis done prior to asn->asp & gln->glu,
- #now including introduced asp & glu
- Color Molecule Atoms newmodel Specified Specification 255,0,255
- Zone Subset ASPx newmodel:asp:od* Static monomer/
residue 10 Color_Subset 255,255,0 - Zone Subset GLUx newmodel:glu:oe* Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline C-terminal residue number according to the protein
- Zone Subset CTERMx newmodel:280:O Static monomer/
residue 10 - Color_Subset 255,255,0
- #NOTE: editnextline ACTSITEx residues according to the protein
- Zone Subset ACTSITEx newmodel:39,72,226 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONEx Union ASPx GLUx
- Combine Subset ALLZONEx Union ALLZONEx CTERMx
- Combine Subset ALLZONEx Union ALLZONEx ACTSITEx
- Combine Subset RESTx Difference newmodel ALLZONEx
- List Subset RESTx Atom Output_File restxatom.list
- List Subset RESTx monomer/residue Output_File restxmole.list
- #
- Color Molecule Atoms ACTSITEx Specified Specification 255,0,0
- List Subset ACTSITEx Atom Output_File actsitexatom.list
- List Subset ACTSITEx monomer/residue Output_File actsitexmole.list
- #
- #read restxatom.list or restxmole.list to identify sites for (not_gluasp)->gluasp . . .
- #subst. if needed.
Comments: - The subset RESTx contains only two residues: A233 and G234, none of which are solvent exposed. No further mutagenesis is required to obtain complete protection of the surface. However, it may be necessary to remove some of the reactive carboxylic groups in the active site region to ensure access to the active site of PD498. Acidic residues within the subset ACTSITE are: D39, D58, D68 and D106. Of these only the two latter are solvent exposed and D39 is a functional residue. The mutations D68N, D68Q, D106N and D106Q were found suitable according to the present invention.
- Relevant Data for Example 3:
- Solvent Accessibility Data for PD498MODEL: see Example 1 Above.
Subset REST: restmole.list Subset REST: PD498FINALMODEL: 10-11, 33-35, 54-55, 129-130, 221, 233-234, 236, 240, 243, PD498FINALMODEL: 245, 262, 264-265 restatom.list Subset REST: PD498FINALMODEL: ALA 10: N, CA, C, O, CB PD498FINALMODEL: TYR 11: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: GLN 33: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: THR 34: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 35: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ILE 54: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: LYS 55: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: LYS 129: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: VAL 130: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: TYR 221: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ALA 233: N, CA, C, O, CB PD498FINALMODEL: GLY 234: N, CA, C, O PD498FINALMODEL: ALA 236: N, CA, C, O, CB PD498FINALMODEL: ALA 240: N, CA, C, O, CB PD498FINALMODEL: GLY 243: N, CA, C, O PD498FINALMODEL: ASN 245: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 262: N, CA, C, O PD498FINALMODEL: GLY 264: N, CA, C, O PD498FINALMODEL: THR 265: N, CA, C, O, CB, OG1, CG2 Subset SUB5B: sub5bmole.list Subset SUB5B: PD498FINALMODEL: 6-9, 12-13, 31-32, 51-53, 56, 81, 93-94, 97-99, 122, 126-128, PD498FINALMODEL: 131, 155-157, 159, 197-199, 209, 211, 219-220, 232, 235, PD498FINALMODEL: 237-239, 241-242, 244, 246-249, 253, 260-261, 263, 266-268 sub5batom.list Subset SUB5B: PD498FINALMODEL: PRO 6: N, CA, CD, C, O, CB, CG PD498FINALMODEL: TYR 7: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: TYR 8: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: SER 9: N, CA, C, O, CB, OG PD498FINALMODEL: GLN 12: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: TYR 13: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: SER 31: N, CA, C, O, CB, OG PD498FINALMODEL: THR 32: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: ARG 51: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: LYS 52: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: VAL 53: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: GLY 56: N, CA, C, O PD498FINALMODEL: ALA 81: N, CA, C, O, CB PD498FINALMODEL: MET 93: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: ALA 94: N, CA, C, O, CB PD498FINALMODEL: THR 97: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: LYS 98: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: ILE 99: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: TYR 122: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: GLN 126: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: GLY 127: N, CA, C, O PD498FINALMODEL: ALA 128: N, CA, C, O, CB PD498FINALMODEL: LEU 131: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: GLY 155: N, CA, C, O PD498FINALMODEL: ALA 156: N, CA, C, O, CB PD498FINALMODEL: VAL 157: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: VAL 159: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: TYR 197: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: GLY 198: N, CA, C, O PD498FINALMODEL: THR 199: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: ASN 209: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: ALA 211: N, CA, C, O, CB PD498FINALMODEL: TYR 219: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: SER 220: N, CA, C, O, CB, OG PD498FINALMODEL: VAL 232: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 235: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 237: N, CA, C, O, CB PD498FINALMODEL: LEU 238: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: LEU 239: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: SER 241: N, CA, C, O, CB, OG PD498FINALMODEL: GLN 242: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: LYS 244: N, CA, C, O, CB, CG, CD, CE, NZ PD498FINALMODEL: ASN 246: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: VAL 247: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: GLN 248: N, CA, C, O, CB, CG, CD, OE1, NE2 PD498FINALMODEL: ILE 249: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: ILE 253: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: ILE 260: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: SER 261: N, CA, C, O, CB, OG PD498FINALMODEL: THR 263: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: ASN 266: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: PHE 267: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: LYS 268: N, CA, C, O, CB, CG, CD, CE, NZ Subset ACTSITE: actsitemole.list Subset ACTSITE: PD498FINALMODEL: 36-42, 57-60, 66-80, 100-110, 115-116, 119, 132-136, 160-164, PD498FINALMODEL: 182-184, 194, 206-207, 210, 212-215, 222-231 actsiteatom.list Subset ACTSITE: PD498FINALMODEL: ALA 36: N, CA, C, O, CB PD498FINALMODEL: VAL 37: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 38: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASP 39: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: SER 40: N, CA, C, O, CB, OG PD498FINALMODEL: GLY 41: N, CA, C, O PD498FINALMODEL: VAL 42: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: TYR 57: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH PD498FINALMODEL: ASP 58: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: PHE 59: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: ILE 60: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: PRO 66: N, CA, CD, C, O, CB, CG PD498FINALMODEL: MET 67: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: ASP 68: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: LEU 69: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASN 70: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 71: N, CA, C, O PD498FINALMODEL: HIS 72: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 PD498FINALMODEL: GLY 73: N, CA, C, O PD498FINALMODEL: THR 74: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: HIS 75: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 PD498FINALMODEL: VAL 76: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ALA 77: N, CA, C, O, CB PD498FINALMODEL: GLY 78: N, CA, C, O PD498FINALMODEL: THR 79: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 80: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 100: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ALA 101: N, CA, C, O, CB PD498FINALMODEL: VAL 102: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: ARG 103: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 PD498FINALMODEL: VAL 104: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: LEU 105: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: ASP 106: N, CA, C, O, CB, CG, OD1, OD2 PD498FINALMODEL: ALA 107: N, CA, C, O, CB PD498FINALMODEL: ASN 108: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: GLY 109: N, CA, C, O PD498FINALMODEL: SER 110: N, CA, C, O, CB, OG PD498FINALMODEL: SER 115: N, CA, C, O, CB, OG PD498FINALMODEL: ILE 116: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: GLY 119: N, CA, C, O PD498FINALMODEL: ASN 132: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: LEU 133: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: SER 134: N, CA, C, O, CB, OG PD498FINALMODEL: LEU 135: N, CA, C, O, CB, CG, CD1, CD2 PD498FINALMODEL: GLY 136: N, CA, C, O PD498FINALMODEL: ALA 160: N, CA, C, O, CB PD498FINALMODEL: ALA 161: N, CA, C, O, CB PD498FINALMODEL: ALA 162: N, CA, C, O, CB PD498FINALMODEL: GLY 163: N, CA, C, O PD498FINALMODEL: ASN 164: N, CA, C, O, CB, CG, OD1, ND2 PD498FINALMODEL: VAL 182: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: GLY 183: N, CA, C, O PD498FINALMODEL: ALA 184: N, CA, C, O, CB PD498FINALMODEL: PHE 194: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ PD498FINALMODEL: PRO 206: N, CA, CD, C, O, CB, CG PD498FINALMODEL: GLY 207: N, CA, C, O PD498FINALMODEL: ILE 210: N, CA, C, O, CB, CG1, CG2, CD1 PD498FINALMODEL: SER 212: N, CA, C, O, CB, OG PD498FINALMODEL: THR 213: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: VAL 214: N, CA, C, O, CB, CG1, CG2 PD498FINALMODEL: PRO 215: N, CA, CD, C, O, CB, CG PD498FINALMODEL: MET 222: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: SER 223: N, CA, C, O, CB, OG PD498FINALMODEL: GLY 224: N, CA, C, O PD498FINALMODEL: THR 225: N, CA, C, O, CB, OG1, CG2 PD498FINALMODEL: SER 226: N, CA, C, O, CB, OG PD498FINALMODEL: MET 227: N, CA, C, O, CB, CG, SD, CE PD498FINALMODEL: ALA 228: N, CA, C, O, CB PD498FINALMODEL: SER 229: N, CA, C, O, CB, OG PD498FINALMODEL: PRO 230: N, CA, CD, C, O, CB, CG PD498FINALMODEL: HIS 231: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 Subset RESTx: restxmole.list Subset RESTX: NEWMODEL: 233-234 restxatom.list Subset RESTX: NEWMODEL: ALA 233: N, CA, C, O, CB NEWMODEL: GLY 234: N, CA, C, O - Suitable substitutions in the Arthromyces ramosus peroxidase for addition of carboxylic acid attachment groups (—COOH) Suitable locations for addition of carboxylic attachment groups (aspartatic acids and glutamic acids) in a non-hydrolytic enzyme, Arthromyces ramosus peroxidase were found as follows.
- The 3D structure of this oxido-reductase is available in the Brookhaven Databank as larp.pdb. This A. ramosus peroxidase contains 344 amino acid residues. The first eight residues are not visible in the X-ray structure: QGPGGGGG, and N143 is glycosylated.
- The procedure described in Example 1 was followed.
- The amino acid sequence of Arthromyces ramosus Peroxidase (E.C.1.11.1.7) is shown in SEQ ID NO: 4.
- The commands performed in Insight (BIOSYM) are shown in the command files makeDEzone.bcl and makeDEzone2.bcl below. The C-terminal residue is P344, the ACTSITE is defined as the heme group and the two histidines coordinating it (H56 & H184).
- Conservative Substitutions:
-
- makeDEzone.bcl
- Delete Subset *
- Color Molecule Atoms * Specified Specification 255,0,255
- Zone Subset ASP :asp:od* Static monomer/
residue 10 Color_Subset 255,255,0 - Zone Subset GLU :glu:oe* Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline C-terminal residue number according to the protein
- Zone Subset CTERM :344:O Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline ACTSITE residues according to the protein
- Zone Subset ACTSITE :HEM,56,184 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONE Union ASP GLU
- Combine Subset ALLZONE Union ALLZONE CTERM
- Combine Subset ALLZONE Union ALLZONE ACTSITE
- #NOTE: editnextline object name according to the protein
- Combine Subset REST Difference ARP ALLZONE
- List Subset REST Atom Output_File restatom.list
- List Subset REST monomer/residue Output_File restmole.list
- Color Molecule Atoms ACTSITE Specified Specification 255,0,0
- List Subset ACTSITE Atom Output_File actsiteatom.list
- List Subset ACTSITE monomer/residue Output_File actsitemole.list
- #
- Zone Subset REST5A REST Static Monomer/Residue 5-Color_Subset
- Combine Subset SUB5A Difference REST5A ACTSITE
- Combine Subset SUB5B Difference SUB5A REST
- Color Molecule Atoms SUB5B Specified Specification 255,255,255
- List Subset SUB5B Atom Output_File sub5batom.list
- List Subset SUB5B monomer/residue Output_File sub5bmole.list
- #Now identify sites for asn->asp & gln->glu substitutions and . . .
- #continue with makezone2.bcl.
- #Use grep command to identify asn/gln in restatom.list . . .
- #sub5batom.list & accsiteatom.list.
Comments: - The subset REST contains Gln70, and SUB5B contains Gln34, Asn128, Asn303 all of which are solvent exposed. The substitutions Q34E or Q34D, Q70E or Q70D, N128D or N128E and N303D or N303E are identified in A. ramosus peroxidase as sites for mutagenesis. Residues are substituted below and further analysis done:
- Non-Conservative Substitutions:
-
- makeDEzone2.bcl
- #sourcefile makezone2.bcl Claus von der Osten 961128
- #
- #having scanned lists (grep gln/asn command) and identified sites for . . .
- #asn->asp & gln->glu substitutions
- #NOTE: editnextline object name according to protein
- Copy Object -To_Clipboard -Displace ARP newmodel
- Biopolymer
- #NOTE: editnextline object name according to protein
- Blank Object On ARP
- #NOTE: editnextlines with asn->asp & gln->glu positions
- Replace Residue newmodel:34 glu L
- Replace Residue newmodel:70 glu L
- Replace Residue newmodel:128 asp L
- Replace Residue newmodel:303 asp L
- #
- #Now repeat analysis done prior to asn->asp & gln->glu, . . .
- #now including introduced asp & glu
- Color Molecule Atoms newmodel Specified Specification 255,0,255
- Zone Subset ASPx newmodel:asp:od* Static monomer/
residue 10 Color_Subset 255,255,0 - xZone Subset GLUx newmodel:glu:oe* Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline C-terminal residue number according to the protein
- Zone Subset CTERMx newmodel:344:O Static monomer/
residue 10 Color_Subset 255,255,0 - #NOTE: editnextline ACTSITEx residues according to the protein
- Zone Subset ACTSITEx newmodel:HEM,56,184 Static monomer/residue 8 Color_Subset 255,255,0
- Combine Subset ALLZONEx Union ASPx GLUx
- Combine Subset ALLZONEx Union ALLZONEx CTERMx
- Combine Subset ALLZONEx Union ALLZONEx ACTSITEx
- Combine Subset RESTx Difference newmodel ALLZONEx
- List Subset RESTx Atom Output_File restxatom.list
- List Subset RESTx monomer/residue Output_File restxmole.list
- #
- Color Molecule Atoms ACTSITEx Specified Specification 255,0,0
- List Subset ACTSITEx Atom Output_File actsitexatom.list
- List Subset ACTSITEx monomer/residue Output_File actsitexmole.list
- #
- #read restxatom.list or restxmole.list to identify sites for (not_gluasp)->gluasp . . .
- #subst. if needed.
Comments: - The subset RESTx contains only four residues: S9, S334, G335 and P336, all of which are >5% solvent exposed. The mutations S9D, S9E, S334D, S334E, G335D, G335E, P336D and P336E are proposed in A. ramosus peroxidase. Acidic residues within the subset ACTSITE are: E44, D57, D77, E87, E176, D179, E190, D202, D209, D246 and the N-terminal carboxylic acid on P344. Of these only E44, D77, E176, D179, E190, D209, D246 and the N-terminal carboxylic acid on P344 are solvent exposed. Suitable sites for mutations are E44Q, D77N, E176Q, D179N, E190Q, D209N and D246N. D246N and D246E are risky mutations due to D246's importance for binding of heme.
- The N-terminal 8 residues were not included in the calculations above, as they do not appear in the structure. None of these 8 residues, QGPGGGG, contain carboxylic groups. The following variants are proposed as possible mutations to enable attachment to this region: Q1E, Q1D, G2E, G2D, P3E, P3D, G4E, G4D, G5E, G5D, G6E, G6D, G7E, G7D, G8E, G8D.
- Relevant Data for Example 4:
- Solvent accessibility data for A. ramosus peroxidase (Note: as the first eight residues are missing in the X-ray structure, the residue numbers printed in the accessibility list below are 8 lower than those used elsewhere for residue numbering.
# ARP Thu Jan 30 15:39:05 MET 1997 # residue area SER_1 143.698257 VAL_2 54.879990 THR_3 86.932701 CYS_4 8.303715 PRO_5 126.854782 GLY_6 53 .771488 GLY_7 48.137802 GLN_8 62.288475 SER_9 79.932549 THR_10 16.299215 SER_11 81.928642 ASN_12 51.432678 SER_13 81.993019 GLN_14 92.344009 CYS_15 0.000000 CYS_16 32.317432 VAL_17 54.067810 TRP_18 6.451035 PHE_19 25.852070 ASP_20 79.033997 VAL_21 0.268693 LEU_22 22.032858 ASP_23 90.111404 ASP_24 43.993240 LEU_25 1.074774 GLN_26 25.589321 THR_27 82.698059 ASN_28 96.600883 PHE_29 32.375275 TYR_30 5.898365 GLN_31 103.380585 GLY_32 40.042034 SER_33 46.789322 LYS_34 87.161873 CYS_35 12.827215 GLU_36 51.582657 SER_37 16.378180 PRO_38 33.560043 VAL_39 6.448641 ARG_40 7.068311 LYS_41 15.291286 ILE_42 1.612160 LEU_43 1.880854 ARG_44 16.906845 ILE_45 0.000000 VAL_46 2.312647 PHE_47 2.955627 HIS_48 20.392527 ASP_49 4.238116 ALA_50 0.510757 ILE_51 1.576962 GLY_52 2.858601 PHE_53 48.633503 SER_54 8.973248 PRO_55 58.822315 ALA_56 59.782852 LEU_57 46.483955 THR_58 86.744827 ALA_59 89.515816 ALA_60 81.163239 GLY_61 70.119019 GLN_62 112.635498 PHE_63 93.522354 GLY_64 2.742587 GLY_65 13.379636 GLY_66 22.722847 GLY_67 0.000000 ALA_68 0.268693 ASP_69 12.074840 GLY_70 0.700486 SER_71 0.000000 ILE_72 0.000000 ILE_73 0.000000 ALA_74 17.304443 HIS_75 41.071186 SER_76 20.000793 ASN_77 120.855316 ILE_78 66.574982 GLU_79 2.334954 LEU_80 41.329689 ALA_81 77.370575 PHE_82 38.758774 PRO_83 131.946289 ALA_84 34.893864 ASN_85 5.457000 GLY_86 43.364151 GLY_87 51.561348 LEU_88 0.242063 THR_89 73.343575 ASP_90 130.139389 THR_91 17.863211 ILE_92 0.268693 GLU_93 92.210396 ALA_94 35.445068 LEU_95 1.343467 ARG_96 31.175611 ALA_97 44.650192 VAL_98 17.698566 GLY_99 1.471369 ILE_100 62.441463 ASN_101 107.139748 HIS_102 46.952496 GLY_103 46.559296 VAL_104 11.342628 SER_105 15.225677 PHE_106 6.422011 GLY_107 3.426864 ASP_108 10.740790 LEU_109 0.268693 ILE_110 1.880854 GLN_111 31.867456 PHE_112 0.000000 ALA_113 0.000000 THR_114 3.656114 ALA_115 8.299393 VAL_116 0.268693 GLY_117 0.268693 MET_118 3.761708 SER_119 14.536770 ASN_120 25.928799 CYS_121 0.537387 PRO_122 29.798336 GLY_123 33.080013 SER_124 17.115562 PRO_125 36.908714 ARG_126 108.274727 LEU_127 21.238588 GLU_128 53.742313 PHE_129 3.761708 LEU_130 12.928699 THR_131 10.414591 GLY_132 47.266495 ARG_133 12.247048 SER_134 63.047237 ASN_135 31.403708 SER_136 97.999619 SER_137 28.505201 GLN_138 102.845520 PRO_139 49.691917 SER_140 9.423104 PRO_141 25.724171 PRO_142 80.706665 SER_143 105.318176 LEU_144 20.154398 ILE_145 41.288322 PRO_146 10.462679 GLY_147 19.803421 PRO_148 18.130360 GLY_149 47.391853 ASN_150 60.248917 THR_151 87.887985 VAL_152 13.870322 THR_153 74.664734 ALA_154 45.251106 ILE_155 2.686934 LEU_156 28.720940 ASP_157 110.081253 ARG_158 31.228874 MET_159 1.612160 GLY_160 38.223858 ASP_161 46.293152 ALA_162 9.877204 GLY_163 34.267326 PHE_164 11.057570 SER_165 51.158882 PRO_166 62.767738 ASP_167 75.164917 GLU_168 43.334976 VAL_169 6.365355 VAL_170 2.955627 ASP_171 7.004863 LEU_172 1.880854 LEU_173 3.197691 ALA_174 0.000000 ALA_175 1.074774 HIS_176 0.502189 SER_177 0.806080 LEU_178 3.197691 ALA_179 3.337480 SER_180 0.466991 GLN_181 2.122917 GLU_182 40.996552 GLY_183 62.098671 LEU_184 23.954853 ASN_185 15.918136 SER_186 95.185318 ALA_187 59.075272 ILE_188 27.675419 PHE_189 102.799423 ARG_190 55.265549 SER_191 6.986028 PRO_192 2.686934 LEU_193 12.321225 ASP_194 2.127163 SER_195 33.556419 THR_196 33.049286 PRO_197 20.874798 GLN_198 65.729698 VAL_199 31.705818 PHE_200 4.753195 ASP_201 13.744506 THR_202 1.612160 GLN_203 16.081930 PHE_204 2.581340 TYR_205 1.880854 ILE_206 9.356181 GLU_207 0.735684 THR_208 10.685907 LEU_209 9.672962 LEU_210 2.955627 LYS_211 77.176834 GLY_212 40.968609 THR_213 78.718216 THR_214 21.738384 GLN_215 77.622299 PRO_216 25.441587 GLY_217 8.320850 PRO_218 96.972305 SER_219 64.627823 LEU_220 85.732414 GLY_221 27.361111 PHE_222 134.620178 ALA_223 3.873014 GLU_224 12.141763 GLU_225 65.129868 LEU_226 76.105843 SER_227 0.268693 PRO_228 7.017754 PHE_229 0.000000 PRO_230 47.827423 GLY_231 23.790522 GLU_232 6.643466 PHE_233 6.713862 ARG_234 18.012030 MET_235 4.598188 ARG_236 91.415581 SER_237 1.982125 ASP_238 6.246871 ALA_239 12.897283 LEU_240 76.820526 LEU_241 3.224321 ALA_242 1.400973 ARG_243 77.207176 ASP_244 36.207306 SER_245 104.023796 ARG_246 121.852341 THR_247 2.955627 ALA_248 4.810700 CYS_249 47.331306 ARG_250 62.062778 TRP_251 2.418241 GLN_252 5.554953 SER_253 38.284832 MET_254 1.124224 THR_255 0.000000 SER_256 53.758987 SER_257 37.276134 ASN_258 44.381340 GLU_259 149.565140 VAL_260 57.500389 MET_261 2.679314 GLY_262 10.175152 GLN_263 107.458916 ARG_264 36.402130 TYR_265 0.233495 ARG_266 91.179619 ALA_267 53.708500 ALA_268 6.504294 MET_269 17.122011 ALA_270 22.455158 LYS_271 73.386177 MET_272 3.959508 SER_273 15.043281 VAL_274 23.887930 LEU_275 17.196379 GLY_276 44.362202 PHE_277 68.062485 ASP_278 94.902039 ARG_279 113.549011 ASN_280 134.886017 ALA_281 72.340973 LEU_282 26.692348 THR_283 27.696728 ASP_284 72.214157 CYS_285 0.000000 SER_286 28.209335 ASP_287 64.560753 VAL_288 7.040061 ILE_289 8.665112 PRO_290 48.682365 SER_291 86.141670 ALA_292 29.031240 VAL_293 84.432014 SER_294 85.944153 ASN_295 49.017288 ASN_296 133.459198 ALA_297 57.283794 ALA_298 65.233749 PRO_299 24.751518 VAL_300 45.409184 ILE_301 8.060802 PRO_302 14.742939 GLY_303 16.589832 GLY_304 34.238071 LEU_305 24.719791 THR_306 49.356300 VAL_307 71.491821 ASP_308 130.906174 ASP_309 31.733070 ILE_310 19.581894 GLU_311 81.414574 VAL_312 94.769890 SER_313 39.688896 CYS_314 9.998511 PRO_315 120.328018 SER_316 95.364319 GLU_317 65.560959 PRO_318 100.254364 PHE_319 46.284115 PRO_320 31.328060 GLU_321 177.602249 ILE_322 33.449741 ALA_323 46.892982 THR_324 79.976471 ALA_325 36.423820 SER_326 124.467422 GLY_327 28.219524 PRO_328 107.553696 LEU_329 86.789825 PRO_330 34.287163 SER_331 75.764053 LEU_332 32.840569 ALA_333 61.516434 PRO_334 82.389992 ALA_335 6.246871 PRO_336 56.750813 HEM_337 60.435017 CA_338 2.078997 CA_339 0.000000 NAG_340 141.534668 NAG_341 186.311371 Subset REST: restmole.list Subset REST: ARP: 9, 69-70, 125, 127, 133, 299-301, 334-336 restatom.list Subset REST: ARP: SER 9: N, CA, C, O, CB, OG ARP: GLY 69: N, CA, C, O ARP: GLN 70: N, CA, C, O, CB, CG, CD, OE1, NE2 ARP: GLY 125: N, CA, C, O ARP: SER 127: N, CA, C, O, CB, OG ARP: PRO 133: N, CA, CD, C, O, CB, CG ARP: SER 299: N, CA, C, O, CB, OG ARP: ALA 300: N, CA, C, O, CB ARP: VAL 301: N, CA, C, O, CB, CG1, CG2 ARP: SER 334: N, CA, C, O, CB, OG ARP: GLY 335: N, CA, C, O ARP: PRO 336: N, CA, CD, C, O, CB, CG Subset SUB5B: sub5bmole.list Subset SUB5B: ARP: 10-11, 34, 38, 65-68, 71-72, 120-121, 123-124, 128-132, 134, 270, 274, ARP: 297-298, 302-303, 311-312, 332-333, 337-338 sub5batom.list Subset SUB5B: ARP: VAL 10: N, CA, C, O, CB, CG1, CG2 ARP: THR 11: N, CA, C, O, CB, OG1, CG2 ARP: GLN 34: N, CA, C, O, CB, CG, CD, OE1, NE2 ARP: TYR 38: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH ARP: LEU 65: N, CA, C, O, CB, CG, CD1, CD2 ARP: THR 66: N, CA, C, O, CB, OG1, CG2 ARP: ALA 67: N, CA, C, O, CB ARP: ALA 68: N, CA, C, O, CB ARP: PHE 71: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: GLY 72: N, CA, C, O ARP: PHE 120: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: ALA 121: N, CA, C, O, CB ARP: ALA 123: N, CA, C, O, CB ARP: VAL 124: N, CA, C, O, CB, CG1, CG2 ARP: ASN 128: N, CA, C, O, CB, CG, OD1, ND2 ARP: CYS 129: N, CA, C, O, CB, SG ARP: PRO 130: N, CA, CD, C, O, CB, CG ARP: GLY 131: N, CA, C, O ARP: SER 132: N, CA, C, O, CB, OG ARP: ARG 134: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: GLY 270: N, CA, C, O ARP: ARG 274: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: ILE 297: N, CA, C, O, CB, CG1, CG2, CD1 ARP: PRO 298: N, CA, CD, C, O, CB, CG ARP: SER 302: N, CA, C, O, CB, OG ARP: ASN 303: N, CA, C, O, CB, CG, OD1, ND2 ARP: GLY 311: N, CA, C, O ARP: GLY 312: N, CA, C, O ARP: THR 332: N, CA, C, O, CB, OG1, CG2 ARP: ALA 333: N, CA, C, O, CB ARP: LEU 337: N, CA, C, O, CB, CG, CD1, CD2 ARP: PRO 338: N, CA, CD, C, O, CB, CG Subset ACTSITE: actsitemole.list Subset ACTSITE: ARP: 44-61, 75-77, 79-80, 87-88, 90-96, 99, 118, 122, 126, 135, 148-149, 152-158, ARP: 163-164, 167, 176-194, 197-205, 207-209, 211-213, 216, 230-231, 241, ARP: 243-246, 249, 259, 273, 277, 280, 343-347H actsiteatom.list Subset ACTSITE: ARP: GLU 44: N, CA, C, O, CB, CG, CD, OE1, OE2 ARP: SER 45: N, CA, C, O, CB, OG ARP: PRO 46: N, CA, CD, C, O, CB, CG ARP: VAL 47: N, CA, C, O, CB, CG1, CG2 ARP: ARG 48: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: LYS 49: N, CA, C, O, CB, CG, CD, CE, NZ ARP: ILE 50: N, CA, C, O, CB, CG1, CG2, CD1 ARP: LEU 51: N, CA, C, O, CB, CG, CD1, CD2 ARP: ARG 52: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: ILE 53: N, CA, C, O, CB, CG1, CG2, CD1 ARP: VAL 54: N, CA, C, O, CB, CG1, CG2 ARP: PHE 55: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: HIS 56: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 ARP: ASP 57: N, CA, C, O, CB, CG, OD1, OD2 ARP: ALA 58: N, CA, C, O, CB ARP: ILE 59: N, CA, C, O, CB, CG1, CG2, CD1 ARP: GLY 60: N, CA, C, O ARP: PHE 61: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: GLY 75: N, CA, C, O ARP: ALA 76: N, CA, C, O, CB ARP: ASP 77: N, CA, C, O, CB, CG, OD1, OD2 ARP: SER 79: N, CA, C, O, CB, OG ARP: ILE 80: N, CA, C, O, CB, CG1, CG2, CD1 ARP: GLU 87: N, CA, C, O, CB, CG, CD, OE1, OE2 ARP: LEU 88: N, CA, C, O, CB, CG, CD1, CD2 ARP: PHE 90: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: PRO 91: N, CA, CD, C, O, CB, CG ARP: ALA 92: N, CA, C, O, CB ARP: ASN 93: N, CA, C, O, CB, CG, OD1, ND2 ARP: GLY 94: N, CA, C, O ARP: GLY 95: N, CA, C, O ARP: LEU 96: N, CA, C, O, CB, CG, CD1, CD2 ARP: THR 99: N, CA, C, O, CB, OG1, CG2 ARP: ILE 118: N, CA, C, O, CB, CG1, CG2, CD1 ARP: THR 122: N, CA, C, O, CB, OG1, CG2 ARP: MET 126: N, CA, C, O, CB, CG, SD, CE ARP: LEU 135: N, CA, C, O, CB, CG, CD1, CD2 ARP: SER 148: N, CA, C, O, CB, OG ARP: PRO 149: N, CA, CD, C, O, CB, CG ARP: LEU 152: N, CA, C, O, CB, CG, CD1, CD2 ARP: ILE 153: N, CA, C, O, CB, CG1, CG2, CD1 ARP: PRO 154: N, CA, CD, C, O, CB, CG ARP: GLY 155: N, CA, C, O ARP: PRO 156: N, CA, CD, C, O, CB, CG ARP: GLY 157: N, CA, C, O ARP: ASN 158: N, CA, C, O, CB, CG, OD1, ND2 ARP: ILE 163: N, CA, C, O, CB, CG1, CG2, CD1 ARP: LEU 164: N, CA, C, O, CB, CG, CD1, CD2 ARP: MET 167: N, CA, C, O, CB, CG, SD, CE ARP: GLU 176: N, CA, C, O, CB, CG, CD, OE1, OE2 ARP: VAL 177: N, CA, C, O, CB, CG1, CG2 ARP: VAL 178: N, CA, C, O, CB, CG1, CG2 ARP: ASP 179: N, CA, C, O, CB, CG, OD1, OD2 ARP: LEU 180: N, CA, C, O, CB, CG, CD1, CD2 ARP: LEU 181: N, CA, C, O, CB, CG, CD1, CD2 ARP: ALA 182: N, CA, C, O, CB ARP: ALA 183: N, CA, C, O, CB ARP: HIS 184: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 ARP: SER 185: N, CA, C, O, CB, OG ARP: LEU 186: N, CA, C, O, CB, CG, CD1, CD2 ARP: ALA 187: N, CA, C, O, CB ARP: SER 188: N, CA, C, O, CB, OG ARP: GLN 189: N, CA, C, O, CB, CG, CD, OE1, NE2 ARP: GLU 190: N, CA, C, O, CB, CG, CD, OE1, OE2 ARP: GLY 191: N, CA, C, O ARP: LEU 192: N, CA, C, O, CB, CG, CD1, CD2 ARP: ASN 193: N, CA, C, O, CB, CG, OD1, ND2 ARP: SER 194: N, CA, C, O, CB, OG ARP: PHE 197: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: ARG 198: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: SER 199: N, CA, C, O, CB, OG ARP: PRO 200: N, CA, CD, C, O, CB, CG ARP: LEU 201: N, CA, C, O, CB, CG, CD1, CD2 ARP: ASP 202: N, CA, C, O, CB, CG, OD1, OD2 ARP: SER 203: N, CA, C, O, CB, OG ARP: THR 204: N, CA, C, O, CB, OG1, CG2 ARP: PRO 205: N, CA, CD, C, O, CB, CG ARP: VAL 207: N, CA, C, O, CB, CG1, CG2 ARP: PHE 208: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: ASP 209: N, CA, C, O, CB, CG, OD1, OD2 ARP: GLN 211: N, CA, C, O, CB, CG, CD, OE1, NE2 ARP: PHE 212: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: TYR 213: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH ARP: THR 216: N, CA, C, O, CB, OG1, CG2 ARP: PHE 230: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: ALA 231: N, CA, C, O, CB ARP: PHE 241: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ ARP: MET 243: N, CA, C, O, CB, CG, SD, CE ARP: ARG 244: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 ARP: SER 245: N, CA, C, O, CB, OG ARP: ASP 246: N, CA, C, O, CB, CG, OD1, OD2 ARP: LEU 249: N, CA, C, O, CB, CG, CD1, CD2 ARP: TRP 259: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 ARP: TYR 273: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH ARP: MET 277: N, CA, C, O, CB, CG, SD, CE ARP: MET 280: N, CA, C, O, CB, CG, SD, CE ARP: ALA 343: N, CA, C, O, CB ARP: PRO 344: N, CA, CD, C, O, OXT, CB, CG ARP: HEM 345H: FE, NA, NB, NC, ND, CHA, CHB, CHC, CHD, C1A, C2A, C3A, C4A, CMA, CAA, CBA, CGA ARP: HEM 345H: O1A, O2A, C1B, C2B, C3B, C4B, CMB, CAB, CBB, C1C, C2C, C3C, C4C, CMC, CAC, CBC ARP: HEM 345H: C1D, C2D, C3D, C4D, CMD, CAD, CBD, CGD, O1D, O2D ARP: CA 346H: CA ARP: CA 347H: CA Subset RESTx: restxmole.list Subset RESTX NEWMODEL: 9, 334-336 restxatom.list Subset RESTX: NEWMODEL: SER 9: N, CA, C, O, CB, OG NEWMODEL: SER 334: N, CA, C, O, CB, OG NEWMODEL: GLY 335: N, CA, C, O NEWMODEL: PRO 336: N, CA, CD, C, O, CB, CG - Activation of mPEG 15,000 with N-succinimidyl Carbonate
- mPEG 15,000 was suspended in toluene (4 ml/g of mPEG) 20% was distilled off at normal pressure to dry the reactants azeotropically. Dichloromethane (dry 1 ml/g mPEG) was added when the solution was cooled to 30° C. and phosgene in toluene (1.93 M 5 mole/mole mPEG) was added and mixture stirred at room temperature overnight. The mixture was evaporated to dryness and the desired product was obtained as waxy lumps.
- After evaporation dichloromethane and toluene (1:2, dry 3 ml/g mPEG) was added to re-dissolve the white solid. N-Hydroxy succinimide (2 mole/mole mPEG) was added as a solid and then triethylamine (1.1 mole/mole mPEG). The mixture was stirred for 3 hours, initially unclear, then clear and ending with a small precipitate. The mixture was evaporated to dryness and recrystallized from ethyl acetate (10 ml) with warm filtration to remove salts and insoluble traces. The blank liquid was left for slow cooling at ambient temperature for 16 hours and then in the refrigerator overnight. The white precipitate was filtered and washed with a little cold ethyl acetate and dried to yield 98% (w/w). NMR Indicating 80-90% activation and 5 o/oo (w/w) HNEt3Cl. 1H-NMR for mPEG 15,000 (CDCl3) d 1.42 t (I=4.8 CH3 i HNEt3Cl), 2.84 s (I=3.7 succinimide), 3.10 dq (I=3.4 CH2 i HNEt3Cl), 3.38 s (I=2.7 CH3 i OMe), 3.40* dd (I=4.5 o/oo, 13C satellite), 3.64 bs (I=1364 main peak), 3.89* dd (I=4.8 o/oo, 13C satellite), 4.47 dd (I=1.8, CH2 in PEG). No change was seen after storage in a desiccator at 22° C. for 4 months.
- Activation of mPEG 5,000 with N-succinimidyl Carbonate
- Activation of mPEG 5,000 with N-succinimidyl carbonate was performed as described in Example 5.
- Construction and Expression of PD498 Variants:
- PD498 site-directed variants were constructed using the “maxi-oligonucleotide-PCR” method described by Sarkar et al., 1990, BioTechniques, 8, 404-407.
- The template plasmid was shuttle vector pPD498 or an analogue of this containing a variant of the PD498 protease gene.
- The following PD498 variants were constructed, expressed and purified.
- A: R28K
- B: R62K
- C: R169K
- D: R28K+ R62K
- E: R28K+ R169K
- F: R62K+ R169K
- G: R28K+ R69K+ R169K.
Construction of Variants - For introduction of the R28K substitution a synthetic oligonucleotide having the sequence: GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7) was used.
- A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl digestion and verified by DNA sequencing of the total 769 bp insert.
- For introduction of the R62K substitution a synthetic oligonucleotide having the sequence: CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) was used.
- A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by ClaI digestion and verified by DNA sequencing of the total 769 bp insert.
- For introduction of the R169K substitution a synthetic oligonucleotide having the sequence: CAA TGT ATC CAA AAC GTT CCA ACC AGC (SEQ ID NO: 9) was used.
- A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by the absence of an Rsa I restriction site and verified by DNA sequencing of the total 769 bp insert.
- For simultaneous introduction of the R28K and the R62K substitutions, synthetic oligonucleotides having the sequence GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7) and the sequence CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) were used simultaneously. A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl and ClaI digestion and verified by DNA sequencing of the total 769 bp insert.
- For simultaneous introduction of the R28K and the R169K substitutions, synthetic oligonucleotides having the sequence GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7) and the sequence CAA TGT ATC CAA AAC GTT CCA ACC AGC (SEQ ID NO: 9) were used simultaneously. A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl digestion and absence of an Rsa I site. The variant was verified by DNA sequencing of the total 769 bp insert.
- For simultaneous ntroduction of the R62K and the R169K substitutions, synthetic oligonucleotides having the sequence CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) and the sequence CAA TGT ATC CAA AAC GTT CCA ACC AGC (SEQ ID NO: 9) were used simultaneously. A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by ClaI digestion and absence of an Rsa I site. The variant was verified by DNA sequencing of the total 769 bp insert.
- For simultaneous introduction of the R28K, the R62K and the R169K substitutions, synthetic oligonucleotides having the sequence GGG ATG TAA CCA AGG GAA GCA GCA CTC AAA CG (SEQ ID NO: 7), the sequence CGA CTT TAT CGA TAA GGA CAA TAA CCC (SEQ ID NO: 8) and the sequence CAA TGT ATC CAA AAC GTT CCA ACC AGC (SEQ ID NO: 9) were used simultaneously. A PCR fragment of 769 bp was ligated into the pPD498 plasmid prepared by Bst E II and Bgl II digestion. Positive variants were recognized by Styl and ClaI digestion and absence of an Rsa I site. The variant was verified by DNA sequencing of the total 769 bp insert.
- Fermentation, Expression and Purification of PD498 Variants
- Vectors hosting the above mentioned PD498 variants were purified from E. coli cultures and transformed into B. subtilis in which organism the variants were fermented, expressed and purified as described in the “Materials and Methods” section above.
- Conjugation of Triple Substituted PD498 Variant with Activated mPEG 5,000
- 200 mg of triple substituted PD498 variant (i.e. the R28K+ R62K+ R169K substituted variant) was incubated in 50 mm NaBorate,
pH 10, with 1.8 g of activated mPEG 5,000 with N-succinimidyl carbonate (prepared according to Example 2), in a final volume of 20 ml. The reaction was carried out at ambient temperature using magnetic stirring. Reaction time was 1 hour. The reaction was stopped by adding DMG buffer to a final concentration of 5 mM dimethyl glutarate, 1 mM CaCl2 and 50 mM borate, pH 5.0. - The molecule weight of the obtained derivative was approximately 120 kDa, corresponding to about 16 moles of mPEG attached per mole enzyme.
- Compared to the parent enzyme, residual activity was close to 100% towards peptide substrate (succinyl-Ala-Ala-Pro-Phe-p-Nitroanilide).
- Allergenicity Trials of PD498 Variant-SPEG 5,000 in Guinea Pigs
- Dunkin Hartley guinea pigs are stimulated with 1.0 microgram PD498-SPEG 5,000 and 1.0 microgram modified variant PD498-SPEG 5,000 by intratracheal installation.
- Sera from immunized Dunkin Hartley guinea pigs are tested during the trial period in a specific IgG1 ELISA (described above) to elucidate whether the molecules could activate the immune response system giving rise to a specific IgG1 response indicating an allergenic response.
- The IgG1 levels of Dunkin Hartley guinea pigs during the trial period of 10 weeks are observed.
- Suitable Substitutions in Humicola lanuginosa Lipase for Addition of Amino Attachment Groups (—NH2)
- The 3D structure of Humicola lanuginosa lipase (SEQ ID NO: 6) is available in Brookhaven Databank as ltib.pdb. The lipase consists of 269 amino acids.
- The procedure described in Example 1 was followed. The sequence of H. lanuginosa lipase is shown below in the table listing solvent accessibility data for H. lanuginosa lipase. H. lanuginosa residue numbering is used (1-269), and the active site residues (functional site) are S146, S201 and H258. The synonym TIB is used for H. lanuginosa lipase.
- The commands performed in Insight (BIOSYM) are shown in the command files makeKzone.bcl and makeKzone2.bcl below:
- Conservative Substitutions:
-
- makeKzone.bcl
- 1 Delete Subset *
- 2 Color Molecule Atoms * Specified Specification 255,0,255
- 3 Zone Subset LYS :lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - 4 Zone Subset NTERM :1:N Static monomer/
residue 10 Color_Subset 255,255,0 - 5 #NOTE: editnextline ACTSITE residues according to the protein
- 6 Zone Subset ACTSITE :146,201,258 Static monomer/residue 8 Color_Subset 255,255,0
- 7 Combine Subset ALLZONE Union LYS NTERM
- 8 Combine Subset ALLZONE Union ALLZONE ACTSITE
- 9 #NOTE: editnextline object name according to the protein
- 10 Combine Subset REST Difference TIB ALLZONE
- 11 List Subset REST Atom Output_File restatom.list
- 12 List Subset REST monomer/residue Output_File restmole.list
- 13 Color Molecule Atoms ACTSITE Specified Specification 255,0,0
- 14 List Subset ACTSITE Atom Output_File actsiteatom.list
- 15 List Subset ACTSITE monomer/residue Output_File actsitemole.list
- 16 #
- 17 Zone Subset REST5A REST Static Monomer/Residue 5-Color_Subset
- 18 Combine Subset SUB5A Difference REST5A ACTSITE
- 19 Combine Subset SUB5B Difference SUB5A REST
- 20 Color Molecule Atoms SUB5B Specified Specification 255,255,255
- 21 List Subset SUB5B Atom Output_File sub5batom.list
- 22 List Subset SUB5B monomer/residue Output_File sub5bmole.list
- 23 #Now identify sites for lys->arg substitutions and continue with makezone2.bcl
- 24 #Use grep command to identify ARG in restatom.list, sub5batom.list & accsiteatom.list.
Comments: - In this case of H. lanuginosa (=TIB), REST contains the arginines Arg133, Arg139, Arg160, Arg179 and Arg 209, and SUB5B contains Arg118 and R125.
- These residues are all solvent exposed. The substitutions R133K, R139K, R160K, R179K, R209K, R118K and R125K are identified in TIB as sites for mutagenesis within the scope of this invention. The residues are substituted below in section 2, and further analysis done. The subset ACTSITE contains no lysines.
- Non-Conservative Substitutions:
-
- makeKzone2.bcl
- 1 #sourcefile makezone2.bcl Claus von der Osten 961128
- 2 #
- 3 #having scanned lists (grep arg command) and identified sites for lys->arg substitutions
- 4 #NOTE: editnextline object name according to protein
- 5 Copy Object -To_Clipboard -Displace TIB newmodel
- 6 Biopolymer
- 7 #NOTE: editnextline object name according to protein
- 8 Blank Object On TIB
- 9 #NOTE: editnextlines with lys->arg positions
- 10 Replace Residue newmodel:118 lys L
- 11 Replace Residue newmodel:125 lys L
- 12 Replace Residue newmodel:133 lys L
- 13 Replace Residue newmodel:139 lys L
- 14 Replace Residue newmodel:160 lys L
- 15 Replace Residue newmodel:179 lys L
- 16 Replace Residue newmodel:209 lys L
- 17 #
- 18 #Now repeat analysis done prior to arg->lys, now including introduced lysines
- 19 Color Molecule Atoms newmodel Specified Specification 255,0,255
- 20 Zone Subset LYSx newmodel:lys:NZ Static monomer/
residue 10 Color_Subset 255,255,0 - 21 Zone Subset NTERMx newmodel:l:N Static monomer/
residue 10 Color_Subset 255,255,0 - 22 #NOTE: editnextline ACTSITEx residues according to the protein
- 23 Zone Subset ACTSITEx newmodel:146,201,258 Static monomer/residue 8 Color_Subset 255,255,0
- 24 Combine Subset ALLZONEx Union LYSx NTERMx
- 25 Combine Subset ALLZONEx Union ALLZONEx ACTSITEx
- 26 Combine Subset RESTx Difference newmodel ALLZONEx
- 27 List Subset RESTx Atom Output_File restxatom.list
- 28 List Subset RESTx monomer/residue Output_File restxmole.list
- 29 #
- 30 Color Molecule Atoms ACTSITEx Specified Specification 255,0,0
- 31 List Subset ACTSITEx Atom Output_File actsitexatom.list
- 32 List Subset ACTSITEx monomer/residue Output_File actsitexmole.list
- 33 #
- 34 #read restxatom.list or restxmole.list to identify sites for (not_arg)->lys subst. if needed.
Comments: - Of the residues in RESTx, the following are >5% exposed (see lists below): 18, 31-33, 36, 38, 40, 48, 50, 56-62, 64, 78, 88, 91-93, 104-106, 120, 136, 225, 227-229, 250, 262, 268. Of these three are cysteines involved in disulfide bridge formation, and consequently for structural reasons excluded from the residues to be mutated. The following mutations are proposed in H. lanuginosa lipase (TIB): A18K, G31K, T32K, N33K, G38K, A40K, D48K, T50K, E56K, D57K, S58K, G59K, V60K, G61K, D62K, T64K, L78K, N88K, G91K, N92K, L93K, S105K, G106K, V120K, P136K, G225K, L227K, V228K, P229K, P250K, F262K.
- Relevant Data for Example 10:
# TIBNOH2O # residue area GLU_1 110.792610 VAL_2 18.002457 SER_3 53.019516 GLN_4 85.770164 ASP_5 107.565826 LEU_6 33.022659 PHE_7 34.392754 ASN_8 84.855331 GLN_9 39.175591 PHE_10 2.149547 ASN_11 40.544380 LEU_12 27.648788 PHE_13 2.418241 ALA_14 4.625293 GLN_15 28.202387 TYR_16 0.969180 SER_17 0.000000 ALA_18 7.008336 ALA_19 0.000000 ALA_20 0.000000 TYR_21 6.947358 CYS_22 8.060802 GLY_23 32.147034 LYS_24 168.890747 ASN_25 8.014721 ASN_26 11.815564 ASP_27 92.263428 ALA_28 18.206699 PRO_29 83.188431 ALA_30 69.428421 GLY_31 50.693439 THR_32 52.171135 ASN_33 111.230743 ILE_34 2.801945 THR_35 82.130569 CYS_36 17.269245 THR_37 96.731941 GLY_38 77.870995 ASN_39 123.051003 ALA_40 27.985256 CYS_41 0.752820 PRO_42 46.258949 GLU_43 69.773987 VAL_44 0.735684 GLU_45 77.169510 LYS_46 141.213562 ALA_47 10.249716 ASP_48 109.913902 ALA_49 2.602721 THR_50 32.012184 PHE_51 8.255627 LEU_52 60.093613 TYR_53 77.877937 SER_54 26.980494 PHE_55 10.747735 GLU_56 112.689758 ASP_57 92.064278 SER_58 32.990780 GLY_59 53.371807 VAL_60 83.563644 GLY_61 69.625633 ASP_62 75.520988 VAL_63 4.030401 THR_64 8.652839 GLY_65 0.000000 PHE_66 0.268693 LEU_67 11.822510 ALA_68 0.537387 LEU_69 30.243870 ASP_70 0.000000 ASN_71 84.101044 THR_72 89.271126 ASN_73 70.742401 LYS_74 98.319168 LEU_75 8.329495 ILE_76 5.197878 VAL_77 0.806080 LEU_78 5.293978 SER_79 0.000000 PHE_80 2.079151 ARG_81 41.085312 GLY_82 1.471369 SER_83 43.794014 ARG_84 100.261627 SER_85 70.607552 ILE_86 59.696865 GLU_87 136.510773 ASN_88 119.376373 TRP_89 102.851227 ILE_90 78.068588 GLY_91 60.783607 ASN_92 45.769428 LEU_93 134.228363 ASN_94 101.810959 PHE_95 41.212212 ASP_96 79.645950 LEU_97 25.281572 LYS_98 88.840263 GLU_99 132.377090 ILE_100 9.135575 ASN_101 63.444527 ASP_102 88.652847 ILE_103 33.470661 CYS_104 11.553816 SER_105 99.461174 GLY_106 40.325161 CYS_107 4.433561 ARG_108 97.450104 GLY_109 1.343467 HIS_110 4.652464 ASP_111 37.023655 GLY_112 29.930408 PHE_113 14.976435 THR_114 10.430954 SER_115 40.606895 SER_116 13.462922 TRP_117 10.747735 ARG_118 114.364281 SER_119 46.880249 VAL_120 13.434669 ALA_121 18.258261 ASP_122 110.753098 THR_123 69.641922 LEU_124 17.090784 ARG_125 73.929977 GLN_126 101.320190 LYS_127 84.450241 VAL_128 6.448641 GLU_129 47.700993 ASP_130 75.529091 ALA_131 11.340775 VAL_132 27.896025 ARG_133 153.136490 GLU_134 132.140594 HIS_135 54.553406 PRO_136 97.386963 ASP_137 22.653191 TYR_138 35.392658 ARG_139 74.321243 VAL_140 10.173222 VAL_141 0.233495 PHE_142 3.224321 THR_143 0.000000 GLY_144 0.000000 HIS_145 4.514527 SER_146 15.749787 LEU_147 40.709171 GLY_148 0.000000 GLY_149 0.000000 ALA_150 0.537387 LEU_151 22.838938 ALA_152 0.268693 THR_153 18.078798 VAL_154 7.254722 ALA_155 0.000000 GLY_156 0.000000 ALA_157 15.140230 ASP_158 41.645477 LEU_159 6.144750 ARG_160 41.939716 GLY_161 68.978180 ASN_162 68.243805 GLY_163 79.181274 TYR_164 36.190247 ASP_165 103.068283 ILE_166 0.000000 ASP_167 24.326443 VAL_168 4.299094 PHE_169 0.466991 SER_170 3.339332 TYR_171 0.000000 GLY_172 0.000000 ALA_173 12.674671 PRO_174 13.117888 ARG_175 10.004488 VAL_176 21.422220 GLY_177 2.680759 ASN_178 21.018063 ARG_179 110.282166 ALA_180 33.210381 PHE_181 4.567788 ALA_182 3.897251 GLU_183 76.354004 PHE_184 71.225983 LEU_185 24.985012 THR_186 47.023815 VAL_187 98.244606 GLN_188 54.152954 THR_189 88.660645 GLY_190 24.792120 GLY_191 10.726818 THR_192 45.458744 LEU_193 16.633211 TYR_194 34.829491 ARG_195 29.030851 ILE_196 1.973557 THR_197 3.493014 HIS_198 1.532270 THR_199 34.785877 ASN_200 39.789238 ASP_201 0.000000 ILE_202 31.168434 VAL_203 29.521076 PRO_204 3.515322 ARG_205 44.882454 LEU_206 51.051746 PRO_207 12.575329 PRO_208 43.259636 ARG_209 113.700233 GLU_210 154.628540 PHE_211 112.505188 GLY_212 30.084938 TYR_213 3.268936 SER_214 12.471436 HIS_215 23.354481 SER_216 16.406200 SER_217 14.665598 PRO_218 17.240993 GLU_219 13.145291 TYR_220 18.718306 TRP_221 39.229233 ILE_222 5.105175 LYS_223 120.739983 SER_224 15.407301 GLY_225 29.306646 THR_226 66.806862 LEU_227 122.682808 VAL_228 60.923004 PRO_229 104.620377 VAL_230 23.398251 THR_231 63.372971 ARG_232 80.357857 ASN_233 89.255066 ASP_234 43.011250 ILE_235 2.114349 VAL_236 45.140491 LYS_237 105.651306 ILE_238 24.671705 GLU_239 116.891907 GLY_240 31.965794 ILE_241 46.278099 ASP_242 28.963699 ALA_243 25.158146 THR_244 98.351440 GLY_245 43.842186 GLY_246 0.700486 ASN_247 3.926274 ASN_248 51.047890 GLN_249 66.699188 PRO_250 132.414047 ASN_251 70.213730 ILE_252 141.498062 PRO_253 59.089233 ASP_254 59.010895 ILE_255 63.298943 PRO_256 78.608688 ALA_257 0.806080 HIS_258 3.761708 LEU_259 50.747856 TRP_260 35.229710 TYR_261 5.440791 PHE_262 36.457939 GLY_263 22.071375 LEU_264 109.148178 ILE_265 2.418241 GLY_266 17.730062 THR_267 68.217873 CYS_268 15.418195 LEU_269 165.990997 Subset REST: restmole.list Subset REST: TIB: 5, 8-9, 13-14, 16, 18-20, 31-34, 36, 38, 40, 48-50, 56-66, 68, 76-79, 88, 91-93, TIB: 100-107, 116-117, 119-121, 132-134, 136, 139-142, 154-169, 177-185, TIB: 187, 189-191, 207-212, 214-216, 225, 227-229, 241-244, 250, 262, 268 restatom.list Subset REST: TIB: ASP 5: N, CA, C, O, CB, CG, OD1, OD2 TIB: ASN 8: N, CA, C, O, CB, CG, OD1, ND2 TIB: GLN 9: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: PHE 13: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ALA 14: N, CA, C, O, CB TIB: TYR 16: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: ALA 18: N, CA, C, O, CB TIB: ALA 19: N, CA, C, O, CB TIB: ALA 20: N, CA, C, O, CB TIB: GLY 31: N, CA, C, O TIB: THR 32: N, CA, C, O, CB, OG1, CG2 TIB: ASN 33: N, CA, C, O, CB, CG, OD1, ND2 TIB: ILE 34: N, CA, C, O, CB, CG1, CG2, CD1 TIB: CYS 36: N, CA, C, O, CB, SG TIB: GLY 38: N, CA, C, O TIB: ALA 40: N, CA, C, O, CB TIB: ASP 48: N, CA, C, O, CB, CG, OD1, OD2 TIB: ALA 49: N, CA, C, O, CB TIB: THR 50: N, CA, C, O, CB, OG1, CG2 TIB: GLU 56: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: ASP 57: N, CA, C, O, CB, CG, OD1, OD2 TIB: SER 58: N, CA, C, O, CB, OG TIB: GLY 59: N, CA, C, O TIB: VAL 60: N, CA, C, O, CB, CG1, CG2 TIB: GLY 61: N, CA, C, O TIB: ASP 62: N, CA, C, O, CB, CG, OD1, OD2 TIB: VAL 63: N, CA, C, O, CB, CG1, CG2 TIB: THR 64: N, CA, C, O, CB, OG1, CG2 TIB: GLY 65: N, CA, C, O TIB: PHE 66: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ALA 68: N, CA, C, O, CB TIB: ILE 76: N, CA, C, O, CB, CG1, CG2, CD1 TIB: VAL 77: N, CA, C, O, CB, CG1, CG2 TIB: LEU 78: N, CA, C, O, CB, CG, CD1, CD2 TIB: SER 79: N, CA, C, O, CB, OG TIB: ASN 88: N, CA, C, O, CB, CG, OD1, ND2 TIB: GLY 91: N, CA, C, O TIB: ASN 92: N, CA, C, O, CB, CG, OD1, ND2 TIB: LEU 93: N, CA, C, O, CB, CG, CD1, CD2 TIB: ILE 100: N, CA, C, O, CB, CG1, CG2, CD1 TIB: ASN 101: N, CA, C, O, CB, CG, OD1, ND2 TIB: ASP 102: N, CA, C, O, CB, CG, OD1, OD2 TIB: ILE 103: N, CA, C, O, CB, CG1, CG2, CD1 TIB: CYS 104: N, CA, C, O, CB, SG TIB: SER 105: N, CA, C, O, CB, OG TIB: GLY 106: N, CA, C, O TIB: CYS 107: N, CA, C, O, CB, SG TIB: SER 116: N, CA, C, O, CB, OG TIB: TRP 117: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 TIB: SER 119: N, CA, C, O, CB, OG TIB: VAL 120: N, CA, C, O, CB, CG1, CG2 TIB: ALA 121: N, CA, C, O, CB TIB: VAL 132: N, CA, C, O, CB, CG1, CG2 TIB: ARG 133: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLU 134: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: PRO 136: N, CA, CD, C, O, CB, CG TIB: ARG 139: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: VAL 140: N, CA, C, O, CB, CG1, CG2 TIB: VAL 141: N, CA, C, O, CB, CG1, CG2 TIB: PHE 142: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: VAL 154: N, CA, C, O, CB, CG1, CG2 TIB: ALA 155: N, CA, C, O, CB TIB: GLY 156: N, CA, C, O TIB: ALA 157: N, CA, C, O, CB TIB: ASP 158: N, CA, C, O, CB, CG, OD1, OD2 TIB: LEU 159: N, CA, C, O, CB, CG, CD1, CD2 TIB: ARG 160: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLY 161: N, CA, C, O TIB: ASN 162: N, CA, C, O, CB, CG, OD1, ND2 TIB: GLY 163: N, CA, C, O TIB: TYR 164: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: ASP 165: N, CA, C, O, CB, CG, OD1, OD2 TIB: ILE 166: N, CA, C, O, CB, CG1, CG2, CD1 TIB: ASP 167: N, CA, C, O, CB, CG, OD1, OD2 TIB: VAL 168: N, CA, C, O, CB, CG1, CG2 TIB: PHE 169: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: GLY 177: N, CA, C, O TIB: ASN 178: N, CA, C, O, CB, CG, CD1, ND2 TIB: ARG 179: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: ALA 180: N, CA, C, O, CB TIB: PHE 181: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ALA 182: N, CA, C, O, CB TIB: GLU 183: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: PHE 184: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: LEU 185: N, CA, C, O, CB, CG, CD1, CD2 TIB: VAL 187: N, CA, C, O, CB, CG1, CG2 TIB: THR 189: N, CA, C, O, CB, OG1, CG2 TIB: GLY 190: N, CA, C, O TIB: GLY 191: N, CA, C, O TIB: PRO 207: N, CA, CD, C, O, CB, CG TIB: PRO 208: N, CA, CD, C, O, CB, CG TIB: ARG 209: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLU 210: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: PHE 211: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: GLY 212: N, CA, C, O TIB: SER 214: N, CA, C, O, CB, OG TIB: HIS 215: N, CA, C, O, CB, CG, ND1, CD2, CE1, ME2 TIB: SER 216: N, CA, C, O, CB, OG TIB: GLY 225: N, CA, C, O TIB: LEU 227: N, CA, C, O, CB, CG, CD1, CD2 TIB: VAL 228: N, CA, C, O, CB, CG1, CG2 TIB: PRO 229: N, CA, CD, C, O, CB, CG TIB: ILE 241: N, CA, C, O, CB, CG1, CG2, CD1 TIB: ASP 242: N, CA, C, O, CB, CG, OD1, OD2 TIB: ALA 243: N, CA, C, O, CB TIB: THR 244: N, CA, C, O, CB, OG1, CG2 TIB: PRO 250: N, CA, CD, C, O, CB, CG TIB: PHE 262: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: CYS 268: N, CA, C, O, CB, SG Subset SUB5B: sub5mole.list Subset SUB5B: TIB: 3-4, 6-7, 10-12, 15, 22-23, 25-30, 35, 37, 39, 41-42, 44-47, 51-55, 67, 69-70, TIB: 72, 74-75, 94-99, 108-112, 114-115, 118, 122-126, 128-131, 135, 137-138, TIB: 186, 188, 192-195, 213, 217-219, 223-224, 230-231, 234-235, 238-240, TIB: 245, 269 sub5batom.list Subset SUB5B: TIB: SER 3: N, CA, C, O, CB, OG TIB: GLN 4: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: LEU 6: N, CA, C, O, CB, CG, CD1, CD2 TIB: PHE 7: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: PHE 10: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ASN 11: N, CA, C, O, CB, CG, OD1, ND2 TIB: LEU 12: N, CA, C, O, CB, CG, CD1, CD2 TIB: GLN 15: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: CYS 22: N, CA, C, O, CB, SG TIB: GLY 23: N, CA, C, O TIB: ASN 25: N, CA, C, O, CB, CG, OD1, ND2 TIB: ASN 26: N, CA, C, O, CB, CG, OD1, ND2 TIB: ASP 27: N, CA, C, O, CB, CG, OD1, OD2 TIB: ALA 28: N, CA, C, O, CB TIB: PRO 29: N, CA, CD, C, O, CB, CG TIB: ALA 30: N, CA, C, O, CB TIB: THR 35: N, CA, C, O, CB, OG1, CG2 TIB: THR 37: N, CA, C, O, CB, OG1, CG2 TIB: ASN 39: N, CA, C, O, CB, CG, OD1, ND2 TIB: CYS 41: N, CA, C, O, CB, SG TIB: PRO 42: N, CA, CD, C, O, CB, CG TIB: VAL 44: N, CA, C, O, CB, CG1, CG2 TIB: GLU 45: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: LYS 46: N, CA, C, O, CB, CG, CD, CE, NZ TIB: ALA 47: N, CA, C, O, CB TIB: PHE 51: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: LEU 52: N, CA, C, O, CB, CG, CD1, CD2 TIB: TYR 53: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: SER 54: N, CA, C, O, CB, OG TIB: PHE 55: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: LEU 67: N, CA, C, O, CB, CG, CD1, CD2 TIB: LEU 69: N, CA, C, O, CB, CG, CD1, CD2 TIB: ASP 70: N, CA, C, O, CB, CG, OD1, OD2 TIB: THR 72: N, CA, C, O, CB, OG1, CG2 TIB: LYS 74: N, CA, C, O, CB, CG, CD, CE, NZ TIB: LEU 75: N, CA, C, O, CB, CG, CD1, CD2 TIB: ASN 94: N, CA, C, O, CB, CG, OD1, ND2 TIB: PHE 95: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ASP 96: N, CA, C, O, CB, CG, OD1, OD2 TIB: LEU 97: N, CA, C, O, CB, CG, CD1, CD2 TIB: LYS 98: N, CA, C, O, CB, CG, CD, CE, NZ TIB: GLU 99: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: ARG 108: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLY 109: N, CA, C, O TIB: HIS 110: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 TIB: ASP 111: N, CA, C, O, CB, CG, OD1, OD2 TIB: GLY 112: N, CA, C, O TIB: THR 114: N, CA, C, O, CB, OG1, CG2 TIB: SER 115: N, CA, C, O, CB, OG TIB: ARG 118: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: ASP 122: N, CA, C, O, CB, CG, OD1, OD2 TIB: THR 123: N, CA, C, O, CB, OG1, CG2 TIB: LEU 124: N, CA, C, O, CB, CG, CD1, CD2 TIB: ARG 125: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLN 126: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: VAL 128: N, CA, C, O, CB, CG1, CG2 TIB: GLU 129: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: ASP 130: N, CA, C, O, CB, CG, OD1, OD2 TIB: ALA 131: N, CA, C, O, CB TIB: HIS 135: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 TIB: ASP 137: N, CA, C, O, CB, CG, OD1, OD2 TIB: TYR 138: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: THR 186: N, CA, C, O, CB, OG1, CG2 TIB: GLN 188: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: THR 192: N, CA, C, O, CB, OG1, CG2 TIB: LEU 193: N, CA, C, O, CB, CG, CD1, CD2 TIB: TYR 194: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: ARG 195: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: TYR 213: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: SER 217: N, CA, C, O, CB, OG TIB: PRO 218: N, CA, CD, C, O, CB, CG TIB: GLU 219: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: LYS 223: N, CA, C, O, CB, CG, CD, CE, NZ TIB: SER 224: N, CA, C, O, CB, OG TIB: VAL 230: N, CA, C, O, CB, CG1, CG2 TIB: THR 231: N, CA, C, O, CB, OG1, CG2 TIB: ASP 234: N, CA, C, O, CB, CG, OD1, OD2 TIB: ILE 235: N, CA, C, O, CB, CG1, CG2, CD1 TIB: ILE 238: N, CA, C, O, CB, CG1, CG2, CD1 TIB: GLU 239: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: GLY 240: N, CA, C, O TIB: GLY 245: N, CA, C, O TIB: LEU 269: N, CA, C, O, CB, OXT, CG, CD1, CD2 Subset ACTSITE: actsitemole.list Subset ACTSITE: TIB: 17, 21, 80-87, 89-90, 113, 143-153, 170-176, 196-206, 221-222, 226, 246-249, TIB: 251-261, 263-267 actsiteatom.list Subset ACTSITE: TIB: SER 17: N, CA, C, O, CB, OG TIB: TYR 21: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: PHE 80: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: ARG 81: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: GLY 82: N, CA, C, O TIB: SER 83: N, CA, C, O, CB, OG TIB: ARG 84: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: SER 85: N, CA, C, O, CB, OG TIB: ILE 86: N, CA, C, O, CB, CG1, CG2, CD1 TIB: GLU 87: N, CA, C, O, CB, CG, CD, OE1, OE2 TIB: TRP 89: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 TIB: ILE 90: N, CA, C, O, CB, CG1, CG2, CD1 TIB: PHE 113: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ TIB: THR 143: N, CA, C, O, CB, OG1, CG2 TIB: GLY 144: N, CA, C, O TIB: HIS 145: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 TIB: SER 146: N, CA, C, O, CB, OG TIB: LEU 147: N, CA, C, O, CB, CG, CD1, CD2 TIB: GLY 148: N, CA, C, O TIB: GLY 149: N, CA, C, O TIB: ALA 150: N, CA, C, O, CB TIB: LEU 151: N, CA, C, O, CB, CG, CD1, CD2 TIB: ALA 152: N, CA, C, O, CB TIB: THR 153: N, CA, C, O, CB, OG1, CG2 TIB: SER 170: N, CA, C, O, CB, OG TIB: TYR 171: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: GLY 172: N, CA, C, O TIB: ALA 173: N, CA, C, O, CB TIB: PRO 174: N, CA, CD, C, O, CB, CG TIB: ARG 175: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: VAL 176: N, CA, C, O, CB, CG1, CG2 TIB: ILE 196: N, CA, C, O, CB, CG1, CG2, CD1 TIB: THR 197: N, CA, C, O, CB, OG1, CG2 TIB: HIS 198: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 TIB: THR 199: N, CA, C, O, CB, OG1, CG2 TIB: ASN 200: N, CA, C, O, CB, CG, CD1, ND2 TIB: ASP 201: N, CA, C, O, CB, CG, OD1, OD2 TIB: ILE 202: N, CA, C, O, CB, CG1, CG2, CD1 TIB: VAL 203: N, CA, C, O, CB, CG1, CG2 TIB: PRO 204: N, CA, CD, C, O, CB, CG TIB: ARG 205: N, CA, C, O, CB, CG, CD, NE, CZ, NH1, NH2 TIB: LEU 206: N, CA, C, O, CB, CG, CD1, CD2 TIB: TRP 221: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 TIB: ILE 222: N, CA, C, O, CB, CG1, CG2, CD1 TIB: THR 226: N, CA, C, O, CB, OG1, CG2 TIB: GLY 246: N, CA, C, O TIB: ASN 247: N, CA, C, O, CB, CG, OD1, ND2 TIB: ASN 248: N, CA, C, O, CB, CG, OD1, ND2 TIB: GLN 249: N, CA, C, O, CB, CG, CD, OE1, NE2 TIB: ASN 251: N, CA, C, O, CB, CG, OD1, ND2 TIB: ILE 252: N, CA, C, O, CB, CG1, CG2, CD1 TIB: PRO 253: N, CA, CD, C, O, CB, CG TIB: ASP 254: N, CA, C, O, CB, CG, OD1, OD2 TIB: ILE 255: N, CA, C, O, CB, CG1, CG2, CD1 TIB: PRO 256: N, CA, CD, C, O, CB, CG TIB: ALA 257: N, CA, C, O, CB TIB: HIS 258: N, CA, C, O, CB, CG, ND1, CD2, CE1, NE2 TIB: LEU 259: N, CA, C, O, CB, CG, CD1, CD2 TIB: TRP 260: N, CA, C, O, CB, CG, CD1, CD2, NE1, CE2, CE3, CZ2, CZ3, CH2 TIB: TYR 261: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH TIB: GLY 263: N, CA, C, O TIB: LEU 264: N, CA, C, O, CB, CG, CD1, CD2 TIB: ILE 265: N, CA, C, O, CB, CG1, CG2, CD1 TIB: GLY 266: N, CA, C, O TIB: THR 267: N, CA, C, O, CB, OG1, CG2 Subset RESTX: restxmole.list Subset RESTX: NEWMODEL: 14, 16, 18-20, 31-34, 36, 38, 40, 48-50, 56-66, 68, 78-79, 88, 91-93, NEWMODEL: 104-106, 120, 136, 225, 227-229, 250, 262, 268 restxatom.list Subset RESTX: NEWMODEL: ALA 14: N, CA, C, O, CB NEWMODEL: TYR 16: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ, OH NEWMODEL: ALA 18: N, CA, C, O, CB NEWMODEL: ALA 19: N, CA, C, O, CB NEWMODEL: ALA 20: N, CA, C, O, CB NEWMODEL: GLY 31: N, CA, C, O NEWMODEL: THR 32: N, CA, C, O, CB, OG1, CG2 NEWMODEL: ASN 33: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: ILE 34: N, CA, C, O, CB, CG1, CG2, CD1 NEWMODEL: CYS 36: N, CA, C, O, CB, SG NEWMODEL: GLY 38: N, CA, C, O NEWMODEL: ALA 40: N, CA, C, O, CB NEWMODEL: ASP 48: N, CA, C, O, CB, CG, OD1, OD2 NEWMODEL: ALA 49: N, CA, C, O, CB NEWMODEL: THR 50: N, CA, C, O, CB, OG1, CG2 NEWMODEL: GLU 56: N, CA, C, O, CB, CG, CD, OE1, OE2 NEWMODEL: ASP 57: N, CA, C, O, CB, CG, OD1, OD2 NEWMODEL: SER 58: N, CA, C, O, CB, OG NEWMODEL: GLY 59: N, CA, C, O NEWMODEL: VAL 60: N, CA, C, O, CB, CG1, CG2 NEWMODEL: GLY 61: N, CA, C, O NEWMODEL: ASP 62: N, CA, C, O, CB, CG, OD1, OD2 NEWMODEL: VAL 63: N, CA, C, O, CB, CG1, CG2 NEWMODEL: THR 64: N, CA, C, O, CB, OG1, CG2 NEWMODEL: GLY 65: N, CA, C, O NEWMODEL: PHE 66: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ NEWMODEL: ALA 68: N, CA, C, O, CB NEWMODEL: LEU 78: N, CA, C, O, CB, CG, CD1, CD2 NEWMODEL: SER 79: N, CA, C, O, CB, OG NEWMODEL: ASN 88: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: GLY 91: N, CA, C, O NEWMODEL: ASN 92: N, CA, C, O, CB, CG, OD1, ND2 NEWMODEL: LEU 93: N, CA, C, O, CB, CG, CD1, CD2 NEWMODEL: CYS 104: N, CA, C, O, CB, SG NEWMODEL: SER 105: N, CA, C, O, CB, OG NEWMODEL: GLY 106: N, CA, C, O NEWMODEL: VAL 120: N, CA, C, O, CB, CG1, CG2 NEWMODEL: PRO 136: N, CA, CD, C, O, CB, CG NEWMODEL: GLY 225: N, CA, C, O NEWMODEL: LEU 227: N, CA, C, O, CB, CG, CD1, CD2 NEWMODEL: VAL 228: N, CA, C, O, CB, CG1, CG2 NEWMODEL: PRO 229: N, CA, CD, C, O, CB, CG NEWMODEL: PRO 250: N, CA, CD, C, O, CB, CG NEWMODEL: PHE 262: N, CA, C, O, CB, CG, CD1, CD2, CE1, CE2, CZ NEWMODEL: CYS 268: N, CA, C, O, CB, SG - Providing a Lipase Variant E87K+ D254K
- The Humicola lanuginosa lipase variant E87K+ D254K was constructed, expressed and purified as described in WO 92/05249.
- Lipase-S-PEG 15,000 Conjugate
- The lipase variant E87K+ D254K-SPEG conjugate was prepared as described in Example 7, except that the enzyme is the Humicola lanuginosa lipase variant (E87K+ D254K) described in Example 11 and the polymer is mPEG 15,000.
- Immunogenicity Assessed as IgG1 of Lipase Variant (D87K+ D254K) in Balb/C Mice
- Balb/c mice were immunized by subcutaneous injection of:
-
- (i) 50 microliters 0.9% (wt/vol) NaCl solution (control group, 8 mice) (control),
- (ii) 50 microliters 0.9% (wt/vol) NaCl solution containing 25 micrograms of protein of a Humicola lanuginosa lipase variant (E87K+ D254K) (group 1, 8 mice) (unmodified lipase variant),
- (iii) 50% 0.9% (wt/vol) NaCl solution containing a Humicola lanugoinosa lipase variant substituted in position D87K+ D254K and coupled to an N-succinimidyl carbonate activated mPEG 15,000(group 2, 8 mice) (lipase-SPEG 15,000).
- The amount of protein for each batch was measured by optical density measurements. Blood samples (200 microliters) were collected from the eyes one week after the immunization, but before the following immunization. Serum was obtained by blood clotting, and centrifugation.
- The IgG1 response was determined by use of the Balb/C mice IgG1 ELISA method as described above.
- Results:
- Five weekly immunizations were required to elicit a detectable humoral response to the unmodified Humicola lanuginosa variant. The antibody titers elicited by the conjugate (i.e. lipase-SPEG15,000 ranged between 960 and 1920, and were only 2 to 4× lower than the antibody titer of 3840 that was elicited by unmodified HL82-LIPOLASE (figure to the left).
- The results of the tests are shown in
FIG. 1 . - As will be apparent to those skilled in the art, in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.
Claims (15)
1-35. (canceled)
36. A conjugate comprising a lipase moiety conjugated to one or more polymers, wherein the lipase moiety is a Humicola lanuginosa lipase which comprises one or more of the following substitutions:
A18K, G31K, T32K, N33K, G38K, A40K, D48K, T50K, E56K, D57K, S58K, G59K, V60K, G61K, D62K, T64K, L78K, N88K, G91K, N92K, L93K, S105K, G106K, R118K, V120K, R125K, R133K, P136K, R139K, R160K, R179K, R209K, G225K, L227K, V228K, P229K, P250K and F262K.
37. The conjugate of claim 36 , wherein the Humicola lanuginosa lipase has an amino acid sequence of SEQ ID NO: 6.
38. The conjugate of claim 36 , wherein the polymer(s) have a molecular weight from 1 to 60 kDa.
39. The conjugate of claim 36 , wherein the polymer(s) are natural or synthetic homo or heteropolymers.
40. The conjugate of claim 36 , wherein the polymer(s) are selected from the group consisting of polyols, polyamines, polycarboxyl acids and polymers comprising a hydroxyl group and an amine group.
41. The conjugate of claim 36 , wherein the polymer(s) are selected from the group consisting of polyalkylene oxides (PAO), PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG), branched PEGs, polyvinyl alcohols (PVA), poly-carboxylates, polyvinylpyrolidones, poly-D,L-amino acids, polyethylene-co-maleic acid anhydride, polystyrene-co-malic acid anhydrides, dextrans, heparins, homologous albumins, celluloses, hydrolysates of chitosan, starches, glycogen, agaroses and derivatives thereof, guar gum, pullulan, inulin, xanthan gum, carrageenin, pectin, alginic acid hydrolysates and bio-polymers.
42. The conjugate of claim 36 , wherein the polymer(s) are polyalkylene glycols (PAG) or methoxypolyethylene glycols (mPEG).
43. The conjugate of claim 36 , wherein the polymer(s) are selected from the group consisting of polyethylene glycols (PEG), polypropylene glycols and carboxymethyl-dextrans.
44. The conjugate of claim 36 , wherein the polymer(s) are selected from the group consisting of methylcellulose, carboxymethylcellulose, ethylcellulose, hydroxyethylcellulose carboxyethylcellulose and hydroxypropylcellulose.
45. The conjugate of claim 36 , wherein the polymer(s) are hydroxyethyl-starches or hydroxypropyl-starches.
46. The conjugate of claim 36 , wherein the polymer(s) are methoxypolyethylene glycols (mPEG).
47. A detergent composition comprising a conjugate of claim 36 and a surfactant.
48. A skin care composition, comprising a conjugate of claim 36 and ingredients used in skin care products.
49. A pharmaceutical composition comprising a conjugate of claim 36 and further comprising ingredients used in pharmaceuticals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/623,292 US20050079593A1 (en) | 1997-02-06 | 2003-07-18 | Modified enzymes having polymer conjugates |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK13597 | 1997-02-06 | ||
DK0135/97 | 1997-02-06 | ||
PCT/DK1998/000046 WO1998035026A1 (en) | 1997-02-06 | 1998-02-06 | Polypeptide-polymer conjugates having added and/or removed attachment groups |
US09/024,532 US6245901B1 (en) | 1997-02-06 | 1998-02-17 | Modified polypeptide |
US09/705,185 US6623950B1 (en) | 1997-02-06 | 2000-11-02 | Modified enzymes having polymer conjugates |
US10/623,292 US20050079593A1 (en) | 1997-02-06 | 2003-07-18 | Modified enzymes having polymer conjugates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/705,185 Division US6623950B1 (en) | 1997-02-06 | 2000-11-02 | Modified enzymes having polymer conjugates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050079593A1 true US20050079593A1 (en) | 2005-04-14 |
Family
ID=8090149
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,532 Expired - Fee Related US6245901B1 (en) | 1997-02-06 | 1998-02-17 | Modified polypeptide |
US09/705,185 Expired - Fee Related US6623950B1 (en) | 1997-02-06 | 2000-11-02 | Modified enzymes having polymer conjugates |
US10/623,292 Abandoned US20050079593A1 (en) | 1997-02-06 | 2003-07-18 | Modified enzymes having polymer conjugates |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/024,532 Expired - Fee Related US6245901B1 (en) | 1997-02-06 | 1998-02-17 | Modified polypeptide |
US09/705,185 Expired - Fee Related US6623950B1 (en) | 1997-02-06 | 2000-11-02 | Modified enzymes having polymer conjugates |
Country Status (7)
Country | Link |
---|---|
US (3) | US6245901B1 (en) |
EP (1) | EP1017794A1 (en) |
JP (1) | JP2001511162A (en) |
CN (1) | CN1246891A (en) |
AU (1) | AU740207B2 (en) |
CA (1) | CA2279986A1 (en) |
WO (1) | WO1998035026A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130029137A1 (en) * | 2011-07-25 | 2013-01-31 | Lintec Corporation | Adhesive Sheet |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635462B1 (en) * | 1997-05-12 | 2003-10-21 | Phoenix Pharmacologies, Inc. | Mutated form of arginine deiminase |
US6747003B1 (en) | 1997-10-23 | 2004-06-08 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
ES2368718T3 (en) * | 1997-10-23 | 2011-11-21 | Danisco Us Inc. | SUBTILISINE VARIATIONS WITH MULTIPLE SUBSTITUTIONS. |
US6908757B1 (en) | 1998-03-26 | 2005-06-21 | The Procter & Gamble Company | Serine protease variants having amino acid deletions and substitutions |
EP1082442A1 (en) | 1998-03-26 | 2001-03-14 | The Procter & Gamble Company | Serine protease variants having amino acid substitutions |
US6495136B1 (en) | 1998-03-26 | 2002-12-17 | The Procter & Gamble Company | Proteases having modified amino acid sequences conjugated to addition moieties |
US6451986B1 (en) * | 1998-06-22 | 2002-09-17 | Immunex Corporation | Site specific protein modification |
US6638526B1 (en) * | 1998-06-23 | 2003-10-28 | Novozymes A/S | Polypeptides conjugated to copolymers of ethylene oxide and propylene oxide to reduce allergenicity |
US20060188971A1 (en) * | 1998-08-06 | 2006-08-24 | Duke University | Urate oxidase |
ES2352451T3 (en) | 1998-08-06 | 2011-02-18 | Duke University | URATO OXIDASA. |
US6461849B1 (en) | 1998-10-13 | 2002-10-08 | Novozymes, A/S | Modified polypeptide |
AU6078899A (en) * | 1998-10-13 | 2000-05-01 | Novozymes A/S | A modified polypeptide with reduced immune response |
WO2001004287A1 (en) * | 1999-07-07 | 2001-01-18 | Maxygen Aps | A method for preparing modified polypeptides |
JP2003516116A (en) | 1999-07-22 | 2003-05-13 | ザ、プロクター、エンド、ギャンブル、カンパニー | Protease conjugates with sterically protected clip sites |
BR0012693A (en) | 1999-07-22 | 2002-04-09 | Procter & Gamble | Variant, of subtilisin-like protease; cleaning composition; and personal care composition |
JP2003505070A (en) | 1999-07-22 | 2003-02-12 | ザ、プロクター、エンド、ギャンブル、カンパニー | Subtilisin protease variants with amino acid substitutions in defined epitope regions |
US6946128B1 (en) | 1999-07-22 | 2005-09-20 | The Procter & Gamble Company | Protease conjugates having sterically protected epitope regions |
US7144574B2 (en) | 1999-08-27 | 2006-12-05 | Maxygen Aps | Interferon β variants and conjugates |
MXPA02001969A (en) * | 1999-08-27 | 2003-07-21 | Maxygen Aps | New interferon betalike molecules. |
US7431921B2 (en) | 1999-08-27 | 2008-10-07 | Maxygen Aps | Interferon beta-like molecules |
US6531122B1 (en) | 1999-08-27 | 2003-03-11 | Maxygen Aps | Interferon-β variants and conjugates |
JP2003521930A (en) | 2000-02-11 | 2003-07-22 | マキシゲン・エイピーエス | Factor VII or Factor VIIa-like molecule |
US7812132B2 (en) | 2000-04-28 | 2010-10-12 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
EP2236611A1 (en) * | 2000-04-28 | 2010-10-06 | Novozymes A/S | Lipolytic enzyme variant |
US7220837B1 (en) | 2000-04-28 | 2007-05-22 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
US20030211094A1 (en) | 2001-06-26 | 2003-11-13 | Nelsestuen Gary L. | High molecular weight derivatives of vitamin k-dependent polypeptides |
DK1373573T3 (en) * | 2001-03-09 | 2014-01-20 | Trovagene Inc | Conjugate probes and optical detection of analytes |
CA2450985A1 (en) | 2001-06-28 | 2003-01-09 | Mountain View Pharmaceuticals, Inc. | Polymer stabilized proteinases |
IL161051A0 (en) * | 2001-10-02 | 2004-08-31 | Genentech Inc | Apo-2 ligand variants and uses thereof |
US6908963B2 (en) | 2001-10-09 | 2005-06-21 | Nektar Therapeutics Al, Corporation | Thioester polymer derivatives and method of modifying the N-terminus of a polypeptide therewith |
US20030157645A1 (en) * | 2001-12-21 | 2003-08-21 | Direvo Bio Tech Ag. | Subtilisin variants with improved characteristics |
ES2377519T3 (en) | 2002-02-08 | 2012-03-28 | Novozymes A/S | Phytase variants |
JP4177604B2 (en) * | 2002-03-25 | 2008-11-05 | 株式会社林原生物化学研究所 | Bioactive complex |
US7700733B2 (en) | 2002-04-30 | 2010-04-20 | Bayer Healthcare Llc | Factor VII or VIIa polypeptide variants |
CA2489348A1 (en) | 2002-06-24 | 2003-12-31 | Genentech, Inc. | Apo-2 ligand/trail variants and uses thereof |
AU2003239783A1 (en) * | 2002-06-26 | 2004-01-19 | Novozymes A/S | Subtilases and subtilase variants having altered immunogenicity |
WO2004018741A1 (en) * | 2002-08-23 | 2004-03-04 | University Of Maryland Biotechnology Institute | Assembly of chitosan onto an electrode surface |
AU2003275289A1 (en) * | 2002-09-26 | 2004-04-19 | University Of Maryland Baltimore County | Polysaccharide-based polymers and methods of making the same |
US20040062748A1 (en) * | 2002-09-30 | 2004-04-01 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US8129330B2 (en) * | 2002-09-30 | 2012-03-06 | Mountain View Pharmaceuticals, Inc. | Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof |
US7888093B2 (en) * | 2002-11-06 | 2011-02-15 | Novozymes A/S | Subtilase variants |
US7790010B2 (en) * | 2002-12-20 | 2010-09-07 | University Of Maryland, College Park | Spatially selective deposition of polysaccharide layer onto patterned template |
US7883615B2 (en) * | 2003-02-12 | 2011-02-08 | University Of Maryland, College Park | Controlled electrochemical deposition of polysaccharide films and hydrogels, and materials formed therefrom |
DK2085470T3 (en) | 2003-03-20 | 2012-08-06 | Bayer Healthcare Llc | FVII or FVIIa variants |
ATE458057T1 (en) | 2003-06-19 | 2010-03-15 | Bayer Healthcare Llc | VARIANTS OF THE FACTOR VII OR VIIA GLA DOMAIN |
PL1639106T3 (en) | 2003-06-19 | 2010-11-30 | Novozymes As | Proteases |
DK1639107T3 (en) | 2003-06-19 | 2013-11-18 | Novozymes As | Improved proteases and processes for their preparation |
BRPI0414959A (en) | 2003-10-10 | 2006-11-07 | Novozymes As | precursor protease variant, isolated nucleic acid sequence, recombinant nucleic acid construct, expression vector, and host cell, methods for producing the protease variant, for enhancing the nutritional value of an animal feed, and for treating proteins, a transgenic plant , or part of plant, transgenic, non-human animal, or products, or elements thereof, animal feed additive and composition, use of protease variant and / or composition, protease, and, 3d structure |
US7375404B2 (en) * | 2003-12-05 | 2008-05-20 | University Of Maryland Biotechnology Institute | Fabrication and integration of polymeric bioMEMS |
US20100028995A1 (en) * | 2004-02-23 | 2010-02-04 | Anaphore, Inc. | Tetranectin Trimerizing Polypeptides |
ATE541034T1 (en) | 2004-06-21 | 2012-01-15 | Novozymes As | NOCARDIOPSIS PROTEASES |
AR050895A1 (en) | 2004-10-04 | 2006-11-29 | Novozymes As | POLYPEPTIDES THAT HAVE FITASA ACTIVITY AND POLYUCLEOTIDES THAT CODE THEM |
WO2006037327A2 (en) | 2004-10-04 | 2006-04-13 | Novozymes A/S | Polypeptides having phytase activity and polynucleotides encoding same |
EP1674113A1 (en) * | 2004-12-22 | 2006-06-28 | F. Hoffmann-La Roche Ag | Conjugates of insulin-like growth factor-1 (IGF-1) and poly(ethylene glycol) |
ES2856881T3 (en) | 2005-04-11 | 2021-09-28 | Horizon Pharma Rheumatology Llc | Variant forms of urate oxidase and their use |
RU2007149045A (en) * | 2005-06-24 | 2009-07-10 | Новозимс А/С (Dk) | LIPASES FOR PHARMACEUTICAL USE |
FR2889530B1 (en) * | 2005-08-05 | 2008-02-01 | Rhodia Chimie Sa | PRODUCT FROM GUAR PROTEIN EXTRACT, PROCESS FOR PREPARATION AND USES |
US7883711B2 (en) | 2006-03-22 | 2011-02-08 | Novozymes A/S | Use of polypeptides having antimicrobial activity |
DK2365064T3 (en) | 2006-04-04 | 2015-03-30 | Novozymes As | Phytasevarianter |
CL2007002502A1 (en) | 2006-08-31 | 2008-05-30 | Hoffmann La Roche | VARIANTS OF THE SIMILAR GROWTH FACTOR TO HUMAN INSULIN-1 (IGF-1) PEGILATED IN LISIN; METHOD OF PRODUCTION; FUSION PROTEIN THAT UNDERSTANDS IT; AND ITS USE TO TREAT ALZHEIMER'S DISEASE. |
US8552158B2 (en) * | 2006-08-31 | 2013-10-08 | Hoffmann-La Roche Inc. | Method for the production of insulin-like growth factor-1 |
CA2672651C (en) | 2006-12-15 | 2014-03-11 | Lifebond Ltd. | Gelatin-transglutaminase hemostatic dressings and sealants |
AU2013203500B2 (en) * | 2006-12-21 | 2015-12-17 | Novozymes A/S | Lipase variants for pharmaceutical use |
AU2007337150A1 (en) | 2006-12-21 | 2008-07-03 | Novozymes A/S | Lipase variants for pharmaceutical use |
US8221743B2 (en) | 2006-12-22 | 2012-07-17 | Novozymes A/S | Use of polypeptides against diseases caused by protozoans |
WO2008116878A1 (en) | 2007-03-26 | 2008-10-02 | Novozymes A/S | Hafnia phytase |
EP2195333A1 (en) * | 2007-09-12 | 2010-06-16 | Anaphore, Inc. | Hsp70-based treatment for autoimmune diseases |
CA2705160A1 (en) * | 2007-11-09 | 2009-05-14 | Anaphore, Inc. | Fusion proteins of mannose binding lectins for treatment of disease |
ES2375606T3 (en) * | 2008-04-03 | 2012-03-02 | F. Hoffmann-La Roche Ag | PEGILED INSULIN TYPE GROWTH FACTOR TEST. |
CN102124058B (en) | 2008-06-18 | 2014-05-28 | 生命连结有限公司 | Improved cross-linked compositions |
ES2426717T3 (en) | 2008-09-26 | 2013-10-24 | Novozymes A/S | Hafnia phytase variants |
JP2012504969A (en) | 2008-10-10 | 2012-03-01 | アナフォア インコーポレイテッド | Polypeptides that bind to TRAIL-R1 and TRAIL-R2 |
WO2010096422A1 (en) * | 2009-02-17 | 2010-08-26 | Duke University | Biomolecule polymer conjugates and methods for making the same |
WO2010151823A1 (en) | 2009-06-25 | 2010-12-29 | Savient Pharmaceuticals Inc. | Methods and kits for predicting infusion reaction risk and antibody-mediated loss of response by monitoring serum uric acid during pegylated uricase therapy |
US20110086770A1 (en) * | 2009-10-09 | 2011-04-14 | Anaphore, Inc. | Combinatorial Libraries Based on C-type Lectin-like Domain |
US20110086806A1 (en) * | 2009-10-09 | 2011-04-14 | Anaphore, Inc. | Polypeptides that Bind IL-23R |
US9066991B2 (en) | 2009-12-22 | 2015-06-30 | Lifebond Ltd. | Modification of enzymatic crosslinkers for controlling properties of crosslinked matrices |
US20110152188A1 (en) * | 2009-12-23 | 2011-06-23 | Hanns-Christian Mahler | Pharmaceutical compositions of igf/i proteins |
CA2807012A1 (en) | 2010-08-05 | 2012-02-09 | Lifebond Ltd. | Dry composition wound dressings and adhesives |
EP2704735A1 (en) | 2011-05-03 | 2014-03-12 | Genentech, Inc. | Vascular disruption agents and uses thereof |
US10392611B2 (en) | 2013-05-30 | 2019-08-27 | Duke University | Polymer conjugates having reduced antigenicity and methods of using the same |
US10364451B2 (en) | 2013-05-30 | 2019-07-30 | Duke University | Polymer conjugates having reduced antigenicity and methods of using the same |
WO2014194244A1 (en) | 2013-05-30 | 2014-12-04 | Duke University | Enzyme-catalyzed synthesis of site-specific and stoichiometric biomolecule-polymer conjugates |
US10385115B2 (en) | 2015-03-26 | 2019-08-20 | Duke University | Fibronectin type III domain-based fusion proteins |
JP6882782B2 (en) | 2015-08-04 | 2021-06-02 | デューク ユニバーシティ | Genetically encoded, essentially chaotic delivery stealth polymers and how to use them |
US10722587B2 (en) * | 2015-08-31 | 2020-07-28 | Genemedicine Co., Ltd. | Composition for intracellular delivery containing adenovirus protein VI-derived peptide and anticancer pharmaceutical composition containing same |
US11752213B2 (en) | 2015-12-21 | 2023-09-12 | Duke University | Surfaces having reduced non-specific binding and antigenicity |
WO2017210476A1 (en) | 2016-06-01 | 2017-12-07 | Duke University | Nonfouling biosensors |
CN109890833A (en) | 2016-09-14 | 2019-06-14 | 杜克大学 | The nanoparticle based on three block polypeptide for delivery of hydrophilic drug |
CN110023326A (en) | 2016-09-23 | 2019-07-16 | 杜克大学 | It is unstructured without repetition polypeptide with LCST behavior |
US11648200B2 (en) | 2017-01-12 | 2023-05-16 | Duke University | Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature triggered hierarchical self-assembly |
US11554097B2 (en) | 2017-05-15 | 2023-01-17 | Duke University | Recombinant production of hybrid lipid-biopolymer materials that self-assemble and encapsulate agents |
WO2019006374A1 (en) | 2017-06-30 | 2019-01-03 | Duke University | Order and disorder as a design principle for stimuli-responsive biopolymer networks |
US12296018B2 (en) | 2018-01-26 | 2025-05-13 | Duke University | Albumin binding peptide-drug (AlBiPeD) conjugates and methods of making and using same |
WO2019213150A1 (en) | 2018-04-30 | 2019-11-07 | Duke University | Stimuli-responsive peg-like polymer-based drug delivery platform |
US11998654B2 (en) | 2018-07-12 | 2024-06-04 | Bard Shannon Limited | Securing implants and medical devices |
WO2020028806A1 (en) | 2018-08-02 | 2020-02-06 | Duke University | Dual agonist fusion proteins |
WO2020160322A1 (en) | 2019-01-30 | 2020-08-06 | Horizon Pharma Rheumatology Llc | Tolerization reduces intolerance to pegloticase and prolongs the urate lowering effect (triple) |
US11512314B2 (en) | 2019-07-12 | 2022-11-29 | Duke University | Amphiphilic polynucleotides |
JP2023537982A (en) | 2020-08-13 | 2023-09-06 | ノボザイムス アクティーゼルスカブ | Phytase variants and polynucleotides encoding them |
US12269875B2 (en) | 2023-08-03 | 2025-04-08 | Jeff R. Peterson | Gout flare prevention methods using IL-1BETA blockers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5340735A (en) * | 1991-05-29 | 1994-08-23 | Cognis, Inc. | Bacillus lentus alkaline protease variants with increased stability |
US5352603A (en) * | 1989-08-31 | 1994-10-04 | Kali-Chemie Ag | Highly alkaline proteases |
US5621089A (en) * | 1992-05-27 | 1997-04-15 | Novo Nordisk Biotech, Inc. | Nucleic acid constructs for the production of a Bacillus alkaline protease |
US5631217A (en) * | 1990-12-21 | 1997-05-20 | Novo Nordisk A/S | Detergent compositions comprising a modified subtilisin |
US5665587A (en) * | 1989-06-26 | 1997-09-09 | Novo Nordisk A/S | Modified subtilisins and detergent compositions containing same |
US5851811A (en) * | 1992-06-01 | 1998-12-22 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0561907B1 (en) * | 1990-12-05 | 1998-09-02 | Novo Nordisk A/S | Proteins with changed epitopes and methods for the production thereof |
IT1260468B (en) * | 1992-01-29 | 1996-04-09 | METHOD FOR MAINTAINING THE ACTIVITY OF PROTEOLYTIC ENZYMES MODIFIED WITH POLYETHYLENGLYCOL | |
DE4231266A1 (en) * | 1992-09-18 | 1994-03-24 | Boehringer Mannheim Gmbh | Dextran modified glutamate dehydrogenase |
FI972443A0 (en) * | 1994-12-07 | 1997-06-09 | Novo Nordisk As | A polypeptide with reduced allergenicity |
-
1998
- 1998-02-06 WO PCT/DK1998/000046 patent/WO1998035026A1/en not_active Application Discontinuation
- 1998-02-06 CN CN98802364A patent/CN1246891A/en active Pending
- 1998-02-06 EP EP98901327A patent/EP1017794A1/en not_active Ceased
- 1998-02-06 CA CA002279986A patent/CA2279986A1/en not_active Abandoned
- 1998-02-06 JP JP53358498A patent/JP2001511162A/en active Pending
- 1998-02-06 AU AU57495/98A patent/AU740207B2/en not_active Ceased
- 1998-02-17 US US09/024,532 patent/US6245901B1/en not_active Expired - Fee Related
-
2000
- 2000-11-02 US US09/705,185 patent/US6623950B1/en not_active Expired - Fee Related
-
2003
- 2003-07-18 US US10/623,292 patent/US20050079593A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5665587A (en) * | 1989-06-26 | 1997-09-09 | Novo Nordisk A/S | Modified subtilisins and detergent compositions containing same |
US6197567B1 (en) * | 1989-06-26 | 2001-03-06 | Novo Nordisk A/S | Modified subtilisins and detergent compositions containing same |
US5352603A (en) * | 1989-08-31 | 1994-10-04 | Kali-Chemie Ag | Highly alkaline proteases |
US5631217A (en) * | 1990-12-21 | 1997-05-20 | Novo Nordisk A/S | Detergent compositions comprising a modified subtilisin |
US5340735A (en) * | 1991-05-29 | 1994-08-23 | Cognis, Inc. | Bacillus lentus alkaline protease variants with increased stability |
US5621089A (en) * | 1992-05-27 | 1997-04-15 | Novo Nordisk Biotech, Inc. | Nucleic acid constructs for the production of a Bacillus alkaline protease |
US5851811A (en) * | 1992-06-01 | 1998-12-22 | Novo Nordisk A/S | Peroxidase variants with improved hydrogen peroxide stability |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130029137A1 (en) * | 2011-07-25 | 2013-01-31 | Lintec Corporation | Adhesive Sheet |
Also Published As
Publication number | Publication date |
---|---|
CA2279986A1 (en) | 1998-08-13 |
JP2001511162A (en) | 2001-08-07 |
WO1998035026A1 (en) | 1998-08-13 |
CN1246891A (en) | 2000-03-08 |
US6623950B1 (en) | 2003-09-23 |
US6245901B1 (en) | 2001-06-12 |
AU5749598A (en) | 1998-08-26 |
EP1017794A1 (en) | 2000-07-12 |
AU740207B2 (en) | 2001-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6623950B1 (en) | Modified enzymes having polymer conjugates | |
AU6078899A (en) | A modified polypeptide with reduced immune response | |
Gauthier et al. | Polymer–protein conjugates: an enzymatic activity perspective | |
ES2296336T3 (en) | MODIFIED POLYPEPTIDE. | |
US6461849B1 (en) | Modified polypeptide | |
RU2380415C2 (en) | Cross-linked lipase crystals, composition based thereon and method for making thereof | |
AU736806B2 (en) | A modified enzyme for skin care | |
JP5674650B2 (en) | FVIII mutein for the treatment of von Willebrand disease | |
WO1996040792A1 (en) | Modification of polypeptides | |
ES2434032T3 (en) | Dimeric and multimeric FVIIA compounds | |
Caliceti et al. | Active site protection of proteolytic enzymes by poly (ethylene glycol) surface modification | |
CN102036687A (en) | Conjugates of a cholinesterase moiety and a polymer | |
MXPA05010411A (en) | Biologically active material conjugated with biocompatible polymer with 1:1 complex, preparation method thereof and pharmaceutical composition comprising the same. | |
Sivasankaran et al. | Polymer-mediated protein/peptide therapeutic stabilization: current progress and future directions | |
JP2002520049A (en) | Polypeptide-polymer conjugates with improved cleaning performance | |
Smith et al. | Chemical derivatization of therapeutic proteins | |
Lapuhs et al. | Engineering strategies for oral therapeutic enzymes to enhance their stability and activity | |
MIRZA | jllafiter of $ l| ilofl (oplip | |
KR20040086521A (en) | Biologically Active Material Conjugated With Biocompatible Polymer with 1:1 complex, Preparation Method Thereof And Pharmaceutical Composition Comprising The Same | |
AU1008099A (en) | Composition comprising polypeptide with reduced allergenicity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |