US20050056119A1 - Preparation of magnetic metal-filled carbon nanocapsules - Google Patents
Preparation of magnetic metal-filled carbon nanocapsules Download PDFInfo
- Publication number
- US20050056119A1 US20050056119A1 US10/329,333 US32933302A US2005056119A1 US 20050056119 A1 US20050056119 A1 US 20050056119A1 US 32933302 A US32933302 A US 32933302A US 2005056119 A1 US2005056119 A1 US 2005056119A1
- Authority
- US
- United States
- Prior art keywords
- magnetic metal
- carbon
- cathode
- powders
- nanocapsules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 79
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 62
- 239000002184 metal Substances 0.000 title claims abstract description 62
- 239000002088 nanocapsule Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 12
- 239000011261 inert gas Substances 0.000 claims abstract description 11
- 239000000843 powder Substances 0.000 claims description 21
- 239000004094 surface-active agent Substances 0.000 claims description 13
- 239000002041 carbon nanotube Substances 0.000 claims description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 11
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 239000006227 byproduct Substances 0.000 claims description 7
- 238000004440 column chromatography Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004640 Melamine resin Substances 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- 239000003929 acidic solution Substances 0.000 claims description 4
- 239000003637 basic solution Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052770 Uranium Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 239000005007 epoxy-phenolic resin Substances 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims description 2
- 150000001768 cations Chemical group 0.000 claims description 2
- 239000002736 nonionic surfactant Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 239000012043 crude product Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical group C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- -1 alkyl betaine Chemical compound 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011553 magnetic fluid Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/001—Fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/844—Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/846—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes internal modifications, e.g. filling, endohedral modifications
Definitions
- the present invention relates to a method for producing magnetic metal-filled carbon nanocapsules, and more particularly to a method for producing high purity magnetic metal-filled carbon nanocapsules.
- a magnetic metal-filled carbon nanocapsule is a polyhedral carbon cluster constituting multiple graphite layers having a balls-within-a ball structure with magnetic metals, metal compounds, metal, carbides or alloys therein.
- the diameter of a magnetic metal-filled carbon nanocapsule is about 3-100 nm.
- Magnetic metal-tilled carbon nanocapsules have special fullerene structure and optoelectronic properties.
- the magnetic metal nanoparticles therein is well-protected by the outer graphite layers from oxidation and acidic etching.
- Magnetic metal-tilled carbon nanocapsules can be utilized in various fields such as medicine (medical grade active carbon), light and heat absorption, magnetic recording, magnetic fluids, catalysts, sensors, and nanoscale composite materials with thermal conductivity, special magnetic and electrical properties.
- the object of the present invention is to provide a method for producing high purity magnetic metal-filled carbon nanocapsules.
- the inventive method for producing high purity magnetic metal-filled carbon nanocapsules includes the following steps.
- An arc chamber comprising a graphitic anode and a composite graphitic cathode containing at least one kind of magnetic metal or its derivatives is provided; an inert gas is introduced into the arc chamber.
- a voltage is applied across the cathode and the anode by a pulse current, the voltage sufficient to generate an carbon arc reaction between the cathode and the anode.
- the deposit formed on the cathode is collected.
- the method of the present invention can further include the following purification steps.
- the deposit is dispersed in a solution using a surfactant.
- the magnetic metal-filled carbon nanocapsule main product and the carbon nanotube byproduct are separated using column chromatography or filter film.
- the magnetic metal-filled carbon nanocapsules are extracted by magnetic attraction and cleaned by acidic or basic solution and alcohol.
- FIG. 1 shows a schematic diagram of an arc chamber according to the present invention.
- FIG. 2 is a TEM photograph of the purified magnetic metal-filled carbon nanocapaules of the present invention.
- FIG. 3 is a high resolution TEM photograph of the purified magnetic metal-filled carbon nanocapaules of the present invention.
- the present invention uses pulse current under high pressure (above 1 atm) of an inert gas to undergo a carbon arc reaction.
- a carbon arc reaction the temperature at the electrode surface and the density of the carbon vapor are changed.
- the magnetic metal-filled carbon nanocapsules obtained will have an improved yield.
- FIG. 1 shows a schematic diagram of an arc chamber according to the present invention.
- the arc chamber 1 includes at least one pair of electrodes 10 and 12 for carbon arc reaction.
- Inert gas is introduced into the arc chamber 1 via an inlet 14 and is expelled via an outlet 16 .
- the arc chamber 1 is surrounded by flowing cooling water.
- Symbol 18 indicates a cooling water inlet, and symbol 20 a cooling water outlet.
- the arc reaction is conducted under a flowing inert gas.
- the flow rate of the inert gas can be controlled to 10 to 200 mm 3 /min, preferably 30 to 120 mm 3 /min.
- Inert gas suitable for use in the present invention includes but is not limited to helium, argon, and nitrogen.
- the pressure of the arc chamber can be controlled to 0.1 to 5 arm, preferably 1 to 2 atm.
- the electrode 10 can be graphite. Generally, the electrode 10 is in the form of a graphite rod.
- the electrode 12 is a composite graphitic electrode containing at least one kind of magnetic metal or its derivatives. Generally, the electrode 12 is a mixture of carbon powders and powders of at least one kind of magnetic metal or its derivatives. The molar mixing ratio of carbon powders and powders of at least one kind of magnetic metal or its derivatives is 100:1 to 5:1.
- the composite graphite electrode can further comprise graphitizable resin. The resin is mixed with the powders and pressed, and molded after graphitization via annealing without oxygen under high temperature between 400 to 1500° C. The weight ratio of resin to powders is between 1:10 and 3:10.
- the resin can be melamine resin, epoxy resin, phenolic resin or other graphitizable resins.
- the magnetic metal can be Sc, V, Cr, Fe, Co, Ni, Y, Zr, Mo, Ru, Pd, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Ta, Os, Ir, Pt, Au, Th, U or a combination thereof, preferably Co, Fe, Ni, La, Y or a combination thereof.
- the derivatives of magnetic metals can be alloy of the magnetic metal and another element, oxide and/or carbide of the magnetic metal.
- electrical energy is applied from a power supply 2 to the graphitic anode 10 and composite graphitic cathod 12 .
- the electric energy applied has a voltage sufficient to generate a carbon arc reaction between the anode 10 and the cathode 12 and to form deposit on the graphitic anode 10 .
- a pulse current with a predetermined frequency applies a voltage across the cathode and anode.
- DC direct current
- AC alternating current
- the pulse current can have a frequency of 0.01 to 1000 Hz, and can be controlled to 50 to 800 A, and the voltage between electrodes can be controlled to 10 to 30 V.
- the core portion of the deposite is black powder and is referred to as “crude product” in the following descriptions.
- the crude product includes magnetic metal-filled carbon nanocapsules main product (40% to 90%), hollow carbon nanocapsules and short carbon nanotube byproduct (10% to 50%), and few (under 10%) metal particles not surrounded by carbon layers.
- the crude product is dispersed in a solution using a surfactant.
- the magnetic metal-filled carbon nanocapsules main product and the hollow carbon nanocapsules are separated from the short carbon nanotube byproduct in the solution using column chromatography or a filter film.
- the magnetic metal-filled carbon nanocapsules are extracted by magnetic attraction.
- the surfactant and the residue metal particles are washed away from the magnetic metal-filled carbon nanocapaules using acidic or basic solution and alcohol. Magnetic metal-filled carbon nanocapaules having a purity higher than 80%, generally 95%, are obtained.
- Surfactant suitable for use in the present invention can be a cation surfactant such as cetyltrimethyl ammonium bromide, an anion surfactant such as sodium dedecyl sulfate, a zwitterion surfactant such as alkyl betaine, or a non-ionic surfactant such as lauryl alcohol ether.
- a cation surfactant such as cetyltrimethyl ammonium bromide
- an anion surfactant such as sodium dedecyl sulfate
- a zwitterion surfactant such as alkyl betaine
- a non-ionic surfactant such as lauryl alcohol ether.
- the suitable column can have size exclusion function.
- the column can preferably have a filter film at the front, and the pore size of the filter film can be about 0.2 ⁇ m.
- a filter film can be singly used to perform separation. When a filter film is used for separation, several filterings can be performed to achieve
- the present invention is the only currently available way to obtain high purity magnetic metal-filled carbon nanocapsules.
- This example uses the arc chamber shown in FIG. 1 to prepare magnetic metal-filled carbon nanocapsules.
- One graphite rod was used as a anode, and one composite graphite rod was used as a cathode. Both electrodes had a diameter of 0.24 inches and the anode had a rather short length of about 8-10 cm.
- the composite graphite electrode was made by mixing the powders of carbon and Co at a molar ratio of 100:5 with melamine resin having a weight percent of 20 of total powders weight. The mixture was then molded into an electrode by a hot-press machine under 170° C. The composite electrode was heated to 700° C. without exposure to oxygen to graphitize the resin.
- Argon was introduced into the arc chamber at 60-90 cm 3 /min.
- the pressure of the arc chamber was controlled to 1.2 atm.
- the arc chamber was surrounded by flowing cooling water.
- a carbon arc reaction was performed under the following conditions: a pulse current of about 60 Hz, voltage of about 20 V, and electric current of about 100 A. The carbon arc reaction proceeded for about 30 minutes and then stopped. A deposit was formed on the anode. The deposit was about 3-4 cm long and had the same diameter as the graphitic anode. The deposit was cut and a black powdery crude product was obtained in the core portion of the deposit. The crude product contained about 70% Co-tilled carbon nanocapsules, 30% hollow nanocapsules and short carbon nanotubes, and a trace of Co particles not surrounded by carbon layers.
- FIG. 2 is a TEM (transmission electron microscopy) photograph of the purified Co-filled nanocapsule product.
- FIG. 3 is a high resolution TEM photograph of the purified Co-tilled carbon nanocapsules.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
- Hard Magnetic Materials (AREA)
Abstract
A method of producing magnetic metal-filled carbon nanocapsules. An arc chamber comprising a graphitic anode and a composite graphitic cathode containing at least one kind of magnetic metal or its derivatives is provided, before introducing an inert gas into the arc chamber, applying a voltage across the cathode and the anode by a pulse current, the voltage sufficient to generate a carbon arc reaction between the cathode and the anode, and finally collecting a deposit formed on the cathode.
Description
- 1. Field of the Invention
- The present invention relates to a method for producing magnetic metal-filled carbon nanocapsules, and more particularly to a method for producing high purity magnetic metal-filled carbon nanocapsules.
- 2. Background of the Invention
- A magnetic metal-filled carbon nanocapsule is a polyhedral carbon cluster constituting multiple graphite layers having a balls-within-a ball structure with magnetic metals, metal compounds, metal, carbides or alloys therein. The diameter of a magnetic metal-filled carbon nanocapsule is about 3-100 nm. Magnetic metal-tilled carbon nanocapsules have special fullerene structure and optoelectronic properties. The magnetic metal nanoparticles therein is well-protected by the outer graphite layers from oxidation and acidic etching. Magnetic metal-tilled carbon nanocapsules can be utilized in various fields such as medicine (medical grade active carbon), light and heat absorption, magnetic recording, magnetic fluids, catalysts, sensors, and nanoscale composite materials with thermal conductivity, special magnetic and electrical properties.
- However, conventional methods for producing magnetic metal-filled carbon nanocapoules produce mainly single layer carbon nanotubes, but few carbon nanocapaules. Owing to the strong van der Waals force between carbon nanocapaules and nanotubes, it is not easy to separate the products. In addition, single layer carbon nanotubes have an end capped with metal particles of catalyst having magnetism as the magnetic metal-filled carbon nanocapsules, therefore magnetic attraction cannot be used for product separation. Conventional methods are not able to produce high purity magnetic metal-filled carbon nanocapsules, huge amounts of carbon ash impurities and single layer carbon nanotubes exist and lower the purity of products, increasing the cost. The related application on magnetic metal-filled carbon nanocapsules is limited and insufficient.
- The object of the present invention is to provide a method for producing high purity magnetic metal-filled carbon nanocapsules.
- To achieve the above-mentioned object, the inventive method for producing high purity magnetic metal-filled carbon nanocapsules includes the following steps. An arc chamber comprising a graphitic anode and a composite graphitic cathode containing at least one kind of magnetic metal or its derivatives is provided; an inert gas is introduced into the arc chamber. A voltage is applied across the cathode and the anode by a pulse current, the voltage sufficient to generate an carbon arc reaction between the cathode and the anode. Finally, the deposit formed on the cathode is collected. Moreover, after the collection step, the method of the present invention can further include the following purification steps. The deposit is dispersed in a solution using a surfactant. Next, the magnetic metal-filled carbon nanocapsule main product and the carbon nanotube byproduct are separated using column chromatography or filter film. Finally, the magnetic metal-filled carbon nanocapsules are extracted by magnetic attraction and cleaned by acidic or basic solution and alcohol.
- The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, given by way of illustration only and thus not intended to be limitative of the present invention.
-
FIG. 1 shows a schematic diagram of an arc chamber according to the present invention. -
FIG. 2 is a TEM photograph of the purified magnetic metal-filled carbon nanocapaules of the present invention. -
FIG. 3 is a high resolution TEM photograph of the purified magnetic metal-filled carbon nanocapaules of the present invention. - The present invention uses pulse current under high pressure (above 1 atm) of an inert gas to undergo a carbon arc reaction. During the carbon arc reaction, the temperature at the electrode surface and the density of the carbon vapor are changed. Thus, the magnetic metal-filled carbon nanocapsules obtained will have an improved yield.
-
FIG. 1 shows a schematic diagram of an arc chamber according to the present invention. Referring toFIG. 1 , thearc chamber 1 includes at least one pair ofelectrodes arc chamber 1 via aninlet 14 and is expelled via anoutlet 16. Thearc chamber 1 is surrounded by flowing cooling water.Symbol 18 indicates a cooling water inlet, and symbol 20 a cooling water outlet. - In the present invention, the arc reaction is conducted under a flowing inert gas. The flow rate of the inert gas can be controlled to 10 to 200 mm3/min, preferably 30 to 120 mm3/min. Inert gas suitable for use in the present invention includes but is not limited to helium, argon, and nitrogen. The pressure of the arc chamber can be controlled to 0.1 to 5 arm, preferably 1 to 2 atm.
- The
electrode 10 can be graphite. Generally, theelectrode 10 is in the form of a graphite rod. Theelectrode 12 is a composite graphitic electrode containing at least one kind of magnetic metal or its derivatives. Generally, theelectrode 12 is a mixture of carbon powders and powders of at least one kind of magnetic metal or its derivatives. The molar mixing ratio of carbon powders and powders of at least one kind of magnetic metal or its derivatives is 100:1 to 5:1. The composite graphite electrode can further comprise graphitizable resin. The resin is mixed with the powders and pressed, and molded after graphitization via annealing without oxygen under high temperature between 400 to 1500° C. The weight ratio of resin to powders is between 1:10 and 3:10. The resin can be melamine resin, epoxy resin, phenolic resin or other graphitizable resins. The magnetic metal can be Sc, V, Cr, Fe, Co, Ni, Y, Zr, Mo, Ru, Pd, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Ta, Os, Ir, Pt, Au, Th, U or a combination thereof, preferably Co, Fe, Ni, La, Y or a combination thereof. The derivatives of magnetic metals can be alloy of the magnetic metal and another element, oxide and/or carbide of the magnetic metal. - In the process of producing magnetic metal-filled carbon nanocapsules, electrical energy is applied from a
power supply 2 to thegraphitic anode 10 and compositegraphitic cathod 12. The electric energy applied has a voltage sufficient to generate a carbon arc reaction between theanode 10 and thecathode 12 and to form deposit on thegraphitic anode 10. - According to the main feature of the present invention, when performing the carbon arc reaction, a pulse current with a predetermined frequency applies a voltage across the cathode and anode. However, in the conventional techiques, DC (direct current) or AC (alternating current), rather than pulse current, is used to apply voltage. According to the present invention, the pulse current can have a frequency of 0.01 to 1000 Hz, and can be controlled to 50 to 800 A, and the voltage between electrodes can be controlled to 10 to 30 V.
- After the carbon arc reaction is conducted according to the above conditions, a deposit is formed on the
anode 10. According to the present invention, most of the obtained magnetic metal-filled carbon nanocapsules are present in the core portion of the deposit. Therefore, preferably, the core portion of the deposite on theanode 10 is collected. The core portion of the deposite is black powder and is referred to as “crude product” in the following descriptions. The crude product includes magnetic metal-filled carbon nanocapsules main product (40% to 90%), hollow carbon nanocapsules and short carbon nanotube byproduct (10% to 50%), and few (under 10%) metal particles not surrounded by carbon layers. After further purification of the crude product, high purity magnetic metal-filled carbon nanocapsules are obtained. The purification process is described below. First, the crude product is dispersed in a solution using a surfactant. Then, the magnetic metal-filled carbon nanocapsules main product and the hollow carbon nanocapsules are separated from the short carbon nanotube byproduct in the solution using column chromatography or a filter film. Furthermore, the magnetic metal-filled carbon nanocapsules are extracted by magnetic attraction. Finally, the surfactant and the residue metal particles are washed away from the magnetic metal-filled carbon nanocapaules using acidic or basic solution and alcohol. Magnetic metal-filled carbon nanocapaules having a purity higher than 80%, generally 95%, are obtained. - Surfactant suitable for use in the present invention can be a cation surfactant such as cetyltrimethyl ammonium bromide, an anion surfactant such as sodium dedecyl sulfate, a zwitterion surfactant such as alkyl betaine, or a non-ionic surfactant such as lauryl alcohol ether. Preferable examples are certyltrimethyl ammonium bromide and sodium dedecyl sulfate. For column chromatography, the suitable column can have size exclusion function. For example, the column can preferably have a filter film at the front, and the pore size of the filter film can be about 0.2 μm. In addition, rather than using column chromatography, a filter film can be singly used to perform separation. When a filter film is used for separation, several filterings can be performed to achieve better separation.
- Compared with conventional techniques, the present invention is the only currently available way to obtain high purity magnetic metal-filled carbon nanocapsules.
- The following example is intended to illustrate the process and the advantages of the present invention more fully without limiting its scope, since numerous modifications and variations will be apparent to those skilled in the art.
- This example uses the arc chamber shown in
FIG. 1 to prepare magnetic metal-filled carbon nanocapsules. One graphite rod was used as a anode, and one composite graphite rod was used as a cathode. Both electrodes had a diameter of 0.24 inches and the anode had a rather short length of about 8-10 cm. The composite graphite electrode was made by mixing the powders of carbon and Co at a molar ratio of 100:5 with melamine resin having a weight percent of 20 of total powders weight. The mixture was then molded into an electrode by a hot-press machine under 170° C. The composite electrode was heated to 700° C. without exposure to oxygen to graphitize the resin. - Argon was introduced into the arc chamber at 60-90 cm3/min. The pressure of the arc chamber was controlled to 1.2 atm. The arc chamber was surrounded by flowing cooling water.
- A carbon arc reaction was performed under the following conditions: a pulse current of about 60 Hz, voltage of about 20 V, and electric current of about 100 A. The carbon arc reaction proceeded for about 30 minutes and then stopped. A deposit was formed on the anode. The deposit was about 3-4 cm long and had the same diameter as the graphitic anode. The deposit was cut and a black powdery crude product was obtained in the core portion of the deposit. The crude product contained about 70% Co-tilled carbon nanocapsules, 30% hollow nanocapsules and short carbon nanotubes, and a trace of Co particles not surrounded by carbon layers.
- The crude product was dispersed in a solution using a surfactant. Then, the dispersion solution was subjected to column chromatography to separate the Co-filled carbon nanocapsules and carbon nanotubes. Finally, the co-tilled carbon nanocapsules were extracted by magnetic attraction, and the surfactant and residue Co particles were washed away from the Co-filled carbon nanocapsules by acidic or basic solution and alcohol. The Co-filled carbon nanocapsules obtained had higher than 95% purity.
FIG. 2 is a TEM (transmission electron microscopy) photograph of the purified Co-filled nanocapsule product.FIG. 3 is a high resolution TEM photograph of the purified Co-tilled carbon nanocapsules. - The foregoing description of the preferred embodiments of this invention has been presented for purposes of illustration and description. Obvious modifications or variations are possible in light of the above teaching. The embodiments chosen and described provide an excellent illustration of the principles of this invention and its practical application to thereby enable those skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the present invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
Claims (33)
1. A method of producing magnetic metal-filled carbon nanocapsules, comprising:
providing an arc chamber comprising a graphitic anode and a composite graphitic cathode containing at least one kind of magnetic metal or its derivatives, wherein the derivatives are alloys of the magnetic metal and another element, oxide and/or carbide of the magnetic metal, and introducing an inert gas into the arc chamber, wherein the arc chamber has a pressure of 1-2 atm;
applying a voltage across the cathode and the anode by a pulse current, the voltage being sufficient to generate a carbon arc reaction between the cathode and the anode; and
collecting a deposit comprising the nanocapsules formed on the cathode.
2. The method as claimed in claim 1 , wherein the graphitic anode is in the form of a graphite rod.
3. The method as claimed in claim 1 , wherein the composite graphitic cathode is formed from a mixture of carbon powders and powders of at least one kind of magnetic metal or its derivatives.
4. The method as claimed in claim 3 , wherein the mixture further comprises a graphitizable resin.
5. The method as claimed in claim 1 , wherein the magnetic metal is Sc, V, Cr, Fe, Co, Ni, Y, Zr, Mo, Ru, Pd, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Ta, Os, Ir, Pt, Au, Th, U or a combination thereof.
6. (canceled).
7. The method as claimed in claim 3 , wherein the molar mixing ratio of carbon powders and powders of at least one kind of magnetic metal or its derivatives is between 100:1 and 5:1.
8. The method as claimed in claim 4 , wherein the graphitizable resin is melamine resin, epoxy resin or phenolic resin.
9. The method as claimed in claim 4 , wherein the weight ratio of graphitizable resin to carbon powders and powders of at least one kind of magnetic metal or its derivatives is between 1:10 to 3:10.
10. The method as claimed in claim 1 , wherein the inert gas has a flow rate of 10 to 200 mm3/min.
11. (canceled).
12. The method as claimed in claim 1 , wherein the pulse current has a frequency of 0.01 to 1000 Hz.
13. The method as claimed in claim 1 , wherein the arc reaction is conducted at a pulse frequency of 0.01 to 1000 Hz, at a voltage of 10 to 30 V, and at a current of 50 to 800 A.
14. The method as claimed in claim 1 , wherein collection of the deposit further comprises collecting a core portion of the deposit formed on the cathode.
15. The method as claimed in claim 14 , wherein the deposit includes a magnetic metal-filled carbon nanocapsule main product, a hollow carbon nanocapsule and carbon nanotube byproducts.
16. A method of producing magnetic metal-filled carbon nanocapsules, comprising:
providing an arc chamber comprising a graphitic anode and a composite graphitic cathode comprising a mixture of carbon powders, powders of at least one kind of magnetic metal or its derivatives, and a graphitizable resin, wherein the derivatives are alloys of the magnetic metal and another element, oxide and/or carbide of the magnetic metal, and introducing an inert gas into the arc chamber;
applying a voltage across the cathode and the anode by a pulse current, the voltage sufficient to generate an carbon arc reaction between the cathode and the anode;
collecting a deposit formed on the cathode, the deposit comprising a magnetic metal-filled carbon nanocapsule main product, a hollow carbon nanocapsule and carbon nanotube byproducts; and
separating and purifying the deposit to obtain the magnetic metal-filled carbon nanocapsules.
17. The method as claimed in claim 16 , wherein the magnetic metal is Sc, V, Cr, Fe, Co, Ni, Y, Zr, Mo, Ru, Pd, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Ta, Os, Ir, Pt, Au, Th, U or a combination thereof.
18. (canceled).
19. The method as claimed in claim 16 , wherein the molar mixing ratio of carbon powders and powders of at least one kind of magnetic metal or its derivatives is between 100:1 and 5:1.
20. The method as claimed in claim 16 , wherein the graphitizable resin is melamine resin, epoxy resin or phenolic resin.
21. The method as claimed in claim 16 , wherein the weight ratio, of graphitizable resin to carbon powders and powders of at least one kind of magnetic metal or its derivatives is between 1:10 to 3:10.
22. The method as claimed in claim 16 , wherein the inert gas has flow rate of 10 to 200 mm3/min.
23. The method as claimed in claim 16 , wherein the arc chamber has a pressure of 0.1 to 5 atm.
24. The method as claimed in claim 16 , wherein the pulse current has a frequency of 0.01 to 1000 Hz.
25. The method as claimed in claim 16 , wherein the arc reaction is conducted at a pulse frequency of 0.01 to 1000 Hz, at a voltage of 10 to 30 V, and at a current of 50 to 800 A.
26. The method as claimed in claim 16 , wherein collection further comprises collecting a core portion of the deposit formed on the cathode.
27. The method as claimed in claim 16 , wherein separation and purification further comprise:
dispersing the deposit in a solution using a surfactant;
separating the magnetic metal-filled carbon nanocapsules main product and the carbon nanotube byproduct using column chromatography; and
extracting the magnetic metal-filled carbon nanocapsules by magnetic attraction and cleaning the magnetic metal-filled carbon nanocapsules by acidic or basic solution and alcohol.
28. The method as claimed in claim 27 , wherein the surfactant is a cation surfactant, anion surfactant, zwitterion surfactant, or non-ionic surfactant.
29. The method as claimed in claim 27 , wherein the surfactant is cetyltrimethyl ammonium bromide or sodium dodecyl sulfate.
30. The method as claimed in claim 27 , wherein separation of the magnetic metal-filled carbon nanocapsules main product and the carbon nanotube byproduct uses a column having a filter film at the front.
31. The method as claimed in claim 30 , wherein the filter film has a pore size of about 0.2 μm.
32. The method as claimed in claim 27 , wherein the magnetic metal-filled carbon nanocapsules obtained extraction have a purity between 80% to 99.9%.
33. The method as claimed in claim 27 , wherein the magnetic metal-filled carbon nanocapsules obtained by extraction have a purity higher than 95%.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091117435A TWI251580B (en) | 2002-08-02 | 2002-08-02 | Preparation of magnetic metal filled carbon nanocapsules |
TW91117435 | 2002-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050056119A1 true US20050056119A1 (en) | 2005-03-17 |
US6872236B1 US6872236B1 (en) | 2005-03-29 |
Family
ID=32028382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/329,333 Expired - Lifetime US6872236B1 (en) | 2002-08-02 | 2002-12-27 | Preparation of magnetic metal-filled carbon nanocapsules |
Country Status (3)
Country | Link |
---|---|
US (1) | US6872236B1 (en) |
JP (1) | JP3735618B2 (en) |
TW (1) | TWI251580B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080160308A1 (en) * | 2003-06-27 | 2008-07-03 | Industrial Technology Research Institute | Organically functionalized carbon nanocapsule |
CN104588671A (en) * | 2015-01-09 | 2015-05-06 | 中国久远高新技术装备公司 | Metal powder preparation method and device based on DC (Direct Current) resistance heating non-contact smelting |
CN111770958A (en) * | 2017-10-11 | 2020-10-13 | 钢筋分子设计有限责任公司 | Shielding formulations using discrete carbon nanotubes with targeted oxidation levels and formulations thereof |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7723406B2 (en) * | 2002-12-26 | 2010-05-25 | Industrial Technology Research Institute | Polymer-chain-grafted carbon nanocapsule |
TWI312353B (en) * | 2002-12-26 | 2009-07-21 | Ind Tech Res Inst | Polymer chain grafted carbon nanocapsule |
US6965629B2 (en) * | 2003-09-24 | 2005-11-15 | Nanotechnologies, Inc. | Method and apparatus for initiating a pulsed arc discharge for nanopowder synthesis |
TWI301747B (en) * | 2004-08-20 | 2008-10-01 | Hon Hai Prec Ind Co Ltd | Shell structure having anti-emi function |
TWI333826B (en) * | 2005-11-30 | 2010-11-21 | Heat transfer fluids with carbon nanocapsules | |
JP2009535294A (en) * | 2006-05-01 | 2009-10-01 | 矢崎総業株式会社 | Organized assembly of carbon and non-carbon, and method for producing the same |
JP4584334B2 (en) * | 2006-06-02 | 2010-11-17 | 国立大学法人大阪大学 | Catalyst encapsulated in porous carbon layer and method for producing the same |
TWI353342B (en) | 2007-04-24 | 2011-12-01 | Ind Tech Res Inst | Carbon nanocapsules-layered silicate hybrid and pr |
TWI393755B (en) * | 2008-11-28 | 2013-04-21 | Ind Tech Res Inst | Powder coating method and paint thereof |
RU2417831C1 (en) * | 2009-10-05 | 2011-05-10 | Общество с ограниченной ответственностью "ИНКАТТЕК" | Device to produce nanoparticles |
US8564954B2 (en) | 2010-06-15 | 2013-10-22 | Chipmos Technologies Inc. | Thermally enhanced electronic package |
JP5702649B2 (en) * | 2011-03-31 | 2015-04-15 | 国立大学法人 熊本大学 | Carbon-metal composite and method for producing the same |
EP3050617B1 (en) * | 2013-11-12 | 2018-09-19 | Xiamen Funano New Material Technology Company.ltd | Fullerene arc source and fullerene production apparatus comprising arc source |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5456986A (en) * | 1993-06-30 | 1995-10-10 | Carnegie Mellon University | Magnetic metal or metal carbide nanoparticles and a process for forming same |
US5472749A (en) * | 1994-10-27 | 1995-12-05 | Northwestern University | Graphite encapsulated nanophase particles produced by a tungsten arc method |
US5783263A (en) * | 1993-06-30 | 1998-07-21 | Carnegie Mellon University | Process for forming nanoparticles |
US5965267A (en) * | 1995-02-17 | 1999-10-12 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide and the nanoencapsulates and nanotubes formed thereby |
US6455021B1 (en) * | 1998-07-21 | 2002-09-24 | Showa Denko K.K. | Method for producing carbon nanotubes |
US20030188963A1 (en) * | 2002-04-05 | 2003-10-09 | Hirofumi Takikawa | Method for preparing carbon nano-fine particle, apparatus for preparing the same and mono-layer carbon nanotube |
-
2002
- 2002-08-02 TW TW091117435A patent/TWI251580B/en not_active IP Right Cessation
- 2002-12-27 US US10/329,333 patent/US6872236B1/en not_active Expired - Lifetime
-
2003
- 2003-05-30 JP JP2003155355A patent/JP3735618B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5456986A (en) * | 1993-06-30 | 1995-10-10 | Carnegie Mellon University | Magnetic metal or metal carbide nanoparticles and a process for forming same |
US5783263A (en) * | 1993-06-30 | 1998-07-21 | Carnegie Mellon University | Process for forming nanoparticles |
US5472749A (en) * | 1994-10-27 | 1995-12-05 | Northwestern University | Graphite encapsulated nanophase particles produced by a tungsten arc method |
US5965267A (en) * | 1995-02-17 | 1999-10-12 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide and the nanoencapsulates and nanotubes formed thereby |
US6455021B1 (en) * | 1998-07-21 | 2002-09-24 | Showa Denko K.K. | Method for producing carbon nanotubes |
US20030188963A1 (en) * | 2002-04-05 | 2003-10-09 | Hirofumi Takikawa | Method for preparing carbon nano-fine particle, apparatus for preparing the same and mono-layer carbon nanotube |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080160308A1 (en) * | 2003-06-27 | 2008-07-03 | Industrial Technology Research Institute | Organically functionalized carbon nanocapsule |
US8287835B2 (en) | 2003-06-27 | 2012-10-16 | Industrial Technology Research Institute | Organically functionalized carbon nanocapsule |
CN104588671A (en) * | 2015-01-09 | 2015-05-06 | 中国久远高新技术装备公司 | Metal powder preparation method and device based on DC (Direct Current) resistance heating non-contact smelting |
CN111770958A (en) * | 2017-10-11 | 2020-10-13 | 钢筋分子设计有限责任公司 | Shielding formulations using discrete carbon nanotubes with targeted oxidation levels and formulations thereof |
Also Published As
Publication number | Publication date |
---|---|
US6872236B1 (en) | 2005-03-29 |
JP2004067499A (en) | 2004-03-04 |
TWI251580B (en) | 2006-03-21 |
JP3735618B2 (en) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6872236B1 (en) | Preparation of magnetic metal-filled carbon nanocapsules | |
US5424054A (en) | Carbon fibers and method for their production | |
Tarasov et al. | Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts | |
US20100143234A1 (en) | Methods of preparing and purifying carbon nanotubes, carbon nanotubes, and an element using the same | |
WO2020168883A1 (en) | Method for preparing metal powder material | |
US7156958B2 (en) | Preparation of hollow carbon nanocapsules | |
CN1254306C (en) | Manufacturing method of magnetic metal nanocarbon spheres filled | |
CN100500559C (en) | A kind of preparation method of carbon nanoparticle doped with nitrogen and transition metal element | |
US8124044B2 (en) | Carbon nanotubes, a method of preparing the same and an element using the same | |
CN114832729B (en) | Device and method for simultaneous production of carbon nanotubes and graphene | |
JP2003054922A (en) | Structure including carbon-coated catalyst nanoparticle, method of making such structure, and method of producing carbon nanostructure therefrom | |
JP4150387B2 (en) | Hetero nanocapsule and method for producing the same | |
JP2002179417A (en) | Arc electrode for the synthesis of carbon nanostructures | |
CN1184141C (en) | Manufacturing method of hollow carbon nanospheres | |
CN101708846B (en) | Method for preparing titanium carbide nano-wires | |
CN113101981B (en) | Preparation method of catalyst for preparing carbon nanotube | |
Rao et al. | Carbon nanotubes as nanoparticles collector | |
WO2004099072A1 (en) | Production method and device for single layer carbon nanotube | |
CN105803399A (en) | A kind of TiCg-C3N4 nanocomposite and preparation method thereof | |
Jiang et al. | Fabrication of nanocomposites by electric explosion of stainless steel capillaries filled with carbon nanotubes | |
JP4657474B2 (en) | Raw material for carbon cluster production | |
US11724939B2 (en) | Apparatus, system and method for making carbanogel buckypaper from carbon dioxide and products thereof | |
Shaijumon et al. | Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes | |
Fabry et al. | Continuous mass production of carbon nanotubes by 3-phase ac plasma processing | |
Livan | Carbon encapsulation of elemental nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HWANG, GAN-LIN;REEL/FRAME:013626/0122 Effective date: 20021201 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |