US20050039551A1 - Tamper evident connector for an engine radiator - Google Patents
Tamper evident connector for an engine radiator Download PDFInfo
- Publication number
- US20050039551A1 US20050039551A1 US10/898,842 US89884204A US2005039551A1 US 20050039551 A1 US20050039551 A1 US 20050039551A1 US 89884204 A US89884204 A US 89884204A US 2005039551 A1 US2005039551 A1 US 2005039551A1
- Authority
- US
- United States
- Prior art keywords
- sensor case
- sensor
- attachment member
- projection
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims 21
- 238000010168 coupling process Methods 0.000 claims 21
- 238000005859 coupling reaction Methods 0.000 claims 21
- 239000012809 cooling fluid Substances 0.000 claims 4
- 230000002452 interceptive effect Effects 0.000 claims 4
- 230000000903 blocking effect Effects 0.000 claims 3
- 239000003570 air Substances 0.000 description 15
- 238000004891 communication Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000012080 ambient air Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000004945 silicone rubber Substances 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
- F28F9/002—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/14—Indicating devices; Other safety devices
- F01P11/16—Indicating devices; Other safety devices concerning coolant temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2070/00—Details
Definitions
- the present invention relates to electrical and mechanical connectors which provide evidence of tampering, and in particular to electrical and mechanical connectors for automobile engine heat exchangers.
- radiator assemblies for motor vehicles are known to include a coating of a catalytic material for converting environmentally harmful substances in ambient air during the utilization of the motor vehicle.
- the purpose of this catalytic coating is to improve the environment by cleaning ambient air as the vehicle is driven.
- Such a coated radiator assembly is likely to have the same mounting provisions as similar uncoated radiator assemblies which do not convert the environmentally-harmful substances in ambient air. Because a coated radiator can cost more than an uncoated one, vehicles built with uncoated radiators could be sold in some jurisdictions. Further, uncoated radiators will certainly be made available for aftermarket installation as spare parts in such jurisdictions.
- the present includes both methods and apparatus for providing evidence of tampering to a sensor assembly.
- One embodiment of the present invention concerns a method for attaching a sensor to a body such that subsequent removal of the sensor from the body provides evidence, either mechanical and/or electrical, that the sensor has been removed.
- a sensor assembly which is attached to opposite sides of a body. Assembly of the sensor onto the body establishes a path of electrical continuity which is broken if the sensor is removed from the body.
- a sensor case and sensor attachment clip are coupled together through a passageway of a body.
- the sensor case and attachment clip are coupled in such a way that removal of the sensor case from the attachment clip causes damage to the case or the clip.
- FIG. 1 is a schematic representation of a system according to one embodiment of the present invention.
- FIG. 2 a is a top plan view of a sensor assembly according to one embodiment of the present invention.
- FIG. 2 b is a side elevational view of the sensor assembly of FIG. 2 a.
- FIG. 2 c is an end elevational view of the sensor assembly of FIG. 2 a.
- FIG. 2 d is a perspective view of the sensor assembly of FIG. 2 a.
- FIG. 3 is a sectional view of the sensor assembly of FIG. 2 a as taken along line 3 - 3 of FIG. 2 a.
- FIG. 4 is an exploded, perspective view of the sensor assembly of FIG. 2 a.
- FIG. 5 is a perspective view of the sensor assembly of FIG. 2 a with the case body removed.
- FIG. 6 is an exploded view of the sensor assembly of FIG. 2 a positioned to be inserted into a portion of a heat exchanger.
- FIG. 7 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
- FIG. 8 is a perspective view of the sensor assembly of FIG. 6 assembled onto a portion of a heat exchanger.
- FIG. 9 is a side elevational view of a sensor assembly according to another embodiment of the present invention.
- FIG. 10 is a bottom plan view of a portion of the sensor assembly of FIG. 9 .
- FIG. 11 is a cross sectional view of the apparatus of FIG. 10 as taken along line 11 - 11 of FIG. 10
- FIG. 12 is a perspective view of the apparatus of FIG. 10 .
- FIG. 13 is a perspective view of the sensor assembly of FIG. 9 assembled onto a portion of a heat exchanger.
- FIG. 14 is an end perspective view of a portion of the apparatus of FIG. 9 .
- FIG. 15 is an end plan view of the apparatus of FIG. 14 .
- the present invention relates to a sensor assembly that is attached to an object such that any attempt to remove the sensor from the object is not only difficult but results in the production of evidence of the attempted removal.
- the sensor assembly is provided in two separate parts that are attached together in a manner that also attaches the two parts to the object. The two parts are coupled together by a projection received in a “one-way” locking manner. The projection cannot be pulled out of the receptacle without permanent deformation to one or both parts of the sensor.
- the two parts are coupled together in a manner that simultaneously attaches the two parts to the object.
- a circuit path is created.
- the circuit path can be monitored to determine whether or not the path is continuous. If the two parts of the sensor are separated from one another, electrical continuity is lost.
- a sensor is provided in two separate parts.
- the separate parts are attached to each other simultaneously with their attachment to an object.
- the two parts are mechanically coupled together with a locking mechanism.
- Neither of the two separate parts are provided with any feature which allows external access to the locking mechanism. Therefore, any attempt to remove the attached sensor would require drilling of access holes or the like in order to reach the locking mechanism.
- the senor is provided in two separate parts which are mounted to opposing sides of an automotive radiator.
- the automotive radiator has one or more external surfaces which have been coated with a catalyst that promotes a chemical reaction in ambient ozone to produce oxygen. Operation of a vehicle with such a radiator cleans any ambient air by removing some of the ozone.
- a vehicle is qualified under federal law to be claimed within a pollution credit. However, the law also requires some manner of ensuring that the pollution-removing device has not been tampered with. Further discussion of catalyst-coated heat exchangers can be found in U.S. Pat. No. 6,695,473, issued Feb. 24, 2004; U.S. Pat. No. 6,506,605, issued Jan. 14, 2003; and U.S. Pat. No.
- a preferred embodiment of the present invention provides both mechanical and electrical evidence of any potential tampering with the vehicle system. For example, if someone attempted to install a non-coated radiator into the vehicle such a non-complying radiator would not be provided with an embodiment of the tamper-evident sensor and the installer of the radiator would be aware of the non-compliance based on the lack of the sensor. In addition, an electronic controller of the vehicle would recognize that the tamper-evident sensor has not been installed, and would set an appropriate output flag. Further, it would be difficult to attach a sensor removed from a coated radiator to the non-coated radiator. The attachment would be difficult because removal of the sensor results in physical deformation of the sensor and/or breakage of the electrical circuit formed by installation of the sensor.
- FIG. 1 is a schematic representation of a system 20 according to one embodiment of the present invention.
- System 20 includes an internal combustion engine 22 which is cooled by a heat exchanger 24 , such as an automotive radiator.
- System 20 further includes a sensor assembly 30 preferably attached to heat exchanger 24 in a manner that makes removal of the sensor difficult. Further, the attachment of sensor assembly 30 is preferably accomplished in a manner whereby removal of sensor assembly 30 leaves mechanical evidence and/or electronic evidence of tampering.
- sensor assembly 30 is in electrical communication with a signal processor 26 that acquires one or more signals from sensor assembly 30 , and preferably provides indication if sensor assembly 30 is removed from heat exchanger 24 .
- signal processor 26 is a digital computer that performs other functions for engine 22 , which can include control functions.
- sensor assembly 30 is attached to an automotive radiator, the present invention is not so limited. In other embodiments of the present invention, the sensor assembly can be attached to an automotive air conditioner heat exchanger, an automotive oil heat exchanger, an industrial-use heat exchanger, a residential air conditioner heat exchanger, or the like. In yet other embodiments, sensor assembly 30 is attached to any object having a passageway in which it is desirable to know whether or not the sensor has been removed from that object. As another example, the sensor assembly could be a sensor integrated into a home security system and attached to a wall.
- sensor assembly 30 includes a sensor case 32 with one or more lead wires 34 extending from it and taking one or more signals to signal processor 26 , and an attachment member clip assembly 50 .
- Attachment member clip assembly 50 includes one or more projections 54 which are received within one or more receptacles 56 of sensor case 32 .
- Sensor assembly 30 further includes a circuit board 40 . 1 contained within sensor case 32 .
- sensor case 32 includes a circuit board or first sensor 40 . 1 mounted within a sensor case body 36 and sensor case cover 37 .
- a sensor case cover 37 mates with case body 36 and supports circuit board 40 . 1 securely therein.
- case cover 37 is ultrasonically bonded to case body 36 .
- Case cover 37 defines the entryways to a plurality of receptacles 56 . 1 , 56 . 2 , 56 . 3 , and 56 . 4 , which are adapted and configured to receive a corresponding projection 54 . 1 , 54 . 2 , 54 . 3 , 54 . 4 , respectively.
- An electrical connector 38 provides signals from circuit board 40 .
- sensor case 32 also includes a second sensor 40 . 2 , such as a thermistor. The signal from thermistor 40 . 2 is carried through circuit board 40 . 1 and lead wires 34 to signal processor 26 .
- circuit board clips 42 . 1 and 42 . 2 attach circuit board 40 . 1 within sensor case 32 , and are coupled both mechanically and electrically to circuit board 40 . 1 by a plurality of contacts 64 . 1 , 64 . 2 , 64 . 3 , and 64 . 4 .
- circuit board clips 42 are electrically conductive and in electrical communication with circuit board 40 . 1 , although the present invention contemplates embodiments in which the circuit board clips are non-conductive and a continuity circuit is established to the projections 54 by a plurality of lead wires from circuit board 40 . 1 .
- Each circuit board clip 42 includes a plurality of projection retaining springs 60 . 11 , 60 . 12 , 60 . 21 , 60 . 22 , 60 . 31 , 60 . 32 , 60 . 41 , and 60 . 42 .
- Each of these projection-retaining springs 60 is of a cantilever spring-type. Retaining springs 60 are biased outwardly toward the exterior of sensor case 32 .
- Each projection 54 includes a spring clip 58 located near the free end of the projection.
- Projection spring clips 58 are offset inwardly toward the interior of sensor case 32 .
- complete insertion of a projection 54 within the corresponding receptacle 56 results in an inward compression of a pair of corresponding cantilever springs 60 , which snap outwardly into place in contact with a ledge near the free end of a projection spring clip 58 .
- projection 54 . 3 is shown completely inserted within receptacle 56 . 3 .
- Retaining springs 60 . 31 and 60 . 32 are in compression with a side surface of projection 54 . 3 .
- projecting ledges near the ends of retaining springs 60 . 31 and 60 . 32 are in contact with the ledge 59 . 3 of projection 54 . 3 . Insertion of a projection within a receptacle results in sliding of a projection spring clip 58 over the corresponding projection retaining springs 60 , with one or both spring clip 58 and retaining springs 60 snapping back into place upon complete insertion of the projection, with the protruding ledges of the projection retaining springs 60 being locked into an interference with the opposing ledges 59 of the corresponding projection 54 .
- Attachment member clip assembly 50 includes an attachment member body 52 with a shape adapted and configured for interfacing with a contact surface of the heat exchanger or other object. As best seen in FIG. 3 , in one embodiment attachment member body 52 is generally planar to match the planar surface of an automatic heat exchange. The plurality of projections 54 extends from body 52 . In one embodiment, projections 54 are fabricated from a material which is a good conductor of heat, such as aluminum. Attachment member body 52 also includes a resilient pad 80 . 2 such as a PORON® pad, or a silicone rubber pad, bonded to the interior surface of body 52 . Case cover 37 preferably also includes a resilient pad 80 . 1 , such as a PORON® pad or a silicone rubber pad, bonded to one surface of case body 37 .
- a resilient pad 80 . 1 such as a PORON® pad or a silicone rubber pad
- resilient pads 80 . 1 and 80 . 2 have been shown and described, the present invention further contemplates any material or mechanism which provides a compressible surface to one or both of the opposing surfaces of sensor case 32 and attachment member clip assembly 50 .
- the resilient pads 80 . 1 and 80 . 2 are compressed. Because of their resiliency, these pads attempt to force apart attachment member assembly 50 from sensor case 32 .
- the resilient pads, or other compressible surfaces urge apart sensor case 32 and attachment lever clip 50 so as to produce a state of tension in one or more projections 54 .
- attachment clip 50 includes four projections 54 . 1 , 54 . 2 , 54 . 3 , and 54 . 4 , each of which is received within a corresponding receptacle 56 . 1 , 56 . 2 , 56 . 3 , and 56 . 4 , respectively, when sensor assembly 30 is mounted to an object.
- the insertion and locking of the projections into the receptacles establishes a predetermined distance 48 between the opposing surfaces 33 of the sensor case and 53 of the attachment member.
- the present invention contemplates other arrangements.
- an arrangement of projections 54 has been shown and described in a rectangular array, the present invention contemplates other arrangements including, for example, a triangular arrangement of three projections.
- the present invention contemplates those embodiments in which the attachment member clip assembly includes both a projection and a receptacle, and the sensor case also includes a projection and a receptacle. In this embodiment, the receptacle of the attachment member would receive the projection of the sensor case, and the receptacle of the sensor case would receive the projection of the attachment member.
- circuit board clip contacts 64 . 1 , 64 . 2 , 64 . 3 , and 64 . 4 are mechanically connected to circuit board 40 . 1 , and further are in electrical communication with circuit board 40 . 1 . Further, these board clip contacts 64 are in electrical communication with pairs of retaining springs 60 .
- board clip contact 64 . 1 and 64 . 2 are in electrical communication with retaining springs 60 . 11 and 60 . 12 , and 60 . 21 and 60 . 22 , respectively.
- board clip contact 64 . 3 is in electrical communication with retaining springs 60 . 31 and 60 . 32 ;
- board clip contact 64 . 4 is in electrical communication with retaining springs 60 . 41 and 60 . 42 .
- pairs of retaining springs 60 are in electrical communication with the electrically conductive projections 54 .
- retaining springs 60 . 11 and 60 . 12 are in electrical communication with projection 54 . 1 .
- each of the other three projections are in electrical communication with a corresponding pair of retaining springs.
- attachment member body 52 and projections 54 are preferably electrically conductive.
- projections 54 . 1 and 54 . 2 located on one side of clip assembly 50 are in joint electrical communication with body 52 .
- projections 54 . 3 and 54 . 4 are in joint electrical communication with body 52 . Therefore, pathways of electrical continuity are established from circuit board 40 . 1 into contacts 64 . 1 and 64 . 2 , through circuit board clip 42 . 1 , through the retaining springs 60 to the corresponding first pair of projections 54 . 1 and 54 . 2 . Continuity from these projections through attachment member body 52 is established to the projections 54 . 3 and 54 .
- sensor assembly 30 includes a pathway of electrical continuity from one side of circuit board 40 . 1 , through the attachment member clip assembly 50 to the other side of circuit board 40 . 1 .
- the presence of electrical continuity in the circuit can be monitored through lead wires 34 by signal processor 26 .
- signal processor 26 By monitoring this continuity circuit, it is possible for signal processor 26 to indicate if attachment member clip assembly 50 has been removed from sensor case 32 . If this happens, such as the case where a user removes sensor assembly 30 from heat exchanger 24 , signal processor 26 detects and indicates the loss of continuity. Therefore, the continuity circuit established by the assembly of sensor case 32 and attachment member clip assembly 50 is a means for providing evidence of tampering.
- the present invention contemplates other methods as well. For example, by the use of four circuit board clips instead of two circuit board clips, two separate paths of continuity could be established among the four projections. Further, the present invention contemplates those embodiments having a single projection, in which continuity could be established by an electrical lead passing along one side of the single projection, through the corresponding attachment member body and along another side of the single projection.
- sensor assembly 30 includes another, separate means for providing evidence of tampering by way of temperature measurement device 40 . 2 .
- Device 40 . 2 provides indication of temperature of heat exchanger 24 . This temperature signal can be interpreted by signal processor 26 to indicate whether or not sensor assembly 30 is connected to heat exchanger 24
- FIGS. 6, 7 , and 8 depict attachment of sensor assembly 30 to a heat exchanger 24 .
- Heat exchanger 24 includes a plurality of hollow core passages 70 which contain a cooling medium.
- a plurality of heat exchanger cooling fins 72 are in contact with cores 70 and provide passageways 73 through which ambient air flows to remove heat conducted into the fins.
- the width 78 of the passageways is shown on FIG. 7 and is roughly equivalent to the width of cores 70 .
- projections 54 and receptacles 56 are adapted and configured such that there is a predetermined length 48 from the surface of resilient pad 80 . 1 to the surface of resilient pad 80 . 2 .
- This predetermined distance 48 is preferably less than width 78 .
- This difference between length 48 and width 78 is accommodated by compression of resilient pads 80 . 1 and 80 . 2 on an installed sensor 30 .
- projections 54 of attachment member clip assembly are each inserted through a corresponding passageway 73 established by cooling fins 72 .
- projection 54 . 1 is inserted through a passageway 73 . 1 ;
- projection 54 . 2 is inserted through a passageway 73 . 2 ;
- projection 54 . 3 is inserted into a passageway 73 . 3 ;
- projection 54 . 4 is inserted through a passageway 73 . 4 .
- These projections 54 of attachment member clip assembly 50 are pushed through the corresponding passageway 73 from a side 76 of heat exchanger 24 . This insertion continues until resilient pad 80 . 2 is in contact with heat exchanger side 76 .
- the projections 54 of attachment member clip assembly 50 have a length 55 which is preferably greater than width 78 of the passageway between cores 70 . Because of this difference between length 55 and width 78 , the ends of projections 54 protrude through the other side 74 of heat exchanger 24 .
- the receptacles 56 of sensor case 32 are brought into alignment with the corresponding protruding projections 54 .
- the reception of projections 54 within the corresponding receptacle 56 guides sensor case 32 into the proper position on the opposite side 74 of heat exchanger 24 .
- compression is applied to clip assembly 50 and sensor case 32 until the projection spring clips 58 snap into place with the corresponding projection retaining springs 60 (as previously seen in FIG. 5 ).
- the compression of clip assembly 50 and sensor case 32 results in compression of resilient pads 80 . 1 and 80 . 2 an installed state of tension in projections 54 , and a corresponding snug fit of sensor assembly 30 onto heat exchanger 24 .
- the projection spring clip 58 located near the free end of the corresponding projection 54 is displaced inwardly toward the interior of sensor case 32 . It can be appreciated that any external inward pushing on a spring clip 58 , such as by a user with a tool, does not free the corresponding ledge of projection 58 from engagement with the corresponding ledges on the pair of retaining springs 60 . Therefore, it is difficult to disassemble clip assembly 50 from sensor case 32 , since spring clips 58 must instead be pulled outward to disengage the projection from the receptacle. Further, sensor case body 36 (which has been removed from FIG. 5 for clarity) preferably does not include any apertures through which a user could insert a tool or any other external features that could be used in an attempt to disengage the projections from the receptacles and remove sensor 30 from its assembled state on heat exchanger 34 .
- FIGS. 9-12 depict a sensor assembly 130 according to another embodiment of the present invention.
- the use of a one-hundred prefix (1XX) with an element number (XX) indicates a feature of the embodiment that is the same as the non-prefixed element number (XX), except for those changes shown or described.
- a sensor assembly 130 is attached to a heat exchanger 24 in a vehicular system 120 .
- sensor 130 is attached to a heat exchanger such that removal of sensor assembly 130 from the heat exchanger leaves mechanical evidence and/or electronic evidence of the removal.
- sensor assembly 130 is in electrical communication with a signal processor 126 and provides an indication if sensor 130 is removed from heat exchanger 24 .
- Sensor assembly 130 includes a sensor case 132 with one or more lead wires 134 extending from a side of the sensor case. Assembly 130 also includes an attachment member clip assembly 150 which preferably includes one or more projections 154 . Projections 154 are adapted and configured to be received within one or more receptacles 156 of sensor case 132 . Sensor assembly 130 further includes a circuit board 140 . 1 contained within sensor case 132 .
- circuit board 140 . 1 includes a first sensor for detecting electrical continuity, and a second sensor, such as a thermistor.
- the continuity path includes one or more lead wires 134 , one or more projections 154 , and one or more internal circuit board clips 142 .
- the operation of the circuit board clips, receptacles, and projections of sensor assembly 130 are the same as that for sensor 30 .
- Sensor assembly 130 includes a plurality of lead wires 134 that extend laterally from a side of sensor case 132 , as best seen in FIGS. 10 and 11 .
- Sensor case body 36 preferably does not include a plurality of sensor cooling fins. It has been found in some embodiments that there can be excessive cooling of the attachment clip and projections, such that the temperature sensed by the temperature measurement device is too low and/or too slow acting. Removal of the cooling fins can improve the response of the temperature sensor.
- One embodiment of the present invention was tested with an attachment clip similar to attachment clip 50 .
- sensor assembly 30 was oriented such that attachment member body 52 was directed toward the front of the vehicle, such that there was direct impingement of cooling flow onto the front face of attachment member body 52 .
- This temperature difference may be caused by an improvement in heat rejection caused by assembly 50 .
- Attachment clip member assembly 150 includes an air dam and thermal insulator 180 . 3 which is mounted to the surface of attachment member body 152 that is opposite to the surface which resilient pad 180 . 2 is mounted, as best seen in FIGS. 9 and 13 .
- air dam 180 . 3 projects a frontal area toward the cooling air passing over heat exchanger core 70 that is greater than the frontal area of attachment member body 152 , and in some embodiments greater than the projected frontal area of sensor case 132 .
- Air dam 180 . 3 impedes air flow which would otherwise cool sensor assembly 130 and therefore improves heat transfer from the heat exchanger into clip 150 and into sensor case 132 .
- air dam 130 is fabricated from a resilient material such as silicone rubber or PORON® material.
- air dam 180 . 3 is fabricated from a material with low thermal conductivity in order to impede the transfer of heat from the cooling flow to clip 150 .
- the present invention contemplates those embodiments in which pad 180 . 3 is an air dam and not a thermal insulator, as well as those embodiments in which pad 180 . 3 provides only reduced alteration of the impinging air flow, but provides thermal insulation.
- FIGS. 14 and 15 show perspective and end views, respectively, of attachment clip member assembly 150 .
- FIG. 15 is a scaled drawing according to one embodiment of the present invention.
- dimension A is about 1.00 inches
- dimension B is about 0.75 inches.
- air dam 180 . 3 is a foam pad of closed cellular silicone material, such as BISCO HT-805(5) or equivalent material.
- resilient pad 180 . 2 is fabricated from closed silicone material, such as BISCO HT-805(5) or equivalent.
- the projections 154 . 1 , 154 . 2 , 154 . 3 , and 154 . 4 are fabricated from a material such as 3003 H14 aluminum. Although specific dimensions and materials have been shown and described, it is understood that the present invention is not so limited.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
- The present application claims priority to U.S. Provisional Patent Application Ser. No. 60/489,713, filed Jul. 24, 2003, incorporated herein by reference.
- The present invention relates to electrical and mechanical connectors which provide evidence of tampering, and in particular to electrical and mechanical connectors for automobile engine heat exchangers.
- In the motor vehicle field, it is known that interchangeable parts are often used, wherein different variants of a component may have the same mounting provisions. While this of course has advantages in terms of cost efficiency, it can also raise an issue. Specifically, where one variant of a part performs a function not shared by the original components, installing the incorrect part may have adverse consequences on one or more functions of the vehicle.
- This can be an issue in the case of vehicle components which play a role in improving air quality. For example, some radiator assemblies for motor vehicles, are known to include a coating of a catalytic material for converting environmentally harmful substances in ambient air during the utilization of the motor vehicle. The purpose of this catalytic coating is to improve the environment by cleaning ambient air as the vehicle is driven. Such a coated radiator assembly is likely to have the same mounting provisions as similar uncoated radiator assemblies which do not convert the environmentally-harmful substances in ambient air. Because a coated radiator can cost more than an uncoated one, vehicles built with uncoated radiators could be sold in some jurisdictions. Further, uncoated radiators will certainly be made available for aftermarket installation as spare parts in such jurisdictions.
- Where a particular market requires an air-cleaning radiator or gives emission “credits” for such a radiator, that market is also likely to require that evidence and/or assurance be provided that the proper, coated radiator, as opposed to an uncoated radiator without the air-cleaning function, is installed on the vehicle. The present invention does this in a novel and unobvious way.
- The present includes both methods and apparatus for providing evidence of tampering to a sensor assembly.
- One embodiment of the present invention concerns a method for attaching a sensor to a body such that subsequent removal of the sensor from the body provides evidence, either mechanical and/or electrical, that the sensor has been removed.
- In another embodiment of the present invention, there is a sensor assembly which is attached to opposite sides of a body. Assembly of the sensor onto the body establishes a path of electrical continuity which is broken if the sensor is removed from the body.
- In another embodiment of the present invention a sensor case and sensor attachment clip are coupled together through a passageway of a body. The sensor case and attachment clip are coupled in such a way that removal of the sensor case from the attachment clip causes damage to the case or the clip.
- These and other aspects, embodiments, and features of the present invention will be apparent from the description of the preferred embodiment, the drawings and the claims to follow.
-
FIG. 1 is a schematic representation of a system according to one embodiment of the present invention. -
FIG. 2 a is a top plan view of a sensor assembly according to one embodiment of the present invention. -
FIG. 2 b is a side elevational view of the sensor assembly ofFIG. 2 a. -
FIG. 2 c is an end elevational view of the sensor assembly ofFIG. 2 a. -
FIG. 2 d is a perspective view of the sensor assembly ofFIG. 2 a. -
FIG. 3 is a sectional view of the sensor assembly ofFIG. 2 a as taken along line 3-3 ofFIG. 2 a. -
FIG. 4 is an exploded, perspective view of the sensor assembly ofFIG. 2 a. -
FIG. 5 is a perspective view of the sensor assembly ofFIG. 2 a with the case body removed. -
FIG. 6 is an exploded view of the sensor assembly ofFIG. 2 a positioned to be inserted into a portion of a heat exchanger. -
FIG. 7 is a perspective view of the sensor assembly ofFIG. 6 assembled onto a portion of a heat exchanger. -
FIG. 8 is a perspective view of the sensor assembly ofFIG. 6 assembled onto a portion of a heat exchanger. -
FIG. 9 is a side elevational view of a sensor assembly according to another embodiment of the present invention. -
FIG. 10 is a bottom plan view of a portion of the sensor assembly ofFIG. 9 . -
FIG. 11 is a cross sectional view of the apparatus ofFIG. 10 as taken along line 11-11 ofFIG. 10 -
FIG. 12 is a perspective view of the apparatus ofFIG. 10 . -
FIG. 13 is a perspective view of the sensor assembly ofFIG. 9 assembled onto a portion of a heat exchanger. -
FIG. 14 is an end perspective view of a portion of the apparatus ofFIG. 9 . -
FIG. 15 is an end plan view of the apparatus ofFIG. 14 . - For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
- The present invention relates to a sensor assembly that is attached to an object such that any attempt to remove the sensor from the object is not only difficult but results in the production of evidence of the attempted removal. In one embodiment, the sensor assembly is provided in two separate parts that are attached together in a manner that also attaches the two parts to the object. The two parts are coupled together by a projection received in a “one-way” locking manner. The projection cannot be pulled out of the receptacle without permanent deformation to one or both parts of the sensor.
- In yet another embodiment of the present invention, the two parts are coupled together in a manner that simultaneously attaches the two parts to the object. When the two parts are coupled together a circuit path is created. The circuit path can be monitored to determine whether or not the path is continuous. If the two parts of the sensor are separated from one another, electrical continuity is lost.
- In yet another embodiment of the present invention, a sensor is provided in two separate parts. The separate parts are attached to each other simultaneously with their attachment to an object. The two parts are mechanically coupled together with a locking mechanism. Neither of the two separate parts are provided with any feature which allows external access to the locking mechanism. Therefore, any attempt to remove the attached sensor would require drilling of access holes or the like in order to reach the locking mechanism.
- In a preferred embodiment, the sensor is provided in two separate parts which are mounted to opposing sides of an automotive radiator. The automotive radiator has one or more external surfaces which have been coated with a catalyst that promotes a chemical reaction in ambient ozone to produce oxygen. Operation of a vehicle with such a radiator cleans any ambient air by removing some of the ozone. Such a vehicle is qualified under federal law to be claimed within a pollution credit. However, the law also requires some manner of ensuring that the pollution-removing device has not been tampered with. Further discussion of catalyst-coated heat exchangers can be found in U.S. Pat. No. 6,695,473, issued Feb. 24, 2004; U.S. Pat. No. 6,506,605, issued Jan. 14, 2003; and U.S. Pat. No. 6,681,619, issued Jan. 27, 2004; all of which are incorporated herein by reference. A preferred embodiment of the present invention provides both mechanical and electrical evidence of any potential tampering with the vehicle system. For example, if someone attempted to install a non-coated radiator into the vehicle such a non-complying radiator would not be provided with an embodiment of the tamper-evident sensor and the installer of the radiator would be aware of the non-compliance based on the lack of the sensor. In addition, an electronic controller of the vehicle would recognize that the tamper-evident sensor has not been installed, and would set an appropriate output flag. Further, it would be difficult to attach a sensor removed from a coated radiator to the non-coated radiator. The attachment would be difficult because removal of the sensor results in physical deformation of the sensor and/or breakage of the electrical circuit formed by installation of the sensor.
-
FIG. 1 is a schematic representation of asystem 20 according to one embodiment of the present invention.System 20 includes aninternal combustion engine 22 which is cooled by aheat exchanger 24, such as an automotive radiator.System 20 further includes asensor assembly 30 preferably attached toheat exchanger 24 in a manner that makes removal of the sensor difficult. Further, the attachment ofsensor assembly 30 is preferably accomplished in a manner whereby removal ofsensor assembly 30 leaves mechanical evidence and/or electronic evidence of tampering. In one embodiment,sensor assembly 30 is in electrical communication with asignal processor 26 that acquires one or more signals fromsensor assembly 30, and preferably provides indication ifsensor assembly 30 is removed fromheat exchanger 24. In one embodiment,signal processor 26 is a digital computer that performs other functions forengine 22, which can include control functions. - Although in one
embodiment sensor assembly 30 is attached to an automotive radiator, the present invention is not so limited. In other embodiments of the present invention, the sensor assembly can be attached to an automotive air conditioner heat exchanger, an automotive oil heat exchanger, an industrial-use heat exchanger, a residential air conditioner heat exchanger, or the like. In yet other embodiments,sensor assembly 30 is attached to any object having a passageway in which it is desirable to know whether or not the sensor has been removed from that object. As another example, the sensor assembly could be a sensor integrated into a home security system and attached to a wall. - Referring to
FIGS. 2-5 ,sensor assembly 30 includes asensor case 32 with one or morelead wires 34 extending from it and taking one or more signals to signalprocessor 26, and an attachmentmember clip assembly 50. Attachmentmember clip assembly 50 includes one or more projections 54 which are received within one or more receptacles 56 ofsensor case 32.Sensor assembly 30 further includes a circuit board 40.1 contained withinsensor case 32. - Referring to
FIGS. 3-5 ,sensor case 32 includes a circuit board or first sensor 40.1 mounted within asensor case body 36 and sensor case cover 37. Referring toFIG. 3 , a sensor case cover 37 mates withcase body 36 and supports circuit board 40.1 securely therein. Preferably, case cover 37 is ultrasonically bonded tocase body 36.Case cover 37 defines the entryways to a plurality of receptacles 56.1, 56.2, 56.3, and 56.4, which are adapted and configured to receive a corresponding projection 54.1, 54.2, 54.3, 54.4, respectively. Anelectrical connector 38 provides signals from circuit board 40.1 to leadwires 34.Electrical connector 38 may be of any type, including direct connection oflead wires 34 to circuit board 40.1, or connection oflead wires 34 to circuit board 40.1 by a pair of mating male and female connectors. A plurality ofsensor cooling fins 44 are integrally molded intocase body 36. In one embodiment,sensor case 32 also includes a second sensor 40.2, such as a thermistor. The signal from thermistor 40.2 is carried through circuit board 40.1 and leadwires 34 to signalprocessor 26. - As best seen in
FIGS. 4 and 5 , right and left circuit board clips 42.1 and 42.2, respectively, attach circuit board 40.1 withinsensor case 32, and are coupled both mechanically and electrically to circuit board 40.1 by a plurality of contacts 64.1, 64.2, 64.3, and 64.4. Preferably, circuit board clips 42 are electrically conductive and in electrical communication with circuit board 40.1, although the present invention contemplates embodiments in which the circuit board clips are non-conductive and a continuity circuit is established to the projections 54 by a plurality of lead wires from circuit board 40.1. - Each circuit board clip 42 includes a plurality of projection retaining springs 60.11, 60.12, 60.21, 60.22, 60.31, 60.32, 60.41, and 60.42. Each of these projection-retaining springs 60 is of a cantilever spring-type. Retaining springs 60 are biased outwardly toward the exterior of
sensor case 32. - Each projection 54 includes a spring clip 58 located near the free end of the projection. Projection spring clips 58 are offset inwardly toward the interior of
sensor case 32. As best seen inFIG. 5 , complete insertion of a projection 54 within the corresponding receptacle 56 results in an inward compression of a pair of corresponding cantilever springs 60, which snap outwardly into place in contact with a ledge near the free end of a projection spring clip 58. For an example, and still referring toFIG. 5 , projection 54.3 is shown completely inserted within receptacle 56.3. Retaining springs 60.31 and 60.32 are in compression with a side surface of projection 54.3. Further, projecting ledges near the ends of retaining springs 60.31 and 60.32 are in contact with the ledge 59.3 of projection 54.3. Insertion of a projection within a receptacle results in sliding of a projection spring clip 58 over the corresponding projection retaining springs 60, with one or both spring clip 58 and retaining springs 60 snapping back into place upon complete insertion of the projection, with the protruding ledges of the projection retaining springs 60 being locked into an interference with the opposing ledges 59 of the corresponding projection 54. - Attachment
member clip assembly 50 includes anattachment member body 52 with a shape adapted and configured for interfacing with a contact surface of the heat exchanger or other object. As best seen inFIG. 3 , in one embodimentattachment member body 52 is generally planar to match the planar surface of an automatic heat exchange. The plurality of projections 54 extends frombody 52. In one embodiment, projections 54 are fabricated from a material which is a good conductor of heat, such as aluminum.Attachment member body 52 also includes a resilient pad 80.2 such as a PORON® pad, or a silicone rubber pad, bonded to the interior surface ofbody 52.Case cover 37 preferably also includes a resilient pad 80.1, such as a PORON® pad or a silicone rubber pad, bonded to one surface ofcase body 37. - Although the use of resilient pads 80.1 and 80.2 have been shown and described, the present invention further contemplates any material or mechanism which provides a compressible surface to one or both of the opposing surfaces of
sensor case 32 and attachmentmember clip assembly 50. When the projections 54 of the attachmentmember clip assembly 50 are fully inserted and locked into place within corresponding receptacles 56, the resilient pads 80.1 and 80.2 are compressed. Because of their resiliency, these pads attempt to force apartattachment member assembly 50 fromsensor case 32. The resilient pads, or other compressible surfaces, urge apartsensor case 32 andattachment lever clip 50 so as to produce a state of tension in one or more projections 54. - In one embodiment,
attachment clip 50 includes four projections 54.1, 54.2, 54.3, and 54.4, each of which is received within a corresponding receptacle 56.1, 56.2, 56.3, and 56.4, respectively, whensensor assembly 30 is mounted to an object. As best seen inFIGS. 2 b and 2 d, the insertion and locking of the projections into the receptacles establishes apredetermined distance 48 between the opposingsurfaces 33 of the sensor case and 53 of the attachment member. - Although an attachment
member clip assembly 50 having four projections has been shown and described, the present invention contemplates other arrangements. For example, in one embodiment of the present invention there is a single projection which extends from the attachment member clip assembly to the sensor case. Further, although an arrangement of projections 54 has been shown and described in a rectangular array, the present invention contemplates other arrangements including, for example, a triangular arrangement of three projections. As another example, the present invention contemplates those embodiments in which the attachment member clip assembly includes both a projection and a receptacle, and the sensor case also includes a projection and a receptacle. In this embodiment, the receptacle of the attachment member would receive the projection of the sensor case, and the receptacle of the sensor case would receive the projection of the attachment member. - As best seen in
FIG. 5 , circuit board clip contacts 64.1, 64.2, 64.3, and 64.4 are mechanically connected to circuit board 40.1, and further are in electrical communication with circuit board 40.1. Further, these board clip contacts 64 are in electrical communication with pairs of retaining springs 60. For example, board clip contact 64.1 and 64.2 are in electrical communication with retaining springs 60.11 and 60.12, and 60.21 and 60.22, respectively. Likewise, board clip contact 64.3 is in electrical communication with retaining springs 60.31 and 60.32; board clip contact 64.4 is in electrical communication with retaining springs 60.41 and 60.42. Further, pairs of retaining springs 60 are in electrical communication with the electrically conductive projections 54. As one example, retaining springs 60.11 and 60.12 are in electrical communication with projection 54.1. Likewise, each of the other three projections are in electrical communication with a corresponding pair of retaining springs. - Referring to
FIG. 6 ,attachment member body 52 and projections 54 are preferably electrically conductive. In one embodiment, projections 54.1 and 54.2 located on one side ofclip assembly 50 are in joint electrical communication withbody 52. Further, projections 54.3 and 54.4 are in joint electrical communication withbody 52. Therefore, pathways of electrical continuity are established from circuit board 40.1 into contacts 64.1 and 64.2, through circuit board clip 42.1, through the retaining springs 60 to the corresponding first pair of projections 54.1 and 54.2. Continuity from these projections throughattachment member body 52 is established to the projections 54.3 and 54.2, likewise through the corresponding retaining springs 60 into circuit board clip 42.2, into contacts 64.3 and 64.4, and back to circuit board 40.1. Therefore,sensor assembly 30 includes a pathway of electrical continuity from one side of circuit board 40.1, through the attachmentmember clip assembly 50 to the other side of circuit board 40.1. - The presence of electrical continuity in the circuit can be monitored through
lead wires 34 bysignal processor 26. By monitoring this continuity circuit, it is possible forsignal processor 26 to indicate if attachmentmember clip assembly 50 has been removed fromsensor case 32. If this happens, such as the case where a user removessensor assembly 30 fromheat exchanger 24,signal processor 26 detects and indicates the loss of continuity. Therefore, the continuity circuit established by the assembly ofsensor case 32 and attachmentmember clip assembly 50 is a means for providing evidence of tampering. - Although what has been shown and described is a use of a continuity circuit as means for providing evidence of tampering, the present invention contemplates other methods as well. For example, by the use of four circuit board clips instead of two circuit board clips, two separate paths of continuity could be established among the four projections. Further, the present invention contemplates those embodiments having a single projection, in which continuity could be established by an electrical lead passing along one side of the single projection, through the corresponding attachment member body and along another side of the single projection.
- In addition,
sensor assembly 30 includes another, separate means for providing evidence of tampering by way of temperature measurement device 40.2. Device 40.2 provides indication of temperature ofheat exchanger 24. This temperature signal can be interpreted bysignal processor 26 to indicate whether or notsensor assembly 30 is connected toheat exchanger 24 -
FIGS. 6, 7 , and 8 depict attachment ofsensor assembly 30 to aheat exchanger 24.Heat exchanger 24 includes a plurality ofhollow core passages 70 which contain a cooling medium. A plurality of heatexchanger cooling fins 72 are in contact withcores 70 and provide passageways 73 through which ambient air flows to remove heat conducted into the fins. Thewidth 78 of the passageways is shown onFIG. 7 and is roughly equivalent to the width ofcores 70. Referring toFIG. 2 b, projections 54 and receptacles 56 are adapted and configured such that there is apredetermined length 48 from the surface of resilient pad 80.1 to the surface of resilient pad 80.2. Thispredetermined distance 48 is preferably less thanwidth 78. This difference betweenlength 48 andwidth 78 is accommodated by compression of resilient pads 80.1 and 80.2 on an installedsensor 30. - Referring again to
FIGS. 6, 7 , and 8, projections 54 of attachment member clip assembly are each inserted through a corresponding passageway 73 established by coolingfins 72. For example, projection 54.1 is inserted through a passageway 73.1; projection 54.2 is inserted through a passageway 73.2; projection 54.3 is inserted into a passageway 73.3; and projection 54.4 is inserted through a passageway 73.4. These projections 54 of attachmentmember clip assembly 50 are pushed through the corresponding passageway 73 from aside 76 ofheat exchanger 24. This insertion continues until resilient pad 80.2 is in contact withheat exchanger side 76. The projections 54 of attachmentmember clip assembly 50 have alength 55 which is preferably greater thanwidth 78 of the passageway betweencores 70. Because of this difference betweenlength 55 andwidth 78, the ends of projections 54 protrude through theother side 74 ofheat exchanger 24. - Following insertion of
clip assembly 50 intoheat exchanger 24, the receptacles 56 ofsensor case 32 are brought into alignment with the corresponding protruding projections 54. The reception of projections 54 within the corresponding receptacle 56guides sensor case 32 into the proper position on theopposite side 74 ofheat exchanger 24. When all projections are inserted into the corresponding receptacles, compression is applied to clipassembly 50 andsensor case 32 until the projection spring clips 58 snap into place with the corresponding projection retaining springs 60 (as previously seen inFIG. 5 ). The compression ofclip assembly 50 andsensor case 32 results in compression of resilient pads 80.1 and 80.2 an installed state of tension in projections 54, and a corresponding snug fit ofsensor assembly 30 ontoheat exchanger 24. - As best seen in
FIGS. 4 and 5 , the projection spring clip 58 located near the free end of the corresponding projection 54 is displaced inwardly toward the interior ofsensor case 32. It can be appreciated that any external inward pushing on a spring clip 58, such as by a user with a tool, does not free the corresponding ledge of projection 58 from engagement with the corresponding ledges on the pair of retaining springs 60. Therefore, it is difficult to disassembleclip assembly 50 fromsensor case 32, since spring clips 58 must instead be pulled outward to disengage the projection from the receptacle. Further, sensor case body 36 (which has been removed fromFIG. 5 for clarity) preferably does not include any apertures through which a user could insert a tool or any other external features that could be used in an attempt to disengage the projections from the receptacles and removesensor 30 from its assembled state onheat exchanger 34. -
FIGS. 9-12 depict asensor assembly 130 according to another embodiment of the present invention. The use of a one-hundred prefix (1XX) with an element number (XX) indicates a feature of the embodiment that is the same as the non-prefixed element number (XX), except for those changes shown or described. - In another embodiment of the present invention, a
sensor assembly 130 is attached to aheat exchanger 24 in a vehicular system 120. Preferably,sensor 130 is attached to a heat exchanger such that removal ofsensor assembly 130 from the heat exchanger leaves mechanical evidence and/or electronic evidence of the removal. In yet another embodiment,sensor assembly 130 is in electrical communication with a signal processor 126 and provides an indication ifsensor 130 is removed fromheat exchanger 24. -
Sensor assembly 130 includes asensor case 132 with one or morelead wires 134 extending from a side of the sensor case.Assembly 130 also includes an attachmentmember clip assembly 150 which preferably includes one or more projections 154. Projections 154 are adapted and configured to be received within one or more receptacles 156 ofsensor case 132.Sensor assembly 130 further includes a circuit board 140.1 contained withinsensor case 132. - The internal construction and sensor operation of
sensor assembly 130 is generally the same as that ofsensor assembly 30. In one embodiment, circuit board 140.1 includes a first sensor for detecting electrical continuity, and a second sensor, such as a thermistor. In one embodiment, the continuity path includes one or morelead wires 134, one or more projections 154, and one or more internal circuit board clips 142. The operation of the circuit board clips, receptacles, and projections ofsensor assembly 130 are the same as that forsensor 30. - There are several external differences between
sensor assembly 130 andsensor assembly 30.Sensor assembly 130 includes a plurality oflead wires 134 that extend laterally from a side ofsensor case 132, as best seen inFIGS. 10 and 11 .Sensor case body 36 preferably does not include a plurality of sensor cooling fins. It has been found in some embodiments that there can be excessive cooling of the attachment clip and projections, such that the temperature sensed by the temperature measurement device is too low and/or too slow acting. Removal of the cooling fins can improve the response of the temperature sensor. - One embodiment of the present invention was tested with an attachment clip similar to
attachment clip 50. In that application,sensor assembly 30 was oriented such thatattachment member body 52 was directed toward the front of the vehicle, such that there was direct impingement of cooling flow onto the front face ofattachment member body 52. It was found that at some vehicle speeds, there could be a difference of 20-30 degrees C. between the radiator and a temperature measured by sensor 46. This temperature difference may be caused by an improvement in heat rejection caused byassembly 50. For those applications in which this temperature drop is not desirable, it is possible to add an air dam and/or thermally insulating material onto the front ofbody 52. For those applications in which it is desired to have a further lessening of the temperature difference, it is possible to extend the edges ofresilient pad 53 beyond the edges ofbody 52 so as to block incoming air from the projections 54. - In some embodiments, still further improvement of the response of an internal temperature sensor is desirable. Attachment
clip member assembly 150 includes an air dam and thermal insulator 180.3 which is mounted to the surface of attachment member body 152 that is opposite to the surface which resilient pad 180.2 is mounted, as best seen inFIGS. 9 and 13 . In one embodiment, air dam 180.3 projects a frontal area toward the cooling air passing overheat exchanger core 70 that is greater than the frontal area of attachment member body 152, and in some embodiments greater than the projected frontal area ofsensor case 132. Air dam 180.3 impedes air flow which would otherwise coolsensor assembly 130 and therefore improves heat transfer from the heat exchanger intoclip 150 and intosensor case 132. In one embodiment,air dam 130 is fabricated from a resilient material such as silicone rubber or PORON® material. In some embodiments, air dam 180.3 is fabricated from a material with low thermal conductivity in order to impede the transfer of heat from the cooling flow to clip 150. However, the present invention contemplates those embodiments in which pad 180.3 is an air dam and not a thermal insulator, as well as those embodiments in which pad 180.3 provides only reduced alteration of the impinging air flow, but provides thermal insulation. -
FIGS. 14 and 15 show perspective and end views, respectively, of attachmentclip member assembly 150.FIG. 15 is a scaled drawing according to one embodiment of the present invention. In that embodiment, dimension A is about 1.00 inches, and dimension B is about 0.75 inches. In that embodiment, air dam 180.3 is a foam pad of closed cellular silicone material, such as BISCO HT-805(5) or equivalent material. Further, resilient pad 180.2 is fabricated from closed silicone material, such as BISCO HT-805(5) or equivalent. The projections 154.1, 154.2, 154.3, and 154.4 are fabricated from a material such as 3003 H14 aluminum. Although specific dimensions and materials have been shown and described, it is understood that the present invention is not so limited. - While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims (43)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/898,842 US20050039551A1 (en) | 2003-07-24 | 2004-07-26 | Tamper evident connector for an engine radiator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48971303P | 2003-07-24 | 2003-07-24 | |
US10/898,842 US20050039551A1 (en) | 2003-07-24 | 2004-07-26 | Tamper evident connector for an engine radiator |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050039551A1 true US20050039551A1 (en) | 2005-02-24 |
Family
ID=34197900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/898,842 Abandoned US20050039551A1 (en) | 2003-07-24 | 2004-07-26 | Tamper evident connector for an engine radiator |
Country Status (1)
Country | Link |
---|---|
US (1) | US20050039551A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050058179A1 (en) * | 2001-11-02 | 2005-03-17 | Phipps Jack M. | Temperature sensor with enhanced ambient air temperature detection |
US20050077026A1 (en) * | 2003-08-30 | 2005-04-14 | Michael-Rainer Busch | Catalytic motor vehicle radiator |
US20060288968A1 (en) * | 2005-06-27 | 2006-12-28 | Control Devices, Inc. | Tamper evident connector for an engine radiator |
US20070171662A1 (en) * | 2006-01-23 | 2007-07-26 | Koito Manufacturing Co., Ltd. | Light source module |
US20090151449A1 (en) * | 2007-12-18 | 2009-06-18 | Chung Chin Huang | Sensor device structure |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1529145A (en) * | 1922-02-20 | 1925-03-10 | Grover C Seymour | Receptacle closure |
US1596773A (en) * | 1925-04-18 | 1926-08-17 | Chester A Spotz | Closure for paste tubes and the like |
US3178944A (en) * | 1962-06-01 | 1965-04-20 | Jack C Templeton | Air pressure gage for railroad train lines |
US3534352A (en) * | 1967-06-23 | 1970-10-13 | Stewart Warner Corp | Coolant sensing apparatus |
US3694804A (en) * | 1969-06-11 | 1972-09-26 | Thomas Electronics Ltd | Coolant level detector for engine cooling system |
US4095176A (en) * | 1976-10-06 | 1978-06-13 | S.A Texaco Belgium N.V. | Method and apparatus for evaluating corrosion protection |
US4110740A (en) * | 1976-02-09 | 1978-08-29 | Nippon Soken, Inc. | Liquid level detecting apparatus |
US4135186A (en) * | 1977-02-23 | 1979-01-16 | Hitachi, Ltd. | Liquid level detecting apparatus |
US4147596A (en) * | 1977-12-30 | 1979-04-03 | Texas Instruments Incorporated | Method and apparatus for monitoring the effectiveness of corrosion inhibition of coolant fluid |
US4177934A (en) * | 1975-10-04 | 1979-12-11 | Mauser Kommandit-Gesellschaft | Container and lid |
US4301440A (en) * | 1978-12-05 | 1981-11-17 | Nissan Motor Co., Ltd. | Level detecting device |
US4662232A (en) * | 1985-09-26 | 1987-05-05 | Texas Instruments Incorporated | Coolant condition sensor apparatus |
US4826379A (en) * | 1988-02-16 | 1989-05-02 | Connectron, Inc. | Push nuts and push-nut fasteners |
US4911594A (en) * | 1989-06-21 | 1990-03-27 | Trw Inc. | Push-nut type fastener |
US5051671A (en) * | 1990-10-01 | 1991-09-24 | Hired Hand Manufacturing, Inc. | Proximity sensor and control |
US5257648A (en) * | 1991-03-29 | 1993-11-02 | American Brass & Aluminum Foundry Company, Inc. | Pressure testing of tubular fitting installed to a ported wall |
US5299447A (en) * | 1992-07-13 | 1994-04-05 | Ford Motor Company | Air flow manifold system for providing two different mass air flow rates to a mass air flow sensor production calibration station |
US5720556A (en) * | 1995-02-02 | 1998-02-24 | Keystone Thermometrics Corporation | Temperature sensor probe |
US5833422A (en) * | 1996-07-29 | 1998-11-10 | Topy Fasteners, Ltd. | Push nut |
US5897281A (en) * | 1996-07-22 | 1999-04-27 | Topy Fasteners, Ltd. | Push nut and method for producing the same |
US5918292A (en) * | 1997-07-31 | 1999-06-29 | Smith; William L. | Right angle sensor |
US6128967A (en) * | 1999-04-20 | 2000-10-10 | Seh America, Inc. | Level transmitter connector |
US6463818B1 (en) * | 2000-04-04 | 2002-10-15 | International Truck Intellectual Property Company, L.L.C. | High retention force anti-lock brake sensor clip |
US6497158B1 (en) * | 1999-05-12 | 2002-12-24 | Siemens Vdo Automotive Inc. | Push on sensor attachment arrangement |
US6506605B1 (en) * | 2000-05-26 | 2003-01-14 | Engelhard Corporation | System for sensing catalyst coating loss and efficiency |
-
2004
- 2004-07-26 US US10/898,842 patent/US20050039551A1/en not_active Abandoned
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1529145A (en) * | 1922-02-20 | 1925-03-10 | Grover C Seymour | Receptacle closure |
US1596773A (en) * | 1925-04-18 | 1926-08-17 | Chester A Spotz | Closure for paste tubes and the like |
US3178944A (en) * | 1962-06-01 | 1965-04-20 | Jack C Templeton | Air pressure gage for railroad train lines |
US3534352A (en) * | 1967-06-23 | 1970-10-13 | Stewart Warner Corp | Coolant sensing apparatus |
US3694804A (en) * | 1969-06-11 | 1972-09-26 | Thomas Electronics Ltd | Coolant level detector for engine cooling system |
US4177934A (en) * | 1975-10-04 | 1979-12-11 | Mauser Kommandit-Gesellschaft | Container and lid |
US4110740A (en) * | 1976-02-09 | 1978-08-29 | Nippon Soken, Inc. | Liquid level detecting apparatus |
US4095176A (en) * | 1976-10-06 | 1978-06-13 | S.A Texaco Belgium N.V. | Method and apparatus for evaluating corrosion protection |
US4135186A (en) * | 1977-02-23 | 1979-01-16 | Hitachi, Ltd. | Liquid level detecting apparatus |
US4147596A (en) * | 1977-12-30 | 1979-04-03 | Texas Instruments Incorporated | Method and apparatus for monitoring the effectiveness of corrosion inhibition of coolant fluid |
US4301440A (en) * | 1978-12-05 | 1981-11-17 | Nissan Motor Co., Ltd. | Level detecting device |
US4662232A (en) * | 1985-09-26 | 1987-05-05 | Texas Instruments Incorporated | Coolant condition sensor apparatus |
US4826379A (en) * | 1988-02-16 | 1989-05-02 | Connectron, Inc. | Push nuts and push-nut fasteners |
US4911594A (en) * | 1989-06-21 | 1990-03-27 | Trw Inc. | Push-nut type fastener |
US5051671A (en) * | 1990-10-01 | 1991-09-24 | Hired Hand Manufacturing, Inc. | Proximity sensor and control |
US5257648A (en) * | 1991-03-29 | 1993-11-02 | American Brass & Aluminum Foundry Company, Inc. | Pressure testing of tubular fitting installed to a ported wall |
US5299447A (en) * | 1992-07-13 | 1994-04-05 | Ford Motor Company | Air flow manifold system for providing two different mass air flow rates to a mass air flow sensor production calibration station |
US5720556A (en) * | 1995-02-02 | 1998-02-24 | Keystone Thermometrics Corporation | Temperature sensor probe |
US5897281A (en) * | 1996-07-22 | 1999-04-27 | Topy Fasteners, Ltd. | Push nut and method for producing the same |
US5833422A (en) * | 1996-07-29 | 1998-11-10 | Topy Fasteners, Ltd. | Push nut |
US5918292A (en) * | 1997-07-31 | 1999-06-29 | Smith; William L. | Right angle sensor |
US6298739B1 (en) * | 1997-07-31 | 2001-10-09 | William L. Smith | Right angle sensor |
US6128967A (en) * | 1999-04-20 | 2000-10-10 | Seh America, Inc. | Level transmitter connector |
US6497158B1 (en) * | 1999-05-12 | 2002-12-24 | Siemens Vdo Automotive Inc. | Push on sensor attachment arrangement |
US6463818B1 (en) * | 2000-04-04 | 2002-10-15 | International Truck Intellectual Property Company, L.L.C. | High retention force anti-lock brake sensor clip |
US6506605B1 (en) * | 2000-05-26 | 2003-01-14 | Engelhard Corporation | System for sensing catalyst coating loss and efficiency |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050058179A1 (en) * | 2001-11-02 | 2005-03-17 | Phipps Jack M. | Temperature sensor with enhanced ambient air temperature detection |
US7001069B2 (en) * | 2001-11-02 | 2006-02-21 | Phipps Jack M | Temperature sensor with enhanced ambient air temperature detection |
US20050077026A1 (en) * | 2003-08-30 | 2005-04-14 | Michael-Rainer Busch | Catalytic motor vehicle radiator |
US20060288968A1 (en) * | 2005-06-27 | 2006-12-28 | Control Devices, Inc. | Tamper evident connector for an engine radiator |
US20070171662A1 (en) * | 2006-01-23 | 2007-07-26 | Koito Manufacturing Co., Ltd. | Light source module |
US7535727B2 (en) * | 2006-01-23 | 2009-05-19 | Koito Manufacturing Co., Ltd. | Light source module |
US20090151449A1 (en) * | 2007-12-18 | 2009-06-18 | Chung Chin Huang | Sensor device structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11069992B2 (en) | Connector part comprising a circuit board | |
JP6770104B2 (en) | Electrical connection device using thermal coupling to a printed circuit board with a temperature sensor | |
JP6488393B2 (en) | connector | |
CA2158706C (en) | Improved battery holder for a printed circuit board | |
CN107732505A (en) | Connector | |
US6922326B2 (en) | Accumulating element module | |
US12212012B2 (en) | Battery cell macromodule housing, contacting device for a battery cell macromodule housing, housing cover for a contacting device for a battery cell macromodule housing and a battery cell macromodule | |
WO2020259173A1 (en) | Battery module and device | |
JP5037235B2 (en) | Electrical junction box | |
US20050039551A1 (en) | Tamper evident connector for an engine radiator | |
JP2008131680A (en) | Electrical junction box | |
JPH0737272Y2 (en) | Attachment mounting structure | |
US20060288968A1 (en) | Tamper evident connector for an engine radiator | |
CN101188351B (en) | Electric connection box | |
CN210074317U (en) | Plug-in connector with circuit board | |
KR101947949B1 (en) | Temperature sensor of contact type for vehicle battery | |
CN111405797A (en) | a controller | |
CN211789701U (en) | Temperature Sensor Mounting Kits and Connectors for Connectors | |
CN115995732A (en) | Connectors and Mounting Structures | |
US20040077214A1 (en) | Electrical connection bulkhead header | |
CN210142761U (en) | Socket connector and socket connector housing | |
CN214754333U (en) | Novel connector | |
CN220324250U (en) | Novel structure of thermistor universal module | |
US20240429472A1 (en) | Temperature sensing apparatus | |
CN222381962U (en) | Wire arrangement structure, electric control box and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CONROL DEVICES D/B/A FIRST TECHNOLOGY INC., MAINE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUTE, ERIC;DAMIAN, KEVIN;REEL/FRAME:015280/0173 Effective date: 20040824 |
|
AS | Assignment |
Owner name: CONTROL DEVICES D/B/A/ FIRST TECHNOLOGY INC., MAIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHUTE, ERIC;DAMIAN, KEVIN;REEL/FRAME:015669/0820 Effective date: 20040824 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |