US20050025975A1 - Gear - Google Patents
Gear Download PDFInfo
- Publication number
- US20050025975A1 US20050025975A1 US10/902,303 US90230304A US2005025975A1 US 20050025975 A1 US20050025975 A1 US 20050025975A1 US 90230304 A US90230304 A US 90230304A US 2005025975 A1 US2005025975 A1 US 2005025975A1
- Authority
- US
- United States
- Prior art keywords
- gear
- comparative example
- lubricant
- hard carbon
- carbon film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/041—Coatings or solid lubricants, e.g. antiseize layers or pastes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19991—Lubrication
- Y10T74/19995—Teeth
Definitions
- the present invention relates a gear for a power transmission mechanism, and more particularly to a gear which improves a transmission efficiency.
- gears have been employed in various power transmission mechanisms.
- Representative gears for vehicle transmission mechanisms are mainly made by steel, such as carburized steel, carbonitrided steel, and chromium molybdenum steel.
- Such gears for vehicle transmission mechanisms are required to reduce friction generated at the mesh between the gears in order to improve an output power and a fuel consumption of a vehicle. More specifically, there are a large number of meshes of gears in a planetary mechanism or speed reduction mechanism, and therefore, it has been strongly desired to decrease the frictions at the meshes of the gears in view of improving a power transmission efficiency of such mechanisms.
- An aspect of the present invention resides in a gear which comprises a tooth surface and a hard carbon film formed on at least a part of the tooth surface.
- Gears are generally slidingly contacted with each other during the revolution under an engaged (meshed) state with other gear. Therefore, reducing friction at tooth surfaces of gears is preferable in view of improving a power transmission efficiency of the gears.
- a gear of the present invention is constructed such that a hard carbon 10 film (coating) is formed on at least a part of the gear.
- This hard carbon film is a film of amorphous carbon or hydrogen containing amorphous carbon which is referenced as a-C:H (amorphous carbon or hydrogen containing amorphous carbon), i-C (i carbon) and DLC (diamond-like carbon).
- the friction coefficient of the film in lubricant becomes different from that in the dry condition.
- a normal hard carbon film is made of carbon and unavoidable impurity, or of carbon, hydrogen and unavoidable impurity.
- a reactivity of a surface of the hard carbon film is low, and this property relates to a low-friction and a low-abrasion thereof.
- the hard carbon film has a weak interaction relative to a base oil and additives in lubricant, a reduction merit of the friction coefficient in lubricant is relatively small as compared with that in the dry condition.
- the present invention has been achieved by thorough study as to a hard carbon film having a low-friction coefficient in lubricant, a preferable lubricant, and an additive component.
- a hard carbon film is formed on a tooth surface of a gear.
- the hard carbon film may be formed on a whole surface of the tooth surface of the gear or a partial surface of the tooth surface.
- a forming of a film on a bottom portion of each gear tooth is not easy as compared with that on a top portion of each gear tooth.
- it is not necessary to forcibly form the hard carbon film on the uneasy forming portion since the merit obtained by the hard carbon film is obtained according to a ratio of the film formed area. Further, even if a part of the film is worn out in use, the merit of the hard carbon film is maintained according to a size of the remaining hard carbon film.
- the hard carbon film may be formed on the whole of the tooth surface or may be formed on a part of the tooth surface.
- a film forming area of the hard carbon film may be properly determined upon taking account of a production cost, a productivity and a degree of the obtained merit.
- a base metal of the gear is not basically limited, a carburized steel and a chromium molybdenum steel are preferably used to ensure an impact strength and a bending fatigue strength necessary for a gear. Further, carbonitrided steel is preferably used to suppress the softening of the base metal due to the semi-high-temperature condition during the film production process.
- An intermediate layer may be formed between the base metal and the hard carbon film to decrease the strain between the base metal and the hard carbon film and to improve the adherence of the film relative to the base metal. A commonly known method may be employed to form the intermediate layer.
- the hard carbon film can be produced by a chemical vapor deposition (CVD) process or physical vapor deposition (PVD) process.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a hard carbon film formed by CVD process contains hydrogen due to raw materials of organic compound, and the hydrogen amount of such produced film ranges from 15 to 40 atom % (atomic percent).
- PVD process is capable of producing the hard carbon film with and/or without hydrogen.
- Various processes of PVD have been proposed and put in practical use.
- the hard carbon film of the gear according to the present invention is preferable to be formed by means of an arc ion plating or spattering, in view of the adherence of the film on the base metal.
- the hydrogen amount in the hard carbon film for the gear is as small as possible since the decrease of the hydrogen amount in the hard carbon film decreases the friction of the gear. Therefore, the hydrogen amount of the hard carbon film of the gear according to the present invention is set to be smaller than 1 atom %, and preferably smaller than 0.3 atom %. That is, it is preferable that the hard carbon film is formed by means of physical vapor deposition (PVC) process.
- the hydrogen amount in the hard carbon film is capable of being measured by a secondary ion mass spectroscopy (SIMS) or Rutherford backscattering spectroscopy (RBS).
- the gear according to the present invention exhibits an excellent characteristic, particularly when it is used in or with lubricant.
- the lubricant may be properly selected from a lubricant using mineral oil or synthetic oil as base oil, such as gear oil, vehicle engine oil, turbine oil and spindle oil.
- base oil such as gear oil, vehicle engine oil, turbine oil and spindle oil.
- poly- ⁇ -olefin is used as base oil of the lubricant, the friction decreasing merit is further improved. The reason thereof may be thought to be that poly- ⁇ -olefin oil has a property of easy adherence (deposition) onto the hard carbon film formed on the tooth surface of the gear.
- a compound including hydroxy group is added to lubricant as an additive, to further improve the friction reducing merit.
- the reason thereof is guessed that the said additive adheres on to the hard carbon film on the tooth surface of the gear through the hydroxy group.
- the number of the hydroxy groups included in a molecular of the additive is as large as possible, in view of increasing the adsorption strength. However, if the number of the hydroxy groups is too large, there causes a possibility that the additive is separated from the base oil due to the excessive hydrophilicity. Therefore, the molecular structure of the additive should be designed upon taking account of the above-discussed points.
- the molecular structure of the additive is designed such that the hydroxy groups are located as near as possible in the molecular structure in case that the number of the hydroxy groups in one molecular is the same.
- a typical molecular for the additive is secondary alcohol (dihdyric alcohol) and tertiary alcohol (trihydric alcohol).
- the additive amount of the additive may be properly varied according to a usage pattern of the lubricant relative to the gear, it is preferable that the additive amount relative to the lubricant is within a range from 0.5 to 8 weight %. If the additive amount is too small, the friction reducing merit becomes small. If too large, there is a possibility that the additive is separated from the base oil.
- ester is preferable, and monoester of glycerin is more preferable. It is preferable that the number of carbon atoms of fatty acid constructing glycerin monoester is greater than or equal to 8, and preferably greater than or equal to 12. If the molecule size of the fatty acid consisting the ester in the additive is small, a film directly formed on a surface of the hard carbon film due to the additive becomes too thin, and therefore the friction reducing merit is decreased thereby.
- Polyhydric alcohol except for glycerin may be employed as an ingredient for the fatty ester additive of the lubricant although it is disadvantageous in cost.
- lubricant is obtained by adding proper additives in base oil such as mineral oil or synthetic oil.
- base oil such as mineral oil or synthetic oil.
- lubricant including a hydroxy compound as a main component may be used instead of the above-discussed lubricant. If the lubricant including hydroxy compound is employed, the power transmission efficiency is largely improved.
- Alcohol is preferable as the above-discussed hydroxy compound, and particularly, glycerin performs a large friction reducing effect. Further, when the gear slides in ethylene glycol, the excellent friction reducing merit is ensured thereby subsequent to a case that glycerin is used as lubricant for gears.
- lubricant It is not necessary to construct the whole of the lubricant by the hydroxy compound.
- various known additives may be added in lubricant.
- the total amount of such additives in lubricant is normally set to be smaller than or equal to 15 vol. %.
- the gear according to the present invention is employed in a mechanism having a lot of mesh portions of gears, such as a planetary gear mechanism and a speed reducing mechanism, the performance of improving the power transmission efficient thereby is clearly ensured.
- a planetary gear mechanism is employed in a speed reduction mechanism, it is possible to obtain a large speed reduction ratio while suppressing the size of the speed reduction mechanism.
- setting the speed reduction ratio at a large value radically degrades the power transmission efficiency. Accordingly, by using the gear according to the present invention as at least one of a sun gear, planetary gears and a ring gear of a planetary gear mechanism for a speed reduction mechanism, the degradation of the power transmission efficiency in the speed reduction mechanism is suppressed.
- Chromium molybdenum steel defined as SCM420H in JIS (Japan Industrial Standard) was employed as material of the gear of Example 1.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear.
- Example 1 The above discussed gear of Example 1 was surfaced and degreased. Subsequently, a hard carbon film was formed on a tooth surface of the gear of Example 1 by arc ion plating (AIP) process. A thickness of the hard carbon film at a center portion of each tooth was 1.2 ⁇ m. The hydrogen amount in the hard carbon film was 0.1 atom % (atomic percent) as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- AIP arc ion plating
- the tooth surface of the gear coated by the hard carbon film was polished to remove droplets of the hard carbon film and to smoothen the surface thereof.
- a surface roughness Ra of the polished tooth portion was 0.04 ⁇ m.
- a gear (drive gear) meshed with the film coated gear was not coated with the hard carbon film.
- a surface roughness Ra of a tooth surface of the meshed (counter) gear was 0.17 ⁇ m.
- tooth portions of Examples and Comparative Examples were finished such that a surface roughness Ra of the gear coated with DLC (diamond-like carbon) ranged from 0.02 ⁇ m to 0.06 ⁇ m, and a surface roughness Ra of the gear without DLC ranged from 0.1 ⁇ m to 0.3 ⁇ m.
- the gear coated with DLC was previously grinded and polished to be smoothed before DLC is formed on the surface of the gear.
- the surface roughness Ra is explained as Ra 75 in JIS (Japanese Industrial Standard) B0601(:2001).
- the power transmission efficiency of the gear was measured using a power circulation type gear test equipment.
- a power circulation type gear test equipment In order to separately obtain a loss of a drive gear and bearings and a loss of the tested gear, it is necessary to execute various adaptations such as a special design of the drive gear (counter gear) and a separate measurement of the bearing loss.
- a special design of the drive gear counter gear
- a separate measurement of the bearing loss since it is possible to determine the advantages gained by the hard carbon film from the magnitude of the total loss without executing the separate detection of the losses of the total loss, the evaluations of Examples and Comparative Examples have been made from the transmission efficiency corresponding to the total loss.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa( ⁇ )-olefin (PAO) oil and that the drive gear meshed with the tested gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- PAO poly-alfa( ⁇ )-olefin
- the gear of Comparative Example 1 was the same in shape and in material as that of Example 1 except that no hard carbon film was formed on the gear of Comparative Example 1.
- the total loss of Comparative Example 1 was measured under the condition as same as that of Example 1.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 2.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear.
- the above discussed gear of Example 2 was degreased and set in a vacuum chamber.
- a hard carbon film was formed on a tooth surface of the gear of Example 2 by arc ion plating (AIP) process in the vacuum chamber.
- a thickness of the hard carbon film at a center portion of each tooth was 1.4 ⁇ m.
- the hydrogen amount in the hard carbon film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface.
- a gear (drive gear) meshed with the film coated gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- a kinetic viscosity of the employed poly-alfa-olefin was 4.0 cSt at 100° C.
- the evaluation of examples and comparative examples was executed using the poly-alfa-olefin as same as that employed in Example 2.
- the gear of Comparative Example 2 was the same in shape and in material as that of Example 2 except that no hard carbon film was formed on the gear of Comparative Example 2.
- the total loss of Comparative Example 2 was measured under the condition as same as that of Example 2.
- Chromium molybdenum steel defined as SCM420H in JIS (Japan Industrial Standard) was employed as material of the gear of Example 3.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- the above discussed gear of Example 3 was degreased and set in a vacuum chamber.
- a hard carbon film was formed on a tooth surface of the gear of Example 3 by arc ion plating (AIP) process in the vacuum chamber.
- a thickness of the hard carbon film at a center portion of each tooth was 0.9 ⁇ m.
- the hydrogen amount in the film was 0.2 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface.
- a gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 9000 rpm (the revolution speed of the drive gear).
- PAO poly-alfa-olefin
- the gear of Comparative Example 3 was the same in shape and in material as that of Example 3 except that no hard carbon film is formed on the gear of Comparative Example 3.
- the total loss of Comparative Example 3 was measured under the condition as same as that of Example 3.
- Chromium molybdenum steel defined as SCM420H in JIS was employed as material of the gear of Example 4.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- the above discussed gear of Example 4 was degreased and set in a vacuum chamber.
- a hard carbon film was formed on a tooth surface of the gear of Example 4 by the magnetron spattering process in the vacuum chamber.
- a thickness of the hard carbon film at a center portion of each tooth was 1.3 ⁇ m.
- the hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface.
- a gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 9000 rpm (the revolution speed of the drive gear).
- PAO poly-alfa-olefin
- the gear of Comparative Example 4 was the same in shape and in material as that of Example 4 except that no hard carbon film was formed on the gear of Comparative Example 4.
- the total loss of Comparative Example 4 was measured under the condition as same as that of Example 4.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 5.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- the above discussed gear of Example 5 was degreased and set in a vacuum chamber.
- a hard carbon film was formed on a tooth surface of the gear of Example 5 by a plasma CVD process in the vacuum chamber. Gas employed in the CVD process was cyclohexane.
- a thickness of the hard carbon film at a center portion of each tooth was 3.0 ⁇ m.
- the hydrogen amount in the hard carbon film was 25 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface.
- a gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- PAO poly-alfa-olefin
- the gear of Comparative Example 5 was as same in shape and in material as that of Example 5 except that no hard carbon film is formed on the gear of Comparative Example 5.
- the total loss of Comparative Example 5 was measured under the condition as same as that of Example 5.
- Chromium molybdenum steel defined as SCM420H in JIS was employed as material of the gear of Example 6.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering were applied to the machined gear.
- the above discussed gear of Example 6 was surfaced (finished) and degreased. Subsequently, the gear for Example 6 was set in a vacuum chamber, and a hard carbon film was formed on a tooth surface of the gear of Example 6 by arc ion plating (AIP) process in the vacuum chamber. A thickness of the film at a center portion of each tooth was 1.0 ⁇ m. The hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface.
- a gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (based on the drive gear).
- PAO poly-alfa-olefin
- the gear of Comparative Example 6 was as same in shape and in material as that of Example 6 except that no hard carbon film was formed on the gear of Comparative Example 6.
- the total loss of Comparative Example 6 was measured under the condition as same as that of Example 6.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 3.
- the material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- the above discussed gear of Example 7 was degreased and set in a vacuum chamber.
- a hard carbon film was formed on a tooth surface of the gear of Example 7 by arc ion plating (AIP) process in the vacuum chamber.
- a thickness of the hard carbon film at a center portion of each tooth was 1.1 ⁇ m.
- the hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surface was polished to remove droplets of the film and to smoothen the surface.
- a gear (drive gear) meshed with the coated gear was also coated with the hard carbon film.
- a thickness of the hard carbon film at a center portion of each tooth of the drive gear was 1.0 ⁇ m.
- the hydrogen amount in the hard carbon film of the drive gear was 0.1 atom %.
- the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- PAO poly-alfa-olefin
- the gear of Comparative Example 7 was as same in shape and in material as that of Example 7 except that no hard carbon film is formed on the gear of Comparative Example 7.
- the total loss of Comparative Example 7 was measured under the condition as same as that of Example 7.
- Example 8 and Comparative Example 8 were evaluated under the different test conditions. More specifically, lubricant employed in Example 8 and Comparative Example 8 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is oleic acid) of 3 weight % of the total of the lubricant with poly-alfa-olefin. The other conditions of Example 8 and Comparative Example 8 were the same as those of Example 2. The evaluation of Example 8 and Comparative Example 8 were also the same as that of Example 2.
- Example 9 and Comparative Example 9 were lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is palmitic acid) of 2 weight % in the total of the lubricant with poly-alfa-olefin.
- the other conditions of Example 9 and Comparative Example 9 were the same as those of Example 2.
- the evaluation of Example 9 and Comparative Example 9 were also the same as that of Example 2.
- Example 10 and Comparative Example 10 were evaluated under the different test conditions. More specifically, lubricant employed in Example 10 and Comparative Example 10 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 7 weight % in the total of the lubricant with poly-alfa-olefin. The other conditions of Example 10 and Comparative Example 10 were the same as those of Example 2. The evaluation of Example 10 and Comparative Example 10 were also the same as that of Example 2.
- Example 11 and Comparative Example 11 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 11 and Comparative Example 11 was lubricant obtained by fully mixing an ester component which was butyl stearate of 2 weight % in the total of the lubricant with poly-alfa-olefin. The other conditions of Example 11 and Comparative Example 11 were the same as those of Example 2. The evaluation of Example 11 and Comparative Example 11 were also the same as that of Example 2.
- Chromium molybdenum steel defined as SCM440H in JIS (Japan Industrial Standard) was employed as material of the gears of Example 12.
- the material was machined into gears defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gears. Thereafter, a finishing touch was applied to the processed gear.
- the gears were assembled into a planetary gear mechanism of 2K-H type. In the evaluation of the gears, a sun gear functioning as an input gear, a ring gear was fixed, and a carrier of planetary gears functioning as an output.
- the sun gear and the planetary gears of Example 12 were degreased and set in a vacuum chamber.
- Hard carbon films were formed on tooth surfaces of the gears by arc ion plating (AIP) process in the vacuum chamber.
- a thickness of the film at a center portion of the sun gear was 1.7 ⁇ m.
- the hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- SIMS secondary ion mass spectroscopy
- the tooth surfaces were polished to remove droplets of the film and to smoothen the surface.
- the ring gear was not coated with the hard carbon film.
- the total loss of the tested gear was measured under a condition that the tested gears were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear was rotated at a speed of 6000 rpm (the revolution speed of the sun gear).
- PAO poly-alfa-olefin
- the gears of Comparative Example 12 were the same in shape and in material as those of Example 12 except that no hard carbon film was formed on the gears of Comparative Example 12.
- the total loss of Comparative Example 12 was measured under the condition as same as that of Example 12.
- Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 13 and Comparative Example 13 was JIS industrial gear oil specified by type 2 and viscosity classification ISO VG 220. The other conditions of Example 13 and Comparative Example 13 were the same as those of Example 2. The evaluation of Example 13 and Comparative Example 13 were also the same as that of Example 2.
- Example 14 and Comparative Example 14 were lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 5 weight % in the total of the lubricant with JIS industrial gear oil specified by viscosity classification ISO VG 220 type 2.
- the other conditions of Example 14 and Comparative Example 14 were the same as those of Example 2.
- the evaluation of Example 14 and Comparative Example 14 were also the same as that of Example 2.
- Example 15 and Comparative Example 15 were lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 4 weight % in the total of the lubricant with JIS industrial turbine oil specified by JIS-2213K type 2.
- the other conditions of Example 15 and Comparative Example 15 were the same as those of Example 2.
- the evaluation of Example 15 and Comparative Example 15 were -also the same as that of Example 2.
- Example 7 and Comparative Example 7 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 16 and Comparative Example 16 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 7 weight % with poly-alfa-olefin, as same as that employed in Examples 10 and 11. The other conditions of Example 16 and Comparative Example 16 were the same as those of Example 7. The evaluation of Example 16 and Comparative Example 16 were also the same as that of Example 7 and Comparative Example 7.
- Lubricant employed in Example 16 and Comparative Example 16 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 7 weight % with poly-alfa-olefin, as same as that employed in Examples 10 and 11.
- the other conditions of Example 16 and Comparative Example 16 were the same as those of Example 7.
- the evaluation of Example 16 and Comparative Example 16 were also the same as that
- Example 17 and Comparative Example 17 were evaluated under the different test conditions. More specifically, lubricant employed in Example 17 and Comparative Example 17 was lubricant obtained by fully mixing an ester component which was fatty diglyceride (a main component of fatty acid is stearic acid) of 2 weight % with poly-alfa-olefin. The other conditions of Example 17 and Comparative Example 17 were the same as those of Example 2. The evaluation of Example 17 and Comparative Example 17 were also the same as that of Example 2.
- Example 18 and Comparative Example 18 were evaluated under the different test conditions. More specifically, lubricant employed in Example 18 and Comparative Example 18 was lubricant obtained by fully mixing pinacol having two hydroxy groups in one molecular at 0.8 weight % with poly-alfa-olefin. The other conditions of Example 18 and Comparative Example 18 were the same as those of Example 2. The evaluation of Example 18 and Comparative Example 18 were also the same as that of Example 2.
- Example 19 and Comparative Example 19 were evaluated under the different test conditions. More specifically, lubricant employed in Example 19 and Comparative Example 19 was lubricant obtained by fully mixing 1,10-decandiol of 2.0 weight % and poly-alfa-olefin. The other conditions of Example 19 and Comparative Example 19 were-the same as those of Example 2. The evaluation of Example 19 and Comparative Example 19 were also the same as that of Example 2.
- Example 20 and Comparative Example 20 were evaluated under the different test conditions. More specifically, lubricant employed in Example 20 and Comparative Example 20 was lubricant obtained by fully mixing dodecyl alcohol of 2.0 weight % with poly-alfa-olefin. The other conditions of Example 20 and Comparative Example 20 were the same as those of Example 2. The evaluation of Example 20 and Comparative Example 20 were also the same as that of Example 2.
- Example 21 and Comparative Example 21 were evaluated under the different test conditions. More specifically, lubricant employed in Example 21 and Comparative Example 21 was glycerin. No additive was added in glycerin. The other conditions of Example 21 and Comparative Example 21 were the same as those of Example 2. The evaluation of Example 21 and Comparative Example 21 were also the same as that of Example 2.
- Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 22 and Comparative Example 22 was ethylene glycol. No additive was added in ethylene glycol. The other conditions of Example 22 and Comparative Example 22 were the same as those of Example 2. The evaluation of Example 22 and Comparative Example 22 were also the same as that of Example 2.
- Example 21 performed the excellent power transmission efficiency.
- Example 16 is subsequently preferable in case that the selection of lubricant is limited such that the lubricant is commonly used in the other sliding pair. In case that both of cost and power transmission efficiency are balancedly minded, Example 8 through 10 are subsequently preferable.
- the gear according to the present invention by film the hard carbon film on al least a part of tooth face of the gear, it becomes possible to largely decrease the friction of the gear relative to the counter gear (meshed gear). Further, by employing a specifically blended lubricant, the friction of the gear is further preferably decreased. This provides the gear further improved in power transmission efficiency. Specifically, in case that lubricant may be freely selected, a largely improved power transmission efficiency is obtained by a lubricant wherein alcohol group is used as a main component of the lubricant. Further, the gear according to the present invention is preferably adapted to a mechanism which has a lot of gear meshing portions, such as a planetary gear mechanism and speed reduction mechanism.
- Example 9 10 11 12 13 14 15 Material SCM440H SCM440H SCM440H SCM440H SCM440H SCM440H Module (mm) 2 2 2 2 2 2 2 Number of 60 60 60 60/24/144 2K-H 60 60 60 Teeth planetary gear mechanism Film Forming AIP AIP AIP AIP AIP AIP Method H amount 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 (atom %) Lubricant PAO + PAO + PAO + Butyl PAO Gear oil Gear oil + Turbine oil + Palmitic acid Stearic acid stearate Stearic acid Stearic acid monoglyceride monoglyceride (Stearic acid monoglyceride monoglyceride butyl ester) Example 97.9 98.4 97.7 93.3 95.5 96.7 94.7 Transmission Efficiency (%) Comp.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Gears, Cams (AREA)
- General Details Of Gearings (AREA)
- Lubricants (AREA)
Abstract
A gear comprised of a tooth surface and a hard carbon film formed on at least a part of the tooth surface. When the gear is used in lubricant including a specific component, a friction of a tooth surface of the gear is largely decreased, and therefore the gear performs an excellent power transmission efficiency. Further, when the gear is employed in a planetary gear mechanism or speed reducing mechanism which has a plurality of meshing portions of gears, the power transmission efficiency of the mechanism is also improved.
Description
- This application has the following related applications: U.S. patent application Ser. Nos. 09/545,181 based on Japanese Patent Application Hei-11-102205 filed on Apr. 9, 1999; 10/468,713 which is the designated state (United States) application number of PCT Application JP02/10057 based on Japanese Patent Application 2001-117680 filed on Apr. 17, 2001; 10/355,099 based on Japanese Patent Application 2002-45576 filed on Feb. 22, 2002; 10/682,559 based on Japanese Patent Application No. 2002-302205 filed on Oct. 16, 2002; and 10/692,853 based on Japanese Patent Application 2002-322322 filed on Oct. 16, 2002.
- The present invention relates a gear for a power transmission mechanism, and more particularly to a gear which improves a transmission efficiency.
- Generally, gears have been employed in various power transmission mechanisms. Representative gears for vehicle transmission mechanisms are mainly made by steel, such as carburized steel, carbonitrided steel, and chromium molybdenum steel.
- Such gears for vehicle transmission mechanisms are required to reduce friction generated at the mesh between the gears in order to improve an output power and a fuel consumption of a vehicle. More specifically, there are a large number of meshes of gears in a planetary mechanism or speed reduction mechanism, and therefore, it has been strongly desired to decrease the frictions at the meshes of the gears in view of improving a power transmission efficiency of such mechanisms.
- It is therefore an object of the present invention to provide an improved gear which performs an excellent power transmission efficiency by decreasing friction on the tooth surface of the gear.
- An aspect of the present invention resides in a gear which comprises a tooth surface and a hard carbon film formed on at least a part of the tooth surface.
- The other objects and features of this invention will become understood from the following description with reference to the accompanying drawings.
- Gears are generally slidingly contacted with each other during the revolution under an engaged (meshed) state with other gear. Therefore, reducing friction at tooth surfaces of gears is preferable in view of improving a power transmission efficiency of the gears.
- A gear of the present invention is constructed such that a hard carbon 10 film (coating) is formed on at least a part of the gear. This hard carbon film is a film of amorphous carbon or hydrogen containing amorphous carbon which is referenced as a-C:H (amorphous carbon or hydrogen containing amorphous carbon), i-C (i carbon) and DLC (diamond-like carbon).
- It is known that such a hard carbon film has a low friction coefficient when slides on the other surface under a dry condition (no lubricating condition). Although the principle of having such a low friction coefficient has not been completely elucidated, it can be assumed that a solid lubrication performance and properties such as a low Young's modulus and a high hardness of the hard carbon film attain the reduction of the friction coefficient.
- On the other hand, when the hard carbon film is used in lubricant, the friction coefficient of the film in lubricant becomes different from that in the dry condition. A normal hard carbon film is made of carbon and unavoidable impurity, or of carbon, hydrogen and unavoidable impurity. A reactivity of a surface of the hard carbon film is low, and this property relates to a low-friction and a low-abrasion thereof. However, since the hard carbon film has a weak interaction relative to a base oil and additives in lubricant, a reduction merit of the friction coefficient in lubricant is relatively small as compared with that in the dry condition.
- The present invention has been achieved by thorough study as to a hard carbon film having a low-friction coefficient in lubricant, a preferable lubricant, and an additive component.
- First, a hard carbon film is formed on a tooth surface of a gear. The hard carbon film may be formed on a whole surface of the tooth surface of the gear or a partial surface of the tooth surface. Generally, there is a tendency that a forming of a film on a bottom portion of each gear tooth is not easy as compared with that on a top portion of each gear tooth. However, it is not necessary to forcibly form the hard carbon film on the uneasy forming portion, since the merit obtained by the hard carbon film is obtained according to a ratio of the film formed area. Further, even if a part of the film is worn out in use, the merit of the hard carbon film is maintained according to a size of the remaining hard carbon film.
- Although gears are actually used by combining two or more gears, the hard carbon film may be formed on the whole of the tooth surface or may be formed on a part of the tooth surface. A film forming area of the hard carbon film may be properly determined upon taking account of a production cost, a productivity and a degree of the obtained merit.
- Although a base metal of the gear is not basically limited, a carburized steel and a chromium molybdenum steel are preferably used to ensure an impact strength and a bending fatigue strength necessary for a gear. Further, carbonitrided steel is preferably used to suppress the softening of the base metal due to the semi-high-temperature condition during the film production process. An intermediate layer may be formed between the base metal and the hard carbon film to decrease the strain between the base metal and the hard carbon film and to improve the adherence of the film relative to the base metal. A commonly known method may be employed to form the intermediate layer.
- The hard carbon film can be produced by a chemical vapor deposition (CVD) process or physical vapor deposition (PVD) process. Generally, a hard carbon film formed by CVD process contains hydrogen due to raw materials of organic compound, and the hydrogen amount of such produced film ranges from 15 to 40 atom % (atomic percent). On the other hand, PVD process is capable of producing the hard carbon film with and/or without hydrogen. Various processes of PVD have been proposed and put in practical use. The hard carbon film of the gear according to the present invention is preferable to be formed by means of an arc ion plating or spattering, in view of the adherence of the film on the base metal.
- It is preferable that the hydrogen amount in the hard carbon film for the gear is as small as possible since the decrease of the hydrogen amount in the hard carbon film decreases the friction of the gear. Therefore, the hydrogen amount of the hard carbon film of the gear according to the present invention is set to be smaller than 1 atom %, and preferably smaller than 0.3 atom %. That is, it is preferable that the hard carbon film is formed by means of physical vapor deposition (PVC) process. The hydrogen amount in the hard carbon film is capable of being measured by a secondary ion mass spectroscopy (SIMS) or Rutherford backscattering spectroscopy (RBS).
- The gear according to the present invention exhibits an excellent characteristic, particularly when it is used in or with lubricant. When the gear according to the present invention is used in lubricant, the lubricant may be properly selected from a lubricant using mineral oil or synthetic oil as base oil, such as gear oil, vehicle engine oil, turbine oil and spindle oil. Further, when poly-α-olefin is used as base oil of the lubricant, the friction decreasing merit is further improved. The reason thereof may be thought to be that poly-α-olefin oil has a property of easy adherence (deposition) onto the hard carbon film formed on the tooth surface of the gear.
- Further, it is preferable that a compound including hydroxy group is added to lubricant as an additive, to further improve the friction reducing merit. The reason thereof is guessed that the said additive adheres on to the hard carbon film on the tooth surface of the gear through the hydroxy group. Further, it is preferable that the number of the hydroxy groups included in a molecular of the additive is as large as possible, in view of increasing the adsorption strength. However, if the number of the hydroxy groups is too large, there causes a possibility that the additive is separated from the base oil due to the excessive hydrophilicity. Therefore, the molecular structure of the additive should be designed upon taking account of the above-discussed points. Further it is preferable that the molecular structure of the additive is designed such that the hydroxy groups are located as near as possible in the molecular structure in case that the number of the hydroxy groups in one molecular is the same. A typical molecular for the additive is secondary alcohol (dihdyric alcohol) and tertiary alcohol (trihydric alcohol). Although the additive amount of the additive may be properly varied according to a usage pattern of the lubricant relative to the gear, it is preferable that the additive amount relative to the lubricant is within a range from 0.5 to 8 weight %. If the additive amount is too small, the friction reducing merit becomes small. If too large, there is a possibility that the additive is separated from the base oil.
- As an additive of the lubricant, ester is preferable, and monoester of glycerin is more preferable. It is preferable that the number of carbon atoms of fatty acid constructing glycerin monoester is greater than or equal to 8, and preferably greater than or equal to 12. If the molecule size of the fatty acid consisting the ester in the additive is small, a film directly formed on a surface of the hard carbon film due to the additive becomes too thin, and therefore the friction reducing merit is decreased thereby. Polyhydric alcohol except for glycerin may be employed as an ingredient for the fatty ester additive of the lubricant although it is disadvantageous in cost.
- Generally lubricant is obtained by adding proper additives in base oil such as mineral oil or synthetic oil. However, according to the usage condition and the usage circumstance of gears, lubricant including a hydroxy compound as a main component may be used instead of the above-discussed lubricant. If the lubricant including hydroxy compound is employed, the power transmission efficiency is largely improved.
- Alcohol is preferable as the above-discussed hydroxy compound, and particularly, glycerin performs a large friction reducing effect. Further, when the gear slides in ethylene glycol, the excellent friction reducing merit is ensured thereby subsequent to a case that glycerin is used as lubricant for gears.
- It is not necessary to construct the whole of the lubricant by the hydroxy compound. In response to the request and in correspond to usage such as wear prevention, rust prevention, viscosity control and anti-oxidation, various known additives may be added in lubricant. The total amount of such additives in lubricant is normally set to be smaller than or equal to 15 vol. %.
- Further, in case that the gear according to the present invention is employed in a mechanism having a lot of mesh portions of gears, such as a planetary gear mechanism and a speed reducing mechanism, the performance of improving the power transmission efficient thereby is clearly ensured. In case that a planetary gear mechanism is employed in a speed reduction mechanism, it is possible to obtain a large speed reduction ratio while suppressing the size of the speed reduction mechanism. However, setting the speed reduction ratio at a large value radically degrades the power transmission efficiency. Accordingly, by using the gear according to the present invention as at least one of a sun gear, planetary gears and a ring gear of a planetary gear mechanism for a speed reduction mechanism, the degradation of the power transmission efficiency in the speed reduction mechanism is suppressed.
- Hereinafter, there is discussed Examples according to the present invention and Comparative Examples thereof.
- Chromium molybdenum steel defined as SCM420H in JIS (Japan Industrial Standard) was employed as material of the gear of Example 1. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 4 mm
- Number of gear teeth: 60 (that of meshed gear: 40)
- Face width: 10 mm
- The above discussed gear of Example 1 was surfaced and degreased. Subsequently, a hard carbon film was formed on a tooth surface of the gear of Example 1 by arc ion plating (AIP) process. A thickness of the hard carbon film at a center portion of each tooth was 1.2 μm. The hydrogen amount in the hard carbon film was 0.1 atom % (atomic percent) as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- The tooth surface of the gear coated by the hard carbon film was polished to remove droplets of the hard carbon film and to smoothen the surface thereof. A surface roughness Ra of the polished tooth portion was 0.04 μm. A gear (drive gear) meshed with the film coated gear was not coated with the hard carbon film. A surface roughness Ra of a tooth surface of the meshed (counter) gear was 0.17 μm. Hereinafter, as far as it is not specifically explained, tooth portions of Examples and Comparative Examples were finished such that a surface roughness Ra of the gear coated with DLC (diamond-like carbon) ranged from 0.02 μm to 0.06 μm, and a surface roughness Ra of the gear without DLC ranged from 0.1 μm to 0.3 μm. Since it is difficult to further smoothen the surface of the gear coated with DLC by the polishing due to the property of DLC film, the gear coated with DLC was previously grinded and polished to be smoothed before DLC is formed on the surface of the gear. The surface roughness Ra is explained as Ra75 in JIS (Japanese Industrial Standard) B0601(:2001).
- The power transmission efficiency of the gear was measured using a power circulation type gear test equipment. In order to separately obtain a loss of a drive gear and bearings and a loss of the tested gear, it is necessary to execute various adaptations such as a special design of the drive gear (counter gear) and a separate measurement of the bearing loss. However, since it is possible to determine the advantages gained by the hard carbon film from the magnitude of the total loss without executing the separate detection of the losses of the total loss, the evaluations of Examples and Comparative Examples have been made from the transmission efficiency corresponding to the total loss.
- More specifically, using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa(α)-olefin (PAO) oil and that the drive gear meshed with the tested gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- On the other hand, the gear of Comparative Example 1 was the same in shape and in material as that of Example 1 except that no hard carbon film was formed on the gear of Comparative Example 1. The total loss of Comparative Example 1 was measured under the condition as same as that of Example 1.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 2. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 2 mm
- Number of gear teeth: 60 (that of meshed gear: 20)
- Face width: 3 mm
- The above discussed gear of Example 2 was degreased and set in a vacuum chamber. A hard carbon film was formed on a tooth surface of the gear of Example 2 by arc ion plating (AIP) process in the vacuum chamber. A thickness of the hard carbon film at a center portion of each tooth was 1.4 μm. The hydrogen amount in the hard carbon film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface. A gear (drive gear) meshed with the film coated gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear). A kinetic viscosity of the employed poly-alfa-olefin was 4.0 cSt at 100° C. Hereinafter, the evaluation of examples and comparative examples was executed using the poly-alfa-olefin as same as that employed in Example 2.
- On the other hand, the gear of Comparative Example 2 was the same in shape and in material as that of Example 2 except that no hard carbon film was formed on the gear of Comparative Example 2. The total loss of Comparative Example 2 was measured under the condition as same as that of Example 2.
- Chromium molybdenum steel defined as SCM420H in JIS (Japan Industrial Standard) was employed as material of the gear of Example 3. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 6 mm
- Number of gear teeth: 120 (that of meshed gear: 40)
- Face width: 12 mm
- The above discussed gear of Example 3 was degreased and set in a vacuum chamber. A hard carbon film was formed on a tooth surface of the gear of Example 3 by arc ion plating (AIP) process in the vacuum chamber. A thickness of the hard carbon film at a center portion of each tooth was 0.9 μm. The hydrogen amount in the film was 0.2 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface. A gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 9000 rpm (the revolution speed of the drive gear).
- On the other hand, the gear of Comparative Example 3 was the same in shape and in material as that of Example 3 except that no hard carbon film is formed on the gear of Comparative Example 3. The total loss of Comparative Example 3 was measured under the condition as same as that of Example 3.
- Chromium molybdenum steel defined as SCM420H in JIS was employed as material of the gear of Example 4. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 6 mm
- Number of gear teeth: 120 (that of meshed gear: 40)
- Face width: 12 mm
- The above discussed gear of Example 4 was degreased and set in a vacuum chamber. A hard carbon film was formed on a tooth surface of the gear of Example 4 by the magnetron spattering process in the vacuum chamber. A thickness of the hard carbon film at a center portion of each tooth was 1.3 μm. The hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface. A gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 9000 rpm (the revolution speed of the drive gear).
- On the other hand, the gear of Comparative Example 4 was the same in shape and in material as that of Example 4 except that no hard carbon film was formed on the gear of Comparative Example 4. The total loss of Comparative Example 4 was measured under the condition as same as that of Example 4.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 5. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 2 mm
- Number of gear teeth: 60 (that of meshed gear: 20)
- Face width: 3 mm
- The above discussed gear of Example 5 was degreased and set in a vacuum chamber. A hard carbon film was formed on a tooth surface of the gear of Example 5 by a plasma CVD process in the vacuum chamber. Gas employed in the CVD process was cyclohexane. A thickness of the hard carbon film at a center portion of each tooth was 3.0 μm. The hydrogen amount in the hard carbon film was 25 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface. A gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- On the other hand, the gear of Comparative Example 5 was as same in shape and in material as that of Example 5 except that no hard carbon film is formed on the gear of Comparative Example 5. The total loss of Comparative Example 5 was measured under the condition as same as that of Example 5.
- Chromium molybdenum steel defined as SCM420H in JIS was employed as material of the gear of Example 6. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering were applied to the machined gear.
- <Specifications of Gear>
- Type of gear: helical gear
- Module corresponding to spur gear: 4 mm
- Number of gear teeth: 60 (that of meshed gear: 60)
- Face width: 20 mm
- Helix angle: 12°
- The above discussed gear of Example 6 was surfaced (finished) and degreased. Subsequently, the gear for Example 6 was set in a vacuum chamber, and a hard carbon film was formed on a tooth surface of the gear of Example 6 by arc ion plating (AIP) process in the vacuum chamber. A thickness of the film at a center portion of each tooth was 1.0 μm. The hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS).
- The tooth surface was polished to remove droplets of the hard carbon film and to smoothen the surface. A gear (drive gear) meshed with the coated gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (based on the drive gear).
- On the other hand, the gear of Comparative Example 6 was as same in shape and in material as that of Example 6 except that no hard carbon film was formed on the gear of Comparative Example 6. The total loss of Comparative Example 6 was measured under the condition as same as that of Example 6.
- Chromium molybdenum steel defined as SCM440H in JIS was employed as material of the gear of Example 3. The material was machined into a gear defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gear. Thereafter, a finishing touch was applied to the processed gear.
- <Specifications of Gear>
- Type of gear: spur gear
- Module: 2 mm
- number of gear teeth: 60 (that of meshed gear: 20)
- Face width: 3 mm
- The above discussed gear of Example 7 was degreased and set in a vacuum chamber. A hard carbon film was formed on a tooth surface of the gear of Example 7 by arc ion plating (AIP) process in the vacuum chamber. A thickness of the hard carbon film at a center portion of each tooth was 1.1 μm. The hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surface was polished to remove droplets of the film and to smoothen the surface. A gear (drive gear) meshed with the coated gear was also coated with the hard carbon film. A thickness of the hard carbon film at a center portion of each tooth of the drive gear was 1.0 μm. The hydrogen amount in the hard carbon film of the drive gear was 0.1 atom %.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gear and the counter gear were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear meshed with the drive gear was rotated at a speed of 6000 rpm (the revolution speed of the drive gear).
- On the other hand, the gear of Comparative Example 7 was as same in shape and in material as that of Example 7 except that no hard carbon film is formed on the gear of Comparative Example 7. The total loss of Comparative Example 7 was measured under the condition as same as that of Example 7.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 8 and Comparative Example 8 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is oleic acid) of 3 weight % of the total of the lubricant with poly-alfa-olefin. The other conditions of Example 8 and Comparative Example 8 were the same as those of Example 2. The evaluation of Example 8 and Comparative Example 8 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 9 and Comparative Example 9 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is palmitic acid) of 2 weight % in the total of the lubricant with poly-alfa-olefin. The other conditions of Example 9 and Comparative Example 9 were the same as those of Example 2. The evaluation of Example 9 and Comparative Example 9 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 10 and Comparative Example 10 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 7 weight % in the total of the lubricant with poly-alfa-olefin. The other conditions of Example 10 and Comparative Example 10 were the same as those of Example 2. The evaluation of Example 10 and Comparative Example 10 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 11 and Comparative Example 11 was lubricant obtained by fully mixing an ester component which was butyl stearate of 2 weight % in the total of the lubricant with poly-alfa-olefin. The other conditions of Example 11 and Comparative Example 11 were the same as those of Example 2. The evaluation of Example 11 and Comparative Example 11 were also the same as that of Example 2.
- Chromium molybdenum steel defined as SCM440H in JIS (Japan Industrial Standard) was employed as material of the gears of Example 12. The material was machined into gears defined by the following specifications, and the carburizing, quenching and tempering processes were applied to the machined gears. Thereafter, a finishing touch was applied to the processed gear. The gears were assembled into a planetary gear mechanism of 2K-H type. In the evaluation of the gears, a sun gear functioning as an input gear, a ring gear was fixed, and a carrier of planetary gears functioning as an output.
- <Specifications of gear>
- Type of gear: spur gear
- Module: 2 mm
- Number of gear teeth of sun gear: 60
- Number of gear teeth of planetary gear: 24
- Number of gear teeth of ring gear: 144
- Number of planetary gears: 3
- Face width: 6 mm
- The sun gear and the planetary gears of Example 12 were degreased and set in a vacuum chamber. Hard carbon films were formed on tooth surfaces of the gears by arc ion plating (AIP) process in the vacuum chamber. A thickness of the film at a center portion of the sun gear was 1.7 μm. The hydrogen amount in the film was 0.1 atom % as a result of the measurement using a secondary ion mass spectroscopy (SIMS). The tooth surfaces were polished to remove droplets of the film and to smoothen the surface. The ring gear was not coated with the hard carbon film.
- Using the power circulation type gear test equipment, the total loss of the tested gear was measured under a condition that the tested gears were wholly soaked in poly-alfa-olefin (PAO) oil and that the tested gear was rotated at a speed of 6000 rpm (the revolution speed of the sun gear).
- On the other hand, the gears of Comparative Example 12 were the same in shape and in material as those of Example 12 except that no hard carbon film was formed on the gears of Comparative Example 12. The total loss of Comparative Example 12 was measured under the condition as same as that of Example 12.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 13 and Comparative Example 13 was JIS industrial gear oil specified by type 2 and viscosity classification ISO VG 220. The other conditions of Example 13 and Comparative Example 13 were the same as those of Example 2. The evaluation of Example 13 and Comparative Example 13 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 14 and Comparative Example 14 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 5 weight % in the total of the lubricant with JIS industrial gear oil specified by viscosity classification ISO VG 220 type 2. The other conditions of Example 14 and Comparative Example 14 were the same as those of Example 2. The evaluation of Example 14 and Comparative Example 14 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 15 and Comparative Example 15 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 4 weight % in the total of the lubricant with JIS industrial turbine oil specified by JIS-2213K type 2. The other conditions of Example 15 and Comparative Example 15 were the same as those of Example 2. The evaluation of Example 15 and Comparative Example 15 were -also the same as that of Example 2.
- The gears of Example 7 and Comparative Example 7 were evaluated under the different test conditions. More specifically, Lubricant employed in Example 16 and Comparative Example 16 was lubricant obtained by fully mixing an ester component which was fatty monoglyceride (a main component of fatty acid is stearic acid) of 7 weight % with poly-alfa-olefin, as same as that employed in Examples 10 and 11. The other conditions of Example 16 and Comparative Example 16 were the same as those of Example 7. The evaluation of Example 16 and Comparative Example 16 were also the same as that of Example 7 and Comparative Example 7.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 17 and Comparative Example 17 was lubricant obtained by fully mixing an ester component which was fatty diglyceride (a main component of fatty acid is stearic acid) of 2 weight % with poly-alfa-olefin. The other conditions of Example 17 and Comparative Example 17 were the same as those of Example 2. The evaluation of Example 17 and Comparative Example 17 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 18 and Comparative Example 18 was lubricant obtained by fully mixing pinacol having two hydroxy groups in one molecular at 0.8 weight % with poly-alfa-olefin. The other conditions of Example 18 and Comparative Example 18 were the same as those of Example 2. The evaluation of Example 18 and Comparative Example 18 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 19 and Comparative Example 19 was lubricant obtained by fully mixing 1,10-decandiol of 2.0 weight % and poly-alfa-olefin. The other conditions of Example 19 and Comparative Example 19 were-the same as those of Example 2. The evaluation of Example 19 and Comparative Example 19 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 20 and Comparative Example 20 was lubricant obtained by fully mixing dodecyl alcohol of 2.0 weight % with poly-alfa-olefin. The other conditions of Example 20 and Comparative Example 20 were the same as those of Example 2. The evaluation of Example 20 and Comparative Example 20 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 21 and Comparative Example 21 was glycerin. No additive was added in glycerin. The other conditions of Example 21 and Comparative Example 21 were the same as those of Example 2. The evaluation of Example 21 and Comparative Example 21 were also the same as that of Example 2.
- The gears of Example 2 and Comparative Example 2 were evaluated under the different test conditions. More specifically, lubricant employed in Example 22 and Comparative Example 22 was ethylene glycol. No additive was added in ethylene glycol. The other conditions of Example 22 and Comparative Example 22 were the same as those of Example 2. The evaluation of Example 22 and Comparative Example 22 were also the same as that of Example 2.
- As to Examples 1 through 22 and Comparative Examples I through 22, the measurement results of the power transmission efficiencies thereof were shown in Table 1 together with the specifications of the gears, such as material, module, teeth number, film forming method, hydrogen amount in the hard carbon film, and a kind of lubricant.
- As is apparent from Table 1, it was recognized that the gears of Examples 1 through 22 according to the present invention performed excellent power transmission efficiencies as compared with Comparative Examples 1 through 22, respectively. Specifically, Example 21 performed the excellent power transmission efficiency. Further, Example 16 is subsequently preferable in case that the selection of lubricant is limited such that the lubricant is commonly used in the other sliding pair. In case that both of cost and power transmission efficiency are balancedly minded, Example 8 through 10 are subsequently preferable.
- With the thus arranged gear according to the present invention, by film the hard carbon film on al least a part of tooth face of the gear, it becomes possible to largely decrease the friction of the gear relative to the counter gear (meshed gear). Further, by employing a specifically blended lubricant, the friction of the gear is further preferably decreased. This provides the gear further improved in power transmission efficiency. Specifically, in case that lubricant may be freely selected, a largely improved power transmission efficiency is obtained by a lubricant wherein alcohol group is used as a main component of the lubricant. Further, the gear according to the present invention is preferably adapted to a mechanism which has a lot of gear meshing portions, such as a planetary gear mechanism and speed reduction mechanism. When the gear is employed in such mechanisms, the power transmission efficiency is further improved.
TABLE 1 Example/Comparative Example 1 2 3 4 5 6 7 8 Material SCM420H SCM440H SCM420H SCM420H SCM440H SCM420H SCM440H SMC440H Module (mm) 4 2 6 2 2 4 2 2 Number of 60 60 120 60 60 60 helical 60 60 Teeth Film Forming AIP AIP AIP Spattering Plasma AIP AIP (Both AIP Method CVD Gears) H amount 0.1 0.1 0.2 0.1 25 0.1 0.1 0.1 (atom %) Lubricant PAO PAO PAO PAO PAO PAO PAO PAO + Oleic acid monoglyceride Example 97.5 97.0 96.9 97.7 95.1 96.8 99.0 98.1 Transmission Efficiency (%) Comp. Example 93.3 93.1 94.2 93.1 93.1 94.0 93.1 94.4 Transmission Efficiency (%) Example/Comp. Example 9 10 11 12 13 14 15 Material SCM440H SCM440H SCM440H SCM440H SCM440H SCM440H SCM440H Module (mm) 2 2 2 2 2 2 2 Number of 60 60 60 60/24/144 2K-H 60 60 60 Teeth planetary gear mechanism Film Forming AIP AIP AIP AIP AIP AIP AIP Method H amount 0.1 0.1 0.1 0.1 0.1 0.1 0.1 (atom %) Lubricant PAO + PAO + PAO + Butyl PAO Gear oil Gear oil + Turbine oil + Palmitic acid Stearic acid stearate Stearic acid Stearic acid monoglyceride monoglyceride (Stearic acid monoglyceride monoglyceride butyl ester) Example 97.9 98.4 97.7 93.3 95.5 96.7 94.7 Transmission Efficiency (%) Comp. Example 93.5 94.6 94.4 86.0 92.5 92.2 91.1 Transmission Efficiency (%) Example/Comp. Example 16 17 18 19 20 21 22 Material SCM440H SCM440H SCM440H SCM440H SCM440H SCM440H SCM440H Module (mm) 2 2 2 2 2 2 2 Number of Teeth 60 60 60 60 60 60 60 Film Forming AIP (Both AIP AIP AIP AIP AIP AIP Method Gears) H amount 0.1 0.1 0.1 0.1 0.1 0.1 0.1 (atom %) Lubricant PAO + Stearic PAO + Stearic PAO + Pinacol PAO + 1,10- PAO + Dodecyl Glycerin Ethylene acid acid decanediol alcohol glycol monoglyceride diglyceride Example 99.2 97.9 97.1 97.8 97.6 99.3 99.2 Transmission Efficiency (%) Comp. Example 94.6 93.2 93.2 93.3 93.7 92.7 91.6 Transmission Efficiency (%)
Notes
AIP: arc ion plating process, PAO: poly-alfa (α)-olefin.
- This application is based on Japanese Patent Applications No. 2003-204238 filed on Jul. 31, 2003 and No. 2004-127632 filed on Apr. 23, 2004 in Japan. The entire contents of these Japanese Patent Applications are incorporated herein by reference.
- Although the invention has been described above by reference to certain embodiments of the invention, the invention is not limited to the embodiments described above. Modifications and variations of the embodiments described above will occur to those skilled in the art, in light of the above teaching. The scope of the invention is defined with reference to the following claims.
Claims (15)
1. A gear comprising:
a tooth surface; and
a hard carbon film formed on at least a part of the tooth surface.
2. The gear as claimed in claim 1 , wherein a hydrogen amount in the hard carbon film is smaller than or equal to 1 atomic percent.
3. The gear as claimed in claim 2 , wherein a hydrogen amount in the hard carbon film is smaller than or equal to 0.3 atomic percent.
4. The gear as claimed in claim 1 , wherein the gear is used as a gear of a planetary gear mechanism.
5. The gear as claimed in claim 1 , wherein the gear is used as a gear of a speed reduction mechanism.
6. The gear as claimed in claim 1 , wherein the gear is used in a lubricant.
7. The gear as claimed in claim 6 , wherein the lubricant includes a mixture employing poly-alfa-olefin (PAO) as a base oil.
8. The gear as claimed in claim 6 , wherein the lubricant includes an additive including a hydroxyl group.
9. The gear as claimed in claim 8 , wherein the additive includes two or more hydroxyl groups in a molecule.
10. The gear as claimed in claim 6 , wherein an additive in the lubricant includes ester.
11. The gear as claimed in claim 6 , wherein an additive in the lubricant includes monoester of glycerin.
12. The gear as claimed in claim 6 , wherein a main component of the lubricant is a hydroxy-compound.
13. The gear as claimed in claim 12 , wherein the hydroxy-compound includes alcohol.
14. The gear as claimed in claim 13 , wherein the alcohol includes glycerin.
15. The gear as claimed in claim 13 , wherein the alcohol includes ethylene glycol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/177,943 US8096205B2 (en) | 2003-07-31 | 2008-07-23 | Gear |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-204238 | 2003-07-31 | ||
JP2003204238 | 2003-07-31 | ||
JP2004-127632 | 2004-04-23 | ||
JP2004127632A JP4863152B2 (en) | 2003-07-31 | 2004-04-23 | gear |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/177,943 Division US8096205B2 (en) | 2003-07-31 | 2008-07-23 | Gear |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050025975A1 true US20050025975A1 (en) | 2005-02-03 |
Family
ID=33543572
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/902,303 Abandoned US20050025975A1 (en) | 2003-07-31 | 2004-07-30 | Gear |
US12/177,943 Expired - Fee Related US8096205B2 (en) | 2003-07-31 | 2008-07-23 | Gear |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/177,943 Expired - Fee Related US8096205B2 (en) | 2003-07-31 | 2008-07-23 | Gear |
Country Status (5)
Country | Link |
---|---|
US (2) | US20050025975A1 (en) |
EP (1) | EP1503113B1 (en) |
JP (1) | JP4863152B2 (en) |
CN (1) | CN100394076C (en) |
DE (1) | DE602004014074D1 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040242435A1 (en) * | 2003-05-29 | 2004-12-02 | Nissan Motor Co., Ltd. | Hard-carbon coated machine tool and cutting oil composition therefor |
US20050005892A1 (en) * | 2003-05-23 | 2005-01-13 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
US20050037879A1 (en) * | 2003-08-13 | 2005-02-17 | Nissan Motor Co., Ltd. | Chain drive system |
US20050035222A1 (en) * | 2003-04-15 | 2005-02-17 | Nissan Motor Co., Ltd. | Fuel injection valve |
US20050064196A1 (en) * | 2003-08-21 | 2005-03-24 | Jean Martin | Low-friction sliding member and low-friction sliding mechanism using same |
US20050100701A1 (en) * | 2003-08-08 | 2005-05-12 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
US20050118426A1 (en) * | 1999-04-09 | 2005-06-02 | Shojiro Miyake | Slidably movable member and method of producing same |
US7134381B2 (en) | 2003-08-21 | 2006-11-14 | Nissan Motor Co., Ltd. | Refrigerant compressor and friction control process therefor |
US20060263604A1 (en) * | 2003-08-06 | 2006-11-23 | Martin Jean M | Low-friction sliding mechanism, low-friction agent composition and method of friction reduction |
US7146956B2 (en) | 2003-08-08 | 2006-12-12 | Nissan Motor Co., Ltd. | Valve train for internal combustion engine |
US20070082129A1 (en) * | 2005-10-06 | 2007-04-12 | Toyota Jidosha Kabushiki Kaisha | Metal composite diamond-like carbon (DLC) film, method and apparatus for forming the same, and slide member |
US7228786B2 (en) | 2003-06-06 | 2007-06-12 | Nissan Motor Co., Ltd. | Engine piston-pin sliding structure |
US7255083B2 (en) | 2002-10-16 | 2007-08-14 | Nissan Motor Co., Ltd. | Sliding structure for automotive engine |
US7284525B2 (en) | 2003-08-13 | 2007-10-23 | Nissan Motor Co., Ltd. | Structure for connecting piston to crankshaft |
US7318514B2 (en) | 2003-08-22 | 2008-01-15 | Nissan Motor Co., Ltd. | Low-friction sliding member in transmission, and transmission oil therefor |
US7322749B2 (en) | 2002-11-06 | 2008-01-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
US20080023113A1 (en) * | 2006-07-31 | 2008-01-31 | Nissan Motor Co., Ltd. | High strength gear, power transmission mechanism using same, and production method for high strength gear |
US7427162B2 (en) | 2003-05-27 | 2008-09-23 | Nissan Motor Co., Ltd. | Rolling element |
US20090186783A1 (en) * | 2006-04-28 | 2009-07-23 | Jean Michel Martin | Low Friction Lubrication Assembly |
US20090277298A1 (en) * | 2006-03-03 | 2009-11-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
CN103307229A (en) * | 2013-06-28 | 2013-09-18 | 江苏赫夫特齿轮制造有限公司 | Annular gear structure |
US9139797B2 (en) | 2006-03-03 | 2015-09-22 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
DE102015221654A1 (en) * | 2015-11-04 | 2017-05-04 | Zf Friedrichshafen Ag | Test run with glycerin |
US10578200B2 (en) | 2014-08-28 | 2020-03-03 | Nissan Motor Co., Ltd. | Gear pair |
US11053451B2 (en) | 2017-02-21 | 2021-07-06 | Kyodo Yushi Co., Ltd. | Lubricant composition for a speed reducer, and speed reducer |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8458879B2 (en) * | 2001-07-03 | 2013-06-11 | Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. | Method of fabricating an implantable medical device |
EP1954429B1 (en) * | 2005-12-02 | 2015-05-27 | United Technologies Corporation | Metal-free diamond-like-carbon coatings |
JP2009067873A (en) * | 2007-09-12 | 2009-04-02 | Adeka Corp | Lubricant composition and lubricating oil composition containing it |
EP2345749B1 (en) * | 2010-01-14 | 2015-12-02 | Siemens Aktiengesellschaft | Gear assembly and wind turbine |
US9416332B2 (en) | 2010-11-17 | 2016-08-16 | GM Global Technology Operations LLC | Gear assembly and gear oil composition |
JP6000970B2 (en) * | 2010-12-17 | 2016-10-05 | マグナ インターナショナル インコーポレイテッド | Laser beam welding |
GB201317278D0 (en) * | 2013-09-30 | 2013-11-13 | Croda Int Plc | Gear oil composition |
Citations (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3790315A (en) * | 1970-10-01 | 1974-02-05 | Atlas Copco Ab | Rotary piston compressors with liquid injection |
US3932228A (en) * | 1973-11-01 | 1976-01-13 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Metal material for sliding surfaces |
US4367130A (en) * | 1970-11-30 | 1983-01-04 | Lemelson Jerome H | Chemical reaction |
US4645610A (en) * | 1984-04-20 | 1987-02-24 | Institut Francais Du Petrole | Method for the preparation of olefin polysulfides, the products obtained and their utilization as lubricant additives |
US4919974A (en) * | 1989-01-12 | 1990-04-24 | Ford Motor Company | Making diamond composite coated cutting tools |
US4981717A (en) * | 1989-02-24 | 1991-01-01 | Mcdonnell Douglas Corporation | Diamond like coating and method of forming |
US4988421A (en) * | 1989-01-12 | 1991-01-29 | Ford Motor Company | Method of toughening diamond coated tools |
US4992082A (en) * | 1989-01-12 | 1991-02-12 | Ford Motor Company | Method of toughening diamond coated tools |
US5000541A (en) * | 1987-09-18 | 1991-03-19 | At&T Bell Laboratories | Hermetically sealed optical fibers |
US5078848A (en) * | 1988-01-18 | 1992-01-07 | Asko Anttila | Procedure and apparatus for the coating of materials by means of a pulsating plasma beam |
US5077990A (en) * | 1988-05-06 | 1992-01-07 | Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh | Knitting machine and parts having diamond-like carbon coated surfaces |
US5087608A (en) * | 1989-12-28 | 1992-02-11 | Bell Communications Research, Inc. | Environmental protection and patterning of superconducting perovskites |
US5096352A (en) * | 1987-03-31 | 1992-03-17 | Lemelson Jerome H | Diamond coated fasteners |
US5187021A (en) * | 1989-02-08 | 1993-02-16 | Diamond Fiber Composites, Inc. | Coated and whiskered fibers for use in composite materials |
US5190824A (en) * | 1988-03-07 | 1993-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Electrostatic-erasing abrasion-proof coating |
US5202156A (en) * | 1988-08-16 | 1993-04-13 | Canon Kabushiki Kaisha | Method of making an optical element mold with a hard carbon film |
US5205305A (en) * | 1990-10-13 | 1993-04-27 | Yoshida Kogyo K.K. | Color changing system for spray dyeing |
US5205188A (en) * | 1990-11-05 | 1993-04-27 | Detlef Repenning | Friction pairing and process for its production |
US5284394A (en) * | 1987-03-31 | 1994-02-08 | Jerome Lemelson | Ball and roller bearings and bearing components |
US5288556A (en) * | 1987-03-31 | 1994-02-22 | Lemelson Jerome H | Gears and gear assemblies |
US5295305A (en) * | 1992-02-13 | 1994-03-22 | The Gillette Company | Razor blade technology |
US5299937A (en) * | 1992-07-29 | 1994-04-05 | Si Diamond Technology, Inc. | Dental instruments having diamond-like working surface |
US5380196A (en) * | 1993-05-13 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Orthodontic bracket with archwire slot liner |
US5401543A (en) * | 1993-11-09 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Method for forming macroparticle-free DLC films by cathodic arc discharge |
US5482602A (en) * | 1993-11-04 | 1996-01-09 | United Technologies Corporation | Broad-beam ion deposition coating methods for depositing diamond-like-carbon coatings on dynamic surfaces |
US5491028A (en) * | 1993-05-21 | 1996-02-13 | Trustees Of Boston University | Enhanced adherence of diamond coatings |
US5497550A (en) * | 1991-11-15 | 1996-03-12 | The Gillette Company | Shaving system |
US5593719A (en) * | 1994-03-29 | 1997-01-14 | Southwest Research Institute | Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys |
US5707409A (en) * | 1994-08-24 | 1998-01-13 | Minnesota Mining And Manufacturing Company | Abrasive article having a diamond-like coating layer and method for making same |
US5714202A (en) * | 1995-06-07 | 1998-02-03 | Lemelson; Jerome H. | Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings |
US5719109A (en) * | 1993-12-30 | 1998-02-17 | Exxon Chemical Patents Inc | Lubricating oil composition |
US5723207A (en) * | 1988-01-21 | 1998-03-03 | The National Research Development Corporation | Infra-red transparant materials |
US5731046A (en) * | 1994-01-18 | 1998-03-24 | Qqc, Inc. | Fabrication of diamond and diamond-like carbon coatings |
US5866195A (en) * | 1988-03-31 | 1999-02-02 | Lemelson; Jerome H. | Methods for forming diamond-coated superconductor wire |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US5881444A (en) * | 1997-12-12 | 1999-03-16 | Aluminum Company Of America | Techniques for transferring holograms into metal surfaces |
US6015597A (en) * | 1997-11-26 | 2000-01-18 | 3M Innovative Properties Company | Method for coating diamond-like networks onto particles |
US6016000A (en) * | 1998-04-22 | 2000-01-18 | Cvc, Inc. | Ultra high-speed chip semiconductor integrated circuit interconnect structure and fabrication method using free-space dielectrics |
US6023979A (en) * | 1997-07-21 | 2000-02-15 | Helix Technology | Apparatus and methods for heat loss pressure measurement |
US6028393A (en) * | 1998-01-22 | 2000-02-22 | Energy Conversion Devices, Inc. | E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials |
US6170156B1 (en) * | 1999-03-24 | 2001-01-09 | General Motors Corporation | Gear tooth smoothing and shaping process |
US6173913B1 (en) * | 1999-08-25 | 2001-01-16 | Caterpillar Inc. | Ceramic check for a fuel injector |
US6190514B1 (en) * | 1997-12-30 | 2001-02-20 | Premark Rwp Holdings, Inc. | Method for high scan sputter coating to produce coated, abrasion resistant press plates with reduced built-in thermal stress |
US6193906B1 (en) * | 1997-02-27 | 2001-02-27 | Idemitsu Kosan Co., Ltd. | Refrigerating oil composition containing a polyether additive |
US6197428B1 (en) * | 1994-08-26 | 2001-03-06 | Deposition Sciences, Inc. | Gemstones and decorative objects comprising a substrate and an optical interference film |
US6205291B1 (en) * | 1999-08-25 | 2001-03-20 | A. O. Smith Corporation | Scale-inhibiting heating element and method of making same |
US6203651B1 (en) * | 1995-09-20 | 2001-03-20 | Uponor Innovation Ab | Method and apparatus for making an extrusion product, and an extrusion product |
US6207625B1 (en) * | 1998-12-21 | 2001-03-27 | Tonen Corporation | Lubricant oil composition for diesel engines (LAW913) |
US6338881B1 (en) * | 1996-09-03 | 2002-01-15 | Saxonia Umformtechnik Gmbh | Diamond-like coating and method of making same |
US6340245B1 (en) * | 1997-09-16 | 2002-01-22 | Skf Engineering & Research Centre B.V. | Coated rolling element bearing |
US20020026899A1 (en) * | 1998-06-26 | 2002-03-07 | Mclaughlin James Andrew | Apparatus and method for coating substrates with vacuum depositable materials |
US20020031987A1 (en) * | 1998-09-23 | 2002-03-14 | Seagate Technology Llc | Apparatus and method for reducing disc surface asperities to sub-microinch height |
US20020034632A1 (en) * | 2000-09-20 | 2002-03-21 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US20030012234A1 (en) * | 2000-06-19 | 2003-01-16 | Watson Tom A. | Six to ten KHz, or greater gas discharge laser system |
US20030019332A1 (en) * | 2001-07-26 | 2003-01-30 | Korb William B. | Composite utility knife blade, and method of making such a blade |
US20030036341A1 (en) * | 1999-10-12 | 2003-02-20 | Hunatech Co., Ltd. | Conditioner for polishing pad and method for manufacturing the same |
US6524212B2 (en) * | 2000-03-23 | 2003-02-25 | Nissan Motor Co., Ltd. | Toroidal-type continuously variable transmission for automobiles |
US6523456B1 (en) * | 1999-07-05 | 2003-02-25 | Honda Giken Kogyo Kabushiki Kaisha | Sliding members and piston for internal combustion engine |
US6534141B1 (en) * | 1998-10-27 | 2003-03-18 | Raymond J. Hull, Jr. | Method of forming an improved support member for a fabric and film forming device |
US6537429B2 (en) * | 2000-12-29 | 2003-03-25 | Lam Research Corporation | Diamond coatings on reactor wall and method of manufacturing thereof |
US6537310B1 (en) * | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US20040003638A1 (en) * | 1997-12-12 | 2004-01-08 | Schaefer Mark W. | Transfer of holographic images into metal sporting and fitness products |
US20040008406A1 (en) * | 2000-10-27 | 2004-01-15 | Blitstein Jeffrey L. | Wavelength specific coating for mirrored optics and method for reducing reflection of white light |
US20040010068A1 (en) * | 2002-07-09 | 2004-01-15 | Signature Control Systems | Process and apparatus for improving and controlling the vulcanization of natural and synthetic rubber compounds |
US20040011900A1 (en) * | 2002-05-22 | 2004-01-22 | Jens Gebhardt | Fuel injector assembly |
US6684759B1 (en) * | 1999-11-19 | 2004-02-03 | Vladimir Gorokhovsky | Temperature regulator for a substrate in vapor deposition processes |
US6684513B1 (en) * | 2000-02-29 | 2004-02-03 | The Gillette Company | Razor blade technology |
US20040027018A1 (en) * | 2002-08-06 | 2004-02-12 | Leblanc Jeffry Arnold | Hydraulic compensation for magnetically biased fluid dynamic bearing motor |
US6695865B2 (en) * | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US20040035375A1 (en) * | 2001-03-14 | 2004-02-26 | Rudolf Gibisch | Cylinder block and crankcase for a liquid-cooled internal-combustion engine |
US20050001201A1 (en) * | 2003-07-03 | 2005-01-06 | Bocko Peter L. | Glass product for use in ultra-thin glass display applications |
US20050005892A1 (en) * | 2003-05-23 | 2005-01-13 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
US6849085B2 (en) * | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US6855237B2 (en) * | 2001-02-01 | 2005-02-15 | International Technology Exchange, Inc. | Pulsed carbon plasma apparatus |
US20050035222A1 (en) * | 2003-04-15 | 2005-02-17 | Nissan Motor Co., Ltd. | Fuel injection valve |
US20050037879A1 (en) * | 2003-08-13 | 2005-02-17 | Nissan Motor Co., Ltd. | Chain drive system |
US6865952B2 (en) * | 2002-10-16 | 2005-03-15 | Helix Technology Corporation | Apparatus and methods for heat loss pressure measurement |
US20050056241A1 (en) * | 2003-08-08 | 2005-03-17 | Nissan Motor Co., Ltd. | Valve train for internal combustion engine |
US20050061636A1 (en) * | 2002-03-08 | 2005-03-24 | Frost Charles C. | Conveyor chain |
US20050061291A1 (en) * | 2003-08-13 | 2005-03-24 | Nissan Motor Co., Ltd. | Structure for connecting piston to crankshaft |
US20050064196A1 (en) * | 2003-08-21 | 2005-03-24 | Jean Martin | Low-friction sliding member and low-friction sliding mechanism using same |
US6872203B2 (en) * | 2002-08-27 | 2005-03-29 | Board Of Trustees Of The University Of Arkansas | Conductive interstitial thermal therapy device |
US6871700B2 (en) * | 2000-11-17 | 2005-03-29 | G & H Technologies Llc | Thermal flux regulator |
Family Cites Families (356)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1461A (en) | 1839-12-31 | Improvement in fire-arms | ||
DE643034C (en) | 1934-09-24 | 1937-03-22 | Tito Brunetti | Safety device for internal combustion engines |
US2339715A (en) * | 1942-07-13 | 1944-01-18 | Shell Dev | Low temperature grease |
US2609342A (en) * | 1949-12-03 | 1952-09-02 | Socony Vacuum Oil Co Inc | Lubricant |
US2716972A (en) | 1952-02-04 | 1955-09-06 | Farny Paul | Lubrication of engine valves by fuel leakage |
CH316412A (en) | 1952-02-19 | 1956-10-15 | Hoechst Ag | Hydraulic fluid |
NL104477C (en) | 1957-03-05 | |||
US5462772A (en) | 1957-06-27 | 1995-10-31 | Lemelson; Jerome H. | Methods for forming artificial diamond |
US5021628A (en) | 1970-11-30 | 1991-06-04 | Lemelson Jerome H | Apparatus and method for reacting on matter |
US4874596A (en) | 1957-06-27 | 1989-10-17 | Lemelson Jerome H | Production of crystalline structures |
US4385880A (en) | 1957-06-27 | 1983-05-31 | Lemelson Jerome H | Shock wave processing apparatus |
US4702808A (en) | 1957-06-27 | 1987-10-27 | Lemelson Jerome H | Chemical reaction apparatus and method |
US3211653A (en) | 1958-12-31 | 1965-10-12 | Exxon Research Engineering Co | Hypoid gear lubricants for slip-lock differentials |
US5131941A (en) | 1959-04-08 | 1992-07-21 | Lemelson Jerome H | Reaction apparatus and method |
US5552675A (en) | 1959-04-08 | 1996-09-03 | Lemelson; Jerome H. | High temperature reaction apparatus |
NL137370C (en) | 1963-08-02 | |||
US3846162A (en) | 1968-10-21 | 1974-11-05 | Texas Instruments Inc | Metal carbonitride coatings |
US4031023A (en) | 1976-02-19 | 1977-06-21 | The Lubrizol Corporation | Lubricating compositions and methods utilizing hydroxy thioethers |
US4367160A (en) * | 1979-09-21 | 1983-01-04 | Monsanto Company | Oxidants for gasifying carbon-containing materials |
AT382215B (en) | 1982-09-20 | 1987-01-26 | Miba Gleitlager Ag | HYDRODYNAMIC SLIDING BEARING |
US4554208A (en) | 1983-12-27 | 1985-11-19 | General Motors Corporation | Metal bearing surface having an adherent score-resistant coating |
US4755237A (en) | 1984-11-26 | 1988-07-05 | Lemelson Jerome H | Methods for making cutting tools |
US4712982A (en) | 1985-03-25 | 1987-12-15 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Variable displacement wobble plate type compressor with guide means for wobble plate |
EP0221531A3 (en) * | 1985-11-06 | 1992-02-19 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | High heat conductive insulated substrate and method of manufacturing the same |
US4755426A (en) | 1986-01-18 | 1988-07-05 | Hitachi Maxell, Ltd. | Magnetic recording medium and production of the same |
US4933058A (en) | 1986-01-23 | 1990-06-12 | The Gillette Company | Formation of hard coatings on cutting edges |
GB8602627D0 (en) | 1986-02-04 | 1986-03-12 | Exxon Chemical Patents Inc | Marine lubricating composition |
CN1018655B (en) * | 1987-03-23 | 1992-10-14 | 上海工业大学 | Phosphorus-nitrogen type ash-free antiwear additive for lubricating oil |
US5040501A (en) | 1987-03-31 | 1991-08-20 | Lemelson Jerome H | Valves and valve components |
US4859493A (en) | 1987-03-31 | 1989-08-22 | Lemelson Jerome H | Methods of forming synthetic diamond coatings on particles using microwaves |
US4960643A (en) | 1987-03-31 | 1990-10-02 | Lemelson Jerome H | Composite synthetic materials |
US5360227A (en) | 1987-03-31 | 1994-11-01 | Lemelson Jerome H | Skis and runners |
US5255929A (en) | 1987-03-31 | 1993-10-26 | Lemelson Jerome H | Blade for ice skate |
US6083570A (en) | 1987-03-31 | 2000-07-04 | Lemelson; Jerome H. | Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings |
US5132587A (en) | 1987-03-31 | 1992-07-21 | Lemelson Jerome H | Spark plug electrodes |
US5332348A (en) | 1987-03-31 | 1994-07-26 | Lemelson Jerome H | Fastening devices |
JP2599383B2 (en) | 1987-04-11 | 1997-04-09 | 出光興産 株式会社 | Lubricating oil composition |
JP2555284B2 (en) | 1987-05-14 | 1996-11-20 | 出光興産株式会社 | Lubricant composition with improved temperature characteristics |
US4831977A (en) | 1987-07-17 | 1989-05-23 | Ethyl Corporation | Pistons with wear resistant solid film lubricant coatings |
GB2208753B (en) | 1987-08-13 | 1991-06-26 | Commw Of Australia | Improvements in plasma generators |
EP0308143B1 (en) | 1987-09-18 | 1993-11-24 | AT&T Corp. | Hermetically sealed optical fibers |
AU2902589A (en) | 1988-01-04 | 1989-08-01 | Commonwealth Of Australia, The | Infrared signature control mechanism |
US4834400A (en) | 1988-03-15 | 1989-05-30 | University Of New Mexico | Differential surface roughness dynamic seals and bearings |
US4898131A (en) | 1988-03-18 | 1990-02-06 | Honda Giken Kogyo K.K. | Valve actuating mechanism for internal combustion mechanism |
DE3809734C1 (en) | 1988-03-23 | 1989-05-03 | Helmut Prof. Dr. 7805 Boetzingen De Haberland | |
GB8821944D0 (en) | 1988-09-19 | 1988-10-19 | Gillette Co | Method & apparatus for forming surface of workpiece |
GB8826857D0 (en) * | 1988-11-17 | 1988-12-21 | Bp Chem Int Ltd | Water based functional fluids |
US4943345A (en) | 1989-03-23 | 1990-07-24 | Board Of Trustees Operating Michigan State University | Plasma reactor apparatus and method for treating a substrate |
JPH0620464B2 (en) | 1989-04-03 | 1994-03-23 | 信越化学工業株式会社 | Medical incision, press-fitting device and method of manufacturing the same |
AU631037B2 (en) | 1989-12-28 | 1992-11-12 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Hard and lubricant thin film of amorphous carbon-hydrogen-silicon, iron base metallic material coated therewith, and the process for producing the same |
US5299938A (en) * | 1990-02-01 | 1994-04-05 | Waltho Barry S | Display apparatus |
US5112025A (en) | 1990-02-22 | 1992-05-12 | Tdk Corporation | Molds having wear resistant release coatings |
JP2514097B2 (en) | 1990-03-15 | 1996-07-10 | 帝国ピストンリング株式会社 | Cylinder liner |
US5349265A (en) | 1990-03-16 | 1994-09-20 | Lemelson Jerome H | Synthetic diamond coated electrodes and filaments |
USH1210H (en) | 1990-04-04 | 1993-07-06 | Surface hardening of reprographic machine components by coating or treatment processes | |
US5568391A (en) | 1990-05-29 | 1996-10-22 | Mckee; Lance D. | Automated tile mosaic creation system |
GB9019219D0 (en) | 1990-09-01 | 1990-10-17 | Atomic Energy Authority Uk | Diamond-like carbon coatings |
US5190807A (en) * | 1990-10-18 | 1993-03-02 | Diamonex, Incorporated | Abrasion wear resistant polymeric substrate product |
FR2669689B1 (en) | 1990-11-23 | 1994-12-30 | Renault | CONNECTING ROD WITHOUT FOOT PAD AND METHOD FOR PRODUCING THE SAME. |
US5127314A (en) | 1990-11-30 | 1992-07-07 | General Motors Corporation | Compensating cam socket plate torque restraint assembly for a variable displacement compressor |
US5143634A (en) | 1991-01-17 | 1992-09-01 | Amoco Corporation | Anti-wear engine and lubricating oil |
CA2060823C (en) | 1991-02-08 | 2002-09-10 | Naoya Omori | Diamond-or diamond-like carbon-coated hard materials |
CA2065581C (en) | 1991-04-22 | 2002-03-12 | Andal Corp. | Plasma enhancement apparatus and method for physical vapor deposition |
ES2143473T3 (en) | 1991-04-26 | 2000-05-16 | Gillette Co | IMPROVEMENTS IN OR RELATED TO SHAVING BLADES. |
US5142785A (en) | 1991-04-26 | 1992-09-01 | The Gillette Company | Razor technology |
US5352493A (en) | 1991-05-03 | 1994-10-04 | Veniamin Dorfman | Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films |
US5718976A (en) | 1991-05-03 | 1998-02-17 | Advanced Refractory Technologies, Inc. | Erosion resistant diamond-like nanocomposite coatings for optical components |
US5232568A (en) | 1991-06-24 | 1993-08-03 | The Gillette Company | Razor technology |
DE4125165A1 (en) | 1991-07-30 | 1993-02-04 | Hoechst Ceram Tec Ag | BURNED, CERAMIC PRODUCT WITH A STRUCTURED SURFACE AND METHOD FOR THE PRODUCTION THEREOF |
US5669144A (en) | 1991-11-15 | 1997-09-23 | The Gillette Company | Razor blade technology |
US5334306A (en) | 1991-12-11 | 1994-08-02 | At&T Bell Laboratories | Metallized paths on diamond surfaces |
US5255783A (en) | 1991-12-20 | 1993-10-26 | Fluoroware, Inc. | Evacuated wafer container |
US5317938A (en) | 1992-01-16 | 1994-06-07 | Duke University | Method for making microstructural surgical instruments |
AU651268B2 (en) | 1992-02-18 | 1994-07-14 | Idemitsu Kosan Co. Ltd | Mannich reaction product and process for producing the same and use of the product |
US5359170A (en) | 1992-02-18 | 1994-10-25 | At&T Global Information Solutions Company | Apparatus for bonding external leads of an integrated circuit |
RU2004586C1 (en) | 1992-04-07 | 1993-12-15 | Транснациональна межотраслева компани "Нокпекс" | Method for production of lubricating oil |
CN1077736A (en) * | 1992-04-14 | 1993-10-27 | 上海工业大学 | 13, the 14 pairs of docosoic acid used as antiwear agent and using method thereof |
GB9211402D0 (en) | 1992-05-29 | 1992-07-15 | Univ Manchester | Sensor devices |
US5443032A (en) | 1992-06-08 | 1995-08-22 | Air Products And Chemicals, Inc. | Method for the manufacture of large single crystals |
US5851962A (en) | 1992-08-18 | 1998-12-22 | Ethyl Japan Corporation | Lubricant composition for wet clutch or wet brake |
US5249554A (en) | 1993-01-08 | 1993-10-05 | Ford Motor Company | Powertrain component with adherent film having a graded composition |
US5237967A (en) | 1993-01-08 | 1993-08-24 | Ford Motor Company | Powertrain component with amorphous hydrogenated carbon film |
EP0606553A2 (en) * | 1993-01-11 | 1994-07-20 | Conoco Inc. | An ester base oil for lubricant compounds and process of making an ester base oil from an organic reaction by-product |
EP0619504A1 (en) | 1993-04-08 | 1994-10-12 | Optische Werke G. Rodenstock | Antireflection coating |
JPH06320744A (en) | 1993-04-19 | 1994-11-22 | Xerox Corp | Wet wiping maintenance device for full-width ink jet printer |
JPH06340081A (en) | 1993-04-19 | 1994-12-13 | Xerox Corp | Printing head maintenance device for full-width ink jet printer |
USH1471H (en) | 1993-04-26 | 1995-08-01 | Braun David J | Metal substrate double sided circuit board |
USH1461H (en) | 1993-05-10 | 1995-07-04 | The United States Of America As Represented By The Secretary Of The Army | Abrasion resistant diamond like coating for optical fiber and method of forming the coating |
DE4316012C2 (en) | 1993-05-13 | 1998-09-24 | Gehring Gmbh & Co Maschf | Process for finishing workpiece surfaces |
US5358402A (en) | 1993-05-13 | 1994-10-25 | Minnesota Mining & Manufacturing Company | Ceramic orthodontic bracket with archwire slot liner |
WO1994026425A1 (en) | 1993-05-17 | 1994-11-24 | Mcdonnell Douglas Corporation | Laser absorption wave deposition process |
KR0134942B1 (en) | 1993-06-11 | 1998-06-15 | 이다가끼 유끼오 | Amorphous hard carbon film and its manufacturing method |
US5740941A (en) | 1993-08-16 | 1998-04-21 | Lemelson; Jerome | Sheet material with coating |
BE1008229A3 (en) | 1993-10-29 | 1996-02-20 | Vito | METHOD FOR APPLYING A WEAR PROTECTIVE LAYER TO A SUBSTRATE |
US5447208A (en) | 1993-11-22 | 1995-09-05 | Baker Hughes Incorporated | Superhard cutting element having reduced surface roughness and method of modifying |
EP0661470A3 (en) | 1993-12-27 | 1996-08-14 | Starlite Ind | Sliding Bearing and Counter Parts. |
US5479069A (en) | 1994-02-18 | 1995-12-26 | Winsor Corporation | Planar fluorescent lamp with metal body and serpentine channel |
US5541566A (en) | 1994-02-28 | 1996-07-30 | Olin Corporation | Diamond-like carbon coating for magnetic cores |
JPH07286649A (en) * | 1994-04-18 | 1995-10-31 | Nippon Seiko Kk | Toroidal type continuously variable transmission |
AU2392295A (en) | 1994-04-25 | 1995-11-16 | Gillette Company, The | Amorphous diamond coating of blades |
BE1008338A5 (en) | 1994-04-26 | 1996-04-02 | Cobrain Nv | Multi-frequency inductive method and device for working material. |
JP3512231B2 (en) * | 1994-05-10 | 2004-03-29 | 東燃ゼネラル石油株式会社 | Lubricating oil composition for automatic transmission |
EP0752018A4 (en) | 1994-05-12 | 1998-09-02 | Qqc Inc | Surface treatment techniques |
US5516729A (en) | 1994-06-03 | 1996-05-14 | Advanced Micro Devices, Inc. | Method for planarizing a semiconductor topography using a spin-on glass material with a variable chemical-mechanical polish rate |
US5502156A (en) * | 1994-07-28 | 1996-03-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Electrically conducting polyimide film containing tin complexes |
US5464667A (en) | 1994-08-16 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Jet plasma process and apparatus |
US5630275A (en) | 1994-08-23 | 1997-05-20 | Warner-Lambert Company | Multi-blade razor head with improved performance |
US5619889A (en) * | 1994-10-11 | 1997-04-15 | Fed Corporation | Method of making microstructural surgical instruments |
WO1996012389A1 (en) | 1994-10-18 | 1996-04-25 | Edsi, Inc. | Apparatus for depositing a layer of material on a substrate |
US5461648A (en) | 1994-10-27 | 1995-10-24 | The United States Of America As Represented By The Secretary Of The Navy | Supercritical water oxidation reactor with a corrosion-resistant lining |
US5975686A (en) | 1994-10-31 | 1999-11-02 | Hewlett-Packard Company | Regulator for a free-ink inkjet pen |
US5529815A (en) | 1994-11-03 | 1996-06-25 | Lemelson; Jerome H. | Apparatus and method for forming diamond coating |
US5641731A (en) | 1994-11-04 | 1997-06-24 | Ashland, Inc. | Motor oil performance-enhancing formulation |
WO1996024488A1 (en) | 1995-02-01 | 1996-08-15 | Si Diamond Technology, Inc. | Diamond coated copper optics |
DE19507086C2 (en) | 1995-03-01 | 1997-01-30 | Danfoss As | Water hydraulic control valve |
US5458927A (en) | 1995-03-08 | 1995-10-17 | General Motors Corporation | Process for the formation of wear- and scuff-resistant carbon coatings |
US5901021A (en) | 1995-05-19 | 1999-05-04 | Sanyo Electric Co., Ltd. | Thin-film magnetic head |
US5616372A (en) | 1995-06-07 | 1997-04-01 | Syndia Corporation | Method of applying a wear-resistant diamond coating to a substrate |
US5688557A (en) * | 1995-06-07 | 1997-11-18 | Lemelson; Jerome H. | Method of depositing synthetic diamond coatings with intermediates bonding layers |
US5834708A (en) | 1995-06-08 | 1998-11-10 | Spectra-Physics Scanning Systems, Inc. | Multiple plane weigh platter for multiple plane scanning systems |
US5927897A (en) | 1995-07-14 | 1999-07-27 | Attar; Adil | Housingless abrasion resistant pavement marker |
CN1199503A (en) | 1995-08-14 | 1998-11-18 | 纳幕尔杜邦公司 | fluorescent light |
DE19530511C1 (en) | 1995-08-18 | 1997-02-20 | Alcan Gmbh | Pistons for internal combustion engines |
AUPN547495A0 (en) | 1995-09-15 | 1995-10-12 | Uponor B.V. | Sizing apparatus |
WO1997014555A1 (en) * | 1995-10-03 | 1997-04-24 | Advanced Refractory Technologies, Inc. | Diamond-like nanocomposite thin films for automotive powertrain component coatings |
US6468642B1 (en) | 1995-10-03 | 2002-10-22 | N.V. Bekaert S.A. | Fluorine-doped diamond-like coatings |
JP3719266B2 (en) | 1995-10-18 | 2005-11-24 | エクソンモービル・ケミカル・パテンツ・インク | Lubricating oil with improved friction durability |
KR0152251B1 (en) * | 1995-11-02 | 1998-10-15 | 장진 | Pseudodiamond thin film manufacturing method by layer, layer, and layer manufacturing method |
EP0862395B1 (en) | 1995-11-02 | 2004-04-07 | Wright Medical Technology, Inc. | Low-wear ball and cup joint prosthesis |
JPH09164693A (en) | 1995-11-27 | 1997-06-24 | Xerox Corp | Liquid ink printer equipped with consumable goods for maintenance |
US5790146A (en) | 1995-12-04 | 1998-08-04 | Xerox Corporation | Fluid applicator for maintenance of liquid ink printers |
US5672054A (en) | 1995-12-07 | 1997-09-30 | Carrier Corporation | Rotary compressor with reduced lubrication sensitivity |
US6095690A (en) | 1996-01-30 | 2000-08-01 | Glyco-Metall-Werke Glyco B.V. & Co. Kg | Sliding bearing element with lubricating oil pockets |
US5824387A (en) | 1996-02-05 | 1998-10-20 | Seagate Technology, Inc. | Magnetic disc with carbon protective layer having regions differing in hardness |
DE19704224A1 (en) | 1996-02-19 | 1997-08-21 | Volkswagen Ag | Connection between lifting piston and connecting rod in vehicle engines |
WO2000025410A1 (en) | 1998-10-23 | 2000-05-04 | Kuhlmann Wilsdorf Doris | Management of contact spots between an electrical brush and substrate |
US6753635B2 (en) | 1996-04-05 | 2004-06-22 | Hi Per Con | Management of contact spots between an electrical brush and substrate |
JP3047471B2 (en) | 1996-04-19 | 2000-05-29 | 東レ株式会社 | Aromatic polyamide film, method for producing the same, and magnetic recording medium using the same |
US5952102A (en) | 1996-05-13 | 1999-09-14 | Ceramatec, Inc. | Diamond coated WC and WC-based composites with high apparent toughness |
WO1997046484A1 (en) | 1996-06-05 | 1997-12-11 | R. Amtekh International, Inc. | Method for forming conformal diamond-type carbon coatings, hard diamond-type carbon coating and porous filtration element using the same |
EP0816112A3 (en) | 1996-07-02 | 1998-10-07 | Corning Incorporated | Method and apparatus for printing color filters |
CN1107742C (en) | 1996-07-08 | 2003-05-07 | 时至准钟表股份有限公司 | Guide bush and method of forming film on guide bush |
US5783261A (en) | 1996-07-11 | 1998-07-21 | Ford Global Technologies, Inc. | Using a coated fuel injector and method of making |
WO1998002715A1 (en) | 1996-07-12 | 1998-01-22 | Phase Metrics | Coatings for simultaneous control of tribological and optical properties of interferometric reference surfaces |
JPH1082390A (en) | 1996-07-18 | 1998-03-31 | Sanyo Electric Co Ltd | Sliding member, compressor and rotary compressor |
US5945214C1 (en) | 1996-08-28 | 2002-04-23 | Premark Rwp Holdings Inc | Diboride coated pressing surfaces for abrasion resistant laminate and making pressing surfaces |
US6656329B1 (en) | 1996-08-28 | 2003-12-02 | Premark Rwp Holdings, Inc. | Coated pressing surfaces for abrasion resistant laminate and making laminates therefrom |
TW385275B (en) | 1996-08-29 | 2000-03-21 | Toray Industries | Aromatic polyamide-based resin molding, a process therefor and magnetic recording medium made from the molding |
US5976707A (en) | 1996-09-26 | 1999-11-02 | Kennametal Inc. | Cutting insert and method of making the same |
SE9603540D0 (en) | 1996-09-27 | 1996-09-27 | Ingvar Eriksson | Orthopedic device |
TW353758B (en) | 1996-09-30 | 1999-03-01 | Motorola Inc | Electron emissive film and method |
US5910940A (en) | 1996-10-08 | 1999-06-08 | Polaroid Corporation | Storage medium having a layer of micro-optical lenses each lens generating an evanescent field |
US6311524B1 (en) | 2000-07-14 | 2001-11-06 | 3M Innovative Properties Company | Accelerated method for increasing the photosensitivity of a glassy material |
US5775817A (en) | 1996-11-04 | 1998-07-07 | General Motors Corporation | Fracture process with bore distortion controls |
JPH10184914A (en) | 1996-12-26 | 1998-07-14 | Teikoku Piston Ring Co Ltd | Combination of piston ring and cylinder liner |
KR100247065B1 (en) * | 1997-01-22 | 2000-03-15 | 윤종용 | Optical disc having protective folms |
US6316392B1 (en) | 1997-01-31 | 2001-11-13 | Elisha Technologies Co Llc | Corrosion resistant lubricants greases and gels |
US5778841A (en) | 1997-02-26 | 1998-07-14 | Cummins Engine Company, Inc. | Camshaft for internal combustion engines |
US6543394B2 (en) | 1997-03-03 | 2003-04-08 | Science Applications International Corp. | Four-cycle fuel-lubricated internal combustion engine |
JP3236795B2 (en) | 1997-03-18 | 2001-12-10 | 大同メタル工業株式会社 | Plain bearing |
US5849675A (en) | 1997-04-10 | 1998-12-15 | Chevron Chemical Company | Hydraulic system using an improved antiwear hydraulic fluid |
WO1998047141A1 (en) | 1997-04-16 | 1998-10-22 | Digital Papyrus Corporation | Phase change media compatible with air bearing flying head |
RU2114210C1 (en) | 1997-05-30 | 1998-06-27 | Валерий Павлович Гончаренко | Process of formation of carbon diamond-like coat in vacuum |
US6030398A (en) | 1997-05-30 | 2000-02-29 | Summit Technology, Inc. | Surgical microtomes |
US6305416B1 (en) | 1997-06-09 | 2001-10-23 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
US6893720B1 (en) | 1997-06-27 | 2005-05-17 | Nissin Electric Co., Ltd. | Object coated with carbon film and method of manufacturing the same |
US6377422B1 (en) | 1997-07-08 | 2002-04-23 | Seagate Technology Llc | Disc head with contact protection feature |
US5958261A (en) | 1997-07-17 | 1999-09-28 | General Electric Company | Apparatus for welding with preheated filler material |
US6658941B1 (en) | 1997-07-21 | 2003-12-09 | Helix Technology Corporation | Apparatus and methods for heat loss pressure measurement |
JP4392986B2 (en) | 1997-08-15 | 2010-01-06 | シーゲイト テクノロジー エルエルシー | Disk storage system |
US6071597A (en) | 1997-08-28 | 2000-06-06 | 3M Innovative Properties Company | Flexible circuits and carriers and process for manufacture |
US5885942A (en) | 1997-09-23 | 1999-03-23 | Nch Corporation | Multifunctional lubricant additive |
JP3355306B2 (en) | 1997-09-30 | 2002-12-09 | 帝国ピストンリング株式会社 | piston ring |
JP3885375B2 (en) | 1997-09-30 | 2007-02-21 | 帝国ピストンリング株式会社 | piston ring |
US6494881B1 (en) | 1997-09-30 | 2002-12-17 | Scimed Life Systems, Inc. | Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode |
US6156439A (en) | 1997-10-21 | 2000-12-05 | General Electric Company | Coating for preventing formation of deposits on surfaces contacting hydrocarbon fluids and method therefor |
US6973931B1 (en) | 1997-10-30 | 2005-12-13 | King Christopher R | Automated hair isolation and processing system |
US6726993B2 (en) | 1997-12-02 | 2004-04-27 | Teer Coatings Limited | Carbon coatings, method and apparatus for applying them, and articles bearing such coatings |
US7094502B2 (en) | 1997-12-12 | 2006-08-22 | Alcon Inc. | Methods for transferring holographic images into metal surfaces |
AU2416199A (en) | 1997-12-23 | 1999-07-19 | Alfar International Ltd | A field electron emitter and a method for producing it |
NL1008593C2 (en) | 1998-03-13 | 1999-09-14 | Skf Eng & Res Centre Bv | Actuator with improved accuracy. |
WO1999047810A1 (en) | 1998-03-19 | 1999-09-23 | Sumitomo Electric Industries, Ltd. | Combination of shim and cam |
DE19815989A1 (en) | 1998-04-09 | 1999-10-21 | Uti Holding & Man Ag | Piston-cylinder assembly e.g. for an ic engine |
US6106919A (en) | 1998-04-16 | 2000-08-22 | Digital Papyrus Corporation | Phase change media compatible with air bearing flying head |
FI980884L (en) | 1998-04-22 | 1999-10-23 | Valmet Corp | Parts of a paper/board or finishing machine that are subject to high wear and tear and a method for manufacturing these parts |
US6124198A (en) | 1998-04-22 | 2000-09-26 | Cvc, Inc. | Ultra high-speed chip interconnect using free-space dielectrics |
US6861791B1 (en) | 1998-04-30 | 2005-03-01 | Crystals And Technologies, Ltd. | Stabilized and controlled electron sources, matrix systems of the electron sources, and method for production thereof |
TW430827B (en) | 1998-05-22 | 2001-04-21 | Advanced Refractory Tech | Resistors with low temperature coefficient of resistance and methods of making |
WO1999062572A1 (en) | 1998-06-03 | 1999-12-09 | N.V. Bekaert S.A. | Stents with a diamond like coating |
DE19825860A1 (en) | 1998-06-10 | 1999-12-16 | Elgan Diamantwerkzeuge Gmbh & | Piston ring for piston engine, with diamond-like coating |
GB2338236B (en) | 1998-06-13 | 2003-04-09 | Aea Technology Plc | Microbiological cell processing |
JP2000002315A (en) * | 1998-06-15 | 2000-01-07 | Nissan Motor Co Ltd | High surface pressure gear, and manufacture thereof |
JP2000110719A (en) | 1998-10-05 | 2000-04-18 | Matsushita Electric Ind Co Ltd | Closed type compressor and open type compressor |
GB2342660B (en) | 1998-10-12 | 2000-09-27 | Univ Houston | Process for producing a carbon film on a substrate |
JP3737291B2 (en) | 1998-10-12 | 2006-01-18 | 株式会社神戸製鋼所 | Diamond-like carbon hard multilayer film molded body |
US6322431B1 (en) | 1998-10-13 | 2001-11-27 | Seagate Technology Llc | Burnish head with ion milled aerodynamic pads configured in an elliptical pattern |
WO2000022613A1 (en) | 1998-10-13 | 2000-04-20 | Minnesota Mining And Manufacturing Company | Head suspension with flexible circuit interconnect for reduced moisture permeability |
JP2000120870A (en) | 1998-10-15 | 2000-04-28 | Teikoku Piston Ring Co Ltd | Piston ring |
US6255262B1 (en) | 1998-11-09 | 2001-07-03 | Exxon Chemical Patents Inc. | High hydroxyl content glycerol di-esters |
FI104103B (en) | 1998-11-09 | 1999-11-15 | Valmet Corp | The coating bar |
FI982570A (en) | 1998-11-27 | 2000-05-28 | Neste Chemicals Oy | Method and apparatus for determining the viscoelastic properties of process fluids and its use |
WO2000047402A1 (en) | 1998-12-02 | 2000-08-17 | Advanced Refractory Technologies, Inc. | Fluorine-doped diamond-like coatings |
WO2000035000A1 (en) | 1998-12-08 | 2000-06-15 | Cvc Products, Inc. | Ultra high-speed semiconductor integrated circuit interconnect structure and fabrication method using free-space dielectric |
KR100325521B1 (en) | 1998-12-10 | 2002-04-17 | 윤종용 | Method for manufacturing fluid injector and fluid injector manufactured thereby |
JP4251738B2 (en) | 1998-12-25 | 2009-04-08 | 住友電気工業株式会社 | Hard coating and covering member |
AU2968600A (en) | 1999-01-20 | 2000-08-07 | N.V. Bekaert S.A. | Wear-resistant electromechanical contacts |
US6296552B1 (en) | 1999-01-29 | 2001-10-02 | Seagate Technology Llc | Burnishing head with fly height control spacer |
US6401058B1 (en) | 1999-02-12 | 2002-06-04 | Wayne State University | Reciprocating system for simulating friction and wear |
US6572935B1 (en) | 1999-03-13 | 2003-06-03 | The Regents Of The University Of California | Optically transparent, scratch-resistant, diamond-like carbon coatings |
GB2348158A (en) | 1999-03-16 | 2000-09-27 | Teer Coatings Ltd | Lubricated cutting |
JP5021119B2 (en) | 1999-03-24 | 2012-09-05 | セカンド サイト メディカル プロダクツ インコーポレイテッド | Retina artificial color prosthesis for color vision recovery |
ATE240577T1 (en) | 1999-03-26 | 2003-05-15 | Pennzoil Quaker State Co | MAGNETIC RECORDING MEDIUM WITH LUBRICANT |
JP3927724B2 (en) | 1999-04-01 | 2007-06-13 | 東燃ゼネラル石油株式会社 | Lubricating oil composition for internal combustion engines |
JP3555844B2 (en) * | 1999-04-09 | 2004-08-18 | 三宅 正二郎 | Sliding member and manufacturing method thereof |
US6645354B1 (en) | 2000-04-07 | 2003-11-11 | Vladimir I. Gorokhovsky | Rectangular cathodic arc source and method of steering an arc spot |
US6929727B2 (en) | 1999-04-12 | 2005-08-16 | G & H Technologies, Llc | Rectangular cathodic arc source and method of steering an arc spot |
CA2268659C (en) | 1999-04-12 | 2008-12-30 | Vladimir I. Gorokhovsky | Rectangular cathodic arc source and method of steering an arc spot |
US6570172B2 (en) | 1999-05-12 | 2003-05-27 | Plasmion Corporation | Magnetron negative ion sputter source |
JP3051404B1 (en) | 1999-05-19 | 2000-06-12 | 川崎重工業株式会社 | Tappet |
JP2000339083A (en) | 1999-05-28 | 2000-12-08 | Sanyo Electric Co Ltd | Input device |
RU2153782C1 (en) | 1999-06-02 | 2000-07-27 | Закрытое акционерное общество "Патинор Коутингс Лимитед" | Pulse source of carbon plasma |
GB9913438D0 (en) | 1999-06-09 | 1999-08-11 | Imperial College | A rotary pump |
WO2000078504A1 (en) | 1999-06-19 | 2000-12-28 | Speedfam-Ipec Corporation | Method and apparatus for increasing the lifetime of a workpiece retaining structure and conditioning a polishing surface |
DE60040365D1 (en) | 1999-07-08 | 2008-11-13 | Sumitomo Electric Industries | Hard coating and coated component |
US6626949B1 (en) | 1999-07-14 | 2003-09-30 | Biopro, Inc. | Diamond coated joint implant |
US6333298B1 (en) | 1999-07-16 | 2001-12-25 | Infineum International Limited | Molybdenum-free low volatility lubricating oil composition |
US6368676B1 (en) * | 1999-07-20 | 2002-04-09 | Diversified Technologies, Inc. | Method of coating an article |
US6083313A (en) | 1999-07-27 | 2000-07-04 | Advanced Refractory Technologies, Inc. | Hardcoats for flat panel display substrates |
US6482778B2 (en) * | 1999-08-11 | 2002-11-19 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
JP3748349B2 (en) | 1999-08-26 | 2006-02-22 | 富士写真フイルム株式会社 | Master for lithographic printing plate |
JP3664058B2 (en) | 1999-09-07 | 2005-06-22 | 日産自動車株式会社 | Rolling element for traction drive and manufacturing method thereof |
US6553957B1 (en) | 1999-10-29 | 2003-04-29 | Nippon Piston Ring Co., Ltd. | Combination of cylinder liner and piston ring of internal combustion engine |
US6733513B2 (en) | 1999-11-04 | 2004-05-11 | Advanced Bioprosthetic Surfaces, Ltd. | Balloon catheter having metal balloon and method of making same |
US6761736B1 (en) | 1999-11-10 | 2004-07-13 | St. Jude Medical, Inc. | Medical article with a diamond-like carbon coated polymer |
US6379383B1 (en) | 1999-11-19 | 2002-04-30 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal device exhibiting improved endothelialization and method of manufacture thereof |
US6386468B1 (en) | 1999-11-29 | 2002-05-14 | Ceramoptec Industries, Inc. | Mechano-chemical flourination: improved method of fullerene fluorination |
AU2905901A (en) | 1999-11-30 | 2001-06-12 | Regents Of The University Of California, The | Method for producing fluorinated diamond-like carbon films |
TW490703B (en) | 1999-12-13 | 2002-06-11 | Axcelis Tech Inc | Diamond-like coated component in an ion implanter for reduced x-ray emissions |
JP4359979B2 (en) | 1999-12-16 | 2009-11-11 | 住友電気工業株式会社 | Covered sliding member |
WO2001047451A1 (en) | 1999-12-29 | 2001-07-05 | Gishel New | Apparatus and method for delivering compounds to a living organism |
US6471979B2 (en) | 1999-12-29 | 2002-10-29 | Estrogen Vascular Technology, Llc | Apparatus and method for delivering compounds to a living organism |
JP2001214186A (en) | 2000-01-31 | 2001-08-07 | Asahi Denka Kogyo Kk | Lubricating composition |
WO2001059544A2 (en) | 2000-02-14 | 2001-08-16 | Rainbow Technologies B.V., Netherlands | Security module system, apparatus and process |
US6715693B1 (en) | 2000-02-15 | 2004-04-06 | Caterpillar Inc | Thin film coating for fuel injector components |
EP1256124A1 (en) | 2000-02-16 | 2002-11-13 | Fullerene International Corporation | Diamond/carbon nanotube structures for efficient electron field emission |
CA2400149C (en) | 2000-02-23 | 2012-01-03 | Leslie Schlom | A heat exchanger for cooling and for a pre-cooler for turbine intake air conditioning |
JP4560964B2 (en) | 2000-02-25 | 2010-10-13 | 住友電気工業株式会社 | Amorphous carbon coated member |
US6316734B1 (en) | 2000-03-07 | 2001-11-13 | 3M Innovative Properties Company | Flexible circuits with static discharge protection and process for manufacture |
US6439845B1 (en) | 2000-03-23 | 2002-08-27 | Kidney Replacement Services, P.C. | Blood pump |
JP4730753B2 (en) | 2000-03-23 | 2011-07-20 | 株式会社神戸製鋼所 | Diamond-like carbon hard multilayer film and members with excellent wear resistance and sliding resistance |
US6399215B1 (en) | 2000-03-28 | 2002-06-04 | The Regents Of The University Of California | Ultrafine-grained titanium for medical implants |
JP2001280236A (en) | 2000-03-29 | 2001-10-10 | Taiho Kogyo Co Ltd | Swash plate for swash plate type compressor, and swash plate type compressor |
DE10018143C5 (en) | 2000-04-12 | 2012-09-06 | Oerlikon Trading Ag, Trübbach | DLC layer system and method and apparatus for producing such a layer system |
JP2001295576A (en) | 2000-04-12 | 2001-10-26 | Japan National Oil Corp | Bit device |
US6586069B2 (en) | 2000-04-14 | 2003-07-01 | Seagate Technology Llc | Ultrathin protective overcoats comprising fullerene for magnetic materials |
AU2001255388A1 (en) | 2000-04-14 | 2001-10-30 | Technology International, Inc. | Diamonds and diamond cutters having improved durability |
US6592519B1 (en) | 2000-04-28 | 2003-07-15 | Medtronic, Inc. | Smart microfluidic device with universal coating |
JP4007440B2 (en) * | 2000-04-28 | 2007-11-14 | 三宅 正二郎 | Hard carbon film sliding member |
US6919001B2 (en) | 2000-05-01 | 2005-07-19 | Intevac, Inc. | Disk coating system |
US6753042B1 (en) | 2000-05-02 | 2004-06-22 | Itac Limited | Diamond-like carbon thin film coating process |
GB0011115D0 (en) | 2000-05-09 | 2000-06-28 | Infineum Int Ltd | Lubricating oil compositions |
WO2002013188A1 (en) | 2000-08-09 | 2002-02-14 | Koninklijke Philips Electronics N.V. | Method of manufacturing a magnetic head having a planar coil |
US6324060B1 (en) | 2000-08-15 | 2001-11-27 | Hul Chun Hsu | Heat transfer interface |
IL144688A0 (en) | 2000-09-01 | 2002-06-30 | Premark Rwp Holdings Inc | Polishing of press plates coated with titanium diboride |
US6444622B1 (en) * | 2000-09-19 | 2002-09-03 | Ethyl Corporation | Friction modified lubricants |
US6303547B1 (en) | 2000-09-19 | 2001-10-16 | Ethyl Corporation | Friction modified lubricants |
DE60140617D1 (en) | 2000-09-20 | 2010-01-07 | Camco Int Uk Ltd | POLYCRYSTALLINE DIAMOND WITH A SURFACE ENRICHED ON CATALYST MATERIAL |
DK1324960T3 (en) | 2000-09-20 | 2010-03-29 | Camco Int Uk Ltd | Polycrystalline diamond with a surface which has depleted catalyst material |
JP4954429B2 (en) | 2000-09-20 | 2012-06-13 | キャムコ、インターナショナル、(ユーケイ)、リミテッド | Polycrystalline diamond with a surface depleted of catalytic material |
EP1190791B1 (en) | 2000-09-20 | 2010-06-23 | Camco International (UK) Limited | Polycrystalline diamond cutters with working surfaces having varied wear resistance while maintaining impact strength |
DE10046956C2 (en) | 2000-09-21 | 2002-07-25 | Federal Mogul Burscheid Gmbh | Thermally applied coating for piston rings made of mechanically alloyed powders |
DE10061397B4 (en) | 2000-09-29 | 2004-04-08 | Desch Antriebstechnik Gmbh & Co. Kg | Planetary gear and planetary bearings and their components |
US6821189B1 (en) | 2000-10-13 | 2004-11-23 | 3M Innovative Properties Company | Abrasive article comprising a structured diamond-like carbon coating and method of using same to mechanically treat a substrate |
US6739238B2 (en) | 2000-11-20 | 2004-05-25 | Nissan Motor Co., Ltd. | Sliding structure for a reciprocating internal combustion engine and a reciprocating internal combustion engine using the sliding structure |
FR2817267B1 (en) | 2000-11-28 | 2003-08-29 | Essilor Int | METHOD OF DEPOSITING ANTI-REFLECTIVE COLD LAYER ON ORGANIC SUBSTRATE |
JP4948725B2 (en) | 2000-12-05 | 2012-06-06 | 三星ダイヤモンド工業株式会社 | Chip holder |
EP1219464B1 (en) | 2000-12-20 | 2008-02-13 | FUJIFILM Corporation | Lithographic printing plate precursor |
US6729527B2 (en) | 2001-01-30 | 2004-05-04 | Kulicke & Soffa Investments, Inc. | Bonding tool with polymer coating |
JP3712052B2 (en) | 2001-02-09 | 2005-11-02 | 日産自動車株式会社 | Low friction sliding member |
US20020151441A1 (en) | 2001-02-14 | 2002-10-17 | Sanjay Srinivasan | Automatic transmission fluids with improved anti-shudder properties |
JP2002265968A (en) | 2001-03-14 | 2002-09-18 | Mitsuhiko Iino | Lubricant composition |
US6761532B2 (en) | 2001-03-14 | 2004-07-13 | Vascor, Inc. | Touch down of blood pump impellers |
US20020130219A1 (en) | 2001-03-19 | 2002-09-19 | Parseghian Van R. | System for restraining aircraft delivery carts |
US20040133301A1 (en) | 2002-07-09 | 2004-07-08 | Signature Control Systems | Process and apparatus for improving and controlling the vulcanization of natural and synthetic rubber compounds |
JP3292199B2 (en) | 2001-03-22 | 2002-06-17 | 住友電気工業株式会社 | Rubber mold, method for manufacturing rubber mold, and method for molding rubber |
US20020175476A1 (en) | 2001-03-30 | 2002-11-28 | Nippon Piston Ring Co., Ltd. | Piston ring, and combined structure of piston ring and ring groove of piston |
JP2003113941A (en) | 2001-03-30 | 2003-04-18 | Nippon Piston Ring Co Ltd | Piston ring and combination structure of piston ring and ring groove of piston |
WO2002080996A1 (en) | 2001-04-03 | 2002-10-17 | Franz Herbst | Medical implant and method for producing the same |
JP3587379B2 (en) | 2001-04-17 | 2004-11-10 | 日産自動車株式会社 | Automotive engine valve train shims and lifters, and combinations of these with camshafts |
WO2002085237A2 (en) | 2001-04-25 | 2002-10-31 | General Plasma, Llc | Diamond-like coating, method of its plating and dental bur with the said diamond-like coating |
JP4578716B2 (en) | 2001-05-08 | 2010-11-10 | 株式会社デンソー | Gasoline lubricated sliding member |
US6729350B2 (en) | 2001-05-25 | 2004-05-04 | Upchurch Scientific, Inc. | Valve for use with capillary tubing |
NL1018190C2 (en) | 2001-05-31 | 2002-12-03 | Skf Ab | Coolant lubricated rolling bearing. |
US7712222B2 (en) | 2001-07-26 | 2010-05-11 | Irwin Industrial Tool Company | Composite utility blade, and method of making such a blade |
US6666328B2 (en) | 2001-08-07 | 2003-12-23 | Stapell/Guider Corporation | Long wear conveyor assembly |
JP2003113913A (en) | 2001-10-02 | 2003-04-18 | Tsubakimoto Chain Co | Movable lever for transmission chain |
AU2002337418A1 (en) | 2001-10-05 | 2003-04-22 | Unichema Chemie B.V. | Lubricant or fuel composition comprising an amide as friction-reducing additive |
JP2003147508A (en) | 2001-11-07 | 2003-05-21 | Sumitomo Electric Ind Ltd | Carbon film, method for forming carbon film, and carbon film-coated member |
AU2002360361A1 (en) | 2001-11-09 | 2003-06-10 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
DE10158683A1 (en) | 2001-11-23 | 2003-06-05 | Tea Gmbh | Functional fluid based on glycols, polyglycols and/or polyol esters, useful for cooling and lubrication, especially in internal combustion engines, includes polysuccinimide |
JP2003184883A (en) | 2001-12-20 | 2003-07-03 | Nissan Motor Co Ltd | Bearing sliding member |
US6982510B1 (en) | 2001-12-20 | 2006-01-03 | Seagate Technology Llc | Low profile fluid dynamic bearing |
JP3555891B2 (en) | 2002-02-22 | 2004-08-18 | 新日本石油株式会社 | Low friction sliding material and lubricating oil composition used therefor |
EP1490278B1 (en) | 2002-03-08 | 2010-09-15 | Frost Links, Inc. | Conveyor chain |
GB0205959D0 (en) | 2002-03-14 | 2002-04-24 | Teer Coatings Ltd | Apparatus and method for applying diamond-like carbon coatings |
JP2004003435A (en) | 2002-04-23 | 2004-01-08 | Denso Corp | Fuel injection valve for internal combustion engine and method for manufacturing the same |
US20030202763A1 (en) | 2002-04-24 | 2003-10-30 | Starodubov Dmitry S. | Method for forming a protective coating on an optical fiber |
CN1164790C (en) * | 2002-04-26 | 2004-09-01 | 邹庆化 | Carbon nitride ultrahard film plated target material and preparation method thereof |
FI20020909A0 (en) | 2002-05-14 | 2002-05-14 | Perlos Oyj | Inhaler, component of an inhaler and method of manufacturing the same |
AU2002337644A1 (en) | 2002-06-07 | 2003-12-22 | Seagate Technology Llc | Slider deposits for control of pole-to-disc spacing |
WO2004001804A2 (en) | 2002-06-19 | 2003-12-31 | Ziegler Byron J | Device for generation of reactive ions |
JP2004033513A (en) | 2002-07-04 | 2004-02-05 | Mizuno Corp | Wood golf club head |
AU2003272378A1 (en) | 2002-09-12 | 2004-04-30 | X-Cell Medical, Inc. | Apparatus and method for delivering compounds to a living organism |
US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
GB2410280B (en) | 2002-09-20 | 2007-04-04 | Enventure Global Technology | Self-lubricating expansion mandrel for expandable tubular |
JP4063026B2 (en) | 2002-09-24 | 2008-03-19 | 日産自動車株式会社 | Control device for internal combustion engine |
EP1450008B1 (en) | 2002-09-27 | 2013-02-20 | Nissan Motor Company Limited | Automobile engine valve mechanism system shim and lifter, and combination of these and cam shaft |
US6745742B2 (en) | 2002-10-07 | 2004-06-08 | Siegfried Meyer | Connecting rod structure |
BR0315249A (en) | 2002-10-12 | 2005-08-30 | Intellimats Llc | Variable Image Orientation Floor Display System |
JP2004138128A (en) | 2002-10-16 | 2004-05-13 | Nissan Motor Co Ltd | Sliding member for automotive engine |
GB0224779D0 (en) | 2002-10-24 | 2002-12-04 | Barnes Charles F J | Information storage system |
US6969198B2 (en) | 2002-11-06 | 2005-11-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
WO2004043631A1 (en) | 2002-11-07 | 2004-05-27 | Honeywell International Inc. | Die cast sputter targets |
US6880469B2 (en) | 2002-11-26 | 2005-04-19 | Frost Inc. | Journal bearing for trolley wheel |
JP2004217110A (en) * | 2003-01-16 | 2004-08-05 | Nsk Ltd | Electric power steering device |
US20040146262A1 (en) | 2003-01-23 | 2004-07-29 | 3M Innovative Properties Company | Frozen-fluid fiber guide |
US7387081B2 (en) | 2003-01-23 | 2008-06-17 | 3M Innovative Properties Company | Plasma reactor including helical electrodes |
US7299749B2 (en) | 2003-02-10 | 2007-11-27 | Fujifilm Corporation | Lithographic printing plate support and production method thereof |
GB0303158D0 (en) | 2003-02-12 | 2003-03-19 | Scion Sprays Ltd | An electrostatic atomiser |
EP1606084A4 (en) | 2003-03-05 | 2006-05-31 | Irwin Ind Tool Co | Composite utility blade, and method of making such a blade |
US20040186585A1 (en) | 2003-03-21 | 2004-09-23 | Lawrence Feiwell | Sphere-on-sphere ankle prosthesis |
US7327535B2 (en) | 2003-05-08 | 2008-02-05 | Sae Magnetics (H.K.) Ltd. | Hybrid coating for magnetic heads |
US20040222594A1 (en) | 2003-05-08 | 2004-11-11 | Dresser-Rand Company | Oil film sealing device for a rotating shaft |
EP1482190B1 (en) | 2003-05-27 | 2012-12-05 | Nissan Motor Company Limited | Rolling element |
US20040241019A1 (en) | 2003-05-28 | 2004-12-02 | Michael Goldowsky | Passive non-contacting smart bearing suspension for turbo blood-pumps |
JP2005008851A (en) | 2003-05-29 | 2005-01-13 | Nissan Motor Co Ltd | Cutting oil for cutting tool coated with hard carbon thin film, and cutting tool coated with hard carbon thin film |
JP2004360649A (en) | 2003-06-06 | 2004-12-24 | Nissan Motor Co Ltd | Piston pin for engine |
EP1498597A1 (en) | 2003-07-17 | 2005-01-19 | Sorevi S.A. | Piston with a skirt having a low coefficient of friction |
DE602004004150T2 (en) | 2003-07-25 | 2007-10-11 | Nv Bekaert Sa | SUBSTRATE WITH INTERMEDIATE COVER AND HARD CARBON COVER |
US7144403B2 (en) | 2003-07-29 | 2006-12-05 | Alcon, Inc. | Surgical knife |
JP4824407B2 (en) | 2003-08-06 | 2011-11-30 | Jx日鉱日石エネルギー株式会社 | System having DLC contact surface, method of lubricating the system, and lubricating oil for the system |
JP4973971B2 (en) | 2003-08-08 | 2012-07-11 | 日産自動車株式会社 | Sliding member |
JP2005090489A (en) | 2003-08-11 | 2005-04-07 | Nissan Motor Co Ltd | Valve lifter for internal combustion engine |
EP1507070B1 (en) | 2003-08-11 | 2007-11-21 | Nissan Motor Co., Ltd. | Fuel lubricated sliding mechanism |
DE10337559A1 (en) | 2003-08-14 | 2005-03-10 | Stankiewicz Gmbh | Mold for the production of molded foam bodies |
JP4539205B2 (en) | 2003-08-21 | 2010-09-08 | 日産自動車株式会社 | Refrigerant compressor |
EP1508611B1 (en) | 2003-08-22 | 2019-04-17 | Nissan Motor Co., Ltd. | Transmission comprising low-friction sliding members and transmission oil therefor |
WO2005025844A1 (en) | 2003-09-02 | 2005-03-24 | New Medium Enterprises, Inc | Multilayer reflective information carrier and method for manufacturing thereof |
WO2005021851A1 (en) | 2003-09-03 | 2005-03-10 | Nv Bekaert Sa | Coated rapier |
ITTO20030135U1 (en) | 2003-09-04 | 2005-03-05 | Lgl Electronics Spa | SELF-ADJUSTING BRAKING DEVICE FOR WEAVING FRAMES WITH WEAVING FRAMES |
WO2005034791A1 (en) | 2003-10-09 | 2005-04-21 | Farzad Shaygan | A drill bit with a moissanite (silicon carbide) cutting element |
KR101319227B1 (en) | 2003-10-10 | 2013-10-16 | 게 밍 루이 | Methods and Compositions for Growing Corneal Endothelial and Related Cells on Biopolymers and Creation of Artifical Corneal Transplants |
CA2542124A1 (en) | 2003-10-10 | 2005-04-28 | Cellular Bioengineering, Inc. | Composition and methods for cell culturing and tissue culture platforms |
EP1678736A4 (en) | 2003-10-31 | 2009-01-21 | Ventracor Ltd | PLASMAIMMERSION ION IMPLANTATION BY USING A CONDUCTIVE MASK GRILLE |
JP2007513297A (en) | 2003-11-10 | 2007-05-24 | ザ ティムケン カンパニー | Differential having cross-shaft thin film coating and method for manufacturing the same |
US7418173B2 (en) | 2004-06-30 | 2008-08-26 | Sumitomo Metal Mining Co., Ltd. | Waveguide type optical control element and process for its fabrication |
-
2004
- 2004-04-23 JP JP2004127632A patent/JP4863152B2/en not_active Expired - Fee Related
- 2004-07-16 DE DE602004014074T patent/DE602004014074D1/en not_active Expired - Lifetime
- 2004-07-16 EP EP04016864A patent/EP1503113B1/en not_active Expired - Lifetime
- 2004-07-30 CN CNB2004100587835A patent/CN100394076C/en not_active Expired - Fee Related
- 2004-07-30 US US10/902,303 patent/US20050025975A1/en not_active Abandoned
-
2008
- 2008-07-23 US US12/177,943 patent/US8096205B2/en not_active Expired - Fee Related
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3790315A (en) * | 1970-10-01 | 1974-02-05 | Atlas Copco Ab | Rotary piston compressors with liquid injection |
US4367130A (en) * | 1970-11-30 | 1983-01-04 | Lemelson Jerome H | Chemical reaction |
US3932228A (en) * | 1973-11-01 | 1976-01-13 | Suzuki Jidosha Kogyo Kabushiki Kaisha | Metal material for sliding surfaces |
US4645610A (en) * | 1984-04-20 | 1987-02-24 | Institut Francais Du Petrole | Method for the preparation of olefin polysulfides, the products obtained and their utilization as lubricant additives |
US5288556A (en) * | 1987-03-31 | 1994-02-22 | Lemelson Jerome H | Gears and gear assemblies |
US5284394A (en) * | 1987-03-31 | 1994-02-08 | Jerome Lemelson | Ball and roller bearings and bearing components |
US5096352A (en) * | 1987-03-31 | 1992-03-17 | Lemelson Jerome H | Diamond coated fasteners |
US5000541A (en) * | 1987-09-18 | 1991-03-19 | At&T Bell Laboratories | Hermetically sealed optical fibers |
US5078848A (en) * | 1988-01-18 | 1992-01-07 | Asko Anttila | Procedure and apparatus for the coating of materials by means of a pulsating plasma beam |
US5723207A (en) * | 1988-01-21 | 1998-03-03 | The National Research Development Corporation | Infra-red transparant materials |
US5190824A (en) * | 1988-03-07 | 1993-03-02 | Semiconductor Energy Laboratory Co., Ltd. | Electrostatic-erasing abrasion-proof coating |
US5866195A (en) * | 1988-03-31 | 1999-02-02 | Lemelson; Jerome H. | Methods for forming diamond-coated superconductor wire |
US5077990A (en) * | 1988-05-06 | 1992-01-07 | Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh | Knitting machine and parts having diamond-like carbon coated surfaces |
US5202156A (en) * | 1988-08-16 | 1993-04-13 | Canon Kabushiki Kaisha | Method of making an optical element mold with a hard carbon film |
US4988421A (en) * | 1989-01-12 | 1991-01-29 | Ford Motor Company | Method of toughening diamond coated tools |
US4992082A (en) * | 1989-01-12 | 1991-02-12 | Ford Motor Company | Method of toughening diamond coated tools |
US4919974A (en) * | 1989-01-12 | 1990-04-24 | Ford Motor Company | Making diamond composite coated cutting tools |
US5187021A (en) * | 1989-02-08 | 1993-02-16 | Diamond Fiber Composites, Inc. | Coated and whiskered fibers for use in composite materials |
US4981717A (en) * | 1989-02-24 | 1991-01-01 | Mcdonnell Douglas Corporation | Diamond like coating and method of forming |
US5087608A (en) * | 1989-12-28 | 1992-02-11 | Bell Communications Research, Inc. | Environmental protection and patterning of superconducting perovskites |
US5205305A (en) * | 1990-10-13 | 1993-04-27 | Yoshida Kogyo K.K. | Color changing system for spray dyeing |
US5205188A (en) * | 1990-11-05 | 1993-04-27 | Detlef Repenning | Friction pairing and process for its production |
US5497550A (en) * | 1991-11-15 | 1996-03-12 | The Gillette Company | Shaving system |
US5295305A (en) * | 1992-02-13 | 1994-03-22 | The Gillette Company | Razor blade technology |
US5295305B1 (en) * | 1992-02-13 | 1996-08-13 | Gillette Co | Razor blade technology |
US5299937A (en) * | 1992-07-29 | 1994-04-05 | Si Diamond Technology, Inc. | Dental instruments having diamond-like working surface |
US5380196A (en) * | 1993-05-13 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Orthodontic bracket with archwire slot liner |
US5491028A (en) * | 1993-05-21 | 1996-02-13 | Trustees Of Boston University | Enhanced adherence of diamond coatings |
US5482602A (en) * | 1993-11-04 | 1996-01-09 | United Technologies Corporation | Broad-beam ion deposition coating methods for depositing diamond-like-carbon coatings on dynamic surfaces |
US5401543A (en) * | 1993-11-09 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Method for forming macroparticle-free DLC films by cathodic arc discharge |
US5719109A (en) * | 1993-12-30 | 1998-02-17 | Exxon Chemical Patents Inc | Lubricating oil composition |
US5731046A (en) * | 1994-01-18 | 1998-03-24 | Qqc, Inc. | Fabrication of diamond and diamond-like carbon coatings |
US5593719A (en) * | 1994-03-29 | 1997-01-14 | Southwest Research Institute | Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys |
US6171343B1 (en) * | 1994-03-29 | 2001-01-09 | Southwest Research Institute | Ultra high molecular weight polyethylene components treated to resist shearing and frictional wear |
US5707409A (en) * | 1994-08-24 | 1998-01-13 | Minnesota Mining And Manufacturing Company | Abrasive article having a diamond-like coating layer and method for making same |
US6197428B1 (en) * | 1994-08-26 | 2001-03-06 | Deposition Sciences, Inc. | Gemstones and decorative objects comprising a substrate and an optical interference film |
US5714202A (en) * | 1995-06-07 | 1998-02-03 | Lemelson; Jerome H. | Synthetic diamond overlays for gas turbine engine parts having thermal barrier coatings |
US6203651B1 (en) * | 1995-09-20 | 2001-03-20 | Uponor Innovation Ab | Method and apparatus for making an extrusion product, and an extrusion product |
US5871805A (en) * | 1996-04-08 | 1999-02-16 | Lemelson; Jerome | Computer controlled vapor deposition processes |
US6338881B1 (en) * | 1996-09-03 | 2002-01-15 | Saxonia Umformtechnik Gmbh | Diamond-like coating and method of making same |
US6193906B1 (en) * | 1997-02-27 | 2001-02-27 | Idemitsu Kosan Co., Ltd. | Refrigerating oil composition containing a polyether additive |
US6023979A (en) * | 1997-07-21 | 2000-02-15 | Helix Technology | Apparatus and methods for heat loss pressure measurement |
US6340245B1 (en) * | 1997-09-16 | 2002-01-22 | Skf Engineering & Research Centre B.V. | Coated rolling element bearing |
US6197120B1 (en) * | 1997-11-26 | 2001-03-06 | 3M Innovative Properties Company | Apparatus for coating diamond-like networks onto particles |
US6015597A (en) * | 1997-11-26 | 2000-01-18 | 3M Innovative Properties Company | Method for coating diamond-like networks onto particles |
US5881444A (en) * | 1997-12-12 | 1999-03-16 | Aluminum Company Of America | Techniques for transferring holograms into metal surfaces |
US20040003638A1 (en) * | 1997-12-12 | 2004-01-08 | Schaefer Mark W. | Transfer of holographic images into metal sporting and fitness products |
US6190514B1 (en) * | 1997-12-30 | 2001-02-20 | Premark Rwp Holdings, Inc. | Method for high scan sputter coating to produce coated, abrasion resistant press plates with reduced built-in thermal stress |
US6028393A (en) * | 1998-01-22 | 2000-02-22 | Energy Conversion Devices, Inc. | E-beam/microwave gas jet PECVD method and apparatus for depositing and/or surface modification of thin film materials |
US6016000A (en) * | 1998-04-22 | 2000-01-18 | Cvc, Inc. | Ultra high-speed chip semiconductor integrated circuit interconnect structure and fabrication method using free-space dielectrics |
US20020026899A1 (en) * | 1998-06-26 | 2002-03-07 | Mclaughlin James Andrew | Apparatus and method for coating substrates with vacuum depositable materials |
US6358123B1 (en) * | 1998-09-23 | 2002-03-19 | Seagate Technology Llc | Apparatus and method for reducing disc surface asperities to sub-microinch height |
US20020031987A1 (en) * | 1998-09-23 | 2002-03-14 | Seagate Technology Llc | Apparatus and method for reducing disc surface asperities to sub-microinch height |
US6534141B1 (en) * | 1998-10-27 | 2003-03-18 | Raymond J. Hull, Jr. | Method of forming an improved support member for a fabric and film forming device |
US6207625B1 (en) * | 1998-12-21 | 2001-03-27 | Tonen Corporation | Lubricant oil composition for diesel engines (LAW913) |
US6170156B1 (en) * | 1999-03-24 | 2001-01-09 | General Motors Corporation | Gear tooth smoothing and shaping process |
US6523456B1 (en) * | 1999-07-05 | 2003-02-25 | Honda Giken Kogyo Kabushiki Kaisha | Sliding members and piston for internal combustion engine |
US6205291B1 (en) * | 1999-08-25 | 2001-03-20 | A. O. Smith Corporation | Scale-inhibiting heating element and method of making same |
US6173913B1 (en) * | 1999-08-25 | 2001-01-16 | Caterpillar Inc. | Ceramic check for a fuel injector |
US20030036341A1 (en) * | 1999-10-12 | 2003-02-20 | Hunatech Co., Ltd. | Conditioner for polishing pad and method for manufacturing the same |
US6699106B2 (en) * | 1999-10-12 | 2004-03-02 | Hunatech Co., Ltd. | Conditioner for polishing pad and method for manufacturing the same |
US6537310B1 (en) * | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US6684759B1 (en) * | 1999-11-19 | 2004-02-03 | Vladimir Gorokhovsky | Temperature regulator for a substrate in vapor deposition processes |
US6849085B2 (en) * | 1999-11-19 | 2005-02-01 | Advanced Bio Prosthetic Surfaces, Ltd. | Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same |
US6866894B2 (en) * | 2000-02-29 | 2005-03-15 | The Gillette Company | Razor blade technology |
US6684513B1 (en) * | 2000-02-29 | 2004-02-03 | The Gillette Company | Razor blade technology |
US6695865B2 (en) * | 2000-03-20 | 2004-02-24 | Advanced Bio Prosthetic Surfaces, Ltd. | Embolic protection device |
US6524212B2 (en) * | 2000-03-23 | 2003-02-25 | Nissan Motor Co., Ltd. | Toroidal-type continuously variable transmission for automobiles |
US20030012234A1 (en) * | 2000-06-19 | 2003-01-16 | Watson Tom A. | Six to ten KHz, or greater gas discharge laser system |
US20020034631A1 (en) * | 2000-09-20 | 2002-03-21 | Griffin Nigel Dennis | High volume density polycrystalline diamond with working surfaces depleted of catalyzing material |
US20030037640A1 (en) * | 2000-09-20 | 2003-02-27 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US6861098B2 (en) * | 2000-09-20 | 2005-03-01 | Reedhycalog Uk Ltd | Polycrystalline diamond partially depleted of catalyzing material |
US6861137B2 (en) * | 2000-09-20 | 2005-03-01 | Reedhycalog Uk Ltd | High volume density polycrystalline diamond with working surfaces depleted of catalyzing material |
US20030035957A1 (en) * | 2000-09-20 | 2003-02-20 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US20030035958A1 (en) * | 2000-09-20 | 2003-02-20 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US20030034182A1 (en) * | 2000-09-20 | 2003-02-20 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US20030021995A1 (en) * | 2000-09-20 | 2003-01-30 | Griffin Nigel Dennis | Method of making polycrystalline diamond with working surfaces depleted of catalyzing material |
US20020034632A1 (en) * | 2000-09-20 | 2002-03-21 | Griffin Nigel Dennis | Polycrystalline diamond partially depleted of catalyzing material |
US20040008406A1 (en) * | 2000-10-27 | 2004-01-15 | Blitstein Jeffrey L. | Wavelength specific coating for mirrored optics and method for reducing reflection of white light |
US6871700B2 (en) * | 2000-11-17 | 2005-03-29 | G & H Technologies Llc | Thermal flux regulator |
US6537429B2 (en) * | 2000-12-29 | 2003-03-25 | Lam Research Corporation | Diamond coatings on reactor wall and method of manufacturing thereof |
US6855237B2 (en) * | 2001-02-01 | 2005-02-15 | International Technology Exchange, Inc. | Pulsed carbon plasma apparatus |
US20040035375A1 (en) * | 2001-03-14 | 2004-02-26 | Rudolf Gibisch | Cylinder block and crankcase for a liquid-cooled internal-combustion engine |
US20030019111A1 (en) * | 2001-07-26 | 2003-01-30 | Korb William B. | Composite utility knife blade, and method of making such a blade |
US6701627B2 (en) * | 2001-07-26 | 2004-03-09 | American Saw & Mfg. Company, Inc. | Composite utility knife blade |
US20030019332A1 (en) * | 2001-07-26 | 2003-01-30 | Korb William B. | Composite utility knife blade, and method of making such a blade |
US20050061636A1 (en) * | 2002-03-08 | 2005-03-24 | Frost Charles C. | Conveyor chain |
US20040011900A1 (en) * | 2002-05-22 | 2004-01-22 | Jens Gebhardt | Fuel injector assembly |
US6855791B2 (en) * | 2002-07-09 | 2005-02-15 | Signature Control Systems | Process and apparatus for improving and controlling the vulcanization of natural and synthetic rubber compounds |
US20040010068A1 (en) * | 2002-07-09 | 2004-01-15 | Signature Control Systems | Process and apparatus for improving and controlling the vulcanization of natural and synthetic rubber compounds |
US20040027018A1 (en) * | 2002-08-06 | 2004-02-12 | Leblanc Jeffry Arnold | Hydraulic compensation for magnetically biased fluid dynamic bearing motor |
US6872203B2 (en) * | 2002-08-27 | 2005-03-29 | Board Of Trustees Of The University Of Arkansas | Conductive interstitial thermal therapy device |
US6865952B2 (en) * | 2002-10-16 | 2005-03-15 | Helix Technology Corporation | Apparatus and methods for heat loss pressure measurement |
US20050035222A1 (en) * | 2003-04-15 | 2005-02-17 | Nissan Motor Co., Ltd. | Fuel injection valve |
US20050005892A1 (en) * | 2003-05-23 | 2005-01-13 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
US20050001201A1 (en) * | 2003-07-03 | 2005-01-06 | Bocko Peter L. | Glass product for use in ultra-thin glass display applications |
US20050056241A1 (en) * | 2003-08-08 | 2005-03-17 | Nissan Motor Co., Ltd. | Valve train for internal combustion engine |
US20050037879A1 (en) * | 2003-08-13 | 2005-02-17 | Nissan Motor Co., Ltd. | Chain drive system |
US20050061291A1 (en) * | 2003-08-13 | 2005-03-24 | Nissan Motor Co., Ltd. | Structure for connecting piston to crankshaft |
US20050064196A1 (en) * | 2003-08-21 | 2005-03-24 | Jean Martin | Low-friction sliding member and low-friction sliding mechanism using same |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050118426A1 (en) * | 1999-04-09 | 2005-06-02 | Shojiro Miyake | Slidably movable member and method of producing same |
US7273655B2 (en) | 1999-04-09 | 2007-09-25 | Shojiro Miyake | Slidably movable member and method of producing same |
US7255083B2 (en) | 2002-10-16 | 2007-08-14 | Nissan Motor Co., Ltd. | Sliding structure for automotive engine |
US20110028361A1 (en) * | 2002-11-06 | 2011-02-03 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
US8152377B2 (en) | 2002-11-06 | 2012-04-10 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
US7322749B2 (en) | 2002-11-06 | 2008-01-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
US7500472B2 (en) | 2003-04-15 | 2009-03-10 | Nissan Motor Co., Ltd. | Fuel injection valve |
US20050035222A1 (en) * | 2003-04-15 | 2005-02-17 | Nissan Motor Co., Ltd. | Fuel injection valve |
US7406940B2 (en) | 2003-05-23 | 2008-08-05 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
US20050005892A1 (en) * | 2003-05-23 | 2005-01-13 | Nissan Motor Co., Ltd. | Piston for internal combustion engine |
US7427162B2 (en) | 2003-05-27 | 2008-09-23 | Nissan Motor Co., Ltd. | Rolling element |
US20040242435A1 (en) * | 2003-05-29 | 2004-12-02 | Nissan Motor Co., Ltd. | Hard-carbon coated machine tool and cutting oil composition therefor |
US7228786B2 (en) | 2003-06-06 | 2007-06-12 | Nissan Motor Co., Ltd. | Engine piston-pin sliding structure |
US20060263604A1 (en) * | 2003-08-06 | 2006-11-23 | Martin Jean M | Low-friction sliding mechanism, low-friction agent composition and method of friction reduction |
US8206035B2 (en) | 2003-08-06 | 2012-06-26 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism, low-friction agent composition and method of friction reduction |
US8575076B2 (en) | 2003-08-08 | 2013-11-05 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
US7146956B2 (en) | 2003-08-08 | 2006-12-12 | Nissan Motor Co., Ltd. | Valve train for internal combustion engine |
US7458585B2 (en) | 2003-08-08 | 2008-12-02 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
US20090054277A1 (en) * | 2003-08-08 | 2009-02-26 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
US20050100701A1 (en) * | 2003-08-08 | 2005-05-12 | Nissan Motor Co., Ltd. | Sliding member and production process thereof |
US7284525B2 (en) | 2003-08-13 | 2007-10-23 | Nissan Motor Co., Ltd. | Structure for connecting piston to crankshaft |
US20050037879A1 (en) * | 2003-08-13 | 2005-02-17 | Nissan Motor Co., Ltd. | Chain drive system |
US7572200B2 (en) | 2003-08-13 | 2009-08-11 | Nissan Motor Co., Ltd. | Chain drive system |
US7771821B2 (en) | 2003-08-21 | 2010-08-10 | Nissan Motor Co., Ltd. | Low-friction sliding member and low-friction sliding mechanism using same |
US7134381B2 (en) | 2003-08-21 | 2006-11-14 | Nissan Motor Co., Ltd. | Refrigerant compressor and friction control process therefor |
US20050064196A1 (en) * | 2003-08-21 | 2005-03-24 | Jean Martin | Low-friction sliding member and low-friction sliding mechanism using same |
US20080236984A1 (en) * | 2003-08-22 | 2008-10-02 | Nissan Motor Co., Ltd. | Low-friction sliding member in transmission, and transmission oil therefor |
US7650976B2 (en) | 2003-08-22 | 2010-01-26 | Nissan Motor Co., Ltd. | Low-friction sliding member in transmission, and transmission oil therefor |
US7318514B2 (en) | 2003-08-22 | 2008-01-15 | Nissan Motor Co., Ltd. | Low-friction sliding member in transmission, and transmission oil therefor |
US20070082129A1 (en) * | 2005-10-06 | 2007-04-12 | Toyota Jidosha Kabushiki Kaisha | Metal composite diamond-like carbon (DLC) film, method and apparatus for forming the same, and slide member |
US20090277298A1 (en) * | 2006-03-03 | 2009-11-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
US9139797B2 (en) | 2006-03-03 | 2015-09-22 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Operable transmission, working fluid for such a transmission, and method for commissioning the same |
US20090186783A1 (en) * | 2006-04-28 | 2009-07-23 | Jean Michel Martin | Low Friction Lubrication Assembly |
US8422339B2 (en) | 2006-04-28 | 2013-04-16 | Nissan Motor Co., Ltd. | Low friction lubrication assembly |
US9677611B2 (en) | 2006-04-28 | 2017-06-13 | Nissan Motor Co., Ltd. | Low friction lubrication assembly |
US20080023113A1 (en) * | 2006-07-31 | 2008-01-31 | Nissan Motor Co., Ltd. | High strength gear, power transmission mechanism using same, and production method for high strength gear |
US8530051B2 (en) | 2006-07-31 | 2013-09-10 | Nissan Motor Co., Ltd. | High strength gear, power transmission mechanism using same, and production method for high strength gear |
CN103307229A (en) * | 2013-06-28 | 2013-09-18 | 江苏赫夫特齿轮制造有限公司 | Annular gear structure |
US10578200B2 (en) | 2014-08-28 | 2020-03-03 | Nissan Motor Co., Ltd. | Gear pair |
DE102015221654A1 (en) * | 2015-11-04 | 2017-05-04 | Zf Friedrichshafen Ag | Test run with glycerin |
US11053451B2 (en) | 2017-02-21 | 2021-07-06 | Kyodo Yushi Co., Ltd. | Lubricant composition for a speed reducer, and speed reducer |
Also Published As
Publication number | Publication date |
---|---|
CN1580613A (en) | 2005-02-16 |
JP2005061610A (en) | 2005-03-10 |
JP4863152B2 (en) | 2012-01-25 |
US20080276755A1 (en) | 2008-11-13 |
EP1503113B1 (en) | 2008-05-28 |
EP1503113A3 (en) | 2005-06-08 |
CN100394076C (en) | 2008-06-11 |
DE602004014074D1 (en) | 2008-07-10 |
EP1503113A2 (en) | 2005-02-02 |
US8096205B2 (en) | 2012-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8096205B2 (en) | Gear | |
JP4007440B2 (en) | Hard carbon film sliding member | |
US9624975B2 (en) | Sliding member and sliding machine | |
US20080076683A1 (en) | Slide member | |
JP7042760B2 (en) | Friction components that operate in a lubricating medium | |
JP2007205564A (en) | Sliding member and clutch | |
JP2010507055A (en) | Sliding contact member in a lubricated environment covered by a thin film | |
JP6114730B2 (en) | Sliding system | |
JP4201557B2 (en) | Hard carbon film sliding member | |
JP2007291466A (en) | Surface-treating method of metal, rolling-sliding member and rolling device | |
JP2006152428A (en) | Hard carbon coated sliding member | |
JP2000257697A (en) | High surface pressure resisting gear and manufacture therefor | |
EP1837418A1 (en) | High-hardness carbon coating | |
JP4135087B2 (en) | Hard carbon film for sliding member and manufacturing method thereof | |
He et al. | Effect of MoS 2-based composite coatings on tribological behavior and efficiency of gear | |
Kržan | Load‐carrying capacity of WC/C‐coated gears lubricated with a low‐viscosity oil | |
Fujii et al. | Surface durability of WC/C-coated case-hardened steel gear | |
JP5473890B2 (en) | piston ring | |
JP5854554B2 (en) | Sliding mechanism | |
EP3556832B1 (en) | Sliding member and sliding machine | |
Chen et al. | Improvement of contact fatigue strength of gears by tooth surface modification processing | |
Michalczewski et al. | The effect of low-friction PVD coatings on scuffing and pitting resistance of spur gears | |
US20070249507A1 (en) | Hard carbon film and hard carbon film sliding member | |
JP2005163071A (en) | Hard carbon film, and method for manufacturing the same | |
Kosarieh | Tribochemistry of boundary lubricated DLC/steel interfaces and their influence in tribological performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NISSAN MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKAMOTO, YUSUKE;YASUDA, YOSHITERU;YAMAGUCHI, TAKURO;AND OTHERS;REEL/FRAME:015643/0092 Effective date: 20040713 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |