US20050013657A1 - Structure for couplingf ball joint and arm - Google Patents
Structure for couplingf ball joint and arm Download PDFInfo
- Publication number
- US20050013657A1 US20050013657A1 US10/499,592 US49959204A US2005013657A1 US 20050013657 A1 US20050013657 A1 US 20050013657A1 US 49959204 A US49959204 A US 49959204A US 2005013657 A1 US2005013657 A1 US 2005013657A1
- Authority
- US
- United States
- Prior art keywords
- housing
- arm
- hole
- groove
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/16—Arrangement of linkage connections
- B62D7/166—Arrangement of linkage connections substantially perpendicular, e.g. between tie-rod and steering knuckle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0619—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0619—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
- F16C11/0623—Construction or details of the socket member
- F16C11/0628—Construction or details of the socket member with linings
- F16C11/0633—Construction or details of the socket member with linings the linings being made of plastics
- F16C11/0638—Construction or details of the socket member with linings the linings being made of plastics characterised by geometrical details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C11/00—Pivots; Pivotal connections
- F16C11/04—Pivotal connections
- F16C11/06—Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
- F16C11/0666—Sealing means between the socket and the inner member shaft
- F16C11/0671—Sealing means between the socket and the inner member shaft allowing operative relative movement of joint parts due to flexing of the sealing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/40—Auxiliary suspension parts; Adjustment of suspensions
- B60G2204/416—Ball or spherical joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/20—Land vehicles
- F16C2326/24—Steering systems, e.g. steering rods or columns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32606—Pivoted
- Y10T403/32631—Universal ball and socket
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32606—Pivoted
- Y10T403/32631—Universal ball and socket
- Y10T403/32737—Universal ball and socket including liner, shim, or discrete seat
Definitions
- the present invention relates to a joint structure of a ball joint and an arm, which is used in a suspension system and a steering system and the like of for example an automobile.
- a ball joint and an arm are often jointed.
- a conventional example of joint structure of a ball joint and an arm is shown in FIG. 10 .
- the ball joint 101 shown in FIG. 10 includes: a ball stud 102 having a spherical ball part 104 and a shank part 103 extending from the spherical ball part 104 ; a bearing 105 made of a synthetic resin, cupping the spherical ball part 104 of the ball stud 102 in such a manner that the spherical ball part 104 is able to turn and rock therein, and having an open part 106 in one end; a housing 107 holding the bearing 105 therein and having a small open part 108 in one end through which the shank part 103 of the ball stud 102 projects and a large open part 109 in the other end; a closing plate 112 fixed to an end portion of the large open part 109 of the housing 107 by caulking; and a dust cover 114 having a dust-cover small open part 115 fitted on the shank part 103 of the ball stud 102 and a dust-cover large open part 116 fitted on the housing 107 .
- the outer diameter of the housing 107 of the above ball joint 101 is formed to be a little larger than the inner diameter of the hole 120 of the arm 119 . Then, when the housing 107 of the ball joint 101 is pressed into the hole 120 of the arm 119 , the ball joint 101 and the arm 119 are jointed.
- the outer diameter of the housing 107 of the ball joint 101 is formed to be a little larger than the inner diameter of the hole 120 of the arm 119 .
- the press-fitting load given from the hole 120 of the arm 119 to the housing 107 may be also given to the spherical ball part 104 of the ball stud 102 from the housing 107 through the bearing 105 .
- an operational torque necessary for rocking the ball stud 102 may undesirably become higher than a predetermined value.
- This invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the housing has a circumferential groove in an outer-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
- the groove of the housing effectively weakens the press-fitting load from the hole of the arm, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part.
- the press-fitting load from the hole of the arm is weakened very effectively.
- the housing may have two circumferential grooves in the outer-circumference surface thereof.
- the two grooves may be formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves. In the case too, the press-fitting load from the hole of the arm is weakened very effectively.
- the invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the hole has a circumferential groove in an inner-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
- the groove of the hole effectively weakens the press-fitting load, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part.
- the press-fitting load from the hole of the arm is weakened very effectively.
- the hole may have two circumferential grooves in the inner-circumference surface thereof.
- the two grooves may be formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves. In the case too, the press-fitting load from the hole of the arm is weakened very effectively.
- the invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the housing has a first circumferential groove in an outer-circumference surface thereof; the hole has a second circumferential groove in an inner-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the first groove and the second groove function to weaken a load by the arm after the housing is pressed into the hole of the arm.
- the groove of the housing and the groove of the hole weaken the press-fitting load to the housing by the hole of the arm very effectively, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- the first groove and the second groove are arranged to be opposite to each other.
- a retaining ring is arranged in the first groove and the second groove, the retaining ring having an inner diameter smaller than an outer diameter of the housing and an outer diameter larger than an inner diameter of the hole.
- FIG. 1 is a partly sectional front elevation of a joint structure of a ball joint and an arm, according to a first embodiment of the present invention
- FIG. 2 is a partly sectional front elevation of a joint structure of a ball joint and an arm, wherein a retaining ring is omitted;
- FIG. 3 is a partly sectional front elevation showing a first stage of work for assembling the ball joint shown in FIG. 1 ;
- FIG. 4 is a partly sectional front elevation showing a second stage of work for assembling the ball joint shown in FIG. 1 ;
- FIG. 5 is a partly sectional front elevation showing a third stage of work for assembling the ball joint shown in FIG. 1 ;
- FIG. 6 is a partly sectional front elevation showing a first stage of work for jointing the ball joint shown in FIG. 1 and an arm;
- FIG. 7 is a partly sectional front elevation showing a second stage of work for jointing the ball joint shown in FIG. 1 and the arm;
- FIG. 8 is a partly sectional front elevation of a joint structure of a ball joint and an arm, according to a second embodiment of the present invention.
- FIG. 9 is a partly sectional front elevation of a joint structure of a ball joint and an arm, wherein a gap S is formed;
- FIG. 10 is a partly sectional front elevation of a conventional joint structure of a ball joint and an arm.
- FIGS. 1 to 8 Preferred embodiments of the present invention will be described hereinafter with reference to FIGS. 1 to 8 .
- FIG. 1 shows a joint structure of a ball joint 1 and an arm 19 according to a first embodiment of the present invention.
- the ball joint 1 includes a ball stud 2 having a spherical ball part 4 and a shank part 3 projecting from the spherical ball part 4 .
- a bearing 5 cups the spherical ball part 4 of the ball stud 2 in such a manner that the spherical ball part 4 is able to rock and turn therein.
- the bearing 5 has an open part 6 in one end thereof to allow the shank part 3 to rock.
- the bearing 5 is made of for example a synthetic resin.
- the bearing 5 is cupped (housed) in a substantially cylindrical housing 7 .
- the housing 7 has a small open part 8 on one side, through which the shank part 3 of the ball stud 2 projects, and a large open part 9 on the other side, which is to be caulked to fix a disk-like closing plate 12 in an inner circumference thereof.
- a circumferential groove 10 is formed in an outer-circumference surface of the housing 7 crossing an equatorial plane X including a center of the spherical ball part 4 of the ball stud 2 .
- a flange 11 is circumferentially formed at an outside periphery of the large open part 9 of the housing 7 .
- “ 14 ” represents a dust cover.
- a small open part 15 of the dist cover 14 internally provided with an L-shaped ring 17 having a substantially L-shaped cross section is fitted on an outside periphery of the shank part 3 of the ball stud 2
- a large open part 16 of the dust cover 14 internally provided with a press-fitting ring 18 is fitted on an outside periphery of the small open part 8 of the housing 7 .
- the arm 19 has a hole 20 into which the housing 7 is fitted.
- a circumferential groove 21 is formed in an inner-circumference surface thereof crossing the equatorial plane X including a center of the spherical ball part 4 of the ball stud 2 .
- the housing 7 of the ball joint 1 is press-fitted into the hole 20 in such a manner that the groove 21 of the hole 20 and the groove 10 of the housing 7 are opposite to each other.
- a C-shaped retaining ring 13 in which one portion has been cut out is pressed into the groove 21 of the hole 20 and the groove 10 of the housing 7 .
- the retaining ring 13 may be omitted.
- the spherical ball part 4 of the ball stud 2 is inserted into the open part 6 of the bearing 5 .
- the shank part 3 of the ball stud 2 is inserted into the large open part 9 of the housing 7 .
- the closing plate 12 is inserted into the large open part 9 of the housing 7 .
- an end portion of the large open part 9 of the housing 7 is inward bent (caulked).
- the closing plate 12 is fixed.
- the retaining ring 13 is fitted in the groove 10 of the housing 7 through the side of the shank part 3 of the ball stud 2 .
- the fitted retaining ring 13 projects a little outward from the groove 10 of the housing 7 of the ball joint 1 , as shown in FIG. 6 .
- a jig 50 is abutted against an end surface on one side of the hole 20 of the arm 19 .
- the jig 50 has a jig hole 51 consisting of: an one-side open end 52 having the same diameter as the hole 20 of the arm 19 ; a the-other-side open end 53 having a diameter larger than that of the one-side open end 52 ; and a taper surface 51 a extending from the one-side open end 52 to the the-other-side open end 53 .
- the one-side open end 52 is aligned with an open end on one side of the hole 20 of the arm 19 . Then, the shank part 3 of the ball stud 2 and housing 7 are pressed into the-other-side open end 53 of the jig hole 51 of the jig 50 .
- the retaining ring 13 fitted in the groove 10 of the housing 7 shrinks along the taper surface 51 a of the jig 50 . Under the state wherein the retaining ring 13 is caused to shrink to the same diameter as the inside diameter of the hole 20 of the arm 19 by the taper surface 51 a , the retaining ring 13 is pressed into the hole 20 of the arm 19 .
- the jig 50 is divided into two parts, and the two parts move away from the arm 19 in respective directions shown by arrows in FIG. 7 .
- the retaining ring 13 that has been caused to shrink expands to an original state thereof.
- the retaining ring 13 extends both in the groove 10 of the housing 7 and in the groove 21 of the hole 20 of the arm 19 , so that the ball joint 1 and the arm 19 are firmly jointed, as shown in FIG. 1 .
- the groove 10 formed in the housing 7 of the ball joint 1 is located at the same level as the equatorial plane X including a center of the spherical ball part 4 of the ball stud 2 .
- the groove 10 weakens the press-fitting load from the hole 20 of the arm 19 very effectively.
- a pressure given to the spherical ball part 4 of the ball stud 2 is inhibited so that a sliding characteristic of the ball stud 2 is improved.
- an operational torque necessary for rocking the ball stud 2 can be reduced.
- the ball joint 61 shown in FIG. 8 has substantially the same structure as the ball joint 1 of the first embodiment, except for the shape of the housing 67 .
- the housing 67 shown in FIG. 8 has circumferential grooves 70 , 71 in an outer-circumference surface thereof at respective positions above and below the equatorial plane X including a center of the spherical ball part 4 of the ball stud 2 .
- the groove 70 is formed on the side of the open part 6 of the bearing 5 , and a groove 81 of the hole 20 of the arm 19 is formed at a position opposite to the groove 70 .
- the retaining ring 13 is fitted to extend in the groove 71 of the housing 67 and in the groove 81 of the hole 20 of the arm 19 .
- the grooves 71 , 72 formed in the outer-circumference surface of the housing 67 weaken the press-fitting load from the hole 20 of the arm 19 .
- a pressure given to the spherical ball part 4 of the ball stud 2 is inhibited so that a sliding characteristic of the ball stud 2 is improved.
- an operational torque necessary for rocking the ball stud 2 can be reduced.
- the outer diameter of the housing 67 between the grooves 70 and 71 is formed to be a little smaller than the inner diameter of the hole 20 of the arm 19 to form a gap S, as shown in FIG. 9 .
- the grooves 71 , 72 formed in the outer-circumference surface of the housing 67 and the gap S weaken the press-fitting load from the hole 20 of the arm 19 .
- a pressure given to the spherical ball part 4 of the ball stud 2 is inhibited so that a sliding characteristic of the ball stud 2 is improved.
- an operational torque necessary for rocking the ball stud 2 can be reduced.
- the retaining ring 13 is arranged between the groove of the housing and the groove 21 of the hole 20 of the arm 19 . This is effective in retaining the joint of the housing and the arm 19 . According to this arrangement of the retaining ring 13 , it is unnecessary to extend a length of the housing in an axial direction, which can prevent size-expansion of the ball joint.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Pivots And Pivotal Connections (AREA)
Abstract
The invention is a joint structure of a ball joint and an arm, which includes: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted. The housing has a circumferential groove in an outer-circumference surface thereof. The housing is adapted to be pressed into the hole of the arm. The groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm. Thus, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
Description
- The present invention relates to a joint structure of a ball joint and an arm, which is used in a suspension system and a steering system and the like of for example an automobile.
- Conventionally, as a joint in a suspension system and a steering system of an automobile, a ball joint and an arm are often jointed. A conventional example of joint structure of a ball joint and an arm is shown in
FIG. 10 . - The
ball joint 101 shown inFIG. 10 includes: aball stud 102 having aspherical ball part 104 and ashank part 103 extending from thespherical ball part 104; a bearing 105 made of a synthetic resin, cupping thespherical ball part 104 of theball stud 102 in such a manner that thespherical ball part 104 is able to turn and rock therein, and having anopen part 106 in one end; ahousing 107 holding thebearing 105 therein and having a smallopen part 108 in one end through which theshank part 103 of theball stud 102 projects and a largeopen part 109 in the other end; aclosing plate 112 fixed to an end portion of the largeopen part 109 of thehousing 107 by caulking; and adust cover 114 having a dust-cover smallopen part 115 fitted on theshank part 103 of theball stud 102 and a dust-cover largeopen part 116 fitted on thehousing 107. Then, thehousing 107 of theball joint 101 is pressed into ahole 120 of anarm 119, so that thearm 119 and the other parts are jointed. - The outer diameter of the
housing 107 of theabove ball joint 101 is formed to be a little larger than the inner diameter of thehole 120 of thearm 119. Then, when thehousing 107 of theball joint 101 is pressed into thehole 120 of thearm 119, theball joint 101 and thearm 119 are jointed. - In the joint structure of the
ball joint 101 and thearm 119 shown inFIG. 10 , the outer diameter of thehousing 107 of theball joint 101 is formed to be a little larger than the inner diameter of thehole 120 of thearm 119. Thus, when thehousing 107 is pressed into thehole 120 of thearm 119, thehousing 107 receives a pressure from thehole 120 of thearm 119, so that theball joint 101 is held in thehole 120 of thearm 119. - However, in the joint structure shown in
FIG. 10 , the press-fitting load given from thehole 120 of thearm 119 to thehousing 107 may be also given to thespherical ball part 104 of theball stud 102 from thehousing 107 through thebearing 105. Thus, an operational torque necessary for rocking theball stud 102 may undesirably become higher than a predetermined value. - Accordingly, it is an object of the present invention to solve the aforesaid problems and to provide a joint structure of a ball joint and an arm wherein an operational torque necessary for rocking a ball stud is reduced.
- This invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the housing has a circumferential groove in an outer-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
- According to the invention, since the groove of the housing effectively weakens the press-fitting load from the hole of the arm, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- Preferably, the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part. In the case, the press-fitting load from the hole of the arm is weakened very effectively.
- Alternatively, the housing may have two circumferential grooves in the outer-circumference surface thereof. In the case, preferably, the two grooves may be formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves. In the case too, the press-fitting load from the hole of the arm is weakened very effectively.
- In addition, the invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the hole has a circumferential groove in an inner-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
- According to the invention, since the groove of the hole effectively weakens the press-fitting load, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- Preferably, the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part. In the case, the press-fitting load from the hole of the arm is weakened very effectively.
- Alternatively, the hole may have two circumferential grooves in the inner-circumference surface thereof. In the case, preferably, the two grooves may be formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves. In the case too, the press-fitting load from the hole of the arm is weakened very effectively.
- In addition, the invention is a joint structure comprising: a ball stud having a spherical ball part and a shank part extending from the spherical ball part; a bearing cupping the spherical ball part of the ball stud; a housing holding the bearing therein; and an arm having a hole into which the housing is inserted; wherein the housing has a first circumferential groove in an outer-circumference surface thereof; the hole has a second circumferential groove in an inner-circumference surface thereof; the housing is adapted to be pressed into the hole of the arm; and the first groove and the second groove function to weaken a load by the arm after the housing is pressed into the hole of the arm.
- According to the invention, since the groove of the housing and the groove of the hole weaken the press-fitting load to the housing by the hole of the arm very effectively, a pressure to the spherical ball part of the ball stud is inhibited so that a sliding characteristic of the ball stud is improved.
- Preferably, the first groove and the second groove are arranged to be opposite to each other.
- In addition, when the outer-circumference surface of the housing is cylindrical and the inner-circumference surface of the hole is cylindrical, it is preferable that a retaining ring is arranged in the first groove and the second groove, the retaining ring having an inner diameter smaller than an outer diameter of the housing and an outer diameter larger than an inner diameter of the hole.
-
FIG. 1 is a partly sectional front elevation of a joint structure of a ball joint and an arm, according to a first embodiment of the present invention; -
FIG. 2 is a partly sectional front elevation of a joint structure of a ball joint and an arm, wherein a retaining ring is omitted; -
FIG. 3 is a partly sectional front elevation showing a first stage of work for assembling the ball joint shown inFIG. 1 ; -
FIG. 4 is a partly sectional front elevation showing a second stage of work for assembling the ball joint shown inFIG. 1 ; -
FIG. 5 is a partly sectional front elevation showing a third stage of work for assembling the ball joint shown inFIG. 1 ; -
FIG. 6 is a partly sectional front elevation showing a first stage of work for jointing the ball joint shown inFIG. 1 and an arm; -
FIG. 7 is a partly sectional front elevation showing a second stage of work for jointing the ball joint shown inFIG. 1 and the arm; -
FIG. 8 is a partly sectional front elevation of a joint structure of a ball joint and an arm, according to a second embodiment of the present invention; -
FIG. 9 is a partly sectional front elevation of a joint structure of a ball joint and an arm, wherein a gap S is formed; and -
FIG. 10 is a partly sectional front elevation of a conventional joint structure of a ball joint and an arm. - Preferred embodiments of the present invention will be described hereinafter with reference to FIGS. 1 to 8.
-
FIG. 1 shows a joint structure of aball joint 1 and anarm 19 according to a first embodiment of the present invention. Theball joint 1 includes aball stud 2 having aspherical ball part 4 and ashank part 3 projecting from thespherical ball part 4. A bearing 5 cups thespherical ball part 4 of theball stud 2 in such a manner that thespherical ball part 4 is able to rock and turn therein. Thebearing 5 has anopen part 6 in one end thereof to allow theshank part 3 to rock. Thebearing 5 is made of for example a synthetic resin. Thebearing 5 is cupped (housed) in a substantiallycylindrical housing 7. - The
housing 7 has a smallopen part 8 on one side, through which theshank part 3 of theball stud 2 projects, and a largeopen part 9 on the other side, which is to be caulked to fix a disk-like closing plate 12 in an inner circumference thereof. In addition, acircumferential groove 10 is formed in an outer-circumference surface of thehousing 7 crossing an equatorial plane X including a center of thespherical ball part 4 of theball stud 2. In addition, aflange 11 is circumferentially formed at an outside periphery of the largeopen part 9 of thehousing 7. - In addition, in
FIG. 1 , “14” represents a dust cover. A smallopen part 15 of thedist cover 14 internally provided with an L-shaped ring 17 having a substantially L-shaped cross section is fitted on an outside periphery of theshank part 3 of theball stud 2, and a largeopen part 16 of thedust cover 14 internally provided with a press-fitting ring 18 is fitted on an outside periphery of the smallopen part 8 of thehousing 7. - On the other hand, the
arm 19 has ahole 20 into which thehousing 7 is fitted. In thehole 20, acircumferential groove 21 is formed in an inner-circumference surface thereof crossing the equatorial plane X including a center of thespherical ball part 4 of theball stud 2. Thus, thehousing 7 of theball joint 1 is press-fitted into thehole 20 in such a manner that thegroove 21 of thehole 20 and thegroove 10 of thehousing 7 are opposite to each other. - In the embodiment, a C-
shaped retaining ring 13 in which one portion has been cut out is pressed into thegroove 21 of thehole 20 and thegroove 10 of thehousing 7. Of course, as shown inFIG. 2 , theretaining ring 13 may be omitted. - Next, a method of jointing the
ball joint 1 and thearm 19 will be described with reference to FIGS. 3 to 7. - At first, a method of assembling the
ball joint 1 will be described. - At first, as shown in
FIG. 3 , thespherical ball part 4 of theball stud 2 is inserted into theopen part 6 of thebearing 5. Subsequently, as shown inFIG. 4 , under the state wherein thebearing 5 is fitted on thespherical ball part 4 of theball stud 2, theshank part 3 of theball stud 2 is inserted into the largeopen part 9 of thehousing 7. After thebearing 5 is arranged at a predetermined position in thehousing 7, the closingplate 12 is inserted into the largeopen part 9 of thehousing 7. Subsequently, as shown inFIG. 5 , an end portion of the largeopen part 9 of thehousing 7 is inward bent (caulked). Thus, the closingplate 12 is fixed. In addition, the retainingring 13 is fitted in thegroove 10 of thehousing 7 through the side of theshank part 3 of theball stud 2. The fitted retainingring 13 projects a little outward from thegroove 10 of thehousing 7 of the ball joint 1, as shown inFIG. 6 . - A method of press-fitting the ball joint 1 into the
hole 20 of thearm 19 will be explained based onFIGS. 6 and 7 . At first, as shown inFIG. 6 , ajig 50 is abutted against an end surface on one side of thehole 20 of thearm 19. Thejig 50 has ajig hole 51 consisting of: an one-sideopen end 52 having the same diameter as thehole 20 of thearm 19; a the-other-sideopen end 53 having a diameter larger than that of the one-sideopen end 52; and a taper surface 51 a extending from the one-sideopen end 52 to the the-other-sideopen end 53. - The one-side
open end 52 is aligned with an open end on one side of thehole 20 of thearm 19. Then, theshank part 3 of theball stud 2 andhousing 7 are pressed into the-other-sideopen end 53 of thejig hole 51 of thejig 50. As shown inFIG. 7 , when thehousing 7 of the ball joint 1 is pressed into thejig hole 51 of thejig 50, the retainingring 13 fitted in thegroove 10 of thehousing 7 shrinks along the taper surface 51 a of thejig 50. Under the state wherein the retainingring 13 is caused to shrink to the same diameter as the inside diameter of thehole 20 of thearm 19 by the taper surface 51 a, the retainingring 13 is pressed into thehole 20 of thearm 19. - Before the
flange 11 of thehousing 7 is abutted against the-other-sideopen end 53 of thejig hole 51, thejig 50 is divided into two parts, and the two parts move away from thearm 19 in respective directions shown by arrows inFIG. 7 . - Next, when the
groove 10 of thehousing 7 reaches a position opposite to thegroove 21 of thehole 20 of thearm 19, the retainingring 13 that has been caused to shrink expands to an original state thereof. Thus, the retainingring 13 extends both in thegroove 10 of thehousing 7 and in thegroove 21 of thehole 20 of thearm 19, so that the ball joint 1 and thearm 19 are firmly jointed, as shown inFIG. 1 . - In the joint structure of the ball joint 1 and the
arm 19 of the embodiment, thegroove 10 formed in thehousing 7 of the ball joint 1 is located at the same level as the equatorial plane X including a center of thespherical ball part 4 of theball stud 2. Thus, thegroove 10 weakens the press-fitting load from thehole 20 of thearm 19 very effectively. Thus, a pressure given to thespherical ball part 4 of theball stud 2 is inhibited so that a sliding characteristic of theball stud 2 is improved. Specifically, an operational torque necessary for rocking theball stud 2 can be reduced. - Next, a second embodiment of the present invention will be explained based on
FIG. 8 . The ball joint 61 shown inFIG. 8 has substantially the same structure as the ball joint 1 of the first embodiment, except for the shape of thehousing 67. - The
housing 67 shown inFIG. 8 hascircumferential grooves spherical ball part 4 of theball stud 2. Thegroove 70 is formed on the side of theopen part 6 of thebearing 5, and agroove 81 of thehole 20 of thearm 19 is formed at a position opposite to thegroove 70. In the same manner as the first embodiment, the retainingring 13 is fitted to extend in thegroove 71 of thehousing 67 and in thegroove 81 of thehole 20 of thearm 19. - In the joint structure of the ball joint 61 and the
arm 19 of the embodiment, thegrooves 71, 72 formed in the outer-circumference surface of thehousing 67 weaken the press-fitting load from thehole 20 of thearm 19. Thus, a pressure given to thespherical ball part 4 of theball stud 2 is inhibited so that a sliding characteristic of theball stud 2 is improved. Specifically, an operational torque necessary for rocking theball stud 2 can be reduced. - In addition, it was found that it is preferable that the outer diameter of the
housing 67 between thegrooves hole 20 of thearm 19 to form a gap S, as shown inFIG. 9 . - In the case, the
grooves 71, 72 formed in the outer-circumference surface of thehousing 67 and the gap S weaken the press-fitting load from thehole 20 of thearm 19. Thus, a pressure given to thespherical ball part 4 of theball stud 2 is inhibited so that a sliding characteristic of theball stud 2 is improved. Specifically, an operational torque necessary for rocking theball stud 2 can be reduced. - Herein, in the joint structures of the ball joint and the arm of the respective embodiments, the retaining
ring 13 is arranged between the groove of the housing and thegroove 21 of thehole 20 of thearm 19. This is effective in retaining the joint of the housing and thearm 19. According to this arrangement of the retainingring 13, it is unnecessary to extend a length of the housing in an axial direction, which can prevent size-expansion of the ball joint.
Claims (11)
1. A joint structure comprising:
a ball stud having a spherical ball part and a shank part extending from the spherical ball part;
a bearing cupping the spherical ball part of the ball stud;
a housing holding the bearing therein; and
an arm having a hole into which the housing is inserted;
wherein
the housing has a circumferential groove in an outer-circumference surface thereof;
the housing is adapted to be pressed into the hole of the arm; and
the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
2. A joint structure according to claim 1 , wherein
the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part.
3. A joint structure according to claim 1 , wherein
the housing has two circumferential grooves in the outer-circumference surface thereof.
4. A joint structure according to claim 3 , wherein
the two grooves are formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves.
5. A joint structure comprising:
a ball stud having a spherical ball part and a shank part extending from the spherical ball part;
a bearing cupping the spherical ball part of the ball stud;
a housing holding the bearing therein; and
an arm having a hole into which the housing is inserted;
wherein
the hole has a circumferential groove in an inner-circumference surface thereof;
the housing is adapted to be pressed into the hole of the arm; and
the groove functions to weaken a load by the arm after the housing is pressed into the hole of the arm.
6. A joint structure according to claim 5 , wherein
the groove is formed at a position corresponding to an equatorial plane including a center of the spherical ball part.
7. A joint structure according to claim 5 , wherein
the hole has two circumferential grooves in the inner-circumference surface thereof.
8. A joint structure according to claim 7 , wherein
the two grooves are formed in such a manner that an equatorial plane including a center of the spherical ball part is sandwiched between the two grooves.
9. A joint structure comprising:
a ball stud having a spherical ball part and a shank part extending from the spherical ball part;
a bearing cupping the spherical ball part of the ball stud;
a housing holding the bearing therein; and
an arm having a hole into which the housing is inserted;
wherein
the housing has a first circumferential groove in an outer-circumference surface thereof;
the hole has a second circumferential groove in an inner-circumference surface thereof;
the housing is adapted to be pressed into the hole of the arm; and
the first groove and the second groove function to weaken a load by the arm after the housing is pressed into the hole of the arm.
10. A joint structure according to claim 9 , wherein
the first groove and the second groove are arranged to be opposite to each other.
11. A joint structure according to claim 10 , wherein
the outer-circumference surface of the housing is cylindrical,
the inner-circumference surface of the hole is cylindrical, and
a retaining ring is arranged in the first groove and the second groove, the retaining ring having an inner diameter smaller than an outer diameter of the housing and an outer diameter larger than an inner diameter of the hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/377,606 US7510344B2 (en) | 2001-12-25 | 2006-03-16 | Joint structure of ball joint and arm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/011396 WO2003056193A1 (en) | 2001-12-25 | 2001-12-25 | Structure for coupling ball joint and arm |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/377,606 Division US7510344B2 (en) | 2001-12-25 | 2006-03-16 | Joint structure of ball joint and arm |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050013657A1 true US20050013657A1 (en) | 2005-01-20 |
Family
ID=11738070
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/499,592 Abandoned US20050013657A1 (en) | 2001-12-25 | 2001-12-25 | Structure for couplingf ball joint and arm |
US11/377,606 Expired - Fee Related US7510344B2 (en) | 2001-12-25 | 2006-03-16 | Joint structure of ball joint and arm |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/377,606 Expired - Fee Related US7510344B2 (en) | 2001-12-25 | 2006-03-16 | Joint structure of ball joint and arm |
Country Status (4)
Country | Link |
---|---|
US (2) | US20050013657A1 (en) |
EP (1) | EP1460289B1 (en) |
DE (1) | DE60141178D1 (en) |
WO (1) | WO2003056193A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060127168A1 (en) * | 2001-10-29 | 2006-06-15 | Musashi Seimitsu Kogyo Kabushiki Kaisha | Ball joint |
US20110133422A1 (en) * | 2009-12-04 | 2011-06-09 | Hyundai Motor Company | Suspension arm |
US20150084287A1 (en) * | 2012-10-12 | 2015-03-26 | Nok Corporation | Dust cover for ball joint |
US20160341246A1 (en) * | 2015-05-21 | 2016-11-24 | Federal-Mogul Motorparts Corporation | Movable joint assembly |
US20180154719A1 (en) * | 2015-04-29 | 2018-06-07 | Iljin Co., Ltd. | Hybrid arm and method of manufacturing same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006015169A1 (en) * | 2006-03-30 | 2007-10-11 | Zf Friedrichshafen Ag | Radführungslenker for active chassis |
DE102010017738A1 (en) * | 2009-11-08 | 2011-08-04 | Eichelhardter Werkzeug- und Maschinenbau GmbH, 57612 | Connecting arrangement for connecting a mower blade drive with a mower blade |
KR100982526B1 (en) * | 2010-03-02 | 2010-09-16 | 주식회사 센트랄 링크텍 | Ball stud of ball joint for vehicle and manufacturing method thereof |
DE102012207527B4 (en) * | 2012-05-07 | 2022-12-29 | Zf Friedrichshafen Ag | Sleeve joint for a vehicle |
JP6150117B2 (en) * | 2013-06-25 | 2017-06-21 | Nok株式会社 | Dust cover for ball joint |
JP6195226B2 (en) * | 2014-02-13 | 2017-09-13 | Nok株式会社 | Dust cover for ball joint |
CN104842731B (en) * | 2015-05-08 | 2017-01-25 | 福建田中机械科技股份有限公司 | Production Method of integrated rubber core |
DE102016223382A1 (en) * | 2016-11-25 | 2018-05-30 | Zf Friedrichshafen Ag | Joint, in particular sleeve joint |
AT522340B1 (en) * | 2019-10-16 | 2020-10-15 | Josef Scharmueller Ing | CLUTCH PAN |
DE102020101771A1 (en) * | 2020-01-24 | 2021-07-29 | Stabilus Gmbh | Spindle drive |
US11713783B2 (en) * | 2021-07-23 | 2023-08-01 | Federal-Mogul Motorparts Llc | Grease boot for a ball joint |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2855232A (en) * | 1957-06-19 | 1958-10-07 | Gen Motors Corp | Resiliently mounted ball joint |
US4220418A (en) * | 1978-05-16 | 1980-09-02 | Toyota Jidosha Kogyo Kabushiki Kaisha | Suspension ball joint mounting mechanism |
US4650362A (en) * | 1985-06-03 | 1987-03-17 | Honda Giken Kogyo Kabushiki Kaisha | Ball joint |
US4966488A (en) * | 1987-09-18 | 1990-10-30 | Weasler Engineering, Inc. | Ball retainer |
US5839845A (en) * | 1996-02-02 | 1998-11-24 | American Axle & Manufacturing | Adjustable torque pivot joint |
US6010272A (en) * | 1998-11-19 | 2000-01-04 | Trw Inc. | Ball joint with two-piece bearing and spring |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2978914A (en) * | 1958-05-01 | 1961-04-11 | Gen Precision Inc | Ball bearing sealed rotation transmission device |
DE2918589A1 (en) * | 1978-05-18 | 1979-11-22 | Scheepswerf Stapel Bv | QUICK COUPLING BALL JOINT |
US4483569A (en) * | 1981-07-24 | 1984-11-20 | Gulf & Western Manufacturing Company | Sealed ball and socket joints capable of disassembly |
JPS5924526A (en) | 1982-07-30 | 1984-02-08 | Fuji Photo Film Co Ltd | Method and device for joining metallic band-shaped material |
JPS5924526U (en) * | 1982-08-05 | 1984-02-15 | マツダ株式会社 | Mounting structure of ball joint |
JPH0211911A (en) * | 1988-06-30 | 1990-01-17 | Musashi Seimitsu Ind Co Ltd | Sealing structure for arm to ball joint housing |
JPH0362222A (en) | 1989-07-31 | 1991-03-18 | Toshiba Corp | Check system for using right of software |
JPH0362222U (en) * | 1989-10-20 | 1991-06-18 | ||
DE4109697C1 (en) * | 1991-03-23 | 1992-06-25 | Trw Ehrenreich Gmbh & Co Kg, 4000 Duesseldorf, De | |
DE4211897C2 (en) * | 1992-04-09 | 1996-05-30 | Daimler Benz Ag | Ball joint for parts of steering or wheel suspension of motor vehicles |
JP3344689B2 (en) * | 1996-09-27 | 2002-11-11 | 武蔵精密工業株式会社 | Connection structure between ball joint and arm |
JP3973347B2 (en) * | 2000-07-13 | 2007-09-12 | 武蔵精密工業株式会社 | Connection structure of ball joint and arm |
DE10052122C1 (en) * | 2000-10-19 | 2002-08-14 | Zf Lemfoerder Metallwaren Ag | Ball joint especially for vehicle wheels has bearing shell with ball fitting radially pretensioned in cavity and with compensating element between bearing shell and inner surface of cavity |
BR0006509B1 (en) * | 2000-12-18 | 2010-09-21 | reaction bar construction. | |
US6505989B1 (en) * | 2001-02-15 | 2003-01-14 | Maclean-Fogg Company | Ball joint |
US6619873B2 (en) * | 2001-09-06 | 2003-09-16 | Federal-Mogul World Wide, Inc. | Device and method for closing movable socket assemblies by expanding solid cover plates |
-
2001
- 2001-12-25 WO PCT/JP2001/011396 patent/WO2003056193A1/en active Application Filing
- 2001-12-25 US US10/499,592 patent/US20050013657A1/en not_active Abandoned
- 2001-12-25 EP EP01275103A patent/EP1460289B1/en not_active Expired - Lifetime
- 2001-12-25 DE DE60141178T patent/DE60141178D1/en not_active Expired - Lifetime
-
2006
- 2006-03-16 US US11/377,606 patent/US7510344B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2855232A (en) * | 1957-06-19 | 1958-10-07 | Gen Motors Corp | Resiliently mounted ball joint |
US4220418A (en) * | 1978-05-16 | 1980-09-02 | Toyota Jidosha Kogyo Kabushiki Kaisha | Suspension ball joint mounting mechanism |
US4650362A (en) * | 1985-06-03 | 1987-03-17 | Honda Giken Kogyo Kabushiki Kaisha | Ball joint |
US4966488A (en) * | 1987-09-18 | 1990-10-30 | Weasler Engineering, Inc. | Ball retainer |
US5839845A (en) * | 1996-02-02 | 1998-11-24 | American Axle & Manufacturing | Adjustable torque pivot joint |
US6010272A (en) * | 1998-11-19 | 2000-01-04 | Trw Inc. | Ball joint with two-piece bearing and spring |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060127168A1 (en) * | 2001-10-29 | 2006-06-15 | Musashi Seimitsu Kogyo Kabushiki Kaisha | Ball joint |
US7260878B2 (en) * | 2001-10-29 | 2007-08-28 | Usashi Seimitsu Kogyo Kabushiki | Ball joint |
US20110133422A1 (en) * | 2009-12-04 | 2011-06-09 | Hyundai Motor Company | Suspension arm |
US8152186B2 (en) * | 2009-12-04 | 2012-04-10 | Hyundai Motor Company | Suspension arm |
US20150084287A1 (en) * | 2012-10-12 | 2015-03-26 | Nok Corporation | Dust cover for ball joint |
US20180154719A1 (en) * | 2015-04-29 | 2018-06-07 | Iljin Co., Ltd. | Hybrid arm and method of manufacturing same |
US10442262B2 (en) * | 2015-04-29 | 2019-10-15 | Iljin Co., Ltd. | Hybrid arm and method of manufacturing same |
US20160341246A1 (en) * | 2015-05-21 | 2016-11-24 | Federal-Mogul Motorparts Corporation | Movable joint assembly |
US9790983B2 (en) * | 2015-05-21 | 2017-10-17 | Federal-Mogul Motorparts Corporation | Movable joint assembly |
US20180038410A1 (en) * | 2015-05-21 | 2018-02-08 | Federal-Mogul Motorparts Llc | Movable joint assembly |
US10578152B2 (en) * | 2015-05-21 | 2020-03-03 | Federal-Mogul Motorparts Llc | Movable joint assembly |
Also Published As
Publication number | Publication date |
---|---|
EP1460289A1 (en) | 2004-09-22 |
DE60141178D1 (en) | 2010-03-11 |
EP1460289B1 (en) | 2010-01-20 |
US7510344B2 (en) | 2009-03-31 |
EP1460289A4 (en) | 2005-09-07 |
WO2003056193A1 (en) | 2003-07-10 |
US20060188324A1 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7510344B2 (en) | Joint structure of ball joint and arm | |
US6814521B2 (en) | Ball joint | |
US4690581A (en) | Ball joint | |
JPH0534522B2 (en) | ||
EP1726837B1 (en) | Ball joint | |
US6866441B2 (en) | Ball joint | |
US7090425B2 (en) | Balljoint | |
JP3973347B2 (en) | Connection structure of ball joint and arm | |
US20080304902A1 (en) | Ball joint | |
JP2000110826A (en) | Ball joint | |
JP2002031126A5 (en) | ||
JPH0524814Y2 (en) | ||
JPH01203712A (en) | Assembling method for ball joint | |
JPH09151935A (en) | Ball joint | |
JPH03199707A (en) | Ball seat of ball joint | |
JPH0630521U (en) | Ball joint | |
JP3344689B2 (en) | Connection structure between ball joint and arm | |
JPH031617Y2 (en) | ||
JPH0942268A (en) | Ball joint | |
JP2544744Y2 (en) | Ball joint | |
JP2004060839A (en) | Ball joint | |
JPS6319415A (en) | Manufacture of ball joint | |
EP1010904A1 (en) | Ball joint | |
JP2002070831A (en) | Joint structure for ball joint and arm | |
JPH0988938A (en) | Ball joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MUSASHI SEIMITSU KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONDOH, YASUHIRO;REEL/FRAME:015823/0601 Effective date: 20040615 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |