US20050009885A1 - Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis - Google Patents
Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis Download PDFInfo
- Publication number
- US20050009885A1 US20050009885A1 US10/847,630 US84763004A US2005009885A1 US 20050009885 A1 US20050009885 A1 US 20050009885A1 US 84763004 A US84763004 A US 84763004A US 2005009885 A1 US2005009885 A1 US 2005009885A1
- Authority
- US
- United States
- Prior art keywords
- nilvadipine
- effective amount
- therapeutically effective
- administration
- human
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 206010029350 Neurotoxicity Diseases 0.000 title claims abstract description 16
- 206010044221 Toxic encephalopathy Diseases 0.000 title claims abstract description 16
- 231100000228 neurotoxicity Toxicity 0.000 title claims abstract description 16
- 230000007135 neurotoxicity Effects 0.000 title claims abstract description 16
- 230000007388 microgliosis Effects 0.000 title claims abstract description 10
- 230000003941 amyloidogenesis Effects 0.000 title description 2
- FAIIFDPAEUKBEP-UHFFFAOYSA-N Nilvadipine Chemical compound COC(=O)C1=C(C#N)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC([N+]([O-])=O)=C1 FAIIFDPAEUKBEP-UHFFFAOYSA-N 0.000 claims abstract description 116
- 229960005366 nilvadipine Drugs 0.000 claims abstract description 116
- 241001465754 Metazoa Species 0.000 claims abstract description 52
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 46
- 201000010099 disease Diseases 0.000 claims abstract description 32
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 32
- 102000009091 Amyloidogenic Proteins Human genes 0.000 claims abstract description 28
- 108010048112 Amyloidogenic Proteins Proteins 0.000 claims abstract description 28
- 230000003942 amyloidogenic effect Effects 0.000 claims abstract description 28
- 230000002490 cerebral effect Effects 0.000 claims abstract description 28
- 238000011282 treatment Methods 0.000 claims abstract description 25
- 108010090849 Amyloid beta-Peptides Proteins 0.000 claims abstract description 18
- 102000013455 Amyloid beta-Peptides Human genes 0.000 claims abstract description 18
- 241000282412 Homo Species 0.000 claims abstract description 17
- 208000030886 Traumatic Brain injury Diseases 0.000 claims abstract description 16
- 210000000130 stem cell Anatomy 0.000 claims abstract description 16
- 230000009529 traumatic brain injury Effects 0.000 claims abstract description 16
- 230000006933 amyloid-beta aggregation Effects 0.000 claims abstract description 15
- 230000001537 neural effect Effects 0.000 claims abstract description 15
- 210000003169 central nervous system Anatomy 0.000 claims abstract description 6
- 238000002054 transplantation Methods 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 38
- 238000005259 measurement Methods 0.000 claims description 19
- 239000002552 dosage form Substances 0.000 claims description 13
- 230000036470 plasma concentration Effects 0.000 claims description 12
- -1 elixirs Substances 0.000 claims description 7
- 230000003836 peripheral circulation Effects 0.000 claims description 7
- 239000003826 tablet Substances 0.000 claims description 7
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 claims description 5
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 claims description 5
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 claims description 5
- 208000024777 Prion disease Diseases 0.000 claims description 5
- 238000003745 diagnosis Methods 0.000 claims description 5
- 208000010544 human prion disease Diseases 0.000 claims description 5
- 208000008864 scrapie Diseases 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 239000006188 syrup Substances 0.000 claims description 5
- 235000020357 syrup Nutrition 0.000 claims description 5
- 241000238367 Mya arenaria Species 0.000 claims description 4
- 230000002500 effect on skin Effects 0.000 claims description 4
- 239000007903 gelatin capsule Substances 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 4
- 238000001361 intraarterial administration Methods 0.000 claims description 4
- 238000007917 intracranial administration Methods 0.000 claims description 4
- 238000007918 intramuscular administration Methods 0.000 claims description 4
- 238000007912 intraperitoneal administration Methods 0.000 claims description 4
- 238000007919 intrasynovial administration Methods 0.000 claims description 4
- 238000001990 intravenous administration Methods 0.000 claims description 4
- 238000007914 intraventricular administration Methods 0.000 claims description 4
- 239000007937 lozenge Substances 0.000 claims description 4
- 238000002663 nebulization Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 230000002685 pulmonary effect Effects 0.000 claims description 4
- 238000007920 subcutaneous administration Methods 0.000 claims description 4
- 230000000699 topical effect Effects 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 claims description 4
- 206010019196 Head injury Diseases 0.000 claims description 2
- 230000001605 fetal effect Effects 0.000 claims 4
- 239000000443 aerosol Substances 0.000 claims 3
- 239000000839 emulsion Substances 0.000 claims 3
- 239000000243 solution Substances 0.000 claims 3
- 230000001154 acute effect Effects 0.000 claims 1
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- YNGDWRXWKFWCJY-UHFFFAOYSA-N 1,4-Dihydropyridine Chemical compound C1C=CNC=C1 YNGDWRXWKFWCJY-UHFFFAOYSA-N 0.000 abstract description 4
- 229940127291 Calcium channel antagonist Drugs 0.000 abstract description 4
- 239000000480 calcium channel blocker Substances 0.000 abstract description 4
- 210000004556 brain Anatomy 0.000 description 26
- 108010064397 amyloid beta-protein (1-40) Proteins 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 14
- 230000006724 microglial activation Effects 0.000 description 14
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 13
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 13
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 13
- 239000002158 endotoxin Substances 0.000 description 11
- 229920006008 lipopolysaccharide Polymers 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 230000002025 microglial effect Effects 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 10
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 9
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 9
- 230000001684 chronic effect Effects 0.000 description 9
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 7
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000012744 immunostaining Methods 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 108010064539 amyloid beta-protein (1-42) Proteins 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 210000001320 hippocampus Anatomy 0.000 description 4
- 238000003364 immunohistochemistry Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 4
- 230000006433 tumor necrosis factor production Effects 0.000 description 4
- 208000037259 Amyloid Plaque Diseases 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical class CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 210000001642 activated microglia Anatomy 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 210000000274 microglia Anatomy 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 208000015122 neurodegenerative disease Diseases 0.000 description 3
- 230000002887 neurotoxic effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 108010062271 Acute-Phase Proteins Proteins 0.000 description 2
- 102000011767 Acute-Phase Proteins Human genes 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 206010002022 amyloidosis Diseases 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 201000004559 cerebral degeneration Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940095074 cyclic amp Drugs 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000000337 motor cortex Anatomy 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000001936 parietal effect Effects 0.000 description 2
- 230000001991 pathophysiological effect Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 238000011820 transgenic animal model Methods 0.000 description 2
- BZHGJURRAHKQCA-UHFFFAOYSA-N 2-cyano-3,6-dimethyl-4-(3-nitrophenyl)-3-propan-2-yloxycarbonyl-2,4-dihydro-1H-pyridine-5-carboxylic acid Chemical compound CC1=C(C(C(C(N1)C#N)(C)C(=O)OC(C)C)C2=CC(=CC=C2)[N+](=O)[O-])C(=O)O BZHGJURRAHKQCA-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 102100022524 Alpha-1-antichymotrypsin Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102100029470 Apolipoprotein E Human genes 0.000 description 1
- 101710095339 Apolipoprotein E Proteins 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 230000007082 Aβ accumulation Effects 0.000 description 1
- 230000006974 Aβ toxicity Effects 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 206010018341 Gliosis Diseases 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 102000009664 Microtubule-Associated Proteins Human genes 0.000 description 1
- 108010020004 Microtubule-Associated Proteins Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 108010091628 alpha 1-Antichymotrypsin Proteins 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000007792 alzheimer disease pathology Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 101150031224 app gene Proteins 0.000 description 1
- 208000037875 astrocytosis Diseases 0.000 description 1
- 230000007341 astrogliosis Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000006189 buccal tablet Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000008367 deionised water Chemical class 0.000 description 1
- 229910021641 deionized water Chemical class 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 230000035557 fibrillogenesis Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003960 inflammatory cascade Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000002241 neurite Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 230000007557 neuronal destruction Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011830 transgenic mouse model Methods 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to a method for treating the pathophysiological effects of cerebral amyloidogenic diseases, such as Alzheimer's disease. More specifically, the method involves administering a specific dihydropyridine antagonist calcium channel blocker, nilvadipine, which opposes such pathophysiological effects in the brain of animals or humans afflicted with diseases associated with cerebral amyloidosis, such as Alzheimer's disease.
- a specific dihydropyridine antagonist calcium channel blocker such as nilvadipine
- AD Alzheimer's disease
- APP amyloid precursor protein
- APP is a single-transmembrane protein with a 590-680 amino acid extracellular amino terminal domain and an approximately 55 amino acid cytoplasmic tail.
- Messenger RNA from the APP gene on chromosome 21 undergoes alternative splicing to yield eight possible isoforms, three of which (the 695, 751 and 770 amino acid isoforms) predominate in the brain.
- APP undergoes proteolytic processing via three enzymatic activities, termed ⁇ -, ⁇ - and ⁇ -secretase.
- Alpha-secretase cleaves APP at amino acid 17 of the A ⁇ domain, thus releasing the large soluble amino-terminal fragment ⁇ -APP for secretion.
- ⁇ -secretase cleaves within the A ⁇ domain, this cleavage precludes A ⁇ formation.
- APP can be cleaved by ⁇ -secretase to define the amino terminus of A ⁇ and to generate the soluble amino-terminal fragment ⁇ -APP. Subsequent cleavage of the intracellular carboxy-terminal domain of APP by ⁇ -secretase results in the generation of multiple peptides, the two most common being 40-amino acid A ⁇ (A ⁇ 40) and 42-amino acid A ⁇ (A ⁇ 42).
- a ⁇ 40 comprises 90-95% of the secreted A ⁇ and is the predominant species recovered from cerebrospinal fluid (Seubert et al., Nature, 359:325-7, 1992). In contrast, less than 10% of secreted A ⁇ is A ⁇ 42. Despite the relative paucity of A ⁇ 42 production, A ⁇ 42 is the predominant species found in plaques and is deposited initially, perhaps due to its ability to form insoluble amyloid aggregates more rapidly than A ⁇ 40 (Jarrett et al., Biochemistry, 32:4693-7, 1993). The abnormal accumulation of A ⁇ in the brain is believed due to either over-expression or altered processing of APP.
- a ⁇ peptides are thus believed to play a critical role in the pathobiology of AD, as all the mutations associated with the familial form of AD result in altered processing of these peptides from APP. Indeed, deposits of insoluble, or aggregated, fibrils of A ⁇ in the brain are a prominent neuropathological feature of all forms of AD, regardless of the genetic predisposition of the subject.
- AD brain Concomitant with A ⁇ deposition, there exists robust activation of inflammatory pathways in AD brain, including production of pro-inflammatory cytokines and acute-phase reactants in and around A ⁇ deposits (McGeer et al., J Leukocyte Biol., 65:409-15, 1999). Activation of the brain's resident innate immune cells, the microglia, is thought to be intimately involved in this inflammatory cascade.
- reactive microglia produce pro-inflammatory cytokines, such as inflammatory proteins and acute phase reactants, such as alpha-1-antichymotrypsin, transforming growth factor ⁇ , apolipoprotein E and complement factors, all of which have been shown to be localized to A ⁇ plaques and to promote A ⁇ plaque “condensation” or maturation (Nilsson et al., J. Neurosci. 21:1444-5, 2001), and which at high levels promote neurodegeneration.
- cytokines such as inflammatory proteins and acute phase reactants, such as alpha-1-antichymotrypsin, transforming growth factor ⁇ , apolipoprotein E and complement factors, all of which have been shown to be localized to A ⁇ plaques and to promote A ⁇ plaque “condensation” or maturation (Nilsson et al., J. Neurosci. 21:1444-5, 2001), and which at high levels promote neurodegeneration.
- Epidemiological studies have shown that patients using non-steroidal anti-inflammatory drugs (
- AD pathology products of the inflammatory process in the AD brain therefore may exacerbate AD pathology. Furthermore, there is evidence that activated microglia in AD brain, instead of clearing A ⁇ , are pathogenic by promoting A ⁇ fibrillogenesis and consequent deposition as senile plaques (Wegiel et al., Acta Neuropathol . (Berl.) 100:356-64, 2000).
- AD pathogenesis is due to the neurotoxic properties of A ⁇ .
- the cytotoxicity of A ⁇ was first established in primary cell cultures from rodent brains and also in human cell cultures.
- the work of Mattson et al. indicates that A ⁇ , in the presence of the excitatory neurotransmitter glutamate, causes an immediate pathological increase in intracellular calcium, which is believed to be very toxic to the cell through its greatly increased second messenger activities.
- prophylaxis for the inexorable progression of brain degeneration that is a hallmark of AD, wherein the prophylaxis addresses the A ⁇ deposition, A ⁇ neurotoxicity, microglial-activated inflammation, and altered or overexpression of APP that is seen in AD patients.
- the present invention provides for the first time methods for reducing ⁇ -amyloid deposition, ⁇ -amyloid neurotoxicity and microgliosis in animals or humans afflicted with a cerebral amyloidogenic disease, such as Alzheimer's disease (AD), by administering therapeutically effective amounts of the dihydropyridine calcium channel antagonist, nilvadipine.
- AD Alzheimer's disease
- the present invention also provides methods for diagnosing cerebral amyloidogenic diseases, such has AD, in an animal or human, or determining if the animal or human is at risk for developing cerebral amyloidogenic disease, by taking a first measurement of the plasma concentration of ⁇ -amyloid in the peripheral circulation of the animal or human; administering a therapeutically effective amount of nilvadipine in unit dosage form to the animal or human; taking a second measurement of the plasma concentration of ⁇ -amyloid in the peripheral circulation of the animal or human at a later time; and calculating the difference between the first measurement and the second measurement of the plasma concentration of A ⁇ .
- An increase in the plasma concentration of ⁇ -amyloid in the second measurement compared to the first measurement indicates a risk of developing and/or a possible diagnosis of a cerebral amyloidogenic disease in the animal or human.
- the present invention further provides methods for reducing the risk of ⁇ -amyloid deposition, ⁇ -amyloid neurotoxicity and microgliosis in animals or humans suffering from traumatic brain injury by administering to the animal or human a therapeutically effective amount of nilvadipine in unit dosage form immediately after the head injury and continuing nilvadipine treatment for a prescribed period of time thereafter.
- the present invention also provides methods for treating transplantable neuronal stem cells, comprising administering a therapeutically effective amount of nilvadipine to the neuronal stem cells prior to transplantation of the stem cells in the central nervous system of an animal or human afflicted with a cerebral amyloidogenic disease, such as AD.
- a cerebral amyloidogenic disease such as AD.
- FIG. 1 is a bar graph that illustrates the effect of chronic administration of nilvadipine on A ⁇ deposition (A ⁇ burden) in different regions of the brain of TgAPP sw mice using a 4G8 immunostaining technique;
- FIG. 2 is a bar graph that illustrates the effect of chronic administration of nilvadipine on microglial activation in TgAPP sw mice in three regions of the brain using a CD45 immunostaining technique that determines the number of CD45+microglia;
- FIG. 3 is a bar graph that illustrates the effect of nilvadipine on microglial activation in N9 murine microglial cells in vitro activated with lipopolysaccharide (LPS) for 24 hours.
- Microglial activation is determined by TNF- ⁇ production (pg/ml) measured by ELISA;
- FIG. 4 is a bar graph that illustrates the effect of nilvadipine administration on A ⁇ neurotoxicity using HPNC cells treated for three days with 30 ⁇ M of pre-aggregated A ⁇ 1-40 (AgA ⁇ ). Neurotoxicity is assessed by measuring the amount of lactic dehydrogenase (LDH) released from cells;
- LDH lactic dehydrogenase
- FIG. 5 is a bar graph that illustrates the effect of nilvadipine on APP processing using human glioblastoma cells transfected with APP sw .
- Cells were treated with 50 nM and 250 nM nilvadipine for 24 hours ( FIG. 5A ) and for 48 hours ( FIG. 5B ).
- Production of A ⁇ 1-40 in the culture medium was measured by ELISA.
- FIG. 6 is a bar graph that illustrates the effect of nilvadipine on plasma A ⁇ levels in two-year old TgPS/APP sw mice. Animals were treated intraperitoneally every day for three and a half weeks with nilvadipine (1.5 mg/kg of body weight).
- the present invention provides for the first time prophylactic methods for the inexorable progression of brain degeneration that is a hallmark of certain cerebral amyloidogenic diseases, such as, Alzheimer's disease (AD), in animals and humans, by administering nilvadipine (isopropyl-3-methyl-2-cyano-1,4-dihydro-6-methyl-4-(m-nitrophenyl)-3,5-pyridine-dicarboxylate; MW 385.4), a dihydropyridine analogue calcium channel antagonist.
- AD Alzheimer's disease
- one embodiment of the present invention provides a method for reducing ⁇ -amyloid deposition, ⁇ -amyloid neurotoxicity and microgliosis in animals or humans afflicted with a cerebral amyloidogenic disease or condition by administering therapeutically effective amounts of nilvadipine in unit dosage form.
- nilvadipine most cerebral amyloidogenic diseases, such as AD, are chronic, progressive, intractable brain dementias, it is contemplated that the duration of nilvadipine treatment will last for up to the lifetime of the animal or human.
- the cerebral amyloidogenic diseases or conditions include without limitation Alzheimer's disease, transmissible spongiform encephalopathy, scrapie, traumatic brain injury, cerebral amyloid angiopathy, and Gerstmann-Straussler-Scheinker syndrome.
- a method for reducing the risk of ⁇ -amyloid deposition, ⁇ -amyloid neurotoxicity and microgliosis in animals or humans suffering from traumatic brain injury (TBI) by administering to the animal or human a therapeutically effective amount of nilvadipine in unit dosage form immediately after the TBI and continuing the nilvadipine treatment for a prescribed period of time thereafter.
- TBI traumatic brain injury
- the duration of nilvadipine treatment that is contemplated for those animals or humans suffering from a TBI can last for between about one hour to five years, preferably between about two weeks to three years, and most preferably between about six months and twelve months.
- a method for diagnosing or determining the risk for developing a cerebral amyloidogenic diseases such has AD, in an animal or human, by taking a first measurement of the plasma concentration of ⁇ -amyloid in the peripheral circulation of the animal or human; administering a therapeutically effective amount of nilvadipine in unit dosage form to the animal or human; taking a second measurement of the plasma concentration of ⁇ -amyloid in the peripheral circulation of the animal or human at a later time; and then calculating the difference between the first measurement and the second measurement.
- An increase in the plasma concentration of ⁇ -amyloid in the second measurement compared to the first measurement indicates a risk of developing or a possible diagnosis of a cerebral amyloidogenic disease in the animal or human.
- the duration of time that nilvadipine is administered between the first and the second plasma A ⁇ concentration measurements can last for between about one day to twelve months, preferably between about one week to six months, and most preferably between about two weeks to four weeks. It is contemplated that a small increase in plasma A ⁇ concentration after nilvadipine administration would be indicative of a risk of developing AD and/or diagnostic of the beginning stages of AD. Larger increases in plasma A ⁇ concentration after nilvadipine administration would reflect higher concentrations of A ⁇ liberated from the brain into the peripheral circulation and thus would be more indicative of a positive diagnosis of AD.
- the therapeutically effective amount of nilvadipine that is administered in unit dosage form to animals or humans afflicted with a cerebral amyloidogenic disease or suffering from a traumatic brain injury, as well as administered for the purpose of determining the risk of developing and/or a diagnosis of a cerebral amyloidogenic disease in an animal or human, according to the methods of the present invention, can range from between about 0.05 mg to 20 mg per day, preferably from between about 2 mg to 15 mg per day, more preferably from between about 4 mg to 12 mg per day, and most preferably about 8 mg per day.
- the daily dosage can be administered in a single unit dose or divided into two, three or four unit doses per day.
- in still another embodiment of the present invention is a method for pre-treating transplantable human or xenogenic neuronal stem cells by administering a therapeutically effective amount of nilvadipine to the neuronal stem cells prior to transplantation of the cells in the central nervous system of an animal or human that may be afflicted with a cerebral amyloidogenic disease, such as AD.
- a cerebral amyloidogenic disease such as AD.
- neuronal stem cells themselves would not have a significant deposition of A ⁇ .
- pre-treatment of the neuronal stem cells should enhance the ability of the transplanted neurons to survive in their new environment by reducing the A ⁇ concentration and thus the A ⁇ toxicity therein.
- the therapeutically effective amount of nilvadipine that is administered in unit dosage form for pre-treating the neuronal stem cells can range from between about 1 nM to 3 ⁇ M, preferably between about 10 nM to 2 ⁇ M, and most preferably between about 100 nM to 1 ⁇ M. It is known that stem cells, when directed to differentiate into specific cell types, such as neuronal cells, offer the possibility of a renewable source of replacement cells and tissues to treat diseases and conditions, such Alzheimer's disease, Parkinson's disease or spinal cord injury. When such cells are transplanted/implanted into a patient, it is advisable not only to pre-treat the cells with nilvadipine but to begin therapeutic treatment of the patient with nilvadipine post-implantation as well.
- transgenic animal models for AD such as the PDAPP and TgAPP sw mouse models, which may be eventually useful for treating, preventing and/or inhibiting conditions associated with amyloid deposition, ⁇ -amyloid neurotoxicity and microgliosis in the central nervous system of such animals or in humans.
- the present invention provides for transgenic animal models for AD which are constructed using standard methods known in the art and as set forth in U.S. Pat. Nos.
- Nilvadipine can be administered to a patient via various routes including parenterally, orally or intraperitoneally.
- Parenteral administration includes the following routes: intravenous; intramuscular; interstitial; intra-arterial; subcutaneous; intraocular; intracranial; intraventricular; intrasynovial; transepithelial, including transdermal, pulmonary via inhalation, ophthalmic, sublingual and buccal; topical, including ophthalmic, dermal, ocular, rectal, or nasal inhalation via insufflation or nebulization.
- Nilvadipine that is orally administered can be enclosed in hard or soft shell gelatin capsules, or compressed into tablets. Nilvadipine also can be incorporated with an excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, sachets, lozenges, elixirs, suspensions, syrups, wafers, and the like. Further, nilvadipine can be in the form of a powder or granule, a solution or suspension in an aqueous liquid or non-aqueous liquid, or in an oil-in-water or water-in-oil emulsion.
- the tablets, troches, pills, capsules and the like also can contain, for example, a binder, such as gum tragacanth, acacia, corn starch; gelating excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; a sweetening agent, such as sucrose, lactose or saccharin; or a flavoring agent.
- a binder such as gum tragacanth, acacia, corn starch
- gelating excipients such as dicalcium phosphate
- a disintegrating agent such as corn starch, potato starch, alginic acid and the like
- a lubricant such as magnesium stearate
- a sweetening agent such as sucrose, lactose or saccharin
- a flavoring agent such as sucrose, lactose or saccharin.
- tablets, pills, or capsules can be coated with shellac, sugar or both.
- a syrup or elixir can contain nilvadipine, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring. Additionally, nilvadipine can be incorporated into sustained-release preparations and formulations.
- Nilvadipine can be administered to the CNS, parenterally or intraperitoneally.
- Solutions of nilvadipine as a free base or a pharmaceutically acceptable salt can be prepared in water mixed with a suitable surfactant, such as hydroxypropylcellulose.
- Dispersions also can be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative and/or antioxidants to prevent the growth of microorganisms or chemical degeneration.
- nilvadipine chronic administration of nilvadipine on A ⁇ deposition (amyloid burden) in different regions of the brain of TgAPP sw mice was examined using a 4G8 anti-A ⁇ monoclonal antibody immunostaining technique.
- the 4G8 immunostaining technique was chosen for determining the A ⁇ burden because of its robust signal and optimal results for quantitative analysis of A ⁇ deposition. Briefly, paraffin sections were subjected to immunohistochemistry as described previously (Nakagawa, Y et al., Exp. Neurol., 163:244-252, 2000).
- Sections were deparaffinized in xylene, hydrated in a series of ethanol and deionized water, and subjected to an antigen retrieval step by immersing sections in 88% formic acid for 60 min before immunohistochemistry for A ⁇ . Sections were washed in water, and endogenous peroxidases were quenched using a freshly prepared mixture of methanol (150 ml) plus hydrogen peroxide (33%, 30 ml). The avidin-biotin complex method was used according to the instructions of the vendor (Vector Laboratories, Burlingame, Calif.). Amyloid burden was assessed by determining the percentage of the brain region that stained positive for A ⁇ .
- Negative controls included the application of the same immunohistochemistry protocol to sections, except preimmune serum was applied instead of primary antibody.
- treatment with nilvadipine reduced the A ⁇ burden about 62% in the visual cortex compared to controls, about 65% in the parietal cortex compared to controls, about 58% in the motor cortex compared to controls, about 58% in the pyriform cortex compared to controls, about 52% in the CA1 region of the hippocampus compared to controls, and about 50% in the CA2-CA3 region of the hippocampus compared to controls.
- CD45 a specific marker for leukocytes
- a mouse monoclonal antibody against CD45 (Chemicon International) overnight at 4° C., followed by application of a biotinylated rabbit anti-mouse secondary antibody for 30 minutes.
- Detection of CD45 was completed with diaminobenzidine chromogen substrate, which produces a brown cell surface stain on CD45-positive microglial cells.
- nilvadipine treatment administered in an effective dosage amount reduced microglial activation about 33% in the hippocampus, about 43% in the parietal cortex, and about 27% in the motor cortex, when compared to controls.
- N9 murine microglial cells in vitro activated with lipopolysaccharide (LPS) for 24 hours.
- N9 murine micoglial cells are well characterized scavenger murine microglial clones derived from embryonic mouse brain. The extent of microglial activation was determined by TNF- ⁇ production (pg/ml) measured by ELISA. As shown in FIG. 3 , microglial cells not activated with LPS (control cells) produced about 40 pg/ml TNF- ⁇ . Microglial cells in the presence of 50 nM nilvadipine produced about 40 pg/ml TNF- ⁇ .
- nilvadipine opposed the LPS-induced microglial activation by about 20 to 25%.
- HNPC human neuronal progenitor cells
- a ⁇ 1-40 pre-aggregated A ⁇ 1-40
- HNPC cells differentiate into neurons readily upon treatment with cyclic AMP.
- Cyclic AMP (1 mM) Sigma was added to the culture medium and the HNPC cells were incubated at 37° C. for 48 hours or more under serum free conditions. This medium allowed differentiation of the progenitors into cells of neuronal lineage, as was confirmed by the staining of most of the cells with antibodies against the microtubule-associated protein, MAP-2.
- Neurotoxicity was assessed by measuring the amount of lactic dehydrogenase (LDH; an intracellular enzyme found in all cells) released from the cells.
- LDH lactic dehydrogenase
- treatment of the cells with AgA ⁇ produced about a 44% increase in LDH release compared to treatment of the cells with nilvadipine.
- the dosage amount of nilvadipine was increased 10-fold to 100 nM, the amount of LDH release was decreased by about 44%.
- nilvadipine The effect of nilvadipine on APP processing was examined using human glioblastoma cells transfected with APP sw .
- the cells were treated with 50 nM and 250 nM nilvadipine for 24 and 48 hours, and production of A ⁇ 1-40 in the culture medium was measured by using a commercially available human A ⁇ 1-40 ELISA (Biosource, CA).
- I.P. administration of nilvadipine to TgPS/APP sw mice at a dose of 1.5 mg/kg body weight for three and one half weeks resulted in a 42% increase in the plasma levels of A ⁇ (pg/ml) compared to the control animals.
- nilvadipine significantly reduced the amount of AP present in different regions of the cerebral cortex and hippocampus of transgenic mice, as well as significantly reducing the degree of microglial activation.
- N9 murine microglial cells were activated with LPS, nilvadipine administration significantly reduced LPS-induced microglial activation.
- nilvadipine effectively opposed the neurotoxic effect of AgA ⁇ on a human precursor neuronal cell line.
- a ⁇ 1-40 was not significantly decreased by nilvadipine treatment, there was a trend toward decreased A ⁇ 1-40 production after nilvadipine administration.
- a ⁇ 1-40 potentially reflects reduced production, but other mechanisms to which the lowered appearance of A ⁇ 1-40 might be attributable would include, without limitation, phagocytosis or other destruction, or cellular effects which prevent its aggregation and detection. Regardless of the mechanism, however, the data suggest that the presence of nilvadipine concomitantly reduced the presence of A ⁇ 1-40.
- chronic administration of nilvadipine I.P. to 2-year old TgPS/APP sw mice significantly increased the plasma levels of A ⁇ , suggesting that, in addition to the ability of nilvadipine to reduce deposition of A ⁇ in the brain, nilvadipine treatment may reduce A ⁇ that already is already deposited in the brains of afflicted subjects.
- nilvadipine administration to animals or humans afflicted with a cerebral amyloidogenic disease can significantly decrease the amount of A ⁇ deposition in critical regions of the brain that characteristically demonstrate an abundance of such pathological deposits as well as reduce the amount of A ⁇ already deposited in the brain.
- nilvadipine administration may oppose the neurotoxic effects of A ⁇ , effects which are believed to be responsible for the widespread and devastating neuronal destruction seen with AD, as well as reduce microglial activation that causes the characteristic inflammatory response seen in the brains of AD patients.
- nilvadipine treatment may reduce the concentration of already deposited A ⁇ in brains of animals or humans afflicted with cerebral amyloidogenic diseases such as AD.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Epidemiology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
- Hydrogenated Pyridines (AREA)
- Medicinal Preparation (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Abstract
Description
- The present invention claims priority to U.S. Provisional Application Ser. No. 60/470,694, filed May 15, 2003, which is herein incorporated by reference.
- 1. Field of the Invention
- The present invention relates to a method for treating the pathophysiological effects of cerebral amyloidogenic diseases, such as Alzheimer's disease. More specifically, the method involves administering a specific dihydropyridine antagonist calcium channel blocker, nilvadipine, which opposes such pathophysiological effects in the brain of animals or humans afflicted with diseases associated with cerebral amyloidosis, such as Alzheimer's disease.
- 2. Description of Related Art
- Alzheimer's disease (AD) is the most common neurodegenerative disorder of aging, afflicting approximately 1% of the population over the age of 65. Characteristic features of the disease include the progressive accumulation of intracellular neurofibrillary tangles, extracellular parenchymal senile plaques, and cerebrovascular deposits in the brain. The principal component of senile plaques and cerebrovascular deposits is the 39-43 amino acid β-amyloid peptide (Aβ), which is proteolytically derived from amyloid precursor protein (APP), a transmembrane glycoprotein.
- APP is a single-transmembrane protein with a 590-680 amino acid extracellular amino terminal domain and an approximately 55 amino acid cytoplasmic tail. Messenger RNA from the APP gene on chromosome 21 undergoes alternative splicing to yield eight possible isoforms, three of which (the 695, 751 and 770 amino acid isoforms) predominate in the brain. APP undergoes proteolytic processing via three enzymatic activities, termed α-, β- and γ-secretase. Alpha-secretase cleaves APP at amino acid 17 of the Aβ domain, thus releasing the large soluble amino-terminal fragment α-APP for secretion. Because α-secretase cleaves within the Aβ domain, this cleavage precludes Aβ formation. Alternatively, APP can be cleaved by β-secretase to define the amino terminus of Aβ and to generate the soluble amino-terminal fragment β-APP. Subsequent cleavage of the intracellular carboxy-terminal domain of APP by γ-secretase results in the generation of multiple peptides, the two most common being 40-amino acid Aβ (Aβ40) and 42-amino acid Aβ (Aβ42). Aβ40 comprises 90-95% of the secreted Aβ and is the predominant species recovered from cerebrospinal fluid (Seubert et al., Nature, 359:325-7, 1992). In contrast, less than 10% of secreted Aβ is Aβ42. Despite the relative paucity of Aβ42 production, Aβ42 is the predominant species found in plaques and is deposited initially, perhaps due to its ability to form insoluble amyloid aggregates more rapidly than Aβ40 (Jarrett et al., Biochemistry, 32:4693-7, 1993). The abnormal accumulation of Aβ in the brain is believed due to either over-expression or altered processing of APP.
- Aβ peptides are thus believed to play a critical role in the pathobiology of AD, as all the mutations associated with the familial form of AD result in altered processing of these peptides from APP. Indeed, deposits of insoluble, or aggregated, fibrils of Aβ in the brain are a prominent neuropathological feature of all forms of AD, regardless of the genetic predisposition of the subject.
- Concomitant with Aβ deposition, there exists robust activation of inflammatory pathways in AD brain, including production of pro-inflammatory cytokines and acute-phase reactants in and around Aβ deposits (McGeer et al., J Leukocyte Biol., 65:409-15, 1999). Activation of the brain's resident innate immune cells, the microglia, is thought to be intimately involved in this inflammatory cascade. It has been demonstrated that reactive microglia produce pro-inflammatory cytokines, such as inflammatory proteins and acute phase reactants, such as alpha-1-antichymotrypsin, transforming growth factor β, apolipoprotein E and complement factors, all of which have been shown to be localized to Aβ plaques and to promote Aβ plaque “condensation” or maturation (Nilsson et al., J. Neurosci. 21:1444-5, 2001), and which at high levels promote neurodegeneration. Epidemiological studies have shown that patients using non-steroidal anti-inflammatory drugs (NSAIDS) have as much as a 50% reduced risk for AD (Rogers et al., Neurobiol. Aging 17:681-6, 1996), and post-mortem evaluation of AD patients who underwent NSAID treatment has demonstrated that risk reduction is associated with diminished numbers of activated microglia (Mackenzie et al., Neurology 50:986-90, 1998). Further, when Tg APPsw mice, a mouse model for Alzheimer's disease, are given an NSAID (ibuprofen), these animals show reduction in Aβ deposits, astrocytosis, and dystrophic neurites correlating with decreased microglial activation (Lim et al., J. Neurosci. 20:5709-14, 2000).
- Products of the inflammatory process in the AD brain therefore may exacerbate AD pathology. Furthermore, there is evidence that activated microglia in AD brain, instead of clearing Aβ, are pathogenic by promoting Aβ fibrillogenesis and consequent deposition as senile plaques (Wegiel et al., Acta Neuropathol. (Berl.) 100:356-64, 2000).
- It also has been suggested that AD pathogenesis is due to the neurotoxic properties of Aβ. The cytotoxicity of Aβ was first established in primary cell cultures from rodent brains and also in human cell cultures. The work of Mattson et al. (J. Neurosci., 12:376-389, 1992) indicates that Aβ, in the presence of the excitatory neurotransmitter glutamate, causes an immediate pathological increase in intracellular calcium, which is believed to be very toxic to the cell through its greatly increased second messenger activities.
- Thus, there exists a need for a prophylaxis for the inexorable progression of brain degeneration that is a hallmark of AD, wherein the prophylaxis addresses the Aβ deposition, Aβ neurotoxicity, microglial-activated inflammation, and altered or overexpression of APP that is seen in AD patients.
- In order to meet this need, the present invention provides for the first time methods for reducing β-amyloid deposition, β-amyloid neurotoxicity and microgliosis in animals or humans afflicted with a cerebral amyloidogenic disease, such as Alzheimer's disease (AD), by administering therapeutically effective amounts of the dihydropyridine calcium channel antagonist, nilvadipine.
- The present invention also provides methods for diagnosing cerebral amyloidogenic diseases, such has AD, in an animal or human, or determining if the animal or human is at risk for developing cerebral amyloidogenic disease, by taking a first measurement of the plasma concentration of β-amyloid in the peripheral circulation of the animal or human; administering a therapeutically effective amount of nilvadipine in unit dosage form to the animal or human; taking a second measurement of the plasma concentration of β-amyloid in the peripheral circulation of the animal or human at a later time; and calculating the difference between the first measurement and the second measurement of the plasma concentration of Aβ. An increase in the plasma concentration of β-amyloid in the second measurement compared to the first measurement indicates a risk of developing and/or a possible diagnosis of a cerebral amyloidogenic disease in the animal or human.
- The present invention further provides methods for reducing the risk of β-amyloid deposition, β-amyloid neurotoxicity and microgliosis in animals or humans suffering from traumatic brain injury by administering to the animal or human a therapeutically effective amount of nilvadipine in unit dosage form immediately after the head injury and continuing nilvadipine treatment for a prescribed period of time thereafter.
- The present invention also provides methods for treating transplantable neuronal stem cells, comprising administering a therapeutically effective amount of nilvadipine to the neuronal stem cells prior to transplantation of the stem cells in the central nervous system of an animal or human afflicted with a cerebral amyloidogenic disease, such as AD.
-
FIG. 1 is a bar graph that illustrates the effect of chronic administration of nilvadipine on Aβ deposition (Aβ burden) in different regions of the brain of TgAPPsw mice using a 4G8 immunostaining technique; -
FIG. 2 is a bar graph that illustrates the effect of chronic administration of nilvadipine on microglial activation in TgAPPsw mice in three regions of the brain using a CD45 immunostaining technique that determines the number of CD45+microglia; -
FIG. 3 is a bar graph that illustrates the effect of nilvadipine on microglial activation in N9 murine microglial cells in vitro activated with lipopolysaccharide (LPS) for 24 hours. Microglial activation is determined by TNF-α production (pg/ml) measured by ELISA; -
FIG. 4 is a bar graph that illustrates the effect of nilvadipine administration on Aβ neurotoxicity using HPNC cells treated for three days with 30 μM of pre-aggregated Aβ1-40 (AgAβ). Neurotoxicity is assessed by measuring the amount of lactic dehydrogenase (LDH) released from cells; -
FIG. 5 is a bar graph that illustrates the effect of nilvadipine on APP processing using human glioblastoma cells transfected with APPsw. Cells were treated with 50 nM and 250 nM nilvadipine for 24 hours (FIG. 5A ) and for 48 hours (FIG. 5B ). Production of Aβ1-40 in the culture medium was measured by ELISA. -
FIG. 6 is a bar graph that illustrates the effect of nilvadipine on plasma Aβ levels in two-year old TgPS/APPsw mice. Animals were treated intraperitoneally every day for three and a half weeks with nilvadipine (1.5 mg/kg of body weight). - The present invention provides for the first time prophylactic methods for the inexorable progression of brain degeneration that is a hallmark of certain cerebral amyloidogenic diseases, such as, Alzheimer's disease (AD), in animals and humans, by administering nilvadipine (isopropyl-3-methyl-2-cyano-1,4-dihydro-6-methyl-4-(m-nitrophenyl)-3,5-pyridine-dicarboxylate; MW 385.4), a dihydropyridine analogue calcium channel antagonist.
- In particular, one embodiment of the present invention provides a method for reducing β-amyloid deposition, β-amyloid neurotoxicity and microgliosis in animals or humans afflicted with a cerebral amyloidogenic disease or condition by administering therapeutically effective amounts of nilvadipine in unit dosage form. Because most cerebral amyloidogenic diseases, such as AD, are chronic, progressive, intractable brain dementias, it is contemplated that the duration of nilvadipine treatment will last for up to the lifetime of the animal or human. The cerebral amyloidogenic diseases or conditions include without limitation Alzheimer's disease, transmissible spongiform encephalopathy, scrapie, traumatic brain injury, cerebral amyloid angiopathy, and Gerstmann-Straussler-Scheinker syndrome.
- In another embodiment of the present invention, a method is provided for reducing the risk of β-amyloid deposition, β-amyloid neurotoxicity and microgliosis in animals or humans suffering from traumatic brain injury (TBI) by administering to the animal or human a therapeutically effective amount of nilvadipine in unit dosage form immediately after the TBI and continuing the nilvadipine treatment for a prescribed period of time thereafter. It has been shown TBI increases the susceptibility to the development of AD, and thus it is believed, without being bound by the theory, that TBI accelerates brain Aβ accumulation and oxidative stress, which may work synergistically to promote the onset or drive the progression of AD.
- The duration of nilvadipine treatment that is contemplated for those animals or humans suffering from a TBI can last for between about one hour to five years, preferably between about two weeks to three years, and most preferably between about six months and twelve months.
- In a further embodiment of the present invention, a method is provided for diagnosing or determining the risk for developing a cerebral amyloidogenic diseases, such has AD, in an animal or human, by taking a first measurement of the plasma concentration of β-amyloid in the peripheral circulation of the animal or human; administering a therapeutically effective amount of nilvadipine in unit dosage form to the animal or human; taking a second measurement of the plasma concentration of β-amyloid in the peripheral circulation of the animal or human at a later time; and then calculating the difference between the first measurement and the second measurement. An increase in the plasma concentration of β-amyloid in the second measurement compared to the first measurement indicates a risk of developing or a possible diagnosis of a cerebral amyloidogenic disease in the animal or human. The duration of time that nilvadipine is administered between the first and the second plasma Aβ concentration measurements can last for between about one day to twelve months, preferably between about one week to six months, and most preferably between about two weeks to four weeks. It is contemplated that a small increase in plasma Aβ concentration after nilvadipine administration would be indicative of a risk of developing AD and/or diagnostic of the beginning stages of AD. Larger increases in plasma Aβ concentration after nilvadipine administration would reflect higher concentrations of Aβ liberated from the brain into the peripheral circulation and thus would be more indicative of a positive diagnosis of AD.
- The therapeutically effective amount of nilvadipine that is administered in unit dosage form to animals or humans afflicted with a cerebral amyloidogenic disease or suffering from a traumatic brain injury, as well as administered for the purpose of determining the risk of developing and/or a diagnosis of a cerebral amyloidogenic disease in an animal or human, according to the methods of the present invention, can range from between about 0.05 mg to 20 mg per day, preferably from between about 2 mg to 15 mg per day, more preferably from between about 4 mg to 12 mg per day, and most preferably about 8 mg per day. The daily dosage can be administered in a single unit dose or divided into two, three or four unit doses per day.
- In still another embodiment of the present invention is a method for pre-treating transplantable human or xenogenic neuronal stem cells by administering a therapeutically effective amount of nilvadipine to the neuronal stem cells prior to transplantation of the cells in the central nervous system of an animal or human that may be afflicted with a cerebral amyloidogenic disease, such as AD. Presumably, neuronal stem cells themselves would not have a significant deposition of Aβ. However, if the neuronal transplant is intended for an Aβ-burdened environment, pre-treatment of the neuronal stem cells should enhance the ability of the transplanted neurons to survive in their new environment by reducing the Aβ concentration and thus the Aβtoxicity therein. The therapeutically effective amount of nilvadipine that is administered in unit dosage form for pre-treating the neuronal stem cells can range from between about 1 nM to 3 μM, preferably between about 10 nM to 2 μM, and most preferably between about 100 nM to 1 μM. It is known that stem cells, when directed to differentiate into specific cell types, such as neuronal cells, offer the possibility of a renewable source of replacement cells and tissues to treat diseases and conditions, such Alzheimer's disease, Parkinson's disease or spinal cord injury. When such cells are transplanted/implanted into a patient, it is advisable not only to pre-treat the cells with nilvadipine but to begin therapeutic treatment of the patient with nilvadipine post-implantation as well.
- It is contemplated that the methods of the present invention may be used on transgenic animal models for AD, such as the PDAPP and TgAPPsw mouse models, which may be eventually useful for treating, preventing and/or inhibiting conditions associated with amyloid deposition, β-amyloid neurotoxicity and microgliosis in the central nervous system of such animals or in humans. Thus, the present invention provides for transgenic animal models for AD which are constructed using standard methods known in the art and as set forth in U.S. Pat. Nos. 5,487,992; 5,464,764; 5,387,742; 5,360,735; 5,347,075; 5,298,422; 5,288,846; 5,221,778; 5,175,385; 5,175,384; 5,175,383; and 4,736,866.
- Nilvadipine can be administered to a patient via various routes including parenterally, orally or intraperitoneally. Parenteral administration includes the following routes: intravenous; intramuscular; interstitial; intra-arterial; subcutaneous; intraocular; intracranial; intraventricular; intrasynovial; transepithelial, including transdermal, pulmonary via inhalation, ophthalmic, sublingual and buccal; topical, including ophthalmic, dermal, ocular, rectal, or nasal inhalation via insufflation or nebulization.
- Nilvadipine that is orally administered can be enclosed in hard or soft shell gelatin capsules, or compressed into tablets. Nilvadipine also can be incorporated with an excipient and used in the form of ingestible tablets, buccal tablets, troches, capsules, sachets, lozenges, elixirs, suspensions, syrups, wafers, and the like. Further, nilvadipine can be in the form of a powder or granule, a solution or suspension in an aqueous liquid or non-aqueous liquid, or in an oil-in-water or water-in-oil emulsion.
- The tablets, troches, pills, capsules and the like also can contain, for example, a binder, such as gum tragacanth, acacia, corn starch; gelating excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; a sweetening agent, such as sucrose, lactose or saccharin; or a flavoring agent. When the dosage unit form is a capsule, it can contain, in addition to the materials described above, a liquid carrier. Various other materials can be present as coatings or to otherwise modify the physical form of the dosage unit. For example, tablets, pills, or capsules can be coated with shellac, sugar or both. A syrup or elixir can contain nilvadipine, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring. Additionally, nilvadipine can be incorporated into sustained-release preparations and formulations.
- Nilvadipine can be administered to the CNS, parenterally or intraperitoneally. Solutions of nilvadipine as a free base or a pharmaceutically acceptable salt can be prepared in water mixed with a suitable surfactant, such as hydroxypropylcellulose. Dispersions also can be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations can contain a preservative and/or antioxidants to prevent the growth of microorganisms or chemical degeneration.
- The methods of the present invention for reducing the pathological effects of Aβ in animals or humans suffering from diseases associated with amyloidosis, such as AD, will be described in more detail in the following non-limiting examples.
- The effect of chronic administration of nilvadipine on Aβ deposition (amyloid burden) in different regions of the brain of TgAPPsw mice was examined using a 4G8 anti-Aβ monoclonal antibody immunostaining technique. The 4G8 immunostaining technique was chosen for determining the Aβ burden because of its robust signal and optimal results for quantitative analysis of Aβ deposition. Briefly, paraffin sections were subjected to immunohistochemistry as described previously (Nakagawa, Y et al., Exp. Neurol., 163:244-252, 2000). Sections were deparaffinized in xylene, hydrated in a series of ethanol and deionized water, and subjected to an antigen retrieval step by immersing sections in 88% formic acid for 60 min before immunohistochemistry for Aβ. Sections were washed in water, and endogenous peroxidases were quenched using a freshly prepared mixture of methanol (150 ml) plus hydrogen peroxide (33%, 30 ml). The avidin-biotin complex method was used according to the instructions of the vendor (Vector Laboratories, Burlingame, Calif.). Amyloid burden was assessed by determining the percentage of the brain region that stained positive for Aβ. Negative controls included the application of the same immunohistochemistry protocol to sections, except preimmune serum was applied instead of primary antibody. TgAPPsw mice were divided into an experimental group that received an effective amount of nilvadipine (n=7) and a control group that received a vehicle (n=5).
- As shown in
FIG. 1 , treatment with nilvadipine reduced the Aβ burden about 62% in the visual cortex compared to controls, about 65% in the parietal cortex compared to controls, about 58% in the motor cortex compared to controls, about 58% in the pyriform cortex compared to controls, about 52% in the CA1 region of the hippocampus compared to controls, and about 50% in the CA2-CA3 region of the hippocampus compared to controls. - The effect of chronic administration of nilvadipine on microglial activation in TgAPPsw mice was examined in three regions of the mouse brain using a CD45 immunostaining technique in which the number of CD45+microglia was determined.
- Briefly, immunohistochemistry for CD45, a specific marker for leukocytes, was conducted on the cryostat brain sections. CD45-positive microglial cells were immunolocalized by incubation with a mouse monoclonal antibody against CD45 (Chemicon International) overnight at 4° C., followed by application of a biotinylated rabbit anti-mouse secondary antibody for 30 minutes. Detection of CD45 was completed with diaminobenzidine chromogen substrate, which produces a brown cell surface stain on CD45-positive microglial cells.
- As shown in
FIG. 2 , nilvadipine treatment administered in an effective dosage amount reduced microglial activation about 33% in the hippocampus, about 43% in the parietal cortex, and about 27% in the motor cortex, when compared to controls. - The effect of nilvadipine on microglial activation was examined in N9 murine microglial cells in vitro activated with lipopolysaccharide (LPS) for 24 hours. N9 murine micoglial cells are well characterized scavenger murine microglial clones derived from embryonic mouse brain. The extent of microglial activation was determined by TNF-α production (pg/ml) measured by ELISA. As shown in
FIG. 3 , microglial cells not activated with LPS (control cells) produced about 40 pg/ml TNF-α. Microglial cells in the presence of 50 nM nilvadipine produced about 40 pg/ml TNF-α. Increasing nilvadipine administration 10-fold (500 nM) did not change TNF-α production. Microglial cells in the presence of 1 μg/ml LPS produced about 820 pg/ml TNF-α, an increase of about 95% from the control cells and nilvadipine-administered cells. Microglial cells in the presence of both 1 μg/ml LPS plus 50 nM nilvadipine produced about 670 pg/ml TNF-α. LPS plus 500 nM nilvadipine administration decreased TNF-α production to about 610 pg/ml. Thus, nilvadipine opposed the LPS-induced microglial activation by about 20 to 25%. - The effect of nilvadipine administration (10 nM and 100 nM) on Aβ neurotoxicity was examined using human neuronal progenitor cells (HNPC) treated for three days with 30 μM of pre-aggregated Aβ1-40 (AgA). HNPC cells differentiate into neurons readily upon treatment with cyclic AMP. Cyclic AMP (1 mM) (Sigma) was added to the culture medium and the HNPC cells were incubated at 37° C. for 48 hours or more under serum free conditions. This medium allowed differentiation of the progenitors into cells of neuronal lineage, as was confirmed by the staining of most of the cells with antibodies against the microtubule-associated protein, MAP-2. Neurotoxicity was assessed by measuring the amount of lactic dehydrogenase (LDH; an intracellular enzyme found in all cells) released from the cells.
- As shown in
FIG. 4 , treatment of the cells with AgAβ produced about a 44% increase in LDH release compared to treatment of the cells with nilvadipine. There was no change in LDH release when 10 nM nilvadipine was added along with AgAβ. However, when the dosage amount of nilvadipine was increased 10-fold to 100 nM, the amount of LDH release was decreased by about 44%. - The effect of nilvadipine on APP processing was examined using human glioblastoma cells transfected with APPsw. The cells were treated with 50 nM and 250 nM nilvadipine for 24 and 48 hours, and production of Aβ1-40 in the culture medium was measured by using a commercially available human Aβ1-40 ELISA (Biosource, CA).
- As shown in
FIG. 5A , after 24 hours of treatment, 50 nM of nilvadipine reduced the production of Aβ1-40 by about 9%, and 250 nM of nilvadipine reduced Aβ1-40 production by about 15%. After 48 hours of treatment (FIG. 5B ), 50 nM of nilvadipine reduced the production of Aβ1-40 by about 18%, and 250 nM of nilvadipine reduced Aβ1-40 production by about 5%. - The effect of nilvadipine administration on plasma Aβ levels (pg/ml) was examined using 2 year old TgPS/APPsw mice. Animals were treated intraperitoneally (I.P.) every day for three and one half weeks with nilvadipine (1.5 mg/kg of body weight; n=10) or vehicle only (50% DMSO in PBS; n=12). Following this treatment, 100 μl of blood were collected from the tail vein of the animals using EDTA (4%) as an anticoagulant. Blood samples were centrifuged at 4000 g for 1 min and the plasma was collected and diluted four times before being assayed for human Aβ1-40 using a commercially available human Aβ1-40 ELISA (Biosource, CA).
- As shown in
FIG. 6 , I.P. administration of nilvadipine to TgPS/APPsw mice at a dose of 1.5 mg/kg body weight for three and one half weeks resulted in a 42% increase in the plasma levels of Aβ (pg/ml) compared to the control animals. - General Conclusions
- Chronic administration of nilvadipine significantly reduced the amount of AP present in different regions of the cerebral cortex and hippocampus of transgenic mice, as well as significantly reducing the degree of microglial activation. When N9 murine microglial cells were activated with LPS, nilvadipine administration significantly reduced LPS-induced microglial activation. Furthermore, nilvadipine effectively opposed the neurotoxic effect of AgAβ on a human precursor neuronal cell line. Although the production of Aβ1-40 was not significantly decreased by nilvadipine treatment, there was a trend toward decreased Aβ1-40 production after nilvadipine administration. This reduction in Aβ1-40 potentially reflects reduced production, but other mechanisms to which the lowered appearance of Aβ1-40 might be attributable would include, without limitation, phagocytosis or other destruction, or cellular effects which prevent its aggregation and detection. Regardless of the mechanism, however, the data suggest that the presence of nilvadipine concomitantly reduced the presence of Aβ1-40. Finally, chronic administration of nilvadipine I.P. to 2-year old TgPS/APPsw mice significantly increased the plasma levels of Aβ, suggesting that, in addition to the ability of nilvadipine to reduce deposition of Aβ in the brain, nilvadipine treatment may reduce Aβ that already is already deposited in the brains of afflicted subjects.
- In view of the above data, it can be extrapolated that nilvadipine administration to animals or humans afflicted with a cerebral amyloidogenic disease, such as AD, can significantly decrease the amount of Aβ deposition in critical regions of the brain that characteristically demonstrate an abundance of such pathological deposits as well as reduce the amount of Aβ already deposited in the brain. Additionally, nilvadipine administration may oppose the neurotoxic effects of Aβ, effects which are believed to be responsible for the widespread and devastating neuronal destruction seen with AD, as well as reduce microglial activation that causes the characteristic inflammatory response seen in the brains of AD patients. Finally, nilvadipine treatment may reduce the concentration of already deposited Aβ in brains of animals or humans afflicted with cerebral amyloidogenic diseases such as AD.
- It will be apparent to those skilled in the art that various modifications and variations can be made in the methods of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention include modifications and variations that are within the scope of the appended claims and their equivalents.
Claims (42)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/847,630 US7732467B2 (en) | 2003-05-15 | 2004-05-17 | Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47069403P | 2003-05-15 | 2003-05-15 | |
WOPCT/US04/15417 | 2004-05-17 | ||
US10/847,630 US7732467B2 (en) | 2003-05-15 | 2004-05-17 | Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis |
PCT/US2004/015417 WO2004110354A2 (en) | 2003-05-15 | 2004-05-17 | Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050009885A1 true US20050009885A1 (en) | 2005-01-13 |
US7732467B2 US7732467B2 (en) | 2010-06-08 |
Family
ID=33551420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/847,630 Active 2028-06-27 US7732467B2 (en) | 2003-05-15 | 2004-05-17 | Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis |
Country Status (11)
Country | Link |
---|---|
US (1) | US7732467B2 (en) |
EP (1) | EP1628663B1 (en) |
JP (1) | JP4971794B2 (en) |
CN (1) | CN100444840C (en) |
AT (1) | ATE437641T1 (en) |
CA (1) | CA2525970C (en) |
DE (1) | DE602004022284D1 (en) |
DK (1) | DK1628663T3 (en) |
ES (1) | ES2334029T3 (en) |
HK (1) | HK1092358A1 (en) |
WO (1) | WO2004110354A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060188938A1 (en) * | 2005-01-07 | 2006-08-24 | Mullan Michael J | Compounds for inhibiting beta-amyloid production and methods of identifying the compounds |
US20090017112A1 (en) * | 2006-03-01 | 2009-01-15 | Roskamp Research Llc | Compounds for Inhibiting Beta-Amyloid Production |
WO2009046338A1 (en) * | 2007-10-05 | 2009-04-09 | Roskamp Research Llc | Method for increasing cerebral blood flow with (+)-nilvadipine enantiomer |
US20090092667A1 (en) * | 2007-10-05 | 2009-04-09 | Roskamp Research Llc | Method for Reducing Amyloid Deposition, Amyloid Neurotoxicity, and Microgliosis with (-)-Nilvadipine Enantiomer |
US20100093810A1 (en) * | 2007-10-05 | 2010-04-15 | Alzheimer's Institute Of America, Inc. | Pharmaceutical Compositions for Reducing Amyloid Deposition, Amyloid Neurotoxicity, and Microgliosis |
US20100119599A1 (en) * | 2006-12-08 | 2010-05-13 | Archer Pharmaceuticals, Inc. | Polyhydroquinoline compounds and dihydropyridine compounds for inhibiting beta-amyloid production |
US20110236343A1 (en) * | 2007-09-28 | 2011-09-29 | Ndsu Research Foundation | Antimicrobial polysiloxane materials containing metal species |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1874311B1 (en) * | 2005-04-15 | 2011-10-05 | Research & Innovation S.p.A. | A method for preventing, delaying or reverting abnormal amyloid deposition |
CA2761298A1 (en) * | 2009-05-15 | 2010-11-18 | The University Of Kentucky Research Foundation | Treatment of mci and alzheimer's disease |
EP2311823A1 (en) * | 2009-10-15 | 2011-04-20 | AC Immune S.A. | 2,6-Diaminopyridine compounds for treating diseases associated with amyloid proteins or for treating ocular diseases |
KR20140128230A (en) | 2013-04-26 | 2014-11-05 | 한국과학기술연구원 | Diagnostic kit for diagnosis of protein aggregation and misfolding related diseases or disorders using dissociation of protein aggregates in blood |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338322A (en) * | 1975-07-02 | 1982-07-06 | Fujisawa Pharmaceutical Co., Ltd. | 1,4-Dihydropyridine derivatives, pharmaceutical compositions containing same and methods of effecting vasodilation using same |
US4654206A (en) * | 1983-08-11 | 1987-03-31 | Fujisawa Pharmaceutical Co., Ltd. | Fast release solid preparation of dihydropyridine a compound |
US4820720A (en) * | 1987-08-24 | 1989-04-11 | Alza Corporation | Transdermal drug composition with dual permeation enhancers |
US4859688A (en) * | 1984-12-10 | 1989-08-22 | Fujisawa Pharmaceutical Co., Ltd. | Method for the treatment and prevention of arteriosclerosis with nitrophenyl substituted dihydropyridines |
US4902514A (en) * | 1988-07-21 | 1990-02-20 | Alza Corporation | Dosage form for administering nilvadipine for treating cardiovascular symptoms |
US4992445A (en) * | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
US5001139A (en) * | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
US5045553A (en) * | 1987-06-24 | 1991-09-03 | Fujisawa Pharmaceutical Company, Ltd. | Pharmaceutical composition for percutaneous drug absorption and percutaneous drug absorption promoter |
US5053419A (en) * | 1989-03-31 | 1991-10-01 | The Children's Medical Center Corporation | Treatment of AIDS dementia, myelopathy and blindness |
US5114946A (en) * | 1987-06-12 | 1992-05-19 | American Cyanamid Company | Transdermal delivery of pharmaceuticals |
US5160734A (en) * | 1987-11-25 | 1992-11-03 | American Cyanamid Company | Sustained release delivery system for substituted dihydropyridine calcium channel blockers |
US5340591A (en) * | 1992-01-24 | 1994-08-23 | Fujisawa Pharmaceutical Co., Ltd. | Method of producing a solid dispersion of the sparingly water-soluble drug, nilvadipine |
US20010011098A1 (en) * | 1993-06-07 | 2001-08-02 | Yoshiyuki Inada | Pharmaceutical composition for angiotensin II-mediated diseases |
US6271259B1 (en) * | 1996-05-07 | 2001-08-07 | Ito En, Ltd. | Method for improving the brain function, inhibiting glutamate excitotoxicity and rescuing from neuronal death |
US6294544B1 (en) * | 1996-04-26 | 2001-09-25 | Fujisawa Pharmaceutical Co., Ltd. | Peripheral circulation improvers for ophthalmic tissues containing dihydropyridines |
US20020042405A1 (en) * | 2000-07-27 | 2002-04-11 | Schuh Joseph R. | Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of congestive heart failure |
US20020094995A1 (en) * | 1994-03-25 | 2002-07-18 | Foster Robert T. | Method of using deuterated calcium channel blockers |
US20030013699A1 (en) * | 2001-05-25 | 2003-01-16 | Davis Harry R. | Methods for treating alzheimer's disease and/or regulating levels of amyloid beta peptides in a subject |
US20030044845A1 (en) * | 1998-06-08 | 2003-03-06 | Jenkins Thomas E. | Novel therapeutic agents for membrane transporters |
US20030139801A1 (en) * | 2000-12-22 | 2003-07-24 | Avantec Vascular Corporation | Delivery of therapeutic capable agents |
US20040063730A1 (en) * | 2000-12-19 | 2004-04-01 | Hans-Michael Eggenweiler | Pharmacuetical formulation comprising puyrazolo[4,-3-d]pyrimidines and antithrombotics, calcium antagonists, or prostaglandins or prostaglandin derivatives |
US20040072846A1 (en) * | 2000-12-19 | 2004-04-15 | Hans-Michael Eggenweiler | Pharmaceutical formulation containing thienopyrimidines and antithrombotics, calcium antagonists, prostaglandins or prostaglandin derivatives |
US20040101517A1 (en) * | 2001-02-01 | 2004-05-27 | Bolton Anthony E. | Blood brain barrier modulation using stressed autologous blood cells |
US20050031651A1 (en) * | 2002-12-24 | 2005-02-10 | Francine Gervais | Therapeutic formulations for the treatment of beta-amyloid related diseases |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129140A (en) | 1984-11-27 | 1986-06-17 | Nitto Electric Ind Co Ltd | Pharmaceutical composition |
US4940556A (en) | 1986-01-30 | 1990-07-10 | Syntex (U.S.A.) Inc. | Method of preparing long acting formulation |
EP0294601B1 (en) | 1987-06-12 | 1993-01-20 | American Cyanamid Company | Transdermal delivery of pharmaceuticals |
DE3871343D1 (en) | 1987-11-25 | 1992-06-25 | American Cyanamid Co | SYSTEM FOR THE DELAYED (CONTROLLED) RELEASE OF SUBSTITUTED DIHYDROPYRIDINE CALCIUMANTAGONISTS. |
JP2867462B2 (en) | 1989-09-12 | 1999-03-08 | 藤沢薬品工業株式会社 | Transdermal formulation |
JPH03117658A (en) | 1989-09-29 | 1991-05-20 | Mazda Motor Corp | External combustion type rotary piston engine |
JP2920956B2 (en) | 1989-10-06 | 1999-07-19 | 藤沢薬品工業株式会社 | Long-acting tablets containing nilvadipine |
JPH06500554A (en) | 1990-08-23 | 1994-01-20 | ザ・チルドレンズ・メディカル・センター・コーポレイション | Treatment of AIDS-related dementia, myelopathy, peripheral neuropathy, and vision loss |
WO1993005770A1 (en) | 1991-09-20 | 1993-04-01 | Fujisawa Pharmaceutical Co., Ltd. | Long-acting preparation |
JPH05139974A (en) | 1991-11-26 | 1993-06-08 | Fujisawa Pharmaceut Co Ltd | Production of easily soluble solid dispersion containing dihydropyridine a substance |
DE4141646A1 (en) | 1991-12-17 | 1993-06-24 | Klinge Co Chem Pharm Fab | Synergistic compsn. comprising nilvadipine and captopril - for treatment of hypertension, angina pectoris and coronary insufficiency |
DE4229805A1 (en) * | 1992-09-07 | 1994-03-24 | Werner E G Prof Dr Mueller | Treating diseases caused by prion proteins or analogues - with calcium channel antagonists or NMDA antagonists, having cytoprotective effect on brain neurons |
CA2125251C (en) | 1993-06-07 | 2005-04-26 | Yoshiyuki Inada | A pharmaceutical composition for angiotensin ii-mediated diseases |
KR100222306B1 (en) | 1996-11-20 | 1999-10-01 | 이병언 | A fast effective nilbadipine preparation and the preparation process thereof |
WO1999063992A1 (en) | 1998-06-08 | 1999-12-16 | Advanced Medicine, Inc. | Novel calcium channel drugs and uses |
ES2552639T3 (en) | 1998-07-10 | 2015-12-01 | Novartis Pharma Ag | Combined use of valsartan and calcium channel blockers for therapeutic purposes |
EP1260232A1 (en) | 2000-03-03 | 2002-11-27 | Fujisawa Pharmaceutical Co., Ltd. | Remedies for malignant tumor-concomitant neurosis and azoor or analogous diseases thereof |
MXPA02010040A (en) | 2000-04-11 | 2004-10-15 | Sankyo Co | Stabilized pharmaceutical compositions containing calcium channel blockers. |
JP2001335483A (en) | 2000-05-30 | 2001-12-04 | Nichiko Pharmaceutical Co Ltd | Nilvadipine-containing pharmaceutical peparation |
JP3968687B2 (en) | 2000-09-13 | 2007-08-29 | 東和薬品株式会社 | Easy absorbable nilvadipine tablets |
JP3470096B2 (en) | 2000-09-19 | 2003-11-25 | 沢井製薬株式会社 | Nilvadipine-containing easily soluble solid preparation and method for producing the same |
PE20040468A1 (en) | 2002-05-17 | 2004-09-14 | Novartis Ag | ORGANIC COMPOUND COMBINATION |
WO2004034963A2 (en) | 2002-05-17 | 2004-04-29 | Eisai Co., Ltd. | Methods and compositions using cholinesterase inhibitors |
EG24716A (en) | 2002-05-17 | 2010-06-07 | Novartis Ag | Combination of organic compounds |
RU2316318C2 (en) | 2002-05-17 | 2008-02-10 | Новартис Аг | Pharmaceutical composition including renin inhibitor, calcium channel blocker and diuretic |
JP2003146878A (en) | 2002-11-22 | 2003-05-21 | Sawai Pharmaceutical Co Ltd | Readily soluble solid preparation containing nilvadipine, and method for producing the same |
EP1581203A1 (en) * | 2002-12-24 | 2005-10-05 | Neurochem (International) Limited | Therapeutic formulations for the treatment of beta-amyloid related diseases |
JP2004002460A (en) | 2003-07-29 | 2004-01-08 | Towa Yakuhin Kk | Method for production of readily absorbable nilvadipine tablets |
-
2004
- 2004-05-17 DK DK04752432.7T patent/DK1628663T3/en active
- 2004-05-17 JP JP2006533144A patent/JP4971794B2/en not_active Expired - Lifetime
- 2004-05-17 CA CA2525970A patent/CA2525970C/en not_active Expired - Fee Related
- 2004-05-17 US US10/847,630 patent/US7732467B2/en active Active
- 2004-05-17 EP EP04752432A patent/EP1628663B1/en not_active Expired - Lifetime
- 2004-05-17 AT AT04752432T patent/ATE437641T1/en not_active IP Right Cessation
- 2004-05-17 WO PCT/US2004/015417 patent/WO2004110354A2/en active Search and Examination
- 2004-05-17 CN CNB2004800171974A patent/CN100444840C/en not_active Expired - Fee Related
- 2004-05-17 ES ES04752432T patent/ES2334029T3/en not_active Expired - Lifetime
- 2004-05-17 DE DE602004022284T patent/DE602004022284D1/en not_active Expired - Lifetime
-
2006
- 2006-08-31 HK HK06109711.3A patent/HK1092358A1/en not_active IP Right Cessation
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4338322A (en) * | 1975-07-02 | 1982-07-06 | Fujisawa Pharmaceutical Co., Ltd. | 1,4-Dihydropyridine derivatives, pharmaceutical compositions containing same and methods of effecting vasodilation using same |
US4654206A (en) * | 1983-08-11 | 1987-03-31 | Fujisawa Pharmaceutical Co., Ltd. | Fast release solid preparation of dihydropyridine a compound |
US4859688A (en) * | 1984-12-10 | 1989-08-22 | Fujisawa Pharmaceutical Co., Ltd. | Method for the treatment and prevention of arteriosclerosis with nitrophenyl substituted dihydropyridines |
US4992445A (en) * | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
US5001139A (en) * | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
US5114946A (en) * | 1987-06-12 | 1992-05-19 | American Cyanamid Company | Transdermal delivery of pharmaceuticals |
US5045553A (en) * | 1987-06-24 | 1991-09-03 | Fujisawa Pharmaceutical Company, Ltd. | Pharmaceutical composition for percutaneous drug absorption and percutaneous drug absorption promoter |
US4820720A (en) * | 1987-08-24 | 1989-04-11 | Alza Corporation | Transdermal drug composition with dual permeation enhancers |
US5160734A (en) * | 1987-11-25 | 1992-11-03 | American Cyanamid Company | Sustained release delivery system for substituted dihydropyridine calcium channel blockers |
US4902514A (en) * | 1988-07-21 | 1990-02-20 | Alza Corporation | Dosage form for administering nilvadipine for treating cardiovascular symptoms |
US5053419A (en) * | 1989-03-31 | 1991-10-01 | The Children's Medical Center Corporation | Treatment of AIDS dementia, myelopathy and blindness |
US5340591A (en) * | 1992-01-24 | 1994-08-23 | Fujisawa Pharmaceutical Co., Ltd. | Method of producing a solid dispersion of the sparingly water-soluble drug, nilvadipine |
US20010011098A1 (en) * | 1993-06-07 | 2001-08-02 | Yoshiyuki Inada | Pharmaceutical composition for angiotensin II-mediated diseases |
US6420405B2 (en) * | 1993-06-07 | 2002-07-16 | Takeda Chemical Industries, Ltd. | Pharmaceutical composition for angiotensin II-mediated diseases |
US6818200B2 (en) * | 1994-03-25 | 2004-11-16 | Isotechnika Inc. | Method of using deuterated calcium channel blockers |
US20020094995A1 (en) * | 1994-03-25 | 2002-07-18 | Foster Robert T. | Method of using deuterated calcium channel blockers |
US6294544B1 (en) * | 1996-04-26 | 2001-09-25 | Fujisawa Pharmaceutical Co., Ltd. | Peripheral circulation improvers for ophthalmic tissues containing dihydropyridines |
US6271259B1 (en) * | 1996-05-07 | 2001-08-07 | Ito En, Ltd. | Method for improving the brain function, inhibiting glutamate excitotoxicity and rescuing from neuronal death |
US20030044845A1 (en) * | 1998-06-08 | 2003-03-06 | Jenkins Thomas E. | Novel therapeutic agents for membrane transporters |
US20030055027A1 (en) * | 2000-07-27 | 2003-03-20 | G. D. Searle & Co. | Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of congestive heart failure |
US20020042405A1 (en) * | 2000-07-27 | 2002-04-11 | Schuh Joseph R. | Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of congestive heart failure |
US20040063730A1 (en) * | 2000-12-19 | 2004-04-01 | Hans-Michael Eggenweiler | Pharmacuetical formulation comprising puyrazolo[4,-3-d]pyrimidines and antithrombotics, calcium antagonists, or prostaglandins or prostaglandin derivatives |
US20040072846A1 (en) * | 2000-12-19 | 2004-04-15 | Hans-Michael Eggenweiler | Pharmaceutical formulation containing thienopyrimidines and antithrombotics, calcium antagonists, prostaglandins or prostaglandin derivatives |
US20030139801A1 (en) * | 2000-12-22 | 2003-07-24 | Avantec Vascular Corporation | Delivery of therapeutic capable agents |
US20040101517A1 (en) * | 2001-02-01 | 2004-05-27 | Bolton Anthony E. | Blood brain barrier modulation using stressed autologous blood cells |
US20030013699A1 (en) * | 2001-05-25 | 2003-01-16 | Davis Harry R. | Methods for treating alzheimer's disease and/or regulating levels of amyloid beta peptides in a subject |
US20050031651A1 (en) * | 2002-12-24 | 2005-02-10 | Francine Gervais | Therapeutic formulations for the treatment of beta-amyloid related diseases |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070037855A1 (en) * | 2005-01-07 | 2007-02-15 | Mullan Michael J | Compounds for inhibiting beta-amyloid production and methods of identifying the compounds |
US20070185130A1 (en) * | 2005-01-07 | 2007-08-09 | Roskamp Research Llc | Compounds for inhibiting beta-amyloid production and methods of identifying the compounds |
US20070191409A1 (en) * | 2005-01-07 | 2007-08-16 | Roskamp Research Llc | Compounds for inhibiting beta-amyloid production and methods of identifying the compounds |
US20060188938A1 (en) * | 2005-01-07 | 2006-08-24 | Mullan Michael J | Compounds for inhibiting beta-amyloid production and methods of identifying the compounds |
US20100215735A1 (en) * | 2005-01-07 | 2010-08-26 | Mullan Michael J | Compounds for Inhibiting Beta-Amyloid Production and Methods of Identifying the Compounds |
US20100216784A1 (en) * | 2005-01-07 | 2010-08-26 | Mullan Michael J | Compounds for Inhibiting Beta-Amyloid Production and Methods of Identifying the Compounds |
US20090017112A1 (en) * | 2006-03-01 | 2009-01-15 | Roskamp Research Llc | Compounds for Inhibiting Beta-Amyloid Production |
US20100119599A1 (en) * | 2006-12-08 | 2010-05-13 | Archer Pharmaceuticals, Inc. | Polyhydroquinoline compounds and dihydropyridine compounds for inhibiting beta-amyloid production |
US20110236343A1 (en) * | 2007-09-28 | 2011-09-29 | Ndsu Research Foundation | Antimicrobial polysiloxane materials containing metal species |
WO2009046338A1 (en) * | 2007-10-05 | 2009-04-09 | Roskamp Research Llc | Method for increasing cerebral blood flow with (+)-nilvadipine enantiomer |
US20100183711A1 (en) * | 2007-10-05 | 2010-07-22 | Mullan Michael J | Pharmaceutical compositions for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis |
EP2214666A1 (en) * | 2007-10-05 | 2010-08-11 | Alzheimer's Institute of America, Inc. | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
US20100093810A1 (en) * | 2007-10-05 | 2010-04-15 | Alzheimer's Institute Of America, Inc. | Pharmaceutical Compositions for Reducing Amyloid Deposition, Amyloid Neurotoxicity, and Microgliosis |
WO2009046323A1 (en) * | 2007-10-05 | 2009-04-09 | Roskamp Research Llc | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
EP2214666A4 (en) * | 2007-10-05 | 2010-12-08 | Alzheimer S Inst Of America In | METHOD FOR REDUCING AMYLOID DEPOSITION, AMYLOID NEUROTOXICITY AND MICROGLIOSIS WITH (-) - NILVADIPINE ENANTIOMER |
US20090092667A1 (en) * | 2007-10-05 | 2009-04-09 | Roskamp Research Llc | Method for Reducing Amyloid Deposition, Amyloid Neurotoxicity, and Microgliosis with (-)-Nilvadipine Enantiomer |
US8236347B2 (en) | 2007-10-05 | 2012-08-07 | Alzheimer's Institute Of America, Inc. | Pharmaceutical compositions for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis |
US8236346B2 (en) | 2007-10-05 | 2012-08-07 | Alzheimer's Institute of America, Inc | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
KR101417200B1 (en) * | 2007-10-05 | 2014-08-01 | 알츠하이머즈 인스티튜트 오브 아메리카, 인크. | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
AU2008308519B2 (en) * | 2007-10-05 | 2014-09-11 | Alzheimer's Institute Of America, Inc. | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
TWI500422B (en) * | 2007-10-05 | 2015-09-21 | Alzheimer S Inst Of America Inc | Method for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (-)-nilvadipine enantiomer |
Also Published As
Publication number | Publication date |
---|---|
CN100444840C (en) | 2008-12-24 |
CA2525970C (en) | 2011-03-22 |
CA2525970A1 (en) | 2004-12-23 |
WO2004110354A3 (en) | 2005-02-10 |
EP1628663A4 (en) | 2006-05-24 |
DK1628663T3 (en) | 2010-03-08 |
ES2334029T3 (en) | 2010-03-04 |
EP1628663A2 (en) | 2006-03-01 |
US7732467B2 (en) | 2010-06-08 |
EP1628663B1 (en) | 2009-07-29 |
DE602004022284D1 (en) | 2009-09-10 |
JP2007501277A (en) | 2007-01-25 |
HK1092358A1 (en) | 2007-02-09 |
JP4971794B2 (en) | 2012-07-11 |
CN1809352A (en) | 2006-07-26 |
ATE437641T1 (en) | 2009-08-15 |
WO2004110354A2 (en) | 2004-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated Tau-induced pathology in 3× Tg-AD mice | |
Cai et al. | Physiological roles of β-amyloid in regulating synaptic function: implications for AD pathophysiology | |
US20100324079A1 (en) | Medicament for prophylaxis and treatment of Alzheimer disease | |
US7732467B2 (en) | Method for reducing amyloid deposition, amyloid neurotoxicity and microgliosis | |
US20100267733A1 (en) | Synergistic Modulation of Microglial Activation by Nicotine and THC | |
KR20140019361A (en) | Effective amounts of (3ar)-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indol-5-yl phenylcarbamate and methods thereof | |
US20060223790A1 (en) | Modulation of Microglial by Nicotinic Medications | |
Jhee et al. | β-Amyloid therapies in Alzheimer’s disease | |
KR20090047532A (en) | How to screen for compounds with anti-amyloid properties | |
JP2021502971A (en) | Methods and compositions for improving lysosomal function and treating neurodegenerative diseases | |
JP5411145B2 (en) | Methods for reducing amyloid deposition, amyloid neurotoxicity, and microgliosis with (−)-nilvadipine enantiomers | |
US20100093810A1 (en) | Pharmaceutical Compositions for Reducing Amyloid Deposition, Amyloid Neurotoxicity, and Microgliosis | |
WO2009046338A1 (en) | Method for increasing cerebral blood flow with (+)-nilvadipine enantiomer | |
US7674597B2 (en) | Signaling intermediates in an in vitro model of Alzheimer's disease | |
Martín-Ávila et al. | Clearing truncated tau protein restores neuronal function and prevents microglia activation in tauopathy mice | |
Mori et al. | 12 Pathological Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROSKAMP RESEARCH LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULLAN, MICHAEL J.;PARIS, DANIEL;REEL/FRAME:015125/0832 Effective date: 20040902 Owner name: ROSKAMP RESEARCH LLC,FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULLAN, MICHAEL J.;PARIS, DANIEL;REEL/FRAME:015125/0832 Effective date: 20040902 |
|
AS | Assignment |
Owner name: ALZHEIMER'S INSTITUTE OF AMERICA, INC.,KANSAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROSKAMP FOUNDATION IRREVOCABLE TRUST (D/B/A ROSKAMP INSTITUTE);ROSKAMP RESEARCH LLC;ARCHER PHARMACEUTICALS, INC.;REEL/FRAME:024049/0272 Effective date: 20100129 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ARCHER PHARMACEUTICALS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIA AMERICA, INC.;REEL/FRAME:041233/0541 Effective date: 20170127 Owner name: AIA AMERICA, INC., KANSAS Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS;ASSIGNOR:ARCHER PHARMACEUTICALS, INC.;REEL/FRAME:041689/0945 Effective date: 20170206 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |