US20050005567A1 - Moisture barriers for building construction - Google Patents
Moisture barriers for building construction Download PDFInfo
- Publication number
- US20050005567A1 US20050005567A1 US10/890,542 US89054204A US2005005567A1 US 20050005567 A1 US20050005567 A1 US 20050005567A1 US 89054204 A US89054204 A US 89054204A US 2005005567 A1 US2005005567 A1 US 2005005567A1
- Authority
- US
- United States
- Prior art keywords
- board
- moisture barrier
- building structure
- building
- construction material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 101
- 239000002023 wood Substances 0.000 claims abstract description 82
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 239000004035 construction material Substances 0.000 claims description 38
- 238000009435 building construction Methods 0.000 claims description 28
- 238000009434 installation Methods 0.000 claims description 17
- 239000011120 plywood Substances 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 11
- 229920001971 elastomer Polymers 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000005060 rubber Substances 0.000 claims description 10
- 239000011093 chipboard Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 230000000254 damaging effect Effects 0.000 claims description 3
- 238000009833 condensation Methods 0.000 abstract description 14
- 230000005494 condensation Effects 0.000 abstract description 14
- 238000000576 coating method Methods 0.000 abstract description 13
- 239000011248 coating agent Substances 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 description 30
- 238000009408 flooring Methods 0.000 description 27
- 239000004567 concrete Substances 0.000 description 17
- 239000011121 hardwood Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000009472 formulation Methods 0.000 description 7
- 238000009432 framing Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 241001669679 Eleotris Species 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000011394 gypsum concrete Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- -1 ethylene-butylene Chemical group 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000036561 sun exposure Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 241000256602 Isoptera Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/66—Sealings
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
- E02D31/02—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B5/00—Floors; Floor construction with regard to insulation; Connections specially adapted therefor
- E04B5/02—Load-carrying floor structures formed substantially of prefabricated units
- E04B5/12—Load-carrying floor structures formed substantially of prefabricated units with wooden beams
Definitions
- the subject matter herein relates to building construction materials having moisture barriers for use in building structures.
- Moisture is known to cause warping, cracking, buckling, rotting and other damage to wood building materials in building structures and can create an environment for the growth of mold, mildew and termites in or on the wood.
- Moisture in the form of precipitation or condensation may enter a building structure by penetrating the sides (walls) or the roof; moisture and moisture vapor from ground water and other sources may enter a building structure by penetrating the floor of the structure through concrete slabs or unfinished crawl spaces.
- Newly fabricated building structures are particularly vulnerable to the entry of moisture since it is not usually possible or practical to install complete roofing or exterior wall protection systems immediately after the basic building structure is erected.
- moisture barriers have been developed to prevent damage to building structures.
- conventional moisture barriers suffer from lack of durability in that they degrade upon exposure to moisture, heat, and other conditions that are present in the environment or are created by systems such as radiant heating systems.
- conventional moisture barriers have proven unsatisfactory for use in new construction in that they do not provide adequate protection to enable accelerated building of structural and other systems inside a newly framed building structure. Accordingly, an non-conventional moisture barrier is required that does not degrade over time or with repeated heating and cooling or with exposure to moisture, heat or other environmental factors.
- building construction materials comprise a moisture barrier comprising non-vulcanized, modified rubber.
- the moisture barrier does not degrade over time, especially when exposed to moisture or heating/cooling or freeze/thaw cycles.
- the building construction materials comprise a board to which is permanently adhered a non-vulcanized cured, modified rubber comprising a non-tacky surface.
- building structures which comprise several discrete structural portions, including a roof portion, a floor portion and a wall portion, in which one or more of each of the said portions comprise the building construction materials comprising a moisture barrier as described above.
- FIG. 1 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards.
- the boards are installed directly over a concrete slab having installed a radiant heating system, and the moisture barrier is oriented towards the concrete slab.
- FIG. 2 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards.
- the boards are installed directly over an in floor radiant heating system and the moisture barrier is oriented towards the radiant heating system.
- the radiant heating system is installed over lower subfloor which is installed over a crawl space.
- FIG. 3 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a crawl space and the moisture barrier is oriented towards the crawl space.
- the moisture barrier is made of a rubberized material that is initially in a liquid formulation.
- such formulations have rubber polymers in solution along with solvents such as methylene chloride and petroleum distillates, and other additive. These materials include polymeric rubber, adhesion promoters (agents that enhance binding to the substrate surface), and diluents and thinners (agents that enhance miscibility and reduce viscosity of the liquid solution).
- liquid rubberized coating material formulations include surface acting agents that stabilize the mixture, inert reinforcement powders, and UV (ultraviolet light) protection agents.
- polymeric rubber include: poly-butadiene, poly-isoprene, poly-ethylene-butylene, and polystyrene ethylene-butylene.
- Examples of surface acting agents include: suspending agents, deaerating agents, fume silica, clays, castor oil-based materials, surfactants.
- Examples of adhesion promoters include: silane coupling agents, modified polymeric coupling agents, titinates.
- Examples of inert reinforcement powders include: talc powder, clays, calcium carbonates.
- plasticizers include: DOP and DIBP.
- Examples of diluents and thinners include: organic solvents (aromatic or aliphatic); xylene; kerosene.
- An example of a UV protection additive is tinuvin, made by Ciba Geigy.
- liquid rubberized coatings examples include “Dynatron Dyna-Pro Rubberized Undercoat” and “Mar-Hyde Paintable Rubber Undercoating,” which are commonly used as undercoatings in the automotive and marine industries.
- the liquid rubberized coating material is cured to form a non-tacky surface when it is applied to the wood board.
- the liquid rubberized coating material does not require additional treatment, pressurizing, heating, vulcanizing or other processing steps.
- the moisture barriers are described as having thicknesses that are described in units of “mil.” A mil refers to a unit of length equal to one thousandth of an inch or 0.0254 millimeter.
- the non-vulcanized, cured liquid rubberized materials have been used effectively to prepare moisture barriers having thicknesses from 2 to 22 mil. For use in floors lacking radiant heating systems, thickness of 6 to 8 mil is acceptable. For use with in-floor radiant heating systems, application of these rubberized materials to thicknesses of about 10 to 12 mils provided optimal results.
- roofing systems exposed to normal conditions (wind speed from 10 to 60 mph, sun exposure, moisture, temperature from about ⁇ 10° F. to 110° F.), thicknesses ranging from 8 to 12 mil are acceptable.
- thicknesses from 15 to 20 mil is desirable.
- Rubberized coating materials are applied to boards to provide building construction materials, building structures, and roofing, wall, flooring and deck systems with moisture barriers.
- the materials may be applied in liquid form, by coating dipping or by using brushes, sprayers, squeegees and other means for applying liquids and allowed to dry or cure in ambient environment into a flexible non-tacky solid state permanently attached to the wood board.
- the rubberized materials may also be applied in the form of pre-cured membranes that are permanently affixed to the boards using heat, glue or other bonding methods or agents.
- the moisture barriers are contacted permanently with the surface of the board substrate; optionally, the moisture barriers may be contacted with the surface of the board at least in part through covalent chemical bonds between components of the moisture barrier and components of the board.
- wood board refers to boards used as construction materials that are made of or comprise wood; wood boards may also comprise other materials. Boards have six sides; typically, two sides of a board comprise a large percentage of the overall surface area of the board, and are most alternately referred to as sides or faces; the remaining four sides of a board each comprise a small percentage of the overall surface area of the board, and are alternately referred to as the edges.
- Wood boards that may be used according to the present disclosure include solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board, and the like.
- the wood boards may optionally have a tongue and groove construction or other similar inter-fitting construction for fitting one or more wood boards tightly together.
- the wood boards may be provided in any length or width, and likewise have any of a variety of thickness dimensions. For example, wood boards may have thicknesses of 1 ⁇ 2′′, 3 ⁇ 8′′, 5 ⁇ 8′′, 3 ⁇ 4′′ or 11 ⁇ 8′′.
- the moisture barrier is permanently attached to and entirely covers at least one side of a wood board.
- the moisture barrier entirely covers from one to five sides of the wood board and does not cover any part of one or more of the remaining six sides of the wood board.
- the moisture barrier entirely covers from one to five sides of the wood board, and partially covers one or more of the remaining six sides of the wood board.
- the moisture barrier entirely covers five sides of the wood board and covers only part of the surface of the remaining side of the wood board.
- partially covers and “partially covered,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that only part of the total surface area of a wood board, or only part of a discrete side of a wood board, is covered with the moisture barrier.
- only part of the surfaces means that less than substantially 100% of the total surface of the board is covered with the moisture barrier, however, 100% of any one side may be covered (i.e., entirely covered) so long as at least one side is only partially covered.
- roofing systems may be constructed with the moisture barrier facing the exterior of the building structure so as to limit the entry of moisture into the structure.
- the gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials.
- the roofing systems may also comprise other layers such as styrofoam insulation or thermal blanket materials.
- the final, surface layer of the roofing system may comprise wood, asphalt shingles, slate, tile, metal, or other finishing materials.
- Wall systems may be constructed with the moisture barrier facing the exterior of the building structure.
- the gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials.
- the wall system may also comprise other layers such as styrofoam or blown insulation.
- the final, surface layer of the wall system may comprise wood, metal, or vinyl siding, shakes or shingles, stone, or brick veneer, lathe and stucco siding, or other finishing materials.
- Flooring systems may be supported by structural joists, or floor trusses, which in turn may be installed over either a concrete slab or a crawl space, and supported by some type of concrete slab so as to elevate the structural joists and flooring system above the ground.
- a flooring system may further include a “finished” hardwood stone, carpet, tile, vinyl, or cork floor above a first wood subfloor.
- the finished floor may overlay an optional radiant heating system above a second wood subfloor, which is supported by the structural joists.
- radiant heating systems for flooring one example is a radiant heating system that includes lightweight concrete or Gypcrete sections having heat pipes displaced throughout the length of the lightweight concrete or Gypcrete sections. The radiant heating system keeps the flooring system, and consequently the building structure, warm during cold temperature seasons.
- Flooring systems may be installed with the moisture barrier facing either towards or away from the source of moisture.
- the construction material with the moisture barrier is installed below a hardwood floor, either directly over a slab, crawl space or in a floor heating system.
- the moisture barrier is installed in two layers.
- a lower sub floor is installed over a concrete or Gypcrete slab or crawl pace with the moisture barrier facing away from the slab or crawl space.
- An in floor radiant heating system is then installed over this lower sub floor using lightweight concrete to encase the heating system.
- Above the encased heating system an upper sub floor is installed, with the moisture barrier facing toward the heating system.
- the hardwood flooring is installed above this upper sub floor.
- Foundation (below grade): Plywood foundations may be installed with the moisture barrier facing the exterior of the building structure. Seams between the wood boards must be sealed with tape or a flashing membrane, and the wood boards are nailed to studs, such as 2 ⁇ 6 studs, which are anchored to the structure footing using anchor bolts.
- Deck systems may be constructed with 3 ⁇ 4′′ or 11 ⁇ 8′′ tongue and groove plywood or OSB boards with moisture barriers and installed to form the deck subfloor, with the moisture barrier facing the elements. Seams between the edges of the boards are sealed with tape or flashing membrane. Preferably, membrane is applied along all vertical surfaces and extending from 12′′ to 18′′ on to the deck surface. After coated plywood is installed and taped to prevent leaking an additional layer (membrane) is optionally applied to overlap all seams by at least 6′′. A 1 ⁇ 4′′ thick protection mat is installed over optional second membrane. Sleeper system, 11 ⁇ 2′′ ⁇ 11 ⁇ 2′′, is installed on top of protection mat. Wood decking is attached to sleeper system using attachment means to avoid penetrating the moisture barriers below. If stone or other material is used for the finished deck surface, the sleeper system is replaced with a setting bed (made, for example, with mortar mix) to set the stone or other material.
- a setting bed made, for example, with mortar mix
- Interior water exposed spaces such as showers, whirlpools, tubs and the like may be constructed using building construction materials with moisture barriers. The materials are installed with the moisture barriers facing toward the moisture conditions.
- the building construction materials comprising moisture barriers as provided herein can be used to effectively “dry-in” framed structures so as to shorten the time from framing to roughing-in.
- building structures are constructed by first building a frame (“framing”) then by further build up of the various portions of the structure, such as the floors, roof, walls, facia and soffets.
- the next layer of the structure which usually comprises wood boards that are unfinished and are not intended for exposure to the environmental elements for extended periods of time, as well as other components such as, for example, the exterior windows and doors and brick, stone or concrete, are installed.
- weatherproofed roofing and siding materials are installed. After installation of weatherproofed roofing materials (and optionally, siding materials), the interior work is begun with installation of plumbing, electrical and HVAC systems (“roughing-in”).
- the period of time that elapses from framing to roughing-in ranges from about 2 weeks to about 6 weeks for a two-story, wood-based building structure of 4,000 to 10,000 square feet or more.
- the long delay between framing and interior work is almost exclusively due to the need to avoid the damaging effects of the environmental elements, including wind, precipitation and sunlight, on interior systems, such as electrical wiring.
- a dried-in structure may be achieved much earlier in the construction process by use of construction materials protected with moisture barriers, as described herein. These construction materials may be installed immediately during framing of the structure.
- the installed construction materials When used in conjunction with appropriate flashing and tape materials (for example, Ultra-Shield EPDM flashing membrane or similar products), the installed construction materials will effectively bar the penetration of the elements, particularly moisture, into the structure, thus permitting roughing-in to occur much sooner after framing, or approximately 2-4 weeks earlier than usual.
- appropriate flashing and tape materials for example, Ultra-Shield EPDM flashing membrane or similar products
- a suitably dried-in structure will have the construction materials with the moisture barrier installed to form at least the roof portion. Either or both the wall and floor portions may also have the construction materials installed. These dried-in structures are “intermediate building structures” in that additional layers such as siding, roofing materials, and flooring components remain to be installed. Dried-in structures, and the methods for making them, permit acceleration of the building schedule by permitting rough-in to commence early.
- a building structure 234 having a flooring system 202 including an adequate moisture barrier is shown in FIG. 1 .
- the moisture and condensation barrier 236 is coated onto the undersides and the edges of a plurality of wood boards (such as plywood, chipboard, particle board, etc.) that form a wood subfloor 238 under the hardwood floor 206 .
- the moisture and condensation barrier 236 generally comprises a rubberized material that can be sprayed, painted or otherwise coated onto the wood board for the subfloor 238 , with application occurring either in the field before or after installation, or elsewhere before installation.
- the moisture and condensation barrier 236 can then be allowed to dry or cure to form a flexible non-tacky solid that is permanently attached to the wood board, is resistant to penetration by water, is durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles) and can allow nails and staples to pass through in order to affix the wood board for the subfloor 238 to other components of the building structure 234 , if needed.
- the flooring system 202 is shown placed between the walls 210 above the concrete slab 230 supported above the ground 216 .
- the concrete slab 230 also serves as an optional radiant heating system having the heat pipes 218 displaced throughout the concrete slab 213 .
- the moisture and condensation barrier 236 is installed in the flooring system 202 oriented away from the interior of the building structure 234 .
- the moisture and condensation barrier 236 may be installed in the flooring system 202 oriented toward the interior of the building structure 234 .
- the moisture and condensation barrier 236 may be installed on two levels of wood subfloor 238 with one level being oriented toward and one level being oriented away from the interior of the building structure 234 .
- the same flooring system 202 with the moisture and condensation barrier 236 coated onto the wood boards of the wood subfloor 238 may also be incorporated into a building structure (not shown) not having the radiant heating system.
- the flooring system 202 may be installed into a building structure (not shown) having a concrete slab on grade that is positioned directly on the ground 216 .
- Bondo formulation 9706 was used to form the moisture barrier 236 .
- Bondo formulation 9706 is only one example of a non-vulcanized rubber material that may be used according to this invention. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor 238 under the hardwood floor 206 .
- a building structure 240 having a flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 2 .
- the moisture and condensation barrier 236 is coated onto the wood boards that form the wood subfloor 238 under the hardwood floor 206 .
- the flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete or Gypcrete slab 230 and the structural joists 228 .
- the embodiment also includes the radiant heating system 224 (having the heat pipes 218 and sleeper system 229 ) supported on the second wood subfloor 226 in the flooring system 202 .
- Bondo formulation 9706 was used to form the moisture barrier, and was coated onto the wood boards that form the wood subfloor under the hardwood floor. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approx 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor under the hardwood floor, with the moisture barrier facing towards the heating system.
- a building structure 242 flooring system 202 including an adequate moisture barrier 236 is shown in FIG. 3 .
- the moisture and condensation barrier 236 is coated onto the plurality of wood boards that form the wood subfloor 238 under the hardwood floor 206 .
- the flooring system 202 is shown placed between the walls 210 and the flooring system 202 is elevated above the ground 216 by the concrete slab 230 and the structural joists 228 .
- the embodiment does not include a radiant heating system, so the wood subfloor 238 having the coated-on moisture and condensation barrier 236 is supported directly on the structural joists 228 .
- Previously-installed hardwood flooring was removed to reveal the sub-floor 238 , which was installed on structural joists 228 over an earthen crawl space (ground 216 ).
- Bondo formulation 9706 was used to form the moisture barrier, and was coated directly on to the upper surface of the wood boards of the installed sub floor.
- the liquid rubberized coating material was coated onto to a thickness of approximately 6-8 mil using a roller and approximately 3 coats were applied.
- the moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid.
- a hard wood floor 206 was installed over the coated sub floor 238 boards.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- General Engineering & Computer Science (AREA)
- Floor Finish (AREA)
Abstract
Moisture and condensation barriers for protecting wood from damage in building structures, particularly wood that is or may be exposed to moisture from internal or external sources, wherein such barriers comprise a non-vulcanized liquid rubberized coating material coated on to one or more portions of wood members of building structures.
Description
- This application claims priority to U.S. patent application Ser. No. 09/874,801, filed Jun. 5, 2001, and U.S. Provisional Patent Application 60/486,542, filed Jul. 11, 2003, each of which is incorporated by reference herein in its entirety.
- The subject matter herein relates to building construction materials having moisture barriers for use in building structures.
- Moisture is known to cause warping, cracking, buckling, rotting and other damage to wood building materials in building structures and can create an environment for the growth of mold, mildew and termites in or on the wood. Moisture in the form of precipitation or condensation may enter a building structure by penetrating the sides (walls) or the roof; moisture and moisture vapor from ground water and other sources may enter a building structure by penetrating the floor of the structure through concrete slabs or unfinished crawl spaces. Newly fabricated building structures are particularly vulnerable to the entry of moisture since it is not usually possible or practical to install complete roofing or exterior wall protection systems immediately after the basic building structure is erected. The potentially damaging effects of moisture is a particular impediment to the progress of building, since interior building work cannot proceed prior to the installation of appropriate moisture barriers on the roof and other portions of a framed building structure. Moisture and condensation are also a problem in building structures having radiant heating systems. Condensation that forms as a result of frequent cycling of the systems and moisture released through leaks or ruptures in the systems can cause serious damage to the floor and other portions of a building structure.
- Various types of moisture barriers have been developed to prevent damage to building structures. However, conventional moisture barriers suffer from lack of durability in that they degrade upon exposure to moisture, heat, and other conditions that are present in the environment or are created by systems such as radiant heating systems. Additionally, conventional moisture barriers have proven unsatisfactory for use in new construction in that they do not provide adequate protection to enable accelerated building of structural and other systems inside a newly framed building structure. Accordingly, an non-conventional moisture barrier is required that does not degrade over time or with repeated heating and cooling or with exposure to moisture, heat or other environmental factors.
- In accordance with the present disclosure, building construction materials are provided that comprise a moisture barrier comprising non-vulcanized, modified rubber. The moisture barrier does not degrade over time, especially when exposed to moisture or heating/cooling or freeze/thaw cycles. The building construction materials comprise a board to which is permanently adhered a non-vulcanized cured, modified rubber comprising a non-tacky surface.
- Also provided are building structures which comprise several discrete structural portions, including a roof portion, a floor portion and a wall portion, in which one or more of each of the said portions comprise the building construction materials comprising a moisture barrier as described above.
- Also provided are methods for constructing building structures wherein one or more portions of the structures are constructed with a building construction material that comprises a moisture barrier as described above.
- Additional features and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The features and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention, and together with the description, serve to explain the principles of the invention.
-
FIG. 1 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a concrete slab having installed a radiant heating system, and the moisture barrier is oriented towards the concrete slab. -
FIG. 2 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over an in floor radiant heating system and the moisture barrier is oriented towards the radiant heating system. The radiant heating system is installed over lower subfloor which is installed over a crawl space. -
FIG. 3 is a cross sectional view of a floor portion of a building structure comprising a moisture barrier coated onto the bottom side and at least two edge sides of subfloor boards. The boards are installed directly over a crawl space and the moisture barrier is oriented towards the crawl space. - Moisture Barriers made with Liquid Rubberized Coating Materials
- The moisture barrier is made of a rubberized material that is initially in a liquid formulation. Generically, such formulations have rubber polymers in solution along with solvents such as methylene chloride and petroleum distillates, and other additive. These materials include polymeric rubber, adhesion promoters (agents that enhance binding to the substrate surface), and diluents and thinners (agents that enhance miscibility and reduce viscosity of the liquid solution). Preferably, liquid rubberized coating material formulations include surface acting agents that stabilize the mixture, inert reinforcement powders, and UV (ultraviolet light) protection agents. Examples of polymeric rubber include: poly-butadiene, poly-isoprene, poly-ethylene-butylene, and polystyrene ethylene-butylene. Examples of surface acting agents include: suspending agents, deaerating agents, fume silica, clays, castor oil-based materials, surfactants. Examples of adhesion promoters include: silane coupling agents, modified polymeric coupling agents, titinates. Examples of inert reinforcement powders include: talc powder, clays, calcium carbonates. Examples of plasticizers include: DOP and DIBP. Examples of diluents and thinners include: organic solvents (aromatic or aliphatic); xylene; kerosene. An example of a UV protection additive is tinuvin, made by Ciba Geigy.
- Examples of commercially available liquid rubberized coatings include “Dynatron Dyna-Pro Rubberized Undercoat” and “Mar-Hyde Paintable Rubber Undercoating,” which are commonly used as undercoatings in the automotive and marine industries.
- The liquid rubberized coating material is cured to form a non-tacky surface when it is applied to the wood board. For curing, the liquid rubberized coating material does not require additional treatment, pressurizing, heating, vulcanizing or other processing steps. The moisture barriers are described as having thicknesses that are described in units of “mil.” A mil refers to a unit of length equal to one thousandth of an inch or 0.0254 millimeter. The non-vulcanized, cured liquid rubberized materials have been used effectively to prepare moisture barriers having thicknesses from 2 to 22 mil. For use in floors lacking radiant heating systems, thickness of 6 to 8 mil is acceptable. For use with in-floor radiant heating systems, application of these rubberized materials to thicknesses of about 10 to 12 mils provided optimal results. For roofing systems exposed to normal conditions (wind speed from 10 to 60 mph, sun exposure, moisture, temperature from about −10° F. to 110° F.), thicknesses ranging from 8 to 12 mil are acceptable. For extreme weather conditions (wind speed at or above 60 mph, sun exposure, moisture, temperature from about −40° F. to 180° F.), or for extended exposure to normal conditions (i.e., up to about 90 days), thicknesses from 15 to 20 mil is desirable.
- Preparing Construction Materials having Rubberized Moisture Barriers
- Rubberized coating materials are applied to boards to provide building construction materials, building structures, and roofing, wall, flooring and deck systems with moisture barriers. The materials may be applied in liquid form, by coating dipping or by using brushes, sprayers, squeegees and other means for applying liquids and allowed to dry or cure in ambient environment into a flexible non-tacky solid state permanently attached to the wood board. The rubberized materials may also be applied in the form of pre-cured membranes that are permanently affixed to the boards using heat, glue or other bonding methods or agents. In either case, the moisture barriers are contacted permanently with the surface of the board substrate; optionally, the moisture barriers may be contacted with the surface of the board at least in part through covalent chemical bonds between components of the moisture barrier and components of the board.
- The term “wood board” as used herein refers to boards used as construction materials that are made of or comprise wood; wood boards may also comprise other materials. Boards have six sides; typically, two sides of a board comprise a large percentage of the overall surface area of the board, and are most alternately referred to as sides or faces; the remaining four sides of a board each comprise a small percentage of the overall surface area of the board, and are alternately referred to as the edges.
- Wood boards that may be used according to the present disclosure include solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board, and the like. The wood boards may optionally have a tongue and groove construction or other similar inter-fitting construction for fitting one or more wood boards tightly together. The wood boards may be provided in any length or width, and likewise have any of a variety of thickness dimensions. For example, wood boards may have thicknesses of ½″, ⅜″, ⅝″, ¾″ or 1⅛″.
- The moisture barrier is permanently attached to and entirely covers at least one side of a wood board. Optionally, the moisture barrier entirely covers from one to five sides of the wood board and does not cover any part of one or more of the remaining six sides of the wood board. Optionally, the moisture barrier entirely covers from one to five sides of the wood board, and partially covers one or more of the remaining six sides of the wood board. Preferably, the moisture barrier entirely covers five sides of the wood board and covers only part of the surface of the remaining side of the wood board.
- The terms “partially covers” and “partially covered,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that only part of the total surface area of a wood board, or only part of a discrete side of a wood board, is covered with the moisture barrier.
- The term “entirely covers,” as used herein to describe the extent of coverage of a discrete side of a wood board with a moisture barrier, means that substantially 100% of the surface area of a discrete side of a wood board is covered with the moisture barrier.
- The term “only part of the surfaces,” as used herein to describe the extent of coverage of the surfaces of a wood board with a moisture barrier, means that less than substantially 100% of the total surface of the board is covered with the moisture barrier, however, 100% of any one side may be covered (i.e., entirely covered) so long as at least one side is only partially covered.
- Installation of Building Construction Materials having Rubberized Moisture Barriers Roofing Installation
- Roofing systems may be constructed with the moisture barrier facing the exterior of the building structure so as to limit the entry of moisture into the structure. The gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials. The roofing systems may also comprise other layers such as styrofoam insulation or thermal blanket materials. The final, surface layer of the roofing system may comprise wood, asphalt shingles, slate, tile, metal, or other finishing materials.
- Walls and Siding Installation
- Wall systems may be constructed with the moisture barrier facing the exterior of the building structure. The gaps between the construction materials may be sealed with tape, such as flashing membrane, or other appropriate sealing materials. The wall system may also comprise other layers such as styrofoam or blown insulation. The final, surface layer of the wall system may comprise wood, metal, or vinyl siding, shakes or shingles, stone, or brick veneer, lathe and stucco siding, or other finishing materials.
- Flooring Installation
- Flooring systems may be supported by structural joists, or floor trusses, which in turn may be installed over either a concrete slab or a crawl space, and supported by some type of concrete slab so as to elevate the structural joists and flooring system above the ground. A flooring system may further include a “finished” hardwood stone, carpet, tile, vinyl, or cork floor above a first wood subfloor. The finished floor may overlay an optional radiant heating system above a second wood subfloor, which is supported by the structural joists. There are many types of radiant heating systems for flooring; one example is a radiant heating system that includes lightweight concrete or Gypcrete sections having heat pipes displaced throughout the length of the lightweight concrete or Gypcrete sections. The radiant heating system keeps the flooring system, and consequently the building structure, warm during cold temperature seasons.
- Flooring systems may be installed with the moisture barrier facing either towards or away from the source of moisture. The construction material with the moisture barrier is installed below a hardwood floor, either directly over a slab, crawl space or in a floor heating system. In some cases, the moisture barrier is installed in two layers. In such flooring systems, a lower sub floor is installed over a concrete or Gypcrete slab or crawl pace with the moisture barrier facing away from the slab or crawl space. An in floor radiant heating system is then installed over this lower sub floor using lightweight concrete to encase the heating system. Above the encased heating system an upper sub floor is installed, with the moisture barrier facing toward the heating system. The hardwood flooring is installed above this upper sub floor.
- Foundation Installation
- Foundation (below grade): Plywood foundations may be installed with the moisture barrier facing the exterior of the building structure. Seams between the wood boards must be sealed with tape or a flashing membrane, and the wood boards are nailed to studs, such as 2×6 studs, which are anchored to the structure footing using anchor bolts.
- Waterproof Deck Installation
- Deck systems may be constructed with ¾″ or 1⅛″ tongue and groove plywood or OSB boards with moisture barriers and installed to form the deck subfloor, with the moisture barrier facing the elements. Seams between the edges of the boards are sealed with tape or flashing membrane. Preferably, membrane is applied along all vertical surfaces and extending from 12″ to 18″ on to the deck surface. After coated plywood is installed and taped to prevent leaking an additional layer (membrane) is optionally applied to overlap all seams by at least 6″. A ¼″ thick protection mat is installed over optional second membrane. Sleeper system, 1½″×1½″, is installed on top of protection mat. Wood decking is attached to sleeper system using attachment means to avoid penetrating the moisture barriers below. If stone or other material is used for the finished deck surface, the sleeper system is replaced with a setting bed (made, for example, with mortar mix) to set the stone or other material.
- Interior Water Exposed Spaces
- Interior water exposed spaces such as showers, whirlpools, tubs and the like may be constructed using building construction materials with moisture barriers. The materials are installed with the moisture barriers facing toward the moisture conditions.
- Constructing Dried-In, Intermediate Building Structures
- The building construction materials comprising moisture barriers as provided herein can be used to effectively “dry-in” framed structures so as to shorten the time from framing to roughing-in. Traditionally, building structures are constructed by first building a frame (“framing”) then by further build up of the various portions of the structure, such as the floors, roof, walls, facia and soffets. After framing, the next layer of the structure, which usually comprises wood boards that are unfinished and are not intended for exposure to the environmental elements for extended periods of time, as well as other components such as, for example, the exterior windows and doors and brick, stone or concrete, are installed. Thereafter, weatherproofed roofing and siding materials are installed. After installation of weatherproofed roofing materials (and optionally, siding materials), the interior work is begun with installation of plumbing, electrical and HVAC systems (“roughing-in”).
- The period of time that elapses from framing to roughing-in ranges from about 2 weeks to about 6 weeks for a two-story, wood-based building structure of 4,000 to 10,000 square feet or more. The long delay between framing and interior work is almost exclusively due to the need to avoid the damaging effects of the environmental elements, including wind, precipitation and sunlight, on interior systems, such as electrical wiring. A dried-in structure may be achieved much earlier in the construction process by use of construction materials protected with moisture barriers, as described herein. These construction materials may be installed immediately during framing of the structure. When used in conjunction with appropriate flashing and tape materials (for example, Ultra-Shield EPDM flashing membrane or similar products), the installed construction materials will effectively bar the penetration of the elements, particularly moisture, into the structure, thus permitting roughing-in to occur much sooner after framing, or approximately 2-4 weeks earlier than usual.
- A suitably dried-in structure will have the construction materials with the moisture barrier installed to form at least the roof portion. Either or both the wall and floor portions may also have the construction materials installed. These dried-in structures are “intermediate building structures” in that additional layers such as siding, roofing materials, and flooring components remain to be installed. Dried-in structures, and the methods for making them, permit acceleration of the building schedule by permitting rough-in to commence early.
- A
building structure 234 having aflooring system 202 including an adequate moisture barrier is shown inFIG. 1 . In this embodiment, the moisture andcondensation barrier 236 is coated onto the undersides and the edges of a plurality of wood boards (such as plywood, chipboard, particle board, etc.) that form awood subfloor 238 under thehardwood floor 206. The moisture andcondensation barrier 236 generally comprises a rubberized material that can be sprayed, painted or otherwise coated onto the wood board for thesubfloor 238, with application occurring either in the field before or after installation, or elsewhere before installation. The moisture andcondensation barrier 236 can then be allowed to dry or cure to form a flexible non-tacky solid that is permanently attached to the wood board, is resistant to penetration by water, is durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles) and can allow nails and staples to pass through in order to affix the wood board for thesubfloor 238 to other components of thebuilding structure 234, if needed. That product commonly referenced by the trade name “Dynatron (.TM.) Dyna-Pro Rubberized Undercoat” (.TM.) available from Bondo Corporation of Atlanta, Ga., is an acceptable example of such a rubberized material. Additionally, that product commonly referenced by the trade name “Mar-Hyde Paintable Rubber Undercoating” (.TM.) available from Bondo/Mar-Hyde Corporation of Atlanta, Ga. is also an acceptable example of such a rubberized material. Additionally, the product Bondo formulation 9706 can be used. Theflooring system 202 is shown placed between thewalls 210 above theconcrete slab 230 supported above theground 216. Theconcrete slab 230 also serves as an optional radiant heating system having theheat pipes 218 displaced throughout the concrete slab 213. In the embodiment shown inFIG. 1 , the moisture andcondensation barrier 236 is installed in theflooring system 202 oriented away from the interior of thebuilding structure 234. In alternate embodiments (not shown), the moisture andcondensation barrier 236 may be installed in theflooring system 202 oriented toward the interior of thebuilding structure 234. In further embodiments (not shown), the moisture andcondensation barrier 236 may be installed on two levels ofwood subfloor 238 with one level being oriented toward and one level being oriented away from the interior of thebuilding structure 234. Thesame flooring system 202 with the moisture andcondensation barrier 236 coated onto the wood boards of thewood subfloor 238 may also be incorporated into a building structure (not shown) not having the radiant heating system. Likewise, theflooring system 202 may be installed into a building structure (not shown) having a concrete slab on grade that is positioned directly on theground 216. - Commercially available Bondo formulation 9706 was used to form the
moisture barrier 236. Bondo formulation 9706 is only one example of a non-vulcanized rubber material that may be used according to this invention. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form awood subfloor 238 under thehardwood floor 206. - In another embodiment, a
building structure 240 having aflooring system 202 including anadequate moisture barrier 236 is shown inFIG. 2 . In thisflooring system 202 the moisture andcondensation barrier 236 is coated onto the wood boards that form thewood subfloor 238 under thehardwood floor 206. Theflooring system 202 is shown placed between thewalls 210 and theflooring system 202 is elevated above theground 216 by the concrete orGypcrete slab 230 and thestructural joists 228. The embodiment also includes the radiant heating system 224 (having theheat pipes 218 and sleeper system 229) supported on thesecond wood subfloor 226 in theflooring system 202. - Bondo formulation 9706 was used to form the moisture barrier, and was coated onto the wood boards that form the wood subfloor under the hardwood floor. This liquid rubberized coating material was coated onto solid wood boards to a thickness of approximately 6-8 mil. The coating was applied using a roller and approx 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid that was permanently attached to the wood board, was resistant to penetration by water, was durable and not subject to degradation when exposed to water and/or to heating/cooling cycles (e.g. freeze/thaw cycles). The coated boards were installed to form a wood subfloor under the hardwood floor, with the moisture barrier facing towards the heating system.
- A
building structure 242flooring system 202 including anadequate moisture barrier 236 is shown inFIG. 3 . In thisflooring system 202 the moisture andcondensation barrier 236 is coated onto the plurality of wood boards that form thewood subfloor 238 under thehardwood floor 206. Theflooring system 202 is shown placed between thewalls 210 and theflooring system 202 is elevated above theground 216 by theconcrete slab 230 and thestructural joists 228. The embodiment does not include a radiant heating system, so thewood subfloor 238 having the coated-on moisture andcondensation barrier 236 is supported directly on thestructural joists 228. - Previously-installed hardwood flooring was removed to reveal the
sub-floor 238, which was installed onstructural joists 228 over an earthen crawl space (ground 216). Bondo formulation 9706 was used to form the moisture barrier, and was coated directly on to the upper surface of the wood boards of the installed sub floor. The liquid rubberized coating material was coated onto to a thickness of approximately 6-8 mil using a roller and approximately 3 coats were applied. The moisture barrier was then allowed to dry under ambient conditions to form a flexible non-tacky solid. Ahard wood floor 206 was installed over thecoated sub floor 238 boards. - It should be understood that every maximum numerical limitation given throughout this specification will include every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
- While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. In addition, while the present invention has been described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not by way of limitation and the scope of the invention is defined by the appended claims which should be construed as broadly as the prior art will permit.
Claims (27)
1. A building construction material comprising: a wood board; and a moisture barrier having a non-tacky surface and comprising a non-vulcanized, modified rubber, permanently attached to the board and covering only part of the surfaces of the board.
2. A building construction material as recited in claim 1 wherein the moisture barrier has a thickness in a range selected from the group consisting of at least 6 to 8 mil, at least 8 to 12 mil, at least 12 to 14 mil, at least 14 to 18 mil, and at least 18 to 20 mil
3. A building construction material as recited in claim 2 wherein the moisture barrier entirely covers the surface of only one side of the wood board.
4. A building construction material as recited in claim 2 wherein the moisture barrier entirely covers the surfaces at least one but not more than five sides of the wood board.
5. A building construction material as recited in any one of claims 1-4 wherein said wood board is selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
6. A building structure having a floor portion, a wall portion, and a roof portion, wherein said roof portion comprises a building construction material as recited in claim 1 , said building construction material having a moisture barrier that is at least 6 to 20 mil thick.
7. A building structure as recited in claim 6 wherein said floor portion comprises a building construction material as recited in claim 1 , said building construction material having a moisture barrier that is at least 6 to 12 mil thick.
8. A building structure as recited in claim 6 wherein said wall portion comprises a building construction material as recited in claim 1 , said building construction material having a moisture barrier that is at least 6 to 12 mil thick.
9. A building structure having a floor portion, a wall portion, and a roof portion, wherein at least one portion of said building structure comprises a plurality of wood boards which have a moisture barrier permanently attached to only part of the surfaces, and wherein said moisture barrier has a non-tacky surface and comprises a non-vulcanized, modified rubber.
10. A building structure as recited in claim 9 wherein the roof portion comprises a plurality of wood boards having a moisture barrier that is at least 18 to 20 mil thick, and wherein the floor portion comprises a plurality of boards having a moisture barrier that is at least 8 to 10 mil thick, and wherein the wall portion comprises a plurality of wood boards having a moisture barrier that is at least 6 to 12 mil thick.
11. A building structure as recited in any one of claims 6-10, wherein the moisture barrier is permanently attached to the wood board prior to its installation in the building structure.
12. A building structure as recited in any one of claims 6-10 wherein said wood boards are selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
13. A method of protecting a framed building structure from the damaging effects of moisture, comprising:
providing a building structure frame comprising a floor portion, a wall portion, and a roof portion, and having an interior space defined by the floor, wall and roof portions;
providing a building construction material comprising a board, and a moisture barrier having a non-tacky surface and comprising a non-vulcanized, cured liquid rubberized material, wherein said material is permanently attached to the board and covers only part of the surfaces of the board; and
combining said building construction material with said building structure frame to form an intermediate building structure, wherein the building construction material is installed on the building structure frame to form part of one or more of the roof, floor or wall portions of the building structure.
14. A method as recited in claim 13 wherein the building construction material is installed to form part of the roof portion, with the moisture barrier facing away from the interior space.
15. A method as recited in claim 13 wherein the building construction material is installed to form part of the wall portion with the moisture barrier facing away from the interior space.
16. A method as recited in claim 13 wherein the building construction material is installed to form part of the floor portion, with the moisture barrier facing toward the interior space.
17. A method as recited in claim 13 wherein the building construction material is installed to form part of the wall portion, with the moisture barrier facing toward the interior space.
18. A method as recited in claim 13 wherein the building construction material is installed to form part of the floor portion, with the moisture barrier facing away from the interior space.
19. A building structure having an interior portion which is exposed to moisture conditions, wherein at said interior portion of said building structure comprises a plurality of wood boards which have a moisture barrier permanently attached to only part of the surfaces, and wherein said moisture barrier has a non-tacky surface and comprises a non-vulcanized, modified rubber.
20. A building structure according to claim 19 , wherein the plurality of wood boards are installed to form part of one or more of the roof, floor, or wall portions of the building structure.
21. A building structure according to claim 20 , wherein the plurality of wood boards are installed to form part of the floor portion of the building structure.
22. A building structure according to claim 20 , wherein the plurality of wood boards are installed to facing away from the interior space.
23. A building structure according to claim 20 , wherein the plurality of wood boards are installed to facing toward the interior space.
24. A building structure according to claim 20 , wherein the moisture barrier attached to the plurality of wood boards is at least 8 to 10 mil thick.
25. A building structure according to claim 20 , wherein the plurality of wood boards are selected from the group consisting of solid wood board, plywood board, CDX plywood, oriented strand board, tongue and groove board, composite board, chipboard and particle board.
26. A building structure according to claim 20 , wherein the moisture barrier is attached to the plurality of wood boards either before or after installation in the building structure.
27. A building structure according to claim 20 , wherein the moisture barrier is attached to the plurality of wood boards after installation in the building structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/890,542 US20050005567A1 (en) | 2003-07-11 | 2004-07-12 | Moisture barriers for building construction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48654203P | 2003-07-11 | 2003-07-11 | |
US10/890,542 US20050005567A1 (en) | 2003-07-11 | 2004-07-12 | Moisture barriers for building construction |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050005567A1 true US20050005567A1 (en) | 2005-01-13 |
Family
ID=33567921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/890,542 Abandoned US20050005567A1 (en) | 2003-07-11 | 2004-07-12 | Moisture barriers for building construction |
Country Status (1)
Country | Link |
---|---|
US (1) | US20050005567A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080028719A1 (en) * | 2006-02-27 | 2008-02-07 | Rutledge Richard J | Floor truss systems and methods |
US20090106327A1 (en) * | 2007-10-19 | 2009-04-23 | Oracle International Corporation | Data Recovery Advisor |
US20090107611A1 (en) * | 2007-10-26 | 2009-04-30 | Michael Damian Bowe | Weather-resistive barrier for buildings |
US20090139181A1 (en) * | 2007-11-30 | 2009-06-04 | Michael Damian Bowe | Weather-resistive barrier for buildings |
US20090297760A1 (en) * | 2008-05-28 | 2009-12-03 | Q'so Incorporated | Method for Surface Coating for Improved Weatherability of Building Products |
CN110820809A (en) * | 2019-11-06 | 2020-02-21 | 中国建筑第四工程局有限公司 | Construction method and structure for preventing ground from being wetted |
CN113914377A (en) * | 2021-11-09 | 2022-01-11 | 湖南高速铁路职业技术学院 | Underground assembly type building waterproof structure |
US11536026B2 (en) | 2017-08-14 | 2022-12-27 | Gcp Applied Technologies Inc. | Integral weather barrier panels |
Citations (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US865651A (en) * | 1906-09-12 | 1907-09-10 | Castner Electrolytic Alkali Co | Bleaching-powder chamber. |
US1403142A (en) * | 1920-12-24 | 1922-01-10 | Harry N Atwood | Composite laminated structure and method of producing same |
US1819147A (en) * | 1929-01-30 | 1931-08-18 | Ohio Rubber Co | Rubber covered article and method of producing same |
US2149026A (en) * | 1937-12-01 | 1939-02-28 | Othmar A Moeller | Wood flooring |
US2875101A (en) * | 1954-07-29 | 1959-02-24 | Joseph R Ehrlich | Rubber coated wood |
US3189514A (en) * | 1959-06-15 | 1965-06-15 | Mead Corp | Composite board |
US3505770A (en) * | 1968-11-25 | 1970-04-14 | Phillips Petroleum Co | Building construction |
US3518800A (en) * | 1969-06-24 | 1970-07-07 | Connor Forest Ind | Flooring system |
US3579941A (en) * | 1968-11-19 | 1971-05-25 | Howard C Tibbals | Wood parquet block flooring unit |
US3619964A (en) * | 1969-12-10 | 1971-11-16 | Frank Passaro | Flooring panels |
US3770536A (en) * | 1969-05-09 | 1973-11-06 | Parkwood Laminates Inc | Method of making and installing a laminated product |
US3962168A (en) * | 1974-01-24 | 1976-06-08 | Edwards Hugh K | Non-skid coating and method |
US3969558A (en) * | 1972-07-18 | 1976-07-13 | Dantani Plywood Co., Ltd. | Veneer sheet of a plurality of thin flat sections of wood |
US4019922A (en) * | 1973-03-30 | 1977-04-26 | Advance Coatings Company | Fire-resistant resin |
US4076569A (en) * | 1976-04-14 | 1978-02-28 | Arnold Buchbinder | Process for upgrading plywood panels |
US4109041A (en) * | 1976-07-26 | 1978-08-22 | Champion International Corporation | Construction panel with non-skid surface and method of fabrication |
US4117305A (en) * | 1977-03-23 | 1978-09-26 | Bristol Products, Inc. | Heat sump system for building structures |
US4204106A (en) * | 1979-01-08 | 1980-05-20 | Bristol Products, Inc. | Electrical heating system for building structures |
US4242390A (en) * | 1977-03-03 | 1980-12-30 | Ab Wicanders Korkfabriker | Floor tile |
US4449342A (en) * | 1982-06-10 | 1984-05-22 | Abendroth Carl W | Flooring system |
US4480175A (en) * | 1982-09-16 | 1984-10-30 | Brasky Joseph L | Directional electrical heating panel assembly |
US4554428A (en) * | 1981-02-28 | 1985-11-19 | Mitsubishi Denki Kabushiki Kaisha | Electrospark machining control device |
US4562103A (en) * | 1979-10-23 | 1985-12-31 | Hering Reinhard F | Weather resistant boards |
US4644720A (en) * | 1984-11-01 | 1987-02-24 | Schneider Raymond H | Hardwood flooring system |
US4677801A (en) * | 1984-09-13 | 1987-07-07 | Martin Bard | Wall, ceiling and/or floor formation and a method for producing it |
US4690848A (en) * | 1979-10-23 | 1987-09-01 | Hering Reinhard F | Weather-resistant lignocellulose or other organic or inorganic material boards and process for their production |
US4699834A (en) * | 1986-10-20 | 1987-10-13 | Henry Schiffer | An intermediate floor |
US4798364A (en) * | 1987-01-22 | 1989-01-17 | Scott Samuel C | Reinforced form liner for surface texturing of concrete structures |
US4910936A (en) * | 1982-06-10 | 1990-03-27 | Aga Corporation | Flooring system |
US4952775A (en) * | 1988-05-14 | 1990-08-28 | Matsushita Electric Works, Ltd. | Floor heating panel |
US5137764A (en) * | 1990-12-06 | 1992-08-11 | Doyle Dennis J | Floor structure incorporating a vapor and gas barrier |
US5464680A (en) * | 1991-01-25 | 1995-11-07 | Worldtech Coatings, Inc. | Plastic-coated concrete form panel |
US5497590A (en) * | 1995-03-06 | 1996-03-12 | Counihan; James | Resilient flooring |
US5510198A (en) * | 1995-02-22 | 1996-04-23 | Eastman Chemical Company | Re-usable cement forms |
US5879491A (en) * | 1994-10-11 | 1999-03-09 | Yuki Japan Co., Ltd. | Method of installing a floor heating apparatus |
US6136408A (en) * | 1997-11-25 | 2000-10-24 | J. M. Huber Corporation | Surface treatment for wood materials including oriented strand board |
US6179942B1 (en) * | 1995-06-07 | 2001-01-30 | Havco Wood Products, Inc. | Method of manufacturing composite wood flooring |
US6189279B1 (en) * | 1999-02-12 | 2001-02-20 | L&P Property Management Company | Floating floor underlay |
US6224700B1 (en) * | 1998-11-11 | 2001-05-01 | Mar-Flex Systems, Inc. | Methods for waterproofing architectural surfaces |
US6231994B1 (en) * | 1998-04-27 | 2001-05-15 | Clyde Totten | Treated encapsulated wooden workpiece and method |
US20010049917A1 (en) * | 2000-06-05 | 2001-12-13 | Peter Simonelli | Moisture and condensation barrier for building structures |
-
2004
- 2004-07-12 US US10/890,542 patent/US20050005567A1/en not_active Abandoned
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US865651A (en) * | 1906-09-12 | 1907-09-10 | Castner Electrolytic Alkali Co | Bleaching-powder chamber. |
US1403142A (en) * | 1920-12-24 | 1922-01-10 | Harry N Atwood | Composite laminated structure and method of producing same |
US1819147A (en) * | 1929-01-30 | 1931-08-18 | Ohio Rubber Co | Rubber covered article and method of producing same |
US2149026A (en) * | 1937-12-01 | 1939-02-28 | Othmar A Moeller | Wood flooring |
US2875101A (en) * | 1954-07-29 | 1959-02-24 | Joseph R Ehrlich | Rubber coated wood |
US3189514A (en) * | 1959-06-15 | 1965-06-15 | Mead Corp | Composite board |
US3579941A (en) * | 1968-11-19 | 1971-05-25 | Howard C Tibbals | Wood parquet block flooring unit |
US3505770A (en) * | 1968-11-25 | 1970-04-14 | Phillips Petroleum Co | Building construction |
US3770536A (en) * | 1969-05-09 | 1973-11-06 | Parkwood Laminates Inc | Method of making and installing a laminated product |
US3518800A (en) * | 1969-06-24 | 1970-07-07 | Connor Forest Ind | Flooring system |
US3619964A (en) * | 1969-12-10 | 1971-11-16 | Frank Passaro | Flooring panels |
US3969558A (en) * | 1972-07-18 | 1976-07-13 | Dantani Plywood Co., Ltd. | Veneer sheet of a plurality of thin flat sections of wood |
US4019922A (en) * | 1973-03-30 | 1977-04-26 | Advance Coatings Company | Fire-resistant resin |
US3962168A (en) * | 1974-01-24 | 1976-06-08 | Edwards Hugh K | Non-skid coating and method |
US4076569A (en) * | 1976-04-14 | 1978-02-28 | Arnold Buchbinder | Process for upgrading plywood panels |
US4109041A (en) * | 1976-07-26 | 1978-08-22 | Champion International Corporation | Construction panel with non-skid surface and method of fabrication |
US4242390A (en) * | 1977-03-03 | 1980-12-30 | Ab Wicanders Korkfabriker | Floor tile |
US4117305A (en) * | 1977-03-23 | 1978-09-26 | Bristol Products, Inc. | Heat sump system for building structures |
US4204106A (en) * | 1979-01-08 | 1980-05-20 | Bristol Products, Inc. | Electrical heating system for building structures |
US4690848A (en) * | 1979-10-23 | 1987-09-01 | Hering Reinhard F | Weather-resistant lignocellulose or other organic or inorganic material boards and process for their production |
US4562103A (en) * | 1979-10-23 | 1985-12-31 | Hering Reinhard F | Weather resistant boards |
US4554428A (en) * | 1981-02-28 | 1985-11-19 | Mitsubishi Denki Kabushiki Kaisha | Electrospark machining control device |
US4449342A (en) * | 1982-06-10 | 1984-05-22 | Abendroth Carl W | Flooring system |
US4910936A (en) * | 1982-06-10 | 1990-03-27 | Aga Corporation | Flooring system |
US4480175A (en) * | 1982-09-16 | 1984-10-30 | Brasky Joseph L | Directional electrical heating panel assembly |
US4677801A (en) * | 1984-09-13 | 1987-07-07 | Martin Bard | Wall, ceiling and/or floor formation and a method for producing it |
US4644720A (en) * | 1984-11-01 | 1987-02-24 | Schneider Raymond H | Hardwood flooring system |
US4699834A (en) * | 1986-10-20 | 1987-10-13 | Henry Schiffer | An intermediate floor |
US4798364A (en) * | 1987-01-22 | 1989-01-17 | Scott Samuel C | Reinforced form liner for surface texturing of concrete structures |
US4952775A (en) * | 1988-05-14 | 1990-08-28 | Matsushita Electric Works, Ltd. | Floor heating panel |
US5137764A (en) * | 1990-12-06 | 1992-08-11 | Doyle Dennis J | Floor structure incorporating a vapor and gas barrier |
US5464680A (en) * | 1991-01-25 | 1995-11-07 | Worldtech Coatings, Inc. | Plastic-coated concrete form panel |
US5879491A (en) * | 1994-10-11 | 1999-03-09 | Yuki Japan Co., Ltd. | Method of installing a floor heating apparatus |
US5510198A (en) * | 1995-02-22 | 1996-04-23 | Eastman Chemical Company | Re-usable cement forms |
US5497590A (en) * | 1995-03-06 | 1996-03-12 | Counihan; James | Resilient flooring |
US6179942B1 (en) * | 1995-06-07 | 2001-01-30 | Havco Wood Products, Inc. | Method of manufacturing composite wood flooring |
US6136408A (en) * | 1997-11-25 | 2000-10-24 | J. M. Huber Corporation | Surface treatment for wood materials including oriented strand board |
US6231994B1 (en) * | 1998-04-27 | 2001-05-15 | Clyde Totten | Treated encapsulated wooden workpiece and method |
US6224700B1 (en) * | 1998-11-11 | 2001-05-01 | Mar-Flex Systems, Inc. | Methods for waterproofing architectural surfaces |
US6189279B1 (en) * | 1999-02-12 | 2001-02-20 | L&P Property Management Company | Floating floor underlay |
US20010049917A1 (en) * | 2000-06-05 | 2001-12-13 | Peter Simonelli | Moisture and condensation barrier for building structures |
US6922963B2 (en) * | 2000-06-05 | 2005-08-02 | Bondo Corporation | Moisture and condensation barrier for building structures |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080028719A1 (en) * | 2006-02-27 | 2008-02-07 | Rutledge Richard J | Floor truss systems and methods |
US20090106327A1 (en) * | 2007-10-19 | 2009-04-23 | Oracle International Corporation | Data Recovery Advisor |
US20090107611A1 (en) * | 2007-10-26 | 2009-04-30 | Michael Damian Bowe | Weather-resistive barrier for buildings |
US20090107080A1 (en) * | 2007-10-26 | 2009-04-30 | Michael Damian Bowe | Weather-resistive barrier for buildings |
US8151538B2 (en) | 2007-10-26 | 2012-04-10 | Rohm And Haas Company | Weather resistive barrier for buildings |
US20090139181A1 (en) * | 2007-11-30 | 2009-06-04 | Michael Damian Bowe | Weather-resistive barrier for buildings |
US8112966B2 (en) | 2007-11-30 | 2012-02-14 | Rohm And Haas Company | Weather resistive barrier for buildings |
US20090297760A1 (en) * | 2008-05-28 | 2009-12-03 | Q'so Incorporated | Method for Surface Coating for Improved Weatherability of Building Products |
US11536026B2 (en) | 2017-08-14 | 2022-12-27 | Gcp Applied Technologies Inc. | Integral weather barrier panels |
CN110820809A (en) * | 2019-11-06 | 2020-02-21 | 中国建筑第四工程局有限公司 | Construction method and structure for preventing ground from being wetted |
CN113914377A (en) * | 2021-11-09 | 2022-01-11 | 湖南高速铁路职业技术学院 | Underground assembly type building waterproof structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12049763B2 (en) | System and method for a vented and water control siding, vented and water control sheathing and vented and water control trim-board | |
US6516580B1 (en) | Synthetic stucco system with moisture absorption control | |
US5732520A (en) | Synthetic stucco system | |
US20190271156A1 (en) | Insulating Panel for Stucco Exterior | |
CA2975972C (en) | System and method for a vented and water control siding, vented and water control sheathing and vented and water control trim-board | |
US10294669B2 (en) | Method of waterproofing building roofs and building panels | |
US9719247B2 (en) | Reinforced water-resistant board with traffic coat | |
US20110036035A1 (en) | Compositions and methods for coating surfaces | |
US11391048B2 (en) | Panelized lath and drainage plane system for building exteriors | |
US20050005567A1 (en) | Moisture barriers for building construction | |
AU2010246910B2 (en) | Floor for a modular building | |
US20190024398A1 (en) | Remediated water-damage to a structure | |
CA2511690C (en) | Roof structure and method for making the same | |
US20010049917A1 (en) | Moisture and condensation barrier for building structures | |
KR100216633B1 (en) | Urethane shingle method | |
US20050252133A1 (en) | Moisture and condensation barriers for building structures | |
Watts | Cladding the timber frame | |
UA59497C2 (en) | Method for making parquet cover |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |