US20040261191A1 - Catalyst system and method for preparing flame resistant materials - Google Patents
Catalyst system and method for preparing flame resistant materials Download PDFInfo
- Publication number
- US20040261191A1 US20040261191A1 US10/497,374 US49737404A US2004261191A1 US 20040261191 A1 US20040261191 A1 US 20040261191A1 US 49737404 A US49737404 A US 49737404A US 2004261191 A1 US2004261191 A1 US 2004261191A1
- Authority
- US
- United States
- Prior art keywords
- fabric
- treated
- tea
- btca
- cotton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims description 23
- 239000000463 material Substances 0.000 title claims description 11
- 239000004744 fabric Substances 0.000 claims abstract description 149
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims abstract description 74
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims abstract description 44
- -1 nitrogen-containing organic base Chemical class 0.000 claims abstract description 37
- 239000003063 flame retardant Substances 0.000 claims abstract description 30
- 239000002253 acid Substances 0.000 claims abstract description 21
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 20
- RLHGFJMGWQXPBW-UHFFFAOYSA-N 2-hydroxy-3-(1h-imidazol-5-ylmethyl)benzamide Chemical compound NC(=O)C1=CC=CC(CC=2NC=NC=2)=C1O RLHGFJMGWQXPBW-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000002903 organophosphorus compounds Chemical class 0.000 claims abstract description 5
- 229920002678 cellulose Polymers 0.000 claims description 22
- 239000001913 cellulose Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 20
- 230000032050 esterification Effects 0.000 claims description 13
- 238000005886 esterification reaction Methods 0.000 claims description 13
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims 1
- 229920000742 Cotton Polymers 0.000 abstract description 105
- 239000011575 calcium Substances 0.000 abstract description 65
- 229910052791 calcium Inorganic materials 0.000 abstract description 65
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 62
- 229910021205 NaH2PO2 Inorganic materials 0.000 abstract description 21
- 238000004900 laundering Methods 0.000 abstract description 16
- 125000002843 carboxylic acid group Chemical group 0.000 abstract description 15
- 159000000007 calcium salts Chemical class 0.000 abstract description 13
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 7
- NQXGLOVMOABDLI-UHFFFAOYSA-N sodium oxido(oxo)phosphanium Chemical compound [Na+].[O-][PH+]=O NQXGLOVMOABDLI-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003467 diminishing effect Effects 0.000 abstract description 2
- 229960004418 trolamine Drugs 0.000 abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 15
- 239000001110 calcium chloride Substances 0.000 description 15
- 229910001628 calcium chloride Inorganic materials 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 12
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 239000003431 cross linking reagent Substances 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012757 flame retardant agent Substances 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- VONWDASPFIQPDY-UHFFFAOYSA-N dimethyl methylphosphonate Chemical compound COP(C)(=O)OC VONWDASPFIQPDY-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000000954 titration curve Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- LHHMNJZNWUJFOC-UHFFFAOYSA-N 1-chloro-2-[2-chloroethoxy(ethenyl)phosphoryl]oxyethane Chemical compound ClCCOP(=O)(C=C)OCCCl LHHMNJZNWUJFOC-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- GSSXLFACIJSBOM-UHFFFAOYSA-N 2h-pyran-2-ol Chemical compound OC1OC=CC=C1 GSSXLFACIJSBOM-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940058344 antitrematodals organophosphorous compound Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- BSBSDQUZDZXGFN-UHFFFAOYSA-N cythioate Chemical compound COP(=S)(OC)OC1=CC=C(S(N)(=O)=O)C=C1 BSBSDQUZDZXGFN-UHFFFAOYSA-N 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000005113 hydroxyalkoxy group Chemical group 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- AKXUUJCMWZFYMV-UHFFFAOYSA-M tetrakis(hydroxymethyl)phosphanium;chloride Chemical compound [Cl-].OC[P+](CO)(CO)CO AKXUUJCMWZFYMV-UHFFFAOYSA-M 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- NCPXQVVMIXIKTN-UHFFFAOYSA-N trisodium;phosphite Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])[O-] NCPXQVVMIXIKTN-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/44—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen containing nitrogen and phosphorus
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
- D06M13/192—Polycarboxylic acids; Anhydrides, halides or salts thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/282—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/46—Compounds containing quaternary nitrogen atoms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/667—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing phosphorus in the main chain
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/30—Flame or heat resistance, fire retardancy properties
Definitions
- the durable flame retardant finishes for cotton and other cellulosic fabrics commonly used by the industry include the tetrakis-(hydroxylmethyl)phosphonium chloride (THPC)—based system with the commercial name of “Proban”, and dimethyl (N-hydroxylmethylcarbamoylethyl) phosphonate and its analog, known as reactive organophosphorous chemicals with the trade name of “Pyrovetax CP” (1-2).
- THPC tetrakis-(hydroxylmethyl)phosphonium chloride
- Proban dimethyl (N-hydroxylmethylcarbamoylethyl) phosphonate and its analog, known as reactive organophosphorous chemicals with the trade name of “Pyrovetax CP” (1-2).
- THPC tetrakis-(hydroxylmethyl)phosphonium chloride
- Proban dimethyl (N-hydroxylmethylcarbamoylethyl) phosphonate and its analog, known as reactive organophosphorous chemicals with the trade name of “Pyrov
- the reactive organophosphorous chemicals technology involves the use of a N-methylol phosphorous-containing flame retardant agent and a N-methylol crosslinking agent, and both compounds lead to the emission of high levels of formaldehyde, a known carcinogen, during the application of the finish to cotton fabric as well as during the use of finished cotton products by consumers. Therefore, the flame retardant chemicals for cotton commercially available to the textile industry are very limited.
- Polycarboxylic acids such as 1,2,3,4-butane-tetracarboxylic acid (BTCA) have been used as nonformaldehyde crosslinking agents for cotton and wood pulp cellulose (4-5).
- Alkali metal salts of phosphoric, phosphorous and hypophosphorous acids such as sodium dihydrogen phosphate (NaH 2 PO 4 ), sodium phosphite (Na 2 HPO 3 ), and sodium hypophosphite (NaH 2 PO 2 ), have been used as catalysts for the esterification and crosslinking of cellulose by polycarboxylic acids (6-9). In the presence of those catalysts, a polycarboxylic acid molecule esterifies cellulose and forms multiple ester linkages with cellulose, thus crosslinking cellulose and imparting wrinkle resistance to cotton fabrics (10).
- U.S. Pat. No. 6,309,565 reports fabric treatments with a formaldehyde-free hydroxylalkyl-functional organophosphorous flame retardant compound (FR) and a cross-linking agent such as 1,2,3,4-butanetetracarboxylic acid (BTCA).
- BTCA apparently functions as a binding agent between the flame retardant compound and cotton cellulose. It is reported that a catalyst such as NaH 2 PO 2 may be used if adequate cross-linking is to be achieved.
- the present invention relates to a catalyst system for a nonformaldehyde durable flame retardant finish for fabrics.
- One preferred flame retardant finish comprises a hydroxylalkyl-functional organophosphorous compound (FR) and a polycarboxylic acid.
- the new catalyst system comprises (1) hypophosphorous acid (H 3 PO 2 ) or salts thereof and (2) a nitrogen-containing organic base, such as triethanolamine (TEA).
- the nitrogen-containing organic base reacts with H 3 PO 2 in an aqueous solution to form a salt of hypophosphorous acid (Scheme 1 ), which functions as the catalyst for the esterification of a carboxylic acid with cellulose and FR.
- a method of binding a flame retardant compound or composition to cellulose comprising: applying a composition comprising a hydroxyl-functional flame retardant, a polycarboxylic acid, hypophosphorous acid and a nitrogen-containing organic base to a cellulose-containing material. This method may further comprise curing the cellulose-containing material. Also provided is a catalyst system for bonding flame retardants to fabric through a polycarboxylic acid comprising hypophosphorous acid and a nitrogen-containing organic base.
- polycarboxylic acid includes any organic structure with more than one carboxylic acid functional group.
- Some examples of polycarboxylic acids include 1,2,3,4-butanetetracarboxylic acid, citric acid, poly(maleic acid), poly(itaconic acid), copolymer of maleic acid and itaconic acid, poly(fumaric acid) or mixtures of two or more of these acids.
- nitrogen containing organic base does not include ammonia and other bases that do not contain carbon.
- a preferred nitrogen containing organic base is triethanolamine (TEA).
- compositions and methods of the invention can be treated with the compositions and methods of the invention as long as they contain cellulose.
- Various salts of hypophosphorous acid may be used, as known in the art.
- the flame retardant compound is any of a number of flame retardants known in the art, such as a hydroxylalkyl-functionalized organophosphorous compounds.
- Monomeric, oligomeric (which generally contain from about two to ten repeat units) and polymeric (which generally contain over about ten repeat units) hydroxyalkyl-functional organophosphorus flame retardant additives are intended for use herein.
- a preferred embodiment has the following structure:
- R 1 is independently selected from methyl and hydroxyethyl
- R 2 is independently selected from methyl, methoxy, and hydroxyethoxy
- n is equal to or greater than 1.
- This embodiment is made by a multistep process from dimethyl methylphosphonate, phosphorus pentoxide, ethylene glycol, and ethylene oxide and is available under the registered trademark FYROL® 51 from Akzo Nobel Chemicals Inc.
- the endgroups are principally hydroxyl groups.
- Another class of materials for use herein includes water soluble oligomeric alkenylphosphonate materials, examples of which are described in U.S. Pat. Nos. 3,855,359 and 4,017,257, both to E. D. Weil.
- alkenyl substituents in these materials provide an additional mechanism for permanence utilizing free radical curing conditions (described in the patents above).
- a preferred species of this type is available under the trademark PYROL® 76 from Akzo Nobel Chemicals Inc. and is produced by reacting bis(2-chloroethyl) vinylphosphonate and dimethyl methylphosphonate with the substantial elimination of methyl chloride.
- hydroxyalkyl-functional organophosphorus flame retardant that can be employed are oligomeric phosphoric acid esters that carry hydroxyalkoxy groups as described in U.S. Pat. Nos. 2,909,559, 3,099,676, 3,228,998, 3,309,427, 3,472,919, 3,767,732, 3,850,859, 4,244,893, 4,382,042, 4,458,035, 4,697,030, 4,820,854, 4,886,895, 5,117,033, and 5,608,100.
- FIG. 1 The calcium concentration on the cotton fabric treated with 9.6% BTCA and 4.8% NaH 2 PO 2 , cured at 185° C. for 2 min, and finally treated with CaCl 2 solutions of different concentrations.
- FIG. 2 The calcium concentration on the cotton fabric treated with 9.6% BTCA and 4.8% NaH 2 PO 2 , cured at 185° C. for 2 min, and finally washed in tap water as function of the HLWD cycles.
- FIG. 3 The pH of the cotton fabric treated with 9.6% BTCA/4.8% NaH 2 PO 2 suspended in water as a function of the added volume of the 0.10 M CaCl 2 solution.
- FIG. 4 The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA and 4.8% NaH 2 PO 2 , cured at 185° C. for 2 min, and finally treated with CaCl 2 solutions as a function of the calcium concentration of the CaCl 2 solutions.
- FIG. 5 The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA and 4.8% NaH 2 PO 2 and cured at 185° C. for 2 min as a function of the number of the HLWD cycles.
- FIG. 6 The titration curve of H 3 PO 2 .
- FIG. 7 The ester carbonyl band intensity of the cotton fabric treated with 24% FR, 9.6% BTCA, % H 3 PO 2 in combination with different concentrations of TEA, and cured at 185° C. for 2 min as a function of the TEA concentration.
- FIG. 8 The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA, 7% H 3 PO 2 in combination with TEA of different concentrations, and cured at 185° C. for 2 min, and finally treated with 0.5M CaCl 2 for 30 min as a function of the TEA concentration.
- FIG. 9 The LOI (%) of the cotton fabric treated with 24% FR, 9.6% BTCA, 7% H 3 PO 2 in combination with TEA of different concentrations, and cured at 185° C. for 2 min and finally subjected to 5 HLWD cycles as a function of the TEA concentration.
- the fabrics used in the investigation include: (1) a dark brown 100% cotton twill weave fabric weighing 246 g/m 2 ; (2) a white 60/40 cotton/polyester blend plain weave fabric weighing 136 g/m 2 .
- the flame retardant agent (FR) was a hydroxyl-functional organophosphorous oligomer with the trade name of Fyrol 51 supplied by Akzo Nobel Chemical Corporation, New York.
- BTCA hypophosphorous acid
- TAA triethanolamine
- NaH 2 PO 2 sodium hypophosphite
- the melamine-formaldehyde crosslinker with the trade name of Ecco Rez M-300 was supplied by Eastern Color & Chemical Company, Greenville, S.C.
- the fabric was first immersed in a finish solution containing FR, BTCA, and the catalyst, then passed through a laboratory padder with two dips and two nips, dried at 90° C. for 3 min, and finally cured in a Mathis curing oven at a specified temperature. All the concentrations presented here are based on weight (w/w, %). The wet pick-up of the cotton and cotton/polyester blend fabrics was approximately 85 and 80%, respectively. After curing, the treated fabric was first subjected to a washing/drying cycle without use of a detergent (specified here as “water wash”) to remove FR and BTCA not bound to cotton and the catalyst. The home laundering wash/dry process was done according to AATCC Test Method 124-1996 (Appearance of Fabrics After Repeated Home Laundering). The detergent used was a commercial Tide detergent without bleach. The water temperature was approximately 45° C.
- the vertical flammability of treated cotton fabric was measured according to ASTM Standard Method D6413-99.
- the limited oxygen index (LOI) of the treated cotton fabric was measured according to ASTM Standard Method D2863-97.
- the breaking strength in filling direction of the treated cotton fabric was measured according to ASTM Standard Method D5035-95.
- the fabric sample thus treated is dried at 80° C. for 5 min.
- the fabric sample was finely ground in a Wiley mill to form a powder before infrared spectroscopy analysis.
- the ester carbonyl band intensity in the infrared spectra was normalized against the 1318 cm ⁇ 1 band associated with a C—H bending mode of cellulose.
- the cotton fabric treated with 9.6% BTCA and 4.8% NaH 2 PO 2 was cured at 185° C. for 2 mm.
- the treated fabric was first washed in water to remove the catalyst and BTCA not bound to cotton, then treated in CaCl 2 solutions of different concentrations at room temperature for 30 min.
- the calcium concentration of the CaCl 2 solutions ranged from 0.10 to 4.00%.
- the cotton fabric thus treated was thoroughly washed in deionized water for 30 min to remove any residual calcium ions not bound to the fabric, and finally dried.
- the calcium concentration on the cotton fabric determined by ICP/AES is plotted against the calcium concentration of the CaCl 2 solutions used to treat the fabric (FIG. 1).
- the calcium concentration on the fabric increased as the calcium concentration of the solution increased (FIG. 1).
- the calcium concentration on the fabric reached approximately 0.3% when the calcium concentration of the solution was increased to 1.00%, and it stabilized at the 0.3% level as the calcium concentration of the solution increased further (FIG. 1).
- the data indicate that the calcium cations form salt with the free carboxylic acid group on the fabric, which has low solubility in water (Scheme 3 ).
- the formation of calcium salt on the treated cotton fabric reached saturation when the calcium concentration in the solution was increased to 1.00% as shown in FIG. 1.
- the pH value stabilized at approximately 4.65 when the volume of the CaCl 2 solution was increased to 14.0 ml, indicating the formation of calcium salt on the fiber reached saturation. All the data demonstrated that calcium cation reacts with the free carboxylic acid bound to the cotton fabric to form insoluble salt.
- the cotton fabric was treated with 24% FR, 9.6% BTCA, and 4.8% NaH 2 PO 2 , and then cured at 185° C. for 2 min.
- the treated fabric was washed in water to remove the FR and BTCA not bound to cotton.
- the fabric was then treated in CaCl 2 solutions of different concentrations at room temperature for 30 min.
- the calcium concentration on the cotton fabric is plotted against the calcium concentration of the CaCl 2 solutions (FIG. 4).
- the cotton fabric treated with FR and BTCA was also washed in tap water in the presence of a detergent.
- the cotton fabric was treated with 16% FR and BTCA of different concentrations.
- the fabric thus treated was subject to 10 HLWD cycles, followed by thoroughly rinsing in deionized water for 30 min to remove the calcium physically absorbed on the fabric.
- the calcium concentration on the treated cotton fabric before and after 10 HLWD cycles are presented in Table 1.
- the calcium concentration on the fabric before washing is insignificant, and it became substantially larger after 10 HLWD cycles.
- the calcium concentration after laundering also increased as the BTCA-to FR ratio was increased.
- larger number of carboxylic acid groups on the cotton fabric as a result of higher BTCA concentration used to treat the fabric led to the increased calcium concentration after home laundering.
- the cotton fabric was treated with 24% FR, 9.6% BTCA and 4.8% NaH 2 PO 2 , cured at 185° C. for 2 min, then subjected to different number of HLWD cycles.
- the LOI, char length, percent phosphorous retention, and calcium concentration of the fabric thus treated is shown in Table 2.
- the char length exceeded 300 mm and LOI also decreased significantly.
- the calcium concentration increased from 0.008% to 0.110% after 3 HLWD cycles (FIG. 5).
- the diminished flame resistance of the treated cotton fabric is due to the formation of calcium salt of carboxylic acid on the fabric during the laundering process.
- NaH 2 PO 2 has been the most effective catalyst for esterification and crosslinking of cotton by a polycarboxylic acid.
- the combination of H 3 PO 2 and TEA was used as a new catalyst system to replace NaH 2 PO 2 .
- 20 ml of a 0.30 M H 3 PO 2 was titrated with 0.30 M TEA.
- the pH of H 3 PO 2 is presented as a function of the volume of TEA added (FIG. 6).
- H 3 PO 2 is a relatively strong acid with K a value of 5.9 ⁇ 10 ⁇ 2 whereas TEA is a weak base with K b value of 5.75 ⁇ 10 ⁇ 7.
- the original pH of H 3 PO 2 was 1.56 before the titration was started.
- H 3 PO 2 was neutralized to form TEA salt as TEA was gradually added as shown in Scheme 1 .
- esterification of cotton cellulose by a polycarboxylic acid proceeds in two steps: formation of a 5-membered cyclic anhydride intermediate by dehydration of two adjacent carboxylic acid groups, and the reaction between cellulose and the anhydride intermediate to form ester (12-13).
- the cotton fabric was treated with 24% FR, 9.6% BTCA, 7% H 3 PO 2 in combination with different concentrations of TEA.
- the pH of all the finish solutions was adjusted to 3.0 using either NaOH or HCl solutions.
- the fabric was cured at 185° C. for 2 min, and washed in deionized water to remove any FR, BTCA and TEA not bound to cotton.
- the samples were treated with 0.1 M NaOH to convert the free carboxylic acid groups to carboxylate anions so that the ester carbonyl band was not overlapped by the carboxylic carbonyl, therefore could be measured quantitatively (15).
- the ester carbonyl of the cotton fabric thus treated is plotted against the TEA concentration in FIG. 7.
- the amount of ester formed on the treated cotton fabric increased notably as the TEA concentration was increased, and the ester carbonyl band intensity reached its maximum when the TEA concentration was increased to 8%.
- the infrared spectroscopy data evidently show that addition of TEA to the finish system resulted in esterification of BTCA with TEA during the curing process, thus increasing the total amount of ester formed on cotton.
- a further increase in the TEA concentration from 8% to 14% reduces the ester carbonyl band intensity (FIG. 7).
- the LOI (%) for the cotton fabric treated with FR, BTCA and H 3 PO 2 without the presence of TEA was only 24.1. It increased to 30.7 when 5% TEA was presented in the finish and it reached its maximum (31.1) when TEA concentration was 10%. The same trend remained after the treated cotton fabric was subject to different number of home laundering cycles.
- the LOI (%) of the treated cotton fabric after 5 laundering cycles is presented as a function of the TEA concentration in the finish system (FIG. 9).
- the increased LOI is attributed to two factors: the reduction in calcium concentration as shown in FIG. 8 and the increase in nitrogen concentration as a result of more TEA bonding to cotton through its esterification with BTCA.
- the data also indicate that a further increase to 12% in TEA concentration reduced the LOI (FIG. 9). This is consistent with the change in ester carbonyl band intensity as demonstrated in FIG. 7.
- the cotton fabric was treated with 28% FR, 14% BTCA and 7% H 3 PO 2 in combination with TEA of different concentrations.
- the pH of the finish solutions was adjusted to 3.0 using either NaOH or HCl solutions.
- the treated fabric was cured at 185° C. for 2 min.
- the calcium concentration and LOI of the fabric treated with different TEA concentrations are presented in Table 4. The data show that calcium concentration increased as the number of laundering cycles were increased. When TEA is present, however, the calcium concentration on the fabric was drastically reduced and LOI was increased. One also observes that TEA concentration at 8-10% resulted in the highest LOI. This is consistent with the data presented in FIG. 9.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Presently, multifunctional carboxylic acids, such as 1,2,3,4-butanetetracarboxylic acid (BTCA) are used to bond a hydroxyl-functional organophosphorous oligomer to cotton fabric in the presence of a catalyst, such as sodium hypophosphite (NaH2PO2). However, the free carboxylic acid groups bound to the cotton fabric form a calcium salt during home laundering, thus diminishing the flame retardant properties of the treated cotton fabric. Disclosed herein is a new catalyst system consisting of hypophosphorous acid (H3PO2) and a nitrogen-containing organic base such as triethanol amine (TEA). When the catalyst system is present together with the polycarboxylic acid, TEA esterifies the free carboxylic acid groups under curing conditions, thus reducing calcium concentration on the fabric during home laundering. It also provides nitrogen-phosphorous synergism to enhance the flame retardant performance of the organophosphorous compound. The cotton fabric treated with BTCA and the hydroxyl-functional organophosphorous oligomer in the presence of this new catalyst system demonstrate flame retardant properties superior to that treated with NaH2PO2 as a catalyst.
Description
- The durable flame retardant finishes for cotton and other cellulosic fabrics commonly used by the industry include the tetrakis-(hydroxylmethyl)phosphonium chloride (THPC)—based system with the commercial name of “Proban”, and dimethyl (N-hydroxylmethylcarbamoylethyl) phosphonate and its analog, known as reactive organophosphorous chemicals with the trade name of “Pyrovetax CP” (1-2). However, the THPC technology requires an expensive amination chamber and strict application condition control to assure consistent performance. It is not compatible with the overwhelming majority of the existing textile finishing equipment, therefore is not considered to be practical for mass-market production. The reactive organophosphorous chemicals technology involves the use of a N-methylol phosphorous-containing flame retardant agent and a N-methylol crosslinking agent, and both compounds lead to the emission of high levels of formaldehyde, a known carcinogen, during the application of the finish to cotton fabric as well as during the use of finished cotton products by consumers. Therefore, the flame retardant chemicals for cotton commercially available to the textile industry are very limited.
- Polycarboxylic acids, such as 1,2,3,4-butane-tetracarboxylic acid (BTCA), have been used as nonformaldehyde crosslinking agents for cotton and wood pulp cellulose (4-5). Alkali metal salts of phosphoric, phosphorous and hypophosphorous acids, such as sodium dihydrogen phosphate (NaH2PO4), sodium phosphite (Na2HPO3), and sodium hypophosphite (NaH2PO2), have been used as catalysts for the esterification and crosslinking of cellulose by polycarboxylic acids (6-9). In the presence of those catalysts, a polycarboxylic acid molecule esterifies cellulose and forms multiple ester linkages with cellulose, thus crosslinking cellulose and imparting wrinkle resistance to cotton fabrics (10).
- U.S. Pat. No. 6,309,565 (Oct. 31, 2001) reports fabric treatments with a formaldehyde-free hydroxylalkyl-functional organophosphorous flame retardant compound (FR) and a cross-linking agent such as 1,2,3,4-butanetetracarboxylic acid (BTCA). BTCA apparently functions as a binding agent between the flame retardant compound and cotton cellulose. It is reported that a catalyst such as NaH2PO2 may be used if adequate cross-linking is to be achieved.
- Because the use of cotton in apparel and home furnishing has became increasingly popular and new federal mandatory standards for fabric flammability have emerged (3), there is an urgent need to develop new and formaldehyde-free durable flame retardant finishes for cotton and cotton blends to meet the increasing demand of the market.
- The present invention relates to a catalyst system for a nonformaldehyde durable flame retardant finish for fabrics. One preferred flame retardant finish comprises a hydroxylalkyl-functional organophosphorous compound (FR) and a polycarboxylic acid. The new catalyst system comprises (1) hypophosphorous acid (H3PO2) or salts thereof and (2) a nitrogen-containing organic base, such as triethanolamine (TEA). The nitrogen-containing organic base reacts with H3PO2 in an aqueous solution to form a salt of hypophosphorous acid (Scheme 1), which functions as the catalyst for the esterification of a carboxylic acid with cellulose and FR.
- More specifically, provided is a method of binding a flame retardant compound or composition to cellulose comprising: applying a composition comprising a hydroxyl-functional flame retardant, a polycarboxylic acid, hypophosphorous acid and a nitrogen-containing organic base to a cellulose-containing material. This method may further comprise curing the cellulose-containing material. Also provided is a catalyst system for bonding flame retardants to fabric through a polycarboxylic acid comprising hypophosphorous acid and a nitrogen-containing organic base.
- As used herein, “polycarboxylic acid” includes any organic structure with more than one carboxylic acid functional group. Some examples of polycarboxylic acids include 1,2,3,4-butanetetracarboxylic acid, citric acid, poly(maleic acid), poly(itaconic acid), copolymer of maleic acid and itaconic acid, poly(fumaric acid) or mixtures of two or more of these acids. As used herein, “nitrogen containing organic base” does not include ammonia and other bases that do not contain carbon. A preferred nitrogen containing organic base is triethanolamine (TEA).
- Various fabrics and materials can be treated with the compositions and methods of the invention as long as they contain cellulose. Various salts of hypophosphorous acid may be used, as known in the art. The flame retardant compound is any of a number of flame retardants known in the art, such as a hydroxylalkyl-functionalized organophosphorous compounds.
- Monomeric, oligomeric (which generally contain from about two to ten repeat units) and polymeric (which generally contain over about ten repeat units) hydroxyalkyl-functional organophosphorus flame retardant additives are intended for use herein.
- A reactive oligomeric phosphorus-containing flame retardant of the type that is described in U.S. Pat. No. 3,695,925 to E. D. Weil and U.S. Pat. Nos. 4,199,534, 4,268,633, and 4,335,178 to R. B. Fearing is an example of one of the hydroxyalkyl-functional organophosphorus flame retardants that can be used in accordance with the present invention. A preferred embodiment has the following structure:
- where R1 is independently selected from methyl and hydroxyethyl, R2 is independently selected from methyl, methoxy, and hydroxyethoxy, and n is equal to or greater than 1. This embodiment is made by a multistep process from dimethyl methylphosphonate, phosphorus pentoxide, ethylene glycol, and ethylene oxide and is available under the registered trademark FYROL® 51 from Akzo Nobel Chemicals Inc. The endgroups are principally hydroxyl groups.
- Another class of materials for use herein includes water soluble oligomeric alkenylphosphonate materials, examples of which are described in U.S. Pat. Nos. 3,855,359 and 4,017,257, both to E. D. Weil. The presence of alkenyl substituents in these materials provide an additional mechanism for permanence utilizing free radical curing conditions (described in the patents above). A preferred species of this type is available under the trademark PYROL® 76 from Akzo Nobel Chemicals Inc. and is produced by reacting bis(2-chloroethyl) vinylphosphonate and dimethyl methylphosphonate with the substantial elimination of methyl chloride.
- Another type of hydroxyalkyl-functional organophosphorus flame retardant that can be employed are oligomeric phosphoric acid esters that carry hydroxyalkoxy groups as described in U.S. Pat. Nos. 2,909,559, 3,099,676, 3,228,998, 3,309,427, 3,472,919, 3,767,732, 3,850,859, 4,244,893, 4,382,042, 4,458,035, 4,697,030, 4,820,854, 4,886,895, 5,117,033, and 5,608,100.
- Although Applicant does not wish to be bound by theory, it is believed the nitrogen-containing organic base is bound to cotton through its esterification with the polycarboxylic acid. It also has the following functions:
- (1) It provides phosphorous-nitrogen synergism for the FR compound, thus improving the performance of FR.
- (2) It reacts with the free carboxylic acid groups of the polycarboxylic acid on cotton fabric under curing conditions, and significantly increases the amount of ester and reduces the formation of calcium salts of the carboxylic acid on the cotton fabric. The introduction of positive charge to the cotton fabric through TEA is thought to also replace calcium cations and prevent them from forming salt with the free carboxylic acid groups on the fabric. It was found that the formation of calcium salt on the cotton fabric treated with FR and BTCA during home laundering diminishes the performance of FR on the fabric. The reduced calcium concentration on the fabric as a result of the use of the nitrogen-containing organic base enhances the flame retardant performance of the treated cotton fabric during home laundering.
- (3) It raises the pH of a finish solution, therefore improves the strength retention of the treated cotton fabric.
- FIG. 1. The calcium concentration on the cotton fabric treated with 9.6% BTCA and 4.8% NaH2PO2, cured at 185° C. for 2 min, and finally treated with CaCl2 solutions of different concentrations.
- FIG. 2. The calcium concentration on the cotton fabric treated with 9.6% BTCA and 4.8% NaH2PO2, cured at 185° C. for 2 min, and finally washed in tap water as function of the HLWD cycles.
- FIG. 3. The pH of the cotton fabric treated with 9.6% BTCA/4.8% NaH2PO2 suspended in water as a function of the added volume of the 0.10 M CaCl2 solution.
- FIG. 4. The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA and 4.8% NaH2PO2, cured at 185° C. for 2 min, and finally treated with CaCl2 solutions as a function of the calcium concentration of the CaCl2 solutions.
- FIG. 5. The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA and 4.8% NaH2PO2 and cured at 185° C. for 2 min as a function of the number of the HLWD cycles.
- FIG. 6. The titration curve of H3PO2.
- FIG. 7. The ester carbonyl band intensity of the cotton fabric treated with 24% FR, 9.6% BTCA, % H3PO2 in combination with different concentrations of TEA, and cured at 185° C. for 2 min as a function of the TEA concentration.
- FIG. 8. The calcium concentration on the cotton fabric treated with 24% FR, 9.6% BTCA, 7% H3PO2 in combination with TEA of different concentrations, and cured at 185° C. for 2 min, and finally treated with 0.5M CaCl2 for 30 min as a function of the TEA concentration.
- FIG. 9. The LOI (%) of the cotton fabric treated with 24% FR, 9.6% BTCA, 7% H3PO2 in combination with TEA of different concentrations, and cured at 185° C. for 2 min and finally subjected to 5 HLWD cycles as a function of the TEA concentration.
- The following nonlimiting examples will assist in understanding the invention.
- Materials
- The fabrics used in the investigation include: (1) a dark brown 100% cotton twill weave fabric weighing 246 g/m2; (2) a white 60/40 cotton/polyester blend plain weave fabric weighing 136 g/m2. The flame retardant agent (FR) was a hydroxyl-functional organophosphorous oligomer with the trade name of Fyrol 51 supplied by Akzo Nobel Chemical Corporation, New York. BTCA, hypophosphorous acid (H3PO2), triethanolamine (TEA), and sodium hypophosphite (NaH2PO2) were reagent-grade chemicals supplied by Aldrich, Wis. The melamine-formaldehyde crosslinker with the trade name of Ecco Rez M-300 was supplied by Eastern Color & Chemical Company, Greenville, S.C.
- Fabric Treatment and Home Laundering Washing/Drying (HLWD) Procedures
- The fabric was first immersed in a finish solution containing FR, BTCA, and the catalyst, then passed through a laboratory padder with two dips and two nips, dried at 90° C. for 3 min, and finally cured in a Mathis curing oven at a specified temperature. All the concentrations presented here are based on weight (w/w, %). The wet pick-up of the cotton and cotton/polyester blend fabrics was approximately 85 and 80%, respectively. After curing, the treated fabric was first subjected to a washing/drying cycle without use of a detergent (specified here as “water wash”) to remove FR and BTCA not bound to cotton and the catalyst. The home laundering wash/dry process was done according to AATCC Test Method 124-1996 (Appearance of Fabrics After Repeated Home Laundering). The detergent used was a commercial Tide detergent without bleach. The water temperature was approximately 45° C.
- Fabric Performance Evaluation
- The vertical flammability of treated cotton fabric was measured according to ASTM Standard Method D6413-99. The limited oxygen index (LOI) of the treated cotton fabric was measured according to ASTM Standard Method D2863-97. The breaking strength in filling direction of the treated cotton fabric was measured according to ASTM Standard Method D5035-95.
- Infrared Spectroscopy Measurement
- All the infrared spectra presented are diffuse reflectance spectra collected with a Nicolet Magna spectrometer and a Specac diffuse reflectance accessory, and are presented in absorbance mode (−log R/R0) for quantitative analysis. Resolution for all the infrared spectra is 4
cm −1, and there were 100 scans for each spectrum. Potassium bromide powder was used as a reference material to produce a background diffuse reflectance spectrum. The treated and cured cotton fabric was first washed in water to remove FR and BTCA not bound to cotton and the catalyst, then treated with a 0.1 M NaOH solution at room temperature for 4 min to convert the free carboxylic acid group on the fabric to a carboxylate anion. The fabric sample thus treated is dried at 80° C. for 5 min. To improve sample uniformity, the fabric sample was finely ground in a Wiley mill to form a powder before infrared spectroscopy analysis. The ester carbonyl band intensity in the infrared spectra was normalized against the 1318cm −1 band associated with a C—H bending mode of cellulose. - Determination of Phosphorous and Calcium Concentration on the Treated Cotton Fabric
- Approximately 2 g of treated cotton fabric taken from different parts of a larger fabric specimen were ground in a Wiley mill into a powder to improve sample uniformity. 2 ml concentrated H2SO4 were added to 0.1 g of cotton powder. 10
ml 30% H2O2 were added dropwise to the mixture, allowing the reaction to subside between drops. The reaction mixture was then heated on a hotplate at approximately 250° C. to digest the powder and to evaporate the water until dense SO3 vapor is produced. The completely digested cotton sample as a clear solution was transferred to a 50-ml volumetric flask, then diluted with distilled/deionized water. The sample thus prepared was analyzed with a Thermo-Farrell-Ash Model 965 induced current plasma atomic emission spectrometer (ICP/AES) to determine the % concentrations of phosphorous and calcium. - Formation of Calcium Salt on the Cotton Fabric Treated with BTCA
- The cotton fabric treated with 9.6% BTCA and 4.8% NaH2PO2 was cured at 185° C. for 2 mm. The treated fabric was first washed in water to remove the catalyst and BTCA not bound to cotton, then treated in CaCl2 solutions of different concentrations at room temperature for 30 min. The calcium concentration of the CaCl2 solutions ranged from 0.10 to 4.00%. The cotton fabric thus treated was thoroughly washed in deionized water for 30 min to remove any residual calcium ions not bound to the fabric, and finally dried.
-
- The cotton fabric treated with 9.6% BTCA/4.8% NaH2PO2 and cured at 185° C. for 2 min was also washed in tap water in the presence of a detergent. The calcium concentration on the cotton fabric is plotted against the number of the home laundering washing/drying (HLWD) cycles (FIG. 2). One observes that the calcium concentration on the fabric increased as the number of HLWD cycle was increased, and it reached approximately 0.28% after 5 HLWD cycles (FIG. 2). The data show that the calcium cations of the tap water form salt with the free carboxylic acid group bound to the treated cotton fabric.
- The cotton fabric treated with 9.6% BTCA/4.8% NaH2PO2 and cured at 185° C. for 2 min was ground into a powder. 0.1 g of the powder sample was suspended in 50 ml distilled water, and then titrated with a 0.10 M CaCl2 solution. The pH of the fiber/water mixture was plotted against the volume of the CaCl2 solution added to the mixture (FIG. 3). The pH of the fiber/water mixture decreased as the volume of the added CaCl2 solution increased. The steady decline in pH value was evidently a result of the formation of calcium salt on the fiber as shown in
Scheme 3, which liberated the proton from the carboxylic acid groups on the fabric. The pH value stabilized at approximately 4.65 when the volume of the CaCl2 solution was increased to 14.0 ml, indicating the formation of calcium salt on the fiber reached saturation. All the data demonstrated that calcium cation reacts with the free carboxylic acid bound to the cotton fabric to form insoluble salt. - Formation of Calcium Salt on the Cotton Fabric Treated with FR and BTCA
-
- The cotton fabric was treated with 16% FR and BTCA of different concentrations. The fabric thus treated was subject to 10 HLWD cycles, followed by thoroughly rinsing in deionized water for 30 min to remove the calcium physically absorbed on the fabric. The calcium concentration on the treated cotton fabric before and after 10 HLWD cycles are presented in Table 1. The calcium concentration on the fabric before washing is insignificant, and it became substantially larger after 10 HLWD cycles. One also observes that the calcium concentration after laundering also increased as the BTCA-to FR ratio was increased. Evidently, larger number of carboxylic acid groups on the cotton fabric as a result of higher BTCA concentration used to treat the fabric led to the increased calcium concentration after home laundering.
- The cotton fabric was treated with 24% FR, 9.6% BTCA and 4.8% NaH2PO2, cured at 185° C. for 2 min, then subjected to different number of HLWD cycles. The LOI, char length, percent phosphorous retention, and calcium concentration of the fabric thus treated is shown in Table 2. In spite of the fact that the fabric still retained 89% of phosphorous on the fabric after 3 HLWD cycles, the char length exceeded 300 mm and LOI also decreased significantly. One observes that the calcium concentration increased from 0.008% to 0.110% after 3 HLWD cycles (FIG. 5). The diminished flame resistance of the treated cotton fabric is due to the formation of calcium salt of carboxylic acid on the fabric during the laundering process. The combustion and pyrolysis of cotton ultimately converts FR to phosphoric acid, which leads to dehydration of cellulose via phosphorylation-dephosphorylation cycle and retards burning (12). The calcium ions on the fabric react with phosphoric acid and form calcium phosphate, which does not function as a flame retardant agent. Consequently, the flame-resistance of the treated cotton fabric deteriorates as the amount of calcium bound to the cotton fabric increases.
- When the cotton fabric was treated with 24% FR and 11.2% melamine-formaldehyde crosslinker (M-F), and cured at 165° C. for 2 min. The treated cotton fabric was then subjected to different number of HLWD cycles. The LOI, char length, percent phosphorous retention and calcium concentration of the fabric thus treated is presented in Table 3. The data indicated that the calcium concentration of the fabric remained practically unchanged during the home laundering process. After 5 HLWD cycles, the LOI for the cotton fabric treated using M-F as a crosslinking agent was 29.2 with 65% of original phosphorous retained on the fabric, whereas LOI of the fabric crosslinked by BTCA was only 24.7 with 84% of original phosphorous on the fabric. The BTCA treated fabric failed the vertical flammability test after 3 HLWD cycles, whereas the char length for the M-F treated fabric was only 135 mm after 15 HLWD cycles in spite of the fact that only 62% of phosphorous remained on the fabric. Evidently, the formation of insoluble calcium salt on the fabric is associated with the free carboxylic acid groups, not with any phosphate group formed as a result of possible hydrolysis of FR on the fabric. It was concluded that when a polycarboxylic acid is used a crosslinking agent for the FR, the free carboxylic acid group form insoluble calcium salt during the laundering process, thus diminishing the flame retardant properties of the treated cotton fabric.
- New Catalyst System
- NaH2PO2 has been the most effective catalyst for esterification and crosslinking of cotton by a polycarboxylic acid. In this research, the combination of H3PO2 and TEA was used as a new catalyst system to replace NaH2PO2. 20 ml of a 0.30 M H3PO2 was titrated with 0.30 M TEA. The pH of H3PO2 is presented as a function of the volume of TEA added (FIG. 6). H3PO2 is a relatively strong acid with Ka value of 5.9×10−2 whereas TEA is a weak base with Kb value of 5.75×10−7. The original pH of H3PO2 was 1.56 before the titration was started. H3PO2 was neutralized to form TEA salt as TEA was gradually added as shown in
Scheme 1. - The titration reached equivalent point when the volume of added TEA reached approximately 20.30 ml. The pH was drastically increased from 2.98 to 6.01 around the equivalent point (pH=4.8) when only 1.00 ml of TEA (from 19.80 to 20.80 ml) was added. (FIG. 6). Based on the pH titration curve, it was calculated that approximately 97% of H3PO2 were neutralized when the pH reached 3.0. Since all the finish solutions containing H3PO2/TEA were maintained at pH 3.0, the overwhelming majority of the catalyst is in the form as TEA salt of H3PO2.
- The esterification of cotton cellulose by a polycarboxylic acid proceeds in two steps: formation of a 5-membered cyclic anhydride intermediate by dehydration of two adjacent carboxylic acid groups, and the reaction between cellulose and the anhydride intermediate to form ester (12-13). In previous research, it was found that TEA esterifies the anhydride intermediate formed on the cotton fabric treated with a polycarboxylic acid under curing conditions. Consequently, the amount of anhydride not reacted decreased whereas the amount of ester on the fabric increases (14).
- The cotton fabric was treated with 24% FR, 9.6% BTCA, 7% H3PO2 in combination with different concentrations of TEA. The pH of all the finish solutions was adjusted to 3.0 using either NaOH or HCl solutions. The fabric was cured at 185° C. for 2 min, and washed in deionized water to remove any FR, BTCA and TEA not bound to cotton. Before the fabric samples were analyzed by FT-IR spectroscopy, the samples were treated with 0.1 M NaOH to convert the free carboxylic acid groups to carboxylate anions so that the ester carbonyl band was not overlapped by the carboxylic carbonyl, therefore could be measured quantitatively (15). The ester carbonyl of the cotton fabric thus treated is plotted against the TEA concentration in FIG. 7. The amount of ester formed on the treated cotton fabric increased notably as the TEA concentration was increased, and the ester carbonyl band intensity reached its maximum when the TEA concentration was increased to 8%. The infrared spectroscopy data evidently show that addition of TEA to the finish system resulted in esterification of BTCA with TEA during the curing process, thus increasing the total amount of ester formed on cotton. A further increase in the TEA concentration from 8% to 14% reduces the ester carbonyl band intensity (FIG. 7). This was because that both TEA and cotton cellulose competed to react with BTCA, a further increase in the esterification between TEA and BTCA led to the decrease in the esterification between cotton and BTCA, thus reducing the total ester bound to cotton.
- The calcium concentration of the cotton fabric treated with 24% FR, 9.6% BTCA, 7% H3PO2 in combination with different concentrations of TEA and cured at 185° C. for 2 min was treated in a 0.5 M CaCl2 solution for 30 mins. The calcium concentration of the fabric thus treated is plotted against the TEA concentration (FIG. 8). One observes a significant decrease in calcium concentration as the TEA concentration was increased, and the calcium concentration reached its minimum when the TEA concentration was increased to 8%. Previously, it was found that ester formation reached its maximum when TEA concentration was increased to 8%. The reduction in calcium concentration on the fabric as shown in FIG. 8 is obviously due to the reduction in the amount of free carboxylic acid on the treated cotton fabric as a result of increased esterification of BTCA by TEA. One also observes that further increase in the TEA concentration from 8% to 14% in the finish bath did not cause further reduction in calcium concentration.
- The LOI (%) for the cotton fabric treated with FR, BTCA and H3PO2 without the presence of TEA was only 24.1. It increased to 30.7 when 5% TEA was presented in the finish and it reached its maximum (31.1) when TEA concentration was 10%. The same trend remained after the treated cotton fabric was subject to different number of home laundering cycles. The LOI (%) of the treated cotton fabric after 5 laundering cycles is presented as a function of the TEA concentration in the finish system (FIG. 9). The increased LOI is attributed to two factors: the reduction in calcium concentration as shown in FIG. 8 and the increase in nitrogen concentration as a result of more TEA bonding to cotton through its esterification with BTCA. The data also indicate that a further increase to 12% in TEA concentration reduced the LOI (FIG. 9). This is consistent with the change in ester carbonyl band intensity as demonstrated in FIG. 7.
- Based on the data presented above, it was concluded that the TEA added to the finish system esterifies the free carboxylic acid group, thus reducing the calcium concentration on the treated fabric. The TEA bound to cotton through its esterification with cellulose also provides phosphorous-nitrogen synergism. Consequently, the H3PO2/TEA catalyst system significantly enhances the flame retardant properties of the treated cotton fabric.
- The Performance of the Cotton Fabric Treated with FR, BTCA, and H3PO2/TEA
- The cotton fabric was treated with 28% FR, 14% BTCA and 7% H3PO2 in combination with TEA of different concentrations. The pH of the finish solutions was adjusted to 3.0 using either NaOH or HCl solutions. The treated fabric was cured at 185° C. for 2 min. The calcium concentration and LOI of the fabric treated with different TEA concentrations are presented in Table 4. The data show that calcium concentration increased as the number of laundering cycles were increased. When TEA is present, however, the calcium concentration on the fabric was drastically reduced and LOI was increased. One also observes that TEA concentration at 8-10% resulted in the highest LOI. This is consistent with the data presented in FIG. 9.
- The same FR/BTCA/H3PO2 finishing system with TEA concentration ranging from 5% to 12% was applied to a 60/40 cotton/polyester blend fabric. The treated fabric was cured at 185° C. for 2 min. The calcium concentration and LOI of the cotton fabric thus treated is presented in Table 5. It is interesting to note that the finishing system considerably improved the flame retardant performance of the polyester/cotton blend. The data also show that TEA concentration of 10% led to highest LOI and the lowest calcium concentration.
- The performance of the FR/BTCA finish with different catalysts was compared. The cotton fabric was treated with 28% FR and 14% BTCA in the presence of two different catalysts: (1) 7% H3PO2 in combination of 10% TEA and (2) 7% NaH2PO2. The fabric was then cured at 185° C. for 2 min. The calcium concentration, LOI, and char length of the cotton fabric thus treated are presented in Tables 6, 7, and 8, respectively. The calcium concentration on the fabric after 5 HLWD cycles was increased to 0.196% when NaH2PO2 was used as the catalyst, whereas it was only 0.045% when H3PO2/TEA was used. Evidently, the esterification of TEA with BTCA reduces the formation of calcium salt on the fabrics. The fabric treated with FR, BTCA, and H3PO2/TEA showed considerably higher LOI and shorter char length than that treated with FR, BTCA, and NaH2PO2 (Tables 7 and 8, respectively). The treated fabric failed the vertical flammability test after 3 HLDW cycles when NaH2PO2 was used as the catalyst, whereas the char length was only 91 mm after 5 HLWD cycles when H3PO2/TEA was used (Table 8). The data clearly demonstrate that the combined effects of reduced calcium concentration on the fabric and phosphorous-nitrogen synergism significantly improved the flame retardant properties of the treated cotton fabric.
- Although the description contained herewith contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently-preferred embodiments of this invention. For example, compounds other than those specifically mentioned may be used and are included in the invention, as long as they perform the same function. Also, times and concentrations other than those specifically described may be used and are included in the invention. All references cited herein are hereby incorporated by reference to the extent not inconsistent with the disclosure herewith.
- 1. E. D. Weil, “Phosphorous Flame Retardants”, in “Kirk-Other Encyclopedia of Chemical Technology”, 4th ed., M. Grayson Ed., New York, John Wiley & Sons, 1995, vol. 10, pp976-998.
- 2. M. Lewin, “Flame Retardance of Fabrics”, in “Handbook of Fiber Science and Technology: Vol II. Chemical Processing of Fibers and Fabrics, Functional Finishes Part B”, M. Lewin and S. B. Sello, Eds, Mercel Dekker, New York, pp78-91 (1984).
- 3. Federal Register, 1-1-00 ed., 16CFR Ch. 11, pp. 1610-1616 (2000).
- 4. C. M. Welch, Formaldehyde-Free Durable Press Finishes,Review of Progress in Coloration, 22, 32-41 (1992).
- 5. C. M. Welch, “Tetracarboxylic Acids as Formaldehyde-free Durable Press Finishing Agents”,Textile Res. J. 58, 480-486 (1988).
- 6. C. M. Welch and B. A. K. Andrews, “Catalysts and Processes for Formaldehyde Free Durable Press Finishing of Cotton Textiles with Polycarboxylic Acids”, U.S. Pat. No. 4,820,307 (Apr. 11, 1989).
- 7. C. M. Welch and B. K. Andrews, “Catalysts and Processes for Formaldehyde Free Durable Press Finishing of Cotton Textiles with Polycarboxylic Acids”, U.S. Pat. No. 4,936,865 (Jun. 26, 1990).
- 8. C. M. Welch and B. K. Andrews, “Catalysts and Processes for Formaldehyde Free Durable Press Finishing of Cotton Textiles with Polycarboxylic Acids”, U.S. Pat. No. 4,936,865 (Dec. 4, 1990).
- 9. B. K. Andrews, N. M. Morris, D. J. Donaldson and C. M. Welch, “Catalysts and Processes for Formaldehyde Free Durable Press Finishing of Cotton Textiles with Polycarboxylic Acids”, U.S. Pat. No. 5,221,285 (Jun. 4, 1990).
- 10. C. Q. Yang and D. Wang, “Evaluation of Ester Crosslinking of Cotton Cellulose by A Polycarboxylic Acid Using Acid-Base Titration”,Textile Res. J., 70, 615-620 (2000).
- 11. J. K. Stowell, E. W. Weil, W. L. Coble, “Formaldehyde-Free Flame Retardant Treatment for Cellulose-Containing Materials”, U.S. Pat. No. 6,309,545 (Oct. 31, 2001).
- 12. M. Levin, “Flame Retardance of Fabrics”, in “Handbook of Fiber Science and Technology: Chemistry Processing of Fibers and Fabrics”, Vol. 2, Part B., ed., M. Lewin and S. B. Sello, Marcel Dekker, New York, 1984, p86.
- 13. C. Q. Yang, “Ft-IP Spectroscopy Study of the Ester Crosslinking Mechanism of Cotton Cellulose”Textile Res. J. 61, 433-440, 1991.
- 14. C. Q. Yang, “Infrared Spectroscopy Studies of the Cyclic Anhydride as the Intermediate for Ester Crosslinking of Cotton Cellulose by Polycarboxylic Acids. I. Identification of the Cyclic Anhydride Intermediate”,J. Polym. Sci., Part A. Polym. Chem. 33, 1187-1193 (1993).
- 15. C. Q. Yang, “Infrared Spectroscopy Studies of the Cyclic Anhydride as the Intermediate for Ester Crosslinking of Cotton Cellulose by Polycarboxylic Acids. III. Molecular Weight of A Crosslinling Agent”,J. Polym. Sci., Part A. Polym. Chem. 35, 557-564 (1997).
- 16. C. Q. Yang and G. Bakshi, “Quantitative Analysis of the Nonformaldehyde Durable Press Finish on Cotton Fabric: Acid-Base Titration and Infrared Spectroscopy”Textile Res. J. 66, 377-384 (1996).
TABLE 1 The Calcium Concentration on the Cotton Fabric Treated FR and BTCA with different BTCA-to-FR Ratio FR BTCA Ca Concentration (%) Concentration Concentration BTCA-to-FR before after 10 (%) (%) Ratio washing HLWD cycles 16 2.0 0.125 0.008 0.191 16 4.0 0.250 0.000 0.202 16 6.0 0.375 0.000 0.262 16 8.0 0.500 0.005 0.302 16 12.0 0.750 0.006 0.353 -
TABLE 2 The LOI, Char Length and Percent Phosphorus Retention of the Cotton Fabric Treated with FR and BTCA. Number of HLWD Cycles before water after water Fabric Property wash wash 1 3 5 10 15 LOI (%) 29.0 26.5 25.8 25.3 24.7 24.1 23.2 Char Length (mm) 85 144 176 >300 >300 >300 >300 % Phosphorus Retention — 96 88 89 84 82 75 Calcium Concentration(%) — — 0.110 0.102 0.196 0.240 0.297 -
TABLE 3 The LOI, Char Length, Percent Phosphorus Retention and Calcium Concentration of the Cotton Fabric Treated with FR and Hydroxymethylated Melamine. Number of HLWD Cycles after Fabric Property water wash 1 5 10 15 LOI (%) 32.1 29.7 29.2 28.7 27.8 Char Length (mm) 79 84 81 94 135 % Phosphorus — 70 65 66 62 Retention Calcium — 0.044 0.039 0.029 0.024 Concentration (%) -
TABLE 4 The LOI and calcium concentration of the 100% Cotton Fabric Treated with 28% FR, 14% BTCA and 7% H3PO2 in the presence of Different Concentration with TEA LOI(%) Calcium concentration(%) TEA After After 1 After 5 After After 1 After 5 Concentration(%) water wash HLWD cycle HLWD cycles water wash HLWD cycle HLWD cycles 0 24.1 23.6 23.5 0.041 0.101 0.196 5 30.7 29.2 27.9 0.015 0.019 0.056 8 30.9 30.2 28.1 0.003 0.011 0.021 10 31.1 30.0 28.6 0.003 0.011 0.045 12 30.2 29.7 26.3 0.006 0.007 0.031 -
TABLE 5 The Calcium Concentration and LOI of the 40/60 Polyester/cotton Fabric Treated with 28% FR, 14% BTCA and 7% H3PO2 in the presence of Different Concentration with TEA LOI(%) Calcium concentration(%) TEA After After 1 After 5 After After 1 After 5 Concentration(%) water wash HLWD cycle HLWD cycles water wash HLWD cycle HLWD cycles 5 27.4 26.3 25.2 0.032 0.034 0.064 8 27.6 26.7 25.7 0.001 0.012 0.037 10 28.6 27.7 25.8 0.007 0.006 0.010 12 27.6 26.3 24.7 0.000 0.008 0.035 -
TABLE 6 The Calcium Concentration on the Fabric Treated with FR and BTCA in the presence of Different Catalyst System Calcium Concentration (%) FR BTCA Catalyst Before After After 1 After 5 Concentration Concentration Concentration pH Water wash Water wash HLWD cycle HLWD cycles 28% 14% H3PO2 7% 3.0 0.000 0.003 0.011 0.045 adjusted by TEA 28% 14% NaH2PO2 7% 2.8 0.002 0.040 0.110 0.196 adjusted by NaOH -
TABLE 7 The LOI of the Fabric Treated with FR and BTCA in the presence of Different Catalyst System LOI(%) FR BTCA Catalyst Before After After 1 After 5 Concentration Concentration Concentration pH Water wash Water wash HLWD cycle HLWD cycles 28% 14% H3PO2 7% 3.0 34.3 31.1 30.0 28.6 adjusted by TEA 28% 14% NaH2PO2 7% 2.8 29.2 26.9 25.8 24.7 adjusted by NaOH -
TABLE 8 The Char Length of the Fabric Treated with FR and BTCA in the presence of Different Catalyst System Char Length(mm) FR BTCA Catalyst Before After After 1 After 5 Concentration Concentration Concentration pH Water wash Water wash HLWD cycle HLWD cycles 28% 14% H3PO2 7% 3.0 66 70 78 91 adjusted by TEA 28% 14% NaH2PO2 7% 2.8 88 133 176 >300 adjusted by NaOH
Claims (16)
1. A method of binding a flame retardant compound or composition to cellulose comprising:
applying a composition comprising a hydroxyalkyl-functionalized flame retardant, a polycarboxylic acid, hypophosphorous acid and a nitrogen-containing organic base to a cellulose-containing material.
2. The method of claim 1 , further comprising curing the cellulose-containing material at a temperature of between 200 to 100° C. for a time of between 20 seconds and 10 minutes.
3. The method of claim 1 , wherein said flame retardant is a hydroxylalkyl-functionalized organophosphorous compound.
4. The method of claim 3 , wherein said hydroxylalkyl-functionalized organophosphorous compound is Fyrol 51.
5. The method of claim 1 , wherein said polycarboxylic acid is 1,2,3,4-butanetetracarboxylic acid.
6. The method of claim 1 , wherein said nitrogen-containing organic base is TEA.
7. The method of claim 1 , wherein said nitrogen-containing organic base is hydroxylalkyl functionalized.
8. The method of claim 1 , wherein said flame-retardant is present in the composition at 2 to 40 weight percent.
9. The method of claim 1 , wherein said polycarboxylic acid is present in the composition at 1 to 20 weight percent.
10. The method of claim 1 , wherein said hypophosphorous acid is present in the composition at 1 to 12 weight percent.
11. The method of claim 1 , wherein said nitrogen-containing organic base is present in the composition at a weight percent which maximizes the esterification of cellulose-containing material.
12. The method of claim 11 , wherein said nitrogen-containing organic base is present in the composition at 1 to 15 weight percent.
13. The method of claim 1 , further comprising adjusting the pH to between 2 to 4.5.
14. A catalyst system for applying flame retardants to fabric comprising hypophosphorous acid and a nitrogen containing organic base.
15. The catalyst system of claim 14 , wherein said nitrogen containing organic base is triethanolamine.
16. The catalyst system of claim 14 , wherein said nitrogen containing organic base is selected from the group consisting of: triethanolamine, diethanolamine, and ethanolamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/497,374 US20040261191A1 (en) | 2002-02-22 | 2003-02-20 | Catalyst system and method for preparing flame resistant materials |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35893802P | 2002-02-22 | 2002-02-22 | |
PCT/US2003/005087 WO2003072871A1 (en) | 2002-02-22 | 2003-02-20 | Catalyst system andmethod for preparing flame resistant materials |
US10/497,374 US20040261191A1 (en) | 2002-02-22 | 2003-02-20 | Catalyst system and method for preparing flame resistant materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040261191A1 true US20040261191A1 (en) | 2004-12-30 |
Family
ID=27766026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/497,374 Abandoned US20040261191A1 (en) | 2002-02-22 | 2003-02-20 | Catalyst system and method for preparing flame resistant materials |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040261191A1 (en) |
AU (1) | AU2003215331A1 (en) |
WO (1) | WO2003072871A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9228093B2 (en) | 2013-10-18 | 2016-01-05 | Weyerhaeuser Nr Company | Colored water-repellant and crocking-resistant compositions |
CN107025379A (en) * | 2017-04-17 | 2017-08-08 | 东南大学 | A kind of sea tidal zone drying and watering cycle parameter equivalent method based on cosine function |
US12210005B2 (en) * | 2021-04-20 | 2025-01-28 | Shihezi University | Diagnostic method and system for drip irrigation cotton with nitrogen nutrient deficit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015179426A1 (en) * | 2014-05-19 | 2015-11-26 | MegaMatter Inc. | Large molecule and polymer flame retardants |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2909559A (en) * | 1958-02-03 | 1959-10-20 | Union Carbide Corp | Polymeric phosphate esters and their production |
US3099676A (en) * | 1961-11-03 | 1963-07-30 | Union Carbide Corp | Hydroxyalkyl polyphosphates |
US3228998A (en) * | 1960-10-17 | 1966-01-11 | Union Oil Co | Liquid polyphosphate esters |
US3309427A (en) * | 1963-01-15 | 1967-03-14 | Atlas Chemicals Ind Inc | Polyhydroxy phosphate esters |
US3472919A (en) * | 1964-08-13 | 1969-10-14 | Ugine Kuhlmann | Hydroxyl containing polytertiary phosphates and process for producing same |
US3695925A (en) * | 1970-03-27 | 1972-10-03 | Stauffer Chemical Co | Process for flameproofing textiles |
US3767732A (en) * | 1970-07-23 | 1973-10-23 | Knapsack Ag | Polyols containing halogen and phosphorus and process for making them |
US3850859A (en) * | 1970-07-23 | 1974-11-26 | Hoechst Ag | Difficultly inflammable polyurethanes and process for making them |
US3855359A (en) * | 1970-03-27 | 1974-12-17 | Stauffer Chemical Co | Copolycondensed vinylphosphonates |
US4017257A (en) * | 1974-09-11 | 1977-04-12 | Stauffer Chemical Company | Textiles fire-retardant treated with copolycondensed vinylphosphonates and process |
US4199534A (en) * | 1978-04-20 | 1980-04-22 | Stauffer Chemical Company | Poly (oxyorganophosphate/phosphonate) and process for preparing |
US4244893A (en) * | 1977-06-11 | 1981-01-13 | Hoechst Aktiengesellschaft | Polyphosphorus compounds obtained by reacting an alcohol, phosphorus anhydride and an oxalkylating agent |
US4268633A (en) * | 1978-04-20 | 1981-05-19 | Stauffer Chemical Company | Polyurethanes containing a poly (oxyorganophosphate/phosphonate) flame retardant |
US4335178A (en) * | 1979-09-10 | 1982-06-15 | Stauffer Chemical Company | Textiles containing a poly(oxyorganophosphate/phosphonate) flame retardant |
US4382042A (en) * | 1978-04-03 | 1983-05-03 | Stauffer Chemical Company | Method of preparing oligomeric phosphate esters |
US4458035A (en) * | 1981-11-04 | 1984-07-03 | Stauffer Chemical Company | Polyurethane foam having a flame retardant oligomeric phosphate ester |
US4697030A (en) * | 1985-05-23 | 1987-09-29 | Stauffer Chemical Company | Phosphate-containing and phosphonate-containing phosphate esters |
US4820307A (en) * | 1988-06-16 | 1989-04-11 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids |
US4886895A (en) * | 1985-05-23 | 1989-12-12 | Akzo America Inc. | Phosphate-containing and phosphonate-containing phosphate esters |
US4936865A (en) * | 1988-06-16 | 1990-06-26 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids |
US5117033A (en) * | 1985-05-23 | 1992-05-26 | Akzo America Inc. | Phosphate-containing and phosphonate-containing phosphate esters |
US5221285A (en) * | 1988-06-16 | 1993-06-22 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids, and textiles made therewith |
US5496476A (en) * | 1992-12-21 | 1996-03-05 | Ppg Indutstries, Inc. | Non-formaldehyde durable press finishing for cellulosic textiles with phosphonoalkylpolycarboxylic acid |
US5608100A (en) * | 1993-12-16 | 1997-03-04 | Hoechst Aktiengesellschaft | Oligomeric phosphoric acid esters which carry hydroxyalkoxy groups, their preparation and their use |
US5695528A (en) * | 1994-07-13 | 1997-12-09 | Nippon Chemical Industrial Co., Ltd. | Treating agent for cellulosic textile material and process for treating cellulosic textile material |
US6166170A (en) * | 1999-12-02 | 2000-12-26 | E. I. Du Pont De Nemours And Company | Esterification catalysts and processes therefor and therewith |
US6165919A (en) * | 1997-01-14 | 2000-12-26 | University Of Georgia Research Foundation, Inc. | Crosslinking agents of cellulosic fabrics |
US6221275B1 (en) * | 1997-11-24 | 2001-04-24 | University Of Chicago | Enhanced heat transfer using nanofluids |
US6309565B1 (en) * | 1999-09-27 | 2001-10-30 | Akzo Nobel Nv | Formaldehyde-free flame retardant treatment for cellulose-containing materials |
US6329058B1 (en) * | 1998-07-30 | 2001-12-11 | 3M Innovative Properties Company | Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers |
US6372811B2 (en) * | 1997-07-25 | 2002-04-16 | Sachchida N. Singh | Flame resistant rigid polyurethane foams blown with hydrofluorocarbons |
-
2003
- 2003-02-20 WO PCT/US2003/005087 patent/WO2003072871A1/en not_active Application Discontinuation
- 2003-02-20 US US10/497,374 patent/US20040261191A1/en not_active Abandoned
- 2003-02-20 AU AU2003215331A patent/AU2003215331A1/en not_active Abandoned
Patent Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2909559A (en) * | 1958-02-03 | 1959-10-20 | Union Carbide Corp | Polymeric phosphate esters and their production |
US3228998A (en) * | 1960-10-17 | 1966-01-11 | Union Oil Co | Liquid polyphosphate esters |
US3099676A (en) * | 1961-11-03 | 1963-07-30 | Union Carbide Corp | Hydroxyalkyl polyphosphates |
US3309427A (en) * | 1963-01-15 | 1967-03-14 | Atlas Chemicals Ind Inc | Polyhydroxy phosphate esters |
US3472919A (en) * | 1964-08-13 | 1969-10-14 | Ugine Kuhlmann | Hydroxyl containing polytertiary phosphates and process for producing same |
US3855359A (en) * | 1970-03-27 | 1974-12-17 | Stauffer Chemical Co | Copolycondensed vinylphosphonates |
US3695925A (en) * | 1970-03-27 | 1972-10-03 | Stauffer Chemical Co | Process for flameproofing textiles |
US3767732A (en) * | 1970-07-23 | 1973-10-23 | Knapsack Ag | Polyols containing halogen and phosphorus and process for making them |
US3850859A (en) * | 1970-07-23 | 1974-11-26 | Hoechst Ag | Difficultly inflammable polyurethanes and process for making them |
US4017257A (en) * | 1974-09-11 | 1977-04-12 | Stauffer Chemical Company | Textiles fire-retardant treated with copolycondensed vinylphosphonates and process |
US4244893A (en) * | 1977-06-11 | 1981-01-13 | Hoechst Aktiengesellschaft | Polyphosphorus compounds obtained by reacting an alcohol, phosphorus anhydride and an oxalkylating agent |
US4382042A (en) * | 1978-04-03 | 1983-05-03 | Stauffer Chemical Company | Method of preparing oligomeric phosphate esters |
US4199534A (en) * | 1978-04-20 | 1980-04-22 | Stauffer Chemical Company | Poly (oxyorganophosphate/phosphonate) and process for preparing |
US4268633A (en) * | 1978-04-20 | 1981-05-19 | Stauffer Chemical Company | Polyurethanes containing a poly (oxyorganophosphate/phosphonate) flame retardant |
US4335178A (en) * | 1979-09-10 | 1982-06-15 | Stauffer Chemical Company | Textiles containing a poly(oxyorganophosphate/phosphonate) flame retardant |
US4458035A (en) * | 1981-11-04 | 1984-07-03 | Stauffer Chemical Company | Polyurethane foam having a flame retardant oligomeric phosphate ester |
US4697030A (en) * | 1985-05-23 | 1987-09-29 | Stauffer Chemical Company | Phosphate-containing and phosphonate-containing phosphate esters |
US4886895A (en) * | 1985-05-23 | 1989-12-12 | Akzo America Inc. | Phosphate-containing and phosphonate-containing phosphate esters |
US5117033A (en) * | 1985-05-23 | 1992-05-26 | Akzo America Inc. | Phosphate-containing and phosphonate-containing phosphate esters |
US4820307A (en) * | 1988-06-16 | 1989-04-11 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids |
US4936865A (en) * | 1988-06-16 | 1990-06-26 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids |
US5221285A (en) * | 1988-06-16 | 1993-06-22 | The United States Of America As Represented By The Secretary Of Agriculture | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids, and textiles made therewith |
US5496476A (en) * | 1992-12-21 | 1996-03-05 | Ppg Indutstries, Inc. | Non-formaldehyde durable press finishing for cellulosic textiles with phosphonoalkylpolycarboxylic acid |
US5608100A (en) * | 1993-12-16 | 1997-03-04 | Hoechst Aktiengesellschaft | Oligomeric phosphoric acid esters which carry hydroxyalkoxy groups, their preparation and their use |
US5695528A (en) * | 1994-07-13 | 1997-12-09 | Nippon Chemical Industrial Co., Ltd. | Treating agent for cellulosic textile material and process for treating cellulosic textile material |
US6165919A (en) * | 1997-01-14 | 2000-12-26 | University Of Georgia Research Foundation, Inc. | Crosslinking agents of cellulosic fabrics |
US6372811B2 (en) * | 1997-07-25 | 2002-04-16 | Sachchida N. Singh | Flame resistant rigid polyurethane foams blown with hydrofluorocarbons |
US6221275B1 (en) * | 1997-11-24 | 2001-04-24 | University Of Chicago | Enhanced heat transfer using nanofluids |
US6329058B1 (en) * | 1998-07-30 | 2001-12-11 | 3M Innovative Properties Company | Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers |
US6309565B1 (en) * | 1999-09-27 | 2001-10-30 | Akzo Nobel Nv | Formaldehyde-free flame retardant treatment for cellulose-containing materials |
US6365070B1 (en) * | 1999-09-27 | 2002-04-02 | Akzo Nobel Nv | Formaldehyde-free flame retardant treatment for cellulose-containing materials |
US6166170A (en) * | 1999-12-02 | 2000-12-26 | E. I. Du Pont De Nemours And Company | Esterification catalysts and processes therefor and therewith |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9228093B2 (en) | 2013-10-18 | 2016-01-05 | Weyerhaeuser Nr Company | Colored water-repellant and crocking-resistant compositions |
CN107025379A (en) * | 2017-04-17 | 2017-08-08 | 东南大学 | A kind of sea tidal zone drying and watering cycle parameter equivalent method based on cosine function |
US12210005B2 (en) * | 2021-04-20 | 2025-01-28 | Shihezi University | Diagnostic method and system for drip irrigation cotton with nitrogen nutrient deficit |
Also Published As
Publication number | Publication date |
---|---|
WO2003072871A1 (en) | 2003-09-04 |
AU2003215331A1 (en) | 2003-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Combination of a hydroxy‐functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: Part II. Formation of calcium salt during laundering | |
EP1226302B1 (en) | Formaldehyde-free flame retardant treatment for cellulose-containing materials | |
US5728771A (en) | Non-formaldehyde durable press finishing for cellulosic textiles with phosphinocarboxylic acid | |
US5705475A (en) | Non-formaldehyde durable press finishing for cellulosic textiles with phosphonoalkylpolycarboxylic | |
Wu et al. | Comparison of DMDHEU and melamine-formaldehyde as the binding agents for a hydroxy-functional organophosphorus flame retarding agent on cotton | |
US4820307A (en) | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids | |
US4975209A (en) | Catalysts and processes for formaldehyde-free durable press finishing of cotton textiles with polycarboxylic acids | |
Yang et al. | Nonformaldehyde flame retardant finishing of the nomex/cotton blend fabric using a hydroxy-functional organophosphorus oligomer | |
Wu et al. | Flame retardant finishing of cotton fleece fabric: part III—the combination of maleic acid and sodium hypophosphite | |
CN1036670C (en) | fabric treatment method | |
Yang et al. | The combination of a hydroxy‐functional organophosphorus oligomer and melamine‐formaldehyde as a flame retarding finishing system for cotton | |
Yang et al. | The bonding of a hydroxy-functional organophosphorus oligomer to nylon fabric using the formaldehyde derivatives of urea and melamine as the bonding agents | |
Reeves et al. | Flame Retardants for Cotton Using APO and APS-THPC Resins | |
Welch | Formaldehyde-free durable press finishing | |
JPH073648A (en) | Fabric processing method | |
Lewin | Flame retarding of polymers with sulfamates. I. Sulfation of cotton and wool | |
US3681124A (en) | Process for preparing durable flame-retardant synthetic-cellulosic fabric blends | |
US20040261191A1 (en) | Catalyst system and method for preparing flame resistant materials | |
KR790001788B1 (en) | Fire retarding textile materials | |
US3884628A (en) | N-Phosphonomethyl acrylamides as flame retarding agents for textiles | |
Isaacs et al. | Flame-resistant cellulose esters | |
US3958932A (en) | Flame-resistant textiles through finishing treatments with vinyl monomer systems | |
US3825630A (en) | Phosphonate carbamates | |
US3816068A (en) | Flame retardant for cellulosic fabrics | |
US4277243A (en) | Process for producing durable-press cotton fabrics with improved balances of textile properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANG, CHARLES Q.;REEL/FRAME:014796/0153 Effective date: 20040621 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |