US20040253261A1 - Biological compositions and methods for treatment of pancreatic cancer - Google Patents
Biological compositions and methods for treatment of pancreatic cancer Download PDFInfo
- Publication number
- US20040253261A1 US20040253261A1 US10/460,337 US46033703A US2004253261A1 US 20040253261 A1 US20040253261 A1 US 20040253261A1 US 46033703 A US46033703 A US 46033703A US 2004253261 A1 US2004253261 A1 US 2004253261A1
- Authority
- US
- United States
- Prior art keywords
- yeast cells
- range
- activated
- cells
- mhz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 157
- 238000000034 method Methods 0.000 title claims abstract description 99
- 206010061902 Pancreatic neoplasm Diseases 0.000 title claims abstract description 77
- 201000002528 pancreatic cancer Diseases 0.000 title claims abstract description 76
- 208000008443 pancreatic carcinoma Diseases 0.000 title claims abstract description 75
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 title claims abstract description 74
- 238000011282 treatment Methods 0.000 title description 28
- 210000005253 yeast cell Anatomy 0.000 claims abstract description 229
- 210000004027 cell Anatomy 0.000 claims abstract description 73
- 230000004083 survival effect Effects 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 17
- 235000015872 dietary supplement Nutrition 0.000 claims abstract description 12
- 230000012010 growth Effects 0.000 claims abstract description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 3
- 230000005672 electromagnetic field Effects 0.000 claims description 69
- 230000001143 conditioned effect Effects 0.000 claims description 60
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 57
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 56
- 238000012258 culturing Methods 0.000 claims description 53
- 239000007788 liquid Substances 0.000 claims description 28
- 235000011389 fruit/vegetable juice Nutrition 0.000 claims description 26
- 241001092040 Crataegus Species 0.000 claims description 19
- 235000009917 Crataegus X brevipes Nutrition 0.000 claims description 19
- 235000013204 Crataegus X haemacarpa Nutrition 0.000 claims description 19
- 235000009685 Crataegus X maligna Nutrition 0.000 claims description 19
- 235000009444 Crataegus X rubrocarnea Nutrition 0.000 claims description 19
- 235000009486 Crataegus bullatus Nutrition 0.000 claims description 19
- 235000017181 Crataegus chrysocarpa Nutrition 0.000 claims description 19
- 235000009682 Crataegus limnophila Nutrition 0.000 claims description 19
- 235000004423 Crataegus monogyna Nutrition 0.000 claims description 19
- 235000002313 Crataegus paludosa Nutrition 0.000 claims description 19
- 235000009840 Crataegus x incaedua Nutrition 0.000 claims description 19
- 230000003750 conditioning effect Effects 0.000 claims description 16
- 239000000047 product Substances 0.000 claims description 16
- 210000004051 gastric juice Anatomy 0.000 claims description 14
- 235000013305 food Nutrition 0.000 claims description 13
- 235000010469 Glycine max Nutrition 0.000 claims description 12
- 244000068988 Glycine max Species 0.000 claims description 12
- 241000124008 Mammalia Species 0.000 claims description 11
- 238000001035 drying Methods 0.000 claims description 10
- 239000004615 ingredient Substances 0.000 claims description 9
- 241000235070 Saccharomyces Species 0.000 claims description 7
- 240000006079 Schisandra chinensis Species 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 235000008422 Schisandra chinensis Nutrition 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 5
- 235000013361 beverage Nutrition 0.000 claims description 5
- 235000020418 red date juice Nutrition 0.000 claims description 5
- YEFOAORQXAOVJQ-RZFZLAGVSA-N schisandrol a Chemical compound C1[C@H](C)[C@@](C)(O)CC2=CC(OC)=C(OC)C(OC)=C2C2=C1C=C(OC)C(OC)=C2OC YEFOAORQXAOVJQ-RZFZLAGVSA-N 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 4
- 239000012676 herbal extract Substances 0.000 claims description 4
- 235000016709 nutrition Nutrition 0.000 claims description 4
- 239000003755 preservative agent Substances 0.000 claims description 4
- 239000007909 solid dosage form Substances 0.000 claims description 4
- 239000011782 vitamin Substances 0.000 claims description 4
- 235000013343 vitamin Nutrition 0.000 claims description 4
- 229930003231 vitamin Natural products 0.000 claims description 4
- 229940088594 vitamin Drugs 0.000 claims description 4
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 235000008216 herbs Nutrition 0.000 claims description 3
- 239000000419 plant extract Substances 0.000 claims description 3
- 230000000979 retarding effect Effects 0.000 claims description 3
- 239000004097 EU approved flavor enhancer Substances 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims description 2
- 235000007164 Oryza sativa Nutrition 0.000 claims description 2
- 244000269722 Thea sinensis Species 0.000 claims description 2
- 235000013365 dairy product Nutrition 0.000 claims description 2
- 235000019264 food flavour enhancer Nutrition 0.000 claims description 2
- 235000015203 fruit juice Nutrition 0.000 claims description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 2
- 239000011707 mineral Substances 0.000 claims description 2
- 235000009566 rice Nutrition 0.000 claims description 2
- 230000008901 benefit Effects 0.000 abstract description 18
- 241000699670 Mus sp. Species 0.000 description 92
- 206010028980 Neoplasm Diseases 0.000 description 76
- 241001465754 Metazoa Species 0.000 description 49
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 34
- 201000011510 cancer Diseases 0.000 description 23
- 210000004881 tumor cell Anatomy 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 239000002609 medium Substances 0.000 description 20
- 239000011780 sodium chloride Substances 0.000 description 18
- 229960004857 mitomycin Drugs 0.000 description 17
- 230000008569 process Effects 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 13
- 239000001963 growth medium Substances 0.000 description 13
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 13
- 229960004355 vindesine Drugs 0.000 description 13
- 239000002775 capsule Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 230000037396 body weight Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 235000013399 edible fruits Nutrition 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 210000000496 pancreas Anatomy 0.000 description 10
- 238000001356 surgical procedure Methods 0.000 description 10
- 238000004113 cell culture Methods 0.000 description 8
- 238000002512 chemotherapy Methods 0.000 description 8
- 239000002504 physiological saline solution Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 206010027476 Metastases Diseases 0.000 description 7
- 239000002246 antineoplastic agent Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 239000003814 drug Substances 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 210000002784 stomach Anatomy 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 238000001994 activation Methods 0.000 description 5
- 235000021028 berry Nutrition 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000006285 cell suspension Substances 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 210000001165 lymph node Anatomy 0.000 description 5
- 230000009401 metastasis Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000011725 BALB/c mouse Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 4
- 208000009956 adenocarcinoma Diseases 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000013401 experimental design Methods 0.000 description 4
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 238000010253 intravenous injection Methods 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- 210000000813 small intestine Anatomy 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000011277 treatment modality Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000004580 weight loss Effects 0.000 description 4
- 208000016261 weight loss Diseases 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 238000012449 Kunming mouse Methods 0.000 description 3
- 206010028813 Nausea Diseases 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 210000000941 bile Anatomy 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000001079 digestive effect Effects 0.000 description 3
- 235000011869 dried fruits Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 210000000232 gallbladder Anatomy 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008693 nausea Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229960002181 saccharomyces boulardii Drugs 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- -1 sugars Chemical class 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 2
- 241000272525 Anas platyrhynchos Species 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 229920001503 Glucan Polymers 0.000 description 2
- 208000008454 Hyperhidrosis Diseases 0.000 description 2
- 206010022998 Irritability Diseases 0.000 description 2
- 206010023126 Jaundice Diseases 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 208000001431 Psychomotor Agitation Diseases 0.000 description 2
- 206010038743 Restlessness Diseases 0.000 description 2
- 241000223252 Rhodotorula Species 0.000 description 2
- 238000011579 SCID mouse model Methods 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 206010041349 Somnolence Diseases 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 206010044565 Tremor Diseases 0.000 description 2
- 229930003756 Vitamin B7 Natural products 0.000 description 2
- 244000126002 Ziziphus vulgaris Species 0.000 description 2
- 208000006336 acinar cell carcinoma Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 201000008395 adenosquamous carcinoma Diseases 0.000 description 2
- 229960000473 altretamine Drugs 0.000 description 2
- 230000004596 appetite loss Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 229960001561 bleomycin Drugs 0.000 description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 208000002458 carcinoid tumor Diseases 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 208000002445 cystadenocarcinoma Diseases 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 210000001198 duodenum Anatomy 0.000 description 2
- 238000007459 endoscopic retrograde cholangiopancreatography Methods 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 229960005277 gemcitabine Drugs 0.000 description 2
- 229940020967 gemzar Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 235000021266 loss of appetite Nutrition 0.000 description 2
- 208000019017 loss of appetite Diseases 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 239000011715 vitamin B12 Substances 0.000 description 2
- 239000011708 vitamin B3 Substances 0.000 description 2
- 239000011735 vitamin B7 Substances 0.000 description 2
- 235000011912 vitamin B7 Nutrition 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 208000008599 Biliary fistula Diseases 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 241000308595 Buckleyzyma aurantiaca Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000000321 Gardner Syndrome Diseases 0.000 description 1
- 241000159512 Geotrichum Species 0.000 description 1
- 241001149669 Hanseniaspora Species 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 241001149698 Lipomyces Species 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000006809 Pancreatic Fistula Diseases 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 235000003534 Saccharomyces carlsbergensis Nutrition 0.000 description 1
- 241001123227 Saccharomyces pastorianus Species 0.000 description 1
- 241000235088 Saccharomyces sp. Species 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000223230 Trichosporon Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 241000193620 Wickerhamia Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 210000004141 ampulla of vater Anatomy 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 238000011717 athymic nude mouse Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 208000011825 carcinoma of the ampulla of vater Diseases 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002113 chemopreventative effect Effects 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000013367 dietary fats Nutrition 0.000 description 1
- 235000021245 dietary protein Nutrition 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 210000002907 exocrine cell Anatomy 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 238000002710 external beam radiation therapy Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000021197 fiber intake Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011354 first-line chemotherapy Methods 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 210000003736 gastrointestinal content Anatomy 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 235000013402 health food Nutrition 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 230000006510 metastatic growth Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 208000018962 mouth sore Diseases 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000002687 nonaqueous vehicle Substances 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000002747 omentum Anatomy 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 208000012110 pancreatic exocrine neoplasm Diseases 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003342 selenium Chemical class 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 235000000891 standard diet Nutrition 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 210000000541 transverse mesocolon Anatomy 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/06—Fungi, e.g. yeasts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0004—Homeopathy; Vitalisation; Resonance; Dynamisation, e.g. esoteric applications; Oxygenation of blood
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
Definitions
- the invention relates to oral compositions comprising yeast cells that can produce a healthful benefit in a subject inflicted with pancreatic cancer.
- the invention also relates to methods for manufacturing the oral compositions and methods of use thereof.
- Pancreatic cancer is the second most common visceral malignancy as well as the fifth leading cause of cancer mortality in the United States, accounting for one fifth of all gastrointestinal (GI) cancer deaths.
- Pancreatic cancer is a disease of the industrialized world. There is a tenfold difference between the highest incidence rate, in American black males (15.2 per 100,000), and the lowest rates, in Hungary, Nigeria, and India (1.5 per 100,000) (Waterhouse et al., 1976, Lyon: International Agency for Research on Cancer, Vol. 3). High risk has also been observed in Polynesian males, including native Hawaiians and New Zealand Maoris. Like many other cancers, pancreatic cancer usually strikes after age 50. The incidence of pancreatic cancer has risen with an increase in the average life span. For example, the incidence in Japan rose from 1.8 per 100,000 in 1960 to 5.2 per 100,000 in 1985 (Beazley et al., 1995, Clinical Oncology, Chapter 15).
- pancreatic cancer Aside from advanced age, smoking is the main risk factor for pancreatic cancer—a smoker is three to four times more likely than a nonsmoker to acquire the disease. People frequently exposed to certain petroleum, chemical and metal products may also be at increased risk. Excessive dietary fat and protein as well as low fiber intake may promote the disease. Diabetes is linked to pancreatic cancer for 10% to 20% of patients diagnosed with pancreatic cancer also have diabetes. Other hereditary diseases associated with pancreatic cancer include inflammatory pancreatic problem, Gardner's syndrome (where growths develop inside and outside the colon), the skin and nerve disease neurofibromatosis, and multiple endocrine neoplasia, a condition that promotes growth of noncancerous islet cell
- pancreatic cancer is difficult to detect early because the pancreas is located deep inside the body and is hidden behind other organs. The retroperitoneal location of the pancreas is considered a major obstacle to early treatment. Further, pancreatic cancer does not usually cause symptoms in its early stages. Even if symptoms do occur, they may be vague and the tumor has already spread outside of the pancreas (metastasis). Signs include abdominal pain, unexpected weight loss, nausea, loss of appetite, weight loss, digestive problems, jaundice, or yellowing of the skin are nonspecific and often overlap with other diseases. The rarer endocrine (or islet cell) cancers may also cause restlessness, loss of energy, irritability, sweating, tremor, drowsiness and severe confusion.
- ultrasound e.g., ultrasound, CT scan, MRI (magnetic resonance imaging), barium meal ERCP (endoscopic retrograde cholangiopancreatography) and PTC (percutaneous transhepatic cholangiopancreatography) tests.
- CT scan e.g., CT scan
- MRI magnetic resonance imaging
- barium meal ERCP endoscopic retrograde cholangiopancreatography
- PTC percutaneous transhepatic cholangiopancreatography
- the staging of pancreatic cancer is based on the revised criteria of TNM staging by the American Joint Committee for Cancer (AJCC) published in 1988.
- Staging is the process of describing the extent to which cancer has spread from the site of its origin. It is used to assess a patient's prognosis and to determine the choice of therapy.
- the stage of a cancer is determined by the size and location in the body of the primary tumor, and whether it has spread to other areas of the body. Staging involves using the letters T, N and M to assess tumors by the size of the primary tumor (T); the degree to which regional lymph nodes (N) are involved; and the absence or presence of distant metastases (M)—cancer that has spread from the original (primary) tumor to distant organs or distant lymph nodes.
- Stage I cancers are small, localized and usually curable.
- Stage II and III cancers typically are locally advanced and/or have spread to local lymph nodes.
- Stage IV cancers usually are metastatic (have spread to distant parts of the body) and generally are considered inoperable.
- pancreatic malignancies arise from ductal epithelium, even though less than 15% of the pancreas by mass is made up of ductal tissue.
- pancreatic cancers are exocrine cell cancers called adenocarcinomas, usually originating in the head of the gland.
- Other tumors arising from the pancreas include acinar cell carcinoma (about 5%), cystadenocarcinoma (mucinous), adenosquamous carcinoma, solid microglandular carcinoma, carcinoid, sarcoma, and malignant lymphoma.
- Whipple procedure although a popular choice of treatment, can cause numerous complications such as sepsis, biliary or pancreatic fistula, and bleeding.
- the overall morbidity rate varies between 27% and 46%. (Pellegrini et al., 1989, Arch Surg. 124:778-81).
- 5-year survival after pancreaticoduodenectomy for cancer was exceedingly rare. Survival rates of 3% to 25% are currently being reported.
- long-term survivors are reported with a large tumor, but the majority of the survivors are those who have small lesions and negative lymph nodes (T1, N0, M0).
- Mean survival after pancreatic resection is 17 months.
- pancreatic exocrine tumors are responsive to radiation therapy. Nonetheless, the curative rate is extremely low and the side effects are undesirable.
- Titanium clips which do not interfere with CT studies, can be surgically placed to mark the margins of the tumor, thus enabling the radiation therapist to design fields that will maximize tumor dosage and minimize injury to radiosensitive, normal adjacent structures (Dodelbower et al., 1984, World J Surg. 8:919-28).
- chemotherapeutic agents include hexamethylmelamine, bleomycin, cisplatin, mitomycin C, doxorubicin, methotrexate and Gemzar (gemcitabine HCL).
- nude mice that are athymic congenitally have been used as recipients of a variety of human tumors (Rygaard, 1983, in 13 th International Cancer Congress Part C, Biology of Cancer (2), pp37-44, Alan R. Liss, Inc., NY; Fergusson and Smith, 1987, Thorax, 42:753-758). While the athymic nude mouse model provides useful models to study a large number of human tumors in vivo, it does not develop spontaneous metastases and are not suitable for all types of tumors.
- SCID mice severe combined immunodeficient mice
- Human lung cancer was first used to demonstrate the successful engraftment of a human cancer in the SCID mouse model (Reddy S., 1987, Cancer Res. 47(9):2456-2460).
- SCID mouse model have been shown to allow disseminated metastatic growths for a number of human tumors, particularly hematologic disorders and malignant melanoma (Mueller and Reisfeld, 1991, Cancer Metastasis Rev. 10(3):193-200; Bankert et al., 2001, Trends Immunol. 22:386-393).
- the mouse genome has become the primary mammalian genetic model for the study of cancer (Resor et al., 2001, Human Molec Genet. 10:669-675).
- yeasts and components thereof have been developed to be used as dietary supplement or pharmaceuticals.
- none of the prior methods uses yeast cells which have been cultured in an electromagnetic field to produce a product that has an anti-cancer effect.
- U.S. Pat. No. 6,197,295 discloses a selenium-enriched dried yeast product which can be used as dietary supplement.
- the yeast strain Saccharomyces boulardii sequela PY 31 (ATCC 74366) is cultured in the presence of selenium salts and contains 300 to about 6,000 ppm intracellular selenium. Methods for reducing tumor cell growth by administration of the selenium yeast product in combination with chemotherapeutic agents is also disclosed.
- U.S. Pat. No. 6,143,731 discloses a dietary additive containing whole ⁇ -glucans derived from yeast, which when administered to animals and humans, provide a source of fiber in the diet, a fecal bulking agent, a source of short chain fatty acids, reduce cholesterol and LDL, and raises HDL levels.
- U.S. Pat. No. 5,504,079 discloses a method of stimulating an immune response in a subject utilizing modified yeast glucans which have enhanced immunobiologic activity.
- the modified glucans are prepared from the cell wall of Saccharomyces yeasts, and can be administered in a variety of routes including, for example, the oral, intravenous, subcutaneous, topical, and intranasal route.
- U.S. Pat. No. 4,348,483 discloses a process for preparing a chromium yeast product which has a high intracellular chromium content.
- the process comprises allowing the yeast cells to absorb chromium under a controlled acidic pH and, thereafter inducing the yeast cells to grow by adding nutrients.
- the yeast cells are dried and used as a dietary supplement.
- the present invention relates to biological or oral compositions useful for subjects with pancreatic cancer.
- the present invention provides biological compositions comprising live yeast cells which are capable of producing a healthful benefit in subjects with pancreatic cancer.
- the invention provides methods of making the biological compositions, and methods of using the biological compositions.
- the methods of the invention comprise culturing yeast cells in the presence of a series of electromagnetic fields such that the yeast cells becomes metabolically active.
- the electromagnetic fields used are each defined by one of five frequency ranges and a broad range of field strength.
- the starting yeast cells are commercially available and/or accessible to the public, such as but not limited to Saccharomyces .
- the methods for making the biological compositions of the invention further comprise conditioning the activated yeast cells in plant extracts and the gastric juice of animals, while in the presence of another series of electromagnetic fields.
- the methods of manufacturing also comprise expanding the number of activated or activated and conditioned yeast cells in large scale cultures in the presence of yet another series of electromagnetic fields, performing quality control measures, and packaging.
- Pharmaceutical compositions of the invention comprises activated and conditioned yeast cells and one or more pharmaceutically acceptable excipients or carriers. Additional ingredients, such as vitamins and/or flavors may be added to the biological compositions to form the oral compositions of the invention. Such additional carriers and ingredients can improve the healthful benefits, pharmacological properties, and organoleptic characteristics of the oral compositions.
- the activated or activated and conditioned yeast cells may be dried and stored for a period of time.
- the biological or oral compositions of the invention are ingested by the subject or used as an additive to be incorporated into food to be consumed by the subject.
- Dietary supplement and nutritional compositions comprising activated and conditioned yeast cells are encompassed by the invention.
- the subject is a human being.
- the biological or oral compositions of the invention are used to produce a healthful benefit in a subject with pancreatic cancer or at high risk of developing pancreatic cancer.
- the biological composition of the invention can retard the growth of pancreatic cancer cells in an animal which received the composition orally.
- the composition can also be used to prolong the time of survival of an animal with pancreatic cancer.
- FIG. 1 Activation and conditioning of yeast cells.
- FIG. 2 Large scale propagation of yeast cells. 5 first container; 6 second container; 7 third container; 8 yeast cell cultures; 9 electromagnetic field source.
- the present invention relates to biological compositions that can produce a healthful benefit in a subject with pancreatic cancer.
- the present invention provides methods for manufacturing the biological compositions as well as methods for using the biological compositions.
- the invention provides biological compositions that comprise yeasts. Unlike the traditional use of yeasts in the making of food, the yeast cells of the invention are not used as a source of enzymes that acts on the food ingredients. The yeasts are not a primary source of nutrients for the subject. Nor are yeast cells used as a carrier, such as metal salts. The yeast cells of the invention are live when administered orally or ingested along with food by a subject.
- the inventor believes that the culture conditions activate and/or amplified the expression of a gene or a set of genes in the yeast cells such that the yeast cells becomes highly effective in stimulating the animal's immune system, including both specific and non-specific immunological reactions, the results of which are manifested as the overall healthful benefits observed in the treated subject.
- the healthful benefits provided by using the biological compositions are demonstrated in animal models of human pancreatic cancer which show inhibition of tumor growth and prolonged survival time of animals with the disease.
- the invention provides methods for making the yeast cells in the biological compositions.
- the starting materials are normal yeast cells which can be readily obtained commercially or from public microorganism deposits.
- the methods of the invention comprise a set of culture conditions that can be applied reproducibly to activate the yeast cells.
- the key feature of the culture conditions used in the methods of the invention is a series of alternating electromagnetic fields of defined frequency ranges and field strengths which are applied to the growing yeast cell culture.
- the method further comprises the step of conditioning the activated live yeast cells to the acidic environment of the stomach of the subject.
- the electromagnetic fields used in these methods can be created reproducibly at various scales, thus enabling even the large scale manufacturing of the biological compositions of the invention.
- normal yeast cells can be activated routinely and reproducibly to become yeast cells of the invention.
- the invention provides methods for manufacturing an oral composition comprising activated and conditioned yeasts of the invention, and additional ingredients, including but not limited to pharmaceutically acceptable carriers or excipients, vitamins, herbs (including traditional Chinese medicine products), herbal extracts, minerals, amino acids, flavoring agents, coloring agents, and/or preservatives.
- additional ingredients including but not limited to pharmaceutically acceptable carriers or excipients, vitamins, herbs (including traditional Chinese medicine products), herbal extracts, minerals, amino acids, flavoring agents, coloring agents, and/or preservatives.
- the biological compositions can be added to food which will be consumed by the subject.
- many methods may be used to mix the biological or oral compositions of the invention with food while the yeast cells remain viable.
- the culture broth comprising live yeast cells of the present invention are added directly to food just prior to consumption. Dried powders of the yeasts can also be reconstituted and added directly to food just prior to consumption.
- the oral compositions of the invention can be consumed directly by a subject or be fed directly to a subject.
- the subject may drink the culture broth or a fraction thereof that comprises live activated and conditioned yeast cells.
- Oral compositions comprising dried yeast cells can also be given as a solid dosage form to the subject.
- the biological or oral compositions of the invention can be used in conjunction or in rotation with other types of treatment modalities such as but not limited to surgery, chemotherapeutic agents, and radiation. Since the biological compositions of the invention are administered orally, the assistance of health professionals in administration of the composition is generally not essential.
- Section 5.1 Described below in Section 5.1 are the yeast cells of the invention and methods of their preparation.
- Section 5.2 describes the use of the biological compositions of the invention in a subject suffering from pancreatic cancer.
- the examples in Sections 6 to 9 demonstrate the therapeutic benefits of an oral composition of the invention.
- the activated and conditioned yeast cells in the oral composition are characterized by their ability to (i) suppress the growth of cancer cells in an animal model of human pancreatic cancer, or (ii) prolong the survival of animals with transplanted cancer cells in a model of human pancreatic cancer, as compared to yeast cells which have not been activated and conditioned.
- the yeast cells of the biological composition are produced by culturing a plurality of yeast cells in an appropriate culture medium in the presence of an alternating electromagnetic field over a period of time.
- the method comprises a first step of activating the yeast cells and a second step of conditioning the activated yeast cells.
- the activation process comprises culturing yeast cells in the presence of at least two, three, four or five electromagnetic fields of specific frequencies and field strength.
- the conditioning process comprises further culturing of the activated yeast cells in a medium comprising plant extracts and extracts from the stomach of an animal, in the presence of at least one electromagnetic field.
- the activated and conditioned yeast cells can be stored as dried cells after drying the cells under appropriate conditions.
- the dried activated and conditioned yeast cells can be used later in large scale culturing processes for manufacturing the biological compositions of the invention.
- the various culturing processes of the invention can be performed either as a batch process or a continuous process.
- yeasts of the genera of Saccharomyces, Candida, Crebrothecium, Geotrichum, Hansenula, Kloeckera, Lipomyces, Pichia, Rhodosporidium, Rhodotorula, Torulopsis, Trichosporon , and Wickerhamia can be used in the invention.
- fungi used for food manufacturing are preferred.
- Non-limiting examples of yeast strains include Saccharomyces sp., AS2.311; Schizosaccharomyces pombe Linder, AS2.214, AS2.248, AS2.249, AS2.255, AS2.257, AS2.259, AS2.260, AS2.274, AS2.994, AS2.1043, AS2.1149, AS2.1178, IFFI 1056; Saccharomyces sake Yabe, ACCC2045; Saccharomyces uvarum Beijer, IFFI 1023, IFFI 1032, IFFI 1036, IFFI 1044, IFFI 1072, IFFI 1205, IFFI 1207; Saccharomyces rouxii Boutroux, AS2.178, AS2.180, AS2.370, AS2.371; Saccharomyces cerevisiae Hansen Var.
- yeast strains useful for the invention can be obtained from private or public laboratory cultures, or publicaly accessible culture deposits, such as the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209 and the China General Microbiological Culture Collection Center (CGMCC), China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China.
- CGMCC General Microbiological Culture Collection Center
- yeast cells of the invention do not comprise an enhanced level of selenium or chromium relative to that found in naturally occurring yeast cells.
- the biological compositions do not comprise cells of Saccharomyces boulardii (for example, ATCC Accession No. 74366) or cells of a particular strain of Saccharomyces cerevisiae (strain Hansen CBS 5926) that is also commonly referred to as Saccharomyces boulardii.
- the preparation of the yeast cells of the invention is not limited to starting with a pure strain of yeast.
- the yeast cells in the biological compositions may be produced by culturing a mixture of yeast cells of different species or strains.
- the constituents of a mixture of yeast cells can be determined by standard yeast identification techniques well known in the art.
- an electromagnetic field useful in the invention can be generated by various means well known in the art.
- An electromagnetic field of a desired frequency and a desired field strength is generated by an electromagnetic wave source (3) which comprises one or more signal generators that are capable of generating electromagnetic waves, preferably sinusoidal waves, and preferably in the frequency range of 1,500 to 15,000 MHz and most preferably 7,900 to 12,800 MHz.
- signal generators are well known in the art.
- Signal generators capable of generating signal with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output signal, and thus the strength of the EM field.
- the electromagnetic field can be applied to the culture by a variety of means including placing the yeast cells in close proximity to a signal emitter connected to a source of electromagnetic waves.
- the signal generator is connected to the signal emitter by cables such as coaxial cables that can transmit signals up to greater than or equal to 30 GHz.
- the yeast cells are placed in a container which is made of material that is not an electric conductor, such as but not limited to plastic, resin, glass, and ceramic.
- the electromagnetic field is applied by signal emitters in the form of electrodes (4) that are submerged in a culture of yeast cells (1).
- one of the electrodes is a metal plate which is placed on the bottom of a non-conducting container ( 2 ), and the other electrode comprises a plurality of wires or tubes so configured inside the container such that the energy of the electromagnetic field can be evenly distributed in the culture.
- the electrodes are preferably made of copper.
- TABLE 1 height of culture medium in the distance electrodes are range for distance of non-conducting placed from the bottom the electrodes from container (cm) of the container (cm) the bottom (cm) 15 to 20 3 3 to 5 20 to 30 5 5 to 7 30 to 50 7 7 to 10 50 to 70 10 10 to 15 70 to 100 15 15 to 20 100 to 150 20 20 to 30 150 to 200 30 25 to 30
- the number of electrodes used depends on both the volume of the culture and the diameter of the electrode. For example, for a culture having a volume of 10 liter or less, two or three electrodes having a diameter of between 0.5 to 2.0 mm can be used. For a culture volume of 10 to 100 liter of culture, the electrodes can have a diameter of 3.0 to 5.0 mm. For a culture volume of 100 to 1,000 liter, the electrodes can have a diameter of 6.0 to 15.0 mm. For a culture having a volume greater than 1,000 liter, the electrodes can have a diameter of between 20.0 to 25.0 mm.
- the method for producing activated yeast cells of the invention comprises culturing yeast cells in the presence of at least two, three, four or five alternating electromagnetic (EM) fields.
- EM alternating electromagnetic
- the culture process can be initiated by inoculating 1,000 ml of medium with an inoculum of a selected yeast strain (such as one of those described in Section 5.1.1) such that the starting cell density of the culture is greater than about 10 5 cells per ml.
- a selected yeast strain such as one of those described in Section 5.1.1
- Saccharomyces cerevisiae Hansen strain IFFI 1413 can be used.
- the starting culture can be used to seed larger scale culture.
- the culture is maintained initially at 28° C. to 32° C. for 22 to 30 hours prior to exposure to the EM field(s), typically at 30° C. for 28 hours.
- the culturing process may preferably be conducted under conditions in which the concentration of dissolved oxygen is between 0.025 to 0.08 mol/m 3 , preferably 0.04 mol/m 3 .
- the oxygen level can be controlled by any conventional means known in the art, including but not limited to stirring and/or bubbling.
- the culture is most preferably carried out in a liquid medium which contains sources of nutrients assimilable by the yeast cells.
- Table 2 provides an exemplary medium for culturing the yeast cells of the invention.
- the culturing medium is heated to 45° C. and cooled before adding the vitamin B 3 , vitamin B 12 , vitamin H, and fetal calf serum.
- carbohydrates such as sugars, for example, sucrose, glucose, fructose, dextrose, maltose, xylose, and the like and starches, can be used either alone or in combination as sources of assimilable carbon in the culture medium.
- the exact quantity of the carbohydrate source or sources utilized in the medium depends in part upon the other ingredients of the medium but, in general, the amount of carbohydrate usually varies between about 0.1% and 5% by weight of the medium and is preferably between about 0.2% and 2%.
- carbon sources can be used individually, or several such carbon sources may be combined in the medium.
- inorganic salts which can be incorporated in the culture media are the customary salts capable of yielding sodium, calcium, phosphate, sulfate, carbonate, and like ions.
- nutrient inorganic salts are KH 2 PO 4 , (NH 4 ) 2 HPO 4 , CaCO 3 , MgSO 4 , NaCl, and CaSO 4 .
- composition of the media provided in Table 2 is not intended to be limiting.
- the process can be scaled up or down according to needs.
- Various modifications of the culture medium may be made by those skilled in the art, in view of practical and economic considerations, such as the scale of culture and local supply of media components.
- a series of at least two, three, four or five EM fields are applied to the culture of yeast cells, each having a different frequency within a stated range, and a different field strength within a stated range.
- the EM fields can be applied in any order and by any means known in the art, such as the apparatus described in Section 5.1.2. Although any of the following two, three or four EM fields can be applied, preferably, all five EM fields are applied.
- the frequency is in the range of 7,961 to 7,970 MHz and the field strength is in the range of 250 to 270 mV/cm.
- the yeast culture is exposed to this first EM field at 30 ⁇ 2° C. for about 22 hours.
- the frequency is in the range of 10,181 to 10,190 MHz and the field strength is in the range of 250 to 270 mV/cm.
- the yeast culture is exposed to this second EM field at 30 ⁇ 2° C. for about 10 hours.
- the frequency is in the range of 12,276 to 12,285 MHz and the field strength is in the range of 270 to 290 mV/cm.
- the yeast culture is exposed to this third EM field at 30 ⁇ 2° C. for about 24 hours.
- the frequency is in the range of 12,461 to 12,470 MHz and the field strength is in the range of 280 to 300 mV/cm.
- the yeast culture is exposed to this fourth EM field at 30 ⁇ 2° C. for about 10 hours.
- the frequency is in the range of 12,761 to 12,770 MHz and the field strength is in the range of 300 to 320 mV/cm.
- the yeast culture is exposed to this fifth EM field at 30 ⁇ 2° C. for about 18 hours.
- the yeast cells can be cultured by exposure to two, three or four of the above-mentioned EM fields in a different order.
- the yeast cells can remain in the same container and use the same set of electromagnetic wave generator and emitters when switching from one EM field to another EM field.
- the cell density of the culture at the end of the activation process is typically greater than about 10 6 to 10 9 cells per ml (estimated by hematocytometer).
- the activated yeast cells may be recovered from the culture by various methods known in the art, and stored at a temperature below about 0° C. to 4° C.
- the activated yeast cells recovered from the liquid culture may be dried and stored in powder form.
- the powder form of the yeast cells comprises greater than about 10 7 to 10 10 yeast cells per gram.
- performance of the activated yeast cells can be optimized by culturing the activated yeast cells in the presence of an extract from the stomach (e.g., the gastric juice) of an animal with physiology similar to the subject to which the biological composition will be administered.
- the inclusion of this additional conditioning process allows the activated yeast cells to adapt to and endure the acidic environment of the subject's stomach.
- the method for conditioning activated yeast cells of the invention comprises culturing yeast cells in such materials in the presence of at least one EM field.
- the culture process can be initiated by inoculating 1,000 ml of a conditioning medium with about 10 gram of dried activated yeasts containing about 10 10 cells per gram (as prepared by the methods described in Section 5.1.3).
- An equivalent number of yeast cells in culture preferably greater than 10 6 to 10 9 cells per ml, more preferably at 10 8 cells per ml, can also be used as an inoculum.
- the conditioning medium comprises per 1,000 ml about 700 ml of gastric juice of an animal and about 300 ml of wild hawthorn juice.
- the process can be scaled up or down according to needs.
- the gastric juice of an animal can be obtained from the stomach content of a freshly slaughtered animal. Although not essential, the animal is preferably kept under a clean environment, and fed a standard diet, preferably germ-free. For example, the content of the stomach of a 120-day old pig is mixed with 2,000 ml of distilled water, and allowed to settle without stirring for 6 hours. The clear liquid above is collected for use as the gastric juice used in the conditioning process.
- the gastric juice of a pig can be used to condition yeast cells for use in a variety of mammals, including humans. Other methods that can be used to collect the gastric juice include centrifugation or filtration of the mixture to remove debris and/or microorganisms.
- the gastric juice so obtained can be stored at 4° C. Preferably, the collection procedures and storage are carried out under sterile conditions.
- the wild hawthorn juice is an extract of wild hawthorn fruits prepared by slicing the fruits and drying the slices in air, preferably to less than 8% moisture (commercial dryer can be used if necessary), crushing the dried fruits to less than 20 mesh, and mixing 1,500 ml of water per 500 gram of the crushed wild hawthorn. The mixture is then allowed to settle without stirring for 6 hours, and the clear liquid above is collected for use as the wild hawthorn juice used in the conditioning process. Other methods that can be used to collect the hawthorn juice include centrifugation or filtration of the mixture. Preferably, the collection procedures and storage are carried out under sterile conditions.
- the activated yeast cells are conditioned by culturing in at least one of the following two EM fields which can be applied by the apparatus described in Section 5.1.2 or any means known in the art:
- the first EM field has a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 300 to 320 mV/cm.
- the temperature is maintained at 28° C. to 32° C., and typically at 30° C.
- the yeast culture is exposed to this first EM field for about 12 hours.
- the second EM field has a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 330 mV/cm.
- the temperature is maintained at 28° C. to 32° C., and typically at 30° C.
- the yeast culture is exposed to this second EM field for about 32 hours.
- the activated yeast cells are conditioned by culturing in both of the above-mentioned EM fields.
- the yeast cells are conditioned in the two different EM fields in a different order.
- a series of EM fields having field characteristics within the ranges stated above can be applied to condition the yeast cells.
- the yeast cells can remain in the same container and use the same set of electromagnetic wave generator and emitters when switching from one EM field to another EM field.
- the cell density of the culture at the end of the activation process is typically greater than about 10 7 to 10 10 cells per ml (estimated by hematocytometer).
- the activated and conditioned yeast cells may be recovered from the culture by various methods known in the art, and stored at a temperature below about 0° C. to 4° C.
- the activated and conditioned yeast cells can be used directly in a biological composition or used as a starter culture for large scale manufacturing.
- the activated and conditioned yeast cells recovered from the liquid culture may be dried and stored in powder form.
- the powder form of the activated and conditioned yeast cells comprises greater than about 10 8 to 10 11 yeast cells per gram.
- the present invention also encompasses methods of manufacturing of the biological compositions of the invention at a large scale.
- the activated and conditioned yeast cells as prepared by Sections 5.1.3 and 5.1.4 are propagated on a large scale to make the biological compositions of the invention.
- the method comprises culturing the yeast cells in the presence of one or more EM fields for a period of time, diluting the growing yeast cells with fresh medium, and repeating the process.
- the method can be carried out as a batch process or a continuous process.
- a set of three containers each comprising a set of electrodes for generating an electromagnetic field as described in Section 5.1.2 are set up each with 1,000 liters of a culture medium. See FIG. 2.
- the culture medium comprises nutrients assimilable by the yeast cells as shown in Table 3.
- TABLE 3 Material Quantity Wild hawthorn juice 300 liters Jujube juice 300 liters Wu wei zi juice 300 liters Soybean juice 100 liters
- the wild hawthorn juice is an extract of fresh wild hawthorn fruits prepared by washing the fruits clean, drying the fruits in air or using a commercial dryer to less than 8% moisture, crushing the dried fruits to less than 20 mesh, and mixing the crushed wild hawthorn with water at a ratio of 400 liters of water per 100 kg of crushed fruits. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- the jujube juice is an extract of fresh jujube fruits prepared by washing the fruits clean, drying the fruits to less than 8% moisture, crushing the dried fruits to less than 20 mesh, and mixing the crushed jujube with water at a ratio of 400 liters of water per 100 kg of crushed fruits. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- the wu wei zi juice is an extract of fresh berries of Schisandra chinensis plant prepared by washing the berries, drying the fruits to less than 8% moisture, crushing the dried berries to less than 20 mesh, and mixing the crushed berries with water at a ratio of 400 liters of water per 100 kg of crushed berries. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- the soybean juice is prepared by washing the soybeans, drying the soybeans to less than 8% moisture, crushing the soybeans to less than 20 mesh, and mixing the crushed soybeans with water. For 30 kg of soybeans, 130 liters of water is used. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- the first container is inoculated with activated or activated and conditioned yeast cells as prepared by the methods of Sections 5.1.4 and 5.1.5.
- About 1,000 gram of dried yeast powder are added to 1,000 liter of culture medium.
- Each gram of the dried yeast powder comprises about 10 10 yeast cells.
- an equivalent number of yeast cells in a liquid medium can also be used, preferably greater than about 10 6 to 10 9 cells per ml, more preferably about 10 7 cells per ml.
- the yeast cells in the first container ( 5 ) are then subjected to a series of two EM fields.
- the first EM field which can be applied by the apparatus described in Section 5.1.2, the frequency is in the range of 12,461 to 12,470 MHz and the field strength is in the range of 310 to 330 mV/cm.
- the yeast culture is exposed to this first EM field for about 8 hours.
- the yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 330 to 350 mV/cm.
- the yeast culture is exposed to this second EM field for about 12 hours.
- the yeast cells from the first container are then transferred to the second container which contains about 1,000 liter of the culture medium. In effect, the first yeast culture is diluted by about 50% with fresh culture medium.
- the yeast cells are again subjected to a series of two EM fields.
- the frequencies used in the second container are similar to those used in the first container but the field strengths are marginally lower.
- the first EM field has a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 330 to 340 mV/cm.
- the yeast culture is exposed to this EM field for about 8 hours.
- the yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 350 to 370 mV/cm.
- the yeast culture is exposed to this second EM field for about 12 hours.
- the yeast cells from the second container are then transferred to the third container which contains yet another 1,000 liter of the culture medium. Again, the second yeast culture is diluted by about 50% with fresh culture medium.
- the yeast cells are again subjected to a series of two EM fields.
- the frequencies used in the third container are similar to those used in the first and second container but the field strengths are lower.
- the first EM field has a frequency in the range of 12,461 to 12,470 MHz and field strength in the range of 220 to 240 mV/cm.
- the yeast culture is exposed to this EM field for about 12 hours.
- the yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 250 to 270 mV/cm.
- the yeast culture is exposed to this EM field for about 24 hours.
- yeast cell culture resulting from the end of this stage can be used directly as an oral composition of the invention, or used to form other compositions encompassed by the invention.
- the cell density of the culture at the end of the large scale manufacturing process is typically greater than about 10 8 to 10 10 cells per ml (estimated by hematocytometer).
- the concentration of yeast cells in the medium can be concentrated or diluted accordingly.
- the concentration of yeast cells in the medium is in the range of 10 3 to 10 10 cells per ml.
- the concentration of yeast cells in the medium is in the range of 10 3 to 10 6 cells per ml.
- the concentration of yeast cells in the medium is greater than 10 6 to 10 10 cells per ml.
- the concentration of yeast cells in the medium is in the range of 10 6 to 5 ⁇ 10 8 cells per ml.
- yeast cell culture can be added to the yeast cell culture.
- various downstream and packaging process be carried out below room temperature, and preferably at 0° C. to 4° C.
- the yeast cell culture can be packaged in liquid containers.
- the activated and conditioned yeast cells can be dried as follows.
- the yeast cell culture is first centrifuged under 75 to 100 g for 10 to 20 minutes to remove the supernatant.
- the residue which may contain up to 85% moisture is dried in a first dryer at a temperature not exceeding 60 ⁇ 2° C. for a period of 5 minutes so that yeast cells quickly became dormant.
- the yeast cells were then sent to a second dryer and dried at a temperature not exceeding 65 ⁇ 2° C. for a period of about 8 minutes to further remove at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or at least 99% of water.
- the yeast cells may be dried to remove at least 88% of water so the dried yeast cells may contain up to 12% moisture.
- the dried yeast cells can be packaged by standard pharmaceutical methods in various solid dosage form, each containing a predetermined amount of the dried material.
- the dried material comprises about 10 5 to 10 11 cells per gram.
- the dried material comprises about 10 8 to 5 ⁇ 10 10 cells per gram.
- the dried material comprises about 5 ⁇ 10 8 cells per gram.
- compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers.
- the invention provides a method for preparing a biological composition comprising activated and conditioned yeast cells, said method comprising in any order the steps of:
- the activated and conditioned yeast cells obtained at the conclusion of this method is encompassed by the invention.
- the yeast cells are Saccharomyces cerevisiae Hansen strain IFFI 1413. These yeast cells can be used in the following method of further expanding number of activated and conditioned yeast cells.
- the invention provides a method of mass producing a biological composition comprising activated and conditioned yeast cells, said method comprising culturing the activated and conditioned yeast cells prepared by the preferred embodiment described above in this section, in a medium comprising wild hawthorn juice, jujube juice, wu wei zi juice, and soybean juice, and in the presence of one or more series of electromagnetic fields.
- Each series of EM fields comprises two EM fields in the order stated:
- an eighth electromagnetic field or series of electromagnetic fields having a frequency at 12,466 MHz and a field strength in the range of 220 to 340 mV/cm, preferably at three fields strengths, e.g., in the order of 328 mV/cm, 334 mV/cm, and 238 mV/cm; and
- a ninth electromagnetic field or series of electromagnetic fields having a frequency at 12,764 MHz and a field strength in the range of 250 to 370 mV/cm, preferably at three fields strengths, e.g., in the order of 338 mV/cm, 362 mV/cm, and 263 mV/cm.
- the series may be repeated several times, such as three times, each time using a slightly lower field strength.
- the present invention further provides methods of use of the biological compositions of the invention.
- the biological composition is used as a medicament for treatment of pancreatic cancer.
- the biological composition is used as a dietary supplement, health food, or health drink.
- the methods comprise administering an effective amount of the biological composition to a subject in need.
- the biological composition may be administered orally, in liquid or solid form, or enterally through a feeding tube.
- an effective amount means an amount sufficient to provide a therapeutic or healthful benefit in the context of pancreatic cancer.
- the biological composition can produce a healthful benefit in a subject suffering from pancreatic cancer.
- the subject is a human being.
- the subject in need is one who is diagnosed with pancreatic cancer, with or without metastasis, at any stage of the disease (e.g., TX, T0, Tis, T1, T2, T3, T4, NX, N0, N1, MX, M0 and M1).
- pancreatic cancer includes but is not limited to adenocarcinomas, acinar cell carcinoma, cystadenocarcinoma (mucinous), adenosquamous carcinoma, solid microglandular carcinoma, carcinoid, sarcoma, and malignant lymphoma.
- the subject may be a pancreatic cancer patient who is receiving concurrently other treatment modalities against the pancreatic cancer.
- the subject can be a pancreatic cancer patient who had undergone a regimen of treatment (e.g., chemotherapy and/or radiation) and whose cancer is regressing.
- the subject may be a pancreatic cancer patient who had undergone a regimen of treatment (e.g., surgery) and who appears to be clinically free of the pancreatic cancer.
- the biological composition of the invention can be administered adjunctively with any of the treatment modalities, such as but not limited to chemotherapy, radiation, and/or surgery.
- the biological composition can be used in combination with one or more chemotherapeutic or immunotherapeutic agents, such as hexamethylmelamine, bleomycin, cisplatin, mitomycin C, doxorubicin, methotrexate and Gemzar (gemcitabine HCL).
- chemotherapeutic or immunotherapeutic agents such as hexamethylmelamine, bleomycin, cisplatin, mitomycin C, doxorubicin, methotrexate and Gemzar (gemcitabine HCL).
- the biological composition can also be used after other regimen(s) of treatment is concluded.
- the subject may be one who has not yet been diagnosed with pancreatic cancer but are predisposed to or at high risk of developing pancreatic cancer as a result of genetic factors and/or environmental factors.
- the subject may also be one who displays characteristics that are associated with a high risk of pancreatic cancer, such as nodules detected by computer tomographic scanning or suspect cells in biopsy and/or body fluids.
- the therapeutic and healthful benefits range from inhibiting or retarding the growth of the pancreatic cancer and/or the spread of the pancreatic cancer to other parts of the body (i.e., metastasis), palliating the symptoms of the cancer, improving the probability of survival of the subject with the cancer, prolonging the life expectancy of the subject, improving the quality of life of the subject, and/or reducing the probability of relapse after a successful course of treatment (e.g., surgery, chemotherapy or radiation).
- a successful course of treatment e.g., surgery, chemotherapy or radiation.
- pancreatic cancer The symptoms associated with pancreatic cancer include abdominal pain, unexpected weight loss, nausea, loss of appetite, weight loss, digestive problems, jaundice, or yellowing of the skin, restlessness, loss of energy, irritability, sweating, tremor, drowsiness and severe confusion.
- the invention provides a method for retarding the growth of pancreatic cancer cells in a subject, such as a human, comprising administering orally to the subject a biological composition of the invention.
- the invention also provide a method for prolonging the time of survival of a subject inflicted with pancreatic cancer, preferably a human patient, comprising administering orally to the subject a biological composition of the invention.
- the effective dose will vary with the subject treated.
- the effective dose for the subject will also vary with the condition to be treated and the severity of the condition to be treated.
- the dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual subject.
- the total daily dose range of activated and conditioned yeast cells for a subject inflicted with pancreatic cancer is from about 10 5 to 10 11 cells per day; preferably, about 10 8 to 5 ⁇ 10 cells per day; more preferably, about 2 ⁇ 10 9 cells per day in powder form or 9 ⁇ 10 8 to 1 ⁇ 10 10 cells per day in liquid preparations, administered in single or divided doses orally.
- the length of time for a course of treatment should be at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 7 weeks, at least 10 weeks, at least 13 weeks, at least 15 weeks, at least 20 weeks, at least 6 months, or at least 1 year. It may be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art.
- the oral compositions can be administered for a period of time until the symptoms and/or infection of the patients by the bacteria and viruses are under control, or when the disease has regressed partially or completely.
- the total daily dose range should be from about 10 5 to 10 11 cells per day; preferably, about 5 ⁇ 10 7 to 5 ⁇ 10 9 cells per day.
- the oral compositions can be administered as a dietary supplement for as long as 6 months, or in accordance with recommended length of use under the Dietary Supplement Health and Education Act (DSHEA) or other government or industry guidelines. Further, it is noted that the nutritionist, dietician, clinician or treating physician will know how and when to interrupt, adjust, or terminate use of the biological composition as a medicament or dietary supplement in conjunction with individual patient response.
- DHEA Dietary Supplement Health and Education Act
- the effect of the biological compositions of the invention on development and progression of pancreatic cancer can be monitored by any methods known to one skilled in the art, including but not limited to measuring: a) changes in the size and morphology of the tumor using imaging techniques such as a computed tomographic (CT) scan or a sonogram; and b) changes in levels of biological markers of risk for pancreatic cancer.
- imaging techniques such as a computed tomographic (CT) scan or a sonogram
- the biological compositions of the present invention comprise activated and conditioned live yeast cells prepared as described above in Section 5.1, as active ingredient, and can optionally contain a pharmaceutically acceptable carrier or excipient, and/or other ingredients provided that these ingredients do not kill or inhibit the yeast cells.
- Other ingredients that can be incorporated into the biological compositions of the present invention may include, but are not limited to, herbs (including traditional Chinese medicine products), herbal extracts, vitamins, amino acids, metal salts, metal chelates, coloring agents, flavor enhancers, preservatives, and the like.
- compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, or tablets, each containing a predetermined amount of activated and conditioned yeast cells, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
- compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
- Such products can be used as pharmaceuticals or dietary supplements, depending on the dosage and circumstances of its use.
- the oral compositions of the present invention may additionally include binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); binders or fillers (e.g., lactose, pentosan, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate).
- binding agents e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose
- binders or fillers e.g., lactose, pentosan, microcrystalline cellulose or calcium hydrogen phosphate
- lubricants e.g., magnesium stearate, talc or silica
- disintegrants e.g., potato starch or sodium
- Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use.
- the temperature of the liquid used to reconstitute the dried product should be less than 65° C.
- Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
- suspending agents e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats
- emulsifying agents e.g., lecithin or acacia
- non-aqueous vehicles e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils
- preservatives e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid
- the preparations can also be made to
- the oral composition can be produced by diluting or concentrating the yeast culture medium produced by the method of Section 5.1.5 as required.
- the oral composition is a cell suspension containing about 10 3 to 10 6 cells per ml.
- the oral composition is a cell suspension containing greater than about 10 6 to 10′ cells per ml.
- the oral composition is a cell suspension containing about 10 6 to 5 ⁇ 10 8 cells per ml.
- the oral composition can be formulated as a health drink and packaged in liquid containers, each containing a predetermined amount of the liquid yeast culture.
- oral compositions packaged in liquid containers each comprising about 1 ml, 2 ml, 3 ml, 4 ml, 5 ml, 10 ml, 15 ml, 20 ml, 30 ml, 40 ml, 50 ml, 75 ml, 100 ml, 150 ml, 200 ml, 250 ml, 500 ml, 750 ml, or 1,000 ml of the live yeast cells.
- the number of container to be taken each day to obtain the total daily dose in a subject depends on the number of activated and conditioned yeast cells contained within each container.
- a container may comprise 50 ml of liquid with 10 7 cells per ml and when a total daily dose of about 2 ⁇ 10 9 cells per day is desired, a subject can drink 4 containers per day to obtain the desired total daily dose.
- the composition is a capsule.
- the capsules can be formulated by any commercially available methods.
- the composition is a capsule containing 5 mg, 10 mg, 15 mg, 20 mg, 25 mg, 30 mg, 40 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1.0 gram, 1.25 gram, 1.5 gram, or 2.0 gram of live yeast cells in powder form.
- the powder in the capsule comprises about 10 5 to about 10 11 cells per gram; more preferably, about 10 8 to 5 ⁇ 10 10 cells per gram; and most preferably, about 5 ⁇ 10 8 cells per gram.
- the number of capsule to be taken each day to obtain the total daily dose in a subject depends on the number of activated and conditioned yeast cells contained within each capsule.
- a capsule may comprise about 500 mg of powder with 5 ⁇ 10 8 cells per gram.
- a subject can take two capsules at a time for four times per day.
- the biological compositions comprising activated and conditioned yeast cells can be added directly to foods so that an effective amount of yeast cells is ingested during normal meals. Any methods known to those skilled in the art may be used to add to or incorporate the biological compositions into natural or processed foods, provided that the activated and conditioned yeast cells remain viable.
- the nutritional compositions of the invention are made and stored under conditions, such as temperature, from about 0° C. to 4° C.
- the term “food” broadly refers to any kind of material, liquid or solid, that is used for nourishing an animal, and for sustaining normal or accelerated growth of an animal including humans.
- Many types of food products or beverages such as but not limited to, fruit juice, herbal extracts, tea-based beverages, dairy products, soybean product (e.g., tofu), and rice products, can be used to form nutritional compositions comprising the activated and conditioned yeast cells of the invention.
- the invention is further defined by reference to the following example describing in detail the animal trials conducted to study the efficacy and safety of activated and conditioned yeast cells of the invention.
- the human pancreatic cancer sample is carefully selected before, during, and after surgery in order to ensure transplant occurred at the equivalent position in the mouse.
- the pancreatic carcinoma sample is obtained from patients who have not received any radiation, chemotherapy or immune enhancement treatment.
- the biological composition comprising 10 8 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- the animals used to generate the pancreatic cancer cells for the experiments were BALB/c mice, both male and female with an average body weight of about 18 to 20 gram (obtainable from the Chinese Academy of Military Medical Sciences, Beijing, China). The mice were starved for 24 hours before the surgery.
- the pancreatic tumor cells were isolated from clinical biopsy samples in 1987 (obtainable from the Cancer Institute, Chinese Academy of Medical Sciences, Beijing, China).
- pancreatic cancer tumor cells about 0.2 ml culture suspension
- mice injected with tumor cells were divided into 4 experimental groups of ten mice per group and one control group.
- the four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups).
- group AY the mice received 0.3 ml of the biological composition once per day.
- group NY the mice received 0.3 ml of the untreated yeast cells once per day.
- group VDS the mice were injected intravenously with 3 mg of vindesine (VDS) per kg body weight once a week for four weeks.
- group CK1 the mice received 0.3 ml of physiological saline once per day.
- mice received the biological compositions, untreated yeast cells, VDS or saline three days after the tumor cells were transplanted.
- the mice in group CK2 also started receiving saline on the same day as the other four groups.
- the biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the VDS by intravenous injection for 30 consecutive days.
- the mice were sacrificed and the weight of the mice as well as the weight of the tumor were determined by standard techniques.
- Table 4 shows the differences in the weight of the mice and tumors of the mice in the various treatment and control groups.
- TABLE 4 mean weight of tumor mean weight of mice and nodules and standard Group standard deviation (g) deviation (mg) AY 19.8 ⁇ 2.5 0.44 ⁇ 0.3 NY 17.7 ⁇ 3.2 2.86 ⁇ 0.9 MMC 18.9 ⁇ 3.4 1.37 ⁇ 0.7 CK1 17.6 ⁇ 3.6 2.84 ⁇ 0.9 CK2 20.3 ⁇ 2.4 not applicable
- mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention showed the least deviation in the body weight and weight of esophageal as compared to healthy mice not injected tumor cells (group CK2).
- the mice in group AY also had less tumor mass as compared to mice that did not receive treatment (group CK1) as well as the mice in group NY (0.3 ml of untreated yeast cells per day) and the mice in group VDS (3 mg of vindesine per kg body weight per week).
- the biological composition comprising 10 8 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- mice injected with tumor cells were divided into 4 experimental groups of ten mice per group and one control group.
- the four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups).
- group 2AY the mice received 0.3 ml of the biological composition once per day.
- group 2NY the mice received 0.3 ml of the untreated yeast cells once per day.
- group 2VDS the mice were injected intravenously with 3 mg of vindesine (VDS) per kg body weight once a week for four weeks.
- group 2CK1 the mice received 0.3 ml of physiological saline once per day.
- mice received the biological compositions, untreated yeast cells, VDS or saline on the same day as the tumor cells were transplanted.
- the mice in group 2CK2 also started receiving saline on the same day as the other four groups.
- the biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the VDS by intravenous injection for 30 consecutive days. The mice were observed over 6 months from the day of tumor inoculation and survival was recorded. The weight of the mice as well as the weight of the tumor were determined by standard techniques.
- Table 5 shows the number of mice in the various treatment and control group that survived the tumor injection over a period of 6 months.
- Each of the 30 mice in each group received 30 consecutive days of either untreated yeast cells, VDS, saline or biological compositions of the invention.
- Table 6 shows the weight of the mice that survived and the weight of their tumors in the various treatment and control groups.
- mice mean weight of mice mean weight of tumor and standard nodules and standard Group deviation (g) deviation (mg) 2AY 20.7 ⁇ 3.5 78.3 ⁇ 14.2 2NY all animals dead all animals dead 2VDS all animals dead all animals dead 2CK1 all animals dead all animals dead 2CK2 21.3 ⁇ 2.6 not applicable
- mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention survived for more than 6 months and the tumor never reoccurred.
- group 2AY 0.3 ml of untreated yeast cells per day
- group 2VDS 3 mg of vindesine per kg body weight per week
- group 2CK1 0.3 ml of saline per day
- mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group 2CK2).
- the biological composition comprising 10 8 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- mice used for the experiments were kun ming mice, 6 to 8 weeks old (obtainable from the Chinese Academy of Military Medical Sciences, Beijing, China). Both male and females with an average weight of about 15 to 18 gram were used.
- the transplantable mouse pancreatic cancer cell line MPC-83 (obtainable from Kun-Ming Medical University, Kun-Ming, China) in a suspension containing about 1.2 ⁇ 10 7 viable tumor cells (about 0.2 ml culture suspension) was injected subcutaneously into the animals.
- mice injected with tumor cells were kept for 5 days and were divided into 4 experimental groups of ten mice per group and one control group.
- the four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups).
- group AY the mice received 0.3 ml of the biological composition once per day.
- group NY the mice received 0.3 ml of the untreated yeast cells once per day.
- group MMC the mice were injected intravenously with 10 5 units of mitomycin C (MMC) per kg body weight per day.
- MMC mitomycin C
- group CK1 the mice received 0.3 ml of physiological saline once per day.
- mice received the biological compositions, untreated yeast cells, MMC or saline on the same day as the tumor cells were transplanted.
- the mice in group CK2 also started receiving saline on the same day as the other four groups.
- the biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the MMC by intravenous injection for 30 consecutive days. On the 31 st day from tumor inoculation, the mice were sacrificed and the weight of the mice as well as the weight of the tumor were determined by standard techniques.
- Table 7 shows the differences in the weight of the mice and tumors of the mice in the various treatment and control groups.
- TABLE 7 mean weight of tumor mean weight of mice and nodules and standard Group standard deviation (g) deviation (g) AY 19.2 ⁇ 2.2 0.9 ⁇ 0.4 NY 17.4 ⁇ 2.4 3.3 ⁇ 1.5 MMC 18.3 ⁇ 1.5 2.8 ⁇ 1.2 CK1 17.6 ⁇ 2.4 3.6 ⁇ 1.7 CK2 20.3 ⁇ 2.3 not applicable
- mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group CK2).
- the mice in group AY also had less tumor mass as compared to mice that did not receive treatment (group CK1) as well as the mice in group NY (0.3 ml of untreated yeast cells per day) and the mice in group MMC (105 units of mitomycin C per kg body weight per day).
- the biological composition comprising 10 8 per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- mice injected with tumor cells were kept for 5 days and were divided into 4 experimental groups of ten mice per group and one control group.
- the four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups).
- group 2AY the mice received 0.5 ml of the biological composition once per day.
- group 2NY the mice received 0.5 ml of the untreated yeast cells once per day.
- group 2MMC the mice were injected intravenously with 1.5 ⁇ 10 5 units of mitomycin C (MMC) per kg body weight per day.
- MMC mitomycin C
- group 2CK1 the mice received 0.5 ml of physiological saline once per day.
- mice received the biological compositions, untreated yeast cells, MMC or saline on the same day as the tumor cells were transplanted.
- the mice in group 2CK2 also started receiving saline on the same day as the other four groups.
- the biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the MMC by intravenous injection for 30 consecutive days. The mice were observed over 6 months from the day of tumor inoculation and survival was recorded. The weight of the mice as well as the weight of the tumor were determined by standard techniques.
- Table 8 shows the number of mice in the various treatment and control group that survived the tumor injection over a period of 6 months. Each of the 30 mice in each group received 30 consecutive days of either untreated yeast cells, MMC, saline or biological compositions of the invention. Table 9 shows the weight of the mice that survived and the weight of their tumors in the various treatment and control groups.
- mice bearing pancreatic cancer cells that received 0.5 ml of the biological composition of the invention survived for more than 6 months and the tumor never reoccurred.
- group 2AY 0.5 ml per day of untreated yeast cells
- group 2MMC 1.5 ⁇ 10 5 units of mitomycin C per kg body weight per day
- group CK1 0.5 ml of saline per day
- mice bearing pancreatic cancer cells that received 0.5 ml of the biological composition of the invention showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group 2CK2).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mycology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Alternative & Traditional Medicine (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Medical Informatics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The present invention relates to pharmaceutical compositions and dietary supplement comprising yeast cells that can produce a healthful benefit in a subject inflicted with pancreatic cancer. The biological compositions can be used to retard the growth of pancreatic cancer cells and/or prolonging the time of survival of the subject. The invention also relates to methods for manufacturing the biological compositions.
Description
- The invention relates to oral compositions comprising yeast cells that can produce a healthful benefit in a subject inflicted with pancreatic cancer. The invention also relates to methods for manufacturing the oral compositions and methods of use thereof.
- 2.1 Pancreatic Cancer
- Pancreatic cancer is the second most common visceral malignancy as well as the fifth leading cause of cancer mortality in the United States, accounting for one fifth of all gastrointestinal (GI) cancer deaths. Pancreatic cancer is a disease of the industrialized world. There is a tenfold difference between the highest incidence rate, in American black males (15.2 per 100,000), and the lowest rates, in Hungary, Nigeria, and India (1.5 per 100,000) (Waterhouse et al., 1976, Lyon: International Agency for Research on Cancer, Vol. 3). High risk has also been observed in Polynesian males, including native Hawaiians and New Zealand Maoris. Like many other cancers, pancreatic cancer usually strikes after age 50. The incidence of pancreatic cancer has risen with an increase in the average life span. For example, the incidence in Japan rose from 1.8 per 100,000 in 1960 to 5.2 per 100,000 in 1985 (Beazley et al., 1995, Clinical Oncology, Chapter 15).
- Aside from advanced age, smoking is the main risk factor for pancreatic cancer—a smoker is three to four times more likely than a nonsmoker to acquire the disease. People frequently exposed to certain petroleum, chemical and metal products may also be at increased risk. Excessive dietary fat and protein as well as low fiber intake may promote the disease. Diabetes is linked to pancreatic cancer for 10% to 20% of patients diagnosed with pancreatic cancer also have diabetes. Other hereditary diseases associated with pancreatic cancer include inflammatory pancreatic problem, Gardner's syndrome (where growths develop inside and outside the colon), the skin and nerve disease neurofibromatosis, and multiple endocrine neoplasia, a condition that promotes growth of noncancerous islet cell
- Pancreatic cancer is difficult to detect early because the pancreas is located deep inside the body and is hidden behind other organs. The retroperitoneal location of the pancreas is considered a major obstacle to early treatment. Further, pancreatic cancer does not usually cause symptoms in its early stages. Even if symptoms do occur, they may be vague and the tumor has already spread outside of the pancreas (metastasis). Signs include abdominal pain, unexpected weight loss, nausea, loss of appetite, weight loss, digestive problems, jaundice, or yellowing of the skin are nonspecific and often overlap with other diseases. The rarer endocrine (or islet cell) cancers may also cause restlessness, loss of energy, irritability, sweating, tremor, drowsiness and severe confusion. Because the symptoms are so general in nature, several diagnostic tools are frequently used, e.g., ultrasound, CT scan, MRI (magnetic resonance imaging), barium meal ERCP (endoscopic retrograde cholangiopancreatography) and PTC (percutaneous transhepatic cholangiopancreatography) tests.
- The staging of pancreatic cancer is based on the revised criteria of TNM staging by the American Joint Committee for Cancer (AJCC) published in 1988. Staging is the process of describing the extent to which cancer has spread from the site of its origin. It is used to assess a patient's prognosis and to determine the choice of therapy. The stage of a cancer is determined by the size and location in the body of the primary tumor, and whether it has spread to other areas of the body. Staging involves using the letters T, N and M to assess tumors by the size of the primary tumor (T); the degree to which regional lymph nodes (N) are involved; and the absence or presence of distant metastases (M)—cancer that has spread from the original (primary) tumor to distant organs or distant lymph nodes. Each of these categories is further classified with a
number 1 through 4 to give the total stage. Once the T, N and M are determined, a “stage” of I, II, III or IV is assigned. Stage I cancers are small, localized and usually curable. Stage II and III cancers typically are locally advanced and/or have spread to local lymph nodes. Stage IV cancers usually are metastatic (have spread to distant parts of the body) and generally are considered inoperable. - More than 90% of pancreatic malignancies arise from ductal epithelium, even though less than 15% of the pancreas by mass is made up of ductal tissue. At least 90% of pancreatic cancers are exocrine cell cancers called adenocarcinomas, usually originating in the head of the gland. Other tumors arising from the pancreas include acinar cell carcinoma (about 5%), cystadenocarcinoma (mucinous), adenosquamous carcinoma, solid microglandular carcinoma, carcinoid, sarcoma, and malignant lymphoma. Cancers arising in the head of the pancreas must be distinguished from peripancreatic lesions arising from the distal common bile duck, the ampulla of Vater, or the duodenum. While ampullary cancer is the most resectable and associated with the most favorable prognosis, survival rates with all three are higher than with pancreatic cancer.
- Surgery is by far the most effective choice of treatment. A Whipple procedure removes the head of the pancreas, part of the small intestine, and some of the tissues around it. Enough of the pancreas is left to continue making digestive juices and insulin. Total pancreatectomy takes out the whole pancreas, part of the small intestine, part of the stomach, the bile duct, the gallbladder, spleen, and most of the lymph nodes in the area. Distal pancreatectomy takes out only the tail of the pancreas. Unfortunately, roughly 80% of individuals on presentation are ineligible for a curative attempt once metastasis to the peritoneal surfaces, the omentum, the liver, and the transverse mesocolon takes place. At that point, surgery is performed to relieve symptoms. For instance, if the cancer is blocking the small intestine and bile builds up in the gallbladder, biliary bypass may be performed by sewing the gallbladder or bile duck directly to the small intestine.
- Further, Whipple procedure, although a popular choice of treatment, can cause numerous complications such as sepsis, biliary or pancreatic fistula, and bleeding. The overall morbidity rate varies between 27% and 46%. (Pellegrini et al., 1989,Arch Surg. 124:778-81). Until recently, 5-year survival after pancreaticoduodenectomy for cancer was exceedingly rare. Survival rates of 3% to 25% are currently being reported. Occasionally, long-term survivors are reported with a large tumor, but the majority of the survivors are those who have small lesions and negative lymph nodes (T1, N0, M0). Mean survival after pancreatic resection is 17 months.
- The use of biological therapy (using the body's immune system to fight cancer), otherwise known as biological response modifier (BRM) therapy or immunotherapy, is currently being tested for pancreatic cancer. Similarly, adjuvant therapy is gaining popularity by administering to the patient after “successful” Whipple resections, either 5-fluorouracil (5-FU) or radiation therapy (20 Gy). Studies have reported that the median survival for the control groups was 11 months, compared with 20 months for the treatment groups (Kalser et al., 1985,Arch Surg. 120:899-903).
- Although initially considered to be radioresistant, pancreatic exocrine tumors are responsive to radiation therapy. Nonetheless, the curative rate is extremely low and the side effects are undesirable. The proximity of radiosensitive tissues, including the liver, kidney, and duodenum, severely limits the efficacy of external-beam radiation therapy and has led to innovative approaches for delivering high-dose treatment, including precision high-dose external-beam techniques, interstitial or brachytherapy, and intraoperative and adjuvant radiation therapy. There is reported value for all these techniques, but because of the heterogeneity of patients, tumor size, stage of disease, performance status, and volume of the tumor, it is difficult to make a definitive conclusion concerning the superiority of one modality over the others. Titanium clips, which do not interfere with CT studies, can be surgically placed to mark the margins of the tumor, thus enabling the radiation therapist to design fields that will maximize tumor dosage and minimize injury to radiosensitive, normal adjacent structures (Dodelbower et al., 1984,World J Surg. 8:919-28).
- Many chemotherapeutic drugs have been tried in the past as single agents for the palliation of pancreatic cancer, but the results were generally disappointing. Nevertheless, the role of chemotherapy in the management of pancreatic cancer is continually evolving. Oftentimes, chemotherapy with radiation in adjunct to surgery is used. In general, chemotherapy can achieve long-term survival rates of up to 15% to 20%, even in patients with recurrent or metastatic disease (Ali et al., 2000,Oncology 14(8):1223-30). Unfortunately, the high initial response rates to first line chemotherapy does not appear to translate into a survival benefit (Kohno and Kitahara, 2001, Gan To Kagaku Ryoho 28(4):448-53). Moreover, there are many undesirable side effects associated with chemotherapy such as temporary hair loss, mouth sores, anemia (decreased numbers of red blood cells that may cause fatigue, dizziness, and shortness of breath), leukopenia (decreased numbers of white blood cells that may lower resistance to infection), thrombocytopenia (decreased numbers of platelets that may lead to easy bleeding or bruising), and gastrointestinal symptoms like nausea, vomiting, and diarrhea. Active chemotherapeutic agents include hexamethylmelamine, bleomycin, cisplatin, mitomycin C, doxorubicin, methotrexate and Gemzar (gemcitabine HCL).
- The identification of active chemotherapeutic agents against cancers traditionally involved the use of various animal models of cancer. The mouse has been one of the most informative and productive experimental system for studying carcinogenesis (Sills et al., 2001,Toxicol Letters 120:187-198), cancer therapy (Malkinson, 2001, Lung Cancer 32(3):265-279; Hoffman R M., 1999, Invest New Drugs 17(4):343-359), and cancer chemoprevention (Yun, 1999, Annals NY Acad Sci. 889:157-192). Cancer research started with transplanted tumors in animals which provided reproducible and controllable materials for investigation. Pieces of primary animal tumors, cell suspensions made from these tumors, and immortal cell lines established from these tumor cells propagate when transplanted to animals of the same species.
- To transplant human cancer to an animal and to prevent its destruction by rejection, the immune system of the animal are compromised. While originally accomplished by irradiation, thymectomy, and application of steroids to eliminate acquired immunity, nude mice that are athymic congenitally have been used as recipients of a variety of human tumors (Rygaard, 1983, in 13th International Cancer Congress Part C, Biology of Cancer (2), pp37-44, Alan R. Liss, Inc., NY; Fergusson and Smith, 1987, Thorax, 42:753-758). While the athymic nude mouse model provides useful models to study a large number of human tumors in vivo, it does not develop spontaneous metastases and are not suitable for all types of tumors. Next, the severe combined immunodeficient (SCID) mice is developed in which the acquired immune system is completely disabled by a genetic mutation. Human lung cancer was first used to demonstrate the successful engraftment of a human cancer in the SCID mouse model (Reddy S., 1987, Cancer Res. 47(9):2456-2460). Subsequently, the SCID mouse model have been shown to allow disseminated metastatic growths for a number of human tumors, particularly hematologic disorders and malignant melanoma (Mueller and Reisfeld, 1991, Cancer Metastasis Rev. 10(3):193-200; Bankert et al., 2001, Trends Immunol. 22:386-393). With the recent advent of transgenic technology, the mouse genome has become the primary mammalian genetic model for the study of cancer (Resor et al., 2001, Human Molec Genet. 10:669-675).
- While surgery, chemotherapeutic agents, hormone therapy, and radiation are useful in the treatment of pancreatic cancer, there is a continued need to find better treatment modalities and approaches to manage the disease that are more effective and less toxic, especially when clinical oncologists are giving increased attention to the quality of life of cancer patients. The present invention provides an alternative approach to cancer therapy and management of the disease by using an oral composition comprising yeasts.
- 2.2 Yeast-Based Compositions
- Yeasts and components thereof have been developed to be used as dietary supplement or pharmaceuticals. However, none of the prior methods uses yeast cells which have been cultured in an electromagnetic field to produce a product that has an anti-cancer effect. The following are some examples of prior uses of yeast cells and components thereof:
- U.S. Pat. No. 6,197,295 discloses a selenium-enriched dried yeast product which can be used as dietary supplement. The yeast strainSaccharomyces boulardii sequela PY 31 (ATCC 74366) is cultured in the presence of selenium salts and contains 300 to about 6,000 ppm intracellular selenium. Methods for reducing tumor cell growth by administration of the selenium yeast product in combination with chemotherapeutic agents is also disclosed.
- U.S. Pat. No. 6,143,731 discloses a dietary additive containing whole β-glucans derived from yeast, which when administered to animals and humans, provide a source of fiber in the diet, a fecal bulking agent, a source of short chain fatty acids, reduce cholesterol and LDL, and raises HDL levels.
- U.S. Pat. No. 5,504,079 discloses a method of stimulating an immune response in a subject utilizing modified yeast glucans which have enhanced immunobiologic activity. The modified glucans are prepared from the cell wall ofSaccharomyces yeasts, and can be administered in a variety of routes including, for example, the oral, intravenous, subcutaneous, topical, and intranasal route.
- U.S. Pat. No. 4,348,483 discloses a process for preparing a chromium yeast product which has a high intracellular chromium content. The process comprises allowing the yeast cells to absorb chromium under a controlled acidic pH and, thereafter inducing the yeast cells to grow by adding nutrients. The yeast cells are dried and used as a dietary supplement.
- Citation of documents herein is not intended as an admission that any of the documents cited herein is pertinent prior art, or an admission that the cited documents are considered material to the patentability of the claims of the present application. All statements as to the date or representations as to the contents of these documents are based on the information available to the applicant and does not constitute any admission as to the correctness of the dates or contents of these documents.
- The present invention relates to biological or oral compositions useful for subjects with pancreatic cancer. In one embodiment, the present invention provides biological compositions comprising live yeast cells which are capable of producing a healthful benefit in subjects with pancreatic cancer. In other embodiments, the invention provides methods of making the biological compositions, and methods of using the biological compositions.
- In particular, the methods of the invention comprise culturing yeast cells in the presence of a series of electromagnetic fields such that the yeast cells becomes metabolically active. The electromagnetic fields used are each defined by one of five frequency ranges and a broad range of field strength. The starting yeast cells are commercially available and/or accessible to the public, such as but not limited toSaccharomyces. The methods for making the biological compositions of the invention further comprise conditioning the activated yeast cells in plant extracts and the gastric juice of animals, while in the presence of another series of electromagnetic fields.
- The methods of manufacturing also comprise expanding the number of activated or activated and conditioned yeast cells in large scale cultures in the presence of yet another series of electromagnetic fields, performing quality control measures, and packaging. Pharmaceutical compositions of the invention comprises activated and conditioned yeast cells and one or more pharmaceutically acceptable excipients or carriers. Additional ingredients, such as vitamins and/or flavors may be added to the biological compositions to form the oral compositions of the invention. Such additional carriers and ingredients can improve the healthful benefits, pharmacological properties, and organoleptic characteristics of the oral compositions. During the manufacturing process, the activated or activated and conditioned yeast cells may be dried and stored for a period of time.
- The biological or oral compositions of the invention are ingested by the subject or used as an additive to be incorporated into food to be consumed by the subject. Dietary supplement and nutritional compositions comprising activated and conditioned yeast cells are encompassed by the invention. Preferably, the subject is a human being.
- In various embodiments, the biological or oral compositions of the invention are used to produce a healthful benefit in a subject with pancreatic cancer or at high risk of developing pancreatic cancer. In particular, the biological composition of the invention can retard the growth of pancreatic cancer cells in an animal which received the composition orally. The composition can also be used to prolong the time of survival of an animal with pancreatic cancer.
- FIG. 1 Activation and conditioning of yeast cells.1 yeast cell culture; 2 container; 3 electromagnetic field source; 4 electrode.
- FIG. 2 Large scale propagation of yeast cells.5 first container; 6 second container; 7 third container; 8 yeast cell cultures; 9 electromagnetic field source.
- The present invention relates to biological compositions that can produce a healthful benefit in a subject with pancreatic cancer. The present invention provides methods for manufacturing the biological compositions as well as methods for using the biological compositions.
- In one embodiment, the invention provides biological compositions that comprise yeasts. Unlike the traditional use of yeasts in the making of food, the yeast cells of the invention are not used as a source of enzymes that acts on the food ingredients. The yeasts are not a primary source of nutrients for the subject. Nor are yeast cells used as a carrier, such as metal salts. The yeast cells of the invention are live when administered orally or ingested along with food by a subject. Without being bound by any theory or mechanism, the inventor believes that the culture conditions activate and/or amplified the expression of a gene or a set of genes in the yeast cells such that the yeast cells becomes highly effective in stimulating the animal's immune system, including both specific and non-specific immunological reactions, the results of which are manifested as the overall healthful benefits observed in the treated subject. The healthful benefits provided by using the biological compositions are demonstrated in animal models of human pancreatic cancer which show inhibition of tumor growth and prolonged survival time of animals with the disease.
- In another embodiment, the invention provides methods for making the yeast cells in the biological compositions. The starting materials are normal yeast cells which can be readily obtained commercially or from public microorganism deposits. The methods of the invention comprise a set of culture conditions that can be applied reproducibly to activate the yeast cells. The key feature of the culture conditions used in the methods of the invention is a series of alternating electromagnetic fields of defined frequency ranges and field strengths which are applied to the growing yeast cell culture. The method further comprises the step of conditioning the activated live yeast cells to the acidic environment of the stomach of the subject. The electromagnetic fields used in these methods can be created reproducibly at various scales, thus enabling even the large scale manufacturing of the biological compositions of the invention. By careful control of the culturing conditions, normal yeast cells can be activated routinely and reproducibly to become yeast cells of the invention.
- In yet another embodiment, the invention provides methods for manufacturing an oral composition comprising activated and conditioned yeasts of the invention, and additional ingredients, including but not limited to pharmaceutically acceptable carriers or excipients, vitamins, herbs (including traditional Chinese medicine products), herbal extracts, minerals, amino acids, flavoring agents, coloring agents, and/or preservatives.
- In yet another embodiment, the biological compositions can be added to food which will be consumed by the subject. As known to those skilled in the relevant art, many methods may be used to mix the biological or oral compositions of the invention with food while the yeast cells remain viable. In a particular embodiment, the culture broth comprising live yeast cells of the present invention are added directly to food just prior to consumption. Dried powders of the yeasts can also be reconstituted and added directly to food just prior to consumption.
- In various embodiments, the oral compositions of the invention can be consumed directly by a subject or be fed directly to a subject. For example, the subject may drink the culture broth or a fraction thereof that comprises live activated and conditioned yeast cells. Oral compositions comprising dried yeast cells can also be given as a solid dosage form to the subject.
- Although it is not necessary, the biological or oral compositions of the invention can be used in conjunction or in rotation with other types of treatment modalities such as but not limited to surgery, chemotherapeutic agents, and radiation. Since the biological compositions of the invention are administered orally, the assistance of health professionals in administration of the composition is generally not essential.
- Described below in Section 5.1 are the yeast cells of the invention and methods of their preparation. Section 5.2 describes the use of the biological compositions of the invention in a subject suffering from pancreatic cancer. The examples in
Sections 6 to 9 demonstrate the therapeutic benefits of an oral composition of the invention. The activated and conditioned yeast cells in the oral composition are characterized by their ability to (i) suppress the growth of cancer cells in an animal model of human pancreatic cancer, or (ii) prolong the survival of animals with transplanted cancer cells in a model of human pancreatic cancer, as compared to yeast cells which have not been activated and conditioned. - 5.1 Preparation of the Yeast Cell Cultures
- The yeast cells of the biological composition are produced by culturing a plurality of yeast cells in an appropriate culture medium in the presence of an alternating electromagnetic field over a period of time. The method comprises a first step of activating the yeast cells and a second step of conditioning the activated yeast cells. The activation process comprises culturing yeast cells in the presence of at least two, three, four or five electromagnetic fields of specific frequencies and field strength. The conditioning process comprises further culturing of the activated yeast cells in a medium comprising plant extracts and extracts from the stomach of an animal, in the presence of at least one electromagnetic field. The activated and conditioned yeast cells can be stored as dried cells after drying the cells under appropriate conditions. The dried activated and conditioned yeast cells can be used later in large scale culturing processes for manufacturing the biological compositions of the invention. The various culturing processes of the invention can be performed either as a batch process or a continuous process.
- 5.1.1 Yeasts
- In various embodiments, yeasts of the genera ofSaccharomyces, Candida, Crebrothecium, Geotrichum, Hansenula, Kloeckera, Lipomyces, Pichia, Rhodosporidium, Rhodotorula, Torulopsis, Trichosporon, and Wickerhamia can be used in the invention. Generally, fungi used for food manufacturing are preferred.
- Non-limiting examples of yeast strains includeSaccharomyces sp., AS2.311; Schizosaccharomyces pombe Linder, AS2.214, AS2.248, AS2.249, AS2.255, AS2.257, AS2.259, AS2.260, AS2.274, AS2.994, AS2.1043, AS2.1149, AS2.1178, IFFI 1056; Saccharomyces sake Yabe, ACCC2045; Saccharomyces uvarum Beijer, IFFI 1023, IFFI 1032, IFFI 1036, IFFI 1044, IFFI 1072, IFFI 1205, IFFI 1207; Saccharomyces rouxii Boutroux, AS2.178, AS2.180, AS2.370, AS2.371; Saccharomyces cerevisiae Hansen Var. ellipsoideus, ACCC2043, AS2.2, AS2.3, AS2.8, AS2.53, AS2.163, AS2.168, AS2.483, AS2.541, AS2.559, AS2.606, AS2.607, AS2.611, AS2.612; Saccharomyces carlsbergensis Hansen, AS2.116, AS2.162, AS2.189, AS2.200, AS2.216, AS2.265, AS2.377, AS2.417, AS2.420, AS2.440, AS2.441, AS2.443, AS2.444, AS2.459, AS2.595, AS2.605, AS2.638, AS2.742, AS2.745, AS2.748, AS2.1042; Rhodotorula aurantiaca (Saito) Ladder; AS2.102, AS2.107, AS2.278, AS2.499, AS2.694, AS2.703, AS2.704 and AS2.1146; Saccharomyces cerevisiae Hansen, ACCC2034, ACCC2035, ACCC2036, ACCC2037, ACCC2038, ACCC2039, ACCC2040, ACCC2041, ACCC2042, AS2.1, AS2.4, AS2.11, AS2.14, AS2.16, AS2.56, AS2.69, AS2.70, AS2.93, AS2.98, AS2.101, AS2.109, AS2.110, AS2.112, AS2.139, AS2.173, AS2.182, AS2.196, AS2.242, AS2.336, AS2.346, AS2.369, AS2.374, AS2.375, AS2.379, AS2.380, AS2.382, AS2.393, AS2.395, AS2.396, AS2.397, AS2.398, AS2.399, AS2.400, AS2.406, AS2.408, AS2.409, AS2.413, AS2.414, AS2.415, AS2.416, AS2.422, AS2.423, AS2.430, AS2.431, AS2.432, AS2.451, AS2.452, AS2.453, AS2.458, AS2.460, AS2.463, AS2.467, AS2.486, AS2.501, AS2.502, AS2.503, AS2.504, AS2.516, AS2.535, AS2.536, AS2.558, AS2.560, AS2.561, AS2.562, AS2.576, AS2.593, AS2.594, AS2.614, AS2.620, AS2.628, AS2.631, AS2.666, AS2.982, AS2.1190, AS2.1364, AS2.1396, IFFI 1001, IFFI 1002, IFFI 1005, IFFI 1006, IFFI 1008, IFFI 1009, IFFI 1010, IFFI 1012, IFFI 1021, IFFI 1027, IFFI 1037, IFFI 1042, IFFI 1045, IFFI 1048, IFFI 1049, IFFI 1050, IFFI 1052, IFFI 1059, IFFI 1060, IFFI 1062, IFFI 1202, IFFI 1203, IFFI 1209, IFFI 1210, IFFI 1211, IFFI 1212, IFFI 1213, IFFI 1215, IFFI 1221, IFFI 1224, IFFI 1247, IFFI 1248, IFFI 1251, IFFI 1270, IFFI 1277, IFFI 1289, IFFI 1290, IFFI 1291, IFFI 1292, IFFI 1293, IFFI 1297, IFFI 1300, IFFI 1301, IFFI 1302, IFFI 1307, IFFI 1308, IFFI 1309, IFFI 1310, IFFI 1311, IFFI 1331, IFFI 1335, IFFI 1336, IFFI 1337, IFFI 1338, IFFI 1339, IFFI 1340, IFFI 1345, IFFI 1348, IFFI 1396, IFFI 1397, IFFI 1399, IFFI 1441 and IFFI 1443. Preferred yeast strains include but are not limited to S. cerevisiae AS2.501, AS2.502, AS2.503, AS2.504, AS2.535, AS2.558, AS2.560, AS2.561 and AS2.562.
- Generally, yeast strains useful for the invention can be obtained from private or public laboratory cultures, or publicaly accessible culture deposits, such as the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209 and the China General Microbiological Culture Collection Center (CGMCC), China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China.
- Non-limiting examples of using yeast cells of the invention withSaccharomyces cerevisiae Hansen strain IFFI 1413 are provided in
Sections 6 to 9 herein below. The yeast cells of the invention do not comprise an enhanced level of selenium or chromium relative to that found in naturally occurring yeast cells. In certain embodiments, the biological compositions do not comprise cells of Saccharomyces boulardii (for example, ATCC Accession No. 74366) or cells of a particular strain of Saccharomyces cerevisiae (strain Hansen CBS 5926) that is also commonly referred to as Saccharomyces boulardii. - Although it is preferred, the preparation of the yeast cells of the invention is not limited to starting with a pure strain of yeast. The yeast cells in the biological compositions may be produced by culturing a mixture of yeast cells of different species or strains. The constituents of a mixture of yeast cells can be determined by standard yeast identification techniques well known in the art.
- In various embodiments of the invention, standard techniques for handling, transferring and storing yeasts are used. Although it is not necessary, sterile conditions or clean environments are highly desirable when carrying out the manufacturing processes of the invention, especially when the biological compositions are for human consumption. The manufacturing process can be adapted to meet regulatory guidelines on product safety and quality control by standard practice known in the art.
- 5.1.2 Electromagnetic Fields
- As used herein, the terms “alternating electromagnetic field”, “electromagnetic field” or “EM field” are synonymous. An electromagnetic field useful in the invention can be generated by various means well known in the art. A schematic illustration of exemplary setups are depicted respectively in FIG. 1. An electromagnetic field of a desired frequency and a desired field strength is generated by an electromagnetic wave source (3) which comprises one or more signal generators that are capable of generating electromagnetic waves, preferably sinusoidal waves, and preferably in the frequency range of 1,500 to 15,000 MHz and most preferably 7,900 to 12,800 MHz. Such signal generators are well known in the art. Signal generators capable of generating signal with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output signal, and thus the strength of the EM field.
- The electromagnetic field can be applied to the culture by a variety of means including placing the yeast cells in close proximity to a signal emitter connected to a source of electromagnetic waves. The signal generator is connected to the signal emitter by cables such as coaxial cables that can transmit signals up to greater than or equal to 30 GHz. Typically, the yeast cells are placed in a container which is made of material that is not an electric conductor, such as but not limited to plastic, resin, glass, and ceramic.
- In one embodiment, the electromagnetic field is applied by signal emitters in the form of electrodes (4) that are submerged in a culture of yeast cells (1). In a preferred embodiment, one of the electrodes is a metal plate which is placed on the bottom of a non-conducting container (2), and the other electrode comprises a plurality of wires or tubes so configured inside the container such that the energy of the electromagnetic field can be evenly distributed in the culture. The electrodes are preferably made of copper. For an upright culture vessel, the tips of the wires or tubes are placed within 3 to 30 cm from the bottom of the vessel (i.e., approximately 2% to 10% of the height of the vessel from the bottom). Table 1 provides exemplary set up for culturing the yeast cells of the invention.
TABLE 1 height of culture medium in the distance electrodes are range for distance of non-conducting placed from the bottom the electrodes from container (cm) of the container (cm) the bottom (cm) 15 to 20 3 3 to 5 20 to 30 5 5 to 7 30 to 50 7 7 to 10 50 to 70 10 10 to 15 70 to 100 15 15 to 20 100 to 150 20 20 to 30 150 to 200 30 25 to 30 - The number of electrodes used depends on both the volume of the culture and the diameter of the electrode. For example, for a culture having a volume of 10 liter or less, two or three electrodes having a diameter of between 0.5 to 2.0 mm can be used. For a culture volume of 10 to 100 liter of culture, the electrodes can have a diameter of 3.0 to 5.0 mm. For a culture volume of 100 to 1,000 liter, the electrodes can have a diameter of 6.0 to 15.0 mm. For a culture having a volume greater than 1,000 liter, the electrodes can have a diameter of between 20.0 to 25.0 mm.
- 5.1.3 Activation of Yeast Cells
- According to the invention, the method for producing activated yeast cells of the invention comprises culturing yeast cells in the presence of at least two, three, four or five alternating electromagnetic (EM) fields.
- The culture process can be initiated by inoculating 1,000 ml of medium with an inoculum of a selected yeast strain (such as one of those described in Section 5.1.1) such that the starting cell density of the culture is greater than about 105 cells per ml. For example, Saccharomyces cerevisiae Hansen strain IFFI 1413 can be used. The starting culture can be used to seed larger scale culture. The culture is maintained initially at 28° C. to 32° C. for 22 to 30 hours prior to exposure to the EM field(s), typically at 30° C. for 28 hours.
- The culturing process may preferably be conducted under conditions in which the concentration of dissolved oxygen is between 0.025 to 0.08 mol/m3, preferably 0.04 mol/m 3. The oxygen level can be controlled by any conventional means known in the art, including but not limited to stirring and/or bubbling.
- The culture is most preferably carried out in a liquid medium which contains sources of nutrients assimilable by the yeast cells. Table 2 provides an exemplary medium for culturing the yeast cells of the invention.
TABLE 2 Medium Composition Quantity Sucrose or glucose 20 g Vitamin B3 50 μg Vitamin B12 30 μg Vitamin H 20 μg Fetal calf serum 40 ml KH2PO4 0.20 g MgSO4.7H2O 0.25 g NaCl 0.30 g CaSO4.2H2O 0.20 g CaCO3.5H2O 4.0 g Peptone 2.5 g Autoclaved water 1,000 ml - The culturing medium is heated to 45° C. and cooled before adding the vitamin B3, vitamin B12, vitamin H, and fetal calf serum. In general, carbohydrates such as sugars, for example, sucrose, glucose, fructose, dextrose, maltose, xylose, and the like and starches, can be used either alone or in combination as sources of assimilable carbon in the culture medium. The exact quantity of the carbohydrate source or sources utilized in the medium depends in part upon the other ingredients of the medium but, in general, the amount of carbohydrate usually varies between about 0.1% and 5% by weight of the medium and is preferably between about 0.2% and 2%. These carbon sources can be used individually, or several such carbon sources may be combined in the medium. Among the inorganic salts which can be incorporated in the culture media are the customary salts capable of yielding sodium, calcium, phosphate, sulfate, carbonate, and like ions. Non-limiting examples of nutrient inorganic salts are KH2PO4, (NH4)2HPO4, CaCO3, MgSO4, NaCl, and CaSO4.
- It should be noted that the composition of the media provided in Table 2 is not intended to be limiting. The process can be scaled up or down according to needs. Various modifications of the culture medium may be made by those skilled in the art, in view of practical and economic considerations, such as the scale of culture and local supply of media components.
- In certain embodiments, a series of at least two, three, four or five EM fields are applied to the culture of yeast cells, each having a different frequency within a stated range, and a different field strength within a stated range. The EM fields can be applied in any order and by any means known in the art, such as the apparatus described in Section 5.1.2. Although any of the following two, three or four EM fields can be applied, preferably, all five EM fields are applied.
- For the first EM field, the frequency is in the range of 7,961 to 7,970 MHz and the field strength is in the range of 250 to 270 mV/cm. The yeast culture is exposed to this first EM field at 30±2° C. for about 22 hours.
- For the second EM field, the frequency is in the range of 10,181 to 10,190 MHz and the field strength is in the range of 250 to 270 mV/cm. The yeast culture is exposed to this second EM field at 30±2° C. for about 10 hours.
- For the third EM field, the frequency is in the range of 12,276 to 12,285 MHz and the field strength is in the range of 270 to 290 mV/cm. The yeast culture is exposed to this third EM field at 30±2° C. for about 24 hours.
- For the fourth EM field, the frequency is in the range of 12,461 to 12,470 MHz and the field strength is in the range of 280 to 300 mV/cm. The yeast culture is exposed to this fourth EM field at 30±2° C. for about 10 hours.
- For the fifth EM field, the frequency is in the range of 12,761 to 12,770 MHz and the field strength is in the range of 300 to 320 mV/cm. The yeast culture is exposed to this fifth EM field at 30±2° C. for about 18 hours.
- In less preferred embodiments, the yeast cells can be cultured by exposure to two, three or four of the above-mentioned EM fields in a different order. The yeast cells can remain in the same container and use the same set of electromagnetic wave generator and emitters when switching from one EM field to another EM field.
- The cell density of the culture at the end of the activation process is typically greater than about 106 to 109 cells per ml (estimated by hematocytometer). The activated yeast cells may be recovered from the culture by various methods known in the art, and stored at a temperature below about 0° C. to 4° C. The activated yeast cells recovered from the liquid culture may be dried and stored in powder form. Preferably, the powder form of the yeast cells comprises greater than about 107 to 1010 yeast cells per gram.
- 5.1.4 Conditioning of Yeast Cells
- According to the invention, performance of the activated yeast cells can be optimized by culturing the activated yeast cells in the presence of an extract from the stomach (e.g., the gastric juice) of an animal with physiology similar to the subject to which the biological composition will be administered. The inclusion of this additional conditioning process allows the activated yeast cells to adapt to and endure the acidic environment of the subject's stomach. The method for conditioning activated yeast cells of the invention comprises culturing yeast cells in such materials in the presence of at least one EM field.
- The culture process can be initiated by inoculating 1,000 ml of a conditioning medium with about 10 gram of dried activated yeasts containing about 1010 cells per gram (as prepared by the methods described in Section 5.1.3). An equivalent number of yeast cells in culture, preferably greater than 106 to 109 cells per ml, more preferably at 108 cells per ml, can also be used as an inoculum. The conditioning medium comprises per 1,000 ml about 700 ml of gastric juice of an animal and about 300 ml of wild hawthorn juice. The process can be scaled up or down according to needs.
- The gastric juice of an animal can be obtained from the stomach content of a freshly slaughtered animal. Although not essential, the animal is preferably kept under a clean environment, and fed a standard diet, preferably germ-free. For example, the content of the stomach of a 120-day old pig is mixed with 2,000 ml of distilled water, and allowed to settle without stirring for 6 hours. The clear liquid above is collected for use as the gastric juice used in the conditioning process. The gastric juice of a pig can be used to condition yeast cells for use in a variety of mammals, including humans. Other methods that can be used to collect the gastric juice include centrifugation or filtration of the mixture to remove debris and/or microorganisms. The gastric juice so obtained can be stored at 4° C. Preferably, the collection procedures and storage are carried out under sterile conditions.
- The wild hawthorn juice is an extract of wild hawthorn fruits prepared by slicing the fruits and drying the slices in air, preferably to less than 8% moisture (commercial dryer can be used if necessary), crushing the dried fruits to less than 20 mesh, and mixing 1,500 ml of water per 500 gram of the crushed wild hawthorn. The mixture is then allowed to settle without stirring for 6 hours, and the clear liquid above is collected for use as the wild hawthorn juice used in the conditioning process. Other methods that can be used to collect the hawthorn juice include centrifugation or filtration of the mixture. Preferably, the collection procedures and storage are carried out under sterile conditions.
- The activated yeast cells are conditioned by culturing in at least one of the following two EM fields which can be applied by the apparatus described in Section 5.1.2 or any means known in the art:
- The first EM field has a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 300 to 320 mV/cm. The temperature is maintained at 28° C. to 32° C., and typically at 30° C. The yeast culture is exposed to this first EM field for about 12 hours.
- The second EM field has a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 330 mV/cm. The temperature is maintained at 28° C. to 32° C., and typically at 30° C. The yeast culture is exposed to this second EM field for about 32 hours.
- In a preferred embodiment, the activated yeast cells are conditioned by culturing in both of the above-mentioned EM fields. In less preferred embodiments, the yeast cells are conditioned in the two different EM fields in a different order. In other embodiments, a series of EM fields having field characteristics within the ranges stated above can be applied to condition the yeast cells. The yeast cells can remain in the same container and use the same set of electromagnetic wave generator and emitters when switching from one EM field to another EM field.
- The cell density of the culture at the end of the activation process is typically greater than about 107 to 1010 cells per ml (estimated by hematocytometer). The activated and conditioned yeast cells may be recovered from the culture by various methods known in the art, and stored at a temperature below about 0° C. to 4° C.
- The activated and conditioned yeast cells can be used directly in a biological composition or used as a starter culture for large scale manufacturing. The activated and conditioned yeast cells recovered from the liquid culture may be dried and stored in powder form. Preferably, the powder form of the activated and conditioned yeast cells comprises greater than about 108 to 1011 yeast cells per gram.
- 5.1.5 Large Scale Manufacturing
- The present invention also encompasses methods of manufacturing of the biological compositions of the invention at a large scale. The activated and conditioned yeast cells as prepared by Sections 5.1.3 and 5.1.4 are propagated on a large scale to make the biological compositions of the invention. The method comprises culturing the yeast cells in the presence of one or more EM fields for a period of time, diluting the growing yeast cells with fresh medium, and repeating the process. The method can be carried out as a batch process or a continuous process.
- In one preferred embodiment, a set of three containers (5, 6, 7) each comprising a set of electrodes for generating an electromagnetic field as described in Section 5.1.2 are set up each with 1,000 liters of a culture medium. See FIG. 2. The culture medium comprises nutrients assimilable by the yeast cells as shown in Table 3.
TABLE 3 Material Quantity Wild hawthorn juice 300 liters Jujube juice 300 liters Wu wei zi juice 300 liters Soybean juice 100 liters - The wild hawthorn juice is an extract of fresh wild hawthorn fruits prepared by washing the fruits clean, drying the fruits in air or using a commercial dryer to less than 8% moisture, crushing the dried fruits to less than 20 mesh, and mixing the crushed wild hawthorn with water at a ratio of 400 liters of water per 100 kg of crushed fruits. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- The jujube juice is an extract of fresh jujube fruits prepared by washing the fruits clean, drying the fruits to less than 8% moisture, crushing the dried fruits to less than 20 mesh, and mixing the crushed jujube with water at a ratio of 400 liters of water per 100 kg of crushed fruits. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- The wu wei zi juice is an extract of fresh berries ofSchisandra chinensis plant prepared by washing the berries, drying the fruits to less than 8% moisture, crushing the dried berries to less than 20 mesh, and mixing the crushed berries with water at a ratio of 400 liters of water per 100 kg of crushed berries. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- The soybean juice is prepared by washing the soybeans, drying the soybeans to less than 8% moisture, crushing the soybeans to less than 20 mesh, and mixing the crushed soybeans with water. For 30 kg of soybeans, 130 liters of water is used. The mixture is then stirred continuously for 12 hours while the temperature is maintained at 28° C. to 30° C. The mixture is then centrifuged at 1,000 rpm to collect the supernatant which is used as described above. Preferably, the procedures are carried out under sterile conditions.
- The first container is inoculated with activated or activated and conditioned yeast cells as prepared by the methods of Sections 5.1.4 and 5.1.5. About 1,000 gram of dried yeast powder are added to 1,000 liter of culture medium. Each gram of the dried yeast powder comprises about 1010 yeast cells. Instead of dried yeast cells, an equivalent number of yeast cells in a liquid medium can also be used, preferably greater than about 106 to 109 cells per ml, more preferably about 107 cells per ml.
- The yeast cells in the first container (5) are then subjected to a series of two EM fields. For the first EM field, which can be applied by the apparatus described in Section 5.1.2, the frequency is in the range of 12,461 to 12,470 MHz and the field strength is in the range of 310 to 330 mV/cm. The yeast culture is exposed to this first EM field for about 8 hours. The yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 330 to 350 mV/cm. The yeast culture is exposed to this second EM field for about 12 hours. The yeast cells from the first container are then transferred to the second container which contains about 1,000 liter of the culture medium. In effect, the first yeast culture is diluted by about 50% with fresh culture medium.
- In the second container (6), the yeast cells are again subjected to a series of two EM fields. The frequencies used in the second container are similar to those used in the first container but the field strengths are marginally lower. The first EM field has a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 330 to 340 mV/cm. The yeast culture is exposed to this EM field for about 8 hours. The yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 350 to 370 mV/cm. The yeast culture is exposed to this second EM field for about 12 hours. The yeast cells from the second container are then transferred to the third container which contains yet another 1,000 liter of the culture medium. Again, the second yeast culture is diluted by about 50% with fresh culture medium.
- In the third container (7), the yeast cells are again subjected to a series of two EM fields. The frequencies used in the third container are similar to those used in the first and second container but the field strengths are lower. The first EM field has a frequency in the range of 12,461 to 12,470 MHz and field strength in the range of 220 to 240 mV/cm. The yeast culture is exposed to this EM field for about 12 hours. The yeast cells are then subjected to a second EM field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 250 to 270 mV/cm. The yeast culture is exposed to this EM field for about 24 hours.
- The yeast cell culture resulting from the end of this stage can be used directly as an oral composition of the invention, or used to form other compositions encompassed by the invention.
- The cell density of the culture at the end of the large scale manufacturing process is typically greater than about 108 to 1010 cells per ml (estimated by hematocytometer). The concentration of yeast cells in the medium can be concentrated or diluted accordingly. In certain embodiments, the concentration of yeast cells in the medium is in the range of 103 to 1010 cells per ml. In less preferred embodiments, the concentration of yeast cells in the medium is in the range of 103 to 106 cells per ml. In more preferred embodiments, the concentration of yeast cells in the medium is greater than 106 to 1010 cells per ml. In most preferred embodiments, the concentration of yeast cells in the medium is in the range of 106 to 5×108 cells per ml.
- Other ingredients that enhance the healthful benefits, pharmacological properties and/or organoleptic characteristics of the composition can be added to the yeast cell culture. To maintain viability and freshness of the composition, it is preferred that the various downstream and packaging process be carried out below room temperature, and preferably at 0° C. to 4° C. In one embodiment, the yeast cell culture can be packaged in liquid containers.
- In another embodiment, the activated and conditioned yeast cells can be dried as follows. The yeast cell culture is first centrifuged under 75 to 100 g for 10 to 20 minutes to remove the supernatant. The residue which may contain up to 85% moisture is dried in a first dryer at a temperature not exceeding 60±2° C. for a period of 5 minutes so that yeast cells quickly became dormant. The yeast cells were then sent to a second dryer and dried at a temperature not exceeding 65±2° C. for a period of about 8 minutes to further remove at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or at least 99% of water. For example, the yeast cells may be dried to remove at least 88% of water so the dried yeast cells may contain up to 12% moisture.
- After cooling to room temperature, the dried yeast cells can be packaged by standard pharmaceutical methods in various solid dosage form, each containing a predetermined amount of the dried material. In a preferred embodiment, the dried material comprises about 105 to 1011 cells per gram. In a more preferred embodiment, the dried material comprises about 108 to 5×1010 cells per gram. In a most preferred embodiment, the dried material comprises about 5×108 cells per gram.
- In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers.
- 5.1.6 Preferred Embodiments
- In one preferred embodiment, the invention provides a method for preparing a biological composition comprising activated and conditioned yeast cells, said method comprising in any order the steps of:
- (a) culturing the yeast cells in a first electromagnetic field having a frequency at 7,967 MHz and a field strength of 264 mV/cm;
- (b) culturing the yeast cells in a second electromagnetic field having a frequency at 10,188 MHz and a field strength of 266 mV/cm;
- (c) culturing the yeast cells in a third electromagnetic field having a frequency at 12,281 MHz and a field strength of 279 mV/cm;
- (d) culturing the yeast cells in a fourth electromagnetic field having a frequency at 12,466 MHz and a field strength of 286 mV/cm; and
- (e) culturing the yeast cells in a fifth electromagnetic field having a frequency at 12,764 MHz and a field strength of 306 mV/cm;
- and after the last of the first five steps, the following steps in any order:
- (f) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a sixth electromagnetic field having a frequency at 12,466 MHz and a field strength of 306 mV/cm; and
- (g) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a seventh electromagnetic field having a frequency at 12,764 MHz and a field strength of 323 mV/cm.
- The activated and conditioned yeast cells obtained at the conclusion of this method is encompassed by the invention. Preferably, the yeast cells areSaccharomyces cerevisiae Hansen strain IFFI 1413. These yeast cells can be used in the following method of further expanding number of activated and conditioned yeast cells.
- In another preferred embodiment, the invention provides a method of mass producing a biological composition comprising activated and conditioned yeast cells, said method comprising culturing the activated and conditioned yeast cells prepared by the preferred embodiment described above in this section, in a medium comprising wild hawthorn juice, jujube juice, wu wei zi juice, and soybean juice, and in the presence of one or more series of electromagnetic fields. Each series of EM fields comprises two EM fields in the order stated:
- (h) an eighth electromagnetic field or series of electromagnetic fields having a frequency at 12,466 MHz and a field strength in the range of 220 to 340 mV/cm, preferably at three fields strengths, e.g., in the order of 328 mV/cm, 334 mV/cm, and 238 mV/cm; and
- (i) a ninth electromagnetic field or series of electromagnetic fields having a frequency at 12,764 MHz and a field strength in the range of 250 to 370 mV/cm, preferably at three fields strengths, e.g., in the order of 338 mV/cm, 362 mV/cm, and 263 mV/cm.
- The series may be repeated several times, such as three times, each time using a slightly lower field strength.
- 5.2 Methods of Uses
- 5.2.1 Uses In Subjects with Pancreatic Cancer
- The present invention further provides methods of use of the biological compositions of the invention. In one embodiment, the biological composition is used as a medicament for treatment of pancreatic cancer. In another embodiment, the biological composition is used as a dietary supplement, health food, or health drink. The methods comprise administering an effective amount of the biological composition to a subject in need. The biological composition may be administered orally, in liquid or solid form, or enterally through a feeding tube. As used herein, the term “an effective amount” means an amount sufficient to provide a therapeutic or healthful benefit in the context of pancreatic cancer.
- According to the invention, the biological composition can produce a healthful benefit in a subject suffering from pancreatic cancer. Preferably, the subject is a human being. The subject in need is one who is diagnosed with pancreatic cancer, with or without metastasis, at any stage of the disease (e.g., TX, T0, Tis, T1, T2, T3, T4, NX, N0, N1, MX, M0 and M1). As used herein, the term “pancreatic cancer” includes but is not limited to adenocarcinomas, acinar cell carcinoma, cystadenocarcinoma (mucinous), adenosquamous carcinoma, solid microglandular carcinoma, carcinoid, sarcoma, and malignant lymphoma.
- The subject may be a pancreatic cancer patient who is receiving concurrently other treatment modalities against the pancreatic cancer. The subject can be a pancreatic cancer patient who had undergone a regimen of treatment (e.g., chemotherapy and/or radiation) and whose cancer is regressing. The subject may be a pancreatic cancer patient who had undergone a regimen of treatment (e.g., surgery) and who appears to be clinically free of the pancreatic cancer. The biological composition of the invention can be administered adjunctively with any of the treatment modalities, such as but not limited to chemotherapy, radiation, and/or surgery. For example, the biological composition can be used in combination with one or more chemotherapeutic or immunotherapeutic agents, such as hexamethylmelamine, bleomycin, cisplatin, mitomycin C, doxorubicin, methotrexate and Gemzar (gemcitabine HCL). The biological composition can also be used after other regimen(s) of treatment is concluded.
- The subject may be one who has not yet been diagnosed with pancreatic cancer but are predisposed to or at high risk of developing pancreatic cancer as a result of genetic factors and/or environmental factors. The subject may also be one who displays characteristics that are associated with a high risk of pancreatic cancer, such as nodules detected by computer tomographic scanning or suspect cells in biopsy and/or body fluids.
- Depending on the subject, the therapeutic and healthful benefits range from inhibiting or retarding the growth of the pancreatic cancer and/or the spread of the pancreatic cancer to other parts of the body (i.e., metastasis), palliating the symptoms of the cancer, improving the probability of survival of the subject with the cancer, prolonging the life expectancy of the subject, improving the quality of life of the subject, and/or reducing the probability of relapse after a successful course of treatment (e.g., surgery, chemotherapy or radiation). The symptoms associated with pancreatic cancer include abdominal pain, unexpected weight loss, nausea, loss of appetite, weight loss, digestive problems, jaundice, or yellowing of the skin, restlessness, loss of energy, irritability, sweating, tremor, drowsiness and severe confusion.
- In particular, the invention provides a method for retarding the growth of pancreatic cancer cells in a subject, such as a human, comprising administering orally to the subject a biological composition of the invention. The invention also provide a method for prolonging the time of survival of a subject inflicted with pancreatic cancer, preferably a human patient, comprising administering orally to the subject a biological composition of the invention.
- The effective dose will vary with the subject treated. The effective dose for the subject will also vary with the condition to be treated and the severity of the condition to be treated. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual subject. In general, the total daily dose range of activated and conditioned yeast cells for a subject inflicted with pancreatic cancer is from about 105 to 1011 cells per day; preferably, about 108 to 5×10 cells per day; more preferably, about 2×109 cells per day in powder form or 9×108 to 1×1010 cells per day in liquid preparations, administered in single or divided doses orally. The length of time for a course of treatment should be at least 1 week, at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 7 weeks, at least 10 weeks, at least 13 weeks, at least 15 weeks, at least 20 weeks, at least 6 months, or at least 1 year. It may be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art. In certain embodiments, the oral compositions can be administered for a period of time until the symptoms and/or infection of the patients by the bacteria and viruses are under control, or when the disease has regressed partially or completely. For use as a dietary supplement, the total daily dose range should be from about 105 to 1011 cells per day; preferably, about 5×107 to 5×109 cells per day. The oral compositions can be administered as a dietary supplement for as long as 6 months, or in accordance with recommended length of use under the Dietary Supplement Health and Education Act (DSHEA) or other government or industry guidelines. Further, it is noted that the nutritionist, dietician, clinician or treating physician will know how and when to interrupt, adjust, or terminate use of the biological composition as a medicament or dietary supplement in conjunction with individual patient response.
- The effect of the biological compositions of the invention on development and progression of pancreatic cancer can be monitored by any methods known to one skilled in the art, including but not limited to measuring: a) changes in the size and morphology of the tumor using imaging techniques such as a computed tomographic (CT) scan or a sonogram; and b) changes in levels of biological markers of risk for pancreatic cancer.
- 5.2.2 Formulations
- The biological compositions of the present invention comprise activated and conditioned live yeast cells prepared as described above in Section 5.1, as active ingredient, and can optionally contain a pharmaceutically acceptable carrier or excipient, and/or other ingredients provided that these ingredients do not kill or inhibit the yeast cells. Other ingredients that can be incorporated into the biological compositions of the present invention, may include, but are not limited to, herbs (including traditional Chinese medicine products), herbal extracts, vitamins, amino acids, metal salts, metal chelates, coloring agents, flavor enhancers, preservatives, and the like.
- Any dosage form may be employed for providing the subject with an effective dosage of the oral composition. Dosage forms include tablets, capsules, dispersions, suspensions, solutions, and the like. In one embodiment, compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, or tablets, each containing a predetermined amount of activated and conditioned yeast cells, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. Such products can be used as pharmaceuticals or dietary supplements, depending on the dosage and circumstances of its use.
- The oral compositions of the present invention may additionally include binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); binders or fillers (e.g., lactose, pentosan, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or wetting agents (e.g., sodium lauryl sulphate). The tablets or capsules can be coated by methods well known in the art.
- Liquid preparations for oral administration can take the form of, for example, solutions, syrups or suspensions, or they can be presented as a dry product for constitution with water or other suitable vehicle before use. The temperature of the liquid used to reconstitute the dried product should be less than 65° C. Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). As described below, the preparations can also be made to resemble foods or beverages, containing buffer salts, flavoring, coloring and sweetening agents as appropriate. In certain embodiments, the oral composition is a cell suspension comprising about 103 to 1010 cells per ml. The oral composition can be produced by diluting or concentrating the yeast culture medium produced by the method of Section 5.1.5 as required. In less preferred embodiments, the oral composition is a cell suspension containing about 103 to 106 cells per ml. In more preferred embodiments, the oral composition is a cell suspension containing greater than about 106 to 10′ cells per ml. In most preferred embodiments, the oral composition is a cell suspension containing about 106 to 5×108 cells per ml. The oral composition can be formulated as a health drink and packaged in liquid containers, each containing a predetermined amount of the liquid yeast culture. Standard methods of quality control and packaging are applied to produce in one embodiment of the invention, oral compositions packaged in liquid containers each comprising about 1 ml, 2 ml, 3 ml, 4 ml, 5 ml, 10 ml, 15 ml, 20 ml, 30 ml, 40 ml, 50 ml, 75 ml, 100 ml, 150 ml, 200 ml, 250 ml, 500 ml, 750 ml, or 1,000 ml of the live yeast cells. The number of container to be taken each day to obtain the total daily dose in a subject depends on the number of activated and conditioned yeast cells contained within each container. For example, a container may comprise 50 ml of liquid with 107 cells per ml and when a total daily dose of about 2×109 cells per day is desired, a subject can drink 4 containers per day to obtain the desired total daily dose.
- Generally, because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers as described above are employed. In a preferred embodiment, the composition is a capsule. The capsules can be formulated by any commercially available methods. In certain embodiments, the composition is a capsule containing 5 mg, 10 mg, 15 mg, 20 mg, 25 mg, 30 mg, 40 mg, 50 mg, 75 mg, 100 mg, 150 mg, 200 mg, 300 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, 1.0 gram, 1.25 gram, 1.5 gram, or 2.0 gram of live yeast cells in powder form. The powder in the capsule comprises about 105 to about 1011 cells per gram; more preferably, about 108 to 5×1010 cells per gram; and most preferably, about 5×108 cells per gram. The number of capsule to be taken each day to obtain the total daily dose in a subject depends on the number of activated and conditioned yeast cells contained within each capsule. For example, a capsule may comprise about 500 mg of powder with 5×108 cells per gram. To achieve a total daily dose of about 2×109 cells per day, a subject can take two capsules at a time for four times per day.
- In another embodiment, the biological compositions comprising activated and conditioned yeast cells can be added directly to foods so that an effective amount of yeast cells is ingested during normal meals. Any methods known to those skilled in the art may be used to add to or incorporate the biological compositions into natural or processed foods, provided that the activated and conditioned yeast cells remain viable. Preferably, the nutritional compositions of the invention are made and stored under conditions, such as temperature, from about 0° C. to 4° C. As used herein, the term “food” broadly refers to any kind of material, liquid or solid, that is used for nourishing an animal, and for sustaining normal or accelerated growth of an animal including humans. Many types of food products or beverages, such as but not limited to, fruit juice, herbal extracts, tea-based beverages, dairy products, soybean product (e.g., tofu), and rice products, can be used to form nutritional compositions comprising the activated and conditioned yeast cells of the invention.
- The invention is further defined by reference to the following example describing in detail the animal trials conducted to study the efficacy and safety of activated and conditioned yeast cells of the invention.
- The following example illustrates the benefit of a biological composition of the invention in a BALB/c mouse model of human pancreatic cancer. The growth of tumors in the mice was studied.
- Numerous animal studies have reported the use of BALB/c mice in the study of treating pancreatic cancer. The use of orthotopic transplant technique has been highly successful in the development of murine models of human pancreatic cancer.
- The human pancreatic cancer sample is carefully selected before, during, and after surgery in order to ensure transplant occurred at the equivalent position in the mouse. The pancreatic carcinoma sample is obtained from patients who have not received any radiation, chemotherapy or immune enhancement treatment.
- The biological composition comprising 108 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- 6.1 Animal Preparation
- The animals used to generate the pancreatic cancer cells for the experiments were BALB/c mice, both male and female with an average body weight of about 18 to 20 gram (obtainable from the Chinese Academy of Military Medical Sciences, Beijing, China). The mice were starved for 24 hours before the surgery. The pancreatic tumor cells were isolated from clinical biopsy samples in 1987 (obtainable from the Cancer Institute, Chinese Academy of Medical Sciences, Beijing, China).
- The animals were starved for 24 hours before the experiment. A suspension containing about 1×106 pancreatic cancer tumor cells (about 0.2 ml culture suspension) was transplanted into the donors animals at the thorax by injection. Animals that showed robust growth of the tumor were used.
- 6.2 Experimental Design
- The mice injected with tumor cells were divided into 4 experimental groups of ten mice per group and one control group. The four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups). In group AY, the mice received 0.3 ml of the biological composition once per day. In group NY, the mice received 0.3 ml of the untreated yeast cells once per day. In group VDS, the mice were injected intravenously with 3 mg of vindesine (VDS) per kg body weight once a week for four weeks. In group CK1, the mice received 0.3 ml of physiological saline once per day. A fifth group of mice, group CK2, which did not receive tumor cells, was given 0.3 ml of physiological saline per day.
- The mice received the biological compositions, untreated yeast cells, VDS or saline three days after the tumor cells were transplanted. The mice in group CK2 also started receiving saline on the same day as the other four groups. The biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the VDS by intravenous injection for 30 consecutive days. On the 31st day from tumor inoculation, the mice were sacrificed and the weight of the mice as well as the weight of the tumor were determined by standard techniques.
- 6.3 Results
- Table 4 shows the differences in the weight of the mice and tumors of the mice in the various treatment and control groups.
TABLE 4 mean weight of tumor mean weight of mice and nodules and standard Group standard deviation (g) deviation (mg) AY 19.8 ± 2.5 0.44 ± 0.3 NY 17.7 ± 3.2 2.86 ± 0.9 MMC 18.9 ± 3.4 1.37 ± 0.7 CK1 17.6 ± 3.6 2.84 ± 0.9 CK2 20.3 ± 2.4 not applicable - The mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention (group AY) showed the least deviation in the body weight and weight of esophageal as compared to healthy mice not injected tumor cells (group CK2). The mice in group AY also had less tumor mass as compared to mice that did not receive treatment (group CK1) as well as the mice in group NY (0.3 ml of untreated yeast cells per day) and the mice in group VDS (3 mg of vindesine per kg body weight per week).
- The following example illustrates the benefit of a biological composition of the invention in a BALB/c mouse model of human pancreatic cancer. The survival time of mice after tumor injection and treatment was studied.
- The biological composition comprising 108 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- 7.1 Animal Preparation
- The animals were prepared in a similar manner as described in Section 6.1.
- 7.2 Experimental Design
- The mice injected with tumor cells were divided into 4 experimental groups of ten mice per group and one control group. The four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups). In group 2AY, the mice received 0.3 ml of the biological composition once per day. In group 2NY, the mice received 0.3 ml of the untreated yeast cells once per day. In group 2VDS, the mice were injected intravenously with 3 mg of vindesine (VDS) per kg body weight once a week for four weeks. In group 2CK1, the mice received 0.3 ml of physiological saline once per day. A fifth group of mice, group 2CK2, which did not receive tumor cells, was given 0.3 ml of physiological saline per day.
- The mice received the biological compositions, untreated yeast cells, VDS or saline on the same day as the tumor cells were transplanted. The mice in group 2CK2 also started receiving saline on the same day as the other four groups. The biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the VDS by intravenous injection for 30 consecutive days. The mice were observed over 6 months from the day of tumor inoculation and survival was recorded. The weight of the mice as well as the weight of the tumor were determined by standard techniques.
- 7.3 Results
- Table 5 shows the number of mice in the various treatment and control group that survived the tumor injection over a period of 6 months. Each of the 30 mice in each group received 30 consecutive days of either untreated yeast cells, VDS, saline or biological compositions of the invention. Table 6 shows the weight of the mice that survived and the weight of their tumors in the various treatment and control groups.
TABLE 5 Number of live animals remaining in the groups after 30 days of treatment Time after cessation of Group Group Group Group Group treatment 2AY 2NY 2VDS 2CK1 2CK2 0 month 30 30 30 28 30 1 month 30 27 30 22 30 2 months 30 17 27 6 30 3 months 30 0 27 0 30 4 months 29 0 11 0 30 5 months 29 0 0 0 30 6 months 29 0 0 0 30 -
TABLE 6 mean weight of mice mean weight of tumor and standard nodules and standard Group deviation (g) deviation (mg) 2AY 20.7 ± 3.5 78.3 ± 14.2 2NY all animals dead all animals dead 2VDS all animals dead all animals dead 2CK1 all animals dead all animals dead 2CK2 21.3 ± 2.6 not applicable - The mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention (group 2AY) survived for more than 6 months and the tumor never reoccurred. On the contrary, the mice in group 2NY (0.3 ml of untreated yeast cells per day), group 2VDS (3 mg of vindesine per kg body weight per week) and group 2CK1 (0.3 ml of saline per day) all died after four months from injection of tumor cells.
- As in Example 6, the mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention (group 2AY) showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group 2CK2).
- The following example illustrates the benefit of a biological composition of the invention in a kun ming mouse model of human pancreatic cancer. The growth of tumors in the mice was studied.
- Numerous animal studies have reported the use of murine models in the study of treating pancreatic cancer. There is a 100% success rate for transplanting mice with the pancreatic tumor type MPC-83. Detailed description of the transplantable mouse pancreatic cancer cell line MPC-83 can be found in Hu M. Y., 1968,Zhonghua Zhong Liu Za Zhi (Chinese) 8(1):1-3, which is incorporated herein by reference in its entirety.
- The biological composition comprising 108 cells per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- 8.1 Animal Preparation
- The animals used for the experiments were kun ming mice, 6 to 8 weeks old (obtainable from the Chinese Academy of Military Medical Sciences, Beijing, China). Both male and females with an average weight of about 15 to 18 gram were used. The transplantable mouse pancreatic cancer cell line MPC-83 (obtainable from Kun-Ming Medical University, Kun-Ming, China) in a suspension containing about 1.2×107 viable tumor cells (about 0.2 ml culture suspension) was injected subcutaneously into the animals.
- 8.2 Experimental Design
- The mice injected with tumor cells were kept for 5 days and were divided into 4 experimental groups of ten mice per group and one control group. The four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups). In group AY, the mice received 0.3 ml of the biological composition once per day. In group NY, the mice received 0.3 ml of the untreated yeast cells once per day. In group MMC, the mice were injected intravenously with 105 units of mitomycin C (MMC) per kg body weight per day. In group CK1, the mice received 0.3 ml of physiological saline once per day. A fifth group of mice, group CK2, which did not receive tumor cells, was given 0.3 ml of physiological saline per day.
- The mice received the biological compositions, untreated yeast cells, MMC or saline on the same day as the tumor cells were transplanted. The mice in group CK2 also started receiving saline on the same day as the other four groups. The biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the MMC by intravenous injection for 30 consecutive days. On the 31st day from tumor inoculation, the mice were sacrificed and the weight of the mice as well as the weight of the tumor were determined by standard techniques.
- 8.3 Results
- Table 7 shows the differences in the weight of the mice and tumors of the mice in the various treatment and control groups.
TABLE 7 mean weight of tumor mean weight of mice and nodules and standard Group standard deviation (g) deviation (g) AY 19.2 ± 2.2 0.9 ± 0.4 NY 17.4 ± 2.4 3.3 ± 1.5 MMC 18.3 ± 1.5 2.8 ± 1.2 CK1 17.6 ± 2.4 3.6 ± 1.7 CK2 20.3 ± 2.3 not applicable - The mice bearing pancreatic cancer cells that received 0.3 ml of the biological composition of the invention (group AY) showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group CK2). The mice in group AY also had less tumor mass as compared to mice that did not receive treatment (group CK1) as well as the mice in group NY (0.3 ml of untreated yeast cells per day) and the mice in group MMC (105 units of mitomycin C per kg body weight per day).
- The following example illustrates the benefit of a biological composition of the invention in a kun ming mouse model of human pancreatic cancer. The survival time of mice after tumor injection and treatment was studied.
- The biological composition comprising 108 per ml of activated and conditioned yeast cells of the strain Saccharomyces cerevisiae Hansen strain IFFI 1413 was prepared by the methods described in Section 5.1 and subsections therein.
- 9.1 Animal Preparation
- The animals were prepared in a similar manner as described in Section 8.1.
- 9.2 Experimental Design
- The mice injected with tumor cells were kept for 5 days and were divided into 4 experimental groups of ten mice per group and one control group. The four experimental groups were triplicated (i.e., using a total of 120 mice in the experimental groups). In group 2AY, the mice received 0.5 ml of the biological composition once per day. In group 2NY, the mice received 0.5 ml of the untreated yeast cells once per day. In group 2MMC, the mice were injected intravenously with 1.5×105 units of mitomycin C (MMC) per kg body weight per day. In group 2CK1, the mice received 0.5 ml of physiological saline once per day. A fifth group of mice, group 2CK2, which did not receive tumor cells, was given 0.5 ml of physiological saline per day.
- The mice received the biological compositions, untreated yeast cells, MMC or saline on the same day as the tumor cells were transplanted. The mice in group 2CK2 also started receiving saline on the same day as the other four groups. The biological compositions, untreated yeast cells and saline were administered orally by a feeding tube and the MMC by intravenous injection for 30 consecutive days. The mice were observed over 6 months from the day of tumor inoculation and survival was recorded. The weight of the mice as well as the weight of the tumor were determined by standard techniques.
- 9.3 Results
- Table 8 shows the number of mice in the various treatment and control group that survived the tumor injection over a period of 6 months. Each of the 30 mice in each group received 30 consecutive days of either untreated yeast cells, MMC, saline or biological compositions of the invention. Table 9 shows the weight of the mice that survived and the weight of their tumors in the various treatment and control groups.
TABLE 8 Number of live animals remaining in the groups after 30 days of treatment Time after cessation of Group Group Group Group Group treatment 2AY 2NY 2MMC 2CK1 2CK2 0 month 30 27 30 24 30 1 month 30 0 27 0 30 2 months 30 0 21 0 30 3 months 30 0 7 0 30 4 months 30 0 0 0 30 5 months 30 0 0 0 30 6 months 30 0 0 0 30 -
TABLE 9 mean weight of tumor mean weight of mice and nodules and standard Group standard deviation (g) deviation (mg) 2AY 20.5 ± 1.6 104.1 ± 16.7 2NY all animals dead all animals dead 2MMC all animals dead all animals dead 2CK1 all animals dead all animals dead 2CK2 21.3 ± 2.6 not applicable - The mice bearing pancreatic cancer cells that received 0.5 ml of the biological composition of the invention (group 2AY) survived for more than 6 months and the tumor never reoccurred. On the contrary, the mice in group 2NY (0.5 ml per day of untreated yeast cells), group 2MMC (1.5×105 units of mitomycin C per kg body weight per day) and group CK1 (0.5 ml of saline per day) all died after four months from injection of tumor cells.
- As in Example 7, the mice bearing pancreatic cancer cells that received 0.5 ml of the biological composition of the invention (group 2AY) showed the least deviation in the weight of mice as compared to healthy mice not injected tumor cells (group 2CK2).
- The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein, will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.
- All publications, patents and patent applications mentioned in this specification are herein incorporated by reference into the specification to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference.
Claims (29)
1. A biological composition comprising activated yeast cells, wherein said yeast cells are prepared by a method comprising at least two steps selected from the group consisting of:
(a) culturing yeast cells in a first electromagnetic field having a frequency in the range of 7,961 to 7,970 MHz and a field strength in the range of 250 to 270 mV/cm;
(b) culturing the yeast cells in a second electromagnetic field having a frequency in the range of 10,181 to 10,190 MHz and a field strength in the range of 250 to 270 mV/cm;
(c) culturing the yeast cells in a third electromagnetic field electromagnetic fields having a frequency in the range of 12,276 to 12,285 MHz and a field strength in the range of 270 to 290 mV/cm;
(d) culturing the yeast cells in a fourth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 280 to 300 mV/cm; and
(e) culturing the yeast cells in a fifth electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 320 mV/cm.
2. A biological composition comprising activated and conditioned yeast cells, wherein the yeast cells are prepared by a method comprising activating the yeast cells, said activating comprising at least two steps selected from the group consisting of:
(a) culturing yeast cells in a first electromagnetic field having a frequency in the range of 7,961 to 7,970 MHz and a field strength in the range of 250 to 270 mV/cm;
(b) culturing the yeast cells in a second electromagnetic field having a frequency in the range of 10,181 to 10,190 MHz and a field strength in the range of 250 to 270 mV/cm;
(c) culturing the yeast cells in a third electromagnetic field electromagnetic fields having a frequency in the range of 12,276 to 12,285 MHz and a field strength in the range of 270 to 290 mV/cm;
(d) culturing the yeast cells in a fourth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 280 to 300 mV/cm; and
(e) culturing the yeast cells in a fifth electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 320 mV/cm,
and conditioning the activated yeast cells, said conditioning comprising at least one step selected from the group consisting of:
(f) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a sixth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 300 to 320 mV/cm; and
(g) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a seventh electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 330 mV/cm.
3. A biological composition comprising activated and conditioned yeast cells, wherein the activated and conditioned yeast cells of claim 2 are subjected to at least one period of culturing in a liquid medium comprising wild hawthorn juice, jujube juice, wu wei zi juice, and soybean juice, and in the presence of in any order:
(h) an eighth electromagnetic field or series of electromagnetic fields having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 220 to 340 mV/cm; and
(i) a ninth electromagnetic field or series of electromagnetic fields having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 250 to 370 mV/cm.
4. The biological composition of claim 1 , wherein the activated yeast cells are cells of Saccharomyces.
5. The biological composition of claim 1 , wherein the activated yeast cells are cells of Saccharomyces cerevisiae Hansen strain IFFI 1413.
6. The biological composition of claim 1 , wherein the activated yeast cells are at a concentration of about 106 to 109 cells per ml.
7. The biological composition of claim 1 , wherein the activated yeast cells are dried and at a concentration of about 107 to 1010 cells per gram.
8. The biological composition of claim 2 or 3, wherein the activated and conditioned yeast cells are cells of Saccharomyces.
9. The biological composition of claim 2 or 3, wherein the activated and conditioned yeast cells are cells of Saccharomyces cerevisiae Hansen strain IFFI 1413.
10. The biological composition of claim 2 or 3, wherein the activated and conditioned yeast cells are at a concentration of about 107 to 1010 cells per ml.
11. The biological composition of claim 2 or 3, wherein the activated and conditioned yeast cells are dried and at a concentration of about 108 to 1011 cells per gram.
12. A composition comprising the activated and conditioned yeast cells of claim 2 or 3, wherein the activated and conditioned yeast cells are packaged in a solid dosage form.
13. The composition of claim 12 , wherein the solid dosage form comprises 107 to 1011 yeast cells per gram.
14. A pharmaceutical composition comprising the activated and conditioned yeast cells of claim 2 or 3, and a pharmaceutical acceptable carrier.
15. A dietary supplement comprising the activated and conditioned yeast cells of claim 2 or 3, and one or more ingredients selected from the group consisting of vitamins, herbs, herbal extracts, minerals, amino acids, metal chelates, plant extracts, coloring agents, flavor enhancers and preservatives.
16. A nutritional composition comprising the activated and conditioned yeast cells of claim 2 or 3, and a food product selected from the group consisting of a fruit juice-based beverage, a tea-based beverage, a dairy product, a soybean product, and a rice product.
17. A method for preparing a biological composition comprising activated yeast cells, said method comprising at least two steps selected from the group consisting of:
(a) culturing yeast cells in a first electromagnetic field having a frequency in the range of 7,961 to 7,970 MHz and a field strength in the range of 250 to 270 mV/cm;
(b) culturing the yeast cells in a second electromagnetic field having a frequency in the range of 10,181 to 10,190 MHz and a field strength in the range of 250 to 270 mV/cm;
(c) culturing the yeast cells in a third electromagnetic field electromagnetic fields having a frequency in the range of 12,276 to 12,285 MHz and a field strength in the range of 270 to 290 mV/cm;
(d) culturing the yeast cells in a fourth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 280 to 300 mV/cm; and
(e) culturing the yeast cells in a fifth electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 320 mV/cm.
18. A method for preparing a biological composition comprising activated and conditioned yeast cells, said method comprising activating the yeast cells, said activating comprising at least two steps selected from the group consisting of:
(a) culturing yeast cells in a first electromagnetic field having a frequency in the range of 7,961 to 7,970 MHz and a field strength in the range of 250 to 270 mV/cm;
(b) culturing the yeast cells in a second electromagnetic field having a frequency in the range of 10,181 to 10,190 MHz and a field strength in the range of 250 to 270 mV/cm;
(c) culturing the yeast cells in a third electromagnetic field electromagnetic fields having a frequency in the range of 12,276 to 12,285 MHz and a field strength in the range of 270 to 290 mV/cm;
(d) culturing the yeast cells in a fourth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 280 to 300 mV/cm; and
(e) culturing the yeast cells in a fifth electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 320 mV/cm,
and conditioning the activated yeast cells, said conditioning comprising at least one step selected from the group consisting of:
(f) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a sixth electromagnetic field having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 300 to 320 mV/cm; and
(g) culturing the yeast cells in a liquid medium comprising wild hawthorn juice and gastric juice of a mammal in a seventh electromagnetic field having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 300 to 330 mV/cm.
19. A method of making a biological composition comprising activated and conditioned yeast cells, said method comprising culturing the activated and conditioned yeast cells prepared by the method of claim 18 in a liquid medium comprising wild hawthorn juice, jujube juice, wu wei zi juice, and soybean juice, and in the presence of in any order:
(h) an eighth electromagnetic field or series of electromagnetic fields having a frequency in the range of 12,461 to 12,470 MHz and a field strength in the range of 220 to 340 mV/cm; and
(i) a ninth electromagnetic field or series of electromagnetic fields having a frequency in the range of 12,761 to 12,770 MHz and a field strength in the range of 250 to 370 mV/cm.
20. The method of claim 18 or 19 further comprising after the culturing step drying the activated and conditioned yeast cells.
21. The method of claim 20 , wherein the drying step comprises:
(a) drying at a temperature not exceeding 65° C. for a period of time such that the yeast cells become dormant; and
(b) drying at a temperature not exceeding 70° C. for a period of time to reduce the moisture content to below 5%.
22. A method for retarding the growth of pancreatic cancer cells in a mammal comprising administering orally to the mammal an effective amount of the biological composition of claim 2 or 3.
23. A method for prolonging the time of survival of a mammal with pancreatic cancer comprising administering orally to the mammal an effective amount of the biological composition of claim 2 or 3.
24. The method of claim 22 , wherein said activated and conditioned yeast cells in the biological composition are Saccharomyces cells.
25. The method of claim 22 , wherein said activated and conditioned yeast cells in the biological composition are Saccharomyces cerevisiae Hansen strain IFFI 1413.
26. The method of claim 22 , wherein said activated and conditioned yeast cells in the biological composition are at a concentration of about 108 cells per ml.
27. The method of claim 23 , wherein said activated and conditioned yeast cells in the biological composition are Saccharomyces cells.
28. The method of claim 23 , wherein said activated and conditioned yeast cells in the biological composition are Saccharomyces cerevisiae Hansen strain IFFI 1413.
29. The method of claim 23 , wherein said activated and conditioned yeast cells in the biological composition are at a concentration of about 108 cells per ml.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/460,337 US7223402B2 (en) | 2003-06-11 | 2003-06-11 | Method to prepare compositions comprising yeast treated with electromagnetic energy |
PCT/GB2004/002466 WO2004108919A1 (en) | 2003-06-11 | 2004-06-10 | Biological compositions comprising yeast cells and methods for treatment of cancer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/460,337 US7223402B2 (en) | 2003-06-11 | 2003-06-11 | Method to prepare compositions comprising yeast treated with electromagnetic energy |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040253261A1 true US20040253261A1 (en) | 2004-12-16 |
US7223402B2 US7223402B2 (en) | 2007-05-29 |
Family
ID=33510988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/460,337 Expired - Fee Related US7223402B2 (en) | 2003-06-11 | 2003-06-11 | Method to prepare compositions comprising yeast treated with electromagnetic energy |
Country Status (1)
Country | Link |
---|---|
US (1) | US7223402B2 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020123130A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading polymeric compounds |
US20020123127A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for reducing odor |
US20020123129A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading nitrogen-containing compounds |
US20030232039A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for crustaceans |
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20030230126A1 (en) * | 2001-03-01 | 2003-12-18 | Ultra Biotech Limited | Biological fertilizer compositions comprising swine manure |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20030235565A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for shrimp culture |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20040005336A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Dietary supplements for regulating the central nervous system |
US20040168492A1 (en) * | 2001-03-01 | 2004-09-02 | Ultra Biotech Limited | Biological fertilizer compositions comprising poultry manure |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20050106705A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating hyperlipemia |
US20050106704A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating lupus erythematosus |
US20050106173A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating male sexual dysfunction |
US20050106170A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating vascular dementia |
US20050106167A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating gastroparesis |
US20050106172A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating gastritis |
US20050106171A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating epilepsy |
US20050106168A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating nephrotic syndrome |
US6913914B2 (en) | 2003-11-18 | 2005-07-05 | Ultra Biotech Limited | Methods and compositions for treating hepatitis B |
US6913913B2 (en) | 2003-11-18 | 2005-07-05 | Ultra Biotech Limited | Methods and compositions for treating renal failure |
US20050150264A1 (en) * | 2001-03-01 | 2005-07-14 | Ultra Biotech Limited | Biological fertilizer compositions comprising garbage |
US20050155400A1 (en) * | 2000-09-05 | 2005-07-21 | Ultra Biotech Limited | Biological fertilizer based on yeasts |
US6987012B2 (en) | 2003-06-11 | 2006-01-17 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US20070041995A1 (en) * | 2002-06-28 | 2007-02-22 | Ultra Biotech Limited | Oral compositions for HIV-infected subjects |
US7201906B2 (en) | 2003-06-11 | 2007-04-10 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7223404B2 (en) | 2003-06-11 | 2007-05-29 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7256026B2 (en) | 2002-06-28 | 2007-08-14 | Ultra Biotech Limited | Oral compositions for white blood cell activation and proliferation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8198057B2 (en) * | 2009-06-08 | 2012-06-12 | Alternative Green Technologies, Llc | Ethanol production by fermentation of chinese tallow tree |
Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2107830A (en) * | 1932-04-12 | 1938-02-08 | Liebesny Paul | Method of influencing enzymes and technically useful micro-organisms and the like |
US3711392A (en) * | 1971-02-16 | 1973-01-16 | J Metzger | Method for the utilization of organic waste material |
US3870599A (en) * | 1970-06-03 | 1975-03-11 | Bioteknika International | Microbial degradation of petroleum |
US3903307A (en) * | 1972-08-23 | 1975-09-02 | Yosiaki Kimura | Process of making the feed stuff containing bagasse, protein, and yeast |
US3968254A (en) * | 1975-06-23 | 1976-07-06 | The United States Of America As Represented By The Secretary Of Agriculture | Method of preparing feed grain compositions |
US4041182A (en) * | 1975-04-16 | 1977-08-09 | Erickson Lennart G | Bio-protein feed manufacturing method |
US4055667A (en) * | 1975-12-03 | 1977-10-25 | Ogilvie Mills Ltd. | Animal feeds |
US4348483A (en) * | 1981-01-23 | 1982-09-07 | Universal Foods Corporation | Method for the production of chromium yeast |
US4582708A (en) * | 1984-02-24 | 1986-04-15 | Pro-Vid-All, Inc. | Animal feed supplement |
US5082936A (en) * | 1984-11-28 | 1992-01-21 | Massachusetts Institute Of Technology | Glucan composition and process for preparation thereof |
US5504079A (en) * | 1989-09-08 | 1996-04-02 | Alpha-Beta Technology, Inc. | Method for immune system activation by administration of a β(1-3) glucan which is produced by Saccharomyces cerevisiae strain R4 |
US5578486A (en) * | 1994-08-05 | 1996-11-26 | International Tlb Research Institute, Inc. | Recombinant microbial fertilizer and methods for its production |
US5624686A (en) * | 1994-09-09 | 1997-04-29 | Ajinomoto Co., Inc. | Feed additives for fattening pigs, feed for fattening pigs, and method of fattening pigs |
US5952020A (en) * | 1998-09-10 | 1999-09-14 | Bio-Feed Ltd. | Process of bio-conversion of industrial or agricultural cellulose containing organic wastes into a proteinaceous nutrition product |
US5981219A (en) * | 1919-06-15 | 1999-11-09 | Hoechst Schering Agrevo Gmbh | DNA molecules which code for a plastid 2-oxoglutarate/malate translocator |
US6143731A (en) * | 1989-10-20 | 2000-11-07 | The Collaborative Group, Ltd. | Glucan dietary additives |
US6159510A (en) * | 1997-09-11 | 2000-12-12 | Bio-Feed Ltd. | Method of bioconversion of industrial or agricultural cellulose containing wastes |
US6197295B1 (en) * | 1996-09-25 | 2001-03-06 | Viva America Marketing Corporation | Dietary supplementation with, and methods for administration of yeast-derived selenium product |
US6214337B1 (en) * | 1995-04-18 | 2001-04-10 | Biotec Asa | Animal feeds comprising yeast glucan |
US6391619B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for suppressing growth of algae |
US6416982B1 (en) * | 2000-09-05 | 2002-07-09 | Ultra Biotech Ltd. | Biological fertilizer based on yeasts |
US20020099026A1 (en) * | 2001-01-25 | 2002-07-25 | Reba Goodman | Method for regulating genes with electromagnetic response elements |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20030232039A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for crustaceans |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030235570A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for cattle |
US20030235565A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for shrimp culture |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20040001814A1 (en) * | 2002-06-18 | 2004-01-01 | Cheung Ling Yuk | Feed additives for pigs |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20040001813A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for sheep |
US20040005680A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for white blood cell activation and proliferation |
US20040005335A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for HIV-infected subjects |
US20040253262A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lymphoma |
US20040253259A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of kidney cancer |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253263A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of colorectal cancer |
US20040253265A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of bladder cancer |
US20040253268A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of uterine cancer |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20040253253A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of stomach cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253256A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of prostate cancer |
US20040253264A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of brain cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
US20040253251A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of ovarian cancer |
US20040265990A1 (en) * | 2003-06-30 | 2004-12-30 | Cheung Ling Yuk | Biological compositions for reduction of E. coli infections |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2222433A1 (en) | 1973-03-20 | 1974-10-18 | Gianessy Matilde | Microorganism culture system - with exposure of culture to electromagnetic coil |
ES475500A1 (en) | 1978-11-28 | 1979-04-01 | Consejo Superior Investigacion | Method of obtaining proteins and essential amino acids for food, by electronic treatment of n2 fixing microorganisms (Machine-translation by Google Translate, not legally binding) |
SU1071637A1 (en) | 1982-11-02 | 1984-02-07 | Научно-Исследовательский Институт Биологии При Иркутском Государственном Университете Им.А.А.Жданова | Strain of black yeast exophiala nigrum r-11 for use in purification of waste liquors from phenols and lignin |
JPS6028893A (en) | 1983-07-26 | 1985-02-14 | Tax Adm Agency | Treatment of waste water |
AU6549486A (en) | 1985-10-29 | 1987-05-19 | George William Sweeney Jr. | Method for accelerating growth rates |
SU1722364A1 (en) | 1989-06-21 | 1992-03-30 | Московский технологический институт пищевой промышленности | Bread baking process |
SU1750570A1 (en) | 1990-01-02 | 1992-07-30 | Киевский Технологический Институт Пищевой Промышленности | Method of baking bread |
EP0553377A1 (en) | 1992-01-29 | 1993-08-04 | Iit Research Institute | Energy-efficient electromagnetic elimination of noxious biological organisms |
WO1995004814A1 (en) | 1993-08-06 | 1995-02-16 | International Tlb Research Institute, Inc. | Recombinant microbial fertilizer and methods for its production |
CN1110317A (en) | 1994-04-09 | 1995-10-18 | 张令玉 | Microorganism separating and culturing method |
CN1207873A (en) | 1998-07-29 | 1999-02-17 | 山东现代科技实业发展公司 | Straw feed fermenting process |
AU7020300A (en) | 2000-09-05 | 2002-03-22 | Ultra Biotech Ltd | A biological fertilizer based on yeasts |
WO2002062983A1 (en) | 2001-02-08 | 2002-08-15 | Six Forest Bio-Science Institute Limited | A yeast with t cell immunoregulatory activity as well as the preparing method and the uses thereof |
WO2002062982A1 (en) | 2001-02-08 | 2002-08-15 | Six Forest Bio-Science Institute Limited | A yeast having b cell immune regulation activity and its preparation method and application thereof |
WO2002062985A1 (en) | 2001-02-08 | 2002-08-15 | Six Forest Bio-Science Institute Limited | A yeast with nk cell immunoregulatory activity as well as the preparing method and the uses thereof |
WO2002062984A1 (en) | 2001-02-08 | 2002-08-15 | Six Forest Bio-Science Institute Limited | The yeast with immunoregulation activity to the k cell as well as the production method and the use thereof |
WO2002062981A1 (en) | 2001-02-08 | 2002-08-15 | Six Forest Bio-Science Institute Limited | A yeast human immunoregulator and the method for preparing it |
AU2002237398B2 (en) | 2001-03-01 | 2007-10-25 | Ultra Biotech Limited | Biological fertilizer compositions comprising manure, sludge or garbage |
CN1596308A (en) | 2001-03-01 | 2005-03-16 | 欧亚生物科技有限公司 | Methods and compositions for degrading nitrogen-containing compounds |
-
2003
- 2003-06-11 US US10/460,337 patent/US7223402B2/en not_active Expired - Fee Related
Patent Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981219A (en) * | 1919-06-15 | 1999-11-09 | Hoechst Schering Agrevo Gmbh | DNA molecules which code for a plastid 2-oxoglutarate/malate translocator |
US2107830A (en) * | 1932-04-12 | 1938-02-08 | Liebesny Paul | Method of influencing enzymes and technically useful micro-organisms and the like |
US3870599A (en) * | 1970-06-03 | 1975-03-11 | Bioteknika International | Microbial degradation of petroleum |
US3711392A (en) * | 1971-02-16 | 1973-01-16 | J Metzger | Method for the utilization of organic waste material |
US3903307A (en) * | 1972-08-23 | 1975-09-02 | Yosiaki Kimura | Process of making the feed stuff containing bagasse, protein, and yeast |
US4041182A (en) * | 1975-04-16 | 1977-08-09 | Erickson Lennart G | Bio-protein feed manufacturing method |
US3968254A (en) * | 1975-06-23 | 1976-07-06 | The United States Of America As Represented By The Secretary Of Agriculture | Method of preparing feed grain compositions |
US4055667A (en) * | 1975-12-03 | 1977-10-25 | Ogilvie Mills Ltd. | Animal feeds |
US4348483A (en) * | 1981-01-23 | 1982-09-07 | Universal Foods Corporation | Method for the production of chromium yeast |
US4582708A (en) * | 1984-02-24 | 1986-04-15 | Pro-Vid-All, Inc. | Animal feed supplement |
US5082936A (en) * | 1984-11-28 | 1992-01-21 | Massachusetts Institute Of Technology | Glucan composition and process for preparation thereof |
US5504079A (en) * | 1989-09-08 | 1996-04-02 | Alpha-Beta Technology, Inc. | Method for immune system activation by administration of a β(1-3) glucan which is produced by Saccharomyces cerevisiae strain R4 |
US6143731A (en) * | 1989-10-20 | 2000-11-07 | The Collaborative Group, Ltd. | Glucan dietary additives |
US5578486A (en) * | 1994-08-05 | 1996-11-26 | International Tlb Research Institute, Inc. | Recombinant microbial fertilizer and methods for its production |
US5624686A (en) * | 1994-09-09 | 1997-04-29 | Ajinomoto Co., Inc. | Feed additives for fattening pigs, feed for fattening pigs, and method of fattening pigs |
US6214337B1 (en) * | 1995-04-18 | 2001-04-10 | Biotec Asa | Animal feeds comprising yeast glucan |
US6197295B1 (en) * | 1996-09-25 | 2001-03-06 | Viva America Marketing Corporation | Dietary supplementation with, and methods for administration of yeast-derived selenium product |
US6159510A (en) * | 1997-09-11 | 2000-12-12 | Bio-Feed Ltd. | Method of bioconversion of industrial or agricultural cellulose containing wastes |
US5952020A (en) * | 1998-09-10 | 1999-09-14 | Bio-Feed Ltd. | Process of bio-conversion of industrial or agricultural cellulose containing organic wastes into a proteinaceous nutrition product |
US6416982B1 (en) * | 2000-09-05 | 2002-07-09 | Ultra Biotech Ltd. | Biological fertilizer based on yeasts |
US20020099026A1 (en) * | 2001-01-25 | 2002-07-25 | Reba Goodman | Method for regulating genes with electromagnetic response elements |
US6919207B2 (en) * | 2001-01-25 | 2005-07-19 | The Trustees Of Columbia University In The City Of New York | Method for regulating genes with electromagnetic response elements |
US6391619B1 (en) * | 2001-03-01 | 2002-05-21 | Ultra Biotech Limited | Methods and compositions for suppressing growth of algae |
US20030235570A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for cattle |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030232039A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for crustaceans |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20030235565A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for shrimp culture |
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20040001814A1 (en) * | 2002-06-18 | 2004-01-01 | Cheung Ling Yuk | Feed additives for pigs |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20040001813A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for sheep |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20040005335A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for HIV-infected subjects |
US20040005680A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Oral compositions for white blood cell activation and proliferation |
US20040253263A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of colorectal cancer |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US20040253259A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of kidney cancer |
US20040253265A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of bladder cancer |
US20040253268A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of uterine cancer |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20040253253A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of stomach cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253256A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of prostate cancer |
US20040253264A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of brain cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
US20040253251A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of ovarian cancer |
US20040253262A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lymphoma |
US20040265990A1 (en) * | 2003-06-30 | 2004-12-30 | Cheung Ling Yuk | Biological compositions for reduction of E. coli infections |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050155400A1 (en) * | 2000-09-05 | 2005-07-21 | Ultra Biotech Limited | Biological fertilizer based on yeasts |
US20050150264A1 (en) * | 2001-03-01 | 2005-07-14 | Ultra Biotech Limited | Biological fertilizer compositions comprising garbage |
US20020123127A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for reducing odor |
US20020123129A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading nitrogen-containing compounds |
US6979444B2 (en) | 2001-03-01 | 2005-12-27 | Ultra Biotech Limited | Method for preparing a biological fertilizer composition comprising poultry manure |
US20060024281A1 (en) * | 2001-03-01 | 2006-02-02 | Ultra Biotech Limited | Biological fertilizer compositions comprising poultry manure |
US20030230126A1 (en) * | 2001-03-01 | 2003-12-18 | Ultra Biotech Limited | Biological fertilizer compositions comprising swine manure |
US6994850B2 (en) | 2001-03-01 | 2006-02-07 | Ultra Biotech Limited | Method for preparing a biological fertilizer composition comprising swine manure |
US20070053932A1 (en) * | 2001-03-01 | 2007-03-08 | Ultra Biotech Limited | Methods and compositions for reducing odor |
US20020123130A1 (en) * | 2001-03-01 | 2002-09-05 | Cheung Ling Y. | Methods and compositions for degrading polymeric compounds |
US7422997B2 (en) | 2001-03-01 | 2008-09-09 | Ultra Biotech Limited | Method to enhance plant growth with a biological fertilizer composition comprising poultry manure and electromagnetic field treated yeasts |
US20040168492A1 (en) * | 2001-03-01 | 2004-09-02 | Ultra Biotech Limited | Biological fertilizer compositions comprising poultry manure |
US20030235566A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for animals: prevention of foot and mouth disease |
US20070105209A1 (en) * | 2002-06-18 | 2007-05-10 | Ultra Biotech Limited | Feed additives for reducing odor of animal waste products |
US20030232039A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for crustaceans |
US20030235568A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for dogs |
US20030235569A1 (en) * | 2002-06-18 | 2003-12-25 | Ling Yuk Cheung | Feed additives for chickens |
US20030235565A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for shrimp culture |
US20030232059A1 (en) * | 2002-06-18 | 2003-12-18 | Ling Yuk Cheung | Feed additives for fishes |
US20040001812A1 (en) * | 2002-06-18 | 2004-01-01 | Ling Yuk Cheung | Feed additives for ducks |
US20030235567A1 (en) * | 2002-06-18 | 2003-12-25 | Cheung Ling Yuk | Feed additives for cats |
US20030230245A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for reducing odor of animal waste products |
US20030232038A1 (en) * | 2002-06-18 | 2003-12-18 | Cheung Ling Yuk | Feed additives for cattle: prevention of E. coli infection |
US20070041995A1 (en) * | 2002-06-28 | 2007-02-22 | Ultra Biotech Limited | Oral compositions for HIV-infected subjects |
US7256026B2 (en) | 2002-06-28 | 2007-08-14 | Ultra Biotech Limited | Oral compositions for white blood cell activation and proliferation |
US20040005336A1 (en) * | 2002-06-28 | 2004-01-08 | Cheung Ling Yuk | Dietary supplements for regulating the central nervous system |
US20040253266A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of esophageal cancer |
US20040253260A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of cervical cancer |
US20040253255A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of nasopharyngeal cancer |
US20040253254A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of lung cancer |
US7223404B2 (en) | 2003-06-11 | 2007-05-29 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7223405B2 (en) | 2003-06-11 | 2007-05-29 | Ultra Biotech Limited | Method to prepareompositions comprising yeast treated with electromagnetic energy |
US7223401B2 (en) | 2003-06-11 | 2007-05-29 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7220416B2 (en) | 2003-06-11 | 2007-05-22 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US20040253252A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of leukemia |
US7214377B2 (en) | 2003-06-11 | 2007-05-08 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7204988B2 (en) | 2003-06-11 | 2007-04-17 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US7201906B2 (en) | 2003-06-11 | 2007-04-10 | Ultra Biotech Limited | Method to prepare compositions comprising yeast treated with electromagnetic energy |
US20040253257A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of liver cancer |
US7163813B2 (en) | 2003-06-11 | 2007-01-16 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US6984507B2 (en) | 2003-06-11 | 2006-01-10 | Ultra Biotech Limited | Biological compositions and methods for treatment of lung cancer |
US6984508B2 (en) | 2003-06-11 | 2006-01-10 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US6987012B2 (en) | 2003-06-11 | 2006-01-17 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US6989253B2 (en) | 2003-06-11 | 2006-01-24 | Ultra Biotech Limited | Biological compositions and methods for treatment of testicular cancer |
US20040253258A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of testicular cancer |
US20060024326A1 (en) * | 2003-06-11 | 2006-02-02 | Ultra Biotech Limited | Biological compositions and methods for treatment of colorectal cancer |
US20040253267A1 (en) * | 2003-06-11 | 2004-12-16 | Cheung Ling Yuk | Biological compositions and methods for treatment of breast cancer |
US7172888B2 (en) | 2003-06-11 | 2007-02-06 | Ultra Biotech Limited | Biological compositions and methods for treatment of lung cancer |
US20060029613A1 (en) * | 2003-06-11 | 2006-02-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US20060051321A1 (en) * | 2003-06-11 | 2006-03-09 | Ultra Biotech Limited | Biological compositions and methods for treatment of testicular cancer |
US7172889B2 (en) | 2003-06-11 | 2007-02-06 | Ultra Biotech Limited | Biological compositions and methods for treatment of cervical cancer |
US6977168B2 (en) | 2003-11-18 | 2005-12-20 | Ultra Biotech Limited | Methods and compositions for treating nephrotic syndrome |
US7078202B2 (en) | 2003-11-18 | 2006-07-18 | Ultra Biotech Limited | Methods and compositions for treating vascular dementia |
US20060029614A1 (en) * | 2003-11-18 | 2006-02-09 | Ultra Biotech Limited | Methods and compositions for treating gastroparesis |
US20050106705A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating hyperlipemia |
US6979562B2 (en) | 2003-11-18 | 2005-12-27 | Ultra Biotech Limited | Methods and compositions for treating gastroparesis |
US20050106170A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating vascular dementia |
US6964864B2 (en) | 2003-11-18 | 2005-11-15 | Ultra Biotech Limited | Methods and compositions for treating gastritis |
US7208159B2 (en) | 2003-11-18 | 2007-04-24 | Ultra Biotech Limited | Methods and compositions for treating gastroparesis |
US20050106704A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating lupus erythematosus |
US20050106173A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating male sexual dysfunction |
US6913913B2 (en) | 2003-11-18 | 2005-07-05 | Ultra Biotech Limited | Methods and compositions for treating renal failure |
US6913914B2 (en) | 2003-11-18 | 2005-07-05 | Ultra Biotech Limited | Methods and compositions for treating hepatitis B |
US20050106168A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating nephrotic syndrome |
US20050106171A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating epilepsy |
US20050106172A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating gastritis |
US7259001B2 (en) | 2003-11-18 | 2007-08-21 | Ultra Biotech Limited | Methods and compositions for treating male sexual dysfunction |
US7297522B2 (en) | 2003-11-18 | 2007-11-20 | Ultra Biotech Limited | Methods and compositions for treating epilepsy |
US20050106167A1 (en) * | 2003-11-18 | 2005-05-19 | Cheung Ling Y. | Methods and compositions for treating gastroparesis |
Also Published As
Publication number | Publication date |
---|---|
US7223402B2 (en) | 2007-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7223402B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7223400B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7223401B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7172888B2 (en) | Biological compositions and methods for treatment of lung cancer | |
US7223405B2 (en) | Method to prepareompositions comprising yeast treated with electromagnetic energy | |
US6987012B2 (en) | Biological compositions and methods for treatment of colorectal cancer | |
US7220416B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7223404B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7201906B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US6989253B2 (en) | Biological compositions and methods for treatment of testicular cancer | |
US7204987B2 (en) | Biological compositions and methods for treatment of prostate cancer | |
US7226600B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7204988B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7204986B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7214377B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US6984508B2 (en) | Biological compositions and methods for treatment of cervical cancer | |
US7208158B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7223403B2 (en) | Method to prepare compositions comprising yeast treated with electromagnetic energy | |
US7256026B2 (en) | Oral compositions for white blood cell activation and proliferation | |
EP1375652A2 (en) | Oral compositions for HIV-Infected Subjects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ULTRA BIOTECH LIMITED, ISLE OF MAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEUNG, LING YUK;REEL/FRAME:014717/0955 Effective date: 20031003 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20110529 |