US20040232385A1 - Blend of viscosity modifier and luminescent compound - Google Patents
Blend of viscosity modifier and luminescent compound Download PDFInfo
- Publication number
- US20040232385A1 US20040232385A1 US10/847,525 US84752504A US2004232385A1 US 20040232385 A1 US20040232385 A1 US 20040232385A1 US 84752504 A US84752504 A US 84752504A US 2004232385 A1 US2004232385 A1 US 2004232385A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- composition
- luminescent
- blend
- emission maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 52
- 239000004034 viscosity adjusting agent Substances 0.000 title claims abstract description 19
- 150000001875 compounds Chemical class 0.000 title description 5
- 229920000642 polymer Polymers 0.000 claims abstract description 59
- 239000003607 modifier Substances 0.000 claims description 28
- -1 9,9-disubstitutedfluorene Chemical class 0.000 claims description 21
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 15
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 9
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 claims description 8
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 8
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 claims description 8
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 claims description 7
- 150000003738 xylenes Chemical class 0.000 claims description 6
- 235000010290 biphenyl Nutrition 0.000 claims description 5
- 150000002220 fluorenes Chemical class 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000008096 xylene Substances 0.000 claims description 5
- HKTCLPBBJDIBGF-UHFFFAOYSA-N 1-phenyl-2-propan-2-ylbenzene Chemical group CC(C)C1=CC=CC=C1C1=CC=CC=C1 HKTCLPBBJDIBGF-UHFFFAOYSA-N 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 4
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 claims description 4
- 239000004305 biphenyl Substances 0.000 claims description 4
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 claims description 4
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 claims description 4
- 229940095102 methyl benzoate Drugs 0.000 claims description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- 229930192474 thiophene Natural products 0.000 claims description 3
- 150000003577 thiophenes Chemical class 0.000 claims description 3
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical class C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 claims description 2
- 150000000183 1,3-benzoxazoles Chemical class 0.000 claims description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 claims description 2
- 150000001454 anthracenes Chemical class 0.000 claims description 2
- 229940111121 antirheumatic drug quinolines Drugs 0.000 claims description 2
- 150000001555 benzenes Chemical class 0.000 claims description 2
- 150000001616 biphenylenes Chemical class 0.000 claims description 2
- 125000005266 diarylamine group Chemical group 0.000 claims description 2
- 150000004826 dibenzofurans Chemical class 0.000 claims description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical class C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 claims description 2
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 claims description 2
- 150000002790 naphthalenes Chemical class 0.000 claims description 2
- 150000004866 oxadiazoles Chemical class 0.000 claims description 2
- 150000002916 oxazoles Chemical class 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 150000002987 phenanthrenes Chemical class 0.000 claims description 2
- 150000003248 quinolines Chemical class 0.000 claims description 2
- 150000001629 stilbenes Chemical class 0.000 claims description 2
- 235000021286 stilbenes Nutrition 0.000 claims description 2
- 150000003440 styrenes Chemical class 0.000 claims description 2
- 125000004434 sulfur atom Chemical group 0.000 claims description 2
- 125000005259 triarylamine group Chemical group 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims 4
- DPPFREDTHDJUOI-UHFFFAOYSA-N 9,9-dibutylfluorene Chemical compound C1=CC=C2C(CCCC)(CCCC)C3=CC=CC=C3C2=C1 DPPFREDTHDJUOI-UHFFFAOYSA-N 0.000 claims 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 claims 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims 1
- 125000001424 substituent group Chemical group 0.000 claims 1
- 230000004048 modification Effects 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 5
- 239000000976 ink Substances 0.000 description 9
- 0 *C1(*)c2cc(C)ccc2-c2ccc(C)cc21 Chemical compound *C1(*)c2cc(C)ccc2-c2ccc(C)cc21 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- LPWSFLPZJJDIHS-UHFFFAOYSA-N 1-[3,5-bis(9,9-dibutylfluoren-1-yl)phenyl]-9,9-dibutylfluorene Chemical compound C12=CC=CC=C2C(CCCC)(CCCC)C2=C1C=CC=C2C1=CC(C=2C=3C(CCCC)(CCCC)C4=CC=CC=C4C=3C=CC=2)=CC(C=2C=CC=C3C4=CC=CC=C4C(C=23)(CCCC)CCCC)=C1 LPWSFLPZJJDIHS-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- FWWMTGJTVSVFPC-UHFFFAOYSA-N 9,9-dibutyl-1-phenylfluorene Chemical compound CCCCC1(CCCC)c2ccccc2-c2cccc(c12)-c1ccccc1 FWWMTGJTVSVFPC-UHFFFAOYSA-N 0.000 description 2
- NVMYRXGXUBZAIU-UHFFFAOYSA-N 9-fluoren-9-ylidenefluorene Chemical class C12=CC=CC=C2C2=CC=CC=C2C1=C1C2=CC=CC=C2C2=CC=CC=C21 NVMYRXGXUBZAIU-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000013538 functional additive Substances 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- GMVJKSNPLYBFSO-UHFFFAOYSA-N 1,2,3-tribromobenzene Chemical compound BrC1=CC=CC(Br)=C1Br GMVJKSNPLYBFSO-UHFFFAOYSA-N 0.000 description 1
- FWAJPSIPOULHHH-UHFFFAOYSA-N 1,2,4-tribromobenzene Chemical compound BrC1=CC=C(Br)C(Br)=C1 FWAJPSIPOULHHH-UHFFFAOYSA-N 0.000 description 1
- YWDUZLFWHVQCHY-UHFFFAOYSA-N 1,3,5-tribromobenzene Chemical compound BrC1=CC(Br)=CC(Br)=C1 YWDUZLFWHVQCHY-UHFFFAOYSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- NSOAOZPUFMSJQZ-UHFFFAOYSA-N 1-[2,4-bis(9,9-dibutylfluoren-1-yl)phenyl]-9,9-dibutylfluorene Chemical class C12=CC=CC=C2C(CCCC)(CCCC)C2=C1C=CC=C2C1=CC(C=2C=CC=C3C4=CC=CC=C4C(C=23)(CCCC)CCCC)=CC=C1C1=CC=CC2=C1C(CCCC)(CCCC)C1=CC=CC=C12 NSOAOZPUFMSJQZ-UHFFFAOYSA-N 0.000 description 1
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical class COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 1
- DQFMPTUTAAIXAN-UHFFFAOYSA-N 4,4-dimethyl-1h-imidazol-5-one Chemical compound CC1(C)NC=NC1=O DQFMPTUTAAIXAN-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N C/C=C/C Chemical compound C/C=C/C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 125000003860 C1-C20 alkoxy group Chemical group 0.000 description 1
- OIOGQRUTEVXEJU-UHFFFAOYSA-N C=[Br]C1c2cc([Br]=C)ccc2-c2ccccc12 Chemical compound C=[Br]C1c2cc([Br]=C)ccc2-c2ccccc12 OIOGQRUTEVXEJU-UHFFFAOYSA-N 0.000 description 1
- ULXBTFWGYJLHQT-UHFFFAOYSA-N C=[Br]c(cc1)cc2c1-c1ccccc1C2 Chemical compound C=[Br]c(cc1)cc2c1-c1ccccc1C2 ULXBTFWGYJLHQT-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000005224 alkoxybenzenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- NNBZCPXTIHJBJL-AOOOYVTPSA-N cis-decalin Chemical compound C1CCC[C@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-AOOOYVTPSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- WWGXHTXOZKVJDN-UHFFFAOYSA-M sodium;n,n-diethylcarbamodithioate;trihydrate Chemical compound O.O.O.[Na+].CCN(CC)C([S-])=S WWGXHTXOZKVJDN-UHFFFAOYSA-M 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- NNBZCPXTIHJBJL-MGCOHNPYSA-N trans-decalin Chemical compound C1CCC[C@@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1408—Carbocyclic compounds
- C09K2211/1416—Condensed systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- the present invention relates to a blend of a viscosity modifier and a luminescent compound.
- Luminescent polymers find use in a number of applications including roll-to-roll, screen, and ink jet printing; spin, dip, and spray coating; and “doctor blading.” While all of these applications may require materials that emit at particular wavelengths, they often widely differ in their viscosity requirements. Thus, an emitting luminescent polymer that is useful in both roll-to-roll and ink jet applications may require a high viscosity (100 cps) for the former application and a relatively low viscosity for the latter (about 10 cps).
- Viscosity modification of luminescent polymers is known.
- Li describes the use of low molecular weight functional additives to adjust the viscosity of luminescent inks (L-inks) that contain viscous luminescent polymers.
- L-inks luminescent inks
- These functional additives are described as possessing electron-transporting properties or hole-transporting properties that can be used to modify the charge transporting abilities of the L-ink in addition to viscosity modification.
- the luminescent polymer inherently emits at a desired wavelength, it would be disadvantageous to use a modifier that reduces viscosity but concomitantly shifts the luminescent emission maximum of the blend to a wavelength substantially different from the optimal wavelength. Accordingly, it would be advantageous in the art of viscosity modification of luminescent polymers to discover modifiers that allow tuning of viscosity without substantially altering emissive properties of the neat polymer.
- the present invention addresses the deficiencies in the art by providing a composition comprising a blend of a) a luminescent polymer having a weight average molecular weight (M w ) of at least 20,000 and b) a viscosity modifier that 1) is a solid at room temperature; 2) has a M w of less than 5000; 3) has a luminescent emission maximum in the range of 356 to 480 nm; and 4) does not substantially diminish charge transporting properties of the combination of the modifier and the polymer; and 5) contains no exocyclic conjugated double bonds; wherein the modifier and its concentration in the blend are selected so that the blend exhibits a luminescent emission maximum that is within 20 nm of the luminescent emission maximum of the polymer alone.
- M w weight average molecular weight
- the blend of the claimed invention provides a way to tune viscosity without substantially altering the luminescent emission maximum of the neat polymer. This effect is particularly advantageous where the neat polymer already possesses optimal luminescent emissive properties.
- the present invention is a composition that is a blend of a luminescent polymer and a viscosity modifier.
- the luminescent polymer can be any polymer that is luminescent under UV radiation or under a suitable electric field bias.
- the polymer is luminescent under an electric field bias, that is, it is electroluminescent.
- luminescent polymers include those that contain structural units of: 9,9-disubstituted fluorenes including 9,9-dialkylfluorenes, 9,9-diarylfluorenes, and 9,9-aralkylfluorenes; 9-substituted fluorenes such as spirofluorenes; phenylenes including 2,5-dialkoxyphenylene and 2,5-dialkylphenylene; phenylenevinylenes including 2-methoxyl-5-(2′-ethylhexyl)phenylenevinylene, 2,5-dioctyloxy-1,4-phenylenevinylene, 2-silyl-1,4-phenylenevinylene, 2,5-disilyl-1,4-phenylenevinylene and 2,5-dialkyl-1,4-phenylenevinylene; thiophenes; 3-alkylthiophenes; thiophenevinylenes;
- Preferred luminescent polymers contain structural units of a 9,9-disubstituted fluorene that is polymerized through the 2 and 7 carbon atoms, which structural unit is represented by the following structure:
- each R is independently alkyl, alkoxy, aryl, aryloxy, or aralkyl; preferably, C 1 -C 20 alkyl, C 1 -C 20 -alkoxy, substituted or unsubstituted phenyl, biphenyl, naphthalenyl, anthryl, phenanthryl, thienyl, or furanyl; and more preferably C 4 -C 12 alkyl, C 4 -C 12 -alkoxy, or substituted or unsubstituted phenyl or biphenyl.
- the electroluminescent polymer more preferably contains structural units of a 9,9-disubstituted fluorene and structural units of at least one other comonomer.
- Examples of polymers containing structural units of a 9,9-disubstituted fluorene and other comonomers can be found in U.S. Pat. Nos. 5,708,130; 5,777,070; 6,169,163; and 6,363,083, which teachings are incorporated herein by reference.
- Suitable comonomers include polymerizable substituted and unsubstituted thiophenes, dithiophenes, benzodiathiazoles, oxazoles, oxadiazoles, benzoxazoles, dibenzofurans, benzothiophenes, dibenzothiophenes, dibenzosiloles, benzidines including N,N,N′N′-tetraarylbenzidines, diarylamines, triarylamines, benzenes, biphenylenes, naphthalenes, anthracenes, phenanthrenes, styrenes, quinolines, and stilbenes. More preferred comonomers include benzidines, dithiophenes, and benzothiadiazoles.
- the viscosity modifier that is used to make the blend is solid at room temperature. It has a weight average molecular weight (M w ) of less than 5000, preferably less than 2000 and a polydispersity of preferably less than 1.2, more preferably less than 1.1, most preferably 1.0.
- M w weight average molecular weight
- the luminescent emission maximum of the modifier is not greater than 480 nm and not less than 350 nm, more preferably not less than 400 nm. Consequently, the modifier has a wider band gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) than that of the emitting chromophore of the electroluminescent polymer. It is believed that this comparatively wide modifier band gap results in a substantial absence of shifting of luminescent emission maximum of the blend as compared to the polymer.
- HOMO highest occupied molecular orbital
- LUMO lowest unoccupied molecular orbital
- the modifier is selected so as not to substantially diminish charge transporting properties of the combination of the modifier and the polymer because such modifiers tend to adversely affect the efficiency of the luminescent material.
- modifiers with such an adverse tendency are those that contain heteroatoms with delocalized unshared pairs of electrons such as N, O, and S atoms with delocalized unshared pairs of electrons.
- ⁇ -NPA di-naphthalene-1-y1-diphenyl-biphenyl-4,4′-diamine
- ⁇ -NPA di-naphthalene-1-y1-diphenyl-biphenyl-4,4′-diamine
- the modifier is also selected so as not to contain exocyclic, that is, it contains no non-aromatic, conjugated double bonds because such compounds tend to oxidize readily.
- TPB 1,1,4,4-tetraphenyl- 1,3-butadiene
- the selection of modifier and its concentration in the blend are such that the blend exhibits a luminescent emission maximum that is within 20 nm, preferably within 10 nm, more preferably within 5 nm, and most preferably within 1 nm of the luminescent emission maximum of the polymer alone.
- the weight percent concentration of the modifier based on the weight of the modifier and the luminescent polymer is at least 1 weight percent, more preferably at least 5 weight percent, and most preferably at least 10 weight percent; and preferably less than 60 weight percent, more preferably less than 50 weight percent, and most preferably less than 30 weight percent.
- Examples of preferred modifiers are substituted and unsubstituted fluorene and blends thereof; fluorene oligomers such as mono-, bis-, and tris-9,9-disubstituted fluorenes and blends thereof; fluorenylidenes and blends thereof, and trifluorenylbenzenes and blends thereof.
- fluorene oligomers such as mono-, bis-, and tris-9,9-disubstituted fluorenes and blends thereof
- fluorenylidenes and blends thereof fluorenylidenes and blends thereof
- trifluorenylbenzenes and blends thereof An example of a tris-9,9-disubstituted fluorene is illustrated by the following structure:
- the tris-9,9-disubstituted fluorene can be prepared, for example, by a Suzuki coupling reaction as shown:
- trifluorenylbenzenes can prepared by reacting a tribromobenzene with the 2-(1,3,2-dioxaborloan-2-y1)-9,9-dibutylfluorene.
- Preferred trifluorenylbenzenes include 1,3,5-tri(9,9-disubstitutedfluorenyl)benzene, where R is previously defined.
- each R is independently C 4 -C 12 -alkyl, more preferably C 4 -C 8 -alkyl.
- the luminescent polymer and the viscosity modifier are advantageously combined with a sufficient amount of solvent to make an ink.
- the amount of solvent varies depending upon the solvent itself and the application, but is generally used at a concentration of at least 80 weight percent, more preferably at least 90 weight percent, and most preferably at least 95 weight percent, based on the weight of the luminescent polymer, the modifier, and the solvent.
- solvents for the polymer and the modifier include benzene; mono-, di- and trialkylbenzenes including xylenes, mesitylene, toluene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, n-hexylbenzene, cyclohexylbenzene, diethylbenzene, dodecylbenzene, and n-pentylbenzene; furans including tetrahydrofuran and 2,3-benzofuran; tetralin (tetrahydronaphthalene); cumene; cis-and trans-decalin (decahydronaphthalene); durene; chloroform; limonene; alkoxybenzenes including anisole, and methyl anisoles; alkyl benzoates including methyl benzoate; biphenyls including isopropyl biphenyl
- the ink formulation can be deposited on a substrate such as indium-tin-oxide (ITO) glass having a hole transporting material disposed thereon.
- ITO indium-tin-oxide
- the solvent is then evaporated, whereupon the ink forms a thin amorphous film of the viscosity modified luminescent polymer.
- the presence of the viscosity modifier provides a way to tune viscosity without affecting the critical property of film thickness.
- the film is used as an active layer in an organic light-emitting diode (OLED), which can be used to make self-emissive flat panel displays.
- OLED organic light-emitting diode
- 1,3,5-Tribromobenzene (3.12 g, 9.92 mmol), 2-(1,3,2-dioxaborloan-2-y1)-9,9-dibutylfluorene (12.10 g 34.72 mmol), and Aliquat 336 (1.5 g) were dissolved in 125 mL of toluene and added to a 250-mL 3-necked flask equipped with an overhead stirrer and a reflux condenser connected to a nitrogen line. An aqueous Na 2 CO 3 solution (2M, 30 mL) was added to the mixture and the flask was purged with nitrogen for 10 minutes.
- Pd(PPh 3 ) 4 (0.2 g, 0.5 mol %) was added to the mixture, which was then heated to 95° C. with stirring overnight. A solution of diethyldithiocarbamic acid sodium salt trihydrate (5%, 200 mL) was added and the mixture was heated at 80° C. for 16 hours. The aqueous layer was removed and the organic layer was washed with warm, dilute acteic acid solution (2%, 3 ⁇ 300 mL) followed by warm water (1 ⁇ 300 mL), and finally dried with MgSO 4 .
- the toluene was removed in vacuo to yield the crude product, which was purified by column chromatography on silica gel with hexanes/methylene chloride as eluent to yield 7 g (78%) of 1,3,5- tris(9,9-dibutylfluorenyl)benzene as a white solid. HPLC showed that the product was >99% pure.
- the 1,2,4- tris(9,9-dibutylfluorenyl)benzene isomer was made essentially as described above except that 1,2,4-tribromobenzene was used as a starting material instead of the 1,3,5 isomer. Each of these isomers was used as a viscosity modifier as described in Part B.
- the electroluminescent polymer, viscosity modifier and solvent are combined in a single vessel and mixed to obtain a homogeneous solution or ink.
- the following Table shows the concentration of the polymer and the modifier in the solvent.
- the solvent is a mixture of xylene isomers and ethylbenzene (obtained by J. T. Baker as VLSI grade mixed xylenes and analyzed as m-xylene, 40-65%; o-xylene, 15-20%; p-xylene ⁇ 20%; ethyl benzene, 15-25%) at 98% wt/wt based on the total weight of the solvent, the polymer, and the modifier.
- Polymer 1304 refers to LUMATION* 1304 green light emitting polymer (a trademark of The Dow Chemical Company) and polymer 1100 refers to LUMATION* 1100 red light emitting polymer, both available from The Dow Chemical Company.
- VMI refers to 1,2,4-tris(9,9-dibutylfluorenylbenzene) and VM2 refers to 1,3,5-tris(9,9-dibutylfluorenylbenzene).
- Examples 1 and 4 are comparative examples and, therefore, not within the scope of the blend of the present invention. These comparative examples are included to demonstrate that the viscosity modifier does not substantially alter the wavelength emission maximum of the blend as compared to that of the pure polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
The present invention relates to a composition comprising a blend of a luminescent polymer and a low molecular weight (<5000 amu) viscosity modifier, which has an emission maximum in the range of 350-480 nm, contains no exocyclic double bonds, and modifies the viscosity of the polymer without substantially altering emissive properties of the neat polymer. Modification of viscosity without concomitant modification of emissive properties is desirable where the polymer is already tuned to emit at the desired wavelength.
Description
- This application claims the benefit of U.S. Provisional application No. 60/472,288 filed March 21, 2003.
- The present invention relates to a blend of a viscosity modifier and a luminescent compound.
- Luminescent polymers find use in a number of applications including roll-to-roll, screen, and ink jet printing; spin, dip, and spray coating; and “doctor blading.” While all of these applications may require materials that emit at particular wavelengths, they often widely differ in their viscosity requirements. Thus, an emitting luminescent polymer that is useful in both roll-to-roll and ink jet applications may require a high viscosity (100 cps) for the former application and a relatively low viscosity for the latter (about 10 cps).
- Viscosity modification of luminescent polymers is known. For example, in U.S. Pat. No. 6,372,154, Li describes the use of low molecular weight functional additives to adjust the viscosity of luminescent inks (L-inks) that contain viscous luminescent polymers. These functional additives are described as possessing electron-transporting properties or hole-transporting properties that can be used to modify the charge transporting abilities of the L-ink in addition to viscosity modification. However, it may be desirable to modify the viscosity of luminescent polymers without changing charge transporting properties, which may adversely affect light-emitting properties. Thus, if the luminescent polymer inherently emits at a desired wavelength, it would be disadvantageous to use a modifier that reduces viscosity but concomitantly shifts the luminescent emission maximum of the blend to a wavelength substantially different from the optimal wavelength. Accordingly, it would be advantageous in the art of viscosity modification of luminescent polymers to discover modifiers that allow tuning of viscosity without substantially altering emissive properties of the neat polymer.
- The present invention addresses the deficiencies in the art by providing a composition comprising a blend of a) a luminescent polymer having a weight average molecular weight (Mw) of at least 20,000 and b) a viscosity modifier that 1) is a solid at room temperature; 2) has a Mw of less than 5000; 3) has a luminescent emission maximum in the range of 356 to 480 nm; and 4) does not substantially diminish charge transporting properties of the combination of the modifier and the polymer; and 5) contains no exocyclic conjugated double bonds; wherein the modifier and its concentration in the blend are selected so that the blend exhibits a luminescent emission maximum that is within 20 nm of the luminescent emission maximum of the polymer alone.
- The blend of the claimed invention provides a way to tune viscosity without substantially altering the luminescent emission maximum of the neat polymer. This effect is particularly advantageous where the neat polymer already possesses optimal luminescent emissive properties.
- The present invention is a composition that is a blend of a luminescent polymer and a viscosity modifier. The luminescent polymer can be any polymer that is luminescent under UV radiation or under a suitable electric field bias. Preferably, the polymer is luminescent under an electric field bias, that is, it is electroluminescent. Examples of luminescent polymers include those that contain structural units of: 9,9-disubstituted fluorenes including 9,9-dialkylfluorenes, 9,9-diarylfluorenes, and 9,9-aralkylfluorenes; 9-substituted fluorenes such as spirofluorenes; phenylenes including 2,5-dialkoxyphenylene and 2,5-dialkylphenylene; phenylenevinylenes including 2-methoxyl-5-(2′-ethylhexyl)phenylenevinylene, 2,5-dioctyloxy-1,4-phenylenevinylene, 2-silyl-1,4-phenylenevinylene, 2,5-disilyl-1,4-phenylenevinylene and 2,5-dialkyl-1,4-phenylenevinylene; thiophenes; 3-alkylthiophenes; thiophenevinylenes; pyrroles; acetylenes; diacetylenes; aniline; N-vinylcarbazole, and combinations thereof. As used herein, the term, “structural unit” refers to the remnant of the compound after it undergoes polymerization. Thus, a structural unit of a trans-acetylene is represented by the following structure:
-
- structural unit of 9,9-disubstituted fluorene where each R is independently alkyl, alkoxy, aryl, aryloxy, or aralkyl; preferably, C1-C20 alkyl, C1-C20-alkoxy, substituted or unsubstituted phenyl, biphenyl, naphthalenyl, anthryl, phenanthryl, thienyl, or furanyl; and more preferably C4-C12 alkyl, C4-C12-alkoxy, or substituted or unsubstituted phenyl or biphenyl.
- The electroluminescent polymer more preferably contains structural units of a 9,9-disubstituted fluorene and structural units of at least one other comonomer. Examples of polymers containing structural units of a 9,9-disubstituted fluorene and other comonomers can be found in U.S. Pat. Nos. 5,708,130; 5,777,070; 6,169,163; and 6,363,083, which teachings are incorporated herein by reference.
- Examples of suitable comonomers include polymerizable substituted and unsubstituted thiophenes, dithiophenes, benzodiathiazoles, oxazoles, oxadiazoles, benzoxazoles, dibenzofurans, benzothiophenes, dibenzothiophenes, dibenzosiloles, benzidines including N,N,N′N′-tetraarylbenzidines, diarylamines, triarylamines, benzenes, biphenylenes, naphthalenes, anthracenes, phenanthrenes, styrenes, quinolines, and stilbenes. More preferred comonomers include benzidines, dithiophenes, and benzothiadiazoles.
- The viscosity modifier that is used to make the blend is solid at room temperature. It has a weight average molecular weight (Mw) of less than 5000, preferably less than 2000 and a polydispersity of preferably less than 1.2, more preferably less than 1.1, most preferably 1.0. The luminescent emission maximum of the modifier is not greater than 480 nm and not less than 350 nm, more preferably not less than 400 nm. Consequently, the modifier has a wider band gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) than that of the emitting chromophore of the electroluminescent polymer. It is believed that this comparatively wide modifier band gap results in a substantial absence of shifting of luminescent emission maximum of the blend as compared to the polymer.
- The modifier is selected so as not to substantially diminish charge transporting properties of the combination of the modifier and the polymer because such modifiers tend to adversely affect the efficiency of the luminescent material. Examples of modifiers with such an adverse tendency are those that contain heteroatoms with delocalized unshared pairs of electrons such as N, O, and S atoms with delocalized unshared pairs of electrons. Thus, di-naphthalene-1-y1-diphenyl-biphenyl-4,4′-diamine (α-NPA), which contains two nitrogen atoms with delocalized unshared pairs of electrons, would not be a suitable modifier for the luminescent polymer.
- The modifier is also selected so as not to contain exocyclic, that is, it contains no non-aromatic, conjugated double bonds because such compounds tend to oxidize readily. Thus, 1,1,4,4-tetraphenyl- 1,3-butadiene (TPB) would also not be a suitable modifier for the luminescent compound.
- Furthermore, the selection of modifier and its concentration in the blend are such that the blend exhibits a luminescent emission maximum that is within 20 nm, preferably within 10 nm, more preferably within 5 nm, and most preferably within 1 nm of the luminescent emission maximum of the polymer alone. Preferably, the weight percent concentration of the modifier based on the weight of the modifier and the luminescent polymer is at least 1 weight percent, more preferably at least 5 weight percent, and most preferably at least 10 weight percent; and preferably less than 60 weight percent, more preferably less than 50 weight percent, and most preferably less than 30 weight percent.
- Examples of preferred modifiers are substituted and unsubstituted fluorene and blends thereof; fluorene oligomers such as mono-, bis-, and tris-9,9-disubstituted fluorenes and blends thereof; fluorenylidenes and blends thereof, and trifluorenylbenzenes and blends thereof. An example of a tris-9,9-disubstituted fluorene is illustrated by the following structure:
- where R is previously defined.
-
- Similarly, trifluorenylbenzenes can prepared by reacting a tribromobenzene with the 2-(1,3,2-dioxaborloan-2-y1)-9,9-dibutylfluorene. Preferred trifluorenylbenzenes include 1,3,5-tri(9,9-disubstitutedfluorenyl)benzene, where R is previously defined.
-
-
- where R is as previously defined, preferably each R is independently C4-C12-alkyl, more preferably C4-C8-alkyl.
- The luminescent polymer and the viscosity modifier are advantageously combined with a sufficient amount of solvent to make an ink. The amount of solvent varies depending upon the solvent itself and the application, but is generally used at a concentration of at least 80 weight percent, more preferably at least 90 weight percent, and most preferably at least 95 weight percent, based on the weight of the luminescent polymer, the modifier, and the solvent.
- Examples of suitable solvents for the polymer and the modifier include benzene; mono-, di- and trialkylbenzenes including xylenes, mesitylene, toluene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, n-hexylbenzene, cyclohexylbenzene, diethylbenzene, dodecylbenzene, and n-pentylbenzene; furans including tetrahydrofuran and 2,3-benzofuran; tetralin (tetrahydronaphthalene); cumene; cis-and trans-decalin (decahydronaphthalene); durene; chloroform; limonene; alkoxybenzenes including anisole, and methyl anisoles; alkyl benzoates including methyl benzoate; biphenyls including isopropyl biphenyl; pyrrolidinones including cyclohexylpyrrolidinone; imidazoles including dimethylimidazolinone; and combinations thereof. More preferred solvents include toluene, cyclohexylbenzene, xylenes, mesitylene, tetralin, methyl benzoate, isopropyl biphenyl, and anisole, and combinations thereof.
- In a typical application, the ink formulation can be deposited on a substrate such as indium-tin-oxide (ITO) glass having a hole transporting material disposed thereon. The solvent is then evaporated, whereupon the ink forms a thin amorphous film of the viscosity modified luminescent polymer. Significantly, the presence of the viscosity modifier provides a way to tune viscosity without affecting the critical property of film thickness. The film is used as an active layer in an organic light-emitting diode (OLED), which can be used to make self-emissive flat panel displays.
- The following examples are for illustrative purposes only and is not intended to limit the scope of the invention.
- 1,3,5-Tribromobenzene (3.12 g, 9.92 mmol), 2-(1,3,2-dioxaborloan-2-y1)-9,9-dibutylfluorene (12.10 g 34.72 mmol), and Aliquat 336 (1.5 g) were dissolved in 125 mL of toluene and added to a 250-mL 3-necked flask equipped with an overhead stirrer and a reflux condenser connected to a nitrogen line. An aqueous Na2CO3 solution (2M, 30 mL) was added to the mixture and the flask was purged with nitrogen for 10 minutes. Pd(PPh3)4 (0.2 g, 0.5 mol %) was added to the mixture, which was then heated to 95° C. with stirring overnight. A solution of diethyldithiocarbamic acid sodium salt trihydrate (5%, 200 mL) was added and the mixture was heated at 80° C. for 16 hours. The aqueous layer was removed and the organic layer was washed with warm, dilute acteic acid solution (2%, 3×300 mL) followed by warm water (1×300 mL), and finally dried with MgSO4. The toluene was removed in vacuo to yield the crude product, which was purified by column chromatography on silica gel with hexanes/methylene chloride as eluent to yield 7 g (78%) of 1,3,5- tris(9,9-dibutylfluorenyl)benzene as a white solid. HPLC showed that the product was >99% pure. The 1,2,4- tris(9,9-dibutylfluorenyl)benzene isomer was made essentially as described above except that 1,2,4-tribromobenzene was used as a starting material instead of the 1,3,5 isomer. Each of these isomers was used as a viscosity modifier as described in Part B.
- The electroluminescent polymer, viscosity modifier and solvent are combined in a single vessel and mixed to obtain a homogeneous solution or ink. The following Table shows the concentration of the polymer and the modifier in the solvent. In each case, the solvent is a mixture of xylene isomers and ethylbenzene (obtained by J. T. Baker as VLSI grade mixed xylenes and analyzed as m-xylene, 40-65%; o-xylene, 15-20%; p-xylene <20%; ethyl benzene, 15-25%) at 98% wt/wt based on the total weight of the solvent, the polymer, and the modifier. Polymer 1304 refers to LUMATION* 1304 green light emitting polymer (a trademark of The Dow Chemical Company) and polymer 1100 refers to LUMATION* 1100 red light emitting polymer, both available from The Dow Chemical Company. VMI refers to 1,2,4-tris(9,9-dibutylfluorenylbenzene) and VM2 refers to 1,3,5-tris(9,9-dibutylfluorenylbenzene). Examples 1 and 4 are comparative examples and, therefore, not within the scope of the blend of the present invention. These comparative examples are included to demonstrate that the viscosity modifier does not substantially alter the wavelength emission maximum of the blend as compared to that of the pure polymer. Furthermore, the data indicate that presence of the modifier enhances the efficiency of the device.
TABLE Polymer Viscosity Solution EL Device (wt/ Modifier Viscosity Emission Efficiency @ Example # wt %) (wt/wt %) (cPs) max (nm) 1000 Cd/m2 1 (comp. 1304 none (0%) 16.02 536 6.34 ex.) (2%) 2 1304 VM1 (0.5%) 8.78 532 6.68 (1.5%) 3 1304 VM1 (1%) 4.18 532 6.82 (1%) 4 (comp. 1100 none (0%) 644 0.738 ex.) (2%) 5 1100 VM2 (1%) 640 0.790 (1%)
Claims (15)
1. A composition comprising a blend of
a) a luminescent polymer having a weight average molecular weight (Mw) of at least 20,000 and
b) a viscosity modifier that
1) is a solid at room temperature;
2) has a Mw of less than 5000;
3) has a luminescent emission maximum of 350 to 480 nm;
4) does not substantially diminish charge transporting properties of the combination of the modifier and the polymer; and
5) contains no exocyclic conjugated double bonds;
wherein the modifier and its concentration in the blend are selected so that the blend exhibits a luminescent emission maximum that is within 20 nm of the luminescent emission maximum of the polymer alone.
2. The composition of claim 1 wherein the viscosity modifier does not contain any O, N, or S atoms with delocalized unshared pairs of electrons.
3. The composition of claim 1 which further includes a solvent for the luminescent polymer and the viscosity modifier.
4. The composition of claim 3 wherein the solvent is selected from the group consisting of toluene, cyclohexylbenzene, xylenes, mesitylene, tetralin, decalin, methyl benzoate, isopropyl biphenyl, and anisole, and combinations thereof.
5. The composition of claim 1 wherein the luminescent emission maximum of the blend is within 10 nm of the luminescent emission maximum of the polymer.
6. The composition of claim 5 wherein the luminescent emission maximum of the blend is within 5 nm of the luminescent emission maximum of the polymer.
7. The composition of claim 1 wherein the viscosity modifier is a fluorene oligomer.
8. The composition of claim 1 wherein the viscosity modifier is selected from the group consisting of mono-, bis-, and tris-9,9-disubstituted fluorenes; fluorenylidenes, and trifluorenylbenzenes.
9. The composition of claim 8 wherein the viscosity modifier is selected from the group consisting of 1,2,4-tris(9,9-bisbutylfluorene)benzene and 1,3,5-tris(9,9-bisbutylfluorene)benzene.
10. The composition of claim 1 wherein the polymer contains structural units of monomers selected from the group consisting of 9,9-disubstitutedfluorene, 2-methoxyl-5-(2′-ethylhexyl)phenylenevinylene; 2,5-dioctyloxy- 1,4-phenylenevinylene; 2-silyl- 1,4-phenylenevinylene; 2,5-disilyl- 1,4-phenylenevinylene; 3-alkylthiophene; 2,5-dialkyl- 1,4-phenylenevinylene; 2,5-dialkoxyphenylene; 2,5-dialkylphenylene; and N-vinylcarbazole.
11. The composition of claim 1 wherein the polymer contains structural units of a first monomer selected from the group consisting of 9,9-dialkylfluorene, 9,9-diarylfluorene, and 9,9-aralkylfluorene, and a second monomer selected from the group consisting of substituted and unsubstituted thiophenes, dithiophenes, benzodiathiazoles, oxazoles, oxadiazoles, benzoxazoles, dibenzofurans, benzothiophenes, dibenzothiophenes, dibenzosiloles, benzidines, diarylamines, triarylamines, benzenes, biphenylenes, naphthalenes, anthracenes, phenanthrenes, styrenes, quinolines, and stilbenes.
12. A composition comprising a blend of
a) a luminescent polymer having a weight average molecular weight (Mw) of at least 20,000 and
b) a viscosity modifier that
1) is a solid at room temperature;
2) has a Mw, of less than 5000;
3) has a luminescent emission maximum of from 350 to 480 nm;
4) does not substantially diminish charge transporting properties of the combination of the modifier and the polymer; and
5) contains no exocyclic conjugated double bonds; and
c) a solvent for the luminescent polymer and the viscosity modifier;
wherein the relative amounts of the modifier and the polymeric compound in the blend are such that the blend exhibits a luminescent emission maximum that is within 10 nm of the luminescent emission maximum of the polymer alone.
13. The composition of claim 12 wherein the luminescent polymer includes structural units of a 9,9-disubstituted fluorene and a monomer selected from the group consisting of benzidines dithiophenes, and benzothiadiazoles.
14. The composition of claim 13 wherein the solvent is selected from the group consisting of toluene, cyclohexylbenzene, xylenes, mesitylene, tetralin, decalin, methyl benzoate, isopropyl biphenyl, and anisole.
15. The composition of claim 14 wherein the structural units of a 9,9-disubstituted fluorene include substituents at the 9,9-position are selected from the group consisting of C4-C12 alkyl, C4-C12-alkoxy, substituted phenyl, unsubstituted phenyl, substituted biphenyl, and unsubstituted biphenyl.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/847,525 US20040232385A1 (en) | 2003-05-21 | 2004-05-17 | Blend of viscosity modifier and luminescent compound |
US11/419,364 US7517472B2 (en) | 2003-05-21 | 2006-05-19 | Blend of viscosity modifier and luminescent compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US47228803P | 2003-05-21 | 2003-05-21 | |
US10/847,525 US20040232385A1 (en) | 2003-05-21 | 2004-05-17 | Blend of viscosity modifier and luminescent compound |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/419,364 Continuation US7517472B2 (en) | 2003-05-21 | 2006-05-19 | Blend of viscosity modifier and luminescent compound |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040232385A1 true US20040232385A1 (en) | 2004-11-25 |
Family
ID=33490496
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/847,525 Abandoned US20040232385A1 (en) | 2003-05-21 | 2004-05-17 | Blend of viscosity modifier and luminescent compound |
US11/419,364 Expired - Fee Related US7517472B2 (en) | 2003-05-21 | 2006-05-19 | Blend of viscosity modifier and luminescent compound |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/419,364 Expired - Fee Related US7517472B2 (en) | 2003-05-21 | 2006-05-19 | Blend of viscosity modifier and luminescent compound |
Country Status (7)
Country | Link |
---|---|
US (2) | US20040232385A1 (en) |
JP (1) | JP4465484B2 (en) |
KR (1) | KR101142648B1 (en) |
CN (1) | CN1791656A (en) |
DE (1) | DE112004000838T5 (en) |
TW (1) | TWI349695B (en) |
WO (1) | WO2004106458A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070122652A1 (en) * | 2004-09-29 | 2007-05-31 | Canon Kabushiki Kaisha | Compound and organic electroluminescent device using same |
WO2009109273A1 (en) * | 2008-03-06 | 2009-09-11 | Merck Patent Gmbh | Organic semiconductor formulation |
WO2011149804A3 (en) * | 2010-05-27 | 2012-01-12 | Corning Incorporated | Polymeric fused thiophene semiconductor formulation |
CN113773473A (en) * | 2020-06-09 | 2021-12-10 | 同济大学 | Silafluorenyl conjugated porous polymer and preparation method thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625596B2 (en) * | 2004-12-15 | 2009-12-01 | General Electric Company | Adhesion promoter, electroactive layer and electroactive device comprising same, and method |
US8718437B2 (en) | 2006-03-07 | 2014-05-06 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
US9297092B2 (en) | 2005-06-05 | 2016-03-29 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
US9874674B2 (en) | 2006-03-07 | 2018-01-23 | Samsung Electronics Co., Ltd. | Compositions, optical component, system including an optical component, devices, and other products |
US8849087B2 (en) | 2006-03-07 | 2014-09-30 | Qd Vision, Inc. | Compositions, optical component, system including an optical component, devices, and other products |
KR101672553B1 (en) | 2007-06-25 | 2016-11-03 | 큐디 비젼, 인크. | Compositions and methods including depositing nanomaterial |
JP2011524064A (en) | 2008-05-06 | 2011-08-25 | キユーデイー・ビジヨン・インコーポレーテツド | Solid state lighting device containing quantum confined semiconductor nanoparticles |
WO2009137053A1 (en) | 2008-05-06 | 2009-11-12 | Qd Vision, Inc. | Optical components, systems including an optical component, and devices |
US9207385B2 (en) | 2008-05-06 | 2015-12-08 | Qd Vision, Inc. | Lighting systems and devices including same |
US20100327735A1 (en) * | 2009-06-29 | 2010-12-30 | General Electric Company | Fluorene dimers and trimers |
CN102504804A (en) * | 2011-09-29 | 2012-06-20 | 中国科学院长春应用化学研究所 | Organic luminescent material solution for improving uniformity of ink-jet printing thin film by inhibiting edge flowing and preparation method thereof |
KR102456399B1 (en) * | 2017-03-10 | 2022-10-20 | 제이에스알 가부시끼가이샤 | A composition for forming a resist underlayer film, a resist underlayer film and a method for forming the same, and a method for manufacturing a patterned substrate |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935009A (en) * | 1973-02-14 | 1976-01-27 | Oce-Van Der Grinten N.V. | Electrophotographic reproduction element of an aniline compound electron acceptor |
US5708130A (en) * | 1995-07-28 | 1998-01-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US5777070A (en) * | 1997-10-23 | 1998-07-07 | The Dow Chemical Company | Process for preparing conjugated polymers |
US5929194A (en) * | 1996-02-23 | 1999-07-27 | The Dow Chemical Company | Crosslinkable or chain extendable polyarylpolyamines and films thereof |
US6078196A (en) * | 1997-09-17 | 2000-06-20 | Intel Corporation | Data enabled logic circuits |
US6169163B1 (en) * | 1995-07-28 | 2001-01-02 | The Dow Chemical Company | Fluorene-containing polymers and compounds useful in the preparation thereof |
US20010001050A1 (en) * | 1996-11-25 | 2001-05-10 | Seiko Epson Corporation | Method of manufacturing organic EL element, organic EL element, and organic EL display device |
US6309763B1 (en) * | 1997-05-21 | 2001-10-30 | The Dow Chemical Company | Fluorene-containing polymers and electroluminescent devices therefrom |
US6329086B1 (en) * | 2000-06-13 | 2001-12-11 | Eastman Kodak Company | Electroluminescent devices having arylamine polymers |
US20020013013A1 (en) * | 2000-04-27 | 2002-01-31 | John Victor | Screen printing light-emitting polymer patterned devices |
US6353083B1 (en) * | 1999-02-04 | 2002-03-05 | The Dow Chemical Company | Fluorene copolymers and devices made therefrom |
US6363083B1 (en) * | 1999-03-12 | 2002-03-26 | Otis Elevator Company | Bilevel node identifiers in control area network (CAN) protocol |
US6372154B1 (en) * | 1999-12-30 | 2002-04-16 | Canon Kabushiki Kaisha | Luminescent ink for printing of organic luminescent devices |
US6433115B2 (en) * | 1999-05-18 | 2002-08-13 | International Business Machines Corporation | Opto-electronic devices fabricated with dual purpose electroactive copolymers |
US20020167024A1 (en) * | 2001-03-30 | 2002-11-14 | The Arizona Board Of Regents | Method for fabricating organic light-emitting diode and organic light-emitting display using screen -printing |
US20030064174A1 (en) * | 2001-09-04 | 2003-04-03 | Tzenka Miteva | Aligned emissive polymer blend, film and device based thereon |
US6566153B1 (en) * | 1998-10-14 | 2003-05-20 | The Regents Of The University Of California | Process for fabricating organic semiconductor devices using ink-jet printing technology and device and system employing same |
US6566808B1 (en) * | 1999-12-22 | 2003-05-20 | General Electric Company | Luminescent display and method of making |
US6569706B2 (en) * | 2001-09-19 | 2003-05-27 | Osram Opto Semiconductors Gmbh | Fabrication of organic light emitting diode using selective printing of conducting polymer layers |
US6575800B1 (en) * | 1997-09-01 | 2003-06-10 | Seiko Epson Corporation | Electroluminescent element and method of producing the same |
US6762234B2 (en) * | 1999-08-31 | 2004-07-13 | Cambridge Display Technology Ltd. | Formulation for depositing a light-emitting polymer layer |
US20040170861A1 (en) * | 2003-02-28 | 2004-09-02 | Eastman Kodak Company | Organic light emitting diodes for production of polarized light |
US20040195551A1 (en) * | 2001-03-12 | 2004-10-07 | Seiko Epson Corporation | Compositions, methods for producing films, functional elements, methods for producing functional elements, methods for producing electro-optical devices and methods for producing electronic apparatus |
US6825061B2 (en) * | 2002-02-04 | 2004-11-30 | Seiko Epson Corporation | Method of manufacturing organic EL device and ink composition for organic EL device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5376456A (en) * | 1993-05-13 | 1994-12-27 | Polaroid Corporation | Electroluminescent devices comprising polymers, and processes for their use |
WO1995001871A1 (en) | 1993-07-09 | 1995-01-19 | The Regents Of The University Of California | Electroluminescent diodes utilizing blends of polymers |
US5811834A (en) | 1996-01-29 | 1998-09-22 | Toyo Ink Manufacturing Co., Ltd. | Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted |
GB9701680D0 (en) | 1997-01-28 | 1997-03-19 | Cambridge Display Tech Ltd | Viscosity modification of precursor solutions |
JP2001521269A (en) | 1997-10-17 | 2001-11-06 | ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア | Method of manufacturing organic semiconductor device using inkjet printing technology, and apparatus and system using the same |
JP3692844B2 (en) | 1998-07-24 | 2005-09-07 | セイコーエプソン株式会社 | Electroluminescent device and electronic device |
CN1310930A (en) | 1999-03-29 | 2001-08-29 | 精工爱普生株式会社 | Method for producing composition and film, functional element and method for producing same |
US6582504B1 (en) | 1999-11-24 | 2003-06-24 | Sharp Kabushiki Kaisha | Coating liquid for forming organic EL element |
ATE282077T1 (en) | 2000-08-30 | 2004-11-15 | Cambridge Display Tech Ltd | FORMULATION FOR DEPOSITING A CONJUGATE POLYMER LAYER |
JP4871464B2 (en) * | 2001-09-28 | 2012-02-08 | キヤノン株式会社 | Organic light emitting device |
JP2004204114A (en) | 2002-12-26 | 2004-07-22 | Dainippon Printing Co Ltd | Ink composition for ink jet |
-
2004
- 2004-05-17 US US10/847,525 patent/US20040232385A1/en not_active Abandoned
- 2004-05-17 JP JP2006533171A patent/JP4465484B2/en not_active Expired - Fee Related
- 2004-05-17 KR KR1020057021981A patent/KR101142648B1/en not_active Expired - Fee Related
- 2004-05-17 CN CNA2004800137367A patent/CN1791656A/en active Pending
- 2004-05-17 WO PCT/US2004/015505 patent/WO2004106458A1/en active Application Filing
- 2004-05-17 DE DE112004000838T patent/DE112004000838T5/en not_active Ceased
- 2004-05-20 TW TW093114245A patent/TWI349695B/en not_active IP Right Cessation
-
2006
- 2006-05-19 US US11/419,364 patent/US7517472B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935009A (en) * | 1973-02-14 | 1976-01-27 | Oce-Van Der Grinten N.V. | Electrophotographic reproduction element of an aniline compound electron acceptor |
US6169163B1 (en) * | 1995-07-28 | 2001-01-02 | The Dow Chemical Company | Fluorene-containing polymers and compounds useful in the preparation thereof |
US5708130A (en) * | 1995-07-28 | 1998-01-13 | The Dow Chemical Company | 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers |
US5929194A (en) * | 1996-02-23 | 1999-07-27 | The Dow Chemical Company | Crosslinkable or chain extendable polyarylpolyamines and films thereof |
US20010001050A1 (en) * | 1996-11-25 | 2001-05-10 | Seiko Epson Corporation | Method of manufacturing organic EL element, organic EL element, and organic EL display device |
US20020155215A1 (en) * | 1996-11-25 | 2002-10-24 | Seiko Epson Corporation | Method of manufacturing organic EL element, organic EL element, and organic EL display device |
US6309763B1 (en) * | 1997-05-21 | 2001-10-30 | The Dow Chemical Company | Fluorene-containing polymers and electroluminescent devices therefrom |
US6575800B1 (en) * | 1997-09-01 | 2003-06-10 | Seiko Epson Corporation | Electroluminescent element and method of producing the same |
US6078196A (en) * | 1997-09-17 | 2000-06-20 | Intel Corporation | Data enabled logic circuits |
US5777070A (en) * | 1997-10-23 | 1998-07-07 | The Dow Chemical Company | Process for preparing conjugated polymers |
US6566153B1 (en) * | 1998-10-14 | 2003-05-20 | The Regents Of The University Of California | Process for fabricating organic semiconductor devices using ink-jet printing technology and device and system employing same |
US6353083B1 (en) * | 1999-02-04 | 2002-03-05 | The Dow Chemical Company | Fluorene copolymers and devices made therefrom |
US6363083B1 (en) * | 1999-03-12 | 2002-03-26 | Otis Elevator Company | Bilevel node identifiers in control area network (CAN) protocol |
US6433115B2 (en) * | 1999-05-18 | 2002-08-13 | International Business Machines Corporation | Opto-electronic devices fabricated with dual purpose electroactive copolymers |
US6762234B2 (en) * | 1999-08-31 | 2004-07-13 | Cambridge Display Technology Ltd. | Formulation for depositing a light-emitting polymer layer |
US6566808B1 (en) * | 1999-12-22 | 2003-05-20 | General Electric Company | Luminescent display and method of making |
US6372154B1 (en) * | 1999-12-30 | 2002-04-16 | Canon Kabushiki Kaisha | Luminescent ink for printing of organic luminescent devices |
US20020013013A1 (en) * | 2000-04-27 | 2002-01-31 | John Victor | Screen printing light-emitting polymer patterned devices |
US6329086B1 (en) * | 2000-06-13 | 2001-12-11 | Eastman Kodak Company | Electroluminescent devices having arylamine polymers |
US20040195551A1 (en) * | 2001-03-12 | 2004-10-07 | Seiko Epson Corporation | Compositions, methods for producing films, functional elements, methods for producing functional elements, methods for producing electro-optical devices and methods for producing electronic apparatus |
US6576975B2 (en) * | 2001-03-19 | 2003-06-10 | The Regents Of The University Of California | Organic semiconductor devices using ink-jet printing technology and device and system employing same |
US20020167024A1 (en) * | 2001-03-30 | 2002-11-14 | The Arizona Board Of Regents | Method for fabricating organic light-emitting diode and organic light-emitting display using screen -printing |
US20030064174A1 (en) * | 2001-09-04 | 2003-04-03 | Tzenka Miteva | Aligned emissive polymer blend, film and device based thereon |
US6569706B2 (en) * | 2001-09-19 | 2003-05-27 | Osram Opto Semiconductors Gmbh | Fabrication of organic light emitting diode using selective printing of conducting polymer layers |
US6825061B2 (en) * | 2002-02-04 | 2004-11-30 | Seiko Epson Corporation | Method of manufacturing organic EL device and ink composition for organic EL device |
US20040170861A1 (en) * | 2003-02-28 | 2004-09-02 | Eastman Kodak Company | Organic light emitting diodes for production of polarized light |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070122652A1 (en) * | 2004-09-29 | 2007-05-31 | Canon Kabushiki Kaisha | Compound and organic electroluminescent device using same |
WO2009109273A1 (en) * | 2008-03-06 | 2009-09-11 | Merck Patent Gmbh | Organic semiconductor formulation |
US20110006265A1 (en) * | 2008-03-06 | 2011-01-13 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Organic semiconductor formulation |
US8758649B2 (en) | 2008-03-06 | 2014-06-24 | Merck Patent Gmbh | Organic semiconductor formulation |
WO2011149804A3 (en) * | 2010-05-27 | 2012-01-12 | Corning Incorporated | Polymeric fused thiophene semiconductor formulation |
US8916066B2 (en) | 2010-05-27 | 2014-12-23 | Corning Incorporated | Polymeric fused thiophene semiconductor formulation |
CN113773473A (en) * | 2020-06-09 | 2021-12-10 | 同济大学 | Silafluorenyl conjugated porous polymer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20060013664A (en) | 2006-02-13 |
US7517472B2 (en) | 2009-04-14 |
WO2004106458A1 (en) | 2004-12-09 |
KR101142648B1 (en) | 2012-05-10 |
JP4465484B2 (en) | 2010-05-19 |
CN1791656A (en) | 2006-06-21 |
JP2007505204A (en) | 2007-03-08 |
DE112004000838T5 (en) | 2006-03-30 |
US20060197059A1 (en) | 2006-09-07 |
TW200427819A (en) | 2004-12-16 |
TWI349695B (en) | 2011-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7517472B2 (en) | Blend of viscosity modifier and luminescent compound | |
EP1877518B1 (en) | Synthesis of phenyl-substituted polyfluoroanthenes and the use thereof | |
CN101878241A (en) | Amine-based polymer compound and light-emitting device using the amine-based polymer compound | |
KR102062997B1 (en) | Cross-linkable charge transport materials | |
EP3195379B1 (en) | Hole transporting cyclobutene compound | |
GB2528092A (en) | Material, composition and method | |
KR100280708B1 (en) | Light-Emitting Compound and Display Device Adopting It as Coloring Material | |
KR20010110446A (en) | Aromatic amine derivatives, soluble conductive compound, and electroluminescent element | |
EP3677606B1 (en) | Polymer, coating composition comprising same, and organic light-emitting device using same | |
JP2004127528A (en) | Organic EL device | |
KR102076855B1 (en) | thermal polymerization type hole transport material with high molecular weight and organic light emitting diode using the same | |
JP5059410B2 (en) | Optical device | |
US20070287821A1 (en) | Synthesis of Polynaphthalenes and Their Use | |
JP5150258B2 (en) | Poly (arylene vinylene) and poly (heteroarylene vinylene) light emitting polymers and polymer light emitting devices | |
CN114605425A (en) | Organic compounds and mixtures, compositions and organic electronic devices including the same | |
CN108276561B (en) | A kind of polymer containing 12,12-dioxo-benzothioxanthene unit and its preparation method and application | |
EP3677602A1 (en) | Polymer, coating composition comprising same, and organic light-emitting device using same | |
GB2579807A (en) | Composition and organic light-emitting device | |
KR100280706B1 (en) | Organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |