US20040221696A1 - Non-rotary cutting tool and process of machining scroll member by using the same - Google Patents
Non-rotary cutting tool and process of machining scroll member by using the same Download PDFInfo
- Publication number
- US20040221696A1 US20040221696A1 US10/771,812 US77181204A US2004221696A1 US 20040221696 A1 US20040221696 A1 US 20040221696A1 US 77181204 A US77181204 A US 77181204A US 2004221696 A1 US2004221696 A1 US 2004221696A1
- Authority
- US
- United States
- Prior art keywords
- cutting edge
- cutting tool
- edge portion
- semi
- rake face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 283
- 238000003754 machining Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000008569 process Effects 0.000 title claims abstract description 19
- 239000011248 coating agent Substances 0.000 claims abstract description 35
- 238000000576 coating method Methods 0.000 claims abstract description 35
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 33
- 239000010432 diamond Substances 0.000 claims abstract description 33
- 230000003746 surface roughness Effects 0.000 claims description 7
- 239000012530 fluid Substances 0.000 description 8
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 244000261422 Lysimachia clethroides Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D5/00—Planing or slotting machines cutting otherwise than by relative movement of the tool and workpiece in a straight line
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G19/00—Table service
- A47G19/22—Drinking vessels or saucers used for table service
- A47G19/23—Drinking vessels or saucers used for table service of stackable type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/06—Profile cutting tools, i.e. forming-tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D11/00—Planing or slotting devices able to be attached to a machine tool, whether or not replacing an operative portion of the machine tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/22—Boxes or like containers with side walls of substantial depth for enclosing contents
- B65D1/26—Thin-walled containers, e.g. formed by deep-drawing operations
- B65D1/265—Drinking cups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D3/00—Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines
- B65D3/02—Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines characterised by shape
- B65D3/06—Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines characterised by shape essentially conical or frusto-conical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/70—Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
- B65D85/804—Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package
- B65D85/808—Disposable containers or packages with contents which are mixed, infused or dissolved in situ, i.e. without having been previously removed from the package for immersion in the liquid to release part or all of their contents, e.g. tea bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/20—Top or side views of the cutting edge
- B23B2200/201—Details of the nose radius and immediately surrounding area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2200/00—Details of cutting inserts
- B23B2200/24—Cross section of the cutting edge
- B23B2200/245—Cross section of the cutting edge rounded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2222/00—Materials of tools or workpieces composed of metals, alloys or metal matrices
- B23B2222/28—Details of hard metal, i.e. cemented carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/31—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/04—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49236—Fluid pump or compressor making
- Y10T29/4924—Scroll or peristaltic type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/28—Miscellaneous
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/304536—Milling including means to infeed work to cutter
- Y10T409/305544—Milling including means to infeed work to cutter with work holder
- Y10T409/305656—Milling including means to infeed work to cutter with work holder including means to support work for rotation during operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/50—Planing
- Y10T409/50082—Process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/50—Planing
- Y10T409/502624—Means for cutting groove
- Y10T409/502788—Arcuate groove
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/50—Planing
- Y10T409/5041—Means for cutting arcuate surface
- Y10T409/504592—Means for cutting arcuate surface with work infeed and means to arcuately reposition the work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/50—Planing
- Y10T409/509348—Tool head
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/10—Process of turning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/13—Pattern section
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/14—Axial pattern
- Y10T82/149—Profiled cutter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/25—Lathe
- Y10T82/2512—Lathe having facing tool fed transverse to work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/25—Lathe
- Y10T82/2585—Tool rest
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/889—Tool with either work holder or means to hold work supply
- Y10T83/896—Rotatable wound package supply
Definitions
- the present invention relates in general to a non-rotary cutting tool, and more particularly to such a non-rotary cutting tool that can be easily manufactured and used in a finishing step of a machining process.
- a scroll compressor as one type of compressor which is used in a refrigeration or air conditioning system, for compressing a gas used as a refrigerant in the system.
- the scroll compressor is constructed to include a pair of scroll members which are arranged in an opposing manner with the scroll members being interfitted.
- the scroll members are given a relative orbiting motion with respect to each other, so that each of successive series of enclosed spaces defined by the scroll members progressively decreases in volume as it moves inwardly from a radially outer position to a central position. With the decrease in the volume of the enclosed space, a fluid such as a gas introduced into the enclosed space is compressed and is then discharged from the enclosed space.
- FIG. 5A is a perspective view of a fixed scroll member 100 which is to be fixed to a housing (not shown) of the scroll compressor
- FIG. 5B is a perspective view of an orbiting scroll member 103 which is to be brought into meshing engagement with the fixed scroll member 100
- the fixed scroll member 100 includes a base plate 101 and an involute or scroll wall 102 extending from the base plate 101 in a direction substantially perpendicular to the base plate 101
- the orbiting scroll member 103 includes a base plate 104 and an involute or scroll wall 105 extending from the base plate 104 in a direction substantially perpendicular to the base plate 104 .
- the orbiting scroll member 103 held in engagement with the fixed scroll member 100 is rotated relative to the fixed scroll member 100 , as shown in FIG. 6, whereby the gas within each of the enclosed spaces is compressed and is then discharged from the enclosed space through a discharge port 106 formed through the central position of the base plate 101 of the fixed scroll member 100 .
- the compression efficiency is increased with an increase in degree of fluid tightness between the scroll walls 103 , 105 . Therefore, in a process of machining the scroll members 100 , 103 , it is necessary that the scroll walls 103 , 105 be machined with a high degree of accuracy.
- each end mill attached to a spindle of a machine tool through a holder tends to suffer from its “run out” while being rotated with the spindle.
- the run out of the end mill makes it impossible to obtain a sufficiently high degree of machining accuracy, which is required in machining of scroll walls of a scroll compressor, for assuring a sufficiently high degree of fluid tightness between the scroll walls and a sufficiently high degree of compression efficiency in the scroll compressor.
- the degree of fluid tightness is inevitably reduced with reduction in the accuracy of the machining of the scroll walls, thereby problematically making it difficult to obtain the sufficiently high degree of compression efficiency in the scroll compressor.
- the present invention was made in view of the background prior art discussed above. It is therefore a first object of the present invention to provide a non-rotary cutting tool which is easily manufactured and is capable of exhibiting a high degree of machining accuracy required in a finishing step of a machining process. This first object may be achieved according to any one of first through eighth aspects-of the invention which are described below. It is a second object of the invention to provide a process of advantageously machining a scroll member of a scroll compressor, by using the non-rotary cutting tool. This second object may be achieved according to either of ninth and tenth aspects of the invention which are described below.
- the first aspect of this invention provides a non-rotary cutting tool which is to be moved relative to a workpiece in a predetermined direction for cutting the workpiece, with a rake face thereof being held substantially perpendicular to the predetermined direction, the cutting tool comprising: (a) a generally cylindrical shank portion; and (b) a generally semi-cylindrical body portion which is coaxial with the cylindrical shank portion and which has an outer circumferential surface constituted by the rake face and a semi-cylindrical surface, wherein the semi-cylindrical body portion has a cutting edge which is provided by an edge of the rake face and which includes a covered portion covered with a diamond coating.
- the cutting edge includes a side cutting edge portion and an end cutting edge portion which are contiguous to each other, wherein the side cutting edge portion is defined by an intersection of the rake face and the semi-cylindrical surface, while the end cutting edge portion is defined by an intersection of the rake face and an axially distal end face of the semi-cylindrical body portion, and wherein at least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is covered by the diamond coating.
- the side cutting edge portion and the end cutting edge portion of the cutting edge intersect with each other at a corner which is so sharp that the corner has a nose radius of not larger than 0.05 mm.
- the diamond coating has a surface abraded or smoothed to have a surface roughness Rz of not larger than 1.60 ⁇ m.
- At least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is so sharp that a radius on each of the above-described at least one of the cutting edge portion and the end cutting edge portion is not larger than 0.03 mm.
- the side cutting edge portion of the cutting edge has a high degree of parallelism with respect to an axis of the cylindrical shank portion such that an error in the parallelism is not larger than 3 ⁇ m, wherein the end cutting edge portion of the cutting edge has a high degree of perpendicularity with respect to the axis of the cylindrical shank portion such that an error in the perpendicularity is not larger than 3 ⁇ m.
- the rake face is provided by a flat surface which is elongated in an axial direction of the semi-cylindrical body portion and which has a width smaller than a diameter of the cylindrical shank portion.
- the ninth aspect of this invention provides a process of machining a scroll member of a scroll compressor which has a base plate and a scroll wall extending from the base plate in a direction substantially perpendicular to the base plate, by using a non-rotary cutting tool comprising (a) a generally cylindrical shank portion, and (b) a generally semi-cylindrical body portion which is coaxial with the cylindrical shank portion and which has an outer circumferential surface constituted by a rake face and a semi-cylindrical surface, wherein the semi-cylindrical body portion has a cutting edge which is defined by an edge of the rake face and which is covered with a diamond coating, the process comprising a step of moving at least one of the non-rotary cutting tool and the scroll member relative to the other in such a direction that permits the scroll wall and the base plate to be machined by the cutting edge, while holding the rake face substantially perpendicular to the direction.
- the cutting edge includes a side cutting edge portion and an end cutting edge portion which are contiguous to each other, wherein the scroll wall and the base plate are machined by the side cutting edge portion and the end cutting edge portion of the cutting edge, respectively.
- the non-rotary cutting tool defined in any one of the first through eighth aspects of the invention is advantageously used for machining a slot or groove in a workpiece.
- the machining operation at least one of the cutting tool and the scroll member is moved relative to the other or each other in a predetermined direction, while the rake face of the cutting tool is held substantially perpendicular to the predetermined direction. Since the cutting tool is not rotated in the machining operation, the machined workpiece is free from deterioration in its accuracy which could be caused by “run out” of the cutting tool.
- the pair of scroll members can be machined with a higher degree of accuracy than where it is machined by a rotary cutting tool such as an end mill which is likely to suffer from its run out, so that it is possible to obtain a higher degree of fluid tightness between scroll walls of the respective scroll members and accordingly a higher degree of compression efficiency in the scroll compressor.
- the machining process can be completed by implementations of only two steps, i.e., a roughing step and a finishing step which may be carried out with an end mill and the present non-rotary cutting tool, respectively.
- a roughing step and a finishing step which may be carried out with an end mill and the present non-rotary cutting tool, respectively.
- This is advantageous over the conventional process of machining the scroll member with end mills, which requires implementation of three steps, i.e., a roughing step, a semi-finishing step and a finishing step. That is, the machining process with use of the present non-rotary cutting tool eliminates necessity of the implementation of the semi-finishing step, thereby advantageously leading to an increased efficiency of manufacturing of the scroll compressor with a reduced cost.
- the present non-rotary cutting tool capable of finishing the scroll member of the scroll compressor with a high degree of machining accuracy is easier to manufacture, than an end mill which is to be used in the finishing step of the conventional process of machining the scroll member.
- the cutting edge is prevented from being undesirably deflected in the machining operation.
- the corner at which the side cutting edge portion and the end cutting edge portion intersect with each other is so sharp that the nose radius of the corner is 0.05 mm or less.
- this non-rotary cutting tool is used for machining a pair of scroll members of a scroll compressor
- a small nose radius of the corner permits a corner between the scroll wall and the base plate of each scroll member (which are respectively machined by the side cutting edge portion and the end cutting edge portion of the cutting edge) to have a small radius of curvature.
- the small radius of curvature of the corner between the scroll wall and the base plate leads to a high degree of fluid tightness between the scroll walls of the pair of scroll members, when they are held in engagement with each other, so that the compression efficiency of the scroll compressor is increased.
- the diamond coating has a surface abraded or smoothed to have the surface roughness with maximum height Rz of not larger than 1.60 ⁇ m.
- Such a high degree of smoothness of the surface of the diamond coating is effective to provide the workpiece with a high degree of surface smoothness in the finishing step of the machining process.
- a chamfer or radius on at least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is not larger than 0.03 mm. Such a sharp cutting edge facilitates machining of the workpiece with a sufficiently high degree of accuracy in the finishing step of the machining process.
- the side cutting edge portion of the cutting edge has the high degree of parallelism with respect to the axis of the cylindrical shank portion such that the error in the parallelism is not larger than 3 ⁇ m, while the end cutting edge portion of the cutting edge has the high degree of perpendicularity with respect the axis of the cylindrical shank portion such that the error in the perpendicularity is not larger than 3 ⁇ m.
- the side cutting edge portion is not deviated, by an amount larger than 3 ⁇ m, from a geometrical straight line which is precisely parallel with the axis of the cylindrical shank portion, while the end cutting edge portion is not deviated, by an amount larger than 3 ⁇ m, from a geometrical straight line which is precisely perpendicular to the axis of the cylindrical shank portion.
- Such a minimum error in the contour of the cutting tool is advantageous, especially, where the cutting tool is used for finishing a workpiece, such as the scroll member of the scroll compressor, which requires to be finished with a high degree of machining accuracy.
- FIG. 1 is a set of three views of a non-rotary cutting tool which is constructed according to a first embodiment of the invention, wherein a front view, a side view and a bottom view of the cutting tool are given at (a), (b) and (c), respectively;
- FIG. 2 is a table indicating specifications of the non-rotary cutting tool and an end mill used in a cutting test, and cutting conditions in the cutting test;
- FIG. 3 is a table indicating a result of the cutting test
- FIG. 4A is a front view of a non-rotary cutting tool which is constructed according to a second embodiment of the invention.
- FIG. 4B is a front view of a non-rotary cutting tool which is constructed according to a third embodiment of the invention.
- FIG. 5A is a perspective view of a fixed scroll member as a product machined by the non-rotary cutting tool of the invention
- FIG. 5B is a perspective view of an orbiting scroll member as a product machined by the non-rotary cutting tool of the invention.
- FIG. 6 is a set of views showing an operation of a scroll compressor which is constituted by the fixed scroll member and the orbiting scroll member;
- FIG. 7 is a view illustrating a machining operation in which the scroll member of the scroll compressor is machined by the non-rotary cutting tool of the invention.
- FIG. 1 is a set of three views of the non-rotary cutting tool 1 , wherein its front view, side view and bottom view are given at (a), (b) and (c), respectively.
- the non-rotary cutting tool 1 is a so-called “gooseneck tool”, and is to be held at its end portion (right end portion as seen at (a), (b) of FIG. 1) by a suitable tool holder (not shown) so that the cutting tool 1 is fixed to a spindle of a machine tool (not shown) such as a machining center through the suitable tool holder.
- This non-rotary cutting tool 1 is advantageously used, for example, in a finishing step of a process of machining a scroll compressor, as shown in FIG. 7.
- the non-rotary cutting tool 1 is provided by a substrate (single piece) formed of a cemented carbide which is made from, for example, tungsten carbide (WC) in a powder-metallurgy process including compacting and sintering steps.
- the cutting tool 1 includes a generally semi-cylindrical body portion 2 which has a generally semi-circular cross sectional shape (as shown at (c) of FIG. 1), and a generally cylindrical shank portion 3 which is coaxially contiguous to a proximal end portion of the semi-cylindrical body portion 2 (i.e., right end portion of the body portion 2 as seen at (a), (b) of FIG. 1).
- the cutting tool 1 is held at the shank portion 3 by the tool holder, so that the cutting tool 1 is attached to a machine tool through the tool holder.
- the semi-cylindrical body portion 2 serving as a cutting blade portion, has a rake face 8 consisting of a flat surface which lies substantially on an axis of the cylindrical shank portion 3 , and a cutting edge 4 which is defined by an edge of the rake face 8 .
- the semi-cylindrical body portion 2 has an outer circumferential surface constituted by the rake face 8 and a semi-cylindrical surface.
- the rake face 8 provided by the flat surface, is elongated in an axial direction of the semi-cylindrical body portion 2 , and has a width smaller than a diameter of the cylindrical shank portion 3 .
- the cutting edge 4 includes a side cutting edge portion 5 located at each of widthwise opposite ends of the rake face 8 , and an end cutting edge portion 6 located at an axially distal end of the rake face 8 .
- the side cutting edge portion 5 is provided by an intersection of the rake face 8 and the semi-cylindrical surface
- the end cutting edge portion 6 is provided by an intersection of the rake face 8 and an axially distal end face of the semi-cylindrical body portion 2 .
- the side cutting edge portion 5 and the end cutting edge portion 6 intersect substantially perpendicularly with each other, as shown at (a) of FIG. 1.
- a nose or corner at which the side and end cutting edge portions 5 , 6 intersect with each other is so sharp to have a nose radius of not larger than 0.05 mm.
- the semi-cylindrical body portion 2 is coated at its surface with a diamond coating in accordance with CVD method, so that the cutting edge 4 including the side and end cutting edge portions 5 , 6 is covered with the diamond coating.
- the diamond coating has a thickness of about 6-20 ⁇ m. The diamond coating is likely to easily peel off the body portion 2 if its thickness is smaller than 6 ⁇ m. The thickness of larger than 20 ⁇ m is not appropriate from an economical point of view.
- the diamond coating is ground by a grindstone such that the surface of the diamond coating is smoothed to have a roughness with maximum height Rz of not larger than 1.60 ⁇ m. It is noted that the diamond coating may be otherwise smoothed, for example, by means of laser, ion-beam, thermochemical-mechanical polishing or mechanical-chemical polishing.
- a portion of the semi-cylindrical surface immediately below the side cutting edge portion 5 is ground so as to serve as a side flank face, such that a side-relief angle ⁇ between this side flank face and a line drawn through the side cutting edge portion 5 perpendicularly to the rake face 8 is 5°, as shown at (a) of FIG. 1.
- the side cutting edge portion 5 is so sharp that a chamfer or radius on the side cutting edge portion 5 is not larger than 0.03 mm.
- the side cutting edge portion 5 is not deviated, by an amount larger than 3 ⁇ m, from a geometrical straight line which is precisely parallel with the axis of the cylindrical shank portion 3 .
- the side cutting edge portion 5 has a high degree of parallelism with respect to the axis of the cylindrical shank portion 3 such that an error in the parallelism is not larger than 3 ⁇ m.
- An end-relief angle ⁇ between an end flank face (provided by the axially distal end face of the semi-cylindrical body portion 2 ) and a line drawn through the end cutting edge portion 6 perpendicularly to the rake face 8 is 5°, as shown at (b) of FIG. 1.
- the end cutting edge portion 6 is so sharp that a chamfer or radius on the end cutting edge portion 6 is not larger than 0.03 mm. Further, the end cutting edge portion 6 is not deviated, by an amount larger than 3 ⁇ m, from a geometrical straight line which is precisely perpendicular to the axis of the cylindrical shank portion 3 . In other words, the end cutting edge portion 6 has a high degree of perpendicularity with respect to the axis of the cylindrical shank portion 3 such that an error in the perpendicularity is not larger than 3 ⁇ m.
- FIG. 7 is a view illustrating a machining operation in which the scroll member of the scroll compressor is machined by the non-rotary cutting tool 1 .
- the scroll member mounted on the rotary table is controlled to be moved relative to the cutting tool 1 (attached to a spindle of the machining center) in at least one of X-axis and Y-axis directions at a predetermined feed rate, while being rotated about A axis at a predetermined angular velocity, so that the scroll wall 105 and the base plate 104 are machined by the side cutting edge portion 5 and the end cutting edge portion 6 of the cutting edge 4 , respectively.
- the table of FIG. 2 indicates specifications of the cutting tool 1 and the end mill, and cutting conditions in the test.
- the “SURFACE ROUGHNESS” in the cutting tool 1 means a surface roughness at the side and end cutting edge portions 5 , 6 of the cutting edge 4 , while that in the end mill means a surface roughness at its peripheral and end cutting edges.
- the “NOSE RADIUS” in the cutting tool 1 means a nose radius of the corner at which the side and end cutting edge portions 5 , 6 intersect with each other, while that in the end mill means a nose radius of a corner at which the peripheral and end cutting edges intersect with each other.
- the “PERPENDICULARITY” in the cutting tool 1 means an error in perpendicularity of the end cutting edge portion 6 with respect to the axis of the cylindrical shank portion 3 , while that in the end mill means an error in perpendicularity of the end cutting edge with respect to the axis of its cylindrical shank portion.
- the “RADIUS ON CUTTING EDGE” in the cutting tool 1 means a chamfer or radius on each of the side and end cutting edge portions 5 , 6 , while that in the end mill means a chamfer or radius on each of the peripheral and end cutting edges.
- the table of FIG. 3 indicates the result of the cutting test.
- the “ROUGHNESS OF MACHINED SURFACE” means a roughness of the surface machined by each of the cutting tool 1 and the end mill.
- the “RADIUS OF CURVATURE” means a radius of the curvature on a corner between the scroll wall and the base plate in the scroll member machined by each of the cutting tool 1 and the end mill.
- the “PERPENDICULARITY” means a perpendicularity of the scroll wall with respect to the base plate in the scroll member machined by each of the cutting tool 1 and the end mill.
- the non-rotary cutting tool 1 of the invention exhibited a better performance, than the end mill, in all of the smoothness of the machined surface, the sharpness on the corner between the scroll wall and the base plate, and the perpendicularity of the scroll wall with respect to the base plate.
- the accuracy of contour of the cutting edge 4 was precisely reflected in the accuracy of the machined workpiece.
- the accuracy of contour of the end mill was not precisely reflected in the accuracy of the machined workpiece.
- the cutting edge portions 5 , 6 covered by the diamond coating are given a high degree of rigidity so as to be prevented from being deflected in the machining operation. Further, the surface of the diamond coating is ground to have a high degree of surface smoothness that is effective to provide the workpiece with a high degree of surface smoothness in the finishing step of the machining process.
- the non-rotary cutting tool 1 is used for machining each of the scroll members 100 , 103 of the scroll compressor, at least one of the cutting tool 1 and the scroll member is moved relative to the other or each other in a predetermined direction, while the rake face 8 of the cutting tool 1 is held substantially perpendicular to the predetermined direction, so that the scroll wall and the base plate are machined by the side and end cutting edge portions 5 , 6 , respectively. Since the cutting tool 1 is not rotated in the machining operation, the machined scroll member is free from deterioration in its accuracy which could be caused by “run out” of the cutting tool.
- the pair of scroll members 100 , 103 can be machined with a higher degree of accuracy than where it is machined by a rotary cutting tool such as an end mill which is likely to suffer from its run out, so that it is possible to obtain a higher degree of fluid tightness between scroll walls 102 , 105 of the respective scroll members 100 , 103 and accordingly a higher degree of compression efficiency in the scroll compressor.
- the non-rotary cutting tool 1 is capable of machining each scroll member with a high machining accuracy
- a finishing step of the process of machining each scroll member can be carried out by this cutting tool 1 . It is noted that a roughing step of the machining process may be carried out by a conventional end mill.
- the present non-rotary cutting tool 1 capable of finishing the scroll member of the scroll compressor with a high degree of machining accuracy is easier to manufacture, than an end mill which is to be used in the finishing step of the conventional process of machining the scroll member.
- the corner at which the side and end cutting edge portions 5 , 6 intersect with each other is so sharp that the nose radius of the corner is 0.05 mm or less.
- the non-rotary cutting tool 1 is used for finishing the pair of scroll members 100 , 103 of the scroll compressor, since the corner between the scroll wall and the base plate is given substantially the same shape as the sharp corner between the side and end cutting edge portions 5 , 6 , it is possible to obtain a high degree of fluid tightness between the scroll walls 102 , 105 of the pair of scroll members 100 , 103 , when they are held in engagement with each other, so that the compression efficiency of the scroll compressor is increased.
- the diamond coating has a surface ground or smoothed to have the surface roughness with maximum height Rz of not larger than 1.60 ⁇ m.
- Such a high degree of smoothness of the surface of the diamond coating is effective to provide the workpiece with a high degree of surface smoothness in the finishing step of the machining process.
- the chamfer or radius on each of the side cutting edge portion 5 and the end cutting edge portion 6 of the cutting edge 4 is not larger than 0.03 mm. Such a sharp cutting edge facilitates machining of the workpiece with a sufficiently high degree of accuracy in the finishing step of the machining process.
- the error in the parallelism of the side cutting edge portion 5 with respect to the axis of the cylindrical shank portion 3 is not larger than 3 ⁇ m, while the error in the perpendicularity of the end cutting edge portion 6 with respect to the axis of the cylindrical shank portion 3 is not larger than 3 ⁇ m.
- Such a minimum error in the contour of the cutting tool 1 is advantageous, especially, where the cutting tool 1 is used for finishing a workpiece, such as the scroll member of the scroll compressor, which requires to be finished with a dimensional error within a considerably small amount of tolerance.
- FIG. 4A there will be described a non-rotary cutting tool 20 which is constructed according to a second embodiment of the invention.
- the same reference numerals as used in the cutting tool 1 of the first embodiment will be used to identify the elements which are the same as those in the cutting tool 1 . No redundant description of these elements will be provided.
- FIG. 4A is a front view showing in enlargement its semi-cylindrical body portion 22 of the non-rotary cutting tool 20 .
- This cutting tool 20 is identical with the cutting tool 1 of the first embodiment of the invention, except for its cutting edge 24 , more specifically, the shape of its end cutting edge portion 26 . That is, while the end cutting edge portion 6 of the cutting tool 1 is provided by a straight linear edge, the end cutting edge portion 26 of this cutting tool 20 is provided by a substantially arcuate-shaped edge which is convexed in a direction away from the cylindrical shank portion 3 (not shown), i.e., in the upward direction as seen in FIG. 4A.
- the end cutting edge portion 26 as well as the side cutting edge portion 5 is covered by a diamond coating which is ground to have a smoothed surface, as in the cutting tool 1 .
- This non-rotary cutting tool 20 provides substantially the same technical advantage as the non-rotary cutting tool 1 of the first embodiment, and is capable of forming, in a workpiece, a slot or groove having a smoothly curved bottom surface.
- the body portion 22 may be formed to have a predetermined contour corresponding to a cross sectional shape of the slot or groove that is to be formed with the cutting tool 20 .
- the cutting edge 24 is coated with the diamond coating, and the diamond coating is then ground.
- the body portion 22 is easily given the predetermined contour.
- FIG. 4B there will be described a non-rotary cutting tool 30 which is constructed according to a third embodiment of the invention.
- the same reference numerals as used in the cutting tool 1 of the first embodiment will be used to identify the elements which are the same as those in the cutting tool 1 .
- FIG. 4B is a front view showing in enlargement its semi-cylindrical body portion 32 of the non-rotary cutting tool 30 .
- This cutting tool 30 is identical with the cutting tool 1 of the first embodiment of the invention, except for its cutting edge 34 , more specifically, the shape of its end cutting edge portion 36 . That is, while the end cutting edge portion 6 of the cutting tool 1 is provided by a straight linear edge perpendicular to the axis of the cylindrical shank portion 3 , the end cutting edge portion 36 of this cutting tool 30 is provided by a substantially V-shaped edge which is convexed in a direction away from the cylindrical shank portion 3 (not shown), i.e., in the upward direction as seen in FIG. 4B.
- the end cutting edge portion 36 as well as the side cutting edge portion 5 is covered by a diamond coating which is ground to have a smoothed surface, as in the cutting tool 1 .
- This non-rotary cutting tool 30 provides substantially the same technical advantage as the non-rotary cutting tool 1 of the first embodiment, and is capable of forming, in a workpiece, a slot or groove having a substantially V-shaped cross section.
- the body portion 32 may be formed to have a predetermined contour corresponding to a cross sectional shape of the slot or groove that is to be formed with the cutting tool 30 .
- the cutting edge 34 is coated with the diamond coating, and the diamond coating is then ground.
- the body portion 22 is easily given the predetermined contour.
- the side cutting edge portion 5 of the cutting edge 4 may be provided at each of the widthwise opposite ends of the rake face 8 , or alternately, may be provided at a selected one of the widthwise opposite ends of the rake face 8 .
- the substrate of the cutting tool can be recycled or reutilized, instead of preparing a new substrate.
- the cutting tool having the worn coating may be burnt in a furnace, so that the worn coating is burned out or removed from the substrate.
- the substrate is recoated with the diamond coating, and the substrate recoated with the diamond coating is then ground so as to have a resharpened cutting edge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Milling Processes (AREA)
- Turning (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Rotary Pumps (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates in general to a non-rotary cutting tool, and more particularly to such a non-rotary cutting tool that can be easily manufactured and used in a finishing step of a machining process.
- 2. Discussion of the Related Art
- There is known a scroll compressor as one type of compressor which is used in a refrigeration or air conditioning system, for compressing a gas used as a refrigerant in the system. The scroll compressor is constructed to include a pair of scroll members which are arranged in an opposing manner with the scroll members being interfitted. The scroll members are given a relative orbiting motion with respect to each other, so that each of successive series of enclosed spaces defined by the scroll members progressively decreases in volume as it moves inwardly from a radially outer position to a central position. With the decrease in the volume of the enclosed space, a fluid such as a gas introduced into the enclosed space is compressed and is then discharged from the enclosed space.
- FIG. 5A is a perspective view of a
fixed scroll member 100 which is to be fixed to a housing (not shown) of the scroll compressor, while FIG. 5B is a perspective view of an orbitingscroll member 103 which is to be brought into meshing engagement with the fixedscroll member 100. Thefixed scroll member 100 includes abase plate 101 and an involute orscroll wall 102 extending from thebase plate 101 in a direction substantially perpendicular to thebase plate 101. Similarly, the orbitingscroll member 103 includes abase plate 104 and an involute orscroll wall 105 extending from thebase plate 104 in a direction substantially perpendicular to thebase plate 104. In an operation of the scroll compressor, the orbitingscroll member 103 held in engagement with the fixedscroll member 100 is rotated relative to the fixedscroll member 100, as shown in FIG. 6, whereby the gas within each of the enclosed spaces is compressed and is then discharged from the enclosed space through adischarge port 106 formed through the central position of thebase plate 101 of thefixed scroll member 100. In this instance, the compression efficiency is increased with an increase in degree of fluid tightness between thescroll walls scroll members scroll walls - In the conventional machining process, however, each end mill attached to a spindle of a machine tool through a holder tends to suffer from its “run out” while being rotated with the spindle. In a finishing step of a machining process, the run out of the end mill makes it impossible to obtain a sufficiently high degree of machining accuracy, which is required in machining of scroll walls of a scroll compressor, for assuring a sufficiently high degree of fluid tightness between the scroll walls and a sufficiently high degree of compression efficiency in the scroll compressor. The degree of fluid tightness is inevitably reduced with reduction in the accuracy of the machining of the scroll walls, thereby problematically making it difficult to obtain the sufficiently high degree of compression efficiency in the scroll compressor. Further, it is also difficult to obtain an end mill inherently suitable for finishing the scroll walls which require to be finished with a considerably high machining accuracy.
- The present invention was made in view of the background prior art discussed above. It is therefore a first object of the present invention to provide a non-rotary cutting tool which is easily manufactured and is capable of exhibiting a high degree of machining accuracy required in a finishing step of a machining process. This first object may be achieved according to any one of first through eighth aspects-of the invention which are described below. It is a second object of the invention to provide a process of advantageously machining a scroll member of a scroll compressor, by using the non-rotary cutting tool. This second object may be achieved according to either of ninth and tenth aspects of the invention which are described below.
- The first aspect of this invention provides a non-rotary cutting tool which is to be moved relative to a workpiece in a predetermined direction for cutting the workpiece, with a rake face thereof being held substantially perpendicular to the predetermined direction, the cutting tool comprising: (a) a generally cylindrical shank portion; and (b) a generally semi-cylindrical body portion which is coaxial with the cylindrical shank portion and which has an outer circumferential surface constituted by the rake face and a semi-cylindrical surface, wherein the semi-cylindrical body portion has a cutting edge which is provided by an edge of the rake face and which includes a covered portion covered with a diamond coating.
- According to the second aspect of the invention, in the non-rotary cutting tool defined in the first aspect of the invention, the cutting edge includes a side cutting edge portion and an end cutting edge portion which are contiguous to each other, wherein the side cutting edge portion is defined by an intersection of the rake face and the semi-cylindrical surface, while the end cutting edge portion is defined by an intersection of the rake face and an axially distal end face of the semi-cylindrical body portion, and wherein at least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is covered by the diamond coating.
- According to the third aspect of the invention, in the non-rotary cutting tool defined in the second aspect of the invention, the side cutting edge portion and the end cutting edge portion of the cutting edge intersect with each other at a corner which is so sharp that the corner has a nose radius of not larger than 0.05 mm.
- According to the fourth aspect of the invention, in the non-rotary cutting tool defined in any one of the first through third aspects of the invention, the diamond coating has a surface abraded or smoothed to have a surface roughness Rz of not larger than 1.60 μm.
- According to the fifth aspect of the invention, in the non-rotary cutting tool defined in any one of the first through fourth aspects of the invention, at least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is so sharp that a radius on each of the above-described at least one of the cutting edge portion and the end cutting edge portion is not larger than 0.03 mm.
- According to the sixth aspect of the invention, in the non-rotary cutting tool defined in the second or third aspect of the invention, the side cutting edge portion of the cutting edge has a high degree of parallelism with respect to an axis of the cylindrical shank portion such that an error in the parallelism is not larger than 3 μm, wherein the end cutting edge portion of the cutting edge has a high degree of perpendicularity with respect to the axis of the cylindrical shank portion such that an error in the perpendicularity is not larger than 3 μm.
- According to the seventh aspect of the invention, in the non-rotary cutting tool defined in any one of the first through sixth aspects of the invention, wherein the cylindrical shank portion and the semi-cylindrical body portion are provided by a single piece.
- According to the eighth aspect of the invention, in the non-rotary cutting tool defined in any one of the first through seventh aspects of the invention, the rake face is provided by a flat surface which is elongated in an axial direction of the semi-cylindrical body portion and which has a width smaller than a diameter of the cylindrical shank portion.
- The ninth aspect of this invention provides a process of machining a scroll member of a scroll compressor which has a base plate and a scroll wall extending from the base plate in a direction substantially perpendicular to the base plate, by using a non-rotary cutting tool comprising (a) a generally cylindrical shank portion, and (b) a generally semi-cylindrical body portion which is coaxial with the cylindrical shank portion and which has an outer circumferential surface constituted by a rake face and a semi-cylindrical surface, wherein the semi-cylindrical body portion has a cutting edge which is defined by an edge of the rake face and which is covered with a diamond coating, the process comprising a step of moving at least one of the non-rotary cutting tool and the scroll member relative to the other in such a direction that permits the scroll wall and the base plate to be machined by the cutting edge, while holding the rake face substantially perpendicular to the direction.
- According to the tenth aspect of the invention, in the method defined in the ninth aspect of the invention, the cutting edge includes a side cutting edge portion and an end cutting edge portion which are contiguous to each other, wherein the scroll wall and the base plate are machined by the side cutting edge portion and the end cutting edge portion of the cutting edge, respectively.
- The non-rotary cutting tool defined in any one of the first through eighth aspects of the invention is advantageously used for machining a slot or groove in a workpiece. In the machining operation, at least one of the cutting tool and the scroll member is moved relative to the other or each other in a predetermined direction, while the rake face of the cutting tool is held substantially perpendicular to the predetermined direction. Since the cutting tool is not rotated in the machining operation, the machined workpiece is free from deterioration in its accuracy which could be caused by “run out” of the cutting tool. Where this non-rotary cutting tool is used for machining a pair of scroll members of a scroll compressor, as in the ninth aspect of the invention, the pair of scroll members can be machined with a higher degree of accuracy than where it is machined by a rotary cutting tool such as an end mill which is likely to suffer from its run out, so that it is possible to obtain a higher degree of fluid tightness between scroll walls of the respective scroll members and accordingly a higher degree of compression efficiency in the scroll compressor.
- In the process of machining each scroll member of the scroll compressor, the machining process can be completed by implementations of only two steps, i.e., a roughing step and a finishing step which may be carried out with an end mill and the present non-rotary cutting tool, respectively. This is advantageous over the conventional process of machining the scroll member with end mills, which requires implementation of three steps, i.e., a roughing step, a semi-finishing step and a finishing step. That is, the machining process with use of the present non-rotary cutting tool eliminates necessity of the implementation of the semi-finishing step, thereby advantageously leading to an increased efficiency of manufacturing of the scroll compressor with a reduced cost.
- Further, the present non-rotary cutting tool capable of finishing the scroll member of the scroll compressor with a high degree of machining accuracy is easier to manufacture, than an end mill which is to be used in the finishing step of the conventional process of machining the scroll member.
- Further, owing to the diamond coating covering the entirety or part of the cutting edge, the cutting edge is prevented from being undesirably deflected in the machining operation.
- In the non-rotary cutting tool defined in the third aspect of the invention, the corner at which the side cutting edge portion and the end cutting edge portion intersect with each other is so sharp that the nose radius of the corner is 0.05 mm or less. Where this non-rotary cutting tool is used for machining a pair of scroll members of a scroll compressor, such a small nose radius of the corner permits a corner between the scroll wall and the base plate of each scroll member (which are respectively machined by the side cutting edge portion and the end cutting edge portion of the cutting edge) to have a small radius of curvature. The small radius of curvature of the corner between the scroll wall and the base plate leads to a high degree of fluid tightness between the scroll walls of the pair of scroll members, when they are held in engagement with each other, so that the compression efficiency of the scroll compressor is increased.
- In the non-rotary cutting tool defined in the fourth aspect of the invention, the diamond coating has a surface abraded or smoothed to have the surface roughness with maximum height Rz of not larger than 1.60 μm. Such a high degree of smoothness of the surface of the diamond coating is effective to provide the workpiece with a high degree of surface smoothness in the finishing step of the machining process.
- In the non-rotary cutting tool defined in the fifth aspect of the invention, a chamfer or radius on at least one of the side cutting edge portion and the end cutting edge portion of the cutting edge is not larger than 0.03 mm. Such a sharp cutting edge facilitates machining of the workpiece with a sufficiently high degree of accuracy in the finishing step of the machining process.
- In the non-rotary cutting tool defined in the sixth aspect of the invention, the side cutting edge portion of the cutting edge has the high degree of parallelism with respect to the axis of the cylindrical shank portion such that the error in the parallelism is not larger than 3 μm, while the end cutting edge portion of the cutting edge has the high degree of perpendicularity with respect the axis of the cylindrical shank portion such that the error in the perpendicularity is not larger than 3 μm. In other words, the side cutting edge portion is not deviated, by an amount larger than 3 μm, from a geometrical straight line which is precisely parallel with the axis of the cylindrical shank portion, while the end cutting edge portion is not deviated, by an amount larger than 3 μm, from a geometrical straight line which is precisely perpendicular to the axis of the cylindrical shank portion. Such a minimum error in the contour of the cutting tool is advantageous, especially, where the cutting tool is used for finishing a workpiece, such as the scroll member of the scroll compressor, which requires to be finished with a high degree of machining accuracy.
- The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of the presently preferred embodiments of the invention, when considered in connection with the accompanying drawings, in which:
- FIG. 1 is a set of three views of a non-rotary cutting tool which is constructed according to a first embodiment of the invention, wherein a front view, a side view and a bottom view of the cutting tool are given at (a), (b) and (c), respectively;
- FIG. 2 is a table indicating specifications of the non-rotary cutting tool and an end mill used in a cutting test, and cutting conditions in the cutting test;
- FIG. 3 is a table indicating a result of the cutting test;
- FIG. 4A is a front view of a non-rotary cutting tool which is constructed according to a second embodiment of the invention;
- FIG. 4B is a front view of a non-rotary cutting tool which is constructed according to a third embodiment of the invention;
- FIG. 5A is a perspective view of a fixed scroll member as a product machined by the non-rotary cutting tool of the invention;
- FIG. 5B is a perspective view of an orbiting scroll member as a product machined by the non-rotary cutting tool of the invention;
- FIG. 6 is a set of views showing an operation of a scroll compressor which is constituted by the fixed scroll member and the orbiting scroll member; and
- FIG. 7 is a view illustrating a machining operation in which the scroll member of the scroll compressor is machined by the non-rotary cutting tool of the invention.
- Referring first to FIG. 1, there will be described a
non-rotary cutting tool 1 which is constructed according to a first embodiment of the invention. FIG. 1 is a set of three views of thenon-rotary cutting tool 1, wherein its front view, side view and bottom view are given at (a), (b) and (c), respectively. Thenon-rotary cutting tool 1 is a so-called “gooseneck tool”, and is to be held at its end portion (right end portion as seen at (a), (b) of FIG. 1) by a suitable tool holder (not shown) so that thecutting tool 1 is fixed to a spindle of a machine tool (not shown) such as a machining center through the suitable tool holder. Thisnon-rotary cutting tool 1 is advantageously used, for example, in a finishing step of a process of machining a scroll compressor, as shown in FIG. 7. - The
non-rotary cutting tool 1 is provided by a substrate (single piece) formed of a cemented carbide which is made from, for example, tungsten carbide (WC) in a powder-metallurgy process including compacting and sintering steps. Thecutting tool 1 includes a generallysemi-cylindrical body portion 2 which has a generally semi-circular cross sectional shape (as shown at (c) of FIG. 1), and a generallycylindrical shank portion 3 which is coaxially contiguous to a proximal end portion of the semi-cylindrical body portion 2 (i.e., right end portion of thebody portion 2 as seen at (a), (b) of FIG. 1). Thecutting tool 1 is held at theshank portion 3 by the tool holder, so that thecutting tool 1 is attached to a machine tool through the tool holder. - The
semi-cylindrical body portion 2, serving as a cutting blade portion, has arake face 8 consisting of a flat surface which lies substantially on an axis of thecylindrical shank portion 3, and acutting edge 4 which is defined by an edge of therake face 8. Thesemi-cylindrical body portion 2 has an outer circumferential surface constituted by therake face 8 and a semi-cylindrical surface. Therake face 8, provided by the flat surface, is elongated in an axial direction of thesemi-cylindrical body portion 2, and has a width smaller than a diameter of thecylindrical shank portion 3. Thecutting edge 4 includes a sidecutting edge portion 5 located at each of widthwise opposite ends of therake face 8, and an endcutting edge portion 6 located at an axially distal end of therake face 8. In other words, the side cuttingedge portion 5 is provided by an intersection of therake face 8 and the semi-cylindrical surface, while the end cuttingedge portion 6 is provided by an intersection of therake face 8 and an axially distal end face of thesemi-cylindrical body portion 2. The sidecutting edge portion 5 and the end cuttingedge portion 6 intersect substantially perpendicularly with each other, as shown at (a) of FIG. 1. A nose or corner at which the side and end cuttingedge portions - The
semi-cylindrical body portion 2 is coated at its surface with a diamond coating in accordance with CVD method, so that thecutting edge 4 including the side and end cuttingedge portions body portion 2 if its thickness is smaller than 6 μm. The thickness of larger than 20 μm is not appropriate from an economical point of view. - The diamond coating is ground by a grindstone such that the surface of the diamond coating is smoothed to have a roughness with maximum height Rz of not larger than 1.60 μm. It is noted that the diamond coating may be otherwise smoothed, for example, by means of laser, ion-beam, thermochemical-mechanical polishing or mechanical-chemical polishing.
- A portion of the semi-cylindrical surface immediately below the side cutting
edge portion 5 is ground so as to serve as a side flank face, such that a side-relief angle α between this side flank face and a line drawn through the side cuttingedge portion 5 perpendicularly to therake face 8 is 5°, as shown at (a) of FIG. 1. The sidecutting edge portion 5 is so sharp that a chamfer or radius on the side cuttingedge portion 5 is not larger than 0.03 mm. Further, the side cuttingedge portion 5 is not deviated, by an amount larger than 3 μm, from a geometrical straight line which is precisely parallel with the axis of thecylindrical shank portion 3. In other words, the side cuttingedge portion 5 has a high degree of parallelism with respect to the axis of thecylindrical shank portion 3 such that an error in the parallelism is not larger than 3 μm. - An end-relief angle β between an end flank face (provided by the axially distal end face of the semi-cylindrical body portion2) and a line drawn through the end cutting
edge portion 6 perpendicularly to therake face 8 is 5°, as shown at (b) of FIG. 1. The endcutting edge portion 6 is so sharp that a chamfer or radius on the end cuttingedge portion 6 is not larger than 0.03 mm. Further, the end cuttingedge portion 6 is not deviated, by an amount larger than 3 μm, from a geometrical straight line which is precisely perpendicular to the axis of thecylindrical shank portion 3. In other words, the end cuttingedge portion 6 has a high degree of perpendicularity with respect to the axis of thecylindrical shank portion 3 such that an error in the perpendicularity is not larger than 3 μm. - In a machining operation with the
non-rotary cutting tool 1 constructed as described above, thecutting tool 1 is moved relative to a workpiece in a predetermined direction, while being kept unrotated and maintaining such a posture that permits therake face 8 to be held substantially perpendicular to the predetermined direction, so that the workpiece is cut by the side and end cuttingedge portions cutting edge 4. FIG. 7 is a view illustrating a machining operation in which the scroll member of the scroll compressor is machined by thenon-rotary cutting tool 1. In this machining operation performed in a machining center equipped with a rotary table that is rotatable about A axis, the scroll member mounted on the rotary table is controlled to be moved relative to the cutting tool 1 (attached to a spindle of the machining center) in at least one of X-axis and Y-axis directions at a predetermined feed rate, while being rotated about A axis at a predetermined angular velocity, so that thescroll wall 105 and thebase plate 104 are machined by the side cuttingedge portion 5 and the end cuttingedge portion 6 of thecutting edge 4, respectively. - Referring next to tables of FIGS. 2 and 3, there will be described a result of a test which was conducted for verifying technical advantages of the
non-rotary cutting tool 1 constructed as described above. In this test, a workpiece in the form of the scroll member of the scroll compressor as shown in FIGS. 5A and 5B is machined by thecutting tool 1 and also by an end mill, for comparing machining accuracy provided by thecutting tool 1 with that provided by the end mill. - The table of FIG. 2 indicates specifications of the
cutting tool 1 and the end mill, and cutting conditions in the test. The “SURFACE ROUGHNESS” in thecutting tool 1 means a surface roughness at the side and end cuttingedge portions cutting edge 4, while that in the end mill means a surface roughness at its peripheral and end cutting edges. The “NOSE RADIUS” in thecutting tool 1 means a nose radius of the corner at which the side and end cuttingedge portions cutting tool 1 means an error in perpendicularity of the end cuttingedge portion 6 with respect to the axis of thecylindrical shank portion 3, while that in the end mill means an error in perpendicularity of the end cutting edge with respect to the axis of its cylindrical shank portion. The “RADIUS ON CUTTING EDGE” in thecutting tool 1 means a chamfer or radius on each of the side and end cuttingedge portions - The table of FIG. 3 indicates the result of the cutting test. The “ROUGHNESS OF MACHINED SURFACE” means a roughness of the surface machined by each of the
cutting tool 1 and the end mill. The “RADIUS OF CURVATURE” means a radius of the curvature on a corner between the scroll wall and the base plate in the scroll member machined by each of thecutting tool 1 and the end mill. The “PERPENDICULARITY” means a perpendicularity of the scroll wall with respect to the base plate in the scroll member machined by each of thecutting tool 1 and the end mill. - As apparent from the table of FIG. 3, the
non-rotary cutting tool 1 of the invention exhibited a better performance, than the end mill, in all of the smoothness of the machined surface, the sharpness on the corner between the scroll wall and the base plate, and the perpendicularity of the scroll wall with respect to the base plate. In the machining with thenon-rotary cutting tool 1, the accuracy of contour of thecutting edge 4 was precisely reflected in the accuracy of the machined workpiece. On the other hand, in the machining with the end mill, the accuracy of contour of the end mill was not precisely reflected in the accuracy of the machined workpiece. Described specifically, the radius of the curvature on the corner in the scroll member was 0.05 mm which was larger than the nose radius in the end mill (=0.03 mm). The perpendicularity in the scroll member was 4.9 μm which was larger than the perpendicularity in the end mill (=2 μm). It is considered that the deterioration in the accuracy of the workpiece machined by the end mill was due to undesirable run-out and deflection of the end mill during the machining operation. - As described above, in the
non-rotary cutting tool 1, owing to the hard diamond coating, thecutting edge portions - Where the
non-rotary cutting tool 1 is used for machining each of thescroll members cutting tool 1 and the scroll member is moved relative to the other or each other in a predetermined direction, while therake face 8 of thecutting tool 1 is held substantially perpendicular to the predetermined direction, so that the scroll wall and the base plate are machined by the side and end cuttingedge portions cutting tool 1 is not rotated in the machining operation, the machined scroll member is free from deterioration in its accuracy which could be caused by “run out” of the cutting tool. That is, the pair ofscroll members scroll walls respective scroll members - Since the
non-rotary cutting tool 1 is capable of machining each scroll member with a high machining accuracy, a finishing step of the process of machining each scroll member can be carried out by thiscutting tool 1. It is noted that a roughing step of the machining process may be carried out by a conventional end mill. - Further, the present
non-rotary cutting tool 1 capable of finishing the scroll member of the scroll compressor with a high degree of machining accuracy is easier to manufacture, than an end mill which is to be used in the finishing step of the conventional process of machining the scroll member. - Further, in the
non-rotary cutting tool 1, the corner at which the side and end cuttingedge portions non-rotary cutting tool 1 is used for finishing the pair ofscroll members edge portions scroll walls scroll members - Further, in the
non-rotary cutting tool 1, the diamond coating has a surface ground or smoothed to have the surface roughness with maximum height Rz of not larger than 1.60 μm. Such a high degree of smoothness of the surface of the diamond coating is effective to provide the workpiece with a high degree of surface smoothness in the finishing step of the machining process. - Further, in the
non-rotary cutting tool 1, the chamfer or radius on each of the side cuttingedge portion 5 and the end cuttingedge portion 6 of thecutting edge 4 is not larger than 0.03 mm. Such a sharp cutting edge facilitates machining of the workpiece with a sufficiently high degree of accuracy in the finishing step of the machining process. - Further, in the
non-rotary cutting tool 1, the error in the parallelism of the side cuttingedge portion 5 with respect to the axis of thecylindrical shank portion 3 is not larger than 3 μm, while the error in the perpendicularity of the end cuttingedge portion 6 with respect to the axis of thecylindrical shank portion 3 is not larger than 3 μm. Such a minimum error in the contour of thecutting tool 1 is advantageous, especially, where thecutting tool 1 is used for finishing a workpiece, such as the scroll member of the scroll compressor, which requires to be finished with a dimensional error within a considerably small amount of tolerance. - Referring next to FIG. 4A, there will be described a
non-rotary cutting tool 20 which is constructed according to a second embodiment of the invention. The same reference numerals as used in thecutting tool 1 of the first embodiment will be used to identify the elements which are the same as those in thecutting tool 1. No redundant description of these elements will be provided. - FIG. 4A is a front view showing in enlargement its
semi-cylindrical body portion 22 of thenon-rotary cutting tool 20. Thiscutting tool 20 is identical with thecutting tool 1 of the first embodiment of the invention, except for itscutting edge 24, more specifically, the shape of its endcutting edge portion 26. That is, while the end cuttingedge portion 6 of thecutting tool 1 is provided by a straight linear edge, the end cuttingedge portion 26 of thiscutting tool 20 is provided by a substantially arcuate-shaped edge which is convexed in a direction away from the cylindrical shank portion 3 (not shown), i.e., in the upward direction as seen in FIG. 4A. The endcutting edge portion 26 as well as the side cuttingedge portion 5 is covered by a diamond coating which is ground to have a smoothed surface, as in thecutting tool 1. - This
non-rotary cutting tool 20 provides substantially the same technical advantage as thenon-rotary cutting tool 1 of the first embodiment, and is capable of forming, in a workpiece, a slot or groove having a smoothly curved bottom surface. In a process of manufacturing thecutting tool 20, thebody portion 22 may be formed to have a predetermined contour corresponding to a cross sectional shape of the slot or groove that is to be formed with the cuttingtool 20. After the formation of thebody portion 22 with the predetermined contour, thecutting edge 24 is coated with the diamond coating, and the diamond coating is then ground. Thus, thebody portion 22 is easily given the predetermined contour. - Referring next to FIG. 4B, there will be described a
non-rotary cutting tool 30 which is constructed according to a third embodiment of the invention. The same reference numerals as used in thecutting tool 1 of the first embodiment will be used to identify the elements which are the same as those in thecutting tool 1. - FIG. 4B is a front view showing in enlargement its
semi-cylindrical body portion 32 of thenon-rotary cutting tool 30. Thiscutting tool 30 is identical with thecutting tool 1 of the first embodiment of the invention, except for itscutting edge 34, more specifically, the shape of its endcutting edge portion 36. That is, while the end cuttingedge portion 6 of thecutting tool 1 is provided by a straight linear edge perpendicular to the axis of thecylindrical shank portion 3, the end cuttingedge portion 36 of thiscutting tool 30 is provided by a substantially V-shaped edge which is convexed in a direction away from the cylindrical shank portion 3 (not shown), i.e., in the upward direction as seen in FIG. 4B. The endcutting edge portion 36 as well as the side cuttingedge portion 5 is covered by a diamond coating which is ground to have a smoothed surface, as in thecutting tool 1. - This
non-rotary cutting tool 30 provides substantially the same technical advantage as thenon-rotary cutting tool 1 of the first embodiment, and is capable of forming, in a workpiece, a slot or groove having a substantially V-shaped cross section. In a process of manufacturing thecutting tool 30, thebody portion 32 may be formed to have a predetermined contour corresponding to a cross sectional shape of the slot or groove that is to be formed with the cuttingtool 30. After the formation of thebody portion 32 with the predetermined contour, thecutting edge 34 is coated with the diamond coating, and the diamond coating is then ground. Thus, thebody portion 22 is easily given the predetermined contour. - While some embodiments of the present invention have been described above in detail for illustrative purpose only, it is to be understood that the invention is not limited to the above-described embodiments but may be otherwise embodied.
- For example, the side cutting
edge portion 5 of thecutting edge 4 may be provided at each of the widthwise opposite ends of therake face 8, or alternately, may be provided at a selected one of the widthwise opposite ends of therake face 8. - Although there has not been described that in the above description, it is possible to recycle or reutilize the above-described
cutting tools - It is to be understood that the present invention may be embodied with various other changes, modifications and improvements, which may occur to those skilled in the art, without departing from the sprit and scope of the invention defined in the following claims:
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/098,252 US7237992B2 (en) | 2003-05-08 | 2005-04-04 | Process of machining scroll member by using non-rotary cutting tool |
US11/304,034 US7293945B2 (en) | 2003-05-08 | 2005-12-15 | Non-rotary cutting tool and process of machining scroll member by using the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003129825 | 2003-05-08 | ||
JP2003-129825 | 2003-05-08 | ||
JP2003312265A JP4088570B2 (en) | 2003-05-08 | 2003-09-04 | Non-rotating cutting tool |
JP2003-312265 | 2003-09-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/098,252 Division US7237992B2 (en) | 2003-05-08 | 2005-04-04 | Process of machining scroll member by using non-rotary cutting tool |
US11/304,034 Continuation-In-Part US7293945B2 (en) | 2003-05-08 | 2005-12-15 | Non-rotary cutting tool and process of machining scroll member by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040221696A1 true US20040221696A1 (en) | 2004-11-11 |
Family
ID=33422107
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/771,812 Abandoned US20040221696A1 (en) | 2003-05-08 | 2004-02-04 | Non-rotary cutting tool and process of machining scroll member by using the same |
US11/098,252 Expired - Lifetime US7237992B2 (en) | 2003-05-08 | 2005-04-04 | Process of machining scroll member by using non-rotary cutting tool |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/098,252 Expired - Lifetime US7237992B2 (en) | 2003-05-08 | 2005-04-04 | Process of machining scroll member by using non-rotary cutting tool |
Country Status (4)
Country | Link |
---|---|
US (2) | US20040221696A1 (en) |
JP (1) | JP4088570B2 (en) |
KR (1) | KR101078618B1 (en) |
CN (2) | CN100366369C (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060112648A1 (en) * | 2004-12-01 | 2006-06-01 | Osg Corporation | Boron-doped diamond coating and diamond-coated tool |
US20060133904A1 (en) * | 2003-05-08 | 2006-06-22 | Hideaki Matsuhashi | Non-rotary cutting tool and process of machining scroll member by using the same |
US20060159580A1 (en) * | 2003-07-01 | 2006-07-20 | Hideaki Matsuhashi | Scroll compressor and method of machining scroll lap |
US20140026492A1 (en) * | 2011-04-11 | 2014-01-30 | Sumitomo Electric Industries, Ltd. | Cutting tool and method for producing same |
US20140321927A1 (en) * | 2013-04-25 | 2014-10-30 | Kennametal Inc. | Cutting Insert, A Cutting Insert Holder, A System Including The Cutting Insert And Cutting Insert Holder, And A Method Of Manufacturing Thereof |
US20150266114A1 (en) * | 2012-10-29 | 2015-09-24 | Audi Ag | Method for facing surfaces of workpieces |
US9643282B2 (en) | 2014-10-17 | 2017-05-09 | Kennametal Inc. | Micro end mill and method of manufacturing same |
US10105769B2 (en) | 2014-04-17 | 2018-10-23 | Kennametal Inc. | Machining tool and method for manufacturing a machining tool |
US10369636B2 (en) | 2014-04-17 | 2019-08-06 | Kennametal Inc. | Machining tool and method for manufacturing a machining tool |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4088570B2 (en) * | 2003-05-08 | 2008-05-21 | 松下電器産業株式会社 | Non-rotating cutting tool |
US20070011861A1 (en) * | 2004-03-26 | 2007-01-18 | Yasuhisa Kosuge | Cutting method and apparatus and rib electrode for electric discharge machining |
CN101160192B (en) * | 2005-02-24 | 2012-10-24 | 欧瑞康贸易股份公司(特吕巴赫) | Saw band and method for the production of a saw band |
JP2007021654A (en) * | 2005-07-15 | 2007-02-01 | Hitachi Tool Engineering Ltd | Coated small-diameter member and manufacturing method of coated small-diameter member |
JP6470000B2 (en) * | 2014-09-18 | 2019-02-13 | サンデンホールディングス株式会社 | Scroll type fluid machinery |
CN106180770A (en) * | 2015-04-17 | 2016-12-07 | 上海睿锆信息科技有限公司 | Workpiece and the application in machining thereof |
JP6587842B2 (en) * | 2015-06-29 | 2019-10-09 | 株式会社ナガセインテグレックス | Curved cutting device |
CN106466715A (en) | 2015-08-14 | 2017-03-01 | 丹佛斯(天津)有限公司 | Method and vortex processing unit (plant) that processing is vortexed |
CN108746668A (en) * | 2018-05-02 | 2018-11-06 | 郑州飞机装备有限责任公司 | A kind of method for fine finishing of helicoid |
CN109278279A (en) * | 2018-09-19 | 2019-01-29 | 南京金三力橡塑有限公司 | A kind of texturing knife and the method for making orange peel shape rubber roller |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US385088A (en) * | 1888-06-26 | Drilling-tool | ||
US864756A (en) * | 1907-03-28 | 1907-08-27 | George W Giddings | Drill. |
US1476019A (en) * | 1922-04-26 | 1923-12-04 | Paul Landemare | Cutting tool |
US1781863A (en) * | 1928-03-22 | 1930-11-18 | Shoemaker William Walter | Cutting tool |
US1965950A (en) * | 1932-11-07 | 1934-07-10 | Mills Alloys Inc | Scarifier tooth |
US3857305A (en) * | 1974-04-05 | 1974-12-31 | P Lichtman | Milling cutters |
US4956318A (en) * | 1989-11-20 | 1990-09-11 | Iscar Ceramics, Inc. | Ceramic cutting tool |
US5725333A (en) * | 1995-04-06 | 1998-03-10 | Sumitomo Electric Industries, Ltd. | Spiral end mill and method of manufacturing the same |
US5853268A (en) * | 1995-04-18 | 1998-12-29 | Saint-Gobain/Norton Industrial Ceramics Corporation | Method of manufacturing diamond-coated cutting tool inserts and products resulting therefrom |
US6030156A (en) * | 1998-04-17 | 2000-02-29 | Andronica; Randall | Drill and sharpening fixture |
US6206619B1 (en) * | 1998-07-30 | 2001-03-27 | Barry Y. Frisbie | Non-adjustable single cylindrical lip boring tool |
US6431800B1 (en) * | 1999-05-31 | 2002-08-13 | Ngk Spark Plug Co., Ltd. | Edged ceramic member and a method of manufacturing same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047443B2 (en) * | 1980-10-27 | 1985-10-22 | 株式会社日立製作所 | Scroll type fluid machine |
WO1989008522A1 (en) * | 1988-03-11 | 1989-09-21 | Bishop Arthur E | Method of machining scroll components |
JPH11336675A (en) | 1998-05-25 | 1999-12-07 | Denso Corp | Manufacture of scroll |
JPH11336657A (en) | 1998-05-27 | 1999-12-07 | Nippon Soken Inc | Swash plate type variable displacement compressor |
JP2000071112A (en) | 1998-08-31 | 2000-03-07 | Kyocera Corp | Indexable inserts for difficult-to-cut materials |
RU2153958C1 (en) * | 1999-12-15 | 2000-08-10 | Открытое акционерное общество "Экспериментальный научно-исследовательский институт металлорежущих станков" | Method for planing products |
US6808340B2 (en) * | 2002-09-06 | 2004-10-26 | Prototype Productions, Inc. | Tool apparatus |
US7293945B2 (en) * | 2003-05-08 | 2007-11-13 | Matsushita Electric Industrial Co., Ltd | Non-rotary cutting tool and process of machining scroll member by using the same |
JP4088570B2 (en) * | 2003-05-08 | 2008-05-21 | 松下電器産業株式会社 | Non-rotating cutting tool |
-
2003
- 2003-09-04 JP JP2003312265A patent/JP4088570B2/en not_active Expired - Fee Related
-
2004
- 2004-01-02 KR KR1020040000151A patent/KR101078618B1/en not_active Expired - Fee Related
- 2004-01-07 CN CNB2004100013879A patent/CN100366369C/en not_active Expired - Fee Related
- 2004-01-08 CN CNU2004200018350U patent/CN2715888Y/en not_active Expired - Lifetime
- 2004-02-04 US US10/771,812 patent/US20040221696A1/en not_active Abandoned
-
2005
- 2005-04-04 US US11/098,252 patent/US7237992B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US385088A (en) * | 1888-06-26 | Drilling-tool | ||
US864756A (en) * | 1907-03-28 | 1907-08-27 | George W Giddings | Drill. |
US1476019A (en) * | 1922-04-26 | 1923-12-04 | Paul Landemare | Cutting tool |
US1781863A (en) * | 1928-03-22 | 1930-11-18 | Shoemaker William Walter | Cutting tool |
US1965950A (en) * | 1932-11-07 | 1934-07-10 | Mills Alloys Inc | Scarifier tooth |
US3857305A (en) * | 1974-04-05 | 1974-12-31 | P Lichtman | Milling cutters |
US4956318A (en) * | 1989-11-20 | 1990-09-11 | Iscar Ceramics, Inc. | Ceramic cutting tool |
US5725333A (en) * | 1995-04-06 | 1998-03-10 | Sumitomo Electric Industries, Ltd. | Spiral end mill and method of manufacturing the same |
US5853268A (en) * | 1995-04-18 | 1998-12-29 | Saint-Gobain/Norton Industrial Ceramics Corporation | Method of manufacturing diamond-coated cutting tool inserts and products resulting therefrom |
US6030156A (en) * | 1998-04-17 | 2000-02-29 | Andronica; Randall | Drill and sharpening fixture |
US6206619B1 (en) * | 1998-07-30 | 2001-03-27 | Barry Y. Frisbie | Non-adjustable single cylindrical lip boring tool |
US6431800B1 (en) * | 1999-05-31 | 2002-08-13 | Ngk Spark Plug Co., Ltd. | Edged ceramic member and a method of manufacturing same |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060133904A1 (en) * | 2003-05-08 | 2006-06-22 | Hideaki Matsuhashi | Non-rotary cutting tool and process of machining scroll member by using the same |
US7293945B2 (en) * | 2003-05-08 | 2007-11-13 | Matsushita Electric Industrial Co., Ltd | Non-rotary cutting tool and process of machining scroll member by using the same |
US20060159580A1 (en) * | 2003-07-01 | 2006-07-20 | Hideaki Matsuhashi | Scroll compressor and method of machining scroll lap |
US7540726B2 (en) * | 2003-07-01 | 2009-06-02 | Panasonic Corporation | Scroll compressor and method for machining scroll wrap |
US20060112648A1 (en) * | 2004-12-01 | 2006-06-01 | Osg Corporation | Boron-doped diamond coating and diamond-coated tool |
US9403215B2 (en) * | 2011-04-11 | 2016-08-02 | Sumitomo Electric Industries, Ltd. | Cutting tool and method for producing same |
US20140026492A1 (en) * | 2011-04-11 | 2014-01-30 | Sumitomo Electric Industries, Ltd. | Cutting tool and method for producing same |
US9597741B2 (en) * | 2012-10-29 | 2017-03-21 | Audi Ag | Method for facing surfaces of workpieces |
US20150266114A1 (en) * | 2012-10-29 | 2015-09-24 | Audi Ag | Method for facing surfaces of workpieces |
US20140321927A1 (en) * | 2013-04-25 | 2014-10-30 | Kennametal Inc. | Cutting Insert, A Cutting Insert Holder, A System Including The Cutting Insert And Cutting Insert Holder, And A Method Of Manufacturing Thereof |
US10213850B2 (en) * | 2013-04-25 | 2019-02-26 | Kennametal Inc. | Cutting insert, a cutting insert holder, a system including the cutting insert and cutting insert holder, and a method of manufacturing thereof |
US10105769B2 (en) | 2014-04-17 | 2018-10-23 | Kennametal Inc. | Machining tool and method for manufacturing a machining tool |
US10369636B2 (en) | 2014-04-17 | 2019-08-06 | Kennametal Inc. | Machining tool and method for manufacturing a machining tool |
US10646936B2 (en) | 2014-04-17 | 2020-05-12 | Kennametal Inc. | Machining tool and method for manufacturing a machining tool |
US9643282B2 (en) | 2014-10-17 | 2017-05-09 | Kennametal Inc. | Micro end mill and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2004351606A (en) | 2004-12-16 |
CN2715888Y (en) | 2005-08-10 |
US7237992B2 (en) | 2007-07-03 |
KR20040095611A (en) | 2004-11-15 |
CN100366369C (en) | 2008-02-06 |
US20050166739A1 (en) | 2005-08-04 |
KR101078618B1 (en) | 2011-11-07 |
JP4088570B2 (en) | 2008-05-21 |
CN1550277A (en) | 2004-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7237992B2 (en) | Process of machining scroll member by using non-rotary cutting tool | |
US10307839B2 (en) | End mill | |
WO2015037617A1 (en) | Replaceable-cutting-edge rotary cutting tool and insert used in same | |
KR102021271B1 (en) | Interchangeable Blade Cutting Tools and Inserts | |
CN109475944B (en) | Turning insert | |
WO2018061227A1 (en) | Cutting insert and cutting tool | |
US20240416436A1 (en) | Ball end mill and cutting insert | |
JP5983901B1 (en) | Cutting insert and cutting edge exchangeable rotary cutting tool | |
US20220088687A1 (en) | Rotary tool | |
US20050271482A1 (en) | Ballnose end mill | |
JP6690748B2 (en) | Processed product manufacturing method, tool path calculation method, and processed product | |
CN115397592B (en) | Rotary cutting tool having continuous primary chip flutes and discontinuous secondary chip flutes intersecting to form a quadrilateral face portion | |
US7293945B2 (en) | Non-rotary cutting tool and process of machining scroll member by using the same | |
CN112170914A (en) | Double-sided polygonal cutting insert with alternating concave and convex cutting edges | |
JPH07299631A (en) | Scroll member forming method | |
US7281883B2 (en) | Ball end mill | |
JP6384683B2 (en) | Cutting inserts and cutting tools | |
JPH07299634A (en) | End mill | |
CN114585465B (en) | Cutting inserts and milling cutters | |
JPH07299630A (en) | Scroll member forming method | |
US10562104B2 (en) | Cutting tool | |
JP3307681B2 (en) | End mill | |
JP2001269810A (en) | Throwaway tip | |
KR102797594B1 (en) | Cutting inserts and milling tools | |
JP2002178211A (en) | Ultra-high pressure cbn sintered body end mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUHASHI, HIDEAKI;NAGAI, TAMOTSU;REEL/FRAME:014965/0101;SIGNING DATES FROM 20040107 TO 20040119 Owner name: OSG CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUHASHI, HIDEAKI;NAGAI, TAMOTSU;REEL/FRAME:014965/0101;SIGNING DATES FROM 20040107 TO 20040119 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:021846/0024 Effective date: 20081001 |