US20040214775A1 - Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein - Google Patents
Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein Download PDFInfo
- Publication number
- US20040214775A1 US20040214775A1 US10/820,983 US82098304A US2004214775A1 US 20040214775 A1 US20040214775 A1 US 20040214775A1 US 82098304 A US82098304 A US 82098304A US 2004214775 A1 US2004214775 A1 US 2004214775A1
- Authority
- US
- United States
- Prior art keywords
- amino acid
- peptide
- mbp
- analogue
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 119
- 201000006417 multiple sclerosis Diseases 0.000 title claims abstract description 40
- 101001018318 Homo sapiens Myelin basic protein Proteins 0.000 title claims abstract description 16
- 102000054064 human MBP Human genes 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 16
- 238000011282 treatment Methods 0.000 title description 19
- 235000001014 amino acid Nutrition 0.000 claims abstract description 40
- 150000001413 amino acids Chemical class 0.000 claims abstract description 37
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 10
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 40
- 229940024606 amino acid Drugs 0.000 claims description 38
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 11
- 235000004279 alanine Nutrition 0.000 claims description 9
- 239000004475 Arginine Substances 0.000 claims description 8
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 8
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 8
- 235000009697 arginine Nutrition 0.000 claims description 8
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 7
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 7
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 7
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 7
- 235000013922 glutamic acid Nutrition 0.000 claims description 7
- 239000004220 glutamic acid Substances 0.000 claims description 7
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 7
- 235000014304 histidine Nutrition 0.000 claims description 7
- 235000004400 serine Nutrition 0.000 claims description 7
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 claims description 6
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 5
- 239000004471 Glycine Substances 0.000 claims description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 5
- 235000009582 asparagine Nutrition 0.000 claims description 5
- 229960001230 asparagine Drugs 0.000 claims description 5
- 235000005772 leucine Nutrition 0.000 claims description 5
- 235000008729 phenylalanine Nutrition 0.000 claims description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 9
- 235000018102 proteins Nutrition 0.000 abstract description 7
- 102000004169 proteins and genes Human genes 0.000 abstract description 7
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 abstract description 6
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 110
- 102000047918 Myelin Basic Human genes 0.000 description 68
- 101710107068 Myelin basic protein Proteins 0.000 description 68
- 210000004027 cell Anatomy 0.000 description 49
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 30
- 241000700159 Rattus Species 0.000 description 28
- 230000003902 lesion Effects 0.000 description 17
- 230000035755 proliferation Effects 0.000 description 16
- 210000001165 lymph node Anatomy 0.000 description 15
- 102000004196 processed proteins & peptides Human genes 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 230000005713 exacerbation Effects 0.000 description 13
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 230000027455 binding Effects 0.000 description 11
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 10
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 10
- 239000004472 Lysine Substances 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- -1 4-hydroxyproline Chemical class 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 239000000427 antigen Substances 0.000 description 8
- 102000036639 antigens Human genes 0.000 description 8
- 108091007433 antigens Proteins 0.000 description 8
- 238000001516 cell proliferation assay Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 230000000638 stimulation Effects 0.000 description 8
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000009696 proliferative response Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 102100037850 Interferon gamma Human genes 0.000 description 6
- 108010074328 Interferon-gamma Proteins 0.000 description 6
- 101800002372 Motilin Proteins 0.000 description 6
- 230000001464 adherent effect Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- LVRVABPNVHYXRT-BQWXUCBYSA-N 52906-92-0 Chemical compound C([C@H](N)C(=O)N[C@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)C1=CC=CC=C1 LVRVABPNVHYXRT-BQWXUCBYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 5
- 102000002419 Motilin Human genes 0.000 description 5
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 229960002685 biotin Drugs 0.000 description 5
- 235000020958 biotin Nutrition 0.000 description 5
- 239000011616 biotin Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 208000010726 hind limb paralysis Diseases 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 238000011694 lewis rat Methods 0.000 description 5
- 235000018977 lysine Nutrition 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 210000004989 spleen cell Anatomy 0.000 description 5
- MSILNNHVVMMTHZ-UWVGGRQHSA-N Arg-His-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CN=CN1 MSILNNHVVMMTHZ-UWVGGRQHSA-N 0.000 description 4
- 102100026720 Interferon beta Human genes 0.000 description 4
- 235000019766 L-Lysine Nutrition 0.000 description 4
- 206010033799 Paralysis Diseases 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 4
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 108010064235 lysylglycine Proteins 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 210000004988 splenocyte Anatomy 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 3
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 description 3
- 108090000467 Interferon-beta Proteins 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 230000006052 T cell proliferation Effects 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 238000002649 immunization Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000009258 tissue cross reactivity Effects 0.000 description 3
- 230000006433 tumor necrosis factor production Effects 0.000 description 3
- UHPQFNXOFFPHJW-UHFFFAOYSA-N (4-methylphenyl)-phenylmethanamine Chemical compound C1=CC(C)=CC=C1C(N)C1=CC=CC=C1 UHPQFNXOFFPHJW-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- HBAHZZVIEFRTEY-UHFFFAOYSA-N 2-heptylcyclohex-2-en-1-one Chemical compound CCCCCCCC1=CCCCC1=O HBAHZZVIEFRTEY-UHFFFAOYSA-N 0.000 description 2
- JAMAWBXXKFGFGX-KZVJFYERSA-N Ala-Arg-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JAMAWBXXKFGFGX-KZVJFYERSA-N 0.000 description 2
- PAIHPOGPJVUFJY-WDSKDSINSA-N Ala-Glu-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O PAIHPOGPJVUFJY-WDSKDSINSA-N 0.000 description 2
- SHKGHIFSEAGTNL-DLOVCJGASA-N Ala-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CN=CN1 SHKGHIFSEAGTNL-DLOVCJGASA-N 0.000 description 2
- LBFXVAXPDOBRKU-LKTVYLICSA-N Ala-His-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O LBFXVAXPDOBRKU-LKTVYLICSA-N 0.000 description 2
- BTRULDJUUVGRNE-DCAQKATOSA-N Ala-Pro-Lys Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O BTRULDJUUVGRNE-DCAQKATOSA-N 0.000 description 2
- RMAWDDRDTRSZIR-ZLUOBGJFSA-N Ala-Ser-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RMAWDDRDTRSZIR-ZLUOBGJFSA-N 0.000 description 2
- OEVCHROQUIVQFZ-YTLHQDLWSA-N Ala-Thr-Ala Chemical compound C[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](C)C(O)=O OEVCHROQUIVQFZ-YTLHQDLWSA-N 0.000 description 2
- WVNFNPGXYADPPO-BQBZGAKWSA-N Arg-Gly-Ser Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O WVNFNPGXYADPPO-BQBZGAKWSA-N 0.000 description 2
- SPCONPVIDFMDJI-QSFUFRPTSA-N Asn-Ile-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O SPCONPVIDFMDJI-QSFUFRPTSA-N 0.000 description 2
- AXXCUABIFZPKPM-BQBZGAKWSA-N Asp-Arg-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O AXXCUABIFZPKPM-BQBZGAKWSA-N 0.000 description 2
- LDGUZSIPGSPBJP-XVYDVKMFSA-N Asp-His-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CC(=O)O)N LDGUZSIPGSPBJP-XVYDVKMFSA-N 0.000 description 2
- ZBYLEBZCVKLPCY-FXQIFTODSA-N Asp-Ser-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O ZBYLEBZCVKLPCY-FXQIFTODSA-N 0.000 description 2
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- 108010062580 Concanavalin A Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- XOKGKOQWADCLFQ-GARJFASQSA-N Gln-Arg-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCC(=O)N)N)C(=O)O XOKGKOQWADCLFQ-GARJFASQSA-N 0.000 description 2
- JXFLPKSDLDEOQK-JHEQGTHGSA-N Gln-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCC(N)=O JXFLPKSDLDEOQK-JHEQGTHGSA-N 0.000 description 2
- GURIQZQSTBBHRV-SRVKXCTJSA-N Gln-Lys-Arg Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GURIQZQSTBBHRV-SRVKXCTJSA-N 0.000 description 2
- LXAUHIRMWXQRKI-XHNCKOQMSA-N Glu-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCC(=O)O)N)C(=O)O LXAUHIRMWXQRKI-XHNCKOQMSA-N 0.000 description 2
- HQRHFUYMGCHHJS-LURJTMIESA-N Gly-Gly-Arg Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N HQRHFUYMGCHHJS-LURJTMIESA-N 0.000 description 2
- NNCSJUBVFBDDLC-YUMQZZPRSA-N Gly-Leu-Ser Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O NNCSJUBVFBDDLC-YUMQZZPRSA-N 0.000 description 2
- LOEANKRDMMVOGZ-YUMQZZPRSA-N Gly-Lys-Asp Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)N[C@@H](CC(O)=O)C(O)=O LOEANKRDMMVOGZ-YUMQZZPRSA-N 0.000 description 2
- IGOYNRWLWHWAQO-JTQLQIEISA-N Gly-Phe-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 IGOYNRWLWHWAQO-JTQLQIEISA-N 0.000 description 2
- YLEIWGJJBFBFHC-KBPBESRZSA-N Gly-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 YLEIWGJJBFBFHC-KBPBESRZSA-N 0.000 description 2
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 2
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 2
- SVHKVHBPTOMLTO-DCAQKATOSA-N His-Arg-Asp Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O SVHKVHBPTOMLTO-DCAQKATOSA-N 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- NHJKZMDIMMTVCK-QXEWZRGKSA-N Ile-Gly-Arg Chemical compound CC[C@H](C)[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N NHJKZMDIMMTVCK-QXEWZRGKSA-N 0.000 description 2
- LRAUKBMYHHNADU-DKIMLUQUSA-N Ile-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)[C@@H](C)CC)CC1=CC=CC=C1 LRAUKBMYHHNADU-DKIMLUQUSA-N 0.000 description 2
- 108010005714 Interferon beta-1b Proteins 0.000 description 2
- 102000003996 Interferon-beta Human genes 0.000 description 2
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- PVMPDMIKUVNOBD-CIUDSAMLSA-N Leu-Asp-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O PVMPDMIKUVNOBD-CIUDSAMLSA-N 0.000 description 2
- VWHGTYCRDRBSFI-ZETCQYMHSA-N Leu-Gly-Gly Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)NCC(O)=O VWHGTYCRDRBSFI-ZETCQYMHSA-N 0.000 description 2
- AMSSKPUHBUQBOQ-SRVKXCTJSA-N Leu-Ser-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)O)N AMSSKPUHBUQBOQ-SRVKXCTJSA-N 0.000 description 2
- GQZMPWBZQALKJO-UWVGGRQHSA-N Lys-Gly-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O GQZMPWBZQALKJO-UWVGGRQHSA-N 0.000 description 2
- 229920001367 Merrifield resin Polymers 0.000 description 2
- WXHHTBVYQOSYSL-FXQIFTODSA-N Met-Ala-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O WXHHTBVYQOSYSL-FXQIFTODSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 2
- 101710176384 Peptide 1 Proteins 0.000 description 2
- OSBADCBXAMSPQD-YESZJQIVSA-N Phe-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N OSBADCBXAMSPQD-YESZJQIVSA-N 0.000 description 2
- IWZRODDWOSIXPZ-IRXDYDNUSA-N Phe-Phe-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)NCC(O)=O)C1=CC=CC=C1 IWZRODDWOSIXPZ-IRXDYDNUSA-N 0.000 description 2
- RBRNEFJTEHPDSL-ACRUOGEOSA-N Phe-Phe-Lys Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 RBRNEFJTEHPDSL-ACRUOGEOSA-N 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ZSKJPKFTPQCPIH-RCWTZXSCSA-N Pro-Arg-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(O)=O ZSKJPKFTPQCPIH-RCWTZXSCSA-N 0.000 description 2
- LANQLYHLMYDWJP-SRVKXCTJSA-N Pro-Gln-Lys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O LANQLYHLMYDWJP-SRVKXCTJSA-N 0.000 description 2
- HBBBLSVBQGZKOZ-GUBZILKMSA-N Pro-Met-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(O)=O HBBBLSVBQGZKOZ-GUBZILKMSA-N 0.000 description 2
- SBVPYBFMIGDIDX-SRVKXCTJSA-N Pro-Pro-Pro Chemical compound OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H]2NCCC2)CCC1 SBVPYBFMIGDIDX-SRVKXCTJSA-N 0.000 description 2
- SEZGGSHLMROBFX-CIUDSAMLSA-N Pro-Ser-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O SEZGGSHLMROBFX-CIUDSAMLSA-N 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- QGMLKFGTGXWAHF-IHRRRGAJSA-N Ser-Arg-Phe Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O QGMLKFGTGXWAHF-IHRRRGAJSA-N 0.000 description 2
- XWCYBVBLJRWOFR-WDSKDSINSA-N Ser-Gln-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O XWCYBVBLJRWOFR-WDSKDSINSA-N 0.000 description 2
- UIGMAMGZOJVTDN-WHFBIAKZSA-N Ser-Gly-Ser Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O UIGMAMGZOJVTDN-WHFBIAKZSA-N 0.000 description 2
- QGAHMVHBORDHDC-YUMQZZPRSA-N Ser-His-Gly Chemical compound OC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CN=CN1 QGAHMVHBORDHDC-YUMQZZPRSA-N 0.000 description 2
- IOVBCLGAJJXOHK-SRVKXCTJSA-N Ser-His-His Chemical compound C([C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 IOVBCLGAJJXOHK-SRVKXCTJSA-N 0.000 description 2
- QJKPECIAWNNKIT-KKUMJFAQSA-N Ser-Lys-Tyr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O QJKPECIAWNNKIT-KKUMJFAQSA-N 0.000 description 2
- UYLKOSODXYSWMQ-XGEHTFHBSA-N Ser-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CO)N)O UYLKOSODXYSWMQ-XGEHTFHBSA-N 0.000 description 2
- BCAVNDNYOGTQMQ-AAEUAGOBSA-N Ser-Trp-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)NCC(O)=O BCAVNDNYOGTQMQ-AAEUAGOBSA-N 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- WLDUCKSCDRIVLJ-NUMRIWBASA-N Thr-Gln-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)O WLDUCKSCDRIVLJ-NUMRIWBASA-N 0.000 description 2
- IMULJHHGAUZZFE-MBLNEYKQSA-N Thr-Gly-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(O)=O IMULJHHGAUZZFE-MBLNEYKQSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- PGEFRHBWGOJPJT-KKUMJFAQSA-N Tyr-Lys-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O PGEFRHBWGOJPJT-KKUMJFAQSA-N 0.000 description 2
- ISERLACIZUGCDX-ZKWXMUAHSA-N Val-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)C)N ISERLACIZUGCDX-ZKWXMUAHSA-N 0.000 description 2
- SSKKGOWRPNIVDW-AVGNSLFASA-N Val-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N SSKKGOWRPNIVDW-AVGNSLFASA-N 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 108010044940 alanylglutamine Proteins 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000008485 antagonism Effects 0.000 description 2
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 2
- 108010060035 arginylproline Proteins 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 108010038633 aspartylglutamate Proteins 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 229940021459 betaseron Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000003271 compound fluorescence assay Methods 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 2
- 108010062266 glycyl-glycyl-argininal Proteins 0.000 description 2
- 108010077435 glycyl-phenylalanyl-glycine Proteins 0.000 description 2
- 108010010147 glycylglutamine Proteins 0.000 description 2
- 108010092114 histidylphenylalanine Proteins 0.000 description 2
- 108010085325 histidylproline Proteins 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 108010044311 leucyl-glycyl-glycine Proteins 0.000 description 2
- 108010057821 leucylproline Proteins 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108010016686 methionyl-alanyl-serine Proteins 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 238000004810 partition chromatography Methods 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 238000010647 peptide synthesis reaction Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 108010084525 phenylalanyl-phenylalanyl-glycine Proteins 0.000 description 2
- 108010051242 phenylalanylserine Proteins 0.000 description 2
- 239000000902 placebo Substances 0.000 description 2
- 229940068196 placebo Drugs 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 108010031719 prolyl-serine Proteins 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 108010026333 seryl-proline Proteins 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000003393 splenic effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- GPYTYOMSQHBYTK-LURJTMIESA-N (2s)-2-azaniumyl-2,3-dimethylbutanoate Chemical compound CC(C)[C@](C)([NH3+])C([O-])=O GPYTYOMSQHBYTK-LURJTMIESA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 1
- 108010083359 Antigen Receptors Proteins 0.000 description 1
- 102000006306 Antigen Receptors Human genes 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000008964 Chemical and Drug Induced Liver Injury Diseases 0.000 description 1
- 208000032862 Clinical Deterioration Diseases 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 208000016192 Demyelinating disease Diseases 0.000 description 1
- 206010012305 Demyelination Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241001492222 Epicoccum Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 101100273831 Homo sapiens CDS1 gene Proteins 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 206010022004 Influenza like illness Diseases 0.000 description 1
- 206010022095 Injection Site reaction Diseases 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- 101710175243 Major antigen Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241001049988 Mycobacterium tuberculosis H37Ra Species 0.000 description 1
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010029155 Nephropathy toxic Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 101001044455 Rattus norvegicus Interferon gamma Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000009798 acute exacerbation Effects 0.000 description 1
- 150000001294 alanine derivatives Chemical class 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 238000011230 antibody-based therapy Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 108010068265 aspartyltyrosine Proteins 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 1
- 229960000258 corticotropin Drugs 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000011257 definitive treatment Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- XYWDPYKBIRQXQS-UHFFFAOYSA-N di-isopropyl sulphide Natural products CC(C)SC(C)C XYWDPYKBIRQXQS-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- IZOOGPBRAOKZFK-UHFFFAOYSA-K gadopentetate Chemical compound [Gd+3].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O IZOOGPBRAOKZFK-UHFFFAOYSA-K 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000000548 hind-foot Anatomy 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- WXEHBUMAEPOYKP-UHFFFAOYSA-N methylsulfanylethane Chemical compound CCSC WXEHBUMAEPOYKP-UHFFFAOYSA-N 0.000 description 1
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000007694 nephrotoxicity Effects 0.000 description 1
- 231100000417 nephrotoxicity Toxicity 0.000 description 1
- 230000007971 neurological deficit Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000010984 neurological examination Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000649 purine antagonist Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4713—Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates generally to methods for treating and preventing multiple sclerosis by using peptide analogues of human myelin basic protein.
- MS Multiple sclerosis
- the inflammatory process occurs primarily within the white matter of the central nervous system and is mediated by T lymphocytes, B lymphocytes, and macrophages. These cells are responsible for the demyelination of axons.
- the characteristic lesion in MS is called the plaque due to its macroscopic appearance.
- T cell reactivity to myelin basic protein may be a critical component in the development of MS.
- the pathogenic T cells found in lesions have restricted heterogeneity of antigen receptors (TCR).
- TCR antigen receptors
- the T cells isolated from plaques show rearrangement of a restricted number of V ⁇ and V ⁇ gene segments.
- the TCRs display several dominant amino acid motifs in the third complementarity determining region (CDR), which is the major antigen contact site. All together, three CDR3 motifs have been identified in T cell clones known to recognize an epitope within amino acids 86-106 of myelin basic protein. These motifs were found in 44% of rearranged TCR sequences involving one particular V ⁇ gene rearranged in T cells isolated from brain of two patients with MS.
- Betaseron a modified beta interferon
- IFNB MS Study Group Neurology 43:662, 1993
- IFNB MS Study Group Neurology 43:655, 1993; Paty et al., supra
- Side effects were commonly observed. The most frequent of such side effects were fever (40%-58% of patients), flu-like symptoms (76% of patients), chills (46% of patients), mylagias (41% of patients), and sweating (23% of patients).
- injection site reactions 85%), including inflammation, pain, hypersensitivity and necrosis, were common (IFNB MS Study Group, supra; Connelly, Annals of Pharm. 28:610, 1994).
- the present invention generally provides analogues of human myelin basic protein, in which the native L-lysine residue at position 91 is altered.
- the analogue is a peptide derived from residues 87-99 of human myelin basic protein (MBP), wherein the L-lysine residue normally found at position 91 of native peptide is altered to another amino acid.
- the L-lysine residue at position 91 may be altered to any other amino acid, and preferably to alanine, serine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine or D-lysine.
- the alteration is preferably a non-conservative change or any D-amino acid.
- the alteration is also preferably one which results in reduced production of TNF- ⁇ from MBP-reactive T cells.
- the present invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a peptide analogue according to the embodiments set out above, in which the analogue is contained in a physiologically acceptable carrier or diluent.
- the present invention also provides methods for treating multiple sclerosis by administering to a patient with MS a therapeutically effective amount of a pharmaceutical composition containing analogue as described herein.
- a peptide analogue comprises amino acid residues 87-99 of human myelin basic protein, wherein the lysine at position 91 is replaced by another amino acid.
- FIG. 1 depicts DNA and predicted amino acid sequence for human myelin basic protein.
- FIG. 2 is a graph demonstrating competition for MHC binding between MBP (87-99) and the alanine analogue of residue 91 (91K>A).
- the alanine-substituted analogue was tested at concentrations ranging from 0 to 200 ⁇ M for its ability to inhibit the binding of 10 ⁇ M biotin-labeled MBP (87-99).
- the data are presented as the percentage of inhibition of mean relative binding. Fifty percent inhibition establishes the IC 50 value.
- FIG. 3 is a graph displaying the proliferative response of the T cell line NBI to position 91-substituted analogues. Ten different substitutions were tested. The proliferative response of NBI in response to concentrations of analogues ranging from 0 to 150 ⁇ M was determined. Proliferation is shown as counts per minute. Standard errors of the mean were less than ⁇ 10%.
- MBP 87-99 peptides from human myelin basic protein containing residues 87 to 99: K, lysine; R, arginine; N, asparagine; H, histidine; L, leucine; S, serine; G, glycine; k, D-lysine; E, glutamic acid; F, phenylalanine; and A, alanine.
- FIG. 4 is a graph displaying the proliferative response of MBP-reactive lymph node cells to position 91-substituted analogues. Two different substitutions were tested. The proliferative response of lymph node cells to 10 ⁇ M of MBP (87-99), motilin, A91 or K91 was determined. Proliferation is shown as counts per minute. BKG, no peptide added; 87-99, MBP (87-99); motilin, an unrelated peptide; A91, peptide analogue with alanine at position 91: K91, peptide analogue with D-lysine at position 91.
- FIG. 5 is a graph illustrating the ability of alanine-substituted analogues to antagonize T cells.
- the proliferative response of the T cell line, L87-99, to 2.2 ⁇ M MBP (87-99) in the presence of 0.001-0.01 ⁇ M of the peptide analogue (91K>A) is shown. Results are shown as stimulation index ⁇ SE.
- FIG. 6 is a graph depicting the reversal of EAE by soluble peptide therapy.
- Rats were injected with 10 7 L87-99 cells, a procedure which induces EAE by adoptive transfer. Five days later, when clinical disease was apparent, rats were randomly distributed into three groups of six rats each. These groups were injected intraperitoneally with 2 mg/ml of either MBP (87-99) (91K>A) (- ⁇ -), or PBS (- ⁇ -). EAE was graded daily and is presented as a mean score ⁇ SE.
- FIG. 7 are a pair of graphs showing the amount of IFN- ⁇ and TNF- ⁇ production from draining lymph node cells (DLNC).
- DLNC were stimulated with MBP (87-99) alone ( ⁇ ) or with the peptide analogue (91K>A) ( ⁇ ).
- Human myelin basic protein (“MBP”) refers to a protein found in the cytoplasm of human oligodendroglial cells.
- MBP Human myelin basic protein
- the nucleotide sequence and predicted amino acid sequence of human MBP are presented in FIG. 1 (SEQ. ID Nos. 1 and 2).
- SEQ. ID Nos. 1 and 2 The nucleotide sequence and predicted amino acid sequence of human MBP are presented in FIG. 1 (SEQ. ID Nos. 1 and 2).
- FIG. 1 SEQ. ID Nos. 1 and 2
- different molecular forms of human myelin basic protein generated by differential splicing or post-translational modification are also within the scope of this invention.
- “Peptide analogues” of myelin basic protein are derived from residues 87-99 of MBP and contain one difference in amino acid sequence between the analogue and native human myelin basic protein, which is a difference at residue 91. Unless otherwise indicated, a named amino acid refers to the L-form.
- An L-amino acid from the native peptide may be altered to any other one of the 20 L-amino acids commonly found in proteins, any one of the corresponding D-amino acids, rare amino acids, such as 4-hydroxyproline, and hydroxylysine, or a non-protein amino acid, such as ⁇ -alanine and homoserine.
- amino acids which have been altered by chemical means such as methylation (e.g., ⁇ -methylvaline), amidation of the C-terminal amino acid by an alkylamine such as ethylamine, ethanolamine, and ethylene diamine, and acylation or methylation of an amino acid side chain function (e.g., acylation of the epsilon amino group of lysine).
- methylation e.g., ⁇ -methylvaline
- alkylamine such as ethylamine, ethanolamine, and ethylene diamine
- acylation or methylation of an amino acid side chain function e.g., acylation of the epsilon amino group of lysine.
- Residue 91 also called “position 91,” refers to amino acid 91 of human myelin basic protein (see FIG. 1; SEQ. ID No. ______) or the amino acid at the comparative position for a peptide derived from MBP.
- the numbering system used relates to the amino acid position within the native protein, regardless of the length of the peptide or its position within that peptide.
- the present invention provides peptide analogues of myelin basic protein in which the naturally occurring L-lysine at position 91 is altered to another amino acid.
- the peptide analogues are derived from residues 87-99 of MBP.
- Residue 91 which is L-lysine in the native protein, is the key residue.
- analogues have an amino acid other than L-lysine at position 91.
- any amino acid alteration at position 91 is within the scope of this invention.
- Preferred peptide analogues include alteration of L-lysine to any one of the following amino acids: D-lysine, alanine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine or serine.
- amino acids include both conservative (similar charge, polarity, hydrophobicity, and bulkiness) and non-conservative amino acids. Although typically one might expect that only non-conservative amino acid alterations would provide a therapeutic effect, unexpectedly even conservative changes (e.g., arginine) greatly affect the function of the peptide analogue as compared to the native peptide.
- conservative changes e.g., arginine
- Such diversity of substitution is further illustrated by the fact that the preferred amino acids noted above are hydrophobic and hydrophilic, charged and uncharged, polar and non-polar.
- Peptide analogues may be synthesized by standard chemistry techniques, including synthesis by automated procedure.
- peptide analogues are prepared by solid-phase peptide synthesis methodology which involves coupling each protected amino acid residue to a resin support, preferably a 4-methyl-benzhydrylamine resin, by activation with dicyclohexylcarbodimide to yield a peptide with a C-terminal amide.
- a chloromethyl resin may be used to yield a peptide with a free carboxylic acid at the C-terminus.
- the protected peptide-resin is treated with hydrogen fluoride to cleave the peptide from the resin, as well as deprotect the side chain functional groups.
- Crude product can be further purified by gel filtration, HPLC, partition chromatography, or ion-exchange chromatography.
- Peptide analogues within the present invention should (a) compete for the binding of MBP (87-99) to MHC; (b) not cause proliferation of an MBP (87-99)-reactive T cell line; and (c) inhibit induction of EAE (experimental allergic encephalomyelitis) by MBP (87-99) in rodents.
- candidate peptide analogues may be screened for their ability to treat MS by (1) an assay measuring competitive binding to MHC, (2) an assay measuring a T cell proliferation, and (3) an assay assessing inhibition of EAE induction.
- a further safety assay may be performed to demonstrate that the analogue does not itself induce EAE.
- Binding of peptides to MHC molecules may be assayed on whole cells. Briefly, Lewis rat spleen cells are cultured for 3 hours to allow adherent cells to stick to polystyrene petri dishes. Non-adherent cells are removed. Adherent cells, which contain cells expressing MHC class II molecules, are collected by scraping the dishes. The binding of peptide analogues to cells is measured by a fluorescence assay. In this assay, splenic adherent cells are mixed with different concentrations of peptide analogues and incubated for 1 hour at 37° in a CO 2 incubator. Following incubation, biotin-labeled MBP (87-99) is added to the culture wells.
- the cells are incubated for another hour and then washed three times in medium.
- Phycoerythrin-conjugated or fluorescein-conjugated streptavidin is added along with a fluorochrome-labeled OX-6 or OX-17 monoclonal antibody, which reacts with rat MHC Class II I-A and I-E, respectively.
- the cells are washed twice before analysis by flow cytometry. Fluorescence intensity is calculated by subtracting the fluorescence value obtained from cells stained with phycoerythrin-streptavidin alone (control staining) from the fluorescence value obtained from biotin-labeled MBP (87-99) plus phycoerythrin-streptavidin (experimental staining). Staining without analogue establishes a 100% value. Percent inhibition is calculated for each analogue and expressed as IC 50 values. A peptide analogue with an IC 50 value of less than 100 ⁇ M is suitable for further screenings
- Candidate peptide analogues are further tested for their property of causing or inhibiting proliferation of T cell lines. Two different assays may be used as alternatives. The first measures the ability of the analogue to cause proliferation of T cells in a direct fashion. The second measures the ability of the peptide analogue to inhibit proliferation of T cells induced by native MBP (87-99) peptide.
- MBP (87-99) reactive T cell lines may be used as target cells.
- T cell lines are established from lymph nodes taken from rats injected with MBP (87-99). Lymph node cells are isolated and cultured for 5 to 8 days with MBP (87-99) and IL-2 as a source of T cell growth factors. Viable cells are recovered and a second round of stimulation is performed with MBP (87-99) and irradiated splenocytes as a source of growth factors. After 5 to 6 passages in this manner, the proliferative potential of the cell lines are determined. MBP-reactive lines are used in the proliferation assay.
- T cell lines are cultured for three days with various concentrations of peptide analogues and irradiated, autologous splenocytes. After three days, 0.5-1.0 ⁇ Ci of [ 3 H]-thymidine is added for 12-16 hours. Cultures are harvested and incorporated counts determined. Mean CPM and standard error of the mean are calculated from triplicate cultures.
- draining lymph node cells from Lewis rats immunized with MBP (87-99) may be used.
- this assay is used in combination with the proliferation assay using T cell lines. Briefly, Lewis rats are injected subcutaneously with MBP (87-99) peptide in complete Freund's adjuvant. Nine to ten days later, draining lymph node cells are isolated and single-cell suspensions are prepared. Lymph node cells are incubated with various concentrations of peptide analogues for three days in a humidified air chamber containing 6.5% CO 2 . After incubation, the cultures are pulsed with 1-2 ⁇ Ci of [ 3 H]-thymidine for 12-18 hours.
- the second or alternative assay is a competition assay for T cell proliferation.
- antigen presenting spleen cells are first irradiated and then incubated with native MBP (87-99) peptide for 2-4 hours. These cells are then washed and further cultured with T cells reactive to MBP (87-99).
- Various concentrations of candidate peptide analogues are included in cultures for an additional 3 days. Following this incubation period, each culture is pulsed with 1 ⁇ Ci of [ 3 H]-thymidine for an additional 12-18 hours. Cultures are then harvested on fiberglass filters and counted as above. Mean CPM and standard error of the mean are calculated from data determined in triplicate cultures.
- Peptide analogues which inhibit proliferation to approximately 25% at a concentration of 50 ⁇ M or greater are suitable for further screening.
- mice Approximately 2 days prior to disease induction (usually 10 days following injection of MBP (87-99)) rats are injected intraperitoneally either with PBS or peptide analogues in PBS. Animals are monitored for clinical signs on a daily basis by an observer blind to the treatment protocol. EAE is scored on a scale of 0-3: 0, clinically normal; 1, flaccid tail paralysis; 2, hind limb paralysis; 3, front and hind limbs affected. Peptide analogues injected at 5 mg/kg or less (approximately 1 mg per rat) are considered to inhibit the development of EAE if there is a 50% reduction in the mean cumulative score over seven days following onset of disease symptoms in the control group.
- suitable peptide analogues may be tested for direct induction of EAE.
- various amounts of peptide analogues are injected at the base of the tail of rats, and the rats examined daily for signs of EAE.
- a peptide analogue which is not considered to cause EAE has a mean cumulative score of less than or equal to 1 over seven days when 1 mg (5 mg/kg) in complete Freund's adjuvant is injected.
- the present invention provides methods for treating and preventing multiple sclerosis by administering to the patient a therapeutically effective amount of a peptide analogue of human myelin basic protein as described herein.
- Patients suitable for such treatment may be identified by criteria establishing a diagnosis of clinically definite MS as defined by the workshop on the diagnosis of MS (Poser et al., Ann. Neurol. 13:227, 1983). Briefly, an individual with clinically definite MS has had two attacks and clinical evidence of either two lesions or clinical evidence of one lesion and paraclinical evidence of another, separate lesion.
- Definite MS may also be diagnosed by evidence of two attacks and oligoclonal bands of IgG in cerebrospinal fluid or by combination of an attack, clinical evidence of two lesions and oligoclonal band of IgG in cerebrospinal fluid. Slightly lower criteria are used for a diagnosis of clinically probable MS.
- Effective treatment of multiple sclerosis may be examined in several different ways. Satisfying any of the following criteria evidences effective treatment. Three main criteria are used: EDSS (extended disability status scale), appearance of exacerbations or MRI (magnetic resonance imaging).
- the EDSS is a means to grade clinical impairment due to MS (Kurtzke, Neurology 33:1444, 1983). Eight functional systems are evaluated for the type and severity of neurologic impairment. Briefly, prior to treatment, patients are evaluated for impairment in the following systems: pyramidal, cerebella, brainstem, sensory, bowel and bladder, visual, cerebral, and other. Following-ups are conducted at defined intervals. The scale ranges from 0 (normal) to 10 (death due to MS). A decrease of one full step defines an effective treatment in the context of the present invention (Kurtzke, Ann. Neurol. 36:573-79, 1994).
- Exacerbations are defined as the appearance of a new symptom that is attributable to MS and accompanied by an appropriate new neurologic abnormality (IFNB MS Study Group, supra). In addition, the exacerbation must last at least 24 hours and be preceded by stability or improvement for at least 30 days. Briefly, patients are given a standard neurological examination by clinicians. Exacerbations are either mild, moderate, or severe according to changes in a Neurological Rating Scale (Sipe et al., Neurology 34:1368,1984). An annual exacerbation rate and proportion of exacerbation-free patients are determined.
- Treatment is deemed to be effective if there is a statistically significant difference in the rate or proportion of exacerbation-free patients between the treated group and the placebo group for either of these measurements.
- time to first exacerbation and exacerbation duration and severity may also be measured.
- a measure of effectiveness as therapy in this regard is a statistically significant difference in the time to first exacerbation or duration and severity in the treated group compared to control group.
- MRI can be used to measure active lesions using gadolinium-DTPA-enhanced imaging (McDonald et al. Ann. Neurol. 36:14, 1994) or the location and extent of lesions using T 2 -weighted techniques. Briefly, baseline MRIs are obtained. The same imaging plane and patient position are used for each subsequent study. Positioning and imaging sequences are chosen to maximize lesion detection and facilitate lesion tracing. The same positioning and imaging sequences are used on subsequent studies. The presence, location and extent of MS lesions are determined by radiologists. Areas of lesions are outlined and summed slice by slice for total lesion area.
- Candidate patients for prevention may be identified by the presence of genetic factors. For example, a majority of MS patients have HLA-type DR2a and DR2b.
- the MS patients having genetic dispositions to MS who are suitable for treatment fall within two groups. First are patients with early disease of the relapsing remitting type. Entry criteria would include disease duration of more than one year, EDSS score of 1.0 to 3.5, exacerbation rate of more than 0.5 per year, and free of clinical exacerbations for 2 months prior to study.
- the second group would include people with disease progression greater than 1.0 EDSS unit/year over the past two years.
- Efficacy of the peptide analogue in the context of prevention is judged based on the following criteria: frequency of MBP reactive T cells determined by limiting dilution, proliferation response of MBP reactive T cell lines and clones, cytokine profiles of T cell lines and clones to MBP established from patients. Efficacy is established by decrease in frequency of reactive cells, a reduction in thymidine incorporation with altered peptide compared to native, and a reduction in TNF and IFN- ⁇ . Clinical measurements include the relapse rate in one and two year intervals, and a change in EDSS, including time to progression from baseline of 1.0 unit on the EDSS which persists for six months. On a Kaplan-Meier curve, a delay in sustained progression of disability shows efficacy. Other criteria include a change in area and volume of T2 images on MRI, and the number and volume of lesions determined by gadolinium enhanced images.
- compositions of the present invention may be administered either alone, or as a pharmaceutical composition.
- pharmaceutical compositions of the present invention may comprise one or more of the peptide analogues described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients.
- Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like, carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and preservatives.
- pharmaceutical compositions of the present invention may also contain one or more additional active ingredients, such as, for example, cytokines like ⁇ -interferon.
- compositions of the present invention may be formulated for the manner of administration indicated, including for example, for oral, nasal, venous, intracranial, intraperitoneal, subcutaneous, or intramuscular administration.
- the compositions described herein may be administered as part of a sustained release implant.
- compositions of the present invention may be formulized as a lyophilizate, utilizing appropriate excipients which provide stability as a lyophilizate, and subsequent to rehydration.
- compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented).
- the quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease.
- the peptide analogue or pharmaceutical compositions described herein may be administered at a dosage ranging from 5 to 50 mg/kg, although appropriate dosages may be determined by clinical trials. Dosages of peptide analogue will be approximately 5-50 mg/kg, but are determined more accurately following trials. Patients may be monitored for therapeutic effectiveness by MRI, EDSS, and signs of clinical exacerbation, as described above.
- the peptides were synthesized by solid phase methodology on a peptide synthesizer (Beckman model 990). Peptides with an amidated carboxyl-terminus were prepared with a p-methylbenzhydrylamine resin (MBHA resin); for peptides with a free carboxyl-terminus, a Merrifield resin coupled with the appropriately protected amino acid was used. Both resins were obtained from Bachem Fine Chemicals (Torrance, Calif.). Derivatized amino acids (Bachem Fine Chemicals) used in the synthesis were of the L-configuration unless specified otherwise, and the N-alpha-amino function protected exclusively with the t-butyloxycarbonyl group.
- MBHA resin p-methylbenzhydrylamine resin
- Derivatized amino acids (Bachem Fine Chemicals) used in the synthesis were of the L-configuration unless specified otherwise, and the N-alpha-amino function protected exclusively with the t-butyloxycarbonyl group.
- peptides were further purified by CM-32 carboxymethylcellulose cation-exchange chromatography (Ling et al., 1984). Final purification was achieved by partition chromatography on Sephadex G-25 fine (Ling et al., 1984). The synthetic product was characterized by amino acid analysis, mass spectrometric analysis, and reversed-phase HPLC.
- MBP peptides and analogues were dissolved in phosphate-buffered saline (PBS) and emulsified with an equal volume of incomplete Freund's adjuvant supplemented with 4 mg/ml heat-killed Mycobacterium tuberculosis H37Ra in oil (Difco Laboratories, Inc., Detroit, Mich.). Rats were immunized subcutaneously in the hind foot pads with 0.1 ml of the emulsion and were monitored for clinical signs daily by an observer blind to the treatment protocol. For intravenous injections MBP peptides and analogues were dissolved in normal saline. EAE was scored as follows: 0, clinically normal; 1, flaccid tail; 2, hind limb paralysis; 3, front and hind limb paralysis.
- Antigen specific long-term T cell lines were derived using the method developed by Ben-Nun et al. ( Eur. J. Immunol. 11:195, 1981). Lewis rats were injected as described above. Nine to ten days later draining lymph node cells were cultured (10 7 /ml) for 72 hours in stimulation medium together with 10-20 ⁇ M of the injected peptide. The cells were then collected, washed, and cultured in resting medium. Resting medium was identical to the stimulation medium without autologous serum and with the addition of 10% fetal bovine serum (Gibco) and 12.5% supernatant of Con A-stimulated splenocytes as a source of T cell growth factors.
- Ben-Nun et al. Eur. J. Immunol. 11:195, 1981. Lewis rats were injected as described above. Nine to ten days later draining lymph node cells were cultured (10 7 /ml) for 72 hours in stimulation medium together with 10-20 ⁇ M of the injected peptide. The cells
- MBP peptides and peptide analogues were measured.
- An assay which characterizes the binding of peptides to MHC molecules on antigen presenting cells (APC) was employed (Mozes et al., EMBO J. 8:4049, 1989; Gautam et al., PNAS 91:767, 1994).
- Spleen cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (Hyclone Laboratories, Logan, Utah) in standard polystyrene petri dishes (100 ⁇ 15 mm) in a 37° C. incubator containing 6.5% CO 2 for 3 hours.
- MBP (87-99) analogues were measured using a fluorescence assay. Briefly, 5 ⁇ 10 5 splenic adherent cells in staining buffer (PBS containing 0.1% bovine serum albumin) were mixed with different concentrations ranging from 0-400 ⁇ M of MBP (87-99) analogues in individual wells of U-shape 96-well microculture plates and incubated for 1 hr at 37° C. in a 6.5% CO 2 incubator.
- staining buffer PBS containing 0.1% bovine serum albumin
- the cells were washed twice before cytofluorographic analysis on a FACScan (Becton Dickinson). Fluorescence intensity for each sample was calculated by subtracting the fluorescence obtained from OX positive cells stained with phycoerythrin-streptavidin alone (control staining) from the fluorescence obtained from OX positive cells stained with biotin-labeled MBP (87-99) plus phycoerythrin-streptavidin. Percent inhibition was calculated for each analogue and expressed as IC 50 values.
- mice Nine to ten days following immunization, rats were sacrificed, their draining lymph node removed and a single cell suspension made. Cells were resuspended to 5 ⁇ 10 6 cells per ml in stimulation medium containing Dulbecco's modified Eagle's medium (Gibco BRL, Gaithersburg, Md.) supplemented with 2 mercaptoethanol (5 ⁇ 10 ⁇ 5 M), L-glutamine (2 mM), sodium pyruvate (1 mM), penicillin (100 ⁇ g/ml), streptomycin (100 ⁇ g/ml), and 1% normal rat serum.
- stimulation medium containing Dulbecco's modified Eagle's medium (Gibco BRL, Gaithersburg, Md.) supplemented with 2 mercaptoethanol (5 ⁇ 10 ⁇ 5 M), L-glutamine (2 mM), sodium pyruvate (1 mM), penicillin (100 ⁇ g/ml), streptomycin (100 ⁇ g/ml), and
- the assay 100 ⁇ l of the lymph node suspension was added to 96-well flat-bottom wells in the presence of an equal volume of medium containing 10 ⁇ M of various peptides (including: motilin as a negative control; MBP87-99; medium only, or alanine or D-amino acid substituted at position 91). Cultures were then incubated at 37° C. in humidified air containing 7.5% CO 2 . After 3 days of incubation, 1.0 ⁇ Ci of tritiated thymidine (20 Ci/mM; New England Nuclear) was added to each well and the plates reincubated for an additional 12-16 hours. The plates were then harvested with a Matrix filtermate harvester (Packard) and counted using an Automatic Direct Beta Counter (Packard). Mean cpm and the standard error of the mean were calculated from triplicate wells.
- various peptides including: motilin as a negative control; MBP87-99; medium only, or alanine or D-amino acid substitute
- lymph node cells (LNC) reactive to MBP (87-99) were effectively stimulated with the immunizing peptide.
- LNC failed to respond as well to an unrelated peptide, motilin, to media alone or the peptide analogues (91K>A) and 91K>k).
- T cell lines as established in Example 3 were used. Cells were plated at a concentration of 2 ⁇ 10 4 cells/well with 10 6 irradiated (2500 rad) splenocytes as accessory cells together with different concentrations of antigen, and incubated for three days at 37° C. Each well was pulsed with 2 ⁇ Ci of [ 3 H]-thymidine (specific activity 10 Ci/mmol) for the final 12 to 16 hours. Cultures were harvested on fiberglass filters and the proliferative response expressed as CPM ⁇ SD or as stimulation index (SI) (mean CPM from test cultures divided by mean CPM from control cultures).
- SI stimulation index
- the MBP specific rat T cell line responds to the native peptide; MBP (87-99).
- An irrelevant peptide motilin (MOT) does not stimulate proliferation at any dose.
- Ten different substitutions of position 91 were synthesized and tested in this assay. All ten peptide analogues failed to stimulate proliferation of the rat T cell line at doses ranging from 20-120 ⁇ M. Thus, for proliferation, no substitution at position 91 is tolerated.
- T cell antagonism was detected in a prepulsed proliferation assay as described by De Magistris et al. ( Cell 58:625, 1992) with minor modifications.
- Antigen presenting spleen cells were ⁇ -irradiated (3000 rad) and incubated at a concentration of 10 7 cells/well with 0.2 ⁇ M of the native peptide in stimulation medium in 10 ml tissue culture plates for 2.5 hours at 37° C. in a humidified air chamber containing 6.5% CO 2 .
- Spleen cells were then washed and re-cultured at a concentration of 5 ⁇ 10 5 cells/well in U-shape 96-well microculture plates together with 5 ⁇ 10 4 resting anti MBP (87-99) T cell line L87-99.
- analogues ranging from 10 ⁇ 4 ⁇ M to 10 ⁇ 2 ⁇ M, were added for an additional 60 hours. Each well was pulsed with 1 ⁇ Ci of [ 3 H]-thymidine (specific activity 10 Ci/mmol) for the final 18 hours. The cultures were then harvested on fiberglass filters and the proliferative response expressed as CPM ⁇ SD or as stimulation index (mean CPM from test cultures divided by mean CPM from control cultures).
- the analogue (91K>A) was able to effectively antagonize the response of L87-99 to native peptide at all concentrations (FIG. 5). Greater than 85% inhibition was achieved at 0.01 ⁇ M of (91K>A).
- Rats were given 10 7 L87-99 T cells. All rats developed hind limb paralysis within 5 days. These paralyzed rats were then given a single injection (2 mg/ml) of soluble analogue (91K>A) or PBS. All rats receiving PBS continued to show hind limb paralysis for the following 4 days (FIG. 6, - ⁇ -). In contrast, six out of six rats treated with analogue (91K>A) went into complete remission within 36 hr without further signs of paralysis (p ⁇ 0.015) (FIG. 4, - ⁇ -).
- EAE Peptide 1/ Immunizing Peptides Peptide 2 Mean Maximum Group Peptide 1 Peptide 2 Ratio Incidence Clinical Score 1 MBP (87-99) None 18/18 2.4 ⁇ 0.2 2 MBP (87-99) [91 K > A] None 0/12 0 3 MBP (87-99) MBP (87-99) 1:1 6/6 3 ⁇ 0 4 MBP (87-99) MBP (87-99) 1:1 0/12 0 [91 K > A] 5 MBP (68-88) None 6/6 3 ⁇ 0 6 MBP (68-88) MBP (87-99) 1:1 6/6 3 ⁇ 0 [91 K > A]
- the table shows that co-immunization of the peptide analogue (91K>A) could specifically inhibit induction of EAE by MBP (87-99), but not inhibit induction of EAE by MBP (68-88), a peptide from a different region. Moreover, the peptide analogue did not cause disease.
- Cytokine production in draining lymph node cells from rats injected with MBP (87-99) alone or with the peptide analogue (91K>A) was determined. IFN- ⁇ and TNF- ⁇ production were measured.
- the peptide analogue caused a marked decrease in cytokine production at all doses greater than 20 ⁇ M for TNF- ⁇ and at all doses for IFN- ⁇ .
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Diabetes (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Rehabilitation Therapy (AREA)
- Rheumatology (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Peptide analogues of human myelin basic protein containing residues 87-99 are provided. Residue 91 of the peptide analogues is altered from the L-lysine residue found in the native protein to any other amino acid. Pharmaceutical compositions of the peptide analogues are provided. In addition, the peptide analogues are administered to patients with multiple sclerosis.
Description
- This application is a continuation of U.S. patent application Ser. No. 10/270,707, filed Oct. 11, 2002, now allowed; which is a continuation of U.S. patent application Ser. No. 09/989,476, filed Nov. 19, 2001, now issued as U.S. Pat. No. 6,489,299; which is a continuation of U.S. patent application Ser. No. 08/953,937, filed Oct. 20, 1997, now issued as U.S. Pat. No. 6,369,033; which is a continuation of Ser. No. 08/342,078, now abandoned, all of which are incorporated herein by reference in their entireties.
- 1. Field of the Invention
- The present invention relates generally to methods for treating and preventing multiple sclerosis by using peptide analogues of human myelin basic protein.
- 2. Description of the Related Art
- Multiple sclerosis (MS) is a chronic, inflammatory disease that affects approximately 250,000 individuals in the United States. Although the clinical course may be quite variable, the most common form is manifested by relapsing neurological deficits, in particular, paralysis, sensory deficits, and visual problems.
- The inflammatory process occurs primarily within the white matter of the central nervous system and is mediated by T lymphocytes, B lymphocytes, and macrophages. These cells are responsible for the demyelination of axons. The characteristic lesion in MS is called the plaque due to its macroscopic appearance.
- Multiple sclerosis is thought to arise from pathogenic T cells that somehow evaded mechanisms establishing self-tolerance, and attack normal tissue. T cell reactivity to myelin basic protein may be a critical component in the development of MS. The pathogenic T cells found in lesions have restricted heterogeneity of antigen receptors (TCR). The T cells isolated from plaques show rearrangement of a restricted number of Vα and Vβ gene segments. In addition, the TCRs display several dominant amino acid motifs in the third complementarity determining region (CDR), which is the major antigen contact site. All together, three CDR3 motifs have been identified in T cell clones known to recognize an epitope within amino acids 86-106 of myelin basic protein. These motifs were found in 44% of rearranged TCR sequences involving one particular Vβ gene rearranged in T cells isolated from brain of two patients with MS.
- A definitive treatment for MS has not been established. Historically, corticosteroids and ACTH have been used to treat MS. Basically, these drugs reduce the inflammatory response by toxicity to lymphocytes. Recovery may be hastened from acute exacerbations, but these drugs do not prevent future attacks or prevent development of additional disabilities or chronic progression of MS (Carter and Rodriguez,Mayo Clinic Proc. 64:664, 1989: Weiner and Hafler, Ann. Neurol. 23:211, 1988). In addition, the substantial side effects of steroid treatments make these drugs undesirable for long-term use.
- Other toxic compounds, such as azathioprine, a purine antagonist, cyclophosphamide, and cyclosporine have been used to treat symptoms of MS. Like corticosteroid treatment, these drugs are beneficial at most for a short term and are highly toxic. Side effects include increased malignancies, leukopenias, toxic hepatitis, gastrointestinal problems, hypertension, and nephrotoxicity (Mitchell,Cont. Clin. Neurol. 77:231, 1993: Weiner and Hafler, supra). Antibody based therapies directed toward T cells, such as anti-CD4 antibodies, are currently under study for treatment of MS. However, these agents may cause deleterious side effects by immunocompromising the patient.
- More recently, cytokines such as IFN-γ and IFN-β have been administered in attempts to alleviate the symptoms of MS. However, a pilot study involving IFN-γ was terminated because 7 of 18 patients treated with this drug experienced a clinical exacerbation within one month after initiation of treatment. Moreover, there was an increase in the specific response to MBP (Weiner and Hafler, supra).
- Betaseron, a modified beta interferon, has recently been approved for use in MS patients. Although Betaseron treatment showed some improvement in exacerbation rates (Paty et al.,Neurology 43:662, 1993), there was no difference in the rate of clinical deterioration between treated and control groups (IFNB MS Study Group, Neurology 43:655, 1993; Paty et al., supra). Side effects were commonly observed. The most frequent of such side effects were fever (40%-58% of patients), flu-like symptoms (76% of patients), chills (46% of patients), mylagias (41% of patients), and sweating (23% of patients). In addition, injection site reactions (85%), including inflammation, pain, hypersensitivity and necrosis, were common (IFNB MS Study Group, supra; Connelly, Annals of Pharm. 28:610, 1994).
- In view of the problems associated with existing treatments of MS, there is a compelling need for improved treatments which are more effective and are not associated with such disadvantages. The present invention exploits the use of peptide analogues which antagonize a T cell response to human myelin basic protein to effectively treat MS, while providing other related advantages.
- The present invention generally provides analogues of human myelin basic protein, in which the native L-lysine residue at
position 91 is altered. Within one aspect of the invention, the analogue is a peptide derived from residues 87-99 of human myelin basic protein (MBP), wherein the L-lysine residue normally found atposition 91 of native peptide is altered to another amino acid. The L-lysine residue atposition 91 may be altered to any other amino acid, and preferably to alanine, serine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine or D-lysine. The alteration is preferably a non-conservative change or any D-amino acid. The alteration is also preferably one which results in reduced production of TNF-α from MBP-reactive T cells. - The present invention provides a pharmaceutical composition comprising a peptide analogue according to the embodiments set out above, in which the analogue is contained in a physiologically acceptable carrier or diluent.
- The present invention also provides methods for treating multiple sclerosis by administering to a patient with MS a therapeutically effective amount of a pharmaceutical composition containing analogue as described herein. As noted above, in one aspect a peptide analogue comprises amino acid residues 87-99 of human myelin basic protein, wherein the lysine at
position 91 is replaced by another amino acid. - These and other aspects will become evident upon reference to the following detailed description and attached drawings. In addition, various references are set forth below which describe in more detail certain procedures or compositions. Each of these references are incorporated herein by reference in their entirety as if each were individually noted for incorporation.
- FIG. 1 depicts DNA and predicted amino acid sequence for human myelin basic protein.
- FIG. 2 is a graph demonstrating competition for MHC binding between MBP (87-99) and the alanine analogue of residue 91 (91K>A). The alanine-substituted analogue was tested at concentrations ranging from 0 to 200 μM for its ability to inhibit the binding of 10 μM biotin-labeled MBP (87-99). The data are presented as the percentage of inhibition of mean relative binding. Fifty percent inhibition establishes the IC50 value.
- FIG. 3 is a graph displaying the proliferative response of the T cell line NBI to position 91-substituted analogues. Ten different substitutions were tested. The proliferative response of NBI in response to concentrations of analogues ranging from 0 to 150 μM was determined. Proliferation is shown as counts per minute. Standard errors of the mean were less than ±10%. MBP 87-99: peptides from human myelin basic protein containing residues 87 to 99: K, lysine; R, arginine; N, asparagine; H, histidine; L, leucine; S, serine; G, glycine; k, D-lysine; E, glutamic acid; F, phenylalanine; and A, alanine.
- FIG. 4 is a graph displaying the proliferative response of MBP-reactive lymph node cells to position 91-substituted analogues. Two different substitutions were tested. The proliferative response of lymph node cells to 10 μM of MBP (87-99), motilin, A91 or K91 was determined. Proliferation is shown as counts per minute. BKG, no peptide added; 87-99, MBP (87-99); motilin, an unrelated peptide; A91, peptide analogue with alanine at position 91: K91, peptide analogue with D-lysine at
position 91. - FIG. 5 is a graph illustrating the ability of alanine-substituted analogues to antagonize T cells. The proliferative response of the T cell line, L87-99, to 2.2 μM MBP (87-99) in the presence of 0.001-0.01 μM of the peptide analogue (91K>A) is shown. Results are shown as stimulation index ±SE.
- FIG. 6 is a graph depicting the reversal of EAE by soluble peptide therapy. Rats were injected with 107 L87-99 cells, a procedure which induces EAE by adoptive transfer. Five days later, when clinical disease was apparent, rats were randomly distributed into three groups of six rats each. These groups were injected intraperitoneally with 2 mg/ml of either MBP (87-99) (91K>A) (--), or PBS (-□-). EAE was graded daily and is presented as a mean score ±SE.
- FIG. 7 are a pair of graphs showing the amount of IFN-γ and TNF-α production from draining lymph node cells (DLNC). DLNC were stimulated with MBP (87-99) alone () or with the peptide analogue (91K>A) (▪).
- Prior to setting forth the invention, it may be helpful to an understanding thereof to set forth definitions of certain terms that will be used hereinafter.
- “Human myelin basic protein” (“MBP”) refers to a protein found in the cytoplasm of human oligodendroglial cells. The nucleotide sequence and predicted amino acid sequence of human MBP are presented in FIG. 1 (SEQ. ID Nos. 1 and 2). Although not depicted in FIG. 1, different molecular forms of human myelin basic protein generated by differential splicing or post-translational modification are also within the scope of this invention.
- “Peptide analogues” of myelin basic protein are derived from residues 87-99 of MBP and contain one difference in amino acid sequence between the analogue and native human myelin basic protein, which is a difference at
residue 91. Unless otherwise indicated, a named amino acid refers to the L-form. An L-amino acid from the native peptide may be altered to any other one of the 20 L-amino acids commonly found in proteins, any one of the corresponding D-amino acids, rare amino acids, such as 4-hydroxyproline, and hydroxylysine, or a non-protein amino acid, such as β-alanine and homoserine. Also included with the scope of the present invention are amino acids which have been altered by chemical means such as methylation (e.g., α-methylvaline), amidation of the C-terminal amino acid by an alkylamine such as ethylamine, ethanolamine, and ethylene diamine, and acylation or methylation of an amino acid side chain function (e.g., acylation of the epsilon amino group of lysine). - “
Residue 91,” also called “position 91,” refers toamino acid 91 of human myelin basic protein (see FIG. 1; SEQ. ID No. ______) or the amino acid at the comparative position for a peptide derived from MBP. The numbering system used relates to the amino acid position within the native protein, regardless of the length of the peptide or its position within that peptide. - As noted above, the present invention provides peptide analogues of myelin basic protein in which the naturally occurring L-lysine at
position 91 is altered to another amino acid. The peptide analogues are derived from residues 87-99 of MBP.Residue 91, which is L-lysine in the native protein, is the key residue. Within this invention, analogues have an amino acid other than L-lysine atposition 91. As noted above, any amino acid alteration atposition 91 is within the scope of this invention. Preferred peptide analogues include alteration of L-lysine to any one of the following amino acids: D-lysine, alanine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine or serine. These amino acids include both conservative (similar charge, polarity, hydrophobicity, and bulkiness) and non-conservative amino acids. Although typically one might expect that only non-conservative amino acid alterations would provide a therapeutic effect, unexpectedly even conservative changes (e.g., arginine) greatly affect the function of the peptide analogue as compared to the native peptide. Such diversity of substitution is further illustrated by the fact that the preferred amino acids noted above are hydrophobic and hydrophilic, charged and uncharged, polar and non-polar. - Peptide analogues may be synthesized by standard chemistry techniques, including synthesis by automated procedure. In general, peptide analogues are prepared by solid-phase peptide synthesis methodology which involves coupling each protected amino acid residue to a resin support, preferably a 4-methyl-benzhydrylamine resin, by activation with dicyclohexylcarbodimide to yield a peptide with a C-terminal amide. Alternatively, a chloromethyl resin (Merrifield resin) may be used to yield a peptide with a free carboxylic acid at the C-terminus. Side-chain functional groups are protected as follows: benzyl for serine, threonine, glutamic acid, and aspartic acid; tosyl for histidine and arginine; 2-chlorobenzyloxycarbonyl for lysine and 2,6-dichlorobenzyl for tyrosine. Following coupling, the t-butyloxycarbonyl protecting group on the alpha amino function of the added amino acid is removed by treatment with trifluoroacetic acid followed by neutralization with di-isopropyl-ethylamine. The next protected residue is then coupled onto the free amino group, propagating the peptide chain. After the last residue has been attached, the protected peptide-resin is treated with hydrogen fluoride to cleave the peptide from the resin, as well as deprotect the side chain functional groups. Crude product can be further purified by gel filtration, HPLC, partition chromatography, or ion-exchange chromatography.
- Peptide analogues within the present invention should (a) compete for the binding of MBP (87-99) to MHC; (b) not cause proliferation of an MBP (87-99)-reactive T cell line; and (c) inhibit induction of EAE (experimental allergic encephalomyelitis) by MBP (87-99) in rodents.
- Thus, candidate peptide analogues may be screened for their ability to treat MS by (1) an assay measuring competitive binding to MHC, (2) an assay measuring a T cell proliferation, and (3) an assay assessing inhibition of EAE induction. Those analogues that inhibit binding of the native peptides, do not stimulate proliferation of MBP-reactive cell lines, and inhibit the development of EAE by native peptide, are useful therapeutics. Although not essential, a further safety assay may be performed to demonstrate that the analogue does not itself induce EAE.
- Binding of peptides to MHC molecules may be assayed on whole cells. Briefly, Lewis rat spleen cells are cultured for 3 hours to allow adherent cells to stick to polystyrene petri dishes. Non-adherent cells are removed. Adherent cells, which contain cells expressing MHC class II molecules, are collected by scraping the dishes. The binding of peptide analogues to cells is measured by a fluorescence assay. In this assay, splenic adherent cells are mixed with different concentrations of peptide analogues and incubated for 1 hour at 37° in a CO2 incubator. Following incubation, biotin-labeled MBP (87-99) is added to the culture wells. The cells are incubated for another hour and then washed three times in medium. Phycoerythrin-conjugated or fluorescein-conjugated streptavidin is added along with a fluorochrome-labeled OX-6 or OX-17 monoclonal antibody, which reacts with rat MHC Class II I-A and I-E, respectively. The cells are washed twice before analysis by flow cytometry. Fluorescence intensity is calculated by subtracting the fluorescence value obtained from cells stained with phycoerythrin-streptavidin alone (control staining) from the fluorescence value obtained from biotin-labeled MBP (87-99) plus phycoerythrin-streptavidin (experimental staining). Staining without analogue establishes a 100% value. Percent inhibition is calculated for each analogue and expressed as IC50 values. A peptide analogue with an IC50 value of less than 100 μM is suitable for further screenings.
- Candidate peptide analogues are further tested for their property of causing or inhibiting proliferation of T cell lines. Two different assays may be used as alternatives. The first measures the ability of the analogue to cause proliferation of T cells in a direct fashion. The second measures the ability of the peptide analogue to inhibit proliferation of T cells induced by native MBP (87-99) peptide.
- In the direct proliferation assay, MBP (87-99) reactive T cell lines may be used as target cells. T cell lines are established from lymph nodes taken from rats injected with MBP (87-99). Lymph node cells are isolated and cultured for 5 to 8 days with MBP (87-99) and IL-2 as a source of T cell growth factors. Viable cells are recovered and a second round of stimulation is performed with MBP (87-99) and irradiated splenocytes as a source of growth factors. After 5 to 6 passages in this manner, the proliferative potential of the cell lines are determined. MBP-reactive lines are used in the proliferation assay. In this assay, T cell lines are cultured for three days with various concentrations of peptide analogues and irradiated, autologous splenocytes. After three days, 0.5-1.0 μCi of [3H]-thymidine is added for 12-16 hours. Cultures are harvested and incorporated counts determined. Mean CPM and standard error of the mean are calculated from triplicate cultures.
- As an alternative to the use of T cell lines as described above, draining lymph node cells from Lewis rats immunized with MBP (87-99) may be used. Preferably, this assay is used in combination with the proliferation assay using T cell lines. Briefly, Lewis rats are injected subcutaneously with MBP (87-99) peptide in complete Freund's adjuvant. Nine to ten days later, draining lymph node cells are isolated and single-cell suspensions are prepared. Lymph node cells are incubated with various concentrations of peptide analogues for three days in a humidified air chamber containing 6.5% CO2. After incubation, the cultures are pulsed with 1-2 μCi of [3H]-thymidine for 12-18 hours. Cultures are harvested on fiberglass filters and counted in a scintillation counter. Mean CPM and the standard error of the mean are calculated from data determined in triplicate cultures. Peptide analogues yielding results that are more than three standard deviations of the mean response with a comparable concentration of MBP (87-99) are considered non-stimulatory. Peptide analogues which do not stimulate proliferation at concentrations of less than or equal to 50 μM are suitable for further screenings.
- The second or alternative assay is a competition assay for T cell proliferation. In this assay, antigen presenting spleen cells are first irradiated and then incubated with native MBP (87-99) peptide for 2-4 hours. These cells are then washed and further cultured with T cells reactive to MBP (87-99). Various concentrations of candidate peptide analogues are included in cultures for an additional 3 days. Following this incubation period, each culture is pulsed with 1 μCi of [3H]-thymidine for an additional 12-18 hours. Cultures are then harvested on fiberglass filters and counted as above. Mean CPM and standard error of the mean are calculated from data determined in triplicate cultures. Peptide analogues which inhibit proliferation to approximately 25% at a concentration of 50 μM or greater are suitable for further screening.
- Candidate peptides that compete for binding of MBP (87-99) to MHC and do not cause direct proliferation of T cell line or can inhibit proliferation by MBP (87-99), are further tested for their ability to inhibit the induction of EAE by MBP (87-99). Briefly, 500 μg of MBP (87-99) is injected as an emulsion in complete Freund's adjuvant supplemented with heat killedMycobacterium tuberculosis (H37Ra). Rats are injected subcutaneously at the base of the tail with 200 μl of the emulsion. Rats are divided into two groups. Approximately 2 days prior to disease induction (usually 10 days following injection of MBP (87-99)) rats are injected intraperitoneally either with PBS or peptide analogues in PBS. Animals are monitored for clinical signs on a daily basis by an observer blind to the treatment protocol. EAE is scored on a scale of 0-3: 0, clinically normal; 1, flaccid tail paralysis; 2, hind limb paralysis; 3, front and hind limbs affected. Peptide analogues injected at 5 mg/kg or less (approximately 1 mg per rat) are considered to inhibit the development of EAE if there is a 50% reduction in the mean cumulative score over seven days following onset of disease symptoms in the control group.
- In addition, as a safety measure, but not essential to this invention, suitable peptide analogues may be tested for direct induction of EAE. As described in detail in Example 2, various amounts of peptide analogues are injected at the base of the tail of rats, and the rats examined daily for signs of EAE. A peptide analogue which is not considered to cause EAE has a mean cumulative score of less than or equal to 1 over seven days when 1 mg (5 mg/kg) in complete Freund's adjuvant is injected.
- As noted above, the present invention provides methods for treating and preventing multiple sclerosis by administering to the patient a therapeutically effective amount of a peptide analogue of human myelin basic protein as described herein. Patients suitable for such treatment may be identified by criteria establishing a diagnosis of clinically definite MS as defined by the workshop on the diagnosis of MS (Poser et al.,Ann. Neurol. 13:227, 1983). Briefly, an individual with clinically definite MS has had two attacks and clinical evidence of either two lesions or clinical evidence of one lesion and paraclinical evidence of another, separate lesion. Definite MS may also be diagnosed by evidence of two attacks and oligoclonal bands of IgG in cerebrospinal fluid or by combination of an attack, clinical evidence of two lesions and oligoclonal band of IgG in cerebrospinal fluid. Slightly lower criteria are used for a diagnosis of clinically probable MS.
- Effective treatment of multiple sclerosis may be examined in several different ways. Satisfying any of the following criteria evidences effective treatment. Three main criteria are used: EDSS (extended disability status scale), appearance of exacerbations or MRI (magnetic resonance imaging).
- The EDSS is a means to grade clinical impairment due to MS (Kurtzke,Neurology 33:1444, 1983). Eight functional systems are evaluated for the type and severity of neurologic impairment. Briefly, prior to treatment, patients are evaluated for impairment in the following systems: pyramidal, cerebella, brainstem, sensory, bowel and bladder, visual, cerebral, and other. Follow-ups are conducted at defined intervals. The scale ranges from 0 (normal) to 10 (death due to MS). A decrease of one full step defines an effective treatment in the context of the present invention (Kurtzke, Ann. Neurol. 36:573-79, 1994).
- Exacerbations are defined as the appearance of a new symptom that is attributable to MS and accompanied by an appropriate new neurologic abnormality (IFNB MS Study Group, supra). In addition, the exacerbation must last at least 24 hours and be preceded by stability or improvement for at least 30 days. Briefly, patients are given a standard neurological examination by clinicians. Exacerbations are either mild, moderate, or severe according to changes in a Neurological Rating Scale (Sipe et al.,Neurology 34:1368,1984). An annual exacerbation rate and proportion of exacerbation-free patients are determined. Therapy is deemed to be effective if there is a statistically significant difference in the rate or proportion of exacerbation-free patients between the treated group and the placebo group for either of these measurements. In addition, time to first exacerbation and exacerbation duration and severity may also be measured. A measure of effectiveness as therapy in this regard is a statistically significant difference in the time to first exacerbation or duration and severity in the treated group compared to control group.
- MRI can be used to measure active lesions using gadolinium-DTPA-enhanced imaging (McDonald et al.Ann. Neurol. 36:14, 1994) or the location and extent of lesions using T2-weighted techniques. Briefly, baseline MRIs are obtained. The same imaging plane and patient position are used for each subsequent study. Positioning and imaging sequences are chosen to maximize lesion detection and facilitate lesion tracing. The same positioning and imaging sequences are used on subsequent studies. The presence, location and extent of MS lesions are determined by radiologists. Areas of lesions are outlined and summed slice by slice for total lesion area. Three analyses may be done: evidence of new lesions, rate of appearance of active lesions, percentage change in lesion area (Paty et al., Neurology 43:665, 1993). Improvement due to therapy is established when there is a statistically significant improvement in an individual patient compared to baseline or in a treated group versus a placebo group.
- Candidate patients for prevention may be identified by the presence of genetic factors. For example, a majority of MS patients have HLA-type DR2a and DR2b. The MS patients having genetic dispositions to MS who are suitable for treatment fall within two groups. First are patients with early disease of the relapsing remitting type. Entry criteria would include disease duration of more than one year, EDSS score of 1.0 to 3.5, exacerbation rate of more than 0.5 per year, and free of clinical exacerbations for 2 months prior to study. The second group would include people with disease progression greater than 1.0 EDSS unit/year over the past two years.
- Efficacy of the peptide analogue in the context of prevention is judged based on the following criteria: frequency of MBP reactive T cells determined by limiting dilution, proliferation response of MBP reactive T cell lines and clones, cytokine profiles of T cell lines and clones to MBP established from patients. Efficacy is established by decrease in frequency of reactive cells, a reduction in thymidine incorporation with altered peptide compared to native, and a reduction in TNF and IFN-α. Clinical measurements include the relapse rate in one and two year intervals, and a change in EDSS, including time to progression from baseline of 1.0 unit on the EDSS which persists for six months. On a Kaplan-Meier curve, a delay in sustained progression of disability shows efficacy. Other criteria include a change in area and volume of T2 images on MRI, and the number and volume of lesions determined by gadolinium enhanced images.
- Peptide analogues of the present invention may be administered either alone, or as a pharmaceutical composition. Briefly, pharmaceutical compositions of the present invention may comprise one or more of the peptide analogues described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like, carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and preservatives. In addition, pharmaceutical compositions of the present invention may also contain one or more additional active ingredients, such as, for example, cytokines like β-interferon.
- Compositions of the present invention may be formulated for the manner of administration indicated, including for example, for oral, nasal, venous, intracranial, intraperitoneal, subcutaneous, or intramuscular administration. Within other embodiments of the invention, the compositions described herein may be administered as part of a sustained release implant. Within yet other embodiments, compositions of the present invention may be formulized as a lyophilizate, utilizing appropriate excipients which provide stability as a lyophilizate, and subsequent to rehydration.
- Pharmaceutical compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented). The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease. Within particularly preferred embodiments of the invention, the peptide analogue or pharmaceutical compositions described herein may be administered at a dosage ranging from 5 to 50 mg/kg, although appropriate dosages may be determined by clinical trials. Dosages of peptide analogue will be approximately 5-50 mg/kg, but are determined more accurately following trials. Patients may be monitored for therapeutic effectiveness by MRI, EDSS, and signs of clinical exacerbation, as described above.
- The following examples are offered by way of illustration and not by way of limitation.
- The peptides were synthesized by solid phase methodology on a peptide synthesizer (Beckman model 990). Peptides with an amidated carboxyl-terminus were prepared with a p-methylbenzhydrylamine resin (MBHA resin); for peptides with a free carboxyl-terminus, a Merrifield resin coupled with the appropriately protected amino acid was used. Both resins were obtained from Bachem Fine Chemicals (Torrance, Calif.). Derivatized amino acids (Bachem Fine Chemicals) used in the synthesis were of the L-configuration unless specified otherwise, and the N-alpha-amino function protected exclusively with the t-butyloxycarbonyl group. Side-chain functional groups were protected as follows: benzyl for serine, threonine, glutamic acid, and aspartic acid; tosyl for histidine and arginine; 2-chlorobenzyloxycarbonyl for lysine and 2,6-dichlorobenzyl for tyrosine.
- Coupling of the carboxyl-terminal amino acid to the MBHA resin was carried out with dicyclohexylcarbodiimide and the subsequent amino acids were coupled with dicyclohexylcarbodiimide according to Ling et al. (Proc. Natl. Acad. Sci. USA 81:4302, 1984). After the last amino acid was incorporated, the t-butyloxycarbonyl protecting group was removed and the peptide-resin conjugate treated with a mixture of 14 ml hydrofluoric acid (HF), 1.4 ml anisole, and 0.28 ml methylethyl sulfide per gram of resin conjugate at −20° C. for 0.5 hr and at 0° C. for 0.5 hr. HF was removed in vacuum at 0° C., and the resulting peptide and resin mixture was washed twice with diethyl ether and twice with chloroform and diethyl ether alternately. The peptide was extracted five times with 2 M acetic acid, and the extract lyophilized. The lyophilized product was first purified on a column of Sephadex G-25 fine (Pharmacia-LKB, Piscataway, N.J.) developed in 30% acetic acid to remove the truncated fragments and inorganic salts (Ling et al., 1984). Next, peptides were further purified by CM-32 carboxymethylcellulose cation-exchange chromatography (Ling et al., 1984). Final purification was achieved by partition chromatography on Sephadex G-25 fine (Ling et al., 1984). The synthetic product was characterized by amino acid analysis, mass spectrometric analysis, and reversed-phase HPLC.
- MBP peptides and analogues were dissolved in phosphate-buffered saline (PBS) and emulsified with an equal volume of incomplete Freund's adjuvant supplemented with 4 mg/ml heat-killedMycobacterium tuberculosis H37Ra in oil (Difco Laboratories, Inc., Detroit, Mich.). Rats were immunized subcutaneously in the hind foot pads with 0.1 ml of the emulsion and were monitored for clinical signs daily by an observer blind to the treatment protocol. For intravenous injections MBP peptides and analogues were dissolved in normal saline. EAE was scored as follows: 0, clinically normal; 1, flaccid tail; 2, hind limb paralysis; 3, front and hind limb paralysis.
- Antigen specific long-term T cell lines were derived using the method developed by Ben-Nun et al. (Eur. J. Immunol. 11:195, 1981). Lewis rats were injected as described above. Nine to ten days later draining lymph node cells were cultured (107/ml) for 72 hours in stimulation medium together with 10-20 μM of the injected peptide. The cells were then collected, washed, and cultured in resting medium. Resting medium was identical to the stimulation medium without autologous serum and with the addition of 10% fetal bovine serum (Gibco) and 12.5% supernatant of Con A-stimulated splenocytes as a source of T cell growth factors. Con A supernatant was prepared as described elsewhere (Ben-Nun et al., Eur. J. Immunol. 11:195, 1981). After an additional 5 to 8 days, cells were collected and either tested for antigen-specific proliferation or cultured for additional cycles.
- The ability of MBP peptides and peptide analogues to bind MHC was measured. An assay which characterizes the binding of peptides to MHC molecules on antigen presenting cells (APC) was employed (Mozes et al.,EMBO J. 8:4049, 1989; Gautam et al., PNAS 91:767, 1994). Spleen cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (Hyclone Laboratories, Logan, Utah) in standard polystyrene petri dishes (100×15 mm) in a 37° C. incubator containing 6.5% CO2 for 3 hours. Thereafter, non-adherent cells were removed, and the plates were washed three times with PBS. Adherent cells were collected using a cell scraper. The binding of MBP (87-99) analogues was measured using a fluorescence assay. Briefly, 5×105 splenic adherent cells in staining buffer (PBS containing 0.1% bovine serum albumin) were mixed with different concentrations ranging from 0-400 μM of MBP (87-99) analogues in individual wells of U-shape 96-well microculture plates and incubated for 1 hr at 37° C. in a 6.5% CO2 incubator. Following incubation, 10 μM of biotin-labeled MBP (87-99) was added to culture wells for 1 h. Cells were washed three times with the staining buffer. Phycoerythrin-conjugated or fluoroscein-conjugated streptavidin (Becton Dickinson, San Jose, Calif.) was added as a second step reagent (1 μg/well) along with 1 μg/well of fluorochrome-labeled OX-6 or OX-17 monoclonal antibody (Pharmingen, San Diego, Calif.), which reacts with rat MHC class II I-A or I-E, respectively. The cells were washed twice before cytofluorographic analysis on a FACScan (Becton Dickinson). Fluorescence intensity for each sample was calculated by subtracting the fluorescence obtained from OX positive cells stained with phycoerythrin-streptavidin alone (control staining) from the fluorescence obtained from OX positive cells stained with biotin-labeled MBP (87-99) plus phycoerythrin-streptavidin. Percent inhibition was calculated for each analogue and expressed as IC50 values.
- As seen in FIG. 2, the native peptide effectively competed with itself for binding to APC (IC50=14 μM). The alanine-substitution analogue (91K>A), competed nearly as effectively (IC50=21 μM). These results indicate that the amino acid at
position 91 can be changed without reducing ability of the analogue to be presented to T cells. - Female Lewis rates, approximately six weeks old, were purchased from Harlan Sprague, Indianapolis, Ind. MBP peptides were dissolved in phosphate-buffered saline (PBS) and emulsified with an equal volume of complete Freund's adjuvant (Difco Laboratories, Inc., Detroit, Mich.) supplemented with 4 mg/ml of heat-killed Myobacterium tuberculosis H37Ra in oil (Difco). Rats were immunized subcutaneously in the base of the tail with 0.1 ml containing 100 μg of the peptide in the emulsion. Nine to ten days following immunization, rats were sacrificed, their draining lymph node removed and a single cell suspension made. Cells were resuspended to 5×106 cells per ml in stimulation medium containing Dulbecco's modified Eagle's medium (Gibco BRL, Gaithersburg, Md.) supplemented with 2 mercaptoethanol (5×10−5 M), L-glutamine (2 mM), sodium pyruvate (1 mM), penicillin (100 μg/ml), streptomycin (100 μg/ml), and 1% normal rat serum.
- For the assay, 100 μl of the lymph node suspension was added to 96-well flat-bottom wells in the presence of an equal volume of medium containing 10 μM of various peptides (including: motilin as a negative control; MBP87-99; medium only, or alanine or D-amino acid substituted at position 91). Cultures were then incubated at 37° C. in humidified air containing 7.5% CO2. After 3 days of incubation, 1.0 μCi of tritiated thymidine (20 Ci/mM; New England Nuclear) was added to each well and the plates reincubated for an additional 12-16 hours. The plates were then harvested with a Matrix filtermate harvester (Packard) and counted using an Automatic Direct Beta Counter (Packard). Mean cpm and the standard error of the mean were calculated from triplicate wells.
- As seen in FIG. 4, lymph node cells (LNC) reactive to MBP (87-99) were effectively stimulated with the immunizing peptide. LNC failed to respond as well to an unrelated peptide, motilin, to media alone or the peptide analogues (91K>A) and 91K>k).
- For this antigen-specific proliferation assay, T cell lines as established in Example 3 were used. Cells were plated at a concentration of 2×104 cells/well with 106 irradiated (2500 rad) splenocytes as accessory cells together with different concentrations of antigen, and incubated for three days at 37° C. Each well was pulsed with 2 μCi of [3H]-thymidine (
specific activity 10 Ci/mmol) for the final 12 to 16 hours. Cultures were harvested on fiberglass filters and the proliferative response expressed as CPM±SD or as stimulation index (SI) (mean CPM from test cultures divided by mean CPM from control cultures). - As seen in FIG. 3, the MBP specific rat T cell line responds to the native peptide; MBP (87-99). An irrelevant peptide motilin (MOT) does not stimulate proliferation at any dose. Ten different substitutions of
position 91 were synthesized and tested in this assay. All ten peptide analogues failed to stimulate proliferation of the rat T cell line at doses ranging from 20-120 μM. Thus, for proliferation, no substitution atposition 91 is tolerated. - T cell antagonism was detected in a prepulsed proliferation assay as described by De Magistris et al. (Cell 58:625, 1992) with minor modifications. Antigen presenting spleen cells were γ-irradiated (3000 rad) and incubated at a concentration of 107 cells/well with 0.2 μM of the native peptide in stimulation medium in 10 ml tissue culture plates for 2.5 hours at 37° C. in a humidified air chamber containing 6.5% CO2. Spleen cells were then washed and re-cultured at a concentration of 5×105 cells/well in U-shape 96-well microculture plates together with 5×104 resting anti MBP (87-99) T cell line L87-99. Various concentrations of analogues, ranging from 10−4 μM to 10−2 μM, were added for an additional 60 hours. Each well was pulsed with 1 μCi of [3H]-thymidine (
specific activity 10 Ci/mmol) for the final 18 hours. The cultures were then harvested on fiberglass filters and the proliferative response expressed as CPM±SD or as stimulation index (mean CPM from test cultures divided by mean CPM from control cultures). The analogue (91K>A) was able to effectively antagonize the response of L87-99 to native peptide at all concentrations (FIG. 5). Greater than 85% inhibition was achieved at 0.01 μM of (91K>A). - Rats were given 107 L87-99 T cells. All rats developed hind limb paralysis within 5 days. These paralyzed rats were then given a single injection (2 mg/ml) of soluble analogue (91K>A) or PBS. All rats receiving PBS continued to show hind limb paralysis for the following 4 days (FIG. 6, -□-). In contrast, six out of six rats treated with analogue (91K>A) went into complete remission within 36 hr without further signs of paralysis (p<0.015) (FIG. 4, --).
- The ability of peptide analogues to cause EAE is assessed in vivo. Rats were injected with MBP (87-99) or (91K>A) peptide analogue as described in Example 2. Animals were monitored daily for evidence of EAE. Rats receiving MBP (87-99) had 100% incidence (18/18 rats) of EAE with a mean maximum clinical score of 2.4±0.2. In contrast, 0/12 rats receiving the peptide analogue (91k>A) had EAE. Therefore, this peptide analogue does not induce EAE.
- The ability of peptide analogues to prevent EAE when co-injected with EAE-inducing MBP (87-99) peptide was examined. MBP (87-99) was injected alone or with the peptide analogue (91K>A) in complete Freund's adjuvant at a 1:1 molar ratio. Incidence of EAE, and mean maximum clinical score data were collected.
EAE Peptide 1/ Immunizing Peptides Peptide 2 Mean Maximum Group Peptide 1 Peptide 2Ratio Incidence Clinical Score 1 MBP (87-99) None 18/18 2.4 ± 0.2 2 MBP (87-99) [91 K > A] None 0/12 0 3 MBP (87-99) MBP (87-99) 1:1 6/6 3 ± 0 4 MBP (87-99) MBP (87-99) 1:1 0/12 0 [91 K > A] 5 MBP (68-88) None 6/6 3 ± 0 6 MBP (68-88) MBP (87-99) 1:1 6/6 3 ± 0 [91 K > A] - The table shows that co-immunization of the peptide analogue (91K>A) could specifically inhibit induction of EAE by MBP (87-99), but not inhibit induction of EAE by MBP (68-88), a peptide from a different region. Moreover, the peptide analogue did not cause disease.
- Cytokine production in draining lymph node cells from rats injected with MBP (87-99) alone or with the peptide analogue (91K>A) was determined. IFN-γ and TNF-α production were measured.
- Draining lymph node cells (107 cells/ml) were stimulated in vitro with different concentrations of MBP (87-99) or peptide analogue. Supernatants were collected after 24 and 48 hours. IFN-γ was determined after 48 hours by use of a rat IFN-γ ELISA kit (GIBCO BRL). TNF-α was measured after 24 hours by ELISA kit (Genzyme Corp., Cambridge, Mass.).
- As can be seen in FIG. 7, the peptide analogue caused a marked decrease in cytokine production at all doses greater than 20 μM for TNF-α and at all doses for IFN-γ.
- All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
- From the foregoing, it will be evident that although specific embodiments of the invention have been described herein for the purpose of illustrating the invention, various modifications may be made without deviating from the spirit and scope of the invention.
-
1 2 1 516 DNA Homo sapiens CDS (1)...(516) 1 atg gcg tca cag aag aga ccc tcc cag agg cac gga tcc aag tac ctg 48 Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Tyr Leu 1 5 10 15 gcc aca gca agt acc atg gac cat gcc agg cat ggc ttc ctc cca agg 96 Ala Thr Ala Ser Thr Met Asp His Ala Arg His Gly Phe Leu Pro Arg 20 25 30 cac aga gac acg ggc atc ctt gac tcc atc ggg cgc ttc ttt ggc ggt 144 His Arg Asp Thr Gly Ile Leu Asp Ser Ile Gly Arg Phe Phe Gly Gly 35 40 45 gac agg ggt gcg cca aag cgg ggc tct ggc aag gac tca cac cac ccg 192 Asp Arg Gly Ala Pro Lys Arg Gly Ser Gly Lys Asp Ser His His Pro 50 55 60 gca aga act gct cac tat ggc tcc ctg ccc cag aag tca cac ggc cgg 240 Ala Arg Thr Ala His Tyr Gly Ser Leu Pro Gln Lys Ser His Gly Arg 65 70 75 80 acc caa gat gaa aac ccc gta gtc cac ttc ttc aag aac att gtg acg 288 Thr Gln Asp Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr 85 90 95 cct cgc aca cca ccc ccg tcg cag gga aag ggg aga gga ctg tcc ctg 336 Pro Arg Thr Pro Pro Pro Ser Gln Gly Lys Gly Arg Gly Leu Ser Leu 100 105 110 agc aga ttt agc tgg ggg gcc gaa ggc cag aga cca gga ttt ggc tac 384 Ser Arg Phe Ser Trp Gly Ala Glu Gly Gln Arg Pro Gly Phe Gly Tyr 115 120 125 gga ggc aga gcg tcc gac tat aaa tcg gct cac aag gga ttc aag gga 432 Gly Gly Arg Ala Ser Asp Tyr Lys Ser Ala His Lys Gly Phe Lys Gly 130 135 140 gtc gat gcc cag ggc acg ctt tcc aaa att ttt aag ctg gga gga aga 480 Val Asp Ala Gln Gly Thr Leu Ser Lys Ile Phe Lys Leu Gly Gly Arg 145 150 155 160 gat agt cgc tct gga tca ccc atg gct aga cgc tga 516 Asp Ser Arg Ser Gly Ser Pro Met Ala Arg Arg * 165 170 2 171 PRT Homo sapiens 2 Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His Gly Ser Lys Tyr Leu 1 5 10 15 Ala Thr Ala Ser Thr Met Asp His Ala Arg His Gly Phe Leu Pro Arg 20 25 30 His Arg Asp Thr Gly Ile Leu Asp Ser Ile Gly Arg Phe Phe Gly Gly 35 40 45 Asp Arg Gly Ala Pro Lys Arg Gly Ser Gly Lys Asp Ser His His Pro 50 55 60 Ala Arg Thr Ala His Tyr Gly Ser Leu Pro Gln Lys Ser His Gly Arg 65 70 75 80 Thr Gln Asp Glu Asn Pro Val Val His Phe Phe Lys Asn Ile Val Thr 85 90 95 Pro Arg Thr Pro Pro Pro Ser Gln Gly Lys Gly Arg Gly Leu Ser Leu 100 105 110 Ser Arg Phe Ser Trp Gly Ala Glu Gly Gln Arg Pro Gly Phe Gly Tyr 115 120 125 Gly Gly Arg Ala Ser Asp Tyr Lys Ser Ala His Lys Gly Phe Lys Gly 130 135 140 Val Asp Ala Gln Gly Thr Leu Ser Lys Ile Phe Lys Leu Gly Gly Arg 145 150 155 160 Asp Ser Arg Ser Gly Ser Pro Met Ala Arg Arg 165 170
Claims (11)
1. A peptide analogue derived from residues 87-99 of human myelin basic protein, wherein at least the lysine residue at position 91 is altered to another amino acid; and wherein the peptide analogue is not in the form of a noncovalent complex with a Major Histocompatibility (MHC) component.
2. The peptide analogue of claim 1 wherein the amino acid at position 91 is altered to a non-conservative amino acid.
3. The peptide analogue of claim 1 wherein the amino acid at position 91 is altered with an amino acid selected from the group consisting of D-lysine, alanine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine and serine.
4. The peptide analogue of claim 1 wherein the amino acid at position 91 is altered to alanine.
5. The peptide analogue of claim 1 wherein the analogue causes reduced expression of TNF-α from MBP-reactive T cells relative to the native sequence.
6. A pharmaceutical composition comprising a peptide analogue according to claim 1 in combination with a physiologically acceptable carrier or diluent.
7. A method of treating multiple sclerosis, comprising administering to a patient a therapeutically effective amount of a pharmaceutical composition comprising the peptide analogue of claim 1 , in combination with a physiologically acceptable carrier or diluent.
8. The method of claim 7 wherein the amino acid at position 91 is altered with an amino acid selected from the group consisting of D-lysine, alanine, glycine, glutamic acid, phenylalanine, arginine, asparagine, histidine, leucine and serine.
9. The method of claim 7 wherein the amino acid at position 91 is altered to a non-conservative amino acid.
10. The method of claim 7 wherein the amino acid at position 91 is altered to alanine.
11. The method of claim 7 wherein the analogue causes reduced expression of TNF-α from MBP-reactive T cells relative to the native sequence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/820,983 US20040214775A1 (en) | 1994-11-18 | 2004-04-08 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34207894A | 1994-11-18 | 1994-11-18 | |
US08/953,937 US6369033B1 (en) | 1994-11-18 | 1997-10-20 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US09/989,476 US6489299B2 (en) | 1994-11-18 | 2001-11-19 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US10/270,707 US6740638B2 (en) | 1994-11-18 | 2002-10-11 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US10/820,983 US20040214775A1 (en) | 1994-11-18 | 2004-04-08 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/270,707 Continuation US6740638B2 (en) | 1994-11-18 | 2002-10-11 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040214775A1 true US20040214775A1 (en) | 2004-10-28 |
Family
ID=23340234
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/953,937 Expired - Fee Related US6369033B1 (en) | 1994-11-18 | 1997-10-20 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US09/989,476 Expired - Fee Related US6489299B2 (en) | 1994-11-18 | 2001-11-19 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US10/270,707 Expired - Fee Related US6740638B2 (en) | 1994-11-18 | 2002-10-11 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US10/820,983 Abandoned US20040214775A1 (en) | 1994-11-18 | 2004-04-08 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/953,937 Expired - Fee Related US6369033B1 (en) | 1994-11-18 | 1997-10-20 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US09/989,476 Expired - Fee Related US6489299B2 (en) | 1994-11-18 | 2001-11-19 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US10/270,707 Expired - Fee Related US6740638B2 (en) | 1994-11-18 | 2002-10-11 | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Country Status (9)
Country | Link |
---|---|
US (4) | US6369033B1 (en) |
EP (2) | EP0792286B1 (en) |
JP (1) | JPH10509714A (en) |
AT (1) | ATE213499T1 (en) |
AU (1) | AU721898B2 (en) |
CA (1) | CA2205532A1 (en) |
DE (1) | DE69525544T2 (en) |
MX (1) | MX9703642A (en) |
WO (1) | WO1996016085A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103102393A (en) * | 2013-01-30 | 2013-05-15 | 北京大学 | Polypeptide and application of polypeptide in preparation of drug used for treating depression |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7090982B2 (en) | 1991-10-22 | 2006-08-15 | The Governors Of The University Of Alberta | Methods of predicting therapeutic efficacy of treatment of a multiple sclerosis patient |
US6252040B1 (en) | 1991-10-22 | 2001-06-26 | The Governors Of The University Of Alberta | Peptide specificity of anti-myelin basic protein and the administration of myelin basic protein peptides to multiple sclerosis patients |
ATE170874T1 (en) * | 1992-04-09 | 1998-09-15 | Autoimmune Inc | SUPPRESSION OF T-CELL PROLIFERATION USING PEPTIDE FRAGMENTS OF MYELIN BASIC PROTEIN |
HUT77047A (en) * | 1994-10-25 | 1998-03-02 | Immulogic Pharmaceutical Corporation | Preparations and treatments for the treatment of multiple sclerosis |
EP0792286B1 (en) * | 1994-11-18 | 2002-02-20 | Neurocrine Biosciences, Inc. | Peptide analogues at position 91 of human myelin basis protein for treatment of multiple scerosis |
US6329499B1 (en) | 1994-11-18 | 2001-12-11 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogues of human myelin basic protein |
US6379670B1 (en) | 1994-11-18 | 2002-04-30 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogs of human myelin basic protein |
US6251396B1 (en) | 1994-11-18 | 2001-06-26 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogs of human myelin basic protein |
WO1996028470A2 (en) * | 1995-03-09 | 1996-09-19 | Neurocrine Biosciences, Inc. | Peptide analogues of human myelin basic protein useful in treating multiple sclerosis |
AU1874997A (en) * | 1996-02-15 | 1997-09-02 | Pangenetics B.V. | Molecules for the induction of immunological tolerance |
US20020072493A1 (en) | 1998-05-19 | 2002-06-13 | Yeda Research And Development Co. Ltd. | Activated T cells, nervous system-specific antigens and their uses |
US6541608B1 (en) * | 1999-02-23 | 2003-04-01 | Baylor College Of Medicine | T cell receptor Vβ-Dβ-Jβ sequence and methods for its detection |
EP1370582A1 (en) * | 2001-03-23 | 2003-12-17 | John Matsoukas | Peptide analogues of myelin basic protein epitopes in the treatment of experimental autoimmune encephalomyelitis (eae) and multiple sclerosis (ms) |
US7658926B2 (en) * | 2001-09-14 | 2010-02-09 | Opexa Pharmaceuticals, Inc. | Autologous T-cell vaccines materials and methods |
EP1546719B1 (en) * | 2002-08-08 | 2015-04-01 | Baylor College Of Medicine | Isolation and identification of t cells |
US20090214598A1 (en) | 2005-04-19 | 2009-08-27 | Eli Lilly And Company | Monovalent and polyvalent synthetic polysaccharide antigens for immunological intervention in disease |
EP2712623A1 (en) * | 2006-05-05 | 2014-04-02 | Opexa Therapeutics | T-cell vaccine |
SI2949666T1 (en) | 2008-12-19 | 2019-03-29 | Biogen International Neuroscience Gmbh | Human anti-alpha-synuclein antibodies |
US20140348861A1 (en) | 2011-05-05 | 2014-11-27 | National Institute Of Immunology | Synthetic peptides and random copolymers for the treatment of autoimmune disorders |
CN103796679B (en) | 2011-06-23 | 2016-10-19 | 比奥根国际神经科学公司 | anti-alpha synuclein binding molecule |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468481A (en) * | 1988-06-23 | 1995-11-21 | Amergen, Inc. | MHC class II-peptide conjugates useful in ameliorating autoimmunity |
US5858980A (en) * | 1990-03-30 | 1999-01-12 | Autoimmune, Inc. | Peptide fragments of myelin basic protein |
US6329499B1 (en) * | 1994-11-18 | 2001-12-11 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogues of human myelin basic protein |
US6369033B1 (en) * | 1994-11-18 | 2002-04-09 | Stanford University Medical Center | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991012816A1 (en) * | 1990-03-02 | 1991-09-05 | Autoimmune, Inc. | Enhancement of the down-regulation of autoimmune diseases by oral administration of autoantigens |
DK0587735T3 (en) * | 1991-05-31 | 2000-09-11 | Immune Response Corp Inc | T cell receptor peptides as therapeutic agents for immune-related disease |
CA2053799C (en) * | 1991-10-22 | 2002-03-12 | Kenneth G. Warren | Synthetic peptide specificity of anti-myelin basic protein from multiple sclerosis cerebrospinal fluid |
ATE170874T1 (en) * | 1992-04-09 | 1998-09-15 | Autoimmune Inc | SUPPRESSION OF T-CELL PROLIFERATION USING PEPTIDE FRAGMENTS OF MYELIN BASIC PROTEIN |
JPH09502981A (en) * | 1993-09-22 | 1997-03-25 | ザ ボード オブ トラスティーズ フォー ザ リーランド スタンフォード ジュニア ユニバーシティ | Interaction between T-cell receptor and antigen in autoimmune diseases |
-
1995
- 1995-11-16 EP EP95942842A patent/EP0792286B1/en not_active Expired - Lifetime
- 1995-11-16 WO PCT/US1995/014402 patent/WO1996016085A1/en active IP Right Grant
- 1995-11-16 DE DE69525544T patent/DE69525544T2/en not_active Expired - Fee Related
- 1995-11-16 EP EP01115315A patent/EP1172376A1/en not_active Withdrawn
- 1995-11-16 AT AT95942842T patent/ATE213499T1/en not_active IP Right Cessation
- 1995-11-16 JP JP8516910A patent/JPH10509714A/en not_active Ceased
- 1995-11-16 CA CA002205532A patent/CA2205532A1/en not_active Abandoned
- 1995-11-16 AU AU44057/96A patent/AU721898B2/en not_active Ceased
-
1997
- 1997-05-16 MX MX9703642A patent/MX9703642A/en not_active Application Discontinuation
- 1997-10-20 US US08/953,937 patent/US6369033B1/en not_active Expired - Fee Related
-
2001
- 2001-11-19 US US09/989,476 patent/US6489299B2/en not_active Expired - Fee Related
-
2002
- 2002-10-11 US US10/270,707 patent/US6740638B2/en not_active Expired - Fee Related
-
2004
- 2004-04-08 US US10/820,983 patent/US20040214775A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468481A (en) * | 1988-06-23 | 1995-11-21 | Amergen, Inc. | MHC class II-peptide conjugates useful in ameliorating autoimmunity |
US5858980A (en) * | 1990-03-30 | 1999-01-12 | Autoimmune, Inc. | Peptide fragments of myelin basic protein |
US6329499B1 (en) * | 1994-11-18 | 2001-12-11 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogues of human myelin basic protein |
US6369033B1 (en) * | 1994-11-18 | 2002-04-09 | Stanford University Medical Center | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US6489299B2 (en) * | 1994-11-18 | 2002-12-03 | Stanford University Medical Center | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
US6740638B2 (en) * | 1994-11-18 | 2004-05-25 | Neurocrine Biosciences, Inc. | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103102393A (en) * | 2013-01-30 | 2013-05-15 | 北京大学 | Polypeptide and application of polypeptide in preparation of drug used for treating depression |
CN103102393B (en) * | 2013-01-30 | 2015-01-07 | 北京大学 | Polypeptide and application of polypeptide in preparation of drug used for treating depression |
Also Published As
Publication number | Publication date |
---|---|
JPH10509714A (en) | 1998-09-22 |
US6740638B2 (en) | 2004-05-25 |
US20020058627A1 (en) | 2002-05-16 |
EP1172376A1 (en) | 2002-01-16 |
CA2205532A1 (en) | 1996-05-30 |
US20030114380A1 (en) | 2003-06-19 |
US6489299B2 (en) | 2002-12-03 |
MX9703642A (en) | 1998-11-29 |
WO1996016085A1 (en) | 1996-05-30 |
DE69525544T2 (en) | 2002-08-22 |
EP0792286B1 (en) | 2002-02-20 |
DE69525544D1 (en) | 2002-03-28 |
AU4405796A (en) | 1996-06-17 |
ATE213499T1 (en) | 2002-03-15 |
AU721898B2 (en) | 2000-07-20 |
EP0792286A1 (en) | 1997-09-03 |
US6369033B1 (en) | 2002-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6329499B1 (en) | Methods for treatment of multiple sclerosis using peptide analogues of human myelin basic protein | |
US6251396B1 (en) | Methods for treatment of multiple sclerosis using peptide analogs of human myelin basic protein | |
US6369033B1 (en) | Methods for treatment of multiple sclerosis using peptide analogues at position 91 of human myelin basic protein | |
US5948764A (en) | Methods for treatment of multiple sclerosis utilizing peptide analogues of human myelin basic protein | |
MXPA97003643A (en) | Methods for the treatment of multiple sclerosis using basic protein peptide analogues human human protein | |
US7456252B2 (en) | Therapeutic peptides for demyelinating conditions | |
CA2203629A1 (en) | Compositions and treatment for multiple sclerosis | |
WO1996012737A9 (en) | Compositions and treatment for multiple sclerosis | |
DE69331501T2 (en) | Suppression of the proliferation of T cells using peptide fragments of the basic protein from myelin | |
US6379670B1 (en) | Methods for treatment of multiple sclerosis using peptide analogs of human myelin basic protein | |
US7585843B2 (en) | Treatment of demyelinating autoimmune disease with modified ordered peptides | |
US20020076412A1 (en) | Methods for modulating the immune system | |
AU723254B2 (en) | Methods for treatment of multiple sclerosis using peptide analogs of human myelin basic protein | |
WO2006052773A2 (en) | Treatments for demyelinating immune mediated diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |