US20040214735A1 - Cleaner for contact lens - Google Patents
Cleaner for contact lens Download PDFInfo
- Publication number
- US20040214735A1 US20040214735A1 US10/848,267 US84826704A US2004214735A1 US 20040214735 A1 US20040214735 A1 US 20040214735A1 US 84826704 A US84826704 A US 84826704A US 2004214735 A1 US2004214735 A1 US 2004214735A1
- Authority
- US
- United States
- Prior art keywords
- composition
- water
- containing beads
- weight percent
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011324 bead Substances 0.000 claims abstract description 65
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000004140 cleaning Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 63
- -1 poly(ethylene glycol) Polymers 0.000 claims description 39
- 239000004094 surface-active agent Substances 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 14
- 239000002562 thickening agent Substances 0.000 claims description 14
- 229920002125 Sokalan® Polymers 0.000 claims description 11
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 7
- 239000003755 preservative agent Substances 0.000 claims description 7
- 239000012487 rinsing solution Substances 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000003349 gelling agent Substances 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 230000002335 preservative effect Effects 0.000 claims description 5
- 102100026735 Coagulation factor VIII Human genes 0.000 claims description 4
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 claims description 4
- 230000004397 blinking Effects 0.000 claims description 4
- 229960001631 carbomer Drugs 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 3
- 229920001090 Polyaminopropyl biguanide Polymers 0.000 claims description 3
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 3
- 229920000609 methyl cellulose Polymers 0.000 claims description 3
- 239000001923 methylcellulose Substances 0.000 claims description 3
- 235000010981 methylcellulose Nutrition 0.000 claims description 3
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 3
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims 1
- 229940054534 ophthalmic solution Drugs 0.000 claims 1
- 239000002997 ophthalmic solution Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000005054 agglomeration Methods 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 11
- 239000004599 antimicrobial Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 7
- 229920002359 Tetronic® Polymers 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 229960001484 edetic acid Drugs 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 229920001983 poloxamer Polymers 0.000 description 4
- 229920000136 polysorbate Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000003352 sequestering agent Substances 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N 1-dodecanol group Chemical class C(CCCCCCCCCCC)O LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 3
- 239000012459 cleaning agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- KWXLCDNSEHTOCB-UHFFFAOYSA-J tetrasodium;1,1-diphosphonatoethanol Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P(=O)([O-])C(O)(C)P([O-])([O-])=O KWXLCDNSEHTOCB-UHFFFAOYSA-J 0.000 description 3
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920002413 Polyhexanide Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 239000000882 contact lens solution Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 229920001987 poloxamine Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- LYCAIKOWRPUZTN-NMQOAUCRSA-N 1,2-dideuteriooxyethane Chemical compound [2H]OCCO[2H] LYCAIKOWRPUZTN-NMQOAUCRSA-N 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical class CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- RXGSAYBOEDPICZ-UHFFFAOYSA-N 2-[6-[[amino-(diaminomethylideneamino)methylidene]amino]hexyl]-1-(diaminomethylidene)guanidine Chemical compound NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)N RXGSAYBOEDPICZ-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical compound BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000289 Polyquaternium Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229940086737 allyl sucrose Drugs 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960003333 chlorhexidine gluconate Drugs 0.000 description 1
- YZIYKJHYYHPJIB-UUPCJSQJSA-N chlorhexidine gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O.C1=CC(Cl)=CC=C1NC(=N)NC(=N)NCCCCCCNC(=N)NC(=N)NC1=CC=C(Cl)C=C1 YZIYKJHYYHPJIB-UUPCJSQJSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 229940079886 disodium lauryl sulfosuccinate Drugs 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 229940071190 laureth sulfosuccinate Drugs 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940031722 methyl gluceth-20 Drugs 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- BOUCRWJEKAGKKG-UHFFFAOYSA-N n-[3-(diethylaminomethyl)-4-hydroxyphenyl]acetamide Chemical compound CCN(CC)CC1=CC(NC(C)=O)=CC=C1O BOUCRWJEKAGKKG-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229940083254 peripheral vasodilators imidazoline derivative Drugs 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229940093424 polyaminopropyl biguanide Drugs 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229940068977 polysorbate 20 Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000012929 tonicity agent Substances 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229920001664 tyloxapol Polymers 0.000 description 1
- MDYZKJNTKZIUSK-UHFFFAOYSA-N tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 1
- 229960004224 tyloxapol Drugs 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0078—Compositions for cleaning contact lenses, spectacles or lenses
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0013—Liquid compositions with insoluble particles in suspension
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
- C11D3/3765—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
Definitions
- the present invention relates to a composition and method of cleaning contact lenses. More specifically, the invention relates to a composition useful for in-eye cleaning of contact lenses.
- Rigid, gas permeable and soft materials are produced from different materials having different chemical and physical properties. Lenses made from these different materials tend to accumulate different types of deposits. Because different lenses tend to accumulate different types of deposits, it is difficult to formulate a cleaner that is effective against all of the deposits, especially those deposits that are proteinaceous or sebaceous.
- Conventional contact lens cleaning solutions contain one or two general classes of cleaners.
- Surfactant cleaners generally known as daily cleaners because of their recommended daily use, are effective for the removal of most carbohydrate and lipid (sebaceous) materials.
- Enzymatic cleaners contain proteolytic enzymes and are typically recommended for weekly use to remove proteinaceous material such as lysozyme.
- Rigid gas-permeable (RGP or “hard”) contact lenses and hydrogel (“soft”) contact lenses require different types of cleaners.
- Daily cleaners for RGP contact lenses usually contain both a surfactant and a mechanical abrasive. The user cleans the RGP lenses by rubbing the lens with the cleaning composition to remove the debris.
- Combinations of surface active agents and mechanical cleaners are disclosed in U.S. Pat. No. 4,394,179 to Ellis et al.
- a typical method for daily cleaning contact lenses comprises the steps of:
- Rinsing solutions are normally used to remove any cleaner left on the lens after cleaning.
- the rinsing solution must also be compatible with the ocular environment as some solution will remain on the lens and be transferred into the eye when the lens is inserted.
- Aqueous suspensions of polymeric beads such as those disclosed in U.S. Pat. No. 4,655,957 to Chromececk and European Patent Application No. 0 063 472 to Su have proven to be effective cleaning agents for removing deposits on contact lenses.
- U.S. Pat. No. 4,655,957 discloses an aqueous suspension having 0.001 to 25 weight percent of a particulate hydrophilic polymer in a buffered, isotonic solution containing one or more surfactants and optional preserving and sequestering agents.
- European Patent Application No. 0 063 472 discloses a cleaner which comprises a suspension containing a particulate organic polymer or polysiloxane of a hydrophobic, thermoplastic nature.
- European Patent Application No. 0 063 472 and U.S. Pat. Nos. 4,613,379; 4,670,060; 4,792,414; and 5,037,484 disclose a composition and method for cleaning contact lenses with a particulate organic polymer or polysiloxane with a carrier.
- the particulate polymer is selected from the group consisting of organic polymers, polysiloxane polymers and mixtures thereof.
- the polysiloxane is of a hydrophobic, thermoplastic nature.
- the resulting composition is compatible with ocular tissue and has a viscosity sufficient to keep the particulate polymer suspended within the carrier.
- the particulate polymers should have a degree of hardness and shape so as to be effective as a cleaning agent but yet not have the ability to scratch the lens.
- Abrasive cleaners need to remove deposits from contact lenses without scratching the surface of the lenses.
- the abrasive beads used in the abrasive cleaner may be hydrophobic or hydrophilic.
- Conventional hydrophobic beads tend to have higher surface hardness and bulk rigidity than hydrophilic beads.
- Conventional hydrophilic beads while softer and less likely to scratch the surface of the contact lens, tend to agglomerate and sink out of suspension. Thus they tend to fall on the bottom and eventually cake together, requiring the consumer to vigorously shake the bottle to re-suspend the beads
- This invention provides a method and composition for cleaning contact lenses.
- the invention provides a method for cleaning contact lenses while the lenses are being worn in the eye.
- the invention provides a composition for cleaning contact lenses using water-containing abrasive beads.
- the composition overcomes the problem of sedimentation previously associated with the use of hydrophilic abrasive beads.
- controlling the size of the bead agglomeration as claimed surprisingly inhibits their sedimentation and permits the beads to stay suspended in solution.
- the further extent of agglomeration appears to also be inherently controlled such that the agglomerations themselves have diameters that allow the beads to be compatible with ocular instillation and to be flushed from the eye by normal tear flow.
- the cleaning composition may also be used with digital cleaning of a contact lens. While not to limit the scope of the invention by a recitation of theory, it is believed that the water-containing beads of the invention are themselves agglomerations of smaller beads that retain water in the interstitial spaces between the smaller beads that make up the agglomerated beads. Surprisingly, it has been found that the process set out in the Examples provides bead products that agglomerate to form water-containing beads as claimed. These water-containing beads surprisingly agglomerate to form useful particle sizes without the problem of excessive agglomeration associated with conventional hydrophilic beads.
- the composition of cleaner may also comprise a thickening agent, at least one surfactant, a cleaner, and a preservative.
- the abrasive water-containing beads (“abrasive cleaner” or “beads”) preferably consists of polyHEMA [poly(2-hydroxyethyl methacrylate)] beads that form agglomerations less than 100 microns in diameter, preferably less than 50 microns.
- the agglomerated beads may contain from about 10 to about 90 weight percent water, preferably 20 to 80 weight percent water and more preferably 40 to 60 weight percent water.
- the invention provides a composition for cleaning contact lenses, which composition comprises water-containing beads having a mean particle size of less than 100, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 50 ⁇ m.
- the water-containing beads have a mean particle size of less than 50 and at least 75 weight percent of the water-containing beads have a major diameter of less than 30 ⁇ m.
- the water-containing beads have a mean particle size of less than 40, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 30 ⁇ m.
- the composition of the invention may suitably comprise other ophthalmically compatible components including thickening agents and/or surfactants.
- the beads are preferably a polyHEMA material of the composition taught in U.S. Pat. No. 4,655,957 to Chromecek et al., and may suitably comprise from about 0.05 to about 1.5 weight percent of the composition.
- the water-containing beads are present in the amount of from about 0.1 to about 1.0 weight percent of the solution composition, more preferably from about 0.25 to about 0.75 weight percent of the solution composition, and most preferably from about 0.4 to about 0.6 weight percent of the solution composition.
- the solution composition may also contain one or more preservatives and thickening agents.
- PAPB is a preferred preservative.
- Carboxy vinyl polymers are suitable thickening agents, and carbomers (polymers of acrylic acid crosslinked with allyl sucrose) are preferred thickening or gelling agents.
- the thickening agent comprises at least one selected from the group consisting of poly(ethylene glycol) with a molecular weight distribution of from about 400 to about 4000, poly (ethylene oxide) hydroxyethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, HEMA, poly(vinyl alcohol), and poly(N-vinylpyrrolidone) (PVP).
- the invention provides a method of cleaning a contact lens in the eye of a wearer comprising applying to said contact lens an ophthalmically compatible contact lens cleaning solution comprising water-containing beads having a mean particle size of less than 30, wherein at least 90 weight percent of said water-containing beads have a major diameter of less than 50 ⁇ m.
- the method of the invention may further comprise the sequential steps of blinking and then rinsing the eye and the contact lens with an ophthalmic rinsing solution to dilute or substantially remove the contact lens cleaning solution from the eye. In a preferred embodiment, no rinsing step is needed, and the method is carried out in the absence of a rinsing step.
- the present invention can be used with all contact lenses such as conventional hard, soft, rigid and soft gas permeable, and silicone (including both hydrogel and non-hydrogel) lenses, but is preferably employed with soft lenses.
- the composition and preparation of the polymeric beads are disclosed in U.S. Pat. No. 4,870,145 to Chromecek.
- the '145 Chromecek patent is incorporated herein by reference in its entirety, and specifically for a description the process for preparing water-containing polymeric beads.
- This invention provides a process of making water-containing polymeric beads that not only makes the beads less susceptible to excessive agglomeration but also permits the beads to be used with a contact lens that is being worn in the eye. Surprisingly, it has been found that controlling the particle size of the beads in accordance with the invention limits the ultimate size of bead agglomerations within the solution. Thus the invention surprisingly controls agglomeration such that the agglomerated beads are still small enough to easily be washed from the surface of the contact lens and flushed from the eye through the lacrimal puncta by the normal flow of tear fluid.
- composition of the invention is a sterile, aqueous solution that comprises:
- an abrasive cleaner consisting of polyHEMA beads and/or HEMA copolymers
- said beads form agglomerations less than 100 microns in diameter, preferably less than 50 microns.
- the thickening agent may optionally comprise a gel matrix carrier being either a pseudoplastic (viscosity affected by shear-liquification of gel upon blinking) such as xanthan gum, or a material which is affected by the ionic strength of tears causing the gel matrix to collapse, such as the Carbomer type gelling agents (i.e., Carbopol)
- a gel matrix carrier being either a pseudoplastic (viscosity affected by shear-liquification of gel upon blinking) such as xanthan gum, or a material which is affected by the ionic strength of tears causing the gel matrix to collapse, such as the Carbomer type gelling agents (i.e., Carbopol)
- Thickening agents can include carboxy vinyl polymers of high molecular weight such as the Carbomer type gelling agents (i.e., Carbopol available from B.F. Goodrich Chemical Co.), poly(ethylene glycol) with a molecular weight distribution of 400 to 4000, poly(ethylene oxide), methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, low molecular weight HEMA, poly(vinyl alcohol), and PVP to form a suspension.
- the end product may be a fluid or may be a gel.
- composition may further include other surface-active agents having cleaning activity for contact lenses.
- surface active agents are known in the art as cleaning agents, including anionic, cationic, nonionic and amphoteric surface active agents.
- Representative anionic surface-active agents include sulfated and sulfonated surface active agents, and physiologically acceptable salts thereof, which provide good cleaning activity for lipids, proteins, and other contact lens deposits.
- Examples include sodium lauryl sulfate, sodium laureth sulfate (sodium salt of sulfated ethoxylated lauryl alcohol), ammonium laureth sulfate (ammonium salt of sulfated ethoxylated lauryl alcohol), sodium trideth sulfate (sodium salt of sulfated ethoxylated tridecyl alcohol), sodium dodecylbenzenesulfonate, disodium lauryl or laureth sulfosuccinate (disodium salt of a lauryl or ethoxylated lauryl alcohol half ester of sulfosuccinic acid), disodium oleamido sulfosuccinates, and di
- Nonionic surface active agents having good cleaning activity include certain polyoxyethylene, polyoxypropylene block copolymer (poloxamine) surface active agents, including various surface active agents available under the trade name Tetronic from BASF Corp., e.g., Tetronic 1107.
- nonionic surface active agents include: ethoxylated alkyl phenols, such as various surface active agents available under the tradenames Triton (Union Carbide, Tarrytown, N.Y., USA) and Igepal (Rhone-Poulenc, Cranbury, N.J., USA); polysorbates such as polysorbate 20, including the polysorbate surface active agents available under the tradename Tween (ICI Americas, Inc., Wilmington, Del., USA); and alkyl glucosides and polyglucosides such as products available under the tradename Plantaren (Henkel Corp., Hoboken, N.J., USA).
- Triton Union Carbide, Tarrytown, N.Y., USA
- Igepal Rhone-Poulenc, Cranbury, N.J., USA
- polysorbates such as polysorbate 20, including the polysorbate surface active agents available under the tradename Tween (ICI Americas, Inc., Wilmington, Del., USA)
- the composition may include a cationic surface-active agent.
- cationic surface agents include triquatemary phosphate esters, such as various cationic surface active agents available from Mona Industries, Inc., Patterson, N.J., USA under the tradename Monaquat.
- the composition may include an amphoteric surface-active agent.
- Amphoteric surface active agents include fatty acid amide betaines, such as the cocoamidoalkyl betaines available under the tradename Tego-Betain (Goldschmidt Chemical Corp., Hopewell, Va., USA).
- Other amphoterics include imidazoline derivatives such as cocoamphopropionates available under the tradename Miranol (Rhone-Poulenc), and n-alkylamino acids under the name gradename Mirataine (Rhone-Poulenc).
- Preferred surfactants are neutral or nonionic surfactants which may be present in amounts up to about 5% (w/v), preferably up to about 3% (w/v) and more preferably up to about 1% (w/v).
- suitable surfactants include but are not limited to: polyethylene glycol esters of fatty acids, polyoxypropylene ethers of C 12 -C 18 alkanes and polyoxyethylene-polyoxypropylene block copolymers of ethylene diamine (i.e., poloxamine).
- surfactants such as Pluronic (Wyanclotte Chemicals Co.), Tween (Atlas Powder Company) or tyloxapol may be added.
- the composition comprises at least one non-ionic surfactant.
- the composition preferably comprises a block copolymer adduct of ethylene diamine.
- the surfactant is a poly(oxypropylene)-poly(oxyethylene) block copolymer adduct of ethylene diamine having a molecular weight from about 10,000 to about 20,000 where at least 40 weight percent, and more particularly, from about 40 to about 80 weight percent of the surfactant is poly(oxyethylene).
- the poly(oxypropylene)-poly(oxyethylene) block copolymer adduct will have a molecular weight ranging from about 12,000 to about 19,000 where at least 60 weight percent, and more particularly, from about 60 to 80 weight percent of the adduct is poly(oxyethylene).
- the composition may include a non-amine polyethyleneoxy-containing material in addition to the above named surfactants.
- representative PEO-containing materials include certain polyethyleneoxy-polypropyleneoxy block copolymers, also known as poloxamers. Such materials are commercially available under the tradename Pluronic from BASF Corporation, Parsippany, N.J., USA, and include Pluronic Y108 and F127.
- Other suitable PEO-containing materials include ethoxylated glucose derivatives, such as methyl gluceth-20 including the product available as Glucarn E-20 (Amerchol Corp., Edison, N.J., USA).
- nonionic ethers of sorbitol or glycerol include products available under the tradename Ethosperse, including sorbeth-20 supplied as Ethosperse SL-20 and glycereth-26 supplied as Ethosperse G-26 (Lonza Inc., Fair Lawn, N.J., USA).
- Ethosperse including sorbeth-20 supplied as Ethosperse SL-20 and glycereth-26 supplied as Ethosperse G-26 (Lonza Inc., Fair Lawn, N.J., USA).
- a preferred PEO-containing material is glueth-10 available as Glucam E-10.
- the composition comprises at least one, preferably two surface-active agents.
- the composition comprises Tetronic 1107 and Glucam E-10 in total concentration of from about 0.1 to about 1.0 weight percent, preferably about 0.5 weight percent.
- cleaners may be incorporated into the composition.
- a particularly preferred species is the tetrasodium salt of 1-hydroxyethylidene-1,1-diphosphonic acid, also referred to as tetrasodium etidronate, commercially available from Monsanto Company under the tradename of DeQuest® 2016 diphosphonic acid sodium salt or phosphonate.
- Suitable concentrations for these phosphonic acids are in the range of from about 0.01 to about 0.50 weight percent, preferably about 0.1 weight percent.
- the subject cleaner preferably includes at least one antimicrobial agent.
- antimicrobial agent is intended to mean non-oxidative organic chemicals that derive their antimicrobial activity through a chemical or physicochemical interaction with organisms.
- An antimicrobial agent is included in an amount effective to at least inhibit growth of microorganisms in the composition.
- quaternary ammonium salts such as Polyquaternium 1® from ONYX Corporation; benzalkonium chloride; chlorhexidine (1,1-hexamethylbis[5-(p-chlorophenyl)biguanide]) or water soluble salts thereof, such as chlorhexidine gluconate; and preferrably polyhexamethylene biguanide (a polymer of hexamethylene biguanide, also referred to as polyaminopropyl biguanide, available from Zeneca, Wilmington, Del.) or water soluble salts thereof, such as the polyhexamethylene biguanide hydrochloride available under the trade name Cosmocil CQ (ICI Americas Inc.).
- quaternary ammonium salts such as Polyquaternium 1® from ONYX Corporation
- benzalkonium chloride chlorhexidine (1,1-hexamethylbis[5-(p-chlorophenyl)biguanide]) or water soluble salts thereof, such as
- antimicrobial agents may also be employed. If used in the cleaner, the antimicrobial agent should be used in an amount that will at least partially reduce the microorganism population in the formulations employed. Typically, antimicrobial agent are present in concentration ranging from about 0.00001% (w/v) to about 5% (w/v), depending on the specific agent. More preferably, the antimicrobial agent is present from about 0.00003% (w/v) to about 0.05% (w/v).
- the cleaner may include a sequestering agent (EDTA), an osmolality adjusting agent and a pH adjuster for the gelling agent (i.e. NaOH).
- EDTA sequestering agent
- the osmolality-adjusting agent is glycerol in concentration sufficient to provide osmolality of 270mOsm/Kg, and the pH is adjusted by adding 1N NaOH sufficient to provide a solution pH of about 5-6.
- sequestering/chelating agents examples include ethylene diaminetetraacetic acid (EDTA) and its salts (sodium) which are normally employed in amounts from about 0.024 to about 2.0% (w/v).
- EDTA ethylene diaminetetraacetic acid
- salts sodium
- Other known sequestering agents such as certain poly(vinyl alcohol)s can also be used.
- the cleaner of the present invention is adjusted with tonicity agents to approximate the osmotic pressure of normal lacrimal fluids which is equivalent to a 0.9 percent solution of sodium chloride or 2.5 percent gylcerol solution.
- Suitable tonicity adjusting agents include, but are not limited to: sodium and potassium chloride, dextrose, glycerin, calcium and magnesium chloride. These agents are typically used in amounts ranging from about 0.01 to 2.5% (w/v) and preferably, from 0.2 to about 1.5% (w/v).
- the tonicity agent will be employed in an amount to provide a final osmotic value of 200 to 450 mOsm/kg and more preferably between about 250 to about 350 mOsm/kg, and most preferably between about 280 to about 320 mOsm/kg.
- the pH of the present invention should be maintained within the range of 5.0 to 8.0, more preferably about 6.0 to 8.0, most preferably about 6.8 to about 7.8.
- the present invention can be used with all contact lenses such as conventional hard, soft (water-containing), rigid and soft gas permeable, and silicone (including both hydrogel and non-hydrogel) lenses.
- the cleaner is employed with hydrogel lenses.
- Such lenses absorb significant amounts of water such as from about 4 to about 80 percent by weight.
- Lens materials include those prepared from monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, N-vinylpyrrolidone, glycerol methacrylate, methacrylic acid or other acid esters.
- Preferred materials include those disclosed in U.S. Pat. Nos. 5,610,252 and 5,070,215 (both Bambury et al., assigned to Bausch & Lomb Incorporated), the entire disclosures which are herewith incorporated by reference.
- the composition of the invention can be used as a conventional abrasive contact lens cleaning solution. Cleaning can be achieved if a few drops of the cleaner are initially placed on each side of the lens, and the lens is rubbed for a period of time, for example, approximately 20 seconds. The lens can then be rinsed with a rinsing solution such as saline.
- This invention is particularly useful for extended wear lenses or those lenses which are worn for long periods of time without removal for cleaning.
- a few drops of the cleaner may be instilled directly into the eye.
- the contact lens wearer blinks.
- the blinking action causes the water-containing beads in the solution to mechanically clean debris from the lens surface.
- the beads do not irritate the ocular environment and are easily flushed by the tear flow through the lacrimal puncta.
- an eye rinsing solution may be used to flush any residue cleaner from the eye region.
- a base formulation was prepared having 20% glycerin, 0.025% EDTA, 0.5% Glucam E-10, 0.010% DeQuest 2016, water and sufficient 1N NaOH to neutralize the carbomer material used to form a gel.
- a formulation was prepared containing the following constituents.
- Weight Ingredient Percent Carbopol 974P 1.0 Glycerol 2.0 Tetronic 1107 0.5 Disodium edetate 0.025 DeQuest 2016 0.10
- PolyHEMA beads prepared in accordance with Example 1) 0.5% 1N NaOH PRN Water Qs 100%
- the sample was homogenized using a Gifford-Wood bench-top homogenizer, set at approximately 4500 rpm. Samples were removed to evaluate the extent of homogenization needed to reduce the agglomerated particle size. The mean particle size was determined using a Coulter LS Particle Size Analyzer. Example Homogenization Time - Mean Particle Size/Percent Number.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Eyeglasses (AREA)
- Detergent Compositions (AREA)
Abstract
An in-eye method for cleaning contact lenses comprises use of a cleaner using water-containing beads. The water-containing beads are prepared such that the bead size is smaller than the punctal opening. They are easily flushed from the ocular environment by normal tear flow. The cleaner may also be used to clean contact lenses, with the cleaner applied directly to the lens and digitally rubbed to remove accumulated debris on the lens.
Description
- The present invention relates to a composition and method of cleaning contact lenses. More specifically, the invention relates to a composition useful for in-eye cleaning of contact lenses.
- Contact lenses need to be periodically treated, for example, disinfected, cleaned soaked and the like, because of the tendency for a variety of microbes and other materials to accumulate on the lenses. An efficacious disinfecting/cleaning regimen removes these accumulations and provides a contact lens that is safe and comfortable to wear.
- Rigid, gas permeable and soft materials are produced from different materials having different chemical and physical properties. Lenses made from these different materials tend to accumulate different types of deposits. Because different lenses tend to accumulate different types of deposits, it is difficult to formulate a cleaner that is effective against all of the deposits, especially those deposits that are proteinaceous or sebaceous.
- Conventional contact lens cleaning solutions contain one or two general classes of cleaners. Surfactant cleaners, generally known as daily cleaners because of their recommended daily use, are effective for the removal of most carbohydrate and lipid (sebaceous) materials. Enzymatic cleaners, on the other hand, contain proteolytic enzymes and are typically recommended for weekly use to remove proteinaceous material such as lysozyme.
- Rigid gas-permeable (RGP or “hard”) contact lenses and hydrogel (“soft”) contact lenses require different types of cleaners. Daily cleaners for RGP contact lenses usually contain both a surfactant and a mechanical abrasive. The user cleans the RGP lenses by rubbing the lens with the cleaning composition to remove the debris. Combinations of surface active agents and mechanical cleaners are disclosed in U.S. Pat. No. 4,394,179 to Ellis et al.
- A typical method for daily cleaning contact lenses comprises the steps of:
- (1) removing the contact lens from the eye;
- (2) applying a cleaner to the contact lens;
- (3) rubbing the contact lens with the cleaner; and
- (4) rinsing the contact lens.
- Rinsing solutions are normally used to remove any cleaner left on the lens after cleaning. The rinsing solution must also be compatible with the ocular environment as some solution will remain on the lens and be transferred into the eye when the lens is inserted.
- With conventional abrasive cleaners, the lens needs to be thoroughly rinsed to avoid carrying residual amounts of cleaner into the eye. Conventional abrasive cleaners need to be removed from the lens before placing the lens in the eye because conventional abrasive cleaners can cause both mechanical abrasion and chemical irritation if placed in the eye. Aqueous suspensions of polymeric beads such as those disclosed in U.S. Pat. No. 4,655,957 to Chromececk and European Patent Application No. 0 063 472 to Su have proven to be effective cleaning agents for removing deposits on contact lenses. In particular, U.S. Pat. No. 4,655,957 discloses an aqueous suspension having 0.001 to 25 weight percent of a particulate hydrophilic polymer in a buffered, isotonic solution containing one or more surfactants and optional preserving and sequestering agents.
- European Patent Application No. 0 063 472 discloses a cleaner which comprises a suspension containing a particulate organic polymer or polysiloxane of a hydrophobic, thermoplastic nature.
- European Patent Application No. 0 063 472 and U.S. Pat. Nos. 4,613,379; 4,670,060; 4,792,414; and 5,037,484 (all to Su et al.) disclose a composition and method for cleaning contact lenses with a particulate organic polymer or polysiloxane with a carrier. The particulate polymer is selected from the group consisting of organic polymers, polysiloxane polymers and mixtures thereof. The polysiloxane is of a hydrophobic, thermoplastic nature. The resulting composition is compatible with ocular tissue and has a viscosity sufficient to keep the particulate polymer suspended within the carrier. The particulate polymers should have a degree of hardness and shape so as to be effective as a cleaning agent but yet not have the ability to scratch the lens.
- Abrasive cleaners need to remove deposits from contact lenses without scratching the surface of the lenses. The abrasive beads used in the abrasive cleaner may be hydrophobic or hydrophilic. Conventional hydrophobic beads tend to have higher surface hardness and bulk rigidity than hydrophilic beads. Conventional hydrophilic beads, while softer and less likely to scratch the surface of the contact lens, tend to agglomerate and sink out of suspension. Thus they tend to fall on the bottom and eventually cake together, requiring the consumer to vigorously shake the bottle to re-suspend the beads
- This invention provides a method and composition for cleaning contact lenses. In one embodiment, the invention provides a method for cleaning contact lenses while the lenses are being worn in the eye.
- In another embodiment, the invention provides a composition for cleaning contact lenses using water-containing abrasive beads. The composition overcomes the problem of sedimentation previously associated with the use of hydrophilic abrasive beads. In accordance with the invention, it has been found that controlling the size of the bead agglomeration as claimed surprisingly inhibits their sedimentation and permits the beads to stay suspended in solution. Additionally, by controlling the initial size of the abrasive bead agglomerates as claimed, the further extent of agglomeration appears to also be inherently controlled such that the agglomerations themselves have diameters that allow the beads to be compatible with ocular instillation and to be flushed from the eye by normal tear flow. The cleaning composition may also be used with digital cleaning of a contact lens. While not to limit the scope of the invention by a recitation of theory, it is believed that the water-containing beads of the invention are themselves agglomerations of smaller beads that retain water in the interstitial spaces between the smaller beads that make up the agglomerated beads. Surprisingly, it has been found that the process set out in the Examples provides bead products that agglomerate to form water-containing beads as claimed. These water-containing beads surprisingly agglomerate to form useful particle sizes without the problem of excessive agglomeration associated with conventional hydrophilic beads.
- The composition of cleaner may also comprise a thickening agent, at least one surfactant, a cleaner, and a preservative. The abrasive water-containing beads (“abrasive cleaner” or “beads”) preferably consists of polyHEMA [poly(2-hydroxyethyl methacrylate)] beads that form agglomerations less than 100 microns in diameter, preferably less than 50 microns. The agglomerated beads may contain from about 10 to about 90 weight percent water, preferably 20 to 80 weight percent water and more preferably 40 to 60 weight percent water.
- The invention provides a composition for cleaning contact lenses, which composition comprises water-containing beads having a mean particle size of less than 100, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 50 μm. In a preferred embodiment, the water-containing beads have a mean particle size of less than 50 and at least 75 weight percent of the water-containing beads have a major diameter of less than 30 μm. In a more preferred embodiment, the water-containing beads have a mean particle size of less than 40, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 30 μm. The composition of the invention may suitably comprise other ophthalmically compatible components including thickening agents and/or surfactants.
- The beads are preferably a polyHEMA material of the composition taught in U.S. Pat. No. 4,655,957 to Chromecek et al., and may suitably comprise from about 0.05 to about 1.5 weight percent of the composition. In a preferred embodiment, the water-containing beads are present in the amount of from about 0.1 to about 1.0 weight percent of the solution composition, more preferably from about 0.25 to about 0.75 weight percent of the solution composition, and most preferably from about 0.4 to about 0.6 weight percent of the solution composition.
- The solution composition may also contain one or more preservatives and thickening agents. PAPB is a preferred preservative. Carboxy vinyl polymers are suitable thickening agents, and carbomers (polymers of acrylic acid crosslinked with allyl sucrose) are preferred thickening or gelling agents. In one preferred embodiment, the thickening agent comprises at least one selected from the group consisting of poly(ethylene glycol) with a molecular weight distribution of from about 400 to about 4000, poly (ethylene oxide) hydroxyethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, HEMA, poly(vinyl alcohol), and poly(N-vinylpyrrolidone) (PVP).
- In another embodiment, the invention provides a method of cleaning a contact lens in the eye of a wearer comprising applying to said contact lens an ophthalmically compatible contact lens cleaning solution comprising water-containing beads having a mean particle size of less than 30, wherein at least 90 weight percent of said water-containing beads have a major diameter of less than 50 μm. The method of the invention may further comprise the sequential steps of blinking and then rinsing the eye and the contact lens with an ophthalmic rinsing solution to dilute or substantially remove the contact lens cleaning solution from the eye. In a preferred embodiment, no rinsing step is needed, and the method is carried out in the absence of a rinsing step.
- The present invention can be used with all contact lenses such as conventional hard, soft, rigid and soft gas permeable, and silicone (including both hydrogel and non-hydrogel) lenses, but is preferably employed with soft lenses. The composition and preparation of the polymeric beads are disclosed in U.S. Pat. No. 4,870,145 to Chromecek. The '145 Chromecek patent is incorporated herein by reference in its entirety, and specifically for a description the process for preparing water-containing polymeric beads.
- This invention provides a process of making water-containing polymeric beads that not only makes the beads less susceptible to excessive agglomeration but also permits the beads to be used with a contact lens that is being worn in the eye. Surprisingly, it has been found that controlling the particle size of the beads in accordance with the invention limits the ultimate size of bead agglomerations within the solution. Thus the invention surprisingly controls agglomeration such that the agglomerated beads are still small enough to easily be washed from the surface of the contact lens and flushed from the eye through the lacrimal puncta by the normal flow of tear fluid.
- In one embodiment, the composition of the invention is a sterile, aqueous solution that comprises:
- a) a thickening agent;
- b) at least one surface active agent;
- c) a cleaner;
- d) a preservative; and
- e) an abrasive cleaner consisting of polyHEMA beads and/or HEMA copolymers
- wherein said beads form agglomerations less than 100 microns in diameter, preferably less than 50 microns.
- The thickening agent may optionally comprise a gel matrix carrier being either a pseudoplastic (viscosity affected by shear-liquification of gel upon blinking) such as xanthan gum, or a material which is affected by the ionic strength of tears causing the gel matrix to collapse, such as the Carbomer type gelling agents (i.e., Carbopol)
- Thickening agents can include carboxy vinyl polymers of high molecular weight such as the Carbomer type gelling agents (i.e., Carbopol available from B.F. Goodrich Chemical Co.), poly(ethylene glycol) with a molecular weight distribution of 400 to 4000, poly(ethylene oxide), methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, low molecular weight HEMA, poly(vinyl alcohol), and PVP to form a suspension. The end product may be a fluid or may be a gel.
- The composition may further include other surface-active agents having cleaning activity for contact lenses. A wide variety of surface active agents are known in the art as cleaning agents, including anionic, cationic, nonionic and amphoteric surface active agents.
- Representative anionic surface-active agents include sulfated and sulfonated surface active agents, and physiologically acceptable salts thereof, which provide good cleaning activity for lipids, proteins, and other contact lens deposits. Examples include sodium lauryl sulfate, sodium laureth sulfate (sodium salt of sulfated ethoxylated lauryl alcohol), ammonium laureth sulfate (ammonium salt of sulfated ethoxylated lauryl alcohol), sodium trideth sulfate (sodium salt of sulfated ethoxylated tridecyl alcohol), sodium dodecylbenzenesulfonate, disodium lauryl or laureth sulfosuccinate (disodium salt of a lauryl or ethoxylated lauryl alcohol half ester of sulfosuccinic acid), disodium oleamido sulfosuccinates, and dioctyl sodium sulfosuccinate (sodium salt of the diester of a 2-ethylhexyl alcohol and sulfosuccinic acid).
- Nonionic surface active agents having good cleaning activity include certain polyoxyethylene, polyoxypropylene block copolymer (poloxamine) surface active agents, including various surface active agents available under the trade name Tetronic from BASF Corp., e.g., Tetronic 1107. Other representative nonionic surface active agents include: ethoxylated alkyl phenols, such as various surface active agents available under the tradenames Triton (Union Carbide, Tarrytown, N.Y., USA) and Igepal (Rhone-Poulenc, Cranbury, N.J., USA); polysorbates such as polysorbate 20, including the polysorbate surface active agents available under the tradename Tween (ICI Americas, Inc., Wilmington, Del., USA); and alkyl glucosides and polyglucosides such as products available under the tradename Plantaren (Henkel Corp., Hoboken, N.J., USA).
- The composition may include a cationic surface-active agent. Representative cationic surface agents include triquatemary phosphate esters, such as various cationic surface active agents available from Mona Industries, Inc., Patterson, N.J., USA under the tradename Monaquat.
- Additionally, the composition may include an amphoteric surface-active agent. Amphoteric surface active agents include fatty acid amide betaines, such as the cocoamidoalkyl betaines available under the tradename Tego-Betain (Goldschmidt Chemical Corp., Hopewell, Va., USA). Other amphoterics include imidazoline derivatives such as cocoamphopropionates available under the tradename Miranol (Rhone-Poulenc), and n-alkylamino acids under the name gradename Mirataine (Rhone-Poulenc).
- Preferred surfactants are neutral or nonionic surfactants which may be present in amounts up to about 5% (w/v), preferably up to about 3% (w/v) and more preferably up to about 1% (w/v). Examples of suitable surfactants include but are not limited to: polyethylene glycol esters of fatty acids, polyoxypropylene ethers of C12-C18 alkanes and polyoxyethylene-polyoxypropylene block copolymers of ethylene diamine (i.e., poloxamine). Additionally, surfactants such as Pluronic (Wyanclotte Chemicals Co.), Tween (Atlas Powder Company) or tyloxapol may be added.
- In the preferred embodiment, the composition comprises at least one non-ionic surfactant. In particular, the composition preferably comprises a block copolymer adduct of ethylene diamine. The surfactant is a poly(oxypropylene)-poly(oxyethylene) block copolymer adduct of ethylene diamine having a molecular weight from about 10,000 to about 20,000 where at least 40 weight percent, and more particularly, from about 40 to about 80 weight percent of the surfactant is poly(oxyethylene). More preferably, the poly(oxypropylene)-poly(oxyethylene) block copolymer adduct will have a molecular weight ranging from about 12,000 to about 19,000 where at least 60 weight percent, and more particularly, from about 60 to 80 weight percent of the adduct is poly(oxyethylene).
- The foregoing surfactants are further described with methods for their manufacture in U.S. Pat. No.2,979,528. They are also known by the generic name—poloxamine—and are commercially available from BASF-Wyandotte under the registered trademark “Tetronic.” The preferred embodiment comprises Tetronic 1107.
- The composition may include a non-amine polyethyleneoxy-containing material in addition to the above named surfactants. In addition to homopolymers of polyethylene glycol or polyethyleneoxy, representative PEO-containing materials include certain polyethyleneoxy-polypropyleneoxy block copolymers, also known as poloxamers. Such materials are commercially available under the tradename Pluronic from BASF Corporation, Parsippany, N.J., USA, and include Pluronic Y108 and F127. Other suitable PEO-containing materials include ethoxylated glucose derivatives, such as methyl gluceth-20 including the product available as Glucarn E-20 (Amerchol Corp., Edison, N.J., USA). Other nonionic ethers of sorbitol or glycerol include products available under the tradename Ethosperse, including sorbeth-20 supplied as Ethosperse SL-20 and glycereth-26 supplied as Ethosperse G-26 (Lonza Inc., Fair Lawn, N.J., USA). A preferred PEO-containing material is glueth-10 available as Glucam E-10.
- It is preferred that the composition comprises at least one, preferably two surface-active agents. In particular, it is preferred that the composition comprises Tetronic 1107 and Glucam E-10 in total concentration of from about 0.1 to about 1.0 weight percent, preferably about 0.5 weight percent.
- In addition to the surface-active agents just described, other cleaners may be incorporated into the composition. In particular, a phosphonic acid, or a physiologically compatible salt thereof as disclosed in U.S. Pat. No. 5,858,937, the entire disclosure herewith incorporated by reference, may be included. A particularly preferred species is the tetrasodium salt of 1-hydroxyethylidene-1,1-diphosphonic acid, also referred to as tetrasodium etidronate, commercially available from Monsanto Company under the tradename of DeQuest® 2016 diphosphonic acid sodium salt or phosphonate. Suitable concentrations for these phosphonic acids are in the range of from about 0.01 to about 0.50 weight percent, preferably about 0.1 weight percent.
- The subject cleaner preferably includes at least one antimicrobial agent. As used herein, the term antimicrobial agent is intended to mean non-oxidative organic chemicals that derive their antimicrobial activity through a chemical or physicochemical interaction with organisms. An antimicrobial agent is included in an amount effective to at least inhibit growth of microorganisms in the composition. Various antimicrobial are known in the art as useful in contact lens solutions including: quaternary ammonium salts such as Polyquaternium 1® from ONYX Corporation; benzalkonium chloride; chlorhexidine (1,1-hexamethylbis[5-(p-chlorophenyl)biguanide]) or water soluble salts thereof, such as chlorhexidine gluconate; and preferrably polyhexamethylene biguanide (a polymer of hexamethylene biguanide, also referred to as polyaminopropyl biguanide, available from Zeneca, Wilmington, Del.) or water soluble salts thereof, such as the polyhexamethylene biguanide hydrochloride available under the trade name Cosmocil CQ (ICI Americas Inc.). Combinations of antimicrobial agents may also be employed. If used in the cleaner, the antimicrobial agent should be used in an amount that will at least partially reduce the microorganism population in the formulations employed. Typically, antimicrobial agent are present in concentration ranging from about 0.00001% (w/v) to about 5% (w/v), depending on the specific agent. More preferably, the antimicrobial agent is present from about 0.00003% (w/v) to about 0.05% (w/v).
- Additionally, the cleaner may include a sequestering agent (EDTA), an osmolality adjusting agent and a pH adjuster for the gelling agent (i.e. NaOH). In a preferred embodiment, the osmolality-adjusting agent is glycerol in concentration sufficient to provide osmolality of 270mOsm/Kg, and the pH is adjusted by adding 1N NaOH sufficient to provide a solution pH of about 5-6.
- Examples of preferred sequestering/chelating agents include ethylene diaminetetraacetic acid (EDTA) and its salts (sodium) which are normally employed in amounts from about 0.024 to about 2.0% (w/v). Other known sequestering agents such as certain poly(vinyl alcohol)s can also be used.
- Typically, the cleaner of the present invention is adjusted with tonicity agents to approximate the osmotic pressure of normal lacrimal fluids which is equivalent to a 0.9 percent solution of sodium chloride or 2.5 percent gylcerol solution.
- Examples of suitable tonicity adjusting agents include, but are not limited to: sodium and potassium chloride, dextrose, glycerin, calcium and magnesium chloride. These agents are typically used in amounts ranging from about 0.01 to 2.5% (w/v) and preferably, from 0.2 to about 1.5% (w/v). Preferably, the tonicity agent will be employed in an amount to provide a final osmotic value of 200 to 450 mOsm/kg and more preferably between about 250 to about 350 mOsm/kg, and most preferably between about 280 to about 320 mOsm/kg.
- The pH of the present invention should be maintained within the range of 5.0 to 8.0, more preferably about 6.0 to 8.0, most preferably about 6.8 to about 7.8.
- As previously mentioned, the present invention can be used with all contact lenses such as conventional hard, soft (water-containing), rigid and soft gas permeable, and silicone (including both hydrogel and non-hydrogel) lenses. Preferably the cleaner is employed with hydrogel lenses. Such lenses absorb significant amounts of water such as from about 4 to about 80 percent by weight. Lens materials include those prepared from monomers such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, N-vinylpyrrolidone, glycerol methacrylate, methacrylic acid or other acid esters. Preferred materials include those disclosed in U.S. Pat. Nos. 5,610,252 and 5,070,215 (both Bambury et al., assigned to Bausch & Lomb Incorporated), the entire disclosures which are herewith incorporated by reference.
- The composition of the invention can be used as a conventional abrasive contact lens cleaning solution. Cleaning can be achieved if a few drops of the cleaner are initially placed on each side of the lens, and the lens is rubbed for a period of time, for example, approximately 20 seconds. The lens can then be rinsed with a rinsing solution such as saline.
- This invention is particularly useful for extended wear lenses or those lenses which are worn for long periods of time without removal for cleaning. In another embodiment of the invention, a few drops of the cleaner may be instilled directly into the eye. As the cleaner spreads over the lens, the contact lens wearer blinks. The blinking action causes the water-containing beads in the solution to mechanically clean debris from the lens surface. As the hydrogel bead agglomerations are small, the beads do not irritate the ocular environment and are easily flushed by the tear flow through the lacrimal puncta. Alternately, an eye rinsing solution may be used to flush any residue cleaner from the eye region.
- 100 ml of technical grade xylene was placed into a 1 liter round bottom reaction flask fitted with a reflux condenser and purged with nitrogen. 2-Hydroxyethyl methacrylate copolymer beads were prepared by dissolving 8 g 2-hydroxyethyl methacrylate, 2 g ethylene glycol dimethacrylate and 2 g methyl methacrylate into the reaction vessel. The resulting solution was thoroughly mixed. 100 μl of tert butyl peroxide was added to the mixture. The mixture was stirred, heated to 80° C. and refluxed. Once a precipitate starts to form, the mixture is continuously stirred and removed from heat. Once the mixture reaches room temperature, the excess xylene is filtered off. The filtrate is washed with hexane and dried in an oven 12-18 hours at 60° C.
- A base formulation was prepared having 20% glycerin, 0.025% EDTA, 0.5% Glucam E-10, 0.010% DeQuest 2016, water and sufficient 1N NaOH to neutralize the carbomer material used to form a gel.
- To an aliquot of the base formulation was added increasing concentrations of Carbopol 974P to evaluate the gel formation characteristics.
Example Number Formulation Results Example 2 0.2% Carbopol 974P plus base Soupy Example 3 0.5% Carbopol 974P plus base Runny Example 4 1% Carbopol 974P plus base Gel-like - A formulation was prepared containing the following constituents.
Weight Ingredient Percent Carbopol 974P 1.0 Glycerol 2.0 Tetronic 1107 0.5 Disodium edetate 0.025 DeQuest 2016 0.10 PolyHEMA beads (prepared in accordance with Example 1) 0.5% 1N NaOH PRN Water Qs 100% - The sample was homogenized using a Gifford-Wood bench-top homogenizer, set at approximately 4500 rpm. Samples were removed to evaluate the extent of homogenization needed to reduce the agglomerated particle size. The mean particle size was determined using a Coulter LS Particle Size Analyzer.
Example Homogenization Time - Mean Particle Size/Percent Number. Minutes less than 50 μm 5 Initial 139.4 microns/54.1% 6 1 minute 69.8 microns/54.3% 7 2 minutes 69.9 microns/52.3% 8 3 minutes 68.7 microns/51.8% 9 5 minutes 56.8 microns/57.6% 10 10 minutes 46.1 microns/65.5% 11 20 minutes 13.3 microns/92.1%
Claims (20)
1. A composition for cleaning contact lenses, said composition comprising water-containing beads having a mean particle size of less than 100 μm but greater than about 13 μm, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 50 μm.
2. The composition of claim 1 wherein said water-containing beads having a mean particle size of less than 50 μm, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 30 μm.
3. The composition of claim 2 wherein said water-containing beads having a mean particle size of less than 40 μm, wherein at least 75 weight percent of said water-containing beads have a major diameter of less than 30 μm.
4. The composition of claim 1 further comprising
a) a thickening agent; and
b) at least one surfactant.
5. The composition of claim 1 wherein said water-containing beads comprise polyHEMA or HEMA copolymer.
6. The composition of claim 1 , wherein said water-containing beads are present in the amount of from about 0.05 to about 1.5 weight percent of the composition.
7. The composition of claim 6 wherein said water-containing beads are present in the amount of from about 0.1 to about 1.0 weight percent of the composition.
8. The composition of claim 7 wherein said water-containing beads are present in the amount of from about 0.25 to about 0.75 weight percent of the composition.
9. The composition of claim 8 wherein said water-containing beads are present in the amount of from about 0.4 to about 0.6 weight percent of the composition.
10. The composition of claim 1 comprising a preservative.
11. The composition of claim 3 , wherein the preservative is PAPB.
12. The composition of claim 1 further comprising a thickening agent.
13. The composition of claim 12 wherein the thickening agent is a carbomer.
14. The composition of claim 12 wherein the thickening agent comprises at least one carboxy vinyl polymer.
15. The composition of claim 14 wherein said carboxy vinyl polymer further comprises a carbomer-type gelling agents.
16. The composition of claim 12 wherein said thickening agent comprises at least one selected from the group consisting of poly(ethylene glycol) with a molecular weight distribution of from about 400 to about 4000, poly(ethylene oxide), hydroxyethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, polyHEMA, poly(vinyl alcohol), and PVP.
17. A method of cleaning a contact lens in the eye of a wearer comprising applying to said contact lens an ophthalmically compatible contact lens cleaning solution comprising water-containing beads having a mean particle size of less than 30 μm but greater than about 13 μm, wherein at least 90 weight percent of said water-containing beads have a major diameter of less than 50 μm.
18. The method of claim 17 wherein said ophthalmic solution further comprises at least one surfactant.
19. The method of claim 18 wherein said method further comprising the sequential steps of blinking and then rinsing the eye and the contact lens with an ophthalmic rinsing solution to dilute or substantially remove the contact lens cleaning solution from the eye.
20. The method of claim 18 wherein said method is carried out in the absence of a rinsing step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/848,267 US20040214735A1 (en) | 2000-10-06 | 2004-05-18 | Cleaner for contact lens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/684,191 US6872695B1 (en) | 2000-10-06 | 2000-10-06 | Method for in-eye cleaning of contact lens comprising polymeric beads |
US10/848,267 US20040214735A1 (en) | 2000-10-06 | 2004-05-18 | Cleaner for contact lens |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/684,191 Division US6872695B1 (en) | 2000-10-06 | 2000-10-06 | Method for in-eye cleaning of contact lens comprising polymeric beads |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040214735A1 true US20040214735A1 (en) | 2004-10-28 |
Family
ID=24747026
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/684,191 Expired - Fee Related US6872695B1 (en) | 2000-10-06 | 2000-10-06 | Method for in-eye cleaning of contact lens comprising polymeric beads |
US10/848,267 Abandoned US20040214735A1 (en) | 2000-10-06 | 2004-05-18 | Cleaner for contact lens |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/684,191 Expired - Fee Related US6872695B1 (en) | 2000-10-06 | 2000-10-06 | Method for in-eye cleaning of contact lens comprising polymeric beads |
Country Status (6)
Country | Link |
---|---|
US (2) | US6872695B1 (en) |
EP (1) | EP1322741A1 (en) |
JP (1) | JP2004511625A (en) |
AU (1) | AU2001277092A1 (en) |
CA (1) | CA2425074A1 (en) |
WO (1) | WO2002031097A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050171232A1 (en) * | 2003-11-05 | 2005-08-04 | Ford James D. | Methods of inhibiting the adherence of lenses to their packaging materials |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7550418B2 (en) * | 2002-12-13 | 2009-06-23 | Novartis Ag | Lens care composition and method |
WO2007002669A1 (en) * | 2005-06-28 | 2007-01-04 | Bausch & Lomb Incorporated | In-eye method of cleaning and/or disinfecting silicone hydrogel contact lenses |
JP4896534B2 (en) * | 2006-01-31 | 2012-03-14 | シスメックス株式会社 | Sheath liquid for particle analyzer |
JP2008209677A (en) * | 2007-02-27 | 2008-09-11 | Menicon Co Ltd | Germicide deactivating liquid agent |
CN102822725B (en) * | 2010-10-01 | 2013-10-30 | 株式会社实瞳 | Gelatinous cleaning agent for contact lenses |
US20130177599A1 (en) * | 2012-01-06 | 2013-07-11 | Insite Vision Incorporated | Methods and kits for extending contact lens use |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2979528A (en) * | 1953-10-19 | 1961-04-11 | Wyandotte Chemicals Corp | Nitrogen-containing polyoxyalkylene detergent compositions |
US4394179A (en) * | 1979-06-25 | 1983-07-19 | Polymer Technology Corporation | Abrasive-containing contact lens cleaning materials |
US4493783A (en) * | 1981-04-20 | 1985-01-15 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4534878A (en) * | 1980-10-15 | 1985-08-13 | Polymer Technology Corporation | Abrasive-containing contact lens cleaning materials |
US4613379A (en) * | 1981-04-20 | 1986-09-23 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4655957A (en) * | 1984-06-25 | 1987-04-07 | Bausch & Lomb Incorporated | Contact lens cleaning composition with polymeric beads |
US4670060A (en) * | 1981-04-20 | 1987-06-02 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4792414A (en) * | 1981-04-20 | 1988-12-20 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4820352A (en) * | 1983-01-10 | 1989-04-11 | Bausch & Lomb Incorporated | Cleaning and conditioning solutions for contact lenses and methods of use |
US4830783A (en) * | 1979-06-25 | 1989-05-16 | Polymer Technology, Corp | Abravise-containing contact lens cleaning materials |
US4870145A (en) * | 1985-02-21 | 1989-09-26 | Bausch & Lomb Incorporated | Process for preparing polymeric beads |
US5017238A (en) * | 1989-08-30 | 1991-05-21 | Dow Corning Corporation | Aqueous cleaning dispersions using adsorptive polymeric powder and method of using |
US5037484A (en) * | 1981-04-20 | 1991-08-06 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US5070215A (en) * | 1989-05-02 | 1991-12-03 | Bausch & Lomb Incorporated | Novel vinyl carbonate and vinyl carbamate contact lens material monomers |
US5089053A (en) * | 1989-11-09 | 1992-02-18 | Polymer Technology Corporation | Contact lens cleaning material and method |
US5415837A (en) * | 1993-10-25 | 1995-05-16 | Alcon Laboratories, Inc. | Use of diamines to disinfect and clean contact lenses |
US5532224A (en) * | 1993-12-22 | 1996-07-02 | Alcon Laboratories, Inc. | Contact lens cleaning composition containing polyalklene oxide modified siloxanes |
US5580392A (en) * | 1994-04-05 | 1996-12-03 | Allergan | Contact lens cleaning compositions with particles of variable hardness and processes of use |
US5604189A (en) * | 1993-06-18 | 1997-02-18 | Zhang; Hong J. | Composition for cleaning and wetting contact lenses |
US5631005A (en) * | 1994-09-21 | 1997-05-20 | Alcon Laboratories, Inc. | Use of amidoamines in ophthalmic compositions |
US5719110A (en) * | 1996-08-14 | 1998-02-17 | Allergan | Contact lens care compositions with inositol phosphate components |
US5765579A (en) * | 1996-01-30 | 1998-06-16 | Heiler; David J. | Treatment of contact lenses with an aqueous solution including sulfobetaine compounds |
US5858937A (en) * | 1996-02-28 | 1999-01-12 | Bausch & Lomb Incorporated | Treatment of contact lenses with aqueous solution including phosphonic compounds |
US5900213A (en) * | 1993-04-28 | 1999-05-04 | Alcon Laboratories, Inc. | Use of diamines to disinfect and clean contact lenses and preserve ophthalmic compositions |
US5919742A (en) * | 1996-07-29 | 1999-07-06 | Menicon Co., Ltd. | Contact lens cleaning material formed of a polymer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3583957A (en) | 1968-05-22 | 1971-06-08 | Ceskoslovenska Akademie Ved | Method of producing a polymer in minute globular particles |
US4525346A (en) | 1981-09-28 | 1985-06-25 | Alcon Laboratories, Inc. | Aqueous antimicrobial ophthalmic solutions |
GB2188744B (en) | 1986-04-01 | 1989-11-15 | Donald James Highgate | Contact lens cleaners |
JPH0633415B2 (en) | 1988-12-02 | 1994-05-02 | 花王株式会社 | Skin cleanser composition |
US6037328A (en) | 1998-12-22 | 2000-03-14 | Bausch & Lomb Incorporated | Method and composition for rewetting and preventing deposits on contact lens |
-
2000
- 2000-10-06 US US09/684,191 patent/US6872695B1/en not_active Expired - Fee Related
-
2001
- 2001-07-20 JP JP2002534468A patent/JP2004511625A/en not_active Withdrawn
- 2001-07-20 CA CA002425074A patent/CA2425074A1/en not_active Abandoned
- 2001-07-20 EP EP01954872A patent/EP1322741A1/en not_active Withdrawn
- 2001-07-20 WO PCT/US2001/023090 patent/WO2002031097A1/en not_active Application Discontinuation
- 2001-07-20 AU AU2001277092A patent/AU2001277092A1/en not_active Abandoned
-
2004
- 2004-05-18 US US10/848,267 patent/US20040214735A1/en not_active Abandoned
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2979528A (en) * | 1953-10-19 | 1961-04-11 | Wyandotte Chemicals Corp | Nitrogen-containing polyoxyalkylene detergent compositions |
US4394179A (en) * | 1979-06-25 | 1983-07-19 | Polymer Technology Corporation | Abrasive-containing contact lens cleaning materials |
US4830783A (en) * | 1979-06-25 | 1989-05-16 | Polymer Technology, Corp | Abravise-containing contact lens cleaning materials |
US4534878A (en) * | 1980-10-15 | 1985-08-13 | Polymer Technology Corporation | Abrasive-containing contact lens cleaning materials |
US5037484A (en) * | 1981-04-20 | 1991-08-06 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4493783A (en) * | 1981-04-20 | 1985-01-15 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4613379A (en) * | 1981-04-20 | 1986-09-23 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4670060A (en) * | 1981-04-20 | 1987-06-02 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4792414A (en) * | 1981-04-20 | 1988-12-20 | Alcon Laboratories, Inc. | Cleaning agent for optical surfaces |
US4820352A (en) * | 1983-01-10 | 1989-04-11 | Bausch & Lomb Incorporated | Cleaning and conditioning solutions for contact lenses and methods of use |
US4655957A (en) * | 1984-06-25 | 1987-04-07 | Bausch & Lomb Incorporated | Contact lens cleaning composition with polymeric beads |
US4870145A (en) * | 1985-02-21 | 1989-09-26 | Bausch & Lomb Incorporated | Process for preparing polymeric beads |
US5610252A (en) * | 1989-05-02 | 1997-03-11 | Bausch & Lomb Incorporated | Vinyl carbonate and vinyl carbamate contact lens material monomers |
US5070215A (en) * | 1989-05-02 | 1991-12-03 | Bausch & Lomb Incorporated | Novel vinyl carbonate and vinyl carbamate contact lens material monomers |
US5017238A (en) * | 1989-08-30 | 1991-05-21 | Dow Corning Corporation | Aqueous cleaning dispersions using adsorptive polymeric powder and method of using |
US5089053A (en) * | 1989-11-09 | 1992-02-18 | Polymer Technology Corporation | Contact lens cleaning material and method |
US5190594A (en) * | 1989-11-09 | 1993-03-02 | Polymer Technology Corporation | Contact lens cleaning material and method |
US5310429A (en) * | 1989-11-09 | 1994-05-10 | Polymer Technology Corporation | Contact lens cleaning method |
US5900213A (en) * | 1993-04-28 | 1999-05-04 | Alcon Laboratories, Inc. | Use of diamines to disinfect and clean contact lenses and preserve ophthalmic compositions |
US5773396A (en) * | 1993-06-18 | 1998-06-30 | Polymer Technology Corporation | Contact lens cleaning and wetting solutions containing a non-amine polyethyleneocy adduct having a HLB value of at least about 18, a surface active agent having a HLB of less than 18, and wetting agent |
US5604189A (en) * | 1993-06-18 | 1997-02-18 | Zhang; Hong J. | Composition for cleaning and wetting contact lenses |
US5415837A (en) * | 1993-10-25 | 1995-05-16 | Alcon Laboratories, Inc. | Use of diamines to disinfect and clean contact lenses |
US5627214A (en) * | 1993-10-25 | 1997-05-06 | Alcon Laboratories, Inc. | Use of diamines in ophthalmic compositions |
US5654262A (en) * | 1993-12-22 | 1997-08-05 | Alcon Laboratories, Inc. | Contact lens cleaning composition containing polyalkylene oxide modified siloxanes |
US5532224A (en) * | 1993-12-22 | 1996-07-02 | Alcon Laboratories, Inc. | Contact lens cleaning composition containing polyalklene oxide modified siloxanes |
US5580392A (en) * | 1994-04-05 | 1996-12-03 | Allergan | Contact lens cleaning compositions with particles of variable hardness and processes of use |
US5631005A (en) * | 1994-09-21 | 1997-05-20 | Alcon Laboratories, Inc. | Use of amidoamines in ophthalmic compositions |
US5765579A (en) * | 1996-01-30 | 1998-06-16 | Heiler; David J. | Treatment of contact lenses with an aqueous solution including sulfobetaine compounds |
US5858937A (en) * | 1996-02-28 | 1999-01-12 | Bausch & Lomb Incorporated | Treatment of contact lenses with aqueous solution including phosphonic compounds |
US5919742A (en) * | 1996-07-29 | 1999-07-06 | Menicon Co., Ltd. | Contact lens cleaning material formed of a polymer |
US5719110A (en) * | 1996-08-14 | 1998-02-17 | Allergan | Contact lens care compositions with inositol phosphate components |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050171232A1 (en) * | 2003-11-05 | 2005-08-04 | Ford James D. | Methods of inhibiting the adherence of lenses to their packaging materials |
Also Published As
Publication number | Publication date |
---|---|
WO2002031097A1 (en) | 2002-04-18 |
US6872695B1 (en) | 2005-03-29 |
AU2001277092A1 (en) | 2002-04-22 |
EP1322741A1 (en) | 2003-07-02 |
JP2004511625A (en) | 2004-04-15 |
CA2425074A1 (en) | 2002-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6037328A (en) | Method and composition for rewetting and preventing deposits on contact lens | |
KR100342089B1 (en) | Composition for cleaning and wetting contact lenses | |
US4820352A (en) | Cleaning and conditioning solutions for contact lenses and methods of use | |
CA2501396C (en) | Lens care composition and method | |
US6063745A (en) | Mutli-purpose contact lens care compositions | |
US20060241001A1 (en) | Composition for treating contact lenses | |
JP2002532742A (en) | Contact lens cleaner containing biguanide, tyloxapol and poloxamine | |
JP2002504399A (en) | Treatment of contact lenses using aqueous solutions containing alkali carbonates | |
CA2311659C (en) | Contact lens cleaning compositions | |
WO2000035500A1 (en) | Contact lens cleaner comprising biguanide and poloxamine | |
AU2005230851A1 (en) | Cetylpyridinium chloride as an antimicrobial agent in ophthalmic compositions | |
US20030068250A1 (en) | Compositions including vitamin-based surfactants and methods for using same | |
WO2006132841A1 (en) | Composition and method for cleaning lipid deposits on contact lenses | |
US6872695B1 (en) | Method for in-eye cleaning of contact lens comprising polymeric beads | |
US20030133905A1 (en) | Composition for treating contact lenses in the eye | |
US6478881B2 (en) | Contact lens cleaning solution | |
CA2626773C (en) | Lens care compositions having a persistent cleaning efficacy | |
AU2006202392A1 (en) | Composition for treating contact lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |