US20040202800A1 - Solid surface products - Google Patents
Solid surface products Download PDFInfo
- Publication number
- US20040202800A1 US20040202800A1 US10/762,206 US76220604A US2004202800A1 US 20040202800 A1 US20040202800 A1 US 20040202800A1 US 76220604 A US76220604 A US 76220604A US 2004202800 A1 US2004202800 A1 US 2004202800A1
- Authority
- US
- United States
- Prior art keywords
- matrix
- solid surface
- surface structure
- flat non
- polymethylmethacrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007787 solid Substances 0.000 title claims abstract description 51
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 69
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 68
- 239000011159 matrix material Substances 0.000 claims abstract description 60
- 239000004417 polycarbonate Substances 0.000 claims abstract description 38
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 38
- 239000004800 polyvinyl chloride Substances 0.000 claims abstract description 37
- 229920000915 polyvinyl chloride Polymers 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims description 92
- 239000000123 paper Substances 0.000 claims description 27
- 239000004744 fabric Substances 0.000 claims description 20
- 239000004753 textile Substances 0.000 claims description 15
- 239000002985 plastic film Substances 0.000 claims description 12
- 241000196324 Embryophyta Species 0.000 claims description 7
- 239000002023 wood Substances 0.000 claims description 6
- 229920006255 plastic film Polymers 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 14
- 239000000047 product Substances 0.000 description 61
- 210000000569 greater omentum Anatomy 0.000 description 18
- 229920001169 thermoplastic Polymers 0.000 description 11
- 239000004416 thermosoftening plastic Substances 0.000 description 11
- 229920001634 Copolyester Polymers 0.000 description 10
- 238000005266 casting Methods 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- 238000003825 pressing Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 244000025254 Cannabis sativa Species 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000013067 intermediate product Substances 0.000 description 5
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 description 4
- 150000004684 trihydrates Chemical class 0.000 description 4
- 238000009966 trimming Methods 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000006750 UV protection Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004579 marble Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000150187 Cyperus papyrus Species 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- 229920004142 LEXAN™ Polymers 0.000 description 1
- 239000004418 Lexan Substances 0.000 description 1
- 229920002821 Modacrylic Polymers 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- NBMMYUUHZVNLKL-UHFFFAOYSA-N ethene;1,1,2-trifluoroethene Chemical group C=C.FC=C(F)F NBMMYUUHZVNLKL-UHFFFAOYSA-N 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/16—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
- B32B37/18—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
- B32B37/182—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
- B32B37/185—Laminating sheets, panels or inserts between two discrete plastic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/02—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
- B32B3/08—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/0007—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
- B32B37/003—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C5/00—Processes for producing special ornamental bodies
- B44C5/005—Processes for producing special ornamental bodies comprising inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C5/00—Processes for producing special ornamental bodies
- B44C5/04—Ornamental plaques, e.g. decorative panels, decorative veneers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44F—SPECIAL DESIGNS OR PICTURES
- B44F1/00—Designs or pictures characterised by special or unusual light effects
- B44F1/06—Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2327/00—Polyvinylhalogenides
- B32B2327/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2333/00—Polymers of unsaturated acids or derivatives thereof
- B32B2333/04—Polymers of esters
- B32B2333/12—Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2369/00—Polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2451/00—Decorative or ornamental articles
Definitions
- the present invention relates to flat non-porous unitary solid surface structures, and more particularly, to flat non-porous unitary solid surface products comprised of: (1) a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (2) one or more visible decorative objects that are permanently fixated in the matrix, and methods for manufacturing these products. These manufacturing methods do not involve using a mold or casting a liquid resin around the decorative object to be fixated.
- the solid surface products of the invention provide strikingly beautiful and unusual visual effects that are difficult to describe in words.
- Solid surface products made of cured polymethylmethacrylate containing fine microscopic particles of inert inorganic fillers are known in the art. It is believed that all of the prior art polymethylmethacrylate solid surface products are made by using a mold and by casting therein a liquid acrylic resin which is then cured to form polymethylmethacrylate.
- E. I. DuPont de Nemours and Company originated the solid surface category of products more than thirty years ago when it introduced the synthetic product sold under the trademark CORIAN which is believed to be a polymethylmethacrylate matrix containing large amounts of microscopic particles of inert inorganic fillers.
- CORIAN is made by casting a liquid acrylic resin in a mold of some type and then curing the resin to form polymethylmethacrylate.
- CORIAN is usually an opaque product which mimics the decorative effect of marble.
- CORIAN is useful for kitchen countertops, kitchen sinks, bathroom lavatories, desktops, windowsills, and the like.
- Several patents owned by DuPont describe casting plastic simulated marble building products which are believed to be CORIAN. See Slocum U.S. Reissue Pat. No. Re 27,093, Duggins U.S. Pat. No. 3,488,246, Duggins et al. U.S. Pat. No. 3,6342,975, Duggins U.S. Pat. No. 3,847,865, and Duggins et al.
- an embossed or molded, bonded laminate comprising, in order, (1) a first or outer copolyester layer, (2) a second layer comprising a film which is colored or which bears an image or pattern, and (3) a third or backing copolyester layer, wherein the first and third layers are composed on the copolyester.
- the copolyester layers are specifically made of a PETG copolyester available from Eastman Chemical Company.
- a dry process for making a unitary solid surface product comprised of: (I) a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (2) one or more visible decorative objects (objects that are visible to the unaided human eye) that are permanently fixated in the matrix. It was believed by knowledgeable people in the plastics industry that it was not possible to make such a solid surface product without using a mold and casting therein a liquid resin around the object to be fixated.
- the present invention which allows an object to be fixated in a unitary matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, without using a mold and casting therein a liquid resin around the object.
- the present invention provides aesthetically-pleasing products which are free of defects of the type referred to above.
- the invention is a flat non-porous unitary solid surface structure comprised of: (a) a flat non-porous unitary thermoplastic polymeric matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (b) a visible decorative object that is permanently fixated in the matrix, wherein the decorative object extends to least one edge of the matrix.
- the invention is a method for manufacturing the flat non-porous unitary solid surface structure including the steps of: (a) providing a first flat non-porous unitary thermoplastic polymeric sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate; (b) placing a decorative object on the first sheet of polymeric material wherein the decorative object extends beyond at least one edge of the first sheet of polymeric material; (c) placing a second flat non-porous unitary thermoplastic polymeric sheet of made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate on top of the decorative object wherein the decorative object also extends beyond at least the corresponding edge of the second sheet of polymeric material, whereby a lay-up sandwich is formed comprised of the first flat sheet of polymeric material, the decorative object which extends beyond at least one edge of both of the sheets of polymeric material, and the second flat sheet of polymeric material; (d) loading the lay-up sandwich into a press; (e) applying a pre
- FIG. 1 is a pictorial or three-dimensional view of one embodiment of the invention illustrating a unitary solid surface product having a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, and decorative objects that are permanently fixated in the matrix.
- the fixated objects consist of dried long-stem grass.
- FIG. 2 is an exploded pictorial view illustrating the starting materials employed in making the product shown in FIG. 1.
- the starting materials are an upper sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material, the objects to be fixated consist of dried long-stem grass, and a lower sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material.
- FIG. 3 is a pictorial view illustrating the product shown in FIG. 1 in a finished stage of production before trimming.
- FIG. 4 is an exploded pictorial view illustrating the starting materials employed in making a second embodiment of the invention.
- the starting materials are an upper sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material, an intermediate sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material that has been textured on both surfaces, and a lower sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material.
- FIG. 5 is a vertical cross-sectional view of the product of FIG. 1 when viewed in the direction of the arrows 5 - 5 in FIG. 1.
- the phantom line in FIG. 5 indicates the location where the inner surfaces of two sheets of polymeric material interfaced before they melted together in the manufacturing process.
- the present invention provides non-porous unitary solid surface products and methods for manufacturing the same.
- unitary it is meant that the products are physically an undivided single piece, and therefore they are not a laminate structure consisting of separate layers that can be separated or delaminated. It should be understood that some products of the invention might visually appear (to the unaided human eye) to be a laminate of separate layers which maintain their integrity, but this visual appearance is not correct.
- the layers of polymeric starting material have in fact melted together and have become an undivided single piece. From the standpoint of aesthetically-pleasing visual appearance, line drawings and words are not capable of describing the strikingly beautiful and unusual visual effects provided by the solid surface products of the invention.
- the inventive solid surface products may be employed to make countertops, sinks, lavatories, desktops, table tops, chairs, windowsill, and the like.
- the first embodiment of the invention is a flat non-porous unitary polymeric solid surface structure 10 comprised of a matrix 12 made of clear polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, and one or more visible decorative objects 14 (that is, objects that are visible to the unaided human eye) that are permanently fixated in the matrix 12 .
- the fixated decorative objects 14 consist of dried long-stem grass.
- the fixated decorative objects 14 appear to float in the transparent matrix 12 .
- the outer surfaces of the solid surface structure may have any desired finish, such matte, semi-gloss, or high gloss.
- the flat structure 10 may be subjected to conventional thermoforming/shaping processes if a non-flat shape is desired.
- FIG. 5 is a vertical cross-sectional view of product 10 viewed in the direction of the arrows 5 - 5 shown in FIG. 1.
- the phantom line 20 in FIG. 5 indicates the location where the inner surfaces of polymeric sheets 16 and 18 interfaced before they melted together in the manufacturing process (as will be described below).
- the unitary solid surface structures 10 constructed according to the first embodiment of the present invention contain fixated decorative objects 14 .
- the decorative objects 14 can be made of various materials as will be described below.
- FIG. 2 illustrates how a solid surface structure of this invention is made from a basic lay-up sandwich consisting of the following starting materials: (1) a bottom sheet 16 made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material; (2) one or more layers of a decorative material 14 (the object to be fixated) which also functions as a breather layer for air and gases to escape during the manufacturing process; and, (3) a top sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material. As shown in FIG.
- decorative material 14 extends beyond the edges of polymeric sheets 16 and 18 .
- decorative material 14 provides an escape path for air, water vapor, and gases generated during the pressing operation. Prior to the pressing operation, the decorative material 14 that extends beyond the edges of polymeric sheets 16 and 18 is pulled taunt and taped to a caul plate (as will be described below).
- Variations on this basic lay-up sandwich may include more than two layers of polymeric sheet and multiple layers of decorative materials, alternating one and then the other.
- the basic lay-tip sandwich may consist of: (1) a top sheet of polymeric material; (2) a first layer of decorative material; (3) an intermediate sheet of polymeric material; (4) a second layer of a decorative material; and, (5) a bottom sheet of polymeric material.
- the thickness of product 10 may range from about 0.030 inch (0.7937 mm) to 2.0 inches (50.80 mm). However, thicker and thinner gauges are possible based on the press capabilities and starting material availability.
- the non-porous polymeric sheets 16 and 18 may be clear (transparent), colored, textured (on one or both faces), frosted, translucent, opaque, and they may also contain fire-retardant additives and performance additives.
- the polymeric sheets 16 and 18 may vary in thickness from about 0.004 inch (0.100 mm) to 1.0 inch (25.4 mm). Also, the polymeric sheets 16 and 18 in the basic lay-up sandwich may vary in thickness from each other.
- Polymethylmethacrylate sheet material can be manufactured casting or by extrusion.
- the preferred polymethylmethacrylate sheet material is made by extrusion and has more consistent gauge.
- Polymethylmethacrylate sheet material made by casting has inconsistent gauge (hills and valleys) which will cause problems with air and gas entrapment and also gloss/texture problems on the surface of the product caused by pressure variations.
- the preferred polymethylmethacrylate sheet material has the following properties: ASTM Test Method Units Value Physical Properties Specific Gravity D-792 1.19 Optical Refractive D-542 1.49 Index Light Transmittance D-1003 Index (sample thickness 0.100 inch) Total % 92 Haze % 2 Sound Transmission E90-70 27 (0.125 inch Thickness) E 413 Water Absorption D-570 % 0.4 by weight Shrinkage D-702 % ⁇ 5% shrinkage Mechanical Properties Tensile Strength, D-638 psi 10,100 Maximum Tensile Elongation, % 5.1 Maximum Modulus of Elasticity psi 431,000 Flexural Strength, D-790 psi 14,600 Maximum Izod Molded Notch D-256-56 Ft lbs/inch 0.4 1 ⁇ 2 inch ⁇ 21 ⁇ 2 inch ⁇ 1 ⁇ 4 inch of notch bar at 73° F.
- the preferred polyvinyl chloride sheet material has the following properties and is sold under the trademark INTEDUR TYPE II by World-Pak Corporation/Inteplast Corporation, Livingston. N.J.: Properties Test Method Units Value PHYSICAL Thickness ASTM D1505 in.
- the preferred polycarbonate sheet material has the following properties and is sold under the trademark LEXAN 9600 by General Electric Company, Pittsfield, Mass.: Property Test Method Units Value PHYSICAL Specific Gravity ASTM D792 — 1.25 Water Absorption, ASTM D570 % 0.20 Equilibrium, 24 Hrs Light Transmission ASTM D1003 % 85 (avg.), 0.125 inch thickness MECHANICAL Tensile Strength ASTM D638 psi @ Yield 9,500 Ultimate 9,000 Elongation ASTM D638 % 95 Tensile Modulus ASTM D638 psi 235,000 Flexural Strength ASTM D790 psi 13,500 Flexural Modulus ASTM D790 psi 370,000 Compressive Strength ASTM D695 psi 12,500 Dynatup Impact ASTM D3783 ft-lbs 50 Strength, 1 ⁇ 2 inch dia.
- the material 14 to be fixated in the polymeric matrix 12 may be made of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, and various dried natural materials (such as the long-stem grass illustrated in FIG. 1), tree bark, plant leaves, petals, and twigs). It is important that the material be dry to avoid giving off water vapor or steam during the manufacturing process.
- the material 14 may be one or more layers of a textile fabric made of various fibers. Textile fabrics can impart beautiful and unusual visual effects to the product, such as an iridescent effect or a moiré effect.
- suitable textile fabrics are: synthetic, semi-synthetic, naturally occurring and polymeric, including for example, rayon, polyester, nylon, synthetic polyamides (such as nylon 66 and nylon 6), acrylic, modacrylic, cellulose acetate, cotton, wool, silk and fiberglass.
- the fabric may be woven, knitted, spun-bonded, or prepared by other well-known processes in the textile trade.
- the fabric may be printed, coated, dyed, sublimated or decorated by other techniques known within the textile trade.
- Fabrics with loose weaves and have as open area of 0.005 inch or greater between yarns/threads are best. Fabrics with rough and porous surfaces are also preferred over smooth surfaces. Tightly woven fabrics with smooth surfaces will not function in the thermal melting process because they prevent resin transfer through the material. Natural fibers are preferred due to their porosity. The melted resin saturates such fibers more readily.
- the textile fabric may vary in thickness from about 0.00045 inch (0.0114 mm) to 0.25 inch (6.35 mm).
- the material 14 to be fixated in the matrix 12 may also be made of wood veneer, paper, dried plant fibers and parts.
- Non-limiting examples are: cellulose, cotton, linen, pulp, rag, dried plant materials and fibers including long-stem grass, leaves, petals, bark and twigs from reed, bamboo, papyrus, banana, mulberry, and wicker.
- the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 0.25 inch (6.35 mm).
- the material 14 to be fixated in the polymeric matrix 12 may also be made of dry metal.
- Non-limiting examples are: copper, bronze, brass, steel, stainless steel, iron, nickel, and aluminum. Variety of shapes including: rod, mesh, sheet, perforated sheet, foil, strips, shavings, woven, and cable.
- the metal may be decorated such as etched, anodized, sanded, brushed, stained, painted, printed, chemically treated, galvanized, corroded, aged, polished, and plated.
- the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 1.0 inch (25.4 mm).
- the material 14 to be fixated in the matrix 12 may also be a plastic sheet or film.
- Non-limiting examples are: polymethylmethacrylate, polycarbonate, polyvinyl chloride, PETG copolyester, polyethylene, polypropylene, polyester, polyvinylidinefluoride (PVDF) (sold under the trademark KYNAR), polyvinylfluoride (PVF) (sold under the trademark TEDLAR), and polyurethane.
- the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 1.0 inch (25.4 mm).
- the invention also includes methods for manufacturing the unitary solid surface structure 10 . These manufacturing methods do not involve using a mold and casting a liquid resin around the object to be fixated.
- the basic lay-up sandwich must be processed in a heated press that can apply the required heat and pressure to melt the polymeric sheets 16 and 18 together and thereby create the matrix 12 that fixates the one or more decorative objects 14 within the matrix.
- a heated press that can apply the required heat and pressure to melt the polymeric sheets 16 and 18 together and thereby create the matrix 12 that fixates the one or more decorative objects 14 within the matrix.
- Most preferred is a steam heated multiple opening press.
- the press should be preheated to a temperature of about 280° F. Then the lay-up sandwich is loaded into the press. The press is then closed against the lay-up sandwich at a pressure of about 40 pounds per square inch (psi). The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. This temperature works well for polymethylmethacrylate and polyvinyl chloride. Polycarbonate requires a higher temperature of about 350° F.-375° F.
- the press must be opened and all pressure is removed from the lay-up sandwich. This step is referred to as “bumping” the press. This step is critical in order to allow the heated air, water vapor, and gases to escape from between the polymeric sheets 16 and 18 in the lay-up sandwich so that bubbles or voids are not entrapped in the matrix 12 .
- the press is then closed against the lay-up sandwich and the pressure is ramped up to about 160 psi.
- the press temperature is then ramped up until the materials in the lay-up sandwich reach about 290° F.-310° F. while maintaining the pressure at about 160 psi. Again, this temperature works well for polymethylmethacrylate and polyvinyl chloride, but polycarbonate requires a higher temperature of 350° F.-375° F.
- This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymeric sheets 16 and 18 to melt together in the lay-up sandwich.
- the heat is turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product (which needs some trimming) is removed from the press.
- a coolant may be circulated through the platens to cool the press. This step of gradually cooling the product is important because the product is being annealed, thereby removing the internal strains resulting from the previous operations. This prevents the polymeric matrix 12 from developing cracks, warping, or excessive shrinking.
- the outer surface of the polymeric sheets can optionally be deeply embossed or also textured using coated release papers or release films.
- suitable textured release papers are available from the S. D. Warren Company, Westbrook, Me.
- a variety of release films are available from the DuPont Company, Wilmington, Del.
- the release papers and release films have specific textures and gloss levels that are transferred onto the polymeric sheets during the pressing/heating, operation.
- the release papers and release films also separate the polymeric sheets from the caul plate (described in Example 1 below) and thereby they prevent the polymeric sheets from sticking to the caul plate.
- One of the advantages of the solid surface structures of the invention is that if they become scratched or marred, they are capable of being restored and refinished. The is particularly important for applications such as table tops and countertops. Refinishing may be accomplished for matte, semi-gloss, and high gloss finishes.
- the preferred process for refinishing uses an orbital disc sanding machine and film abrasives sold under the trademark TRIZACT and disc sanding pads sold under the trademark HOOKIT II, both products of Minnesota Mining and Manufacturing Co., St. Paul, Minn. The process involves sanding out the defects in the surface and then polishing.
- specialty films can also be applied one or both of the polymeric sheets to enhance the abrasion resistance, chemical resistance, and ultraviolet resistance of the final product.
- These specialty films may be made of various materials including polyester, polyvinylfluoride (PV F), ethylene trifluoroethylene (ETFE), fluorinated ethylenepropylene (FEP), polyvilylidenefluoride (PVDF), and chlorotrifluoroethylene (CTFE).
- These specialty films can be on the top and/or bottom of the final product.
- these films have a higher melt point than polymethylmethacrylate and therefore require the use of a heat-activated adhesive coating, which is applied to the film prior to the pressing/heating operation.
- the specialty film has a thickness of 0.004 inch (0.100 mm) to 0.020 inch (0.500 mm).
- the basic lay-up sandwich consists of three layers of the following starting materials: (1) a bottom sheet of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; (2) a decorative textile fabric that is 58 inches wide and 102 inches long; and (3) a top sheet of the preferred polymethylmethacrylate that is 0.060 inch thick, 48 inches wide, and 96 inches long.
- the final lay-up book is made as follows.
- a textured sheet of release paper that is 60 inches wide and 100 inches long is placed on a 0.060 inch thick aluminum caul plate and taped to the caul plate.
- the basic lay-up sandwich (described in the paragraph above) is placed on top of the textured sheet of release paper.
- the textured sheet of release paper will impart an aesthetically-pleasing texture to the outer surface of the bottom sheet of polymethylmethacrylate.
- the decorative textile fabric extending beyond the edges of polymethylmethacrylate sheets is pulled taunt and taped to the caul plate.
- Another sheet of textured release paper that is 60 inches wide and 100 inches long is placed on top of the basic lay-up sandwich.
- This textured sheet of release paper will impart an aesthetically-pleasing texture to the outer surface of the top sheet of polymethylmethacrylate.
- Another caul plate is placed on top of the upper sheet of textured release paper and the upper textured sheet of release paper is taped to the caul plate. Thermocouples are attached to the lay-up sandwich so that the temperature of the sandwich can be accurately measured.
- the press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F.-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- Example 1 can also be performed using polyvinyl chloride or polycarbonate, but polycarbonate requires the higher temperature of 350° F.-375° F.
- Example 1 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate.
- the thermoplastics need to be formulated to have similar processing temperatures to work in the press process.
- the thickness of the product is 0.25 inch or greater.
- a first stage is necessary to encapsulate the decorative material within two thin sheets of 0.060 inch polymethylmethacrylate to prevent tearing of the decorative material caused by movement of the polymethylmethacrylate during pressing.
- the thinner sheets of polymethylmethacrylate will hold the decorative material in place with minimal movement during stage two.
- the two-stage process enables products to be made in thicker gauges with less “melt out.” Thus, maximum thickness is preserved.
- the goal is to transfer heat to the lay-up sandwich to melt the polymethylmethacrylate sheets together using the least amount of heat, pressure, and time.
- stage 1 a 0.12 inch intermediate product with 0.005 inch relief texture is made encapsulating the delicate decorative material.
- an intermediate lay-up book is made consisting of the following sequence from top to bottom: (1) four plies of canvas padding; caul plate; (2) textured release paper or plate providing 0.005 inch relief; (3) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (4) a layer of the delicate decorative material; (5) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (6) textured release paper or plate providing 0.005 inch relief; (7) caul plate; and, (8) four plies of canvas padding.
- the press is heated to about 280° F., the intermediate lay-up book is placed in the press, and the press is closed.
- the pressure is brought to 40 psi.
- the pressure is increased to 160 psi and held for 1 minute.
- the intermediate product is then gradually cooled to 100° F.
- the final lay-up book is made consisting of the following sequence from top to bottom: foul plies of canvas padding; caul plate; textured release paper or plate; 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); 0.12 inch textured intermediate product (from stage 1) encapsulating the delicate decorative material delicate decorative material; 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); textured release paper or plate; caul plate; and, four plies of canvas padding.
- the press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped tip until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F. 15-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- Example 2 can also be performed using polyvinyl chloride and polycarbonate, but polycarbonate requires the higher temperature of about 350° F.-375° F.
- Example 2 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate.
- the basic lay-up sandwich consists of three layers of the following starting materials: (1) a bottom sheet 22 of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; (2) a pre-textured intermediate sheet 24 of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; and, (3) a top sheet 26 of the preferred polymethylmethacrylate that is 0.060 inch thick, 48 inches wide, and 96 inches long.
- an intermediate lay-up book consisting of the following sequence from top to bottom: (1) four plies of canvas padding; caul plate; (2) textured release paper or plate providing 0.005 inch relief; (3) 0.060 inch clear or colored polymethylmethacrylate sheet (size 48 inches by 96 inches); (4) textured release paper or plate providing 0.005 inch relief; caul plate; and, (5) four plies of canvas padding.
- the press is heated to about 280° F., the intermediate lay-up book is placed in the press, and the press is closed.
- the pressure is brought to 40 psi.
- the lay-up reaches about 290° F., the pressure is increased to 160 psi and held for 1 minute.
- the intermediate product is then gradually cooled to 100° F.
- the final lay-up book is made consisting of the following sequence from top to bottom: (1) four plies of canvas padding; (2) caul plate; (3) textured release paper or plate; (4) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (5) 0.060 inch textured intermediate product (from stage I); (6) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (7) textured release paper or plate; (8) caul plate; and, (9) four plies of canvas padding.
- the press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F.-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- the heat is then turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product is removed from the press.
- the product has a stratum of the textured material permanently fixated in the matrix and co-extensive with the edges of the matrix.
- the flat product may be subjected to conventional thermoforming/shaping processes if a non-flat shape is desired.
- Example 3 can also be performed using polyvinyl chloride and polycarbonate, but polycarbonate requires the higher temperature of about 350° F.-375° F.
- Example 3 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Laminated Bodies (AREA)
Abstract
A flat non-porous unitary solid surface product comprised of: (a) a flat non-porous unitary matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (b) a visible decorative object that is permanently fixated in the matrix, wherein the decorative object extends to least one edge of the matrix. A method for manufacturing the flat non-porous unitary solid surface product.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/307,898 filed Jul. 25, 2001.
- The present invention relates to flat non-porous unitary solid surface structures, and more particularly, to flat non-porous unitary solid surface products comprised of: (1) a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (2) one or more visible decorative objects that are permanently fixated in the matrix, and methods for manufacturing these products. These manufacturing methods do not involve using a mold or casting a liquid resin around the decorative object to be fixated. The solid surface products of the invention provide strikingly beautiful and unusual visual effects that are difficult to describe in words.
- Solid surface products made of cured polymethylmethacrylate containing fine microscopic particles of inert inorganic fillers are known in the art. It is believed that all of the prior art polymethylmethacrylate solid surface products are made by using a mold and by casting therein a liquid acrylic resin which is then cured to form polymethylmethacrylate. For example, E. I. DuPont de Nemours and Company originated the solid surface category of products more than thirty years ago when it introduced the synthetic product sold under the trademark CORIAN which is believed to be a polymethylmethacrylate matrix containing large amounts of microscopic particles of inert inorganic fillers. It is believed that CORIAN is made by casting a liquid acrylic resin in a mold of some type and then curing the resin to form polymethylmethacrylate. CORIAN is usually an opaque product which mimics the decorative effect of marble. CORIAN is useful for kitchen countertops, kitchen sinks, bathroom lavatories, desktops, windowsills, and the like. Several patents owned by DuPont describe casting plastic simulated marble building products which are believed to be CORIAN. See Slocum U.S. Reissue Pat. No. Re 27,093, Duggins U.S. Pat. No. 3,488,246, Duggins et al. U.S. Pat. No. 3,6342,975, Duggins U.S. Pat. No. 3,847,865, and Duggins et al. U.S. Pat. No. 4,107,135. In general terms, these DuPont patents describe cast products which are made of cured polymethylmethacrylate containing 30% to 80% by weight of microscopic particles (for example, particles having an average size of 7 microns) of inert inorganic fillers such as calcium carbonate, calcium sulfate, clay, silica, glass, calcium silicate, alumina, carbon black, titania, powdered metals, and alumina trihydrate.
- Other synthetic solid surface products are sold by Avonite, Inc. under the trademark AVONITE which mimic the decorative effect of artificial stone. Risley U.S. Pat. No. 5,286,290 assigned to Avonite, Inc. describes dehydrating alumina trihydrate, rehydrating with a solution of dye, drying the solution to make colored alumina trihydrate, adding the colored alumina trihydrate to a resin matrix containing inert fillers, and cast to make a fire retardant solid decorative material having the appearance of artificial granite. The resin matrix may be ortho or iso polyesters, acrylics, or polycarbonates. The product may be in the form of a sheet or slab for kitchen countertops and decorative architectural surfaces or facades.
- Eckart et al. U.S. Pat. No. 5,958,539 assigned to Eastman Chemical Company discloses a thermoplastic article having a fabric comprised of textile fibers embedded therein produced by applying heat and pressure to a laminate comprising, in order, (1) an upper sheet material, (2) a fabric comprised of textile fibers, and (3) a lower sheet material to produce a thermoplastic article having the fabric embedded therein. The upper and lower sheet materials are specifically made of a PETG copolyester available from Eastman Chemical Company. PETG is the acronym for polyethylene terephthalate glycol.
- A similar patent is Eckart et al. U.S. Pat. No. 5,998,028 assigned to Eastman Chemical Company which discloses a thermoplastic article having metallic wire, rod, and/or bar embedded therein produced by applying heat and pressure to a laminate comprising, in order, (1) an upper sheet material, (2) metallic wire, rods, or bars, and (3) a lower sheet material to produce a thermoplastic article having the metallic wire, rod, and/or bar embedded therein. As in Eckart et al. U.S. Pat. No. 5,958,539 above, the upper and lower sheet materials are specifically made of a PETG copolyester available from Eastman Chemical Company.
- Another similar patent is Eckart et al. U.S. Pat. No. 6,025,069 assigned to Eastman Chemical Company which discloses a thermoplastic article having a high-relief, molded or embossed surface produced by contacting a laminate comprising a first or outer copolyester sheet material and a second or backing copolyester sheet material with heat and pressure using a heated element which simultaneously causes the material to be bonded and a high-relief, decorative appearance to be produced on at least one surface of the thermoplastic article. Also disclosed is an embossed or molded, bonded laminate comprising, in order, (1) a first or outer copolyester layer, (2) a second layer comprising a film which is colored or which bears an image or pattern, and (3) a third or backing copolyester layer, wherein the first and third layers are composed on the copolyester. As in Eckart et al. U.S. Pat. No. 5,958,539 and Eckart et al. U.S. Pat. No. 5,998,028 above, the copolyester layers are specifically made of a PETG copolyester available from Eastman Chemical Company.
- Prior to the present invention, there existed a long-felt need for a dry process for making a unitary solid surface product comprised of: (I) a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (2) one or more visible decorative objects (objects that are visible to the unaided human eye) that are permanently fixated in the matrix. It was believed by knowledgeable people in the plastics industry that it was not possible to make such a solid surface product without using a mold and casting therein a liquid resin around the object to be fixated. It is believed that researchers who attempted to make such products using a dry process (that is, without using a mold and casting a liquid resin around the object to be fixated) produced products which contained defects such as air bubbles entrapped in the matrix, voids in the matrix, or cracks in the matrix.
- Extensive research finally led to the present invention which allows an object to be fixated in a unitary matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, without using a mold and casting therein a liquid resin around the object. In addition, the present invention provides aesthetically-pleasing products which are free of defects of the type referred to above.
- In one embodiment the invention is a flat non-porous unitary solid surface structure comprised of: (a) a flat non-porous unitary thermoplastic polymeric matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof; and (b) a visible decorative object that is permanently fixated in the matrix, wherein the decorative object extends to least one edge of the matrix.
- In another aspect the invention is a method for manufacturing the flat non-porous unitary solid surface structure including the steps of: (a) providing a first flat non-porous unitary thermoplastic polymeric sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate; (b) placing a decorative object on the first sheet of polymeric material wherein the decorative object extends beyond at least one edge of the first sheet of polymeric material; (c) placing a second flat non-porous unitary thermoplastic polymeric sheet of made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate on top of the decorative object wherein the decorative object also extends beyond at least the corresponding edge of the second sheet of polymeric material, whereby a lay-up sandwich is formed comprised of the first flat sheet of polymeric material, the decorative object which extends beyond at least one edge of both of the sheets of polymeric material, and the second flat sheet of polymeric material; (d) loading the lay-up sandwich into a press; (e) applying a predetermined amount of heat and pressure to the lay-up sandwich for a predetermined period of time; (f) opening the press to allow air and gases to escape from the lay-up sandwich; (g) closing the press and applying a predetermined amount of heat and pressure to the lay-up sandwich for a predetermined period of time whereby the first and second polymeric material sheets melt together in the lay-up sandwich to provide a unitary product; and, (h) allowing the product to cool while maintaining the pressure at a predetermined level until the product reaches a predetermined temperature at which point the press is opened and the product is removed from the press.
- FIG. 1 is a pictorial or three-dimensional view of one embodiment of the invention illustrating a unitary solid surface product having a matrix made of polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, and decorative objects that are permanently fixated in the matrix. In this example, the fixated objects consist of dried long-stem grass.
- FIG. 2 is an exploded pictorial view illustrating the starting materials employed in making the product shown in FIG. 1. In this example, the starting materials are an upper sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material, the objects to be fixated consist of dried long-stem grass, and a lower sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material.
- FIG. 3 is a pictorial view illustrating the product shown in FIG. 1 in a finished stage of production before trimming.
- FIG. 4 is an exploded pictorial view illustrating the starting materials employed in making a second embodiment of the invention. In this example, the starting materials are an upper sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material, an intermediate sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material that has been textured on both surfaces, and a lower sheet of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material.
- FIG. 5 is a vertical cross-sectional view of the product of FIG. 1 when viewed in the direction of the arrows5-5 in FIG. 1. The phantom line in FIG. 5 indicates the location where the inner surfaces of two sheets of polymeric material interfaced before they melted together in the manufacturing process.
- The present invention provides non-porous unitary solid surface products and methods for manufacturing the same. By the tern “unitary,” it is meant that the products are physically an undivided single piece, and therefore they are not a laminate structure consisting of separate layers that can be separated or delaminated. It should be understood that some products of the invention might visually appear (to the unaided human eye) to be a laminate of separate layers which maintain their integrity, but this visual appearance is not correct. The layers of polymeric starting material have in fact melted together and have become an undivided single piece. From the standpoint of aesthetically-pleasing visual appearance, line drawings and words are not capable of describing the strikingly beautiful and unusual visual effects provided by the solid surface products of the invention. The inventive solid surface products may be employed to make countertops, sinks, lavatories, desktops, table tops, chairs, windowsill, and the like.
- The first embodiment of the invention, illustrated by the product in FIG. 1, is a flat non-porous unitary polymeric
solid surface structure 10 comprised of amatrix 12 made of clear polymethylmethacrylate, polyvinyl chloride, polycarbonate, or combinations thereof, and one or more visible decorative objects 14 (that is, objects that are visible to the unaided human eye) that are permanently fixated in thematrix 12. In the example illustrated by FIG. 1, the fixateddecorative objects 14 consist of dried long-stem grass. As shown in FIG. 1, the fixateddecorative objects 14 appear to float in thetransparent matrix 12. The outer surfaces of the solid surface structure may have any desired finish, such matte, semi-gloss, or high gloss. Theflat structure 10 may be subjected to conventional thermoforming/shaping processes if a non-flat shape is desired. - FIG. 5 is a vertical cross-sectional view of
product 10 viewed in the direction of the arrows 5-5 shown in FIG. 1. Thephantom line 20 in FIG. 5 indicates the location where the inner surfaces ofpolymeric sheets - The unitary
solid surface structures 10 constructed according to the first embodiment of the present invention contain fixateddecorative objects 14. Thedecorative objects 14 can be made of various materials as will be described below. FIG. 2 illustrates how a solid surface structure of this invention is made from a basic lay-up sandwich consisting of the following starting materials: (1) abottom sheet 16 made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material; (2) one or more layers of a decorative material 14 (the object to be fixated) which also functions as a breather layer for air and gases to escape during the manufacturing process; and, (3) a top sheet made of polymethylmethacrylate, polyvinyl chloride, or polycarbonate material. As shown in FIG. 2, during lay up thedecorative material 14 extends beyond the edges ofpolymeric sheets decorative material 14 provides an escape path for air, water vapor, and gases generated during the pressing operation. Prior to the pressing operation, thedecorative material 14 that extends beyond the edges ofpolymeric sheets - Variations on this basic lay-up sandwich may include more than two layers of polymeric sheet and multiple layers of decorative materials, alternating one and then the other. For example, the basic lay-tip sandwich may consist of: (1) a top sheet of polymeric material; (2) a first layer of decorative material; (3) an intermediate sheet of polymeric material; (4) a second layer of a decorative material; and, (5) a bottom sheet of polymeric material.
- The thickness of
product 10 may range from about 0.030 inch (0.7937 mm) to 2.0 inches (50.80 mm). However, thicker and thinner gauges are possible based on the press capabilities and starting material availability. - The
non-porous polymeric sheets - The
polymeric sheets polymeric sheets - Polymethylmethacrylate sheet material can be manufactured casting or by extrusion. The preferred polymethylmethacrylate sheet material is made by extrusion and has more consistent gauge. Polymethylmethacrylate sheet material made by casting has inconsistent gauge (hills and valleys) which will cause problems with air and gas entrapment and also gloss/texture problems on the surface of the product caused by pressure variations.
- The preferred polymethylmethacrylate sheet material has the following properties:
ASTM Test Method Units Value Physical Properties Specific Gravity D-792 1.19 Optical Refractive D-542 1.49 Index Light Transmittance D-1003 Index (sample thickness 0.100 inch) Total % 92 Haze % 2 Sound Transmission E90-70 27 (0.125 inch Thickness) E 413 Water Absorption D-570 % 0.4 by weight Shrinkage D-702 % <5% shrinkage Mechanical Properties Tensile Strength, D-638 psi 10,100 Maximum Tensile Elongation, % 5.1 Maximum Modulus of Elasticity psi 431,000 Flexural Strength, D-790 psi 14,600 Maximum Izod Molded Notch D-256-56 Ft lbs/inch 0.4 ½ inch × 2½ inch × ¼ inch of notch bar at 73° F. Izod Milled Notch Ft lbs/inch 0.28 ½ inch × 2½ inch × ¼ inch of notch bar at 73° F. Tensile Impact D-1822 Ft lbs/in2 20 Strength Abrasion Resistance D-1044 0 cycles Haze % 2 10 cycles Haze % 15 50 cycles Haze % 30 200 cycles Haze % 50 Rockwell Hardness D-785 M-93 (sample thickness 0.25 inch) Thermal Properties Maximum ° F. 170-190 Recommended Continuous Service Temperature Softening ° F. 210-220 Temperature Melting ° F. 300-315 Temperature Deflection D-648 Temperature Load, Unannealed 3.6° F./minute, ° F. 190 264 psi 3.6° F./minute, ° F. 205 66 psi Coefficient of Thermal D-696 Ins/in/° F. × 10° Expansion −40° F. 2.7 −20° F. 2.9 0° F. 3.1 20° F. 3.2 40° F. 3.4 60° F. 3.6 80° F. 3.9 100° F. 4.3 Thermal Conductivity C-177 BTU 0.9 (Hr) (Ft2) (° F./in) Flammability D-635 Ins/minute (Burning Rate) 0.060 inch 1.019 0.236 inch 0.318 Smoke Density Rating D-2843-77 % 0.236 inch 0.36 Self-Ignition Temp D-1929 ° F. 833 0.236 inch Flame Spread Index/ 0.375 inch 110 Smoke Developed E-84-86 0.236 inch 115 Index Chemical Properties Resistance to Stress- ARTC Critical Crazing modification stress to: of MIL-P-6997 Isopropyl Alcohol psi 900 Lacquer Thinner psi 500 Toluene psi 1,300 Solvesso 100 psi 1,600 - The preferred polyvinyl chloride sheet material has the following properties and is sold under the trademark INTEDUR TYPE II by World-Pak Corporation/Inteplast Corporation, Livingston. N.J.:
Properties Test Method Units Value PHYSICAL Thickness ASTM D1505 in. {fraction (1/16)} inch˜ ½ inch Density ASTM D792 g/cm3 1.33˜1.41 MECHANICAL Tensile Strength @ ASTM D638 psi 6,000˜8,000 Yield Elongation @ ASTM D638 % 30˜70 Break Flexural Modulus ASTM D790 psi 300,000-400,000 Flexural Strength @ ASTM D790 psi 6,000˜10,000 Yield Izod Impact ASTM D256 ft-lbs./in. 5˜17 Strength (Notched) Shore Hardness ASTM D2240 D 73˜81 (D scale) THERMAL Heat Deflection ASTM D648 ° F. 145-155 Temperature Vertical Burn Test UL 94 — V-O - The preferred polycarbonate sheet material has the following properties and is sold under the trademark LEXAN 9600 by General Electric Company, Pittsfield, Mass.:
Property Test Method Units Value PHYSICAL Specific Gravity ASTM D792 — 1.25 Water Absorption, ASTM D570 % 0.20 Equilibrium, 24 Hrs Light Transmission ASTM D1003 % 85 (avg.), 0.125 inch thickness MECHANICAL Tensile Strength ASTM D638 psi @ Yield 9,500 Ultimate 9,000 Elongation ASTM D638 % 95 Tensile Modulus ASTM D638 psi 235,000 Flexural Strength ASTM D790 psi 13,500 Flexural Modulus ASTM D790 psi 370,000 Compressive Strength ASTM D695 psi 12,500 Dynatup Impact ASTM D3783 ft-lbs 50 Strength, ½ inch dia. dart, (gauge dependant), @ 73° F. Gardner Impact Strength, ASTM D3029 in-lbs. >320 round tup (gauge dependant), @ 73° F. Izod Impact Strength ASTM D256A ft-lbs./ (gauge dependant) in. Notched @ 73° F. 2.4 Unnotched @ 73° F. NB THERMAL Coefficient of Thermal ASTM D696 in./in./ 3.75 × 10−5 Expansion ° F. Heat Deflection ASTM D648 ° F. 280 Temperature @ 264 psi FLAMMABILITY UL Flammability UL 94 — V-0 (90 mils and above) V-2 (34-89 mils) FAA Flammability @ FAR 25.853 — Passes 40 to 125 mils A & B ATS 1000 @ — — Pass 40 to 125 mils - The
material 14 to be fixated in thepolymeric matrix 12 may be made of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, and various dried natural materials (such as the long-stem grass illustrated in FIG. 1), tree bark, plant leaves, petals, and twigs). It is important that the material be dry to avoid giving off water vapor or steam during the manufacturing process. - The
material 14 may be one or more layers of a textile fabric made of various fibers. Textile fabrics can impart beautiful and unusual visual effects to the product, such as an iridescent effect or a moiré effect. Non-limiting examples of suitable textile fabrics are: synthetic, semi-synthetic, naturally occurring and polymeric, including for example, rayon, polyester, nylon, synthetic polyamides (such as nylon 66 and nylon 6), acrylic, modacrylic, cellulose acetate, cotton, wool, silk and fiberglass. The fabric may be woven, knitted, spun-bonded, or prepared by other well-known processes in the textile trade. The fabric may be printed, coated, dyed, sublimated or decorated by other techniques known within the textile trade. Fabrics with loose weaves and have as open area of 0.005 inch or greater between yarns/threads are best. Fabrics with rough and porous surfaces are also preferred over smooth surfaces. Tightly woven fabrics with smooth surfaces will not function in the thermal melting process because they prevent resin transfer through the material. Natural fibers are preferred due to their porosity. The melted resin saturates such fibers more readily. The textile fabric may vary in thickness from about 0.00045 inch (0.0114 mm) to 0.25 inch (6.35 mm). - As mentioned above, the
material 14 to be fixated in thematrix 12 may also be made of wood veneer, paper, dried plant fibers and parts. Non-limiting examples are: cellulose, cotton, linen, pulp, rag, dried plant materials and fibers including long-stem grass, leaves, petals, bark and twigs from reed, bamboo, papyrus, banana, mulberry, and wicker. For these types of material, the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 0.25 inch (6.35 mm). - The
material 14 to be fixated in thepolymeric matrix 12 may also be made of dry metal. Non-limiting examples are: copper, bronze, brass, steel, stainless steel, iron, nickel, and aluminum. Variety of shapes including: rod, mesh, sheet, perforated sheet, foil, strips, shavings, woven, and cable. The metal may be decorated such as etched, anodized, sanded, brushed, stained, painted, printed, chemically treated, galvanized, corroded, aged, polished, and plated. For these types of material, the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 1.0 inch (25.4 mm). - The
material 14 to be fixated in thematrix 12 may also be a plastic sheet or film. Non-limiting examples are: polymethylmethacrylate, polycarbonate, polyvinyl chloride, PETG copolyester, polyethylene, polypropylene, polyester, polyvinylidinefluoride (PVDF) (sold under the trademark KYNAR), polyvinylfluoride (PVF) (sold under the trademark TEDLAR), and polyurethane. For these types of material, the thickness of the layer may be from about 0.00045 inch (0.0114 mm) to 1.0 inch (25.4 mm). - The invention also includes methods for manufacturing the unitary
solid surface structure 10. These manufacturing methods do not involve using a mold and casting a liquid resin around the object to be fixated. - In order to produce
products 10 which are free of defects (such as air or gas bubbles entrapped in the matrix, voids in the matrix, or cracks in the matrix), it has been found to be critical to process the above-described basic lay-up sandwich according to the following operating parameters. These process parameters work well with most paper and fabric decorative materials. - First, the basic lay-up sandwich must be processed in a heated press that can apply the required heat and pressure to melt the
polymeric sheets matrix 12 that fixates the one or moredecorative objects 14 within the matrix. Most preferred is a steam heated multiple opening press. - Second, when using the preferred polymeric sheets described above, the press should be preheated to a temperature of about 280° F. Then the lay-up sandwich is loaded into the press. The press is then closed against the lay-up sandwich at a pressure of about 40 pounds per square inch (psi). The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. This temperature works well for polymethylmethacrylate and polyvinyl chloride. Polycarbonate requires a higher temperature of about 350° F.-375° F.
- Third, at this point the press must be opened and all pressure is removed from the lay-up sandwich. This step is referred to as “bumping” the press. This step is critical in order to allow the heated air, water vapor, and gases to escape from between the
polymeric sheets matrix 12. - Fourth, the press is then closed against the lay-up sandwich and the pressure is ramped up to about 160 psi. The press temperature is then ramped up until the materials in the lay-up sandwich reach about 290° F.-310° F. while maintaining the pressure at about 160 psi. Again, this temperature works well for polymethylmethacrylate and polyvinyl chloride, but polycarbonate requires a higher temperature of 350° F.-375° F. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the
polymeric sheets - Fifth, the heat is turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product (which needs some trimming) is removed from the press. If needed, a coolant may be circulated through the platens to cool the press. This step of gradually cooling the product is important because the product is being annealed, thereby removing the internal strains resulting from the previous operations. This prevents the
polymeric matrix 12 from developing cracks, warping, or excessive shrinking. - Prior to full-scale production, the compatibility between specific decorative materials and the polymeric sheets should be evaluated. Some decorative materials can degrade under heat and pressure resulting in discoloration, color bleed, and separation.
- During the pressing process, the outer surface of the polymeric sheets can optionally be deeply embossed or also textured using coated release papers or release films. A variety of suitable textured release papers are available from the S. D. Warren Company, Westbrook, Me. A variety of release films are available from the DuPont Company, Wilmington, Del. The release papers and release films have specific textures and gloss levels that are transferred onto the polymeric sheets during the pressing/heating, operation. The release papers and release films also separate the polymeric sheets from the caul plate (described in Example 1 below) and thereby they prevent the polymeric sheets from sticking to the caul plate.
- One of the advantages of the solid surface structures of the invention is that if they become scratched or marred, they are capable of being restored and refinished. The is particularly important for applications such as table tops and countertops. Refinishing may be accomplished for matte, semi-gloss, and high gloss finishes. The preferred process for refinishing uses an orbital disc sanding machine and film abrasives sold under the trademark TRIZACT and disc sanding pads sold under the trademark HOOKIT II, both products of Minnesota Mining and Manufacturing Co., St. Paul, Minn. The process involves sanding out the defects in the surface and then polishing.
- During the pressing/heating operation, specialty films can also be applied one or both of the polymeric sheets to enhance the abrasion resistance, chemical resistance, and ultraviolet resistance of the final product. These specialty films may be made of various materials including polyester, polyvinylfluoride (PV F), ethylene trifluoroethylene (ETFE), fluorinated ethylenepropylene (FEP), polyvilylidenefluoride (PVDF), and chlorotrifluoroethylene (CTFE).
- These specialty films can be on the top and/or bottom of the final product. Typically, these films have a higher melt point than polymethylmethacrylate and therefore require the use of a heat-activated adhesive coating, which is applied to the film prior to the pressing/heating operation. Generally, the specialty film has a thickness of 0.004 inch (0.100 mm) to 0.020 inch (0.500 mm).
- In this example, the basic lay-up sandwich consists of three layers of the following starting materials: (1) a bottom sheet of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; (2) a decorative textile fabric that is 58 inches wide and 102 inches long; and (3) a top sheet of the preferred polymethylmethacrylate that is 0.060 inch thick, 48 inches wide, and 96 inches long.
- The final lay-up book is made as follows. A textured sheet of release paper that is 60 inches wide and 100 inches long is placed on a 0.060 inch thick aluminum caul plate and taped to the caul plate. The basic lay-up sandwich (described in the paragraph above) is placed on top of the textured sheet of release paper. The textured sheet of release paper will impart an aesthetically-pleasing texture to the outer surface of the bottom sheet of polymethylmethacrylate. The decorative textile fabric extending beyond the edges of polymethylmethacrylate sheets is pulled taunt and taped to the caul plate. Another sheet of textured release paper that is 60 inches wide and 100 inches long is placed on top of the basic lay-up sandwich. This textured sheet of release paper will impart an aesthetically-pleasing texture to the outer surface of the top sheet of polymethylmethacrylate. Another caul plate is placed on top of the upper sheet of textured release paper and the upper textured sheet of release paper is taped to the caul plate. Thermocouples are attached to the lay-up sandwich so that the temperature of the sandwich can be accurately measured.
- Four plies of canvas are placed below the bottom caul plate and above the top caul plate to event) distribute the pressure and heat during the pressing/heating operation. The book is placed on a (0.125 inch thick aluminum sheet loader pan to facilitate loading and unloading of the book into the press.
- The press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F.-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- The heat is then turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product (which may need some trimming) is removed from the press.
- Example 1 can also be performed using polyvinyl chloride or polycarbonate, but polycarbonate requires the higher temperature of 350° F.-375° F. Example 1 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate. There are benefits in combining the properties of two thermoplastics. For example, by combining polyvinyl chloride and polymethylmethacrylate, the polyvinyl chloride will improve the flammability and chemical resistance of the polymethylmethacrylate, and the polymethylmethacrylate will improve the clarity, ultra-violet resistance, and abrasion resistance of the polyvinyl chloride. The thermoplastics need to be formulated to have similar processing temperatures to work in the press process.
- In this example, the thickness of the product is 0.25 inch or greater. When fabricating products in a thickness of 0.25 inch or greater employing delicate decorative papers, fabrics, or organic materials, a first stage is necessary to encapsulate the decorative material within two thin sheets of 0.060 inch polymethylmethacrylate to prevent tearing of the decorative material caused by movement of the polymethylmethacrylate during pressing. The thinner sheets of polymethylmethacrylate will hold the decorative material in place with minimal movement during stage two. The two-stage process enables products to be made in thicker gauges with less “melt out.” Thus, maximum thickness is preserved. The goal is to transfer heat to the lay-up sandwich to melt the polymethylmethacrylate sheets together using the least amount of heat, pressure, and time.
- In stage 1, a 0.12 inch intermediate product with 0.005 inch relief texture is made encapsulating the delicate decorative material. First, an intermediate lay-up book is made consisting of the following sequence from top to bottom: (1) four plies of canvas padding; caul plate; (2) textured release paper or plate providing 0.005 inch relief; (3) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (4) a layer of the delicate decorative material; (5) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (6) textured release paper or plate providing 0.005 inch relief; (7) caul plate; and, (8) four plies of canvas padding.
- The press is heated to about 280° F., the intermediate lay-up book is placed in the press, and the press is closed. The pressure is brought to 40 psi. When the materials in the lay-up reach 290° F., the pressure is increased to 160 psi and held for 1 minute. The intermediate product is then gradually cooled to 100° F.
- In stage 2, the final lay-up book is made consisting of the following sequence from top to bottom: foul plies of canvas padding; caul plate; textured release paper or plate; 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); 0.12 inch textured intermediate product (from stage 1) encapsulating the delicate decorative material delicate decorative material; 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); textured release paper or plate; caul plate; and, four plies of canvas padding.
- The press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped tip until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F. 15-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- The heat is then turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product (which may need some trimming) is removed from the press.
- Example 2 can also be performed using polyvinyl chloride and polycarbonate, but polycarbonate requires the higher temperature of about 350° F.-375° F. Example 2 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate.
- This is an example of the second embodiment of the invention illustrated by FIG. 4. In this example, the basic lay-up sandwich consists of three layers of the following starting materials: (1) a
bottom sheet 22 of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; (2) a pre-texturedintermediate sheet 24 of the preferred polymethylmethacrylate material that is 0.060 inch thick, 48 inches wide, and 96 inches long; and, (3) atop sheet 26 of the preferred polymethylmethacrylate that is 0.060 inch thick, 48 inches wide, and 96 inches long. When making this product (which does not have a layer of decorative material), it is necessary to pre-texture both surfaces of theintermediate polymethylmethacrylate sheet 24 to allow air and gases to escape during the pressing/heating operation. If the surfaces of thepolymethylmethacrylate sheet 24 is not pre-textured, air bubbles will be trapped within the product. - In stage 1, an intermediate lay-up book is made consisting of the following sequence from top to bottom: (1) four plies of canvas padding; caul plate; (2) textured release paper or plate providing 0.005 inch relief; (3) 0.060 inch clear or colored polymethylmethacrylate sheet (size 48 inches by 96 inches); (4) textured release paper or plate providing 0.005 inch relief; caul plate; and, (5) four plies of canvas padding.
- The press is heated to about 280° F., the intermediate lay-up book is placed in the press, and the press is closed. The pressure is brought to 40 psi. When the lay-up reaches about 290° F., the pressure is increased to 160 psi and held for 1 minute. The intermediate product is then gradually cooled to 100° F.
- In stage 2, the final lay-up book is made consisting of the following sequence from top to bottom: (1) four plies of canvas padding; (2) caul plate; (3) textured release paper or plate; (4) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (5) 0.060 inch textured intermediate product (from stage I); (6) 0.060 inch clear polymethylmethacrylate sheet (size 48 inches by 96 inches); (7) textured release paper or plate; (8) caul plate; and, (9) four plies of canvas padding.
- The press is preheated to a temperature of about 280° F. Then the final lay-up book is loaded into the press. The press is closed against the book at a pressure of about 40 psi. The press temperature is then ramped up until the lay-up sandwich reaches a temperature of about 290° F.-310° F. while maintaining the pressure at about 40 psi. The press is opened and all pressure is removed from the book. The press is closed against the book and the pressure is ramped up to about 160 psi. The press temperature is ramped up until the materials in the lay-up sandwich reach a temperature of about 290° F.-310° F. while maintaining the pressure at about 160 psi. This pressure and temperature is then held for about 1 to 6 minutes depending on the thickness of the lay-up sandwich to allow the polymethylmethacrylate sheets to melt together in the lay-up sandwich to provide a unitary product.
- The heat is then turned off and the product is allowed to gradually cool while maintaining the pressure at about 160 psi until the product reaches a temperature of about 100° F. at which point the press is opened and the product is removed from the press. The product has a stratum of the textured material permanently fixated in the matrix and co-extensive with the edges of the matrix. The flat product may be subjected to conventional thermoforming/shaping processes if a non-flat shape is desired.
- This Example 3 can also be performed using polyvinyl chloride and polycarbonate, but polycarbonate requires the higher temperature of about 350° F.-375° F. Example 3 can also be performed using a combination of polymethylmethacrylate, polyvinyl chloride, or polycarbonate.
- While the preferred embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
Claims (27)
1. A flat non-porous unitary solid surface structure comprising:
(a) a flat non-porous unitary matrix made of a polymeric material selected from the group consisting of polymethylmethacrylate, polyvinyl chloride, polycarbonate, and combinations thereof, and
(b) a visible decorative object that is permanently fixated in the matrix, wherein said decorative object extends to least one edge of said matrix.
2. The solid surface structure of claim 1 wherein the matrix is made of polymethylmethacrylate.
3. The solid surface structure of claim 1 wherein the matrix is made of polyvinyl chloride.
4. The solid surface structure of claim 1 wherein the matrix is made of polycarbonate.
5. The solid surface structure of claim 1 wherein the decorative object is made of a dry material selected from the group consisting of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, dried natural materials, tree bark, plant leaves, petals, and twigs.
6. The solid surface structure of claim 1 wherein at least one of the outer surfaces of the matrix is embossed or textured.
7. A flat non-porous unitary solid surface structure comprising:
(a) a flat non-porous unitary matrix made of polymethylmethacrylate; and
(b) a visible decorative object that is permanently fixated in the matrix, wherein said decorative object extends to least one edge of said matrix.
8. The solid surface structure of claim 7 wherein the decorative object is made of a dry material selected from the group consisting of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, dried natural materials, tree bark, plant leaves, petals, and twigs.
9. The solid surface structure of claim 7 wherein at least one of the outer surfaces of the matrix is embossed or textured.
10. A flat non-porous unitary solid surface structure comprising:
(a) a flat non-porous unitary matrix made of polyvinyl chloride; and
(b) a visible decorative object that is permanently fixated in the matrix, wherein said decorative object extends to least one edge of said matrix.
11. The solid surface structure of claim 10 wherein the decorative object is made of a dry material selected from the group consisting of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, dried natural materials, tree bark, plant leaves, petals, and twigs.
12. The solid surface structure of claim 10 wherein at least one of the outer surfaces of the matrix is embossed or textured.
13. A flat non-porous unitary solid surface structure comprising:
(a) a flat non-porous unitary matrix made of polycarbonate; and
(b) a visible decorative object that is permanently fixated in the matrix, wherein said decorative object extends to least one edge of said matrix.
14. The solid surface structure of claim 13 wherein the decorative object is made of a dry material selected from the group consisting of textile fabric, paper, plastic film, plastic sheet, metallic wire, rod, mesh, bar, wood veneer, dried natural materials, tree bark, plant leaves, petals, and twigs.
15. The solid surface structure of claim 13 wherein at least one of the outer surfaces of the matrix is embossed or textured.
16. A flat non-porous unitary solid surface structure comprising:
(a) a flat non-porous unitary matrix made of a polymeric material selected from the group consisting of a polymethylmethacrylate, polyvinyl chloride, polycarbonate, and combinations thereof; and
(b) a visible stratum of textured material made of a material selected from the group consisting of polymethylmethacrylate, polyvinyl chloride, and polycarbonate, wherein said textured material is permanently fixated in the matrix and is co-extensive with the edges of said matrix.
17. The solid surface structure of claim 16 wherein the matrix is made of polymethylmethacrylate and the visible layer of textured material is made of polymethylmethacrylate.
18. The solid surface structure of claim 16 wherein the matrix is made of polyvinyl chloride and the visible layer of textured material is made of polyvinyl chloride.
19. The solid surface structure of claim 16 wherein the matrix is made of polycarbonate and the visible layer of textured material is made of polycarbonate.
20-39 (Cancelled)
40. A countertop comprised of the flat non-porous unitary solid surface structure of claim 1 .
41. A sink comprised of the flat non-porous unitary solid surface structure of claim 1 .
42. A lavatory comprised of the flat non-porous unitary solid surface structure of claim 1 .
43. A desktop comprised of the flat non-porous unitary solid surface structure of claim 1 .
44. A table top comprised of the flat non-porous unitary solid surface structure of claim 1 .
45. A chair comprised of the flat non-porous unitary solid surface structure of claim 1 .
46. A windowsill comprised of the flat non-porous unitary solid surface structure of claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/762,206 US20040202800A1 (en) | 2001-07-25 | 2004-01-21 | Solid surface products |
US11/262,467 US20060046034A1 (en) | 2001-07-25 | 2005-10-27 | Solid surface products |
US11/364,920 US20060147655A1 (en) | 2001-07-25 | 2006-03-01 | Solid surface products |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30789801P | 2001-07-25 | 2001-07-25 | |
US10/106,833 US6743327B2 (en) | 2001-07-25 | 2002-03-25 | Solid surface products |
US10/762,206 US20040202800A1 (en) | 2001-07-25 | 2004-01-21 | Solid surface products |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/106,833 Division US6743327B2 (en) | 2001-07-25 | 2002-03-25 | Solid surface products |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/262,467 Continuation-In-Part US20060046034A1 (en) | 2001-07-25 | 2005-10-27 | Solid surface products |
US11/364,920 Continuation-In-Part US20060147655A1 (en) | 2001-07-25 | 2006-03-01 | Solid surface products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040202800A1 true US20040202800A1 (en) | 2004-10-14 |
Family
ID=28673558
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/106,833 Expired - Lifetime US6743327B2 (en) | 2001-07-25 | 2002-03-25 | Solid surface products |
US10/762,206 Abandoned US20040202800A1 (en) | 2001-07-25 | 2004-01-21 | Solid surface products |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/106,833 Expired - Lifetime US6743327B2 (en) | 2001-07-25 | 2002-03-25 | Solid surface products |
Country Status (6)
Country | Link |
---|---|
US (2) | US6743327B2 (en) |
EP (1) | EP1725400A4 (en) |
AU (1) | AU2003215237A1 (en) |
CA (1) | CA2490743A1 (en) |
TW (1) | TW200304409A (en) |
WO (1) | WO2003082572A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050241759A1 (en) * | 2001-03-05 | 2005-11-03 | 3-Form | Laminate structure with polycarbonate sheets and method of making |
US20060170130A1 (en) * | 2005-02-02 | 2006-08-03 | Sult Darrell B | Composite sheet with visible filler and manufacturing method |
US20080102255A1 (en) * | 2006-10-26 | 2008-05-01 | Yi-Lin Yang | Acrylic Decorative Board |
US7550057B1 (en) | 2004-04-09 | 2009-06-23 | 3Form, Inc. | Architectural laminate panel with embedded compressible objects and methods for making the same |
US20090197058A1 (en) * | 2007-05-08 | 2009-08-06 | 3Form, Inc. | Multivariate color system with texture application |
US8241714B2 (en) | 2004-09-01 | 2012-08-14 | 3Form, Inc. | Architectural panels with objects embedded in resin interlayer |
USD691289S1 (en) | 2012-09-05 | 2013-10-08 | 3Form, Inc. | Panel with cut and aligned thatch interlayer |
USD702368S1 (en) * | 2013-04-11 | 2014-04-08 | Lumicor, Inc. | Architectural panel with tarwe embossed surface |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7303810B2 (en) * | 2001-03-05 | 2007-12-04 | 3Form, Inc. | Fire-resistant architectural resin materials |
WO2002083397A1 (en) * | 2001-04-17 | 2002-10-24 | Allegheny Solid Surface Technologies | Methods and arrangements for texturing, patterning and bending polymer sheet materials |
US20060147655A1 (en) * | 2001-07-25 | 2006-07-06 | Lumicor | Solid surface products |
US7141287B2 (en) * | 2003-02-20 | 2006-11-28 | Ronald Lee Blessing | Luminous countertop |
USD508260S1 (en) * | 2003-09-15 | 2005-08-09 | Jonathan Francis Toth | Greeting card in a transparent box |
US20050281980A1 (en) * | 2004-06-22 | 2005-12-22 | Cruz Jose A | Vacuum pressure bag for use with large scale composite structures |
US7615276B1 (en) | 2004-08-12 | 2009-11-10 | 3Form, Inc. | Architectural resin panel with three-dimensional patterns |
US20060125137A1 (en) * | 2004-12-15 | 2006-06-15 | Trinder Kenneth G | Method for manufacturing counter tops |
DE102005050320B4 (en) * | 2005-10-20 | 2013-07-04 | Montblanc-Simplo Gmbh | Method for producing a transparent body with an enclosed object |
US7504159B1 (en) * | 2005-11-04 | 2009-03-17 | 3Form, Inc. | Resin-based panels having thin or brittle veneer layers and methods of making same |
US8287991B2 (en) * | 2006-10-04 | 2012-10-16 | Eastman Chemical Company | Using branched polymers to control the dimensional stability of articles in the lamination process |
US20080085390A1 (en) * | 2006-10-04 | 2008-04-10 | Ryan Thomas Neill | Encapsulation of electrically energized articles |
US7686914B2 (en) * | 2007-02-12 | 2010-03-30 | Mb Wellington Studio, Inc. | Decorative laminated plastic/metal panels |
US20080268273A1 (en) * | 2007-04-24 | 2008-10-30 | The Diller Corporation | Wood veneer surfaced decorative laminate product and method of making same |
WO2008153418A1 (en) * | 2007-06-11 | 2008-12-18 | Marie Joo Le Guen | Decor laminate and process |
US8136447B2 (en) * | 2007-12-06 | 2012-03-20 | Awi Licensing Company | Decorative articles and printing registration method |
US7931220B2 (en) | 2008-05-15 | 2011-04-26 | Empire Resource Recovery, Llc | White pozzolan manufactured from post-consumer waste glass, products incorporating the same and methods of manufacturing the same |
WO2010132422A2 (en) | 2009-05-13 | 2010-11-18 | Hunter Douglas N.V. | Structured-core laminate panels and methods of forming the same |
US20140199525A1 (en) * | 2009-05-13 | 2014-07-17 | 3Form, Inc. | Structured-core laminate panels and methods of forming the same |
GB2502714B (en) | 2010-12-22 | 2016-08-03 | Masonite Corp | Method of making annealed door skins and composite door assemblies, and related articles |
AT511526A1 (en) | 2011-05-17 | 2012-12-15 | Pact Technologies Consulting & Trading Gmbh | CRYSTAL inclusions |
US9150006B2 (en) | 2011-06-23 | 2015-10-06 | Eastman Chemical Company | Lamination process optimization utilizing neopentyl glycol-modified polyesters |
USD747004S1 (en) * | 2014-03-11 | 2016-01-05 | 3Form, Llc | Panel with floret pattern |
US20160273228A1 (en) * | 2015-03-18 | 2016-09-22 | 3Form, Llc | Panels and tiles having various patterns |
CN105818597A (en) * | 2016-05-11 | 2016-08-03 | 李维娟 | Mural and manufacturing method thereof |
USD844119S1 (en) * | 2017-06-21 | 2019-03-26 | Bath Authority Llc | Glass panel |
GB2568050A (en) | 2017-11-01 | 2019-05-08 | Caesarstone Ltd | Compositions comprising an acrylic polymer and processes of preparing the same |
USD889614S1 (en) * | 2018-02-20 | 2020-07-07 | Bath Authority Llc | Shower door with panel |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27093A (en) * | 1860-02-14 | Press for attaching leathers to billiard-cues | ||
US2470509A (en) * | 1945-05-02 | 1949-05-17 | Pittsburgh Plate Glass Co | Method of making heated window glass |
US3488246A (en) * | 1966-08-31 | 1970-01-06 | Du Pont | Cast plastic simulated marble building product |
US3616021A (en) * | 1969-10-29 | 1971-10-26 | Formica Corp | Process for preparing a decorative laminate surfaced with a transparent thermoplastic film |
US3642975A (en) * | 1969-07-09 | 1972-02-15 | Du Pont | Process for forming a stress-free article containing a depression from a polymer |
US3847865A (en) * | 1972-04-28 | 1974-11-12 | Du Pont | Use of alumina trihydrate in a polymethyl methacrylate article |
US4107135A (en) * | 1976-04-23 | 1978-08-15 | E. I. Du Pont De Nemours And Company | Decorative polymeric article containing flock fibers |
US4138300A (en) * | 1975-03-26 | 1979-02-06 | Japan Atomic Energy Research Institute | Process for producing a transparent shaped polymeric product |
US4445951A (en) * | 1981-07-01 | 1984-05-01 | Rolls-Royce Limited | Method of manufacturing composite materials |
US5224706A (en) * | 1991-09-23 | 1993-07-06 | Bridgeman James L | Gambling game and apparatus with uneven passive banker |
US5286290A (en) * | 1992-04-16 | 1994-02-15 | Avonite, Inc. | Filler and artificial stone made therewith |
US5591530A (en) * | 1992-10-01 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Flexible optically uniform sign face substrate |
US5837091A (en) * | 1994-11-04 | 1998-11-17 | Roehm Gmbh Chemische Fabrik | Method for thermal adhesion of acrylic plastic parts |
US5916515A (en) * | 1997-02-27 | 1999-06-29 | Valence Technology, Inc. | Two-stage lamination process |
US5958539A (en) * | 1997-08-26 | 1999-09-28 | Eastman Chemical Company | Thermoplastic article having textile fiber fabric embedded therein |
US5998028A (en) * | 1997-08-26 | 1999-12-07 | Eastman Chemical Company | Thermoplastic article having metallic wire, rod or bar embedded therein |
US6025069A (en) * | 1998-06-19 | 2000-02-15 | Eastman Chemical Company | Thermoplastic article having high-relief surface |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3405088A (en) | 1965-02-23 | 1968-10-08 | Du Pont | Thick, cured polymethyl methacrylate article and process for its preparation |
FR1460808A (en) * | 1965-10-19 | 1966-01-07 | Decorative effect material and process for its manufacture | |
GB1227910A (en) * | 1968-12-30 | 1971-04-15 | ||
US4332167A (en) * | 1975-11-28 | 1982-06-01 | Drexelbrook Controls, Inc. | Method of making an RF admittance measuring probe and product thereof |
GB2118096B (en) * | 1982-02-05 | 1986-04-30 | Campbell Peter Leonard | Transparent panel |
AUPN516795A0 (en) | 1995-09-01 | 1995-09-28 | Armacel Pty Limited | Layered structural article |
-
2002
- 2002-03-25 US US10/106,833 patent/US6743327B2/en not_active Expired - Lifetime
-
2003
- 2003-02-12 CA CA002490743A patent/CA2490743A1/en not_active Abandoned
- 2003-02-12 WO PCT/US2003/004554 patent/WO2003082572A1/en not_active Application Discontinuation
- 2003-02-12 EP EP03711053A patent/EP1725400A4/en not_active Withdrawn
- 2003-02-12 AU AU2003215237A patent/AU2003215237A1/en not_active Abandoned
- 2003-02-26 TW TW092104071A patent/TW200304409A/en unknown
-
2004
- 2004-01-21 US US10/762,206 patent/US20040202800A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27093A (en) * | 1860-02-14 | Press for attaching leathers to billiard-cues | ||
US2470509A (en) * | 1945-05-02 | 1949-05-17 | Pittsburgh Plate Glass Co | Method of making heated window glass |
US3488246A (en) * | 1966-08-31 | 1970-01-06 | Du Pont | Cast plastic simulated marble building product |
US3642975A (en) * | 1969-07-09 | 1972-02-15 | Du Pont | Process for forming a stress-free article containing a depression from a polymer |
US3616021A (en) * | 1969-10-29 | 1971-10-26 | Formica Corp | Process for preparing a decorative laminate surfaced with a transparent thermoplastic film |
US3847865A (en) * | 1972-04-28 | 1974-11-12 | Du Pont | Use of alumina trihydrate in a polymethyl methacrylate article |
US4138300A (en) * | 1975-03-26 | 1979-02-06 | Japan Atomic Energy Research Institute | Process for producing a transparent shaped polymeric product |
US4107135A (en) * | 1976-04-23 | 1978-08-15 | E. I. Du Pont De Nemours And Company | Decorative polymeric article containing flock fibers |
US4445951A (en) * | 1981-07-01 | 1984-05-01 | Rolls-Royce Limited | Method of manufacturing composite materials |
US5224706A (en) * | 1991-09-23 | 1993-07-06 | Bridgeman James L | Gambling game and apparatus with uneven passive banker |
US5286290A (en) * | 1992-04-16 | 1994-02-15 | Avonite, Inc. | Filler and artificial stone made therewith |
US5591530A (en) * | 1992-10-01 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Flexible optically uniform sign face substrate |
US5837091A (en) * | 1994-11-04 | 1998-11-17 | Roehm Gmbh Chemische Fabrik | Method for thermal adhesion of acrylic plastic parts |
US5916515A (en) * | 1997-02-27 | 1999-06-29 | Valence Technology, Inc. | Two-stage lamination process |
US5958539A (en) * | 1997-08-26 | 1999-09-28 | Eastman Chemical Company | Thermoplastic article having textile fiber fabric embedded therein |
US5998028A (en) * | 1997-08-26 | 1999-12-07 | Eastman Chemical Company | Thermoplastic article having metallic wire, rod or bar embedded therein |
US6025069A (en) * | 1998-06-19 | 2000-02-15 | Eastman Chemical Company | Thermoplastic article having high-relief surface |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050241759A1 (en) * | 2001-03-05 | 2005-11-03 | 3-Form | Laminate structure with polycarbonate sheets and method of making |
US7691470B2 (en) | 2001-03-05 | 2010-04-06 | 3Form | Laminate structure with polycarbonate sheets |
USD621068S1 (en) | 2002-03-01 | 2010-08-03 | 3Form, Inc. | Architectural panel with thatch reed design |
US7550057B1 (en) | 2004-04-09 | 2009-06-23 | 3Form, Inc. | Architectural laminate panel with embedded compressible objects and methods for making the same |
US8241714B2 (en) | 2004-09-01 | 2012-08-14 | 3Form, Inc. | Architectural panels with objects embedded in resin interlayer |
US20060170130A1 (en) * | 2005-02-02 | 2006-08-03 | Sult Darrell B | Composite sheet with visible filler and manufacturing method |
US7645405B2 (en) | 2005-02-02 | 2010-01-12 | Sult Darrell B | Composite sheet with visible filler and manufacturing method |
US20080102255A1 (en) * | 2006-10-26 | 2008-05-01 | Yi-Lin Yang | Acrylic Decorative Board |
US20110226424A1 (en) * | 2007-05-08 | 2011-09-22 | 3Form, Inc. | Multivariate color system with texture application |
US8157942B1 (en) | 2007-05-08 | 2012-04-17 | Willham John E C | Multivariate color system with texture application |
US8182903B2 (en) | 2007-05-08 | 2012-05-22 | 3Form, Inc. | Multivariate color system with texture application |
US20090197058A1 (en) * | 2007-05-08 | 2009-08-06 | 3Form, Inc. | Multivariate color system with texture application |
US8268106B2 (en) | 2007-05-08 | 2012-09-18 | 3Form, Inc. | Multivariate color system with texture application |
US8617695B2 (en) | 2007-05-08 | 2013-12-31 | 3Form, Inc. | Multivariate color system with texture application |
US9348065B2 (en) | 2007-05-08 | 2016-05-24 | 3Form, Llc | Multivariate color system with texture application |
USD691289S1 (en) | 2012-09-05 | 2013-10-08 | 3Form, Inc. | Panel with cut and aligned thatch interlayer |
USD702368S1 (en) * | 2013-04-11 | 2014-04-08 | Lumicor, Inc. | Architectural panel with tarwe embossed surface |
Also Published As
Publication number | Publication date |
---|---|
CA2490743A1 (en) | 2003-10-09 |
US6743327B2 (en) | 2004-06-01 |
WO2003082572A1 (en) | 2003-10-09 |
AU2003215237A1 (en) | 2003-10-13 |
EP1725400A4 (en) | 2007-08-01 |
US20030113485A1 (en) | 2003-06-19 |
EP1725400A1 (en) | 2006-11-29 |
TW200304409A (en) | 2003-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6743327B2 (en) | Solid surface products | |
US20060147655A1 (en) | Solid surface products | |
US7691470B2 (en) | Laminate structure with polycarbonate sheets | |
US20060046034A1 (en) | Solid surface products | |
US20040247801A1 (en) | Solid surface products | |
JP5275341B2 (en) | Multivariate coloring system with texture | |
WO2001070496A1 (en) | Decorative material and decorative plate | |
US10723904B2 (en) | Decorative material | |
AU714178B2 (en) | Thermoplastic acrylic sheet compositions and their use as substitutes for high pressure decorative laminate | |
JP2024180630A (en) | Transfer sheet and method for producing decorative material using same | |
AU732574B2 (en) | Thermoplastic acrylic sheet compositions and their use as substitutes for high pressure decorative laminate | |
CN206739207U (en) | A kind of acrylic board | |
JP2023129082A (en) | Decorative sheet for melamine resin overlayed board, melamine resin overlayed board, and method for producing melamine resin overlayed board | |
KR20170003901U (en) | Ship interior decoration panels | |
JP7222522B2 (en) | glossy film | |
CN221698157U (en) | A multilayer composite material structure for box shell and trolley case | |
RU91716U1 (en) | MULTILAYER COMPOSITION | |
JP2019177681A (en) | Decorative sheet for molding | |
JP2022007989A (en) | Cosmetic material and manufacturing method of decorative material | |
KR100957383B1 (en) | Manufacturing method of decorative plate | |
KR100896476B1 (en) | Decorative sheet excellent in interlayer adhesion and its manufacturing method | |
JP2023129079A (en) | Decorative sheet for melamine resin overlayed board, melamine resin overlayed board, and method for producing melamine resin overlayed board | |
KR20000071563A (en) | Lamination of Two Layers to Form Solid Surface Laminate | |
JP2002166516A (en) | Decorative material | |
JPH08309932A (en) | Grainlike sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHOBER, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHOBER, DENNIS A.;REEL/FRAME:015475/0841 Effective date: 20040126 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: LUMICOR, INC., WASHINGTON Free format text: CHANGE OF NAME;ASSIGNOR:SCHOBER, INC.;REEL/FRAME:018442/0448 Effective date: 20050624 |