US20040147671A1 - Decorative coating composition for solid substrates - Google Patents
Decorative coating composition for solid substrates Download PDFInfo
- Publication number
- US20040147671A1 US20040147671A1 US10/146,162 US14616202A US2004147671A1 US 20040147671 A1 US20040147671 A1 US 20040147671A1 US 14616202 A US14616202 A US 14616202A US 2004147671 A1 US2004147671 A1 US 2004147671A1
- Authority
- US
- United States
- Prior art keywords
- coating
- resins
- composition according
- coating composition
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4063—Mixtures of compounds of group C08G18/62 with other macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/46—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
- C08G18/4615—Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6275—Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds
- C08G18/6279—Polymers of halogen containing compounds having carbon-to-carbon double bonds; halogenated polymers of compounds having carbon-to-carbon double bonds containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/798—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/28—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for wrinkle, crackle, orange-peel, or similar decorative effects
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/29—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for multicolour effects
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
Definitions
- the invention relates to a coating composition for a solid substrate that provides a decorative surface having a stone, marble or granite-like effect and unique aesthetics and the resulting coated substrate can be used, for example, as building materials, for counter tops, wall panels, furniture, and for various other articles.
- Coatings for substrates used in industrial and house-keeping fields can have a solid color or stone, granite, or marble-like or other unique appearance.
- Such coatings comprise a filled polymer composition that is cured at ambient temperature or can be force-dried at elevated temperature.
- the coated articles can be costly to produce and difficult to transport and to install due to their heavy and brittle properties, e.g., they are fragile and easily chipped, broken or abused. The breakage rate at the required thickness makes these articles expensive.
- thermoplastic resins such as, polyester, acrylic resins, and reinforced fiber.
- U.S. Pat. No. 5,789,032 relates to a curable composition including polyester resin and filler useful for the production of stone, marble, or granite effect coatings. A vibration action is needed to level the composition and to form an equable coating on the surface.
- the present invention satisfies the demand for a decorative and robust coating for interior and exterior surfaces, especially for horizontal and vertical working tops, panels; furniture in homes, offices or industrial buildings; counter and dining tables, counter tops, floors; architectural facing of buildings and various articles (lamps, vases, picture frames, etc.) of all types.
- the coating composition is a highly filled composition comprising a polyurethane polymer based on acrylic or polyester polyols and polyisocyanates, a filler, decorative granules or other aesthetic materials, and special additive systems.
- the present invention is directed to a high-filled coating composition
- a high-filled coating composition comprising
- the composition is formed as a flowable liquid and is cured after application on the substrate.
- the cured coating can be sanded and polished; and the final article can be cut into a desired shape if necessary.
- the appearance of the final coating prepared from the coating composition according to the invention is characterized by a solid and/or a stone-, granite-, marble-like appearance or other special aesthetic appearance.
- the articles produced with the coating composition according to the invention can be used as decorative surfaces e.g. countertops, wall panels, for furniture, for floors, and for all types of various articles.
- the coatings and the coated products are robust and stable and are workable and repairable.
- the coatings can be applied in a factory or on location. They have an appearance of stone, cultured marble or granite, such as, the material Corian®.
- the coating composition can be applied on a vertical panel without sagging within a dry thickness range from 25 to 30 mils (0.635 to 7.62 mm) by a single application, and the composition can be characterized as a low VOC (Volatile Organic Content) composition.
- VOC Volatile Organic Content
- the resins of component a) are functionalized by hydroxy and/or carboxy and/or amino groups.
- the OH-value and the COOH-value can be, for example, in the range from 10 to 300. Particularly preferred, are hydroxy and/or carboxy functionalized resins having an OH-value in the range of 10 to 300 and a carboxy value of 10 to 50. If amino groups are present, hindered secondary amino groups are preferred.
- the functionalized resins can be manufactured by polymerization reactions known by a skilled person, especially by a radical polymerization but also, e.g., by a polymerization reaction caused by a photochemical reaction or by electromagnetic radiation. Group Transfer Polymerization can also be used.
- the resins can be linear, branched or star structured.
- the resins, component a) are contained in the range from about 10 to 60 wt. %, preferably from about 10 wt. % to 30 wt. %, based on the coating composition.
- Suitable monomers or co-monomers for the manufacture of the acrylic and methacrylic polymers of component a) may be, e.g., acrylates, methacrylates, methyl methacrylates, styrene, acrylonitrile, vinyl acetate, butadiene, including monomers, such as, acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid and/or amides.
- suitable monomers can be incorporated into the polymer, e.g., carboxy-functionalized monomers, such as, maleic acid, acrylic acid and methacrylic acid, and, for example, hydroxy-functionalized monomers, such as, hydroxy acrylates, hydroxy methyl acrylates, propylene glycol methacrylates, butanediol monoacrylates and the like.
- carboxy-functionalized monomers such as, maleic acid, acrylic acid and methacrylic acid
- hydroxy-functionalized monomers such as, hydroxy acrylates, hydroxy methyl acrylates, propylene glycol methacrylates, butanediol monoacrylates and the like.
- Suitable monomers or co-monomers for the manufacture of the functionalized polyesters may be, for example, neopentyl glycol, cyclohexanedimethanol, 1,6 hexanediol, trimethylolpropane, pentaerythritol, phthalic anhydride, isophthalic acid, hexahydrophthalic anhydride, adipic acid, azelaic acid and dimer fatty acids.
- the polyesters can be, for example, linear, branched, star structured, chemically modified by urethanes, silicones, styrene, acrylics, epoxide, and the range of the OH value can be 10 to 300.
- Star resins may be used as component a) and are oligomers with a star structure, which have 3 to 6 arms. Oligomers are prepared by reaction of trimethylolpropane, pentaerythritol or other multifunctional compounds with, e.g., compounds containing glycidyl groups. They include polyester bonds and both primary and secondary hydroxyl groups.
- component a one or more acrylic, methacrylic, polyester and/or star polymers are preferred.
- polyisocyanates that may be used as component b) are in the free or blocked form as crosslinking agents and may include triisocyanates, diisocyanates, and cycloaliphatic diisocyanates, such as, 1,6-hexane diisocyanate, trimethylhexane diisocyanates, 1,12-dodecanediisocyanates, cyclohexane diisocyanates, isophorones, diisocyanates with cyclohexylmethane diisocyanates or mixtures thereof, and polyisocyanates derived from such diisocyanates, for example, those containing hetero atoms in the radical linking the isocyanates groups. Examples thereof include polyisocyanates containing carbo diimide groups, isocyanurate groups, urethdiol groups, urethane groups and/or biuret groups.
- Suitable blocking agents for the polyisocyanate crosslinking agents described above may include the conventional, for example, CH-acidic, NH—, SH— or OH— functional blocking agents.
- Examples include acetyl, acetone, acetoacetic acid acyl esters, valonic acid diacyl esters, aliphatic or cycloaliphatic alcohols, oximes, lactams, imidacoles, pyracoles.
- Isocyanurates, biurets, uretdions, or allofanates of 1,6-hexane diisocyanate are the preferred compounds of component b).
- the polyisocyanates, component b), are contained in the range from about 5 to 40 wt. %, preferably from about 5 wt. % to 20 wt. %, based on the coating composition.
- the coating composition according to the invention contains as component c) aluminum hydroxide, also known as alumina trihydrate, Al 2 O 3 .3 H 2 O.
- the content of this filler component is from 5 wt. % to 70 wt. %, preferably 10 wt. % to 60 wt. %, based on the coating composition.
- Alternate fillers are calcium carbonate (CaCO 3 ), Silica (SiO 2 ), magnesium hydroxide (Mg(OH) 2 ), barium sulfate (BaSO 4 ), clays, talcs, alumina monohydrate (Al 2 O 3 .H 2 O) or polymeric fillers.
- the component d) is a small-grained solid material, which is a ground polymer material.
- the content of this component is from 0 wt. % to 40 wt. %, preferably 2 wt. % to 30 wt. %, based on the coating composition.
- This material can be based on polymethyl methacrylate (pMMA), crosslinked unsaturated polyester, epoxide or other polymeric material—filled or unfilled.
- pMMA polymethyl methacrylate
- crosslinked unsaturated polyester epoxide or other polymeric material—filled or unfilled.
- This material can be ground or calendered by mills, grinders or calender to small particles like granules, crunchies, flakes, and powder particles.
- the material can be toned in different colors or in one color.
- additives used in this material are, e.g., colorants, antioxidants, catalysts, light stabilizers, and also fillers.
- One example for the component d) is a filled polymer material consisting of about 40% of polymethyl methacrylate, of about 60% of aluminum hydroxide, colorants, and other additives at low levels, for example, known under the name of Corian®, which is a product of DuPont.
- organic solvents that may be used in the coating composition according to the invention as component e) include glycol ethers, such as, butyl glycol, butyl diglycol, dipropylene glycol, dimethyl ether, dipropylene glycol monomethyl ether, ethylene glycol dimethyl ether; glycol ether esters, such as, ethyl glycol acetates, butyl diglycol acetates, methoxypropyl acetates; esters, such as, ethyl acetate, butyl acetate, isobutyl acetate, amyl acetate; ketones, such as, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, isophorones; alcohols, such as, methanol,
- the coating composition may contain conventional coating additives in total amount up to 15 wt. % based on coating composition ready for application, for example, leveling and anticratering agents, defoamers, dispersing and wetting additives, rheological modifiers, such as, pyrogenic silica, modified clays, polyamides and urea group-containing reaction products of amines (sagging control agents), catalysts, colorants, light stabilizers, UV absorbers, antioxidants and the like.
- leveling and anticratering agents such as, pyrogenic silica, modified clays, polyamides and urea group-containing reaction products of amines (sagging control agents)
- rheological modifiers such as, pyrogenic silica, modified clays, polyamides and urea group-containing reaction products of amines (sagging control agents), catalysts, colorants, light stabilizers, UV absorbers, antioxidants and the like.
- the coating composition may be unpigmented (transparent), translucent, or contain pigments. They may therefore contain fillers, which are different from the component c) and/or transparent, color imparting and/or special effect-imparting pigments.
- inorganic or organic color-imparting pigments include titanium dioxides, micronized titanium dioxide, iron oxide pigments, carbon black, azo pigments, phthalocyanine pigments, quinacridone or pyrrolopyrrole pigments.
- special effect-imparting pigments include metallic pigments, interference pigments, e.g., metal oxide coated metallic pigments, e.g., titanium dioxide-coated or mixed oxide-coated aluminum, coated mica, e.g. titanium dioxide-coated mica and graphite effect like special-effect pigments.
- suitable fillers include aluminum trihydrate, silica, aluminum silicates, barium sulfates, calcium carbonates, and talc.
- any material may be added for a decorative effect.
- Decorative additives such as, crushed stones, gemstones, metal flake or fillings, micas, seashells, pearls, colored or transparent polymeric particles or fibers, mirrored particles and pigments may be added in quantities according to taste or fashion. However, these quantities usually do not exceed 5% by weight, preferably 2% by weight.
- the decorative additives may be thoroughly mixed with the other components or placed on the surface.
- the coating composition according to the invention may contain reactive thinners as component (g) in the range of 0 to 30 wt. %, preferred in the range of 2 to 10 wt. %.
- thinners are ketimines, aminofunctional compounds, such as, for example, 1-aza-3,7-dioxo-bicyclo-2,8-diisopropyl-5-ethyl(3.3.0)octane and also oxazolidine derivatives, such as, for example, 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine.
- aminofunctional compounds such as, for example, 1-aza-3,7-dioxo-bicyclo-2,8-diisopropyl-5-ethyl(3.3.0)octane
- oxazolidine derivatives such as, for example, 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine.
- the coating composition according to the invention may have a uniform color, a stone-like and/or a special aesthetic.
- the coating composition according to the invention in the state ready for application has a solids content, formed from the resins solids and the optionally contained non-volatile additives and optionally contained pigments, from 40 wt. % to 80 wt. %.
- the coating composition contains, as volatile constituents, organic solvents as mentioned above.
- the coating composition can take the form of a one-component coating composition or a two-component composition.
- one component contains the resins of component a) and the other component contains the polyisocyanates.
- the other components of the coating composition according to the invention that means the aluminum hydroxide, the ground material, organic solvents, additives and thinners may be presented in either one or in both of the two components. Preferably they may be present in the component which contains the resins of component a).
- the coating composition according to the invention may be used in the preparation of a one-layer coating on any substrates of, for example, metal, plastic, or substrates composed of a mixed construction of metal and plastic and of any other material, for example, clay, tile, woven glass fiber, masonites and the like.
- Substrates employed include also plywood, particle board, medium-density fiber board (MDF board), tile board.
- MDF board medium-density fiber board
- These substrates can be used as products such as existing and in place counter tops, cabinets, wall panels, furniture, slabs board, ceramic tile, high pressure laminate (HPL), low pressure laminate and other such laminates, stainless steel, gypsum board, glass and the like.
- the coating composition may also be applied directly over ceramic tile/group installations in such a way that a seamless surface is formed with tile-like appearance.
- the coating composition according to the invention can be applied directly on the untreated surface of a substrate, for example, of a porous substrate. It is also possible to use the coating composition according to the invention for a multi-layer coating of the substrate whereby the multi-layer coating may consist of several coating layers of the coating composition of the invention. Smooth or glass like surface should be coated, for example, by an 2-pack epoxy primer or other appropriate primer to ensure proper adhesion of the coating composition according to the invention. Preferably the coating composition is used as a direct coating of the untreated surface of a porous substrate.
- the weatherability of the composition can be improved by the addition of an ultraviolet light stabilizer or a combination of ultraviolet light stabilizers in the amount of 0.1% to 5% by weight, based on the weight of the composition.
- ultraviolet light stabilizers include ultraviolet light absorbers, screeners, quenchers, and specified hindered amine light stabilizers.
- an antioxidant can be added, in the amount 0.1% to 2% by weight, based on the weight of the composition.
- Typical ultraviolet light stabilizers that are useful include benzophenones, triazoles, triazines, benzoates, hindered amines and mixtures thereof. Specific examples of ultraviolet stabilizers are disclosed in U.S. Pat. No. 4,591,533.
- Typically useful hindered amine light stabilizers that can be used are, for example, Tinuvin® 928 and Tinuvin®123 or mixtures thereof, commercially available from Ciba Specialty Chemicals, Tarrytown, N.Y.
- the coating composition according to the invention can be applied by known methods, e.g., via commercial spray gun equipment, preferably by spray gun with pressured upper container. Particularly, it can be sprayed in a dry layer thickness of, for example, 25 to 30 mils (0.635 to 0.762 mm) regarding a one-layer application and in a dry film thickness of, for example, 45 to 50 mils (1.143 to 1.27 mm) by a multi-layer deposition of the coating composition.
- the final coating thickness can be designed to be, for example, 60 to 80 mils (1.524 to 2.032 mm) or thicker and is built in 25 to 30 mils (0.635 to 0.762 mm) increments per single spray application depending on the intended use.
- the applied coating composition according to the invention can be cured by crosslinking at ambient temperature as well as at elevated temperature. It is desirable, but not necessarily, to have a short flash-off phase before start of the curing step at elevated temperature.
- the curing temperature can vary from 15 to 100° C., particularly from 25 to 80° C.
- the curing times are, for example, of the order of magnitude of 20 min. to 24 hours.
- the coating composition according to the invention is crosslinked at ambient temperature in the range of 15 to 35° C., preferably of 20 to 30° C. in the time range to 24 hours. If forced drying is applied for curing, temperature range 60 to 100° C. is recommended, preferably of 60 to 80° C., in a time range of 20 to 60 minutes.
- a hard, crosslinked surface is obtained with a glossy lacquer-like appearance having good resistance to chemicals, outstanding mar resistance and very good optical properties.
- the cured coating can be sanded and/or polished to achieve a smooth surface of a desired thickness.
- the coated substrate or article can be cut into desired shapes.
- the cured surface has a high quality that means scratch-resistance, stain-resistance, heat-resistance, chip-resistance and superior hardness.
- the sanding can be used to reduce the thickness to a desired value, to obtain a smooth surface and/or to bring out an aesthetic quality.
- the coating composition can also be used for store fixtures, vertical surfacing on substrates of all types and also horizontal surfacing. It could replace wallpaper.
- Formulations can be used outdoors as architectural facings, for example, with a proper UV stabilization.
- Composition 1 Wt. % Part A 1 Desmophen ® A 265 BA (Acrylic polymer with 2% of OH groups, 65 wt. % 10.35 in butyl acetate, manufactured by Bayer) 2 Desmophen ® 670 BA (Polyester resin with 6,7% of OH groups, 80 7.75 wt. % in butyl acetate, manufactured by Bayer) 3 Methyl isobutyl ketone, solvent 14.92 4 Pot-life retarder (2,4-pentane dione) 1.21 5 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt.
- EFKA ®-2022 Organically modified polysiloxane in solvent mixture, defoamer, 1.10 manufactured by EFKA ® Additives, the Netherlands
- EFKA ®-3031 52 wt. % organically modified polysiloxane in alkyl 0.29 benzene, leveling and anticratering agent, manufactured by EFKA ® Additives, the Netherlands
- 9 EFKA ®-4047 (35% wt.
- Components 1 to 14 are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale. The resulting composition is immediately mixed with component 15—ground polymer material.
- Part A Before application, Part A is mixed with Part B in weight ratio 100:12.6 and thinned by approx. 9 wt. % of Thinner to application viscosity—flow time 25 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- Composition 2 Wt. % Part A 1 Potlife retarder (2,4-pentane dione) 2.01 2 Aerosil ® R972 (described above) 0.67 3 Aluminum trihydrate, filler 27.79 4 Corian ® Crunchies (described above) 11.66 5 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt. % in dipropyleneglycol 0.155 6 Catalyst (100% dibutyltin dilaurate) 0.005 7 Desmophen ® A 365 BA/X (acrylic polymer with 2.9% of OH groups, 65 18.62 wt.
- Components 1 to 15 are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale. The resulting composition is immediately mixed with component 4.
- Part A Before application, Part A is mixed with Part B in weight ratio 100:12 and thinned by approximately 13 wt. % of Thinner to application viscosity—flow time 22 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- Composition 3 Wt. % Part A Duroftal ® VPI 2801 (Polyester with 6.6% OH, 80 wt. % 16.65 in butyl acetate, manufactured by Solutia) Desmophen ® VP LS 2973 (Aminofunctional polyester 3.72 reactive thinner, ekv. weight 396, manufactured by Bayer) Butyl acetate, solvent 4.73 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt.
- Part A All components of Part A are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale.
- Part B preparation Corian® Crunchies are added in small amounts to the solution of Activator in butyl acetate and the mixture is homogenized by high-speed dissolver.
- Part A Before application, Part A is mixed with Part B in weight ratio 100:61 and thinned by approx. 5 wt. % of Thinner to application viscosity—flow time 22 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- a mixture of both part A and B of Composition 2 from Example 1 is applied by spray gun with pressured upper container and jet nozzle diameter 2.3 mm on a plywood substrate.
- the pressure on spray gun jet nozzle is about 0.2 MPa and the overpressure in upper container is about 7 kPa.
- Wet thickness of the first layer should be maximally 10 mils (0.250 mm) to ensure good adhesion and low content of entrapped solvents close to the surface. After 1 hour of drying at ambient temperature the film is force-dried in oven for one hour at 60° C. The second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature and the thickness is about 20 to 30 mils (0.508 to 0.762 mm).
- the resulting film is force dried at 60° C. for 1 hour or can be dried at room temperature for at least 24 hours before the next layer is applied.
- 60 to 80 mils 1.524 to 2.032 mm
- the films are post-cured at 60 to 80° C. for several hours to accelerate the hardness development and to improve sandability.
- the primer was applied on smooth glazy ceramic tiles in wet thickness about 0.100 mm. This film was allowed to dry at ambient temperature for 24 hours.
- the first layer is dried for 1 hour at ambient temperature and then the film is force-dried in oven for one hour at 60° C.
- the second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature. Forced drying at 60° C. for 1 hour or room temperature drying for at least 24 hours is necessary before the next layer is applied.
- the coated films are cured at ambient temperature for several days to achieve appropriate film hardness for good sandability.
- a mixture of both part A and B of Composition 3 from Example 1 is applied by spray gun with pressured upper container and jet nozzle diameter 2.3 mm on a substrate.
- the pressure on spray gun jet nozzle is about 0.2 MPa; the overpressure in upper container is about 7 kPa.
- wet thickness of the first layer should be maximally 10 mils (0.250 mm) to ensure good adhesion and low content of entrapped solvents close to the surface.
- the film is force-dried in oven for one hour at 60° C.
- the second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature and can be thicker—about 20 to 30 mils (0.508 to 0.762 mm).
- the film layers are forced dried at 60° C. for 1 hour or can be dried at room temperature drying for at least 24 hours before the next layer is applied.
- the coated films are post-cured at 60 to 80° C for several hours to accelerate the hardness development and to improve sandability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
- The invention relates to a coating composition for a solid substrate that provides a decorative surface having a stone, marble or granite-like effect and unique aesthetics and the resulting coated substrate can be used, for example, as building materials, for counter tops, wall panels, furniture, and for various other articles.
- Coatings for substrates used in industrial and house-keeping fields, e.g., for surfaces in kitchens, baths and stores or for wall panels, furniture and other articles in home and business sectors, can have a solid color or stone, granite, or marble-like or other unique appearance.
- Such coatings comprise a filled polymer composition that is cured at ambient temperature or can be force-dried at elevated temperature. The coated articles can be costly to produce and difficult to transport and to install due to their heavy and brittle properties, e.g., they are fragile and easily chipped, broken or abused. The breakage rate at the required thickness makes these articles expensive.
- Examples for known coatings and coated substrates are described as follows: JP 10128911, JP 8295548, JP 55126583, which relate to coating layers based on thermoplastic resins, such as, polyester, acrylic resins, and reinforced fiber.
- U.S. Pat. No. 5,789,032 relates to a curable composition including polyester resin and filler useful for the production of stone, marble, or granite effect coatings. A vibration action is needed to level the composition and to form an equable coating on the surface.
- The present invention satisfies the demand for a decorative and robust coating for interior and exterior surfaces, especially for horizontal and vertical working tops, panels; furniture in homes, offices or industrial buildings; counter and dining tables, counter tops, floors; architectural facing of buildings and various articles (lamps, vases, picture frames, etc.) of all types. The coating composition is a highly filled composition comprising a polyurethane polymer based on acrylic or polyester polyols and polyisocyanates, a filler, decorative granules or other aesthetic materials, and special additive systems.
- The present invention is directed to a high-filled coating composition comprising
- (a) 10 to 60 wt % of one or more hydroxy-, carboxy- and/or amino-functionalized solid resins selected from the group of methacrylic resins, acrylic resins, polyester resins, polyurethane resins, epoxy modified resins with linear, branched or star structure,
- (b) 5 to 40 wt. % of one or more polyisocyanates, blocked or unblocked,
- (c) 5 to 70 wt. % of aluminum hydroxide,
- (d) 0 to 40 wt. % of a ground polymer material,
- (e) 0 to 35 wt. % of organic solvents,
- (f) 0.01 to 15 wt. % of additives and pigments and
- (g) 0 to 30 wt. % reactive thinners.
- The composition is formed as a flowable liquid and is cured after application on the substrate. The cured coating can be sanded and polished; and the final article can be cut into a desired shape if necessary.
- The appearance of the final coating prepared from the coating composition according to the invention is characterized by a solid and/or a stone-, granite-, marble-like appearance or other special aesthetic appearance. The articles produced with the coating composition according to the invention can be used as decorative surfaces e.g. countertops, wall panels, for furniture, for floors, and for all types of various articles. The coatings and the coated products are robust and stable and are workable and repairable. The coatings can be applied in a factory or on location. They have an appearance of stone, cultured marble or granite, such as, the material Corian®. The coating composition can be applied on a vertical panel without sagging within a dry thickness range from 25 to 30 mils (0.635 to 7.62 mm) by a single application, and the composition can be characterized as a low VOC (Volatile Organic Content) composition.
- The resins of component a) are functionalized by hydroxy and/or carboxy and/or amino groups. The OH-value and the COOH-value can be, for example, in the range from 10 to 300. Particularly preferred, are hydroxy and/or carboxy functionalized resins having an OH-value in the range of 10 to 300 and a carboxy value of 10 to 50. If amino groups are present, hindered secondary amino groups are preferred.
- The functionalized resins can be manufactured by polymerization reactions known by a skilled person, especially by a radical polymerization but also, e.g., by a polymerization reaction caused by a photochemical reaction or by electromagnetic radiation. Group Transfer Polymerization can also be used.
- The resins can be linear, branched or star structured.
- The resins, component a), are contained in the range from about 10 to 60 wt. %, preferably from about 10 wt. % to 30 wt. %, based on the coating composition.
- Suitable monomers or co-monomers for the manufacture of the acrylic and methacrylic polymers of component a) may be, e.g., acrylates, methacrylates, methyl methacrylates, styrene, acrylonitrile, vinyl acetate, butadiene, including monomers, such as, acrylic acid, methacrylic acid, itaconic acid, maleic acid, crotonic acid and/or amides. To obtain the functionalized polymethacrylics and polyacrylics, suitable monomers can be incorporated into the polymer, e.g., carboxy-functionalized monomers, such as, maleic acid, acrylic acid and methacrylic acid, and, for example, hydroxy-functionalized monomers, such as, hydroxy acrylates, hydroxy methyl acrylates, propylene glycol methacrylates, butanediol monoacrylates and the like.
- Suitable monomers or co-monomers for the manufacture of the functionalized polyesters may be, for example, neopentyl glycol, cyclohexanedimethanol, 1,6 hexanediol, trimethylolpropane, pentaerythritol, phthalic anhydride, isophthalic acid, hexahydrophthalic anhydride, adipic acid, azelaic acid and dimer fatty acids.
- The polyesters can be, for example, linear, branched, star structured, chemically modified by urethanes, silicones, styrene, acrylics, epoxide, and the range of the OH value can be 10 to 300.
- Star resins may be used as component a) and are oligomers with a star structure, which have 3 to 6 arms. Oligomers are prepared by reaction of trimethylolpropane, pentaerythritol or other multifunctional compounds with, e.g., compounds containing glycidyl groups. They include polyester bonds and both primary and secondary hydroxyl groups.
- As component a) one or more acrylic, methacrylic, polyester and/or star polymers are preferred.
- Examples of polyisocyanates that may be used as component b) are in the free or blocked form as crosslinking agents and may include triisocyanates, diisocyanates, and cycloaliphatic diisocyanates, such as, 1,6-hexane diisocyanate, trimethylhexane diisocyanates, 1,12-dodecanediisocyanates, cyclohexane diisocyanates, isophorones, diisocyanates with cyclohexylmethane diisocyanates or mixtures thereof, and polyisocyanates derived from such diisocyanates, for example, those containing hetero atoms in the radical linking the isocyanates groups. Examples thereof include polyisocyanates containing carbo diimide groups, isocyanurate groups, urethdiol groups, urethane groups and/or biuret groups.
- Suitable blocking agents for the polyisocyanate crosslinking agents described above may include the conventional, for example, CH-acidic, NH—, SH— or OH— functional blocking agents. Examples include acetyl, acetone, acetoacetic acid acyl esters, valonic acid diacyl esters, aliphatic or cycloaliphatic alcohols, oximes, lactams, imidacoles, pyracoles.
- Isocyanurates, biurets, uretdions, or allofanates of 1,6-hexane diisocyanate are the preferred compounds of component b).
- The polyisocyanates, component b), are contained in the range from about 5 to 40 wt. %, preferably from about 5 wt. % to 20 wt. %, based on the coating composition.
- The coating composition according to the invention contains as component c) aluminum hydroxide, also known as alumina trihydrate, Al2O3.3 H2O.
- The content of this filler component is from 5 wt. % to 70 wt. %, preferably 10 wt. % to 60 wt. %, based on the coating composition. Alternate fillers are calcium carbonate (CaCO3), Silica (SiO2), magnesium hydroxide (Mg(OH)2), barium sulfate (BaSO4), clays, talcs, alumina monohydrate (Al2O3.H2O) or polymeric fillers.
- The component d) is a small-grained solid material, which is a ground polymer material. The content of this component is from 0 wt. % to 40 wt. %, preferably 2 wt. % to 30 wt. %, based on the coating composition.
- This material can be based on polymethyl methacrylate (pMMA), crosslinked unsaturated polyester, epoxide or other polymeric material—filled or unfilled.
- This material can be ground or calendered by mills, grinders or calender to small particles like granules, crunchies, flakes, and powder particles. The material can be toned in different colors or in one color. Examples of additives used in this material are, e.g., colorants, antioxidants, catalysts, light stabilizers, and also fillers. One example for the component d) is a filled polymer material consisting of about 40% of polymethyl methacrylate, of about 60% of aluminum hydroxide, colorants, and other additives at low levels, for example, known under the name of Corian®, which is a product of DuPont.
- Examples of organic solvents that may be used in the coating composition according to the invention as component e) include glycol ethers, such as, butyl glycol, butyl diglycol, dipropylene glycol, dimethyl ether, dipropylene glycol monomethyl ether, ethylene glycol dimethyl ether; glycol ether esters, such as, ethyl glycol acetates, butyl diglycol acetates, methoxypropyl acetates; esters, such as, ethyl acetate, butyl acetate, isobutyl acetate, amyl acetate; ketones, such as, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, isophorones; alcohols, such as, methanol, ethanol, propanol, butanol; aromatic hydrocarbons, such as, toluene, xylenes, Solvesso® 100 (mixture of aromatic hydrocarbons with a boiling range from 155 to 185° C.), Solvesso® 150 (mixture of aromatic hydrocarbons with a boiling range from 182 to 202° C.), and aliphatic hydrocarbons. The organic solvents are contained in the range from 0 to 35 wt. %, preferably in a range of 10 to 25 wt. %, based on the coating composition.
- The coating composition may contain conventional coating additives in total amount up to 15 wt. % based on coating composition ready for application, for example, leveling and anticratering agents, defoamers, dispersing and wetting additives, rheological modifiers, such as, pyrogenic silica, modified clays, polyamides and urea group-containing reaction products of amines (sagging control agents), catalysts, colorants, light stabilizers, UV absorbers, antioxidants and the like.
- Depending on the intended use of the coating composition and on the integrated components, the coating composition may be unpigmented (transparent), translucent, or contain pigments. They may therefore contain fillers, which are different from the component c) and/or transparent, color imparting and/or special effect-imparting pigments. Examples of inorganic or organic color-imparting pigments include titanium dioxides, micronized titanium dioxide, iron oxide pigments, carbon black, azo pigments, phthalocyanine pigments, quinacridone or pyrrolopyrrole pigments. Examples of special effect-imparting pigments include metallic pigments, interference pigments, e.g., metal oxide coated metallic pigments, e.g., titanium dioxide-coated or mixed oxide-coated aluminum, coated mica, e.g. titanium dioxide-coated mica and graphite effect like special-effect pigments. Examples of suitable fillers include aluminum trihydrate, silica, aluminum silicates, barium sulfates, calcium carbonates, and talc.
- Optionally, any material may be added for a decorative effect. Decorative additives, such as, crushed stones, gemstones, metal flake or fillings, micas, seashells, pearls, colored or transparent polymeric particles or fibers, mirrored particles and pigments may be added in quantities according to taste or fashion. However, these quantities usually do not exceed 5% by weight, preferably 2% by weight. The decorative additives may be thoroughly mixed with the other components or placed on the surface.
- The coating composition according to the invention may contain reactive thinners as component (g) in the range of 0 to 30 wt. %, preferred in the range of 2 to 10 wt. %.
- Examples for the thinners are ketimines, aminofunctional compounds, such as, for example, 1-aza-3,7-dioxo-bicyclo-2,8-diisopropyl-5-ethyl(3.3.0)octane and also oxazolidine derivatives, such as, for example, 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine.
- The use of oxazolidines is preferred.
- The coating composition according to the invention may have a uniform color, a stone-like and/or a special aesthetic.
- The coating composition according to the invention in the state ready for application has a solids content, formed from the resins solids and the optionally contained non-volatile additives and optionally contained pigments, from 40 wt. % to 80 wt. %. The coating composition contains, as volatile constituents, organic solvents as mentioned above.
- The coating composition can take the form of a one-component coating composition or a two-component composition. In case of a two-component coating composition, one component contains the resins of component a) and the other component contains the polyisocyanates. The other components of the coating composition according to the invention, that means the aluminum hydroxide, the ground material, organic solvents, additives and thinners may be presented in either one or in both of the two components. Preferably they may be present in the component which contains the resins of component a).
- The coating composition according to the invention may be used in the preparation of a one-layer coating on any substrates of, for example, metal, plastic, or substrates composed of a mixed construction of metal and plastic and of any other material, for example, clay, tile, woven glass fiber, masonites and the like. Substrates employed include also plywood, particle board, medium-density fiber board (MDF board), tile board. These substrates can be used as products such as existing and in place counter tops, cabinets, wall panels, furniture, slabs board, ceramic tile, high pressure laminate (HPL), low pressure laminate and other such laminates, stainless steel, gypsum board, glass and the like. The coating composition may also be applied directly over ceramic tile/group installations in such a way that a seamless surface is formed with tile-like appearance.
- The coating composition according to the invention can be applied directly on the untreated surface of a substrate, for example, of a porous substrate. It is also possible to use the coating composition according to the invention for a multi-layer coating of the substrate whereby the multi-layer coating may consist of several coating layers of the coating composition of the invention. Smooth or glass like surface should be coated, for example, by an 2-pack epoxy primer or other appropriate primer to ensure proper adhesion of the coating composition according to the invention. Preferably the coating composition is used as a direct coating of the untreated surface of a porous substrate.
- In the event the coating composition is used for outdoor purposes, for example, on the exterior of a building, the weatherability of the composition can be improved by the addition of an ultraviolet light stabilizer or a combination of ultraviolet light stabilizers in the amount of 0.1% to 5% by weight, based on the weight of the composition. Such stabilizers include ultraviolet light absorbers, screeners, quenchers, and specified hindered amine light stabilizers. Also, an antioxidant can be added, in the amount 0.1% to 2% by weight, based on the weight of the composition.
- Typical ultraviolet light stabilizers that are useful include benzophenones, triazoles, triazines, benzoates, hindered amines and mixtures thereof. Specific examples of ultraviolet stabilizers are disclosed in U.S. Pat. No. 4,591,533. Typically useful hindered amine light stabilizers that can be used are, for example, Tinuvin® 928 and Tinuvin®123 or mixtures thereof, commercially available from Ciba Specialty Chemicals, Tarrytown, N.Y.
- The coating composition according to the invention can be applied by known methods, e.g., via commercial spray gun equipment, preferably by spray gun with pressured upper container. Particularly, it can be sprayed in a dry layer thickness of, for example, 25 to 30 mils (0.635 to 0.762 mm) regarding a one-layer application and in a dry film thickness of, for example, 45 to 50 mils (1.143 to 1.27 mm) by a multi-layer deposition of the coating composition. The final coating thickness can be designed to be, for example, 60 to 80 mils (1.524 to 2.032 mm) or thicker and is built in 25 to 30 mils (0.635 to 0.762 mm) increments per single spray application depending on the intended use.
- The applied coating composition according to the invention can be cured by crosslinking at ambient temperature as well as at elevated temperature. It is desirable, but not necessarily, to have a short flash-off phase before start of the curing step at elevated temperature. The curing temperature can vary from 15 to 100° C., particularly from 25 to 80° C. The curing times are, for example, of the order of magnitude of 20 min. to 24 hours. Preferably the coating composition according to the invention is crosslinked at ambient temperature in the range of 15 to 35° C., preferably of 20 to 30° C. in the time range to 24 hours. If forced drying is applied for curing, temperature range 60 to 100° C. is recommended, preferably of 60 to 80° C., in a time range of 20 to 60 minutes. A hard, crosslinked surface is obtained with a glossy lacquer-like appearance having good resistance to chemicals, outstanding mar resistance and very good optical properties.
- The cured coating can be sanded and/or polished to achieve a smooth surface of a desired thickness. The coated substrate or article can be cut into desired shapes.
- The cured surface has a high quality that means scratch-resistance, stain-resistance, heat-resistance, chip-resistance and superior hardness. The sanding can be used to reduce the thickness to a desired value, to obtain a smooth surface and/or to bring out an aesthetic quality.
- It is possible to replace solid and/or cast materials, such as, marble or granite slabs, walls, panels and the like by substrates coated with the coating composition according to the invention with a high stability and strength as well as a high weather-proof property with a good heat and stain resistance.
- The coating composition can also be used for store fixtures, vertical surfacing on substrates of all types and also horizontal surfacing. It could replace wallpaper. Formulations can be used outdoors as architectural facings, for example, with a proper UV stabilization.
- The following examples illustrate the invention. All parts and percentages are on a weight basis unless otherwise noted. Molecular weights are determined by gel permeation chromatography using polymethylmethacrylate as the standard.
- Preparation of Coating Compositions of the Invention
- Composition 1:
Wt. % Part A 1 Desmophen ® A 265 BA (Acrylic polymer with 2% of OH groups, 65 wt. % 10.35 in butyl acetate, manufactured by Bayer) 2 Desmophen ® 670 BA (Polyester resin with 6,7% of OH groups, 80 7.75 wt. % in butyl acetate, manufactured by Bayer) 3 Methyl isobutyl ketone, solvent 14.92 4 Pot-life retarder (2,4-pentane dione) 1.21 5 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt. % in dipropyleneglycol 0.077 6 Catalyst (100% dibutyltin dilaurate) 0.003 7 EFKA ®-2022 (Organically modified polysiloxane in solvent mixture, defoamer, 1.10 manufactured by EFKA ® Additives, the Netherlands) 8 EFKA ®-3031 (52 wt. % organically modified polysiloxane in alkyl 0.29 benzene, leveling and anticratering agent, manufactured by EFKA ® Additives, the Netherlands) 9 EFKA ®-4047 (35% wt. % high molecular weight modified 1.03 polyurethane in butyl acetate, dispersing additive, manufactured by EFKA ® Additives, the Netherlands) 10 Thixatrol ® Plus (polyamide, rheological additive, manufactured by 0.28 Elementis) 11 Aerosil ® R972 (Fumed silica hydrophobically modified rheological 1.45 additive having a BET value of 110 m2/g, manufactured by Degussa) 12 Aluminum trihydrate, filler 12.91 13 Hindered Amine Light Stabilizer [Bis(1,2,2,6,6-pentamethyl-4- 0.23 piperidyl) sebacate and methyl(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate] 14 UV absorber (Methyl-3-[3-(2H-benzotriazol-2-yl)-5-tert.butyl-4- 0.46 hydroxyphenyl]propionate) 15 Corian ® Crunchies (Ground polymer material of 28.36 polymethymethacrylate filled with alumina trihydrate and various fillers) Part B Activator (Hexamethylene diisocyanate isocyanurate, 19.6% NCO, 10.14 90 wt. % in butyl acetate) Thinner Ethyl acetate 9.44 - Components 1 to 14 are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale. The resulting composition is immediately mixed with component 15—ground polymer material.
- Before application, Part A is mixed with Part B in weight ratio 100:12.6 and thinned by approx. 9 wt. % of Thinner to application viscosity—flow time 25 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- Composition 2:
Wt. % Part A 1 Potlife retarder (2,4-pentane dione) 2.01 2 Aerosil ® R972 (described above) 0.67 3 Aluminum trihydrate, filler 27.79 4 Corian ® Crunchies (described above) 11.66 5 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt. % in dipropyleneglycol 0.155 6 Catalyst (100% dibutyltin dilaurate) 0.005 7 Desmophen ® A 365 BA/X (acrylic polymer with 2.9% of OH groups, 65 18.62 wt. % in butyl acetate/xylene, manufactured by Bayer) 8 Dukon 21 (80 wt. % star polymer with 4.9% of OH groups in butyl 4.95 acetate, manufactured by Spolek, the Czech Republic) 9 EFKA ®-2023 (Organically modified polysiloxane in solvent mixture, 0.30 defoamer, manufactured by EFKA ® Additives, the Netherlands) 10 EFKA ®-3772 (60 wt. % fluorocarbon modified polyacrylate in 0.99 secondary butanol, leveling and anticratering agent, manufactured by EFKA ® Additives, the Netherlands) 11 EFKA ®-8530 (100% aliphatic polyether with acidic groups, 1.03 dispersing additive, manufactured by EFKA ® Additives, the Netherlands) 12 Ethyl acetate, solvent 8.92 13 Thixatrol ® Plus (described above) 0.26 14 Hindered Amine Light Stabilizer (described above) 0.23 15 UV absorber (described above) 0.46 Part B Activator (described above) 9.51 Thinner Aromatic hydrocarbon 5.72 Ethyl acetate 5.72 - Components 1 to 15 (except component 4) are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale. The resulting composition is immediately mixed with component 4.
- Before application, Part A is mixed with Part B in weight ratio 100:12 and thinned by approximately 13 wt. % of Thinner to application viscosity—flow time 22 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- Composition 3:
Wt. % Part A Duroftal ® VPI 2801 (Polyester with 6.6% OH, 80 wt. % 16.65 in butyl acetate, manufactured by Solutia) Desmophen ® VP LS 2973 (Aminofunctional polyester 3.72 reactive thinner, ekv. weight 396, manufactured by Bayer) Butyl acetate, solvent 4.73 Catalyst (1,4-diazabicyclo[2.2.2]octane, 33 wt. % in 0.024 dipropylene glycol) Catalyst (100% dibutyltin dilaurate) 0.006 EFKA ®-2022 (Defoamer-described above) 1.10 EFKA ®-3772 (Fluorocarbon modified polyacrylate- 0.99 described above) EFKA ®-4047 (Dispersing additive-described above) 1.03 Hindered Amine Light Stabilizer (Described above) 0.53 UV absorber (Described above) 1.10 Thixatrol ® ST (100% castor oil derivative rheological 0.50 additive) Aerosil ® R972 (Fumed silica-described above) 0.27 Aluminum trihydrate, filler 21.56 Barium sulfate 6.90 Part B Hexamethylene diisocyanate uretdione activator 12.63 (100%, 21.8% NCO) Butyl acetate, solvent 5.22 Corian ® Crunchies (described above) 18.20 Thinner Ethyl acetate 4.84 - All components of Part A are premixed by high-speed disperser and then ground in bead mill to fineness of grinding 6 of Hegman scale.
- Part B preparation: Corian® Crunchies are added in small amounts to the solution of Activator in butyl acetate and the mixture is homogenized by high-speed dissolver.
- Before application, Part A is mixed with Part B in weight ratio 100:61 and thinned by approx. 5 wt. % of Thinner to application viscosity—flow time 22 seconds using a Ford Cup with jet diameter 6 mm. Evaluation of the flow time is performed according to ASTM D-1200 at 25° C.
- Application on Plywood Substrate:
- A mixture of both part A and B of Composition 2 from Example 1 is applied by spray gun with pressured upper container and jet nozzle diameter 2.3 mm on a plywood substrate. The pressure on spray gun jet nozzle is about 0.2 MPa and the overpressure in upper container is about 7 kPa. Wet thickness of the first layer should be maximally 10 mils (0.250 mm) to ensure good adhesion and low content of entrapped solvents close to the surface. After 1 hour of drying at ambient temperature the film is force-dried in oven for one hour at 60° C. The second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature and the thickness is about 20 to 30 mils (0.508 to 0.762 mm). The resulting film is force dried at 60° C. for 1 hour or can be dried at room temperature for at least 24 hours before the next layer is applied. When the required thickness is reached, 60 to 80 mils (1.524 to 2.032 mm), the films are post-cured at 60 to 80° C. for several hours to accelerate the hardness development and to improve sandability.
- Application on Glazy Ceramic Tiles:
- Commercially available two-pack epoxy primer was mixed with hardener and thinned to an application viscosity (flow time 18 to 20 seconds at Ford Cup with jet diameter 4 mm). A layer of film is applied by spraying on the tile substrate with a spray gun having a jet nozzle diameter of 18 mm and a jet nozzle pressure 0.17 to 0.2 MPa.
- The primer was applied on smooth glazy ceramic tiles in wet thickness about 0.100 mm. This film was allowed to dry at ambient temperature for 24 hours.
- The mixture of both part A and B of Composition I from Example 1 was applied by spray gun with pressured upper container and jet nozzle diameter 2.3 mm. The pressure on spray gun jet nozzle is about 0.2 MPa and the overpressure in upper container is about 7 kPa. Each applied layer has a dry film thickness about 20 to 30 mils (0.508 to 0.762 mm).
- The first layer is dried for 1 hour at ambient temperature and then the film is force-dried in oven for one hour at 60° C. The second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature. Forced drying at 60° C. for 1 hour or room temperature drying for at least 24 hours is necessary before the next layer is applied. When the required thickness is reached, 60 to 80 mils (1.524 to 2.032 mm), the coated films are cured at ambient temperature for several days to achieve appropriate film hardness for good sandability.
- Application on Particle Board Substrate:
- A mixture of both part A and B of Composition 3 from Example 1 is applied by spray gun with pressured upper container and jet nozzle diameter 2.3 mm on a substrate. The pressure on spray gun jet nozzle is about 0.2 MPa; the overpressure in upper container is about 7 kPa.
- Wet thickness of the first layer should be maximally 10 mils (0.250 mm) to ensure good adhesion and low content of entrapped solvents close to the surface. After 1 hour of drying at ambient temperature the film is force-dried in oven for one hour at 60° C. The second and the next layers are sprayed on the force-dried film after the substrate is cooled to room temperature and can be thicker—about 20 to 30 mils (0.508 to 0.762 mm). The film layers are forced dried at 60° C. for 1 hour or can be dried at room temperature drying for at least 24 hours before the next layer is applied. When the required thickness is reached 60 to 80 mils (1.524 to 2.032 mm), the coated films are post-cured at 60 to 80° C for several hours to accelerate the hardness development and to improve sandability.
Claims (11)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/146,162 US20040147671A1 (en) | 2002-05-15 | 2002-05-15 | Decorative coating composition for solid substrates |
US10/423,362 US6958367B2 (en) | 2002-05-15 | 2003-04-25 | Decorative coating composition for solid substrates |
EP03076734A EP1362874A3 (en) | 2002-05-15 | 2003-05-12 | A decorative coating composition for solid substrates |
US11/136,849 US7288288B2 (en) | 2002-05-15 | 2005-05-25 | Method for coating a substrate with a decorative coating composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/146,162 US20040147671A1 (en) | 2002-05-15 | 2002-05-15 | Decorative coating composition for solid substrates |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/423,362 Continuation US6958367B2 (en) | 2002-05-15 | 2003-04-25 | Decorative coating composition for solid substrates |
US10/423,362 Continuation-In-Part US6958367B2 (en) | 2002-05-15 | 2003-04-25 | Decorative coating composition for solid substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040147671A1 true US20040147671A1 (en) | 2004-07-29 |
Family
ID=29269748
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/146,162 Abandoned US20040147671A1 (en) | 2002-05-15 | 2002-05-15 | Decorative coating composition for solid substrates |
US10/423,362 Expired - Fee Related US6958367B2 (en) | 2002-05-15 | 2003-04-25 | Decorative coating composition for solid substrates |
US11/136,849 Expired - Fee Related US7288288B2 (en) | 2002-05-15 | 2005-05-25 | Method for coating a substrate with a decorative coating composition |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/423,362 Expired - Fee Related US6958367B2 (en) | 2002-05-15 | 2003-04-25 | Decorative coating composition for solid substrates |
US11/136,849 Expired - Fee Related US7288288B2 (en) | 2002-05-15 | 2005-05-25 | Method for coating a substrate with a decorative coating composition |
Country Status (2)
Country | Link |
---|---|
US (3) | US20040147671A1 (en) |
EP (1) | EP1362874A3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040258854A1 (en) * | 2003-06-18 | 2004-12-23 | Quanzhou Lubao Gift Ltd. | Article with decorative or ornamental surfaces |
US20060110590A1 (en) * | 2004-10-28 | 2006-05-25 | Phillips Thomas R | Filled polyvinyl butyral sheeting for decorative laminated glass and a process for making same |
US20070138685A1 (en) * | 2004-12-15 | 2007-06-21 | Eos Surfaces, L.L.C. | Method for manufacturing counter tops |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147671A1 (en) | 2002-05-15 | 2004-07-29 | Richard Milic | Decorative coating composition for solid substrates |
US7034072B2 (en) | 2003-07-22 | 2006-04-25 | E. I. Dupont De Nemours And Company | Aqueous coating composition |
US7727289B2 (en) | 2005-06-07 | 2010-06-01 | S.C. Johnson & Son, Inc. | Composition for application to a surface |
US7776108B2 (en) | 2005-06-07 | 2010-08-17 | S.C. Johnson & Son, Inc. | Composition for application to a surface |
US8846154B2 (en) | 2005-06-07 | 2014-09-30 | S.C. Johnson & Son, Inc. | Carpet décor and setting solution compositions |
US8061269B2 (en) | 2008-05-14 | 2011-11-22 | S.C. Johnson & Son, Inc. | Multilayer stencils for applying a design to a surface |
US20080282642A1 (en) * | 2005-06-07 | 2008-11-20 | Shah Ketan N | Method of affixing a design to a surface |
US8557758B2 (en) | 2005-06-07 | 2013-10-15 | S.C. Johnson & Son, Inc. | Devices for applying a colorant to a surface |
DE102007014872A1 (en) * | 2007-03-26 | 2008-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Inorganic particles suspension, useful in lacquer system, comprises outer phase containing e.g. polymerizable monomer, oligomer and/or pre-polymer, and dispersed phase containing non-surface modified inorganic particle |
WO2008137167A1 (en) * | 2007-05-07 | 2008-11-13 | Questech Corporation | Method for sealing natural stone |
US7909028B2 (en) * | 2007-12-10 | 2011-03-22 | Sierra Granite Holdings Llc | Inlaid stone composite |
US20100135949A1 (en) * | 2008-12-01 | 2010-06-03 | Becton, Dickinson And Company | Antimicrobial compositions |
US8568202B2 (en) * | 2009-08-12 | 2013-10-29 | Daniel A. Spurgeon | Stone article with patterned trim |
US8298044B2 (en) * | 2009-08-12 | 2012-10-30 | Spurgeon Daniel A | Layered stone trim strip |
USD658408S1 (en) | 2009-08-14 | 2012-05-01 | Spurgeon Daniel A | Patterned inlay strip |
CN102190954B (en) * | 2011-06-17 | 2012-08-15 | 天津中油渤星工程科技有限公司 | Wear-resistant nonskid polyurethane deck paint, and manufacture method thereof |
CN102585634B (en) * | 2012-01-17 | 2014-01-08 | 东莞市利通化工实业有限公司 | Coating with ceramic-like effect and spraying process thereof |
JP6010392B2 (en) * | 2012-02-29 | 2016-10-19 | Jfeスチール株式会社 | Electrical steel sheet with insulating coating, method for producing the same, and coating agent for forming insulating coating |
US8617691B2 (en) * | 2012-04-12 | 2013-12-31 | Steelscape, Llc | Stone-effect articles and methods for making same |
CN102618167B (en) * | 2012-04-17 | 2014-06-25 | 山东大学 | Thermal impact and alkali steam corrosion resistant flexible sealant and use method thereof |
US9352119B2 (en) | 2012-05-15 | 2016-05-31 | Becton, Dickinson And Company | Blood control IV catheter with antimicrobial properties |
US9579486B2 (en) | 2012-08-22 | 2017-02-28 | Becton, Dickinson And Company | Blood control IV catheter with antimicrobial properties |
US9750928B2 (en) | 2013-02-13 | 2017-09-05 | Becton, Dickinson And Company | Blood control IV catheter with stationary septum activator |
US9695323B2 (en) | 2013-02-13 | 2017-07-04 | Becton, Dickinson And Company | UV curable solventless antimicrobial compositions |
WO2015029828A1 (en) * | 2013-08-28 | 2015-03-05 | Jfeスチール株式会社 | Electromagnetic steel sheet with insulating coating film, method for producing same, and coating agent for forming insulating coating film |
US9675793B2 (en) | 2014-04-23 | 2017-06-13 | Becton, Dickinson And Company | Catheter tubing with extraluminal antimicrobial coating |
US9789279B2 (en) | 2014-04-23 | 2017-10-17 | Becton, Dickinson And Company | Antimicrobial obturator for use with vascular access devices |
US10376686B2 (en) | 2014-04-23 | 2019-08-13 | Becton, Dickinson And Company | Antimicrobial caps for medical connectors |
US10232088B2 (en) | 2014-07-08 | 2019-03-19 | Becton, Dickinson And Company | Antimicrobial coating forming kink resistant feature on a vascular access device |
CN104817950B (en) * | 2015-05-19 | 2017-01-25 | 太仓市金新涂料有限公司 | Energy-saving and environment-friendly roller coating paint for printing plate and application method of energy-saving and environment-friendly roller coating paint |
US10493244B2 (en) | 2015-10-28 | 2019-12-03 | Becton, Dickinson And Company | Extension tubing strain relief |
US20180051185A1 (en) * | 2016-08-17 | 2018-02-22 | Dante Manarolla | Pigmented Epoxy Tile and a Method to Fabricate |
CN107189660B (en) * | 2017-06-22 | 2018-04-10 | 广州市维思涂料科技有限公司 | A kind of composite liquefied granite coating of reflective insulation and preparation method thereof |
CN112322180B (en) * | 2020-11-25 | 2022-03-08 | 广西京帅防水科技有限公司 | Environment-friendly polyurethane waterproof coating and preparation device thereof |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3341396A (en) * | 1967-01-05 | 1967-09-12 | Gen Mills Inc | Marbleizing process and article |
US4085246A (en) * | 1975-06-18 | 1978-04-18 | E. I. Du Pont De Nemours And Company | Simulated granite and its preparation |
DE2539104C3 (en) * | 1975-09-03 | 1986-07-10 | Basf Ag, 6700 Ludwigshafen | Low-solvent stoving enamels |
JPS55126583A (en) | 1979-03-19 | 1980-09-30 | Okamura Mfg Co Ltd | Imitation marble and its manufacture |
US4578418A (en) * | 1981-10-26 | 1986-03-25 | E. I. Du Pont De Nemours And Company | Two-package urethane maintenance primer |
US4609690A (en) * | 1983-09-29 | 1986-09-02 | Ashland Oil, Inc. | Aqueous hydroxyl-acrylic latex and water dispersible multi-isocyanate adhesive composition |
ZA855083B (en) * | 1984-07-05 | 1987-03-25 | Du Pont | Acrylic star polymers |
US4591533A (en) | 1985-06-03 | 1986-05-27 | E. I. Du Pont De Nemours And Company | Coating composition of an acrylic polymer, a dispersed acrylic polymer and an alkylated melamine crosslinking agent |
US4877656A (en) * | 1986-11-06 | 1989-10-31 | Academy Of Applied Science, Inc. | Method of fabricating simulated stone surfaces and improved simulated stone product |
DE3932171A1 (en) * | 1989-09-27 | 1991-04-04 | Henkel Kgaa | UNIVERSAL ADHESIVE FILLER |
DE69226200T2 (en) * | 1991-11-07 | 1999-03-11 | Akbar Ringwood N.J. Ghahary | MINERAL-LIKE PLASTICS |
JPH05331412A (en) * | 1992-06-03 | 1993-12-14 | Sumitomo Metal Ind Ltd | Paint composition |
DE4338265C1 (en) * | 1993-11-10 | 1994-12-08 | Herberts Gmbh | Process for coil coating using coating compositions based on organic solvents |
US5472649A (en) * | 1994-04-13 | 1995-12-05 | Eastman Chemical Company | Method for preparing powder coating compositions having improved particle properties |
US5721302A (en) | 1994-06-06 | 1998-02-24 | Wood; Benny R. | Water dispersible adhesive |
BE1008721A3 (en) * | 1994-09-21 | 1996-07-02 | Dsm Nv | Binder composition for powder paint formulations. |
DE4433854B4 (en) * | 1994-09-22 | 2005-06-02 | Basf Coatings Ag | Fast-drying coating agent |
JPH08295548A (en) | 1995-04-25 | 1996-11-12 | Okura Ind Co Ltd | Marble-like molded plate with a sense of depth |
JP3192955B2 (en) * | 1996-01-09 | 2001-07-30 | エムアールシー・デュポン株式会社 | Composition for artificial granite and artificial granite |
JP3898256B2 (en) * | 1996-08-28 | 2007-03-28 | 大日本印刷株式会社 | Decorative sheet |
US5789032A (en) | 1996-09-20 | 1998-08-04 | Excelstone International, Inc. | Moldless coated board |
JP3497334B2 (en) | 1996-10-31 | 2004-02-16 | 三菱樹脂株式会社 | Unit plate made of fiber reinforced resin |
WO1998022547A1 (en) * | 1996-11-22 | 1998-05-28 | Sk Kaken Co., Ltd. | Non-staining coating composition |
DE19855125A1 (en) * | 1998-11-30 | 2000-05-31 | Basf Coatings Ag | At least three-component coating composition, process for its preparation and its use |
TW510916B (en) * | 1998-12-21 | 2002-11-21 | Bayer Ag | Aqueous reacitve filler compositions |
AT408659B (en) | 1999-12-23 | 2002-02-25 | Solutia Austria Gmbh | AQUEOUS COATING AGENT |
US6476100B2 (en) * | 2001-02-02 | 2002-11-05 | E. I. Du Pont De Nemours And Company | Solid surface materials prepared from extrudable acrylic composites |
DE10138765A1 (en) | 2001-08-07 | 2003-02-20 | Bayer Ag | Aqueous dispersions of hydrophilic polyurethane resins |
US6822040B2 (en) * | 2001-09-25 | 2004-11-23 | Basf Corporation | Basecoat composition with improved repair properties |
AT411062B (en) * | 2001-11-19 | 2003-09-25 | Solutia Austria Gmbh | COATING AGENT |
US20040147671A1 (en) | 2002-05-15 | 2004-07-29 | Richard Milic | Decorative coating composition for solid substrates |
US7034072B2 (en) | 2003-07-22 | 2006-04-25 | E. I. Dupont De Nemours And Company | Aqueous coating composition |
-
2002
- 2002-05-15 US US10/146,162 patent/US20040147671A1/en not_active Abandoned
-
2003
- 2003-04-25 US US10/423,362 patent/US6958367B2/en not_active Expired - Fee Related
- 2003-05-12 EP EP03076734A patent/EP1362874A3/en not_active Withdrawn
-
2005
- 2005-05-25 US US11/136,849 patent/US7288288B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040258854A1 (en) * | 2003-06-18 | 2004-12-23 | Quanzhou Lubao Gift Ltd. | Article with decorative or ornamental surfaces |
US20060110590A1 (en) * | 2004-10-28 | 2006-05-25 | Phillips Thomas R | Filled polyvinyl butyral sheeting for decorative laminated glass and a process for making same |
US7838102B2 (en) * | 2004-10-28 | 2010-11-23 | E. I. Du Pont De Nemours And Company | Filled polyvinyl butyral sheeting for decorative laminated glass and a process for making same |
US20070138685A1 (en) * | 2004-12-15 | 2007-06-21 | Eos Surfaces, L.L.C. | Method for manufacturing counter tops |
Also Published As
Publication number | Publication date |
---|---|
US20050215666A1 (en) | 2005-09-29 |
US6958367B2 (en) | 2005-10-25 |
US7288288B2 (en) | 2007-10-30 |
EP1362874A3 (en) | 2004-01-02 |
EP1362874A2 (en) | 2003-11-19 |
US20040014864A1 (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6958367B2 (en) | Decorative coating composition for solid substrates | |
US7034072B2 (en) | Aqueous coating composition | |
US7001948B2 (en) | Polyurea coating compositions | |
EP1492849B1 (en) | Dual cure coating compositions and process for the production of multilayer coatings | |
JP3805251B2 (en) | Transparent coating composition with improved initial hardness and water resistance | |
US6887937B1 (en) | Coating composition based on a hydroxy group-containing film forming polymer, a polyisocyanate compound, and a diol | |
EP0983323B1 (en) | Coating composition based on a hydroxy group-containing film forming polymer, a polyisocyanate compound, and a diol | |
US6686412B1 (en) | Pastes containing matting and structuring agents and coating agents containing said pastes | |
US20200208009A1 (en) | Two-component coating compositions for coating fiber-reinforced plastics materials | |
US9469779B2 (en) | Coating compositions incorporating ingredients having secondary amine, hydroxyl and isocyanate functionality | |
US6903158B2 (en) | Coating compositions comprising a polyisocyanate compound, a hydroxyl-functional film forming polymer, and a non volatile branched monoalcohol | |
AU759529B2 (en) | Filler composition | |
US6284846B1 (en) | Stable powder coating compositions | |
US6589604B2 (en) | Process for applying multi-layer coatings comprising clear coats with anti-sag urea and dispersed silica | |
JP7488426B1 (en) | Coating composition and in-mold coating method | |
JP7628221B1 (en) | Kit for three-component coating composition, three-component coating composition and method for coating inside a mold | |
EP1954736B1 (en) | Non-aqueous, liquid coating compositions | |
KR102569926B1 (en) | Coating materials that create a structured surface | |
KR100785224B1 (en) | Coating composition | |
MXPA01009259A (en) | Filler composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILIC, RICHARD;KUPCAKOVA, ZDENKA;REEL/FRAME:013113/0304 Effective date: 20020709 |
|
AS | Assignment |
Owner name: E.I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILIC, RICHARD;KUPCAKOVA, ZDENKA;REEL/FRAME:013195/0934 Effective date: 20020709 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |