US20040138131A1 - Hepatitis B virus binding proteins and uses thereof - Google Patents
Hepatitis B virus binding proteins and uses thereof Download PDFInfo
- Publication number
- US20040138131A1 US20040138131A1 US10/759,037 US75903704A US2004138131A1 US 20040138131 A1 US20040138131 A1 US 20040138131A1 US 75903704 A US75903704 A US 75903704A US 2004138131 A1 US2004138131 A1 US 2004138131A1
- Authority
- US
- United States
- Prior art keywords
- seq
- polypeptide
- hbv
- protein
- pro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000700721 Hepatitis B virus Species 0.000 title description 93
- 102000014914 Carrier Proteins Human genes 0.000 title description 11
- 108091008324 binding proteins Proteins 0.000 title description 11
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 106
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims abstract description 71
- 229920001184 polypeptide Polymers 0.000 claims abstract description 67
- 108020004414 DNA Proteins 0.000 claims abstract description 36
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 27
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 27
- 239000002157 polynucleotide Substances 0.000 claims abstract description 27
- 230000002068 genetic effect Effects 0.000 claims abstract description 23
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 22
- 239000000523 sample Substances 0.000 claims abstract description 14
- 241000972773 Aulopiformes Species 0.000 claims abstract description 9
- 229960000633 dextran sulfate Drugs 0.000 claims abstract description 9
- 235000019515 salmon Nutrition 0.000 claims abstract description 9
- 108090000623 proteins and genes Proteins 0.000 claims description 170
- 102000004169 proteins and genes Human genes 0.000 claims description 134
- 230000027455 binding Effects 0.000 claims description 58
- 210000004027 cell Anatomy 0.000 claims description 51
- 210000002700 urine Anatomy 0.000 claims description 37
- 210000003494 hepatocyte Anatomy 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 19
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 10
- 102000012545 EGF-like domains Human genes 0.000 claims description 5
- 108050002150 EGF-like domains Proteins 0.000 claims description 5
- 230000013595 glycosylation Effects 0.000 claims description 5
- 238000006206 glycosylation reaction Methods 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 102000039446 nucleic acids Human genes 0.000 abstract description 30
- 108020004707 nucleic acids Proteins 0.000 abstract description 30
- 150000007523 nucleic acids Chemical class 0.000 abstract description 30
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 abstract description 22
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 abstract description 22
- 235000018102 proteins Nutrition 0.000 description 127
- 150000001413 amino acids Chemical class 0.000 description 40
- 235000001014 amino acid Nutrition 0.000 description 36
- 229940024606 amino acid Drugs 0.000 description 36
- 108091034117 Oligonucleotide Proteins 0.000 description 32
- 230000000692 anti-sense effect Effects 0.000 description 31
- 241000282414 Homo sapiens Species 0.000 description 30
- 102100028065 Fibulin-5 Human genes 0.000 description 28
- 101001060252 Homo sapiens Fibulin-5 Proteins 0.000 description 28
- 108020004635 Complementary DNA Proteins 0.000 description 24
- 238000010804 cDNA synthesis Methods 0.000 description 21
- 238000013519 translation Methods 0.000 description 21
- 239000002299 complementary DNA Substances 0.000 description 20
- 102000005962 receptors Human genes 0.000 description 20
- 108020003175 receptors Proteins 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 19
- 108020004999 messenger RNA Proteins 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 208000015181 infectious disease Diseases 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 102000053642 Catalytic RNA Human genes 0.000 description 14
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 108090000994 Catalytic RNA Proteins 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 108091092562 ribozyme Proteins 0.000 description 13
- 239000008194 pharmaceutical composition Substances 0.000 description 12
- 239000000074 antisense oligonucleotide Substances 0.000 description 11
- 238000012230 antisense oligonucleotides Methods 0.000 description 11
- 210000004185 liver Anatomy 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 239000013060 biological fluid Substances 0.000 description 9
- 239000000499 gel Substances 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003937 drug carrier Substances 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 101800003838 Epidermal growth factor Proteins 0.000 description 7
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- -1 aqueous Substances 0.000 description 7
- 210000000170 cell membrane Anatomy 0.000 description 7
- 229940116977 epidermal growth factor Drugs 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 7
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical group C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 7
- 238000002965 ELISA Methods 0.000 description 6
- 108090000288 Glycoproteins Proteins 0.000 description 6
- 102000003886 Glycoproteins Human genes 0.000 description 6
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 6
- 229940099472 immunoglobulin a Drugs 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002823 phage display Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000009261 transgenic effect Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 108090000672 Annexin A5 Proteins 0.000 description 5
- 102000004121 Annexin A5 Human genes 0.000 description 5
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 5
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical group NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 5
- 102100031814 EGF-containing fibulin-like extracellular matrix protein 1 Human genes 0.000 description 5
- 101001065272 Homo sapiens EGF-containing fibulin-like extracellular matrix protein 1 Proteins 0.000 description 5
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 5
- 108010093581 aspartyl-proline Proteins 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 241000283707 Capra Species 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- IDAHFEPYTJJZFD-PEFMBERDSA-N Ile-Asp-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N IDAHFEPYTJJZFD-PEFMBERDSA-N 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- 108010079364 N-glycylalanine Proteins 0.000 description 4
- 101150115433 SLC26A5 gene Proteins 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 108010038633 aspartylglutamate Proteins 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 210000005229 liver cell Anatomy 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000007363 ring formation reaction Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- YJRORCOAFUZVKA-FXQIFTODSA-N Asn-Arg-Cys Chemical compound C(C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N YJRORCOAFUZVKA-FXQIFTODSA-N 0.000 description 3
- RATOMFTUDRYMKX-ACZMJKKPSA-N Asp-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N RATOMFTUDRYMKX-ACZMJKKPSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 101710132601 Capsid protein Proteins 0.000 description 3
- 101710094648 Coat protein Proteins 0.000 description 3
- JRZMCSIUYGSJKP-ZKWXMUAHSA-N Cys-Val-Asn Chemical compound SC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O JRZMCSIUYGSJKP-ZKWXMUAHSA-N 0.000 description 3
- DGQJGBDBFVGLGL-ZKWXMUAHSA-N Cys-Val-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N DGQJGBDBFVGLGL-ZKWXMUAHSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108010067306 Fibronectins Proteins 0.000 description 3
- 102000016359 Fibronectins Human genes 0.000 description 3
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 3
- 102100034349 Integrase Human genes 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- PRZVBIAOPFGAQF-SRVKXCTJSA-N Leu-Glu-Met Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCSC)C(O)=O PRZVBIAOPFGAQF-SRVKXCTJSA-N 0.000 description 3
- 101710125418 Major capsid protein Proteins 0.000 description 3
- 101000974044 Mus musculus Ribosome biogenesis protein NOP53 Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 101710141454 Nucleoprotein Proteins 0.000 description 3
- RJYBHZVWJPUSLB-QEWYBTABSA-N Phe-Gln-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC1=CC=CC=C1)N RJYBHZVWJPUSLB-QEWYBTABSA-N 0.000 description 3
- APKRGYLBSCWJJP-FXQIFTODSA-N Pro-Ala-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O APKRGYLBSCWJJP-FXQIFTODSA-N 0.000 description 3
- 101710083689 Probable capsid protein Proteins 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 108010044940 alanylglutamine Proteins 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 108010013835 arginine glutamate Proteins 0.000 description 3
- 108010060035 arginylproline Proteins 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 108010060199 cysteinylproline Proteins 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000002523 gelfiltration Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 108010077515 glycylproline Proteins 0.000 description 3
- 208000006454 hepatitis Diseases 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000033444 hydroxylation Effects 0.000 description 3
- 238000005805 hydroxylation reaction Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 108010053037 kyotorphin Proteins 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000002515 oligonucleotide synthesis Methods 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 108010029020 prolylglycine Proteins 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 108010026333 seryl-proline Proteins 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- AXFMEGAFCUULFV-BLFANLJRSA-N (2s)-2-[[(2s)-1-[(2s,3r)-2-amino-3-methylpentanoyl]pyrrolidine-2-carbonyl]amino]pentanedioic acid Chemical compound CC[C@@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AXFMEGAFCUULFV-BLFANLJRSA-N 0.000 description 2
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 2
- DHBKYZYFEXXUAK-ONGXEEELSA-N Ala-Phe-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 DHBKYZYFEXXUAK-ONGXEEELSA-N 0.000 description 2
- KLALXKYLOMZDQT-ZLUOBGJFSA-N Ala-Ser-Asn Chemical compound C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(N)=O KLALXKYLOMZDQT-ZLUOBGJFSA-N 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 108090000644 Angiozyme Proteins 0.000 description 2
- OQPAZKMGCWPERI-GUBZILKMSA-N Arg-Ser-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O OQPAZKMGCWPERI-GUBZILKMSA-N 0.000 description 2
- 102000005427 Asialoglycoprotein Receptor Human genes 0.000 description 2
- OSZBYGVKAFZWKC-FXQIFTODSA-N Asn-Pro-Cys Chemical compound NC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CS)C(O)=O OSZBYGVKAFZWKC-FXQIFTODSA-N 0.000 description 2
- GKKUBLFXKRDMFC-BQBZGAKWSA-N Asn-Pro-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O GKKUBLFXKRDMFC-BQBZGAKWSA-N 0.000 description 2
- CYCKJEFVFNRWEZ-UGYAYLCHSA-N Asp-Ile-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(O)=O CYCKJEFVFNRWEZ-UGYAYLCHSA-N 0.000 description 2
- TZOZNVLBTAFJRW-UGYAYLCHSA-N Asp-Ile-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)O)N TZOZNVLBTAFJRW-UGYAYLCHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 108010041397 CD4 Antigens Proteins 0.000 description 2
- 101710172503 Chemokine-binding protein Proteins 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- MGAWEOHYNIMOQJ-ACZMJKKPSA-N Cys-Gln-Asp Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N MGAWEOHYNIMOQJ-ACZMJKKPSA-N 0.000 description 2
- PFAQXUDMZVMADG-AVGNSLFASA-N Cys-Gln-Tyr Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O PFAQXUDMZVMADG-AVGNSLFASA-N 0.000 description 2
- LKUCSUGWHYVYLP-GHCJXIJMSA-N Cys-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N LKUCSUGWHYVYLP-GHCJXIJMSA-N 0.000 description 2
- HBHMVBGGHDMPBF-GARJFASQSA-N Cys-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CS)N HBHMVBGGHDMPBF-GARJFASQSA-N 0.000 description 2
- 206010048843 Cytomegalovirus chorioretinitis Diseases 0.000 description 2
- 239000003298 DNA probe Substances 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- XXLBHPPXDUWYAG-XQXXSGGOSA-N Gln-Ala-Thr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XXLBHPPXDUWYAG-XQXXSGGOSA-N 0.000 description 2
- UZMWDBOHAOSCCH-ACZMJKKPSA-N Gln-Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(N)=O UZMWDBOHAOSCCH-ACZMJKKPSA-N 0.000 description 2
- QBLMTCRYYTVUQY-GUBZILKMSA-N Gln-Leu-Asp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O QBLMTCRYYTVUQY-GUBZILKMSA-N 0.000 description 2
- OSCLNNWLKKIQJM-WDSKDSINSA-N Gln-Ser-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O OSCLNNWLKKIQJM-WDSKDSINSA-N 0.000 description 2
- FLQAKQOBSPFGKG-CIUDSAMLSA-N Glu-Cys-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CCCN=C(N)N FLQAKQOBSPFGKG-CIUDSAMLSA-N 0.000 description 2
- OBIHEDRRSMRKLU-ACZMJKKPSA-N Glu-Cys-Asp Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)O)C(=O)O)N OBIHEDRRSMRKLU-ACZMJKKPSA-N 0.000 description 2
- PKYAVRMYTBBRLS-FXQIFTODSA-N Glu-Cys-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O PKYAVRMYTBBRLS-FXQIFTODSA-N 0.000 description 2
- MIIGESVJEBDJMP-FHWLQOOXSA-N Glu-Phe-Tyr Chemical compound C([C@H](NC(=O)[C@H](CCC(O)=O)N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=CC=C1 MIIGESVJEBDJMP-FHWLQOOXSA-N 0.000 description 2
- FKYQEVBRZSFAMJ-QWRGUYRKSA-N Gly-Ser-Tyr Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 FKYQEVBRZSFAMJ-QWRGUYRKSA-N 0.000 description 2
- RIYIFUFFFBIOEU-KBPBESRZSA-N Gly-Tyr-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=C(O)C=C1 RIYIFUFFFBIOEU-KBPBESRZSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 2
- PHRWFSFCNJPWRO-PPCPHDFISA-N Ile-Leu-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N PHRWFSFCNJPWRO-PPCPHDFISA-N 0.000 description 2
- PMGDADKJMCOXHX-UHFFFAOYSA-N L-Arginyl-L-glutamin-acetat Natural products NC(=N)NCCCC(N)C(=O)NC(CCC(N)=O)C(O)=O PMGDADKJMCOXHX-UHFFFAOYSA-N 0.000 description 2
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- QKIBIXAQKAFZGL-GUBZILKMSA-N Leu-Cys-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(O)=O QKIBIXAQKAFZGL-GUBZILKMSA-N 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- XQSREVQDGCPFRJ-STQMWFEESA-N Pro-Gly-Phe Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O XQSREVQDGCPFRJ-STQMWFEESA-N 0.000 description 2
- QEWBZBLXDKIQPS-STQMWFEESA-N Pro-Gly-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O QEWBZBLXDKIQPS-STQMWFEESA-N 0.000 description 2
- 101710138270 PspA protein Proteins 0.000 description 2
- 108020004518 RNA Probes Proteins 0.000 description 2
- 239000003391 RNA probe Substances 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- MPPHJZYXDVDGOF-BWBBJGPYSA-N Ser-Cys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CO MPPHJZYXDVDGOF-BWBBJGPYSA-N 0.000 description 2
- SWIQQMYVHIXPEK-FXQIFTODSA-N Ser-Cys-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O SWIQQMYVHIXPEK-FXQIFTODSA-N 0.000 description 2
- BPMRXBZYPGYPJN-WHFBIAKZSA-N Ser-Gly-Asn Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O BPMRXBZYPGYPJN-WHFBIAKZSA-N 0.000 description 2
- JCLAFVNDBJMLBC-JBDRJPRFSA-N Ser-Ser-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JCLAFVNDBJMLBC-JBDRJPRFSA-N 0.000 description 2
- PLQWGQUNUPMNOD-KKUMJFAQSA-N Ser-Tyr-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(O)=O PLQWGQUNUPMNOD-KKUMJFAQSA-N 0.000 description 2
- IRKWVRSEQFTGGV-VEVYYDQMSA-N Thr-Asn-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O IRKWVRSEQFTGGV-VEVYYDQMSA-N 0.000 description 2
- DSLHSTIUAPKERR-XGEHTFHBSA-N Thr-Cys-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O DSLHSTIUAPKERR-XGEHTFHBSA-N 0.000 description 2
- YJCVECXVYHZOBK-KNZXXDILSA-N Thr-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H]([C@@H](C)O)N YJCVECXVYHZOBK-KNZXXDILSA-N 0.000 description 2
- NZFCWALTLNFHHC-JYJNAYRXSA-N Tyr-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NZFCWALTLNFHHC-JYJNAYRXSA-N 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 201000011032 Werner Syndrome Diseases 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003443 antiviral agent Substances 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 108010008355 arginyl-glutamine Proteins 0.000 description 2
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 108010006523 asialoglycoprotein receptor Proteins 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 108010077245 asparaginyl-proline Proteins 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 229960005261 aspartic acid Drugs 0.000 description 2
- 108010047857 aspartylglycine Proteins 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 2
- 150000001945 cysteines Chemical class 0.000 description 2
- 208000001763 cytomegalovirus retinitis Diseases 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 108010078144 glutaminyl-glycine Proteins 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- JYPCXBJRLBHWME-UHFFFAOYSA-N glycyl-L-prolyl-L-arginine Natural products NCC(=O)N1CCCC1C(=O)NC(CCCN=C(N)N)C(O)=O JYPCXBJRLBHWME-UHFFFAOYSA-N 0.000 description 2
- 108010087823 glycyltyrosine Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 108010031424 isoleucyl-prolyl-proline Proteins 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229960003104 ornithine Drugs 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 150000008298 phosphoramidates Chemical class 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 239000013615 primer Substances 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 108010038196 saccharide-binding proteins Proteins 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 108010020532 tyrosyl-proline Proteins 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- FJPHHBGPPJXISY-KBPBESRZSA-N (2s)-2-[[(2s)-2-[[2-[(2-aminoacetyl)amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CNC(=O)CN)CC1=CC=C(O)C=C1 FJPHHBGPPJXISY-KBPBESRZSA-N 0.000 description 1
- FYMNTAQFDTZISY-QMMMGPOBSA-N (2s)-2-amino-3-[4-(diaminomethylideneamino)phenyl]propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N=C(N)N)C=C1 FYMNTAQFDTZISY-QMMMGPOBSA-N 0.000 description 1
- STGXGJRRAJKJRG-JDJSBBGDSA-N (3r,4r,5r)-5-(hydroxymethyl)-3-methoxyoxolane-2,4-diol Chemical group CO[C@H]1C(O)O[C@H](CO)[C@H]1O STGXGJRRAJKJRG-JDJSBBGDSA-N 0.000 description 1
- 0 *C(C)C(=O)ON Chemical compound *C(C)C(=O)ON 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- 101710151906 31 kDa protein Proteins 0.000 description 1
- CMUHFUGDYMFHEI-QMMMGPOBSA-N 4-amino-L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N)C=C1 CMUHFUGDYMFHEI-QMMMGPOBSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- AAQGRPOPTAUUBM-ZLUOBGJFSA-N Ala-Ala-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(O)=O AAQGRPOPTAUUBM-ZLUOBGJFSA-N 0.000 description 1
- JBVSSSZFNTXJDX-YTLHQDLWSA-N Ala-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)N JBVSSSZFNTXJDX-YTLHQDLWSA-N 0.000 description 1
- LBJYAILUMSUTAM-ZLUOBGJFSA-N Ala-Asn-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O LBJYAILUMSUTAM-ZLUOBGJFSA-N 0.000 description 1
- ZEXDYVGDZJBRMO-ACZMJKKPSA-N Ala-Asn-Gln Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N ZEXDYVGDZJBRMO-ACZMJKKPSA-N 0.000 description 1
- FXKNPWNXPQZLES-ZLUOBGJFSA-N Ala-Asn-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O FXKNPWNXPQZLES-ZLUOBGJFSA-N 0.000 description 1
- GORKKVHIBWAQHM-GCJQMDKQSA-N Ala-Asn-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GORKKVHIBWAQHM-GCJQMDKQSA-N 0.000 description 1
- WJRXVTCKASUIFF-FXQIFTODSA-N Ala-Cys-Arg Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WJRXVTCKASUIFF-FXQIFTODSA-N 0.000 description 1
- XAGIMRPOEJSYER-CIUDSAMLSA-N Ala-Cys-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCCN)C(=O)O)N XAGIMRPOEJSYER-CIUDSAMLSA-N 0.000 description 1
- LGFCAXJBAZESCF-ACZMJKKPSA-N Ala-Gln-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O LGFCAXJBAZESCF-ACZMJKKPSA-N 0.000 description 1
- IFTVANMRTIHKML-WDSKDSINSA-N Ala-Gln-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O IFTVANMRTIHKML-WDSKDSINSA-N 0.000 description 1
- NIZKGBJVCMRDKO-KWQFWETISA-N Ala-Gly-Tyr Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 NIZKGBJVCMRDKO-KWQFWETISA-N 0.000 description 1
- NOGFDULFCFXBHB-CIUDSAMLSA-N Ala-Leu-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)O)N NOGFDULFCFXBHB-CIUDSAMLSA-N 0.000 description 1
- PVQLRJRPUTXFFX-CIUDSAMLSA-N Ala-Met-Gln Chemical compound CSCC[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](CCC(N)=O)C(O)=O PVQLRJRPUTXFFX-CIUDSAMLSA-N 0.000 description 1
- VRTOMXFZHGWHIJ-KZVJFYERSA-N Ala-Thr-Arg Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O VRTOMXFZHGWHIJ-KZVJFYERSA-N 0.000 description 1
- YNOCMHZSWJMGBB-GCJQMDKQSA-N Ala-Thr-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O YNOCMHZSWJMGBB-GCJQMDKQSA-N 0.000 description 1
- LSMDIAAALJJLRO-XQXXSGGOSA-N Ala-Thr-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O LSMDIAAALJJLRO-XQXXSGGOSA-N 0.000 description 1
- JPOQZCHGOTWRTM-FQPOAREZSA-N Ala-Tyr-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPOQZCHGOTWRTM-FQPOAREZSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- KWKQGHSSNHPGOW-BQBZGAKWSA-N Arg-Ala-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)NCC(O)=O KWKQGHSSNHPGOW-BQBZGAKWSA-N 0.000 description 1
- GIVATXIGCXFQQA-FXQIFTODSA-N Arg-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCN=C(N)N GIVATXIGCXFQQA-FXQIFTODSA-N 0.000 description 1
- VWVPYNGMOCSSGK-GUBZILKMSA-N Arg-Arg-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O VWVPYNGMOCSSGK-GUBZILKMSA-N 0.000 description 1
- USNSOPDIZILSJP-FXQIFTODSA-N Arg-Asn-Asn Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O USNSOPDIZILSJP-FXQIFTODSA-N 0.000 description 1
- NUBPTCMEOCKWDO-DCAQKATOSA-N Arg-Asn-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N NUBPTCMEOCKWDO-DCAQKATOSA-N 0.000 description 1
- OTCJMMRQBVDQRK-DCAQKATOSA-N Arg-Asp-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O OTCJMMRQBVDQRK-DCAQKATOSA-N 0.000 description 1
- HKRXJBBCQBAGIM-FXQIFTODSA-N Arg-Asp-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N)CN=C(N)N HKRXJBBCQBAGIM-FXQIFTODSA-N 0.000 description 1
- JTWOBPNAVBESFW-FXQIFTODSA-N Arg-Cys-Asp Chemical compound C(C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)CN=C(N)N JTWOBPNAVBESFW-FXQIFTODSA-N 0.000 description 1
- BBYTXXRNSFUOOX-IHRRRGAJSA-N Arg-Cys-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O BBYTXXRNSFUOOX-IHRRRGAJSA-N 0.000 description 1
- RWDVGVPHEWOZMO-GUBZILKMSA-N Arg-Cys-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCNC(N)=N)C(O)=O RWDVGVPHEWOZMO-GUBZILKMSA-N 0.000 description 1
- ZEAYJGRKRUBDOB-GARJFASQSA-N Arg-Gln-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O ZEAYJGRKRUBDOB-GARJFASQSA-N 0.000 description 1
- MZRBYBIQTIKERR-GUBZILKMSA-N Arg-Glu-Gln Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O MZRBYBIQTIKERR-GUBZILKMSA-N 0.000 description 1
- QAXCZGMLVICQKS-SRVKXCTJSA-N Arg-Glu-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCCN=C(N)N)N QAXCZGMLVICQKS-SRVKXCTJSA-N 0.000 description 1
- OHYQKYUTLIPFOX-ZPFDUUQYSA-N Arg-Glu-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O OHYQKYUTLIPFOX-ZPFDUUQYSA-N 0.000 description 1
- ZATRYQNPUHGXCU-DTWKUNHWSA-N Arg-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CCCN=C(N)N)N)C(=O)O ZATRYQNPUHGXCU-DTWKUNHWSA-N 0.000 description 1
- LKDHUGLXOHYINY-XUXIUFHCSA-N Arg-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N LKDHUGLXOHYINY-XUXIUFHCSA-N 0.000 description 1
- UHFUZWSZQKMDSX-DCAQKATOSA-N Arg-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N UHFUZWSZQKMDSX-DCAQKATOSA-N 0.000 description 1
- JEOCWTUOMKEEMF-RHYQMDGZSA-N Arg-Leu-Thr Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JEOCWTUOMKEEMF-RHYQMDGZSA-N 0.000 description 1
- AOHKLEBWKMKITA-IHRRRGAJSA-N Arg-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AOHKLEBWKMKITA-IHRRRGAJSA-N 0.000 description 1
- UULLJGQFCDXVTQ-CYDGBPFRSA-N Arg-Pro-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O UULLJGQFCDXVTQ-CYDGBPFRSA-N 0.000 description 1
- ADPACBMPYWJJCE-FXQIFTODSA-N Arg-Ser-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O ADPACBMPYWJJCE-FXQIFTODSA-N 0.000 description 1
- FRBAHXABMQXSJQ-FXQIFTODSA-N Arg-Ser-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O FRBAHXABMQXSJQ-FXQIFTODSA-N 0.000 description 1
- SYFHFLGAROUHNT-VEVYYDQMSA-N Arg-Thr-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O SYFHFLGAROUHNT-VEVYYDQMSA-N 0.000 description 1
- INOIAEUXVVNJKA-XGEHTFHBSA-N Arg-Thr-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O INOIAEUXVVNJKA-XGEHTFHBSA-N 0.000 description 1
- UVTGNSWSRSCPLP-UHFFFAOYSA-N Arg-Tyr Natural products NC(CCNC(=N)N)C(=O)NC(Cc1ccc(O)cc1)C(=O)O UVTGNSWSRSCPLP-UHFFFAOYSA-N 0.000 description 1
- BFDDUDQCPJWQRQ-IHRRRGAJSA-N Arg-Tyr-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O BFDDUDQCPJWQRQ-IHRRRGAJSA-N 0.000 description 1
- VLIJAPRTSXSGFY-STQMWFEESA-N Arg-Tyr-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=C(O)C=C1 VLIJAPRTSXSGFY-STQMWFEESA-N 0.000 description 1
- 108010002913 Asialoglycoproteins Proteins 0.000 description 1
- HAJWYALLJIATCX-FXQIFTODSA-N Asn-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N HAJWYALLJIATCX-FXQIFTODSA-N 0.000 description 1
- NLCDVZJDEXIDDL-BIIVOSGPSA-N Asn-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N)C(=O)O NLCDVZJDEXIDDL-BIIVOSGPSA-N 0.000 description 1
- WQSCVMQDZYTFQU-FXQIFTODSA-N Asn-Cys-Arg Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WQSCVMQDZYTFQU-FXQIFTODSA-N 0.000 description 1
- AYKKKGFJXIDYLX-ACZMJKKPSA-N Asn-Gln-Asn Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O AYKKKGFJXIDYLX-ACZMJKKPSA-N 0.000 description 1
- HCAUEJAQCXVQQM-ACZMJKKPSA-N Asn-Glu-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O HCAUEJAQCXVQQM-ACZMJKKPSA-N 0.000 description 1
- MECFLTFREHAZLH-ACZMJKKPSA-N Asn-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)N)N MECFLTFREHAZLH-ACZMJKKPSA-N 0.000 description 1
- BKDDABUWNKGZCK-XHNCKOQMSA-N Asn-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(=O)N)N)C(=O)O BKDDABUWNKGZCK-XHNCKOQMSA-N 0.000 description 1
- JQSWHKKUZMTOIH-QWRGUYRKSA-N Asn-Gly-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CC(=O)N)N JQSWHKKUZMTOIH-QWRGUYRKSA-N 0.000 description 1
- GQRDIVQPSMPQME-ZPFDUUQYSA-N Asn-Ile-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O GQRDIVQPSMPQME-ZPFDUUQYSA-N 0.000 description 1
- JLNFZLNDHONLND-GARJFASQSA-N Asn-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N JLNFZLNDHONLND-GARJFASQSA-N 0.000 description 1
- BKZFBJYIVSBXCO-KKUMJFAQSA-N Asn-Phe-His Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CNC=N1)C(O)=O BKZFBJYIVSBXCO-KKUMJFAQSA-N 0.000 description 1
- YRTOMUMWSTUQAX-FXQIFTODSA-N Asn-Pro-Asp Chemical compound NC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O YRTOMUMWSTUQAX-FXQIFTODSA-N 0.000 description 1
- BYLSYQASFJJBCL-DCAQKATOSA-N Asn-Pro-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O BYLSYQASFJJBCL-DCAQKATOSA-N 0.000 description 1
- GMUOCGCDOYYWPD-FXQIFTODSA-N Asn-Pro-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O GMUOCGCDOYYWPD-FXQIFTODSA-N 0.000 description 1
- REQUGIWGOGSOEZ-ZLUOBGJFSA-N Asn-Ser-Asn Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)C(=O)N REQUGIWGOGSOEZ-ZLUOBGJFSA-N 0.000 description 1
- JWQWPRCDYWNVNM-ACZMJKKPSA-N Asn-Ser-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(=O)N)N JWQWPRCDYWNVNM-ACZMJKKPSA-N 0.000 description 1
- MKJBPDLENBUHQU-CIUDSAMLSA-N Asn-Ser-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O MKJBPDLENBUHQU-CIUDSAMLSA-N 0.000 description 1
- MYTHOBCLNIOFBL-SRVKXCTJSA-N Asn-Ser-Tyr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MYTHOBCLNIOFBL-SRVKXCTJSA-N 0.000 description 1
- BCADFFUQHIMQAA-KKHAAJSZSA-N Asn-Thr-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O BCADFFUQHIMQAA-KKHAAJSZSA-N 0.000 description 1
- GHWWTICYPDKPTE-NGZCFLSTSA-N Asn-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)N)N GHWWTICYPDKPTE-NGZCFLSTSA-N 0.000 description 1
- CASGONAXMZPHCK-FXQIFTODSA-N Asp-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)N)CN=C(N)N CASGONAXMZPHCK-FXQIFTODSA-N 0.000 description 1
- FMWHSNJMHUNLAG-FXQIFTODSA-N Asp-Cys-Arg Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CCCN=C(N)N FMWHSNJMHUNLAG-FXQIFTODSA-N 0.000 description 1
- IAMNNSSEBXDJMN-CIUDSAMLSA-N Asp-Cys-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N IAMNNSSEBXDJMN-CIUDSAMLSA-N 0.000 description 1
- BKXPJCBEHWFSTF-ACZMJKKPSA-N Asp-Gln-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O BKXPJCBEHWFSTF-ACZMJKKPSA-N 0.000 description 1
- CSEJMKNZDCJYGJ-XHNCKOQMSA-N Asp-Gln-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N)C(=O)O CSEJMKNZDCJYGJ-XHNCKOQMSA-N 0.000 description 1
- ZSJFGGSPCCHMNE-LAEOZQHASA-N Asp-Gln-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N ZSJFGGSPCCHMNE-LAEOZQHASA-N 0.000 description 1
- LTXGDRFJRZSZAV-CIUDSAMLSA-N Asp-Glu-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(=O)O)N LTXGDRFJRZSZAV-CIUDSAMLSA-N 0.000 description 1
- PGUYEUCYVNZGGV-QWRGUYRKSA-N Asp-Gly-Tyr Chemical compound OC(=O)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 PGUYEUCYVNZGGV-QWRGUYRKSA-N 0.000 description 1
- WSGVTKZFVJSJOG-RCOVLWMOSA-N Asp-Gly-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O WSGVTKZFVJSJOG-RCOVLWMOSA-N 0.000 description 1
- QHHVSXGWLYEAGX-GUBZILKMSA-N Asp-His-Gln Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)O)N QHHVSXGWLYEAGX-GUBZILKMSA-N 0.000 description 1
- OEDJQRXNDRUGEU-SRVKXCTJSA-N Asp-Leu-His Chemical compound N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)O OEDJQRXNDRUGEU-SRVKXCTJSA-N 0.000 description 1
- WWOYXVBGHAHQBG-FXQIFTODSA-N Asp-Met-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(O)=O WWOYXVBGHAHQBG-FXQIFTODSA-N 0.000 description 1
- DKQCWCQRAMAFLN-UBHSHLNASA-N Asp-Trp-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(O)=O)C(O)=O DKQCWCQRAMAFLN-UBHSHLNASA-N 0.000 description 1
- PLOKOIJSGCISHE-BYULHYEWSA-N Asp-Val-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O PLOKOIJSGCISHE-BYULHYEWSA-N 0.000 description 1
- WAEDSQFVZJUHLI-BYULHYEWSA-N Asp-Val-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O WAEDSQFVZJUHLI-BYULHYEWSA-N 0.000 description 1
- 102100030802 Beta-2-glycoprotein 1 Human genes 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 208000010667 Carcinoma of liver and intrahepatic biliary tract Diseases 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102100031673 Corneodesmosin Human genes 0.000 description 1
- 101710139375 Corneodesmosin Proteins 0.000 description 1
- 206010056489 Coronary artery restenosis Diseases 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 102000001189 Cyclic Peptides Human genes 0.000 description 1
- 108010069514 Cyclic Peptides Proteins 0.000 description 1
- PRXCTTWKGJAPMT-ZLUOBGJFSA-N Cys-Ala-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O PRXCTTWKGJAPMT-ZLUOBGJFSA-N 0.000 description 1
- GMXSSZUVDNPRMA-FXQIFTODSA-N Cys-Arg-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O GMXSSZUVDNPRMA-FXQIFTODSA-N 0.000 description 1
- JTNKVWLMDHIUOG-IHRRRGAJSA-N Cys-Arg-Phe Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JTNKVWLMDHIUOG-IHRRRGAJSA-N 0.000 description 1
- XXDLUZLKHOVPNW-IHRRRGAJSA-N Cys-Arg-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N)O XXDLUZLKHOVPNW-IHRRRGAJSA-N 0.000 description 1
- UISYPAHPLXGLNH-ACZMJKKPSA-N Cys-Asn-Gln Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O UISYPAHPLXGLNH-ACZMJKKPSA-N 0.000 description 1
- SBMGKDLRJLYZCU-BIIVOSGPSA-N Cys-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CS)N)C(=O)O SBMGKDLRJLYZCU-BIIVOSGPSA-N 0.000 description 1
- YRKJQKATZOTUEN-ACZMJKKPSA-N Cys-Gln-Cys Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CS)N YRKJQKATZOTUEN-ACZMJKKPSA-N 0.000 description 1
- BPHKULHWEIUDOB-FXQIFTODSA-N Cys-Gln-Gln Chemical compound SC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O BPHKULHWEIUDOB-FXQIFTODSA-N 0.000 description 1
- VBPGTULCFGKGTF-ACZMJKKPSA-N Cys-Glu-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O VBPGTULCFGKGTF-ACZMJKKPSA-N 0.000 description 1
- DZIGZIIJIGGANI-FXQIFTODSA-N Cys-Glu-Gln Chemical compound SC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O DZIGZIIJIGGANI-FXQIFTODSA-N 0.000 description 1
- UUOYKFNULIOCGJ-GUBZILKMSA-N Cys-Glu-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CS)N UUOYKFNULIOCGJ-GUBZILKMSA-N 0.000 description 1
- WAJDEKCJRKGRPG-CIUDSAMLSA-N Cys-His-Ser Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CS)N WAJDEKCJRKGRPG-CIUDSAMLSA-N 0.000 description 1
- DVIHGGUODLILFN-GHCJXIJMSA-N Cys-Ile-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N DVIHGGUODLILFN-GHCJXIJMSA-N 0.000 description 1
- XZKJEOMFLDVXJG-KATARQTJSA-N Cys-Leu-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)N)O XZKJEOMFLDVXJG-KATARQTJSA-N 0.000 description 1
- WTEJFWOJHCJDML-FXQIFTODSA-N Cys-Met-Cys Chemical compound SC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CS)C(O)=O WTEJFWOJHCJDML-FXQIFTODSA-N 0.000 description 1
- KSMSFCBQBQPFAD-GUBZILKMSA-N Cys-Pro-Pro Chemical compound SC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 KSMSFCBQBQPFAD-GUBZILKMSA-N 0.000 description 1
- XBELMDARIGXDKY-GUBZILKMSA-N Cys-Pro-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CS)N XBELMDARIGXDKY-GUBZILKMSA-N 0.000 description 1
- RJPKQCFHEPPTGL-ZLUOBGJFSA-N Cys-Ser-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RJPKQCFHEPPTGL-ZLUOBGJFSA-N 0.000 description 1
- NRVQLLDIJJEIIZ-VZFHVOOUSA-N Cys-Thr-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)O)NC(=O)[C@H](CS)N)O NRVQLLDIJJEIIZ-VZFHVOOUSA-N 0.000 description 1
- ZLFRUAFDAIFNHN-LKXGYXEUSA-N Cys-Thr-Asp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N)O ZLFRUAFDAIFNHN-LKXGYXEUSA-N 0.000 description 1
- FTTZLFIEUQHLHH-BWBBJGPYSA-N Cys-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CS)N)O FTTZLFIEUQHLHH-BWBBJGPYSA-N 0.000 description 1
- DXSBGVKEPHDOTD-UBHSHLNASA-N Cys-Trp-Asn Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N DXSBGVKEPHDOTD-UBHSHLNASA-N 0.000 description 1
- IWVNIQXKTIQXCT-SRVKXCTJSA-N Cys-Tyr-Asn Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CS)N)O IWVNIQXKTIQXCT-SRVKXCTJSA-N 0.000 description 1
- CLEFUAZULXANBU-MELADBBJSA-N Cys-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CS)N)C(=O)O CLEFUAZULXANBU-MELADBBJSA-N 0.000 description 1
- VIOQRFNAZDMVLO-NRPADANISA-N Cys-Val-Glu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O VIOQRFNAZDMVLO-NRPADANISA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 108091060211 Expressed sequence tag Proteins 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- KVYVOGYEMPEXBT-GUBZILKMSA-N Gln-Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(N)=O KVYVOGYEMPEXBT-GUBZILKMSA-N 0.000 description 1
- JFSNBQJNDMXMQF-XHNCKOQMSA-N Gln-Asp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)N)N)C(=O)O JFSNBQJNDMXMQF-XHNCKOQMSA-N 0.000 description 1
- IPHGBVYWRKCGKG-FXQIFTODSA-N Gln-Cys-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O IPHGBVYWRKCGKG-FXQIFTODSA-N 0.000 description 1
- UVAOVENCIONMJP-GUBZILKMSA-N Gln-Cys-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O UVAOVENCIONMJP-GUBZILKMSA-N 0.000 description 1
- MFLMFRZBAJSGHK-ACZMJKKPSA-N Gln-Cys-Ser Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)O)N MFLMFRZBAJSGHK-ACZMJKKPSA-N 0.000 description 1
- COYGBRTZEVWZBW-XKBZYTNZSA-N Gln-Cys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(N)=O COYGBRTZEVWZBW-XKBZYTNZSA-N 0.000 description 1
- PZVJDMJHKUWSIV-AVGNSLFASA-N Gln-Cys-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCC(=O)N)N)O PZVJDMJHKUWSIV-AVGNSLFASA-N 0.000 description 1
- ZDJZEGYVKANKED-NRPADANISA-N Gln-Cys-Val Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O ZDJZEGYVKANKED-NRPADANISA-N 0.000 description 1
- YXQCLIVLWCKCRS-RYUDHWBXSA-N Gln-Gly-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CCC(=O)N)N)O YXQCLIVLWCKCRS-RYUDHWBXSA-N 0.000 description 1
- DWDBJWAXPXXYLP-SRVKXCTJSA-N Gln-His-Arg Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CCC(=O)N)N DWDBJWAXPXXYLP-SRVKXCTJSA-N 0.000 description 1
- HYPVLWGNBIYTNA-GUBZILKMSA-N Gln-Leu-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O HYPVLWGNBIYTNA-GUBZILKMSA-N 0.000 description 1
- CAXXTYYGFYTBPV-IUCAKERBSA-N Gln-Leu-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O CAXXTYYGFYTBPV-IUCAKERBSA-N 0.000 description 1
- XFAUJGNLHIGXET-AVGNSLFASA-N Gln-Leu-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O XFAUJGNLHIGXET-AVGNSLFASA-N 0.000 description 1
- GURIQZQSTBBHRV-SRVKXCTJSA-N Gln-Lys-Arg Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GURIQZQSTBBHRV-SRVKXCTJSA-N 0.000 description 1
- BJPPYOMRAVLXBY-YUMQZZPRSA-N Gln-Met-Gly Chemical compound CSCC[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CCC(=O)N)N BJPPYOMRAVLXBY-YUMQZZPRSA-N 0.000 description 1
- XQDGOJPVMSWZSO-SRVKXCTJSA-N Gln-Pro-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(=O)N)N XQDGOJPVMSWZSO-SRVKXCTJSA-N 0.000 description 1
- SXFPZRRVWSUYII-KBIXCLLPSA-N Gln-Ser-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(=O)N)N SXFPZRRVWSUYII-KBIXCLLPSA-N 0.000 description 1
- PAOHIZNRJNIXQY-XQXXSGGOSA-N Gln-Thr-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O PAOHIZNRJNIXQY-XQXXSGGOSA-N 0.000 description 1
- ININBLZFFVOQIO-JHEQGTHGSA-N Gln-Thr-Gly Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CCC(=O)N)N)O ININBLZFFVOQIO-JHEQGTHGSA-N 0.000 description 1
- CVRUVYDNRPSKBM-QEJZJMRPSA-N Gln-Trp-Ser Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)N)N CVRUVYDNRPSKBM-QEJZJMRPSA-N 0.000 description 1
- JTWZNMUVQWWGOX-SOUVJXGZSA-N Gln-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CCC(=O)N)N)C(=O)O JTWZNMUVQWWGOX-SOUVJXGZSA-N 0.000 description 1
- FITIQFSXXBKFFM-NRPADANISA-N Gln-Val-Ser Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O FITIQFSXXBKFFM-NRPADANISA-N 0.000 description 1
- OGMQXTXGLDNBSS-FXQIFTODSA-N Glu-Ala-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(O)=O OGMQXTXGLDNBSS-FXQIFTODSA-N 0.000 description 1
- LKDIBBOKUAASNP-FXQIFTODSA-N Glu-Ala-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LKDIBBOKUAASNP-FXQIFTODSA-N 0.000 description 1
- CKRUHITYRFNUKW-WDSKDSINSA-N Glu-Asn-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O CKRUHITYRFNUKW-WDSKDSINSA-N 0.000 description 1
- LXAUHIRMWXQRKI-XHNCKOQMSA-N Glu-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCC(=O)O)N)C(=O)O LXAUHIRMWXQRKI-XHNCKOQMSA-N 0.000 description 1
- SAEBUDRWKUXLOM-ACZMJKKPSA-N Glu-Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(O)=O SAEBUDRWKUXLOM-ACZMJKKPSA-N 0.000 description 1
- KVBPDJIFRQUQFY-ACZMJKKPSA-N Glu-Cys-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O KVBPDJIFRQUQFY-ACZMJKKPSA-N 0.000 description 1
- FKGNJUCQKXQNRA-NRPADANISA-N Glu-Cys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCC(O)=O FKGNJUCQKXQNRA-NRPADANISA-N 0.000 description 1
- MGHKSHCBDXNTHX-WDSKDSINSA-N Glu-Gln Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(O)=O MGHKSHCBDXNTHX-WDSKDSINSA-N 0.000 description 1
- WPLGNDORMXTMQS-FXQIFTODSA-N Glu-Gln-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(O)=O WPLGNDORMXTMQS-FXQIFTODSA-N 0.000 description 1
- KUTPGXNAAOQSPD-LPEHRKFASA-N Glu-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)O)N)C(=O)O KUTPGXNAAOQSPD-LPEHRKFASA-N 0.000 description 1
- PXXGVUVQWQGGIG-YUMQZZPRSA-N Glu-Gly-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N PXXGVUVQWQGGIG-YUMQZZPRSA-N 0.000 description 1
- DRLVXRQFROIYTD-GUBZILKMSA-N Glu-His-Asn Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N DRLVXRQFROIYTD-GUBZILKMSA-N 0.000 description 1
- HVYWQYLBVXMXSV-GUBZILKMSA-N Glu-Leu-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O HVYWQYLBVXMXSV-GUBZILKMSA-N 0.000 description 1
- IRXNJYPKBVERCW-DCAQKATOSA-N Glu-Leu-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O IRXNJYPKBVERCW-DCAQKATOSA-N 0.000 description 1
- UGSVSNXPJJDJKL-SDDRHHMPSA-N Glu-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N UGSVSNXPJJDJKL-SDDRHHMPSA-N 0.000 description 1
- SOEPMWQCTJITPZ-SRVKXCTJSA-N Glu-Met-Lys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)O)N SOEPMWQCTJITPZ-SRVKXCTJSA-N 0.000 description 1
- CQAHWYDHKUWYIX-YUMQZZPRSA-N Glu-Pro-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O CQAHWYDHKUWYIX-YUMQZZPRSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- MZZSCEANQDPJER-ONGXEEELSA-N Gly-Ala-Phe Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MZZSCEANQDPJER-ONGXEEELSA-N 0.000 description 1
- GWCRIHNSVMOBEQ-BQBZGAKWSA-N Gly-Arg-Ser Chemical compound [H]NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O GWCRIHNSVMOBEQ-BQBZGAKWSA-N 0.000 description 1
- ZRZILYKEJBMFHY-BQBZGAKWSA-N Gly-Asp-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)CN ZRZILYKEJBMFHY-BQBZGAKWSA-N 0.000 description 1
- RPLLQZBOVIVGMX-QWRGUYRKSA-N Gly-Asp-Phe Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O RPLLQZBOVIVGMX-QWRGUYRKSA-N 0.000 description 1
- YZACQYVWLCQWBT-BQBZGAKWSA-N Gly-Cys-Arg Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YZACQYVWLCQWBT-BQBZGAKWSA-N 0.000 description 1
- VUUOMYFPWDYETE-WDSKDSINSA-N Gly-Gln-Cys Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)CN VUUOMYFPWDYETE-WDSKDSINSA-N 0.000 description 1
- HFXJIZNEXNIZIJ-BQBZGAKWSA-N Gly-Glu-Gln Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O HFXJIZNEXNIZIJ-BQBZGAKWSA-N 0.000 description 1
- XTQFHTHIAKKCTM-YFKPBYRVSA-N Gly-Glu-Gly Chemical compound NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O XTQFHTHIAKKCTM-YFKPBYRVSA-N 0.000 description 1
- QPTNELDXWKRIFX-YFKPBYRVSA-N Gly-Gly-Gln Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CCC(N)=O QPTNELDXWKRIFX-YFKPBYRVSA-N 0.000 description 1
- KAJAOGBVWCYGHZ-JTQLQIEISA-N Gly-Gly-Phe Chemical compound [NH3+]CC(=O)NCC(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 KAJAOGBVWCYGHZ-JTQLQIEISA-N 0.000 description 1
- FXLVSYVJDPCIHH-STQMWFEESA-N Gly-Phe-Arg Chemical compound [H]NCC(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FXLVSYVJDPCIHH-STQMWFEESA-N 0.000 description 1
- YLEIWGJJBFBFHC-KBPBESRZSA-N Gly-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 YLEIWGJJBFBFHC-KBPBESRZSA-N 0.000 description 1
- FEUPVVCGQLNXNP-IRXDYDNUSA-N Gly-Phe-Phe Chemical compound C([C@H](NC(=O)CN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 FEUPVVCGQLNXNP-IRXDYDNUSA-N 0.000 description 1
- GGAPHLIUUTVYMX-QWRGUYRKSA-N Gly-Phe-Ser Chemical compound OC[C@@H](C([O-])=O)NC(=O)[C@@H](NC(=O)C[NH3+])CC1=CC=CC=C1 GGAPHLIUUTVYMX-QWRGUYRKSA-N 0.000 description 1
- JNGHLWWFPGIJER-STQMWFEESA-N Gly-Pro-Tyr Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 JNGHLWWFPGIJER-STQMWFEESA-N 0.000 description 1
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 1
- JSLVAHYTAJJEQH-QWRGUYRKSA-N Gly-Ser-Phe Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 JSLVAHYTAJJEQH-QWRGUYRKSA-N 0.000 description 1
- WCORRBXVISTKQL-WHFBIAKZSA-N Gly-Ser-Ser Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WCORRBXVISTKQL-WHFBIAKZSA-N 0.000 description 1
- FKESCSGWBPUTPN-FOHZUACHSA-N Gly-Thr-Asn Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O FKESCSGWBPUTPN-FOHZUACHSA-N 0.000 description 1
- RHRLHXQWHCNJKR-PMVVWTBXSA-N Gly-Thr-His Chemical compound NCC(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 RHRLHXQWHCNJKR-PMVVWTBXSA-N 0.000 description 1
- LLWQVJNHMYBLLK-CDMKHQONSA-N Gly-Thr-Phe Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O LLWQVJNHMYBLLK-CDMKHQONSA-N 0.000 description 1
- NWOSHVVPKDQKKT-RYUDHWBXSA-N Gly-Tyr-Gln Chemical compound [H]NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O NWOSHVVPKDQKKT-RYUDHWBXSA-N 0.000 description 1
- KOYUSMBPJOVSOO-XEGUGMAKSA-N Gly-Tyr-Ile Chemical compound [H]NCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O KOYUSMBPJOVSOO-XEGUGMAKSA-N 0.000 description 1
- GBYYQVBXFVDJPJ-WLTAIBSBSA-N Gly-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)CN)O GBYYQVBXFVDJPJ-WLTAIBSBSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- SVHKVHBPTOMLTO-DCAQKATOSA-N His-Arg-Asp Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O SVHKVHBPTOMLTO-DCAQKATOSA-N 0.000 description 1
- JBJNKUOMNZGQIM-PYJNHQTQSA-N His-Arg-Ile Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JBJNKUOMNZGQIM-PYJNHQTQSA-N 0.000 description 1
- WYWBYSPRCFADBM-GARJFASQSA-N His-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CC2=CN=CN2)N)C(=O)O WYWBYSPRCFADBM-GARJFASQSA-N 0.000 description 1
- LBCAQRFTWMMWRR-CIUDSAMLSA-N His-Cys-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CO)C(O)=O LBCAQRFTWMMWRR-CIUDSAMLSA-N 0.000 description 1
- LIEIYPBMQJLASB-SRVKXCTJSA-N His-Gln-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC1=CN=CN1 LIEIYPBMQJLASB-SRVKXCTJSA-N 0.000 description 1
- HVCRQRQPIIRNLY-IUCAKERBSA-N His-Gln-Gly Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)NCC(=O)O)N HVCRQRQPIIRNLY-IUCAKERBSA-N 0.000 description 1
- YTKOTXRIWQHSAZ-GUBZILKMSA-N His-Glu-Cys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N YTKOTXRIWQHSAZ-GUBZILKMSA-N 0.000 description 1
- FDQYIRHBVVUTJF-ZETCQYMHSA-N His-Gly-Gly Chemical compound [O-]C(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])CC1=CN=CN1 FDQYIRHBVVUTJF-ZETCQYMHSA-N 0.000 description 1
- JIUYRPFQJJRSJB-QWRGUYRKSA-N His-His-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)NCC(O)=O)C1=CN=CN1 JIUYRPFQJJRSJB-QWRGUYRKSA-N 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- XJFITURPHAKKAI-SRVKXCTJSA-N His-Pro-Gln Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C1=CN=CN1 XJFITURPHAKKAI-SRVKXCTJSA-N 0.000 description 1
- PZUZIHRPOVVHOT-KBPBESRZSA-N His-Tyr-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(O)=O)C1=CN=CN1 PZUZIHRPOVVHOT-KBPBESRZSA-N 0.000 description 1
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- TZCGZYWNIDZZMR-UHFFFAOYSA-N Ile-Arg-Ala Natural products CCC(C)C(N)C(=O)NC(C(=O)NC(C)C(O)=O)CCCN=C(N)N TZCGZYWNIDZZMR-UHFFFAOYSA-N 0.000 description 1
- ASCFJMSGKUIRDU-ZPFDUUQYSA-N Ile-Arg-Gln Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O ASCFJMSGKUIRDU-ZPFDUUQYSA-N 0.000 description 1
- QYZYJFXHXYUZMZ-UGYAYLCHSA-N Ile-Asn-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)N)C(=O)O)N QYZYJFXHXYUZMZ-UGYAYLCHSA-N 0.000 description 1
- SCHZQZPYHBWYEQ-PEFMBERDSA-N Ile-Asn-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N SCHZQZPYHBWYEQ-PEFMBERDSA-N 0.000 description 1
- IPYVXYDYLHVWHU-GMOBBJLQSA-N Ile-Asn-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCSC)C(=O)O)N IPYVXYDYLHVWHU-GMOBBJLQSA-N 0.000 description 1
- ZZHGKECPZXPXJF-PCBIJLKTSA-N Ile-Asn-Phe Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZZHGKECPZXPXJF-PCBIJLKTSA-N 0.000 description 1
- NCSIQAFSIPHVAN-IUKAMOBKSA-N Ile-Asn-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N NCSIQAFSIPHVAN-IUKAMOBKSA-N 0.000 description 1
- FHCNLXMTQJNJNH-KBIXCLLPSA-N Ile-Cys-Gln Chemical compound N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)O FHCNLXMTQJNJNH-KBIXCLLPSA-N 0.000 description 1
- ZDNORQNHCJUVOV-KBIXCLLPSA-N Ile-Gln-Ala Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(O)=O ZDNORQNHCJUVOV-KBIXCLLPSA-N 0.000 description 1
- GQKSJYINYYWPMR-NGZCFLSTSA-N Ile-Gly-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N1CCC[C@@H]1C(=O)O)N GQKSJYINYYWPMR-NGZCFLSTSA-N 0.000 description 1
- FZWVCYCYWCLQDH-NHCYSSNCSA-N Ile-Leu-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)O)N FZWVCYCYWCLQDH-NHCYSSNCSA-N 0.000 description 1
- NZGTYCMLUGYMCV-XUXIUFHCSA-N Ile-Lys-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N NZGTYCMLUGYMCV-XUXIUFHCSA-N 0.000 description 1
- VOCZPDONPURUHV-QEWYBTABSA-N Ile-Phe-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N VOCZPDONPURUHV-QEWYBTABSA-N 0.000 description 1
- CAHCWMVNBZJVAW-NAKRPEOUSA-N Ile-Pro-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)O)N CAHCWMVNBZJVAW-NAKRPEOUSA-N 0.000 description 1
- JHNJNTMTZHEDLJ-NAKRPEOUSA-N Ile-Ser-Arg Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O JHNJNTMTZHEDLJ-NAKRPEOUSA-N 0.000 description 1
- JZNVOBUNTWNZPW-GHCJXIJMSA-N Ile-Ser-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(=O)O)C(=O)O)N JZNVOBUNTWNZPW-GHCJXIJMSA-N 0.000 description 1
- WCNWGAUZWWSYDG-SVSWQMSJSA-N Ile-Thr-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)O)N WCNWGAUZWWSYDG-SVSWQMSJSA-N 0.000 description 1
- QHUREMVLLMNUAX-OSUNSFLBSA-N Ile-Thr-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)O)N QHUREMVLLMNUAX-OSUNSFLBSA-N 0.000 description 1
- BCISUQVFDGYZBO-QSFUFRPTSA-N Ile-Val-Asp Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(O)=O BCISUQVFDGYZBO-QSFUFRPTSA-N 0.000 description 1
- KXUKTDGKLAOCQK-LSJOCFKGSA-N Ile-Val-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O KXUKTDGKLAOCQK-LSJOCFKGSA-N 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 241000764238 Isis Species 0.000 description 1
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- QWCKQJZIFLGMSD-VKHMYHEASA-N L-alpha-aminobutyric acid Chemical compound CC[C@H](N)C(O)=O QWCKQJZIFLGMSD-VKHMYHEASA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- HKXLAGBDJVHRQG-YFKPBYRVSA-N L-lysinamide Chemical group NCCCC[C@H](N)C(N)=O HKXLAGBDJVHRQG-YFKPBYRVSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- LJHGALIOHLRRQN-DCAQKATOSA-N Leu-Ala-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LJHGALIOHLRRQN-DCAQKATOSA-N 0.000 description 1
- GRZSCTXVCDUIPO-SRVKXCTJSA-N Leu-Arg-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O GRZSCTXVCDUIPO-SRVKXCTJSA-N 0.000 description 1
- KSZCCRIGNVSHFH-UWVGGRQHSA-N Leu-Arg-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O KSZCCRIGNVSHFH-UWVGGRQHSA-N 0.000 description 1
- UILIPCLTHRPCRB-XUXIUFHCSA-N Leu-Arg-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)N UILIPCLTHRPCRB-XUXIUFHCSA-N 0.000 description 1
- YKNBJXOJTURHCU-DCAQKATOSA-N Leu-Asp-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YKNBJXOJTURHCU-DCAQKATOSA-N 0.000 description 1
- KTFHTMHHKXUYPW-ZPFDUUQYSA-N Leu-Asp-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O KTFHTMHHKXUYPW-ZPFDUUQYSA-N 0.000 description 1
- MMEDVBWCMGRKKC-GARJFASQSA-N Leu-Asp-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N MMEDVBWCMGRKKC-GARJFASQSA-N 0.000 description 1
- IIKJNQWOQIWWMR-CIUDSAMLSA-N Leu-Cys-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(C)C)N IIKJNQWOQIWWMR-CIUDSAMLSA-N 0.000 description 1
- NFHJQETXTSDZSI-DCAQKATOSA-N Leu-Cys-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O NFHJQETXTSDZSI-DCAQKATOSA-N 0.000 description 1
- HUEBCHPSXSQUGN-GARJFASQSA-N Leu-Cys-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N1CCC[C@@H]1C(=O)O)N HUEBCHPSXSQUGN-GARJFASQSA-N 0.000 description 1
- KAFOIVJDVSZUMD-DCAQKATOSA-N Leu-Gln-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O KAFOIVJDVSZUMD-DCAQKATOSA-N 0.000 description 1
- KAFOIVJDVSZUMD-UHFFFAOYSA-N Leu-Gln-Gln Natural products CC(C)CC(N)C(=O)NC(CCC(N)=O)C(=O)NC(CCC(N)=O)C(O)=O KAFOIVJDVSZUMD-UHFFFAOYSA-N 0.000 description 1
- DPWGZWUMUUJQDT-IUCAKERBSA-N Leu-Gln-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O DPWGZWUMUUJQDT-IUCAKERBSA-N 0.000 description 1
- PDQDCFBVYXEFSD-SRVKXCTJSA-N Leu-Leu-Asp Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O PDQDCFBVYXEFSD-SRVKXCTJSA-N 0.000 description 1
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 1
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 1
- FOBUGKUBUJOWAD-IHPCNDPISA-N Leu-Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 FOBUGKUBUJOWAD-IHPCNDPISA-N 0.000 description 1
- UCBPDSYUVAAHCD-UWVGGRQHSA-N Leu-Pro-Gly Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UCBPDSYUVAAHCD-UWVGGRQHSA-N 0.000 description 1
- CHJKEDSZNSONPS-DCAQKATOSA-N Leu-Pro-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O CHJKEDSZNSONPS-DCAQKATOSA-N 0.000 description 1
- LJBVRCDPWOJOEK-PPCPHDFISA-N Leu-Thr-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LJBVRCDPWOJOEK-PPCPHDFISA-N 0.000 description 1
- AIQWYVFNBNNOLU-RHYQMDGZSA-N Leu-Thr-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O AIQWYVFNBNNOLU-RHYQMDGZSA-N 0.000 description 1
- UCRJTSIIAYHOHE-ULQDDVLXSA-N Leu-Tyr-Arg Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N UCRJTSIIAYHOHE-ULQDDVLXSA-N 0.000 description 1
- YQFZRHYZLARWDY-IHRRRGAJSA-N Leu-Val-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN YQFZRHYZLARWDY-IHRRRGAJSA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- RVOMPSJXSRPFJT-DCAQKATOSA-N Lys-Ala-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O RVOMPSJXSRPFJT-DCAQKATOSA-N 0.000 description 1
- QUYCUALODHJQLK-CIUDSAMLSA-N Lys-Asp-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O QUYCUALODHJQLK-CIUDSAMLSA-N 0.000 description 1
- GJJQCBVRWDGLMQ-GUBZILKMSA-N Lys-Glu-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O GJJQCBVRWDGLMQ-GUBZILKMSA-N 0.000 description 1
- ISHNZELVUVPCHY-ZETCQYMHSA-N Lys-Gly-Gly Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O ISHNZELVUVPCHY-ZETCQYMHSA-N 0.000 description 1
- JZMGVXLDOQOKAH-UWVGGRQHSA-N Lys-Gly-Met Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCSC)C(O)=O JZMGVXLDOQOKAH-UWVGGRQHSA-N 0.000 description 1
- RFQATBGBLDAKGI-VHSXEESVSA-N Lys-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CCCCN)N)C(=O)O RFQATBGBLDAKGI-VHSXEESVSA-N 0.000 description 1
- MUXNCRWTWBMNHX-SRVKXCTJSA-N Lys-Leu-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O MUXNCRWTWBMNHX-SRVKXCTJSA-N 0.000 description 1
- LUAJJLPHUXPQLH-KKUMJFAQSA-N Lys-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCCN)N LUAJJLPHUXPQLH-KKUMJFAQSA-N 0.000 description 1
- AFLBTVGQCQLOFJ-AVGNSLFASA-N Lys-Pro-Arg Chemical compound NCCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCN=C(N)N)C(O)=O AFLBTVGQCQLOFJ-AVGNSLFASA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- WXHHTBVYQOSYSL-FXQIFTODSA-N Met-Ala-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O WXHHTBVYQOSYSL-FXQIFTODSA-N 0.000 description 1
- HUKLXYYPZWPXCC-KZVJFYERSA-N Met-Ala-Thr Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O HUKLXYYPZWPXCC-KZVJFYERSA-N 0.000 description 1
- IIPHCNKHEZYSNE-DCAQKATOSA-N Met-Arg-Gln Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O IIPHCNKHEZYSNE-DCAQKATOSA-N 0.000 description 1
- DSWOTZCVCBEPOU-IUCAKERBSA-N Met-Arg-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CCCNC(N)=N DSWOTZCVCBEPOU-IUCAKERBSA-N 0.000 description 1
- GODBLDDYHFTUAH-CIUDSAMLSA-N Met-Asp-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCC(O)=O GODBLDDYHFTUAH-CIUDSAMLSA-N 0.000 description 1
- FVKRQMQQFGBXHV-QXEWZRGKSA-N Met-Asp-Val Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O FVKRQMQQFGBXHV-QXEWZRGKSA-N 0.000 description 1
- JUXONJROIXKHEV-GUBZILKMSA-N Met-Cys-Arg Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CCCNC(N)=N JUXONJROIXKHEV-GUBZILKMSA-N 0.000 description 1
- WVTYEEPGEUSFGQ-LPEHRKFASA-N Met-Cys-Pro Chemical compound CSCC[C@@H](C(=O)N[C@@H](CS)C(=O)N1CCC[C@@H]1C(=O)O)N WVTYEEPGEUSFGQ-LPEHRKFASA-N 0.000 description 1
- YKWHHKDMBZBMLG-GUBZILKMSA-N Met-Cys-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCSC)N YKWHHKDMBZBMLG-GUBZILKMSA-N 0.000 description 1
- IUYCGMNKIZDRQI-BQBZGAKWSA-N Met-Gly-Ala Chemical compound CSCC[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O IUYCGMNKIZDRQI-BQBZGAKWSA-N 0.000 description 1
- AWGBEIYZPAXXSX-RWMBFGLXSA-N Met-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCSC)N AWGBEIYZPAXXSX-RWMBFGLXSA-N 0.000 description 1
- USBFEVBHEQBWDD-AVGNSLFASA-N Met-Leu-Val Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O USBFEVBHEQBWDD-AVGNSLFASA-N 0.000 description 1
- VSJAPSMRFYUOKS-IUCAKERBSA-N Met-Pro-Gly Chemical compound CSCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O VSJAPSMRFYUOKS-IUCAKERBSA-N 0.000 description 1
- SMVTWPOATVIXTN-NAKRPEOUSA-N Met-Ser-Ile Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O SMVTWPOATVIXTN-NAKRPEOUSA-N 0.000 description 1
- SOAYQFDWEIWPPR-IHRRRGAJSA-N Met-Ser-Tyr Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O SOAYQFDWEIWPPR-IHRRRGAJSA-N 0.000 description 1
- PQNASZJZHFPQLE-UHFFFAOYSA-N N(6)-methyllysine Chemical compound CNCCCCC(N)C(O)=O PQNASZJZHFPQLE-UHFFFAOYSA-N 0.000 description 1
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 description 1
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- 102000002423 Octamer Transcription Factor-6 Human genes 0.000 description 1
- 108010068113 Octamer Transcription Factor-6 Proteins 0.000 description 1
- 101001028244 Onchocerca volvulus Fatty-acid and retinol-binding protein 1 Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 1
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 1
- YMORXCKTSSGYIG-IHRRRGAJSA-N Phe-Arg-Cys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N YMORXCKTSSGYIG-IHRRRGAJSA-N 0.000 description 1
- WGXOKDLDIWSOCV-MELADBBJSA-N Phe-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O WGXOKDLDIWSOCV-MELADBBJSA-N 0.000 description 1
- RGZYXNFHYRFNNS-MXAVVETBSA-N Phe-Ile-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N RGZYXNFHYRFNNS-MXAVVETBSA-N 0.000 description 1
- WKLMCMXFMQEKCX-SLFFLAALSA-N Phe-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CC3=CC=CC=C3)N)C(=O)O WKLMCMXFMQEKCX-SLFFLAALSA-N 0.000 description 1
- BONHGTUEEPIMPM-AVGNSLFASA-N Phe-Ser-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O BONHGTUEEPIMPM-AVGNSLFASA-N 0.000 description 1
- GLJZDMZJHFXJQG-BZSNNMDCSA-N Phe-Ser-Phe Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O GLJZDMZJHFXJQG-BZSNNMDCSA-N 0.000 description 1
- FGWUALWGCZJQDJ-URLPEUOOSA-N Phe-Thr-Ile Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O FGWUALWGCZJQDJ-URLPEUOOSA-N 0.000 description 1
- KLYYKKGCPOGDPE-OEAJRASXSA-N Phe-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O KLYYKKGCPOGDPE-OEAJRASXSA-N 0.000 description 1
- CVAUVSOFHJKCHN-BZSNNMDCSA-N Phe-Tyr-Cys Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CS)C(O)=O)C1=CC=CC=C1 CVAUVSOFHJKCHN-BZSNNMDCSA-N 0.000 description 1
- XALFIVXGQUEGKV-JSGCOSHPSA-N Phe-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 XALFIVXGQUEGKV-JSGCOSHPSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- DZZCICYRSZASNF-FXQIFTODSA-N Pro-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 DZZCICYRSZASNF-FXQIFTODSA-N 0.000 description 1
- IHCXPSYCHXFXKT-DCAQKATOSA-N Pro-Arg-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O IHCXPSYCHXFXKT-DCAQKATOSA-N 0.000 description 1
- VCYJKOLZYPYGJV-AVGNSLFASA-N Pro-Arg-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O VCYJKOLZYPYGJV-AVGNSLFASA-N 0.000 description 1
- SGCZFWSQERRKBD-BQBZGAKWSA-N Pro-Asp-Gly Chemical compound OC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1 SGCZFWSQERRKBD-BQBZGAKWSA-N 0.000 description 1
- KIGGUSRFHJCIEJ-DCAQKATOSA-N Pro-Asp-His Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O KIGGUSRFHJCIEJ-DCAQKATOSA-N 0.000 description 1
- ZCXQTRXYZOSGJR-FXQIFTODSA-N Pro-Asp-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O ZCXQTRXYZOSGJR-FXQIFTODSA-N 0.000 description 1
- LSIWVWRUTKPXDS-DCAQKATOSA-N Pro-Gln-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O LSIWVWRUTKPXDS-DCAQKATOSA-N 0.000 description 1
- PZSCUPVOJGKHEP-CIUDSAMLSA-N Pro-Gln-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O PZSCUPVOJGKHEP-CIUDSAMLSA-N 0.000 description 1
- ZPPVJIJMIKTERM-YUMQZZPRSA-N Pro-Gln-Gly Chemical compound OC(=O)CNC(=O)[C@H](CCC(=O)N)NC(=O)[C@@H]1CCCN1 ZPPVJIJMIKTERM-YUMQZZPRSA-N 0.000 description 1
- PTLOFJZJADCNCD-DCAQKATOSA-N Pro-Glu-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@@H]1CCCN1 PTLOFJZJADCNCD-DCAQKATOSA-N 0.000 description 1
- CLNJSLSHKJECME-BQBZGAKWSA-N Pro-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H]1CCCN1 CLNJSLSHKJECME-BQBZGAKWSA-N 0.000 description 1
- UUHXBJHVTVGSKM-BQBZGAKWSA-N Pro-Gly-Asn Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O UUHXBJHVTVGSKM-BQBZGAKWSA-N 0.000 description 1
- DXTOOBDIIAJZBJ-BQBZGAKWSA-N Pro-Gly-Ser Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CO)C(O)=O DXTOOBDIIAJZBJ-BQBZGAKWSA-N 0.000 description 1
- AFXCXDQNRXTSBD-FJXKBIBVSA-N Pro-Gly-Thr Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(O)=O AFXCXDQNRXTSBD-FJXKBIBVSA-N 0.000 description 1
- SOACYAXADBWDDT-CYDGBPFRSA-N Pro-Ile-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SOACYAXADBWDDT-CYDGBPFRSA-N 0.000 description 1
- NFLNBHLMLYALOO-DCAQKATOSA-N Pro-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@@H]1CCCN1 NFLNBHLMLYALOO-DCAQKATOSA-N 0.000 description 1
- FXGIMYRVJJEIIM-UWVGGRQHSA-N Pro-Leu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CCCN1 FXGIMYRVJJEIIM-UWVGGRQHSA-N 0.000 description 1
- BRJGUPWVFXKBQI-XUXIUFHCSA-N Pro-Leu-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BRJGUPWVFXKBQI-XUXIUFHCSA-N 0.000 description 1
- KDBHVPXBQADZKY-GUBZILKMSA-N Pro-Pro-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 KDBHVPXBQADZKY-GUBZILKMSA-N 0.000 description 1
- CGSOWZUPLOKYOR-AVGNSLFASA-N Pro-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 CGSOWZUPLOKYOR-AVGNSLFASA-N 0.000 description 1
- SBVPYBFMIGDIDX-SRVKXCTJSA-N Pro-Pro-Pro Chemical compound OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H]2NCCC2)CCC1 SBVPYBFMIGDIDX-SRVKXCTJSA-N 0.000 description 1
- GMJDSFYVTAMIBF-FXQIFTODSA-N Pro-Ser-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O GMJDSFYVTAMIBF-FXQIFTODSA-N 0.000 description 1
- SEZGGSHLMROBFX-CIUDSAMLSA-N Pro-Ser-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O SEZGGSHLMROBFX-CIUDSAMLSA-N 0.000 description 1
- MKGIILKDUGDRRO-FXQIFTODSA-N Pro-Ser-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H]1CCCN1 MKGIILKDUGDRRO-FXQIFTODSA-N 0.000 description 1
- DCHQYSOGURGJST-FJXKBIBVSA-N Pro-Thr-Gly Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O DCHQYSOGURGJST-FJXKBIBVSA-N 0.000 description 1
- BVTYXOFTHDXSNI-IHRRRGAJSA-N Pro-Tyr-Cys Chemical compound C([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H]1NCCC1)C1=CC=C(O)C=C1 BVTYXOFTHDXSNI-IHRRRGAJSA-N 0.000 description 1
- BXHRXLMCYSZSIY-STECZYCISA-N Pro-Tyr-Ile Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H]1CCCN1)C(O)=O BXHRXLMCYSZSIY-STECZYCISA-N 0.000 description 1
- VEUACYMXJKXALX-IHRRRGAJSA-N Pro-Tyr-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O VEUACYMXJKXALX-IHRRRGAJSA-N 0.000 description 1
- PGSWNLRYYONGPE-JYJNAYRXSA-N Pro-Val-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O PGSWNLRYYONGPE-JYJNAYRXSA-N 0.000 description 1
- 108010079005 RDV peptide Proteins 0.000 description 1
- 101000572983 Rattus norvegicus POU domain, class 3, transcription factor 1 Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- SSJMZMUVNKEENT-IMJSIDKUSA-N Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CO SSJMZMUVNKEENT-IMJSIDKUSA-N 0.000 description 1
- ZUGXSSFMTXKHJS-ZLUOBGJFSA-N Ser-Ala-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O ZUGXSSFMTXKHJS-ZLUOBGJFSA-N 0.000 description 1
- IYCBDVBJWDXQRR-FXQIFTODSA-N Ser-Ala-Met Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O IYCBDVBJWDXQRR-FXQIFTODSA-N 0.000 description 1
- BRKHVZNDAOMAHX-BIIVOSGPSA-N Ser-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N BRKHVZNDAOMAHX-BIIVOSGPSA-N 0.000 description 1
- YQHZVYJAGWMHES-ZLUOBGJFSA-N Ser-Ala-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YQHZVYJAGWMHES-ZLUOBGJFSA-N 0.000 description 1
- JPIDMRXXNMIVKY-VZFHVOOUSA-N Ser-Ala-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPIDMRXXNMIVKY-VZFHVOOUSA-N 0.000 description 1
- XVAUJOAYHWWNQF-ZLUOBGJFSA-N Ser-Asn-Ala Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(O)=O XVAUJOAYHWWNQF-ZLUOBGJFSA-N 0.000 description 1
- BCKYYTVFBXHPOG-ACZMJKKPSA-N Ser-Asn-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N BCKYYTVFBXHPOG-ACZMJKKPSA-N 0.000 description 1
- DKKGAAJTDKHWOD-BIIVOSGPSA-N Ser-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N)C(=O)O DKKGAAJTDKHWOD-BIIVOSGPSA-N 0.000 description 1
- TUYBIWUZWJUZDD-ACZMJKKPSA-N Ser-Cys-Gln Chemical compound OC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CCC(N)=O TUYBIWUZWJUZDD-ACZMJKKPSA-N 0.000 description 1
- UOLGINIHBRIECN-FXQIFTODSA-N Ser-Glu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UOLGINIHBRIECN-FXQIFTODSA-N 0.000 description 1
- UQFYNFTYDHUIMI-WHFBIAKZSA-N Ser-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)[C@@H](N)CO UQFYNFTYDHUIMI-WHFBIAKZSA-N 0.000 description 1
- XXXAXOWMBOKTRN-XPUUQOCRSA-N Ser-Gly-Val Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXXAXOWMBOKTRN-XPUUQOCRSA-N 0.000 description 1
- ZFVFHHZBCVNLGD-GUBZILKMSA-N Ser-His-Gln Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(N)=O)C(O)=O ZFVFHHZBCVNLGD-GUBZILKMSA-N 0.000 description 1
- IOVBCLGAJJXOHK-SRVKXCTJSA-N Ser-His-His Chemical compound C([C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CN=CN1 IOVBCLGAJJXOHK-SRVKXCTJSA-N 0.000 description 1
- YUJLIIRMIAGMCQ-CIUDSAMLSA-N Ser-Leu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O YUJLIIRMIAGMCQ-CIUDSAMLSA-N 0.000 description 1
- NQZFFLBPNDLTPO-DLOVCJGASA-N Ser-Phe-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CO)N NQZFFLBPNDLTPO-DLOVCJGASA-N 0.000 description 1
- DINQYZRMXGWWTG-GUBZILKMSA-N Ser-Pro-Pro Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DINQYZRMXGWWTG-GUBZILKMSA-N 0.000 description 1
- CKDXFSPMIDSMGV-GUBZILKMSA-N Ser-Pro-Val Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O CKDXFSPMIDSMGV-GUBZILKMSA-N 0.000 description 1
- PPCZVWHJWJFTFN-ZLUOBGJFSA-N Ser-Ser-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O PPCZVWHJWJFTFN-ZLUOBGJFSA-N 0.000 description 1
- VVKVHAOOUGNDPJ-SRVKXCTJSA-N Ser-Tyr-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O VVKVHAOOUGNDPJ-SRVKXCTJSA-N 0.000 description 1
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 1
- ANOQEBQWIAYIMV-AEJSXWLSSA-N Ser-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N ANOQEBQWIAYIMV-AEJSXWLSSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- WFWLQNSHRPWKFK-UHFFFAOYSA-N Tegafur Chemical group O=C1NC(=O)C(F)=CN1C1OCCC1 WFWLQNSHRPWKFK-UHFFFAOYSA-N 0.000 description 1
- UNURFMVMXLENAZ-KJEVXHAQSA-N Thr-Arg-Tyr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O UNURFMVMXLENAZ-KJEVXHAQSA-N 0.000 description 1
- ODSAPYVQSLDRSR-LKXGYXEUSA-N Thr-Cys-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(O)=O ODSAPYVQSLDRSR-LKXGYXEUSA-N 0.000 description 1
- UTCFSBBXPWKLTG-XKBZYTNZSA-N Thr-Cys-Gln Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N)O UTCFSBBXPWKLTG-XKBZYTNZSA-N 0.000 description 1
- GARULAKWZGFIKC-RWRJDSDZSA-N Thr-Gln-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O GARULAKWZGFIKC-RWRJDSDZSA-N 0.000 description 1
- MSIYNSBKKVMGFO-BHNWBGBOSA-N Thr-Gly-Pro Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)N1CCC[C@@H]1C(=O)O)N)O MSIYNSBKKVMGFO-BHNWBGBOSA-N 0.000 description 1
- IHAPJUHCZXBPHR-WZLNRYEVSA-N Thr-Ile-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)NC(=O)[C@H]([C@@H](C)O)N IHAPJUHCZXBPHR-WZLNRYEVSA-N 0.000 description 1
- WRQLCVIALDUQEQ-UNQGMJICSA-N Thr-Phe-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WRQLCVIALDUQEQ-UNQGMJICSA-N 0.000 description 1
- XKWABWFMQXMUMT-HJGDQZAQSA-N Thr-Pro-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O XKWABWFMQXMUMT-HJGDQZAQSA-N 0.000 description 1
- MXDOAJQRJBMGMO-FJXKBIBVSA-N Thr-Pro-Gly Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O MXDOAJQRJBMGMO-FJXKBIBVSA-N 0.000 description 1
- VTMGKRABARCZAX-OSUNSFLBSA-N Thr-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)[C@@H](C)O VTMGKRABARCZAX-OSUNSFLBSA-N 0.000 description 1
- MROIJTGJGIDEEJ-RCWTZXSCSA-N Thr-Pro-Pro Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 MROIJTGJGIDEEJ-RCWTZXSCSA-N 0.000 description 1
- WPSKTVVMQCXPRO-BWBBJGPYSA-N Thr-Ser-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WPSKTVVMQCXPRO-BWBBJGPYSA-N 0.000 description 1
- IEZVHOULSUULHD-XGEHTFHBSA-N Thr-Ser-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O IEZVHOULSUULHD-XGEHTFHBSA-N 0.000 description 1
- AAZOYLQUEQRUMZ-GSSVUCPTSA-N Thr-Thr-Asn Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(N)=O AAZOYLQUEQRUMZ-GSSVUCPTSA-N 0.000 description 1
- MNYNCKZAEIAONY-XGEHTFHBSA-N Thr-Val-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O MNYNCKZAEIAONY-XGEHTFHBSA-N 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- UKINEYBQXPMOJO-UBHSHLNASA-N Trp-Asn-Ser Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N UKINEYBQXPMOJO-UBHSHLNASA-N 0.000 description 1
- ZCPCXVJOMUPIDD-IHPCNDPISA-N Trp-Asp-Phe Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=CC=C1 ZCPCXVJOMUPIDD-IHPCNDPISA-N 0.000 description 1
- XGFOXYJQBRTJPO-PJODQICGSA-N Trp-Pro-Ala Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O XGFOXYJQBRTJPO-PJODQICGSA-N 0.000 description 1
- GEGYPBOPIGNZIF-CWRNSKLLSA-N Trp-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N)C(=O)O GEGYPBOPIGNZIF-CWRNSKLLSA-N 0.000 description 1
- GFZQWWDXJVGEMW-ULQDDVLXSA-N Tyr-Arg-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)O)N)O GFZQWWDXJVGEMW-ULQDDVLXSA-N 0.000 description 1
- DKKHULUSOSWGHS-UWJYBYFXSA-N Tyr-Asn-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC1=CC=C(C=C1)O)N DKKHULUSOSWGHS-UWJYBYFXSA-N 0.000 description 1
- BEIGSKUPTIFYRZ-SRVKXCTJSA-N Tyr-Asp-Asp Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N)O BEIGSKUPTIFYRZ-SRVKXCTJSA-N 0.000 description 1
- KEHKBBUYZWAMHL-DZKIICNBSA-N Tyr-Gln-Val Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O KEHKBBUYZWAMHL-DZKIICNBSA-N 0.000 description 1
- LHTGRUZSZOIAKM-SOUVJXGZSA-N Tyr-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)N)C(=O)O LHTGRUZSZOIAKM-SOUVJXGZSA-N 0.000 description 1
- AZGZDDNKFFUDEH-QWRGUYRKSA-N Tyr-Gly-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AZGZDDNKFFUDEH-QWRGUYRKSA-N 0.000 description 1
- MVYRJYISVJWKSX-KBPBESRZSA-N Tyr-His-Gly Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)NCC(=O)O)N)O MVYRJYISVJWKSX-KBPBESRZSA-N 0.000 description 1
- HVPPEXXUDXAPOM-MGHWNKPDSA-N Tyr-Ile-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 HVPPEXXUDXAPOM-MGHWNKPDSA-N 0.000 description 1
- QSFJHIRIHOJRKS-ULQDDVLXSA-N Tyr-Leu-Arg Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O QSFJHIRIHOJRKS-ULQDDVLXSA-N 0.000 description 1
- CNNVVEPJTFOGHI-ACRUOGEOSA-N Tyr-Lys-Tyr Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CNNVVEPJTFOGHI-ACRUOGEOSA-N 0.000 description 1
- AVFGBGGRZOKSFS-KJEVXHAQSA-N Tyr-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC1=CC=C(C=C1)O)N)O AVFGBGGRZOKSFS-KJEVXHAQSA-N 0.000 description 1
- UPODKYBYUBTWSV-BZSNNMDCSA-N Tyr-Phe-Cys Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CS)C(O)=O)C1=CC=C(O)C=C1 UPODKYBYUBTWSV-BZSNNMDCSA-N 0.000 description 1
- SZEIFUXUTBBQFQ-STQMWFEESA-N Tyr-Pro-Gly Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O SZEIFUXUTBBQFQ-STQMWFEESA-N 0.000 description 1
- XGZBEGGGAUQBMB-KJEVXHAQSA-N Tyr-Pro-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CC2=CC=C(C=C2)O)N)O XGZBEGGGAUQBMB-KJEVXHAQSA-N 0.000 description 1
- LUMQYLVYUIRHHU-YJRXYDGGSA-N Tyr-Ser-Thr Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LUMQYLVYUIRHHU-YJRXYDGGSA-N 0.000 description 1
- QFHRUCJIRVILCK-YJRXYDGGSA-N Tyr-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N)O QFHRUCJIRVILCK-YJRXYDGGSA-N 0.000 description 1
- LVFZXRQQQDTBQH-IRIUXVKKSA-N Tyr-Thr-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O LVFZXRQQQDTBQH-IRIUXVKKSA-N 0.000 description 1
- KRXFXDCNKLANCP-CXTHYWKRSA-N Tyr-Tyr-Ile Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 KRXFXDCNKLANCP-CXTHYWKRSA-N 0.000 description 1
- RVGVIWNHABGIFH-IHRRRGAJSA-N Tyr-Val-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O RVGVIWNHABGIFH-IHRRRGAJSA-N 0.000 description 1
- ASQFIHTXXMFENG-XPUUQOCRSA-N Val-Ala-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O ASQFIHTXXMFENG-XPUUQOCRSA-N 0.000 description 1
- VMRFIKXKOFNMHW-GUBZILKMSA-N Val-Arg-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CO)C(=O)O)N VMRFIKXKOFNMHW-GUBZILKMSA-N 0.000 description 1
- GXAZTLJYINLMJL-LAEOZQHASA-N Val-Asn-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N GXAZTLJYINLMJL-LAEOZQHASA-N 0.000 description 1
- ZMDCGGKHRKNWKD-LAEOZQHASA-N Val-Asn-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N ZMDCGGKHRKNWKD-LAEOZQHASA-N 0.000 description 1
- PVPAOIGJYHVWBT-KKHAAJSZSA-N Val-Asn-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](C(C)C)N)O PVPAOIGJYHVWBT-KKHAAJSZSA-N 0.000 description 1
- NYTKXWLZSNRILS-IFFSRLJSSA-N Val-Gln-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)N)O NYTKXWLZSNRILS-IFFSRLJSSA-N 0.000 description 1
- XXROXFHCMVXETG-UWVGGRQHSA-N Val-Gly-Val Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXROXFHCMVXETG-UWVGGRQHSA-N 0.000 description 1
- OPGWZDIYEYJVRX-AVGNSLFASA-N Val-His-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N OPGWZDIYEYJVRX-AVGNSLFASA-N 0.000 description 1
- KDKLLPMFFGYQJD-CYDGBPFRSA-N Val-Ile-Arg Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](C(C)C)N KDKLLPMFFGYQJD-CYDGBPFRSA-N 0.000 description 1
- BZMIYHIJVVJPCK-QSFUFRPTSA-N Val-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N BZMIYHIJVVJPCK-QSFUFRPTSA-N 0.000 description 1
- OTJMMKPMLUNTQT-AVGNSLFASA-N Val-Leu-Arg Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](C(C)C)N OTJMMKPMLUNTQT-AVGNSLFASA-N 0.000 description 1
- AGXGCFSECFQMKB-NHCYSSNCSA-N Val-Leu-Asp Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N AGXGCFSECFQMKB-NHCYSSNCSA-N 0.000 description 1
- QPPZEDOTPZOSEC-RCWTZXSCSA-N Val-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](C(C)C)N)O QPPZEDOTPZOSEC-RCWTZXSCSA-N 0.000 description 1
- UZFNHAXYMICTBU-DZKIICNBSA-N Val-Phe-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N UZFNHAXYMICTBU-DZKIICNBSA-N 0.000 description 1
- DOFAQXCYFQKSHT-SRVKXCTJSA-N Val-Pro-Pro Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DOFAQXCYFQKSHT-SRVKXCTJSA-N 0.000 description 1
- DEGUERSKQBRZMZ-FXQIFTODSA-N Val-Ser-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DEGUERSKQBRZMZ-FXQIFTODSA-N 0.000 description 1
- UGFMVXRXULGLNO-XPUUQOCRSA-N Val-Ser-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O UGFMVXRXULGLNO-XPUUQOCRSA-N 0.000 description 1
- YQYFYUSYEDNLSD-YEPSODPASA-N Val-Thr-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O YQYFYUSYEDNLSD-YEPSODPASA-N 0.000 description 1
- WUFHZIRMAZZWRS-OSUNSFLBSA-N Val-Thr-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C(C)C)N WUFHZIRMAZZWRS-OSUNSFLBSA-N 0.000 description 1
- USXYVSTVPHELAF-RCWTZXSCSA-N Val-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](C(C)C)N)O USXYVSTVPHELAF-RCWTZXSCSA-N 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 150000007513 acids Chemical group 0.000 description 1
- 231100000354 acute hepatitis Toxicity 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 108010009111 arginyl-glycyl-glutamic acid Proteins 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 108010010430 asparagine-proline-alanine Proteins 0.000 description 1
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 1
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 108010023562 beta 2-Glycoprotein I Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- UORVGPXVDQYIDP-BJUDXGSMSA-N borane Chemical class [10BH3] UORVGPXVDQYIDP-BJUDXGSMSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 244000309457 enveloped RNA virus Species 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 108010018413 epidermal growth factor precursor Proteins 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960001447 fomivirsen Drugs 0.000 description 1
- XCWFZHPEARLXJI-UHFFFAOYSA-N fomivirsen Chemical compound C1C(N2C3=C(C(NC(N)=N3)=O)N=C2)OC(CO)C1OP(O)(=S)OCC1OC(N(C)C(=O)\N=C(\N)C=C)CC1OP(O)(=S)OCC1OC(N2C3=C(C(NC(N)=N3)=O)N=C2)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C(NC(=O)C(C)=C2)=O)CC1OP(O)(=S)OCC1OC(N2C3=C(C(NC(N)=N3)=O)N=C2)CC1OP(O)(=S)OCC1OC(N2C(N=C(N)C=C2)=O)CC1OP(O)(=S)OCC(C(C1)OP(S)(=O)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OCC2C(CC(O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OCC2C(CC(O2)N2C3=C(C(NC(N)=N3)=O)N=C2)O)OC1N1C=C(C)C(=O)NC1=O XCWFZHPEARLXJI-UHFFFAOYSA-N 0.000 description 1
- 238000003198 gene knock in Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 108010042598 glutamyl-aspartyl-glycine Proteins 0.000 description 1
- 108010040856 glutamyl-cysteinyl-alanine Proteins 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 102000035122 glycosylated proteins Human genes 0.000 description 1
- 108091005608 glycosylated proteins Proteins 0.000 description 1
- 108010075431 glycyl-alanyl-phenylalanine Proteins 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010065713 glycyl-glycyl-tyrosyl-arginine Proteins 0.000 description 1
- 108010079413 glycyl-prolyl-glutamic acid Proteins 0.000 description 1
- 108010074027 glycyl-seryl-phenylalanine Proteins 0.000 description 1
- 108010010147 glycylglutamine Proteins 0.000 description 1
- 108010050848 glycylleucine Proteins 0.000 description 1
- 108010015792 glycyllysine Proteins 0.000 description 1
- 108010081551 glycylphenylalanine Proteins 0.000 description 1
- 239000011544 gradient gel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000010005 growth-factor like effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- SPSXSWRZQFPVTJ-ZQQKUFEYSA-N hepatitis b vaccine Chemical compound C([C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCSC)C(=O)N[C@@H](CC1N=CN=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)OC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@@H](N)CCCNC(N)=N)C1=CC=CC=C1 SPSXSWRZQFPVTJ-ZQQKUFEYSA-N 0.000 description 1
- 229940124736 hepatitis-B vaccine Drugs 0.000 description 1
- 108010045383 histidyl-glycyl-glutamic acid Proteins 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- RGXCTRIQQODGIZ-UHFFFAOYSA-O isodesmosine Chemical compound OC(=O)C(N)CCCC[N+]1=CC(CCC(N)C(O)=O)=CC(CCC(N)C(O)=O)=C1CCCC(N)C(O)=O RGXCTRIQQODGIZ-UHFFFAOYSA-O 0.000 description 1
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 1
- 108010027338 isoleucylcysteine Proteins 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 108010051673 leucyl-glycyl-phenylalanine Proteins 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 108010012058 leucyltyrosine Proteins 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000005210 lymphoid organ Anatomy 0.000 description 1
- 108010064235 lysylglycine Proteins 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000001767 medulla oblongata Anatomy 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 108010016686 methionyl-alanyl-serine Proteins 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- 108010085203 methionylmethionine Proteins 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- USRGIUJOYOXOQJ-GBXIJSLDSA-N phosphothreonine Chemical compound OP(=O)(O)O[C@H](C)[C@H](N)C(O)=O USRGIUJOYOXOQJ-GBXIJSLDSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 108700042769 prolyl-leucyl-glycine Proteins 0.000 description 1
- 108010079317 prolyl-tyrosine Proteins 0.000 description 1
- 108010004914 prolylarginine Proteins 0.000 description 1
- 108010015796 prolylisoleucine Proteins 0.000 description 1
- 108010090894 prolylleucine Proteins 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 108010048818 seryl-histidine Proteins 0.000 description 1
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 108010005652 splenotritin Proteins 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 108010060175 trypsinogen activation peptide Proteins 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 108010017949 tyrosyl-glycyl-glycine Proteins 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 108010015385 valyl-prolyl-proline Proteins 0.000 description 1
- 230000007502 viral entry Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 108010000998 wheylin-2 peptide Proteins 0.000 description 1
- 238000007693 zone electrophoresis Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a group of genes, and the proteins encoded thereby, which are capable of interfering with Hepatitis B virus (HBV) infection and to methods for identifying, purifying, isolating and characterizing related genes and gene products.
- the present invention further relates to isolation of soluble forms of the cellular receptor(s) for HBV on hepatocytes from bodily fluids, including, but not limited to, urine, and to purification of these soluble form binding proteins by means including, but not limited to, affinity columns.
- the present invention further relates to the use of these genes and their translation products to establish experimental models for HBV infection, whether in cell culture or in animals.
- the present invention further relates to the use of these genes and their translation products for therapeutic purposes.
- the present invention further relates to the use of these genes and their translation products to screen for additional binding protein interactions.
- the present invention further relates to the use of these genes and their translation products to prepare specific detectors of these proteins, including, but not limited to, antibodies, phage-display libraries, specific PCR primers, lectins, DNA probes, RNA probes, and non-antibody proteins for diagnostic and therapeutic purposes.
- Hepatitis B virus is an enveloped RNA virus that infects human liver and replicates via reverse-transcription of the pregenomic RNA. Infected patients develop acute hepatitis, which is often self-limiting, but may develop into chronic hepatitis with high risk of liver cirrhosis and primary liver carcinoma in roughly 10% of all cases.
- the World Health Organization estimates that there will be 400 million carriers Worldwide in year 2000. Effective vaccines exist, but anti viral drugs with good and long term efficacy are not available. Little is known about how HBV infects liver cells and the HBV cellular receptor(s) remain unknown.
- HBV receptors Many proteins have been identified which bind to the viral envelope associated proteins, HBsAg, or related proteins, but none are considered genuine HBV receptors (reviewed in De et al., 1997 and in references cited therein). Some of these binding proteins are found in serum and some in hepatocytes. None of these molecules have been convincingly tied to infectivity, disqualifying them as genuine HBV receptors. These molecules are of three types, S binding proteins, preS2 binding proteins, and preS1 binding proteins. A brief summary of the characteristics of the three groups is provided herein.
- HBsAg containing only the S protein binds to a 34-kDa liver protein, which is identified as the phospholipid-binding protein endonexin II (also known as annexin V).
- Endonexin II has calcium channel activity and it thought to be located primarily, but not exclusively, intracellularly. The biological significance of this remains unclear, as the observed interaction may simply reflect the known ability of endonexin II to bind phospholipids, which are abundant in HBsAg lipoprotein. It was subsequently demonstrated that delipidated HBsAg had a drastically diminished capacity to bind endonexin II, leading to speculation that it might play a role in a postbinding membrane fusion event.
- Apolipo protein H a 46-kDa protein which binds HBsAg.
- This protein is a glycoprotein with four N-linked carbohydrate chains, which is present in the serum and is not an integral transmembrane protein of the hepatocyte. Its role in infection is uncertain.
- Apo H and HBsAg involve triglycerides and not HBV proteins.
- Apo H might play a role in delivery of the virus from the periphery to the liver.
- the preS2 binding proteins Some researchers presumed that HBV binds to liver cells via a polymerized form of human serum albumin (pHSA) because a correlation between high viremia and the presence of a so-called pHSA receptor was observed.
- the preS2-specific domain does possess a pHSA binding activity, however, only pHSA from human or chimpanzee serum binds to preS2.
- pHSA binds to liver cells, albeit in a non-species specific fashion.
- membranes from fresh human liver are able to bind natural HBs spheres or recombinant preS2 when they are pretreated with pHSA.
- the N-linked glycan at the amino end of the preS2 domain has also been suggested as a potential binding site for human hepatocytes on the preS2 domain. This suggestion stems from an unusual glycan structure composed of one mannose chain and two complex chains which is liver specific and able to bind directly to HepG2 cells. Selective removal of this preS2 glycan reduces the preS2 binding by 70%.
- preS1 binding proteins Many researchers suggest possible roles for preS1 binding molecules in viral entry, although no conclusive evidence that these proteins play a role in permissive infection is available.
- IgA immunoglobulin A
- Anti-idiotypic antibodies have been used to paratope anti-preS(21-47) antibodies, which may represent a mirror image of the binding site on the receptor and thus be able to react with the receptor. These antibodies reacted with a 35-kDa protein and with three other related components of 40-, 43-, and 50-kDa in HepG2 membrane extracts.
- the 35-kDa protein identified as the human liver glyceraldehyde-3-phosphate-dehydrogenase (GAPD) is a key enzyme for glycolysis, and the 50-kDa protein seems to contain intrachain disulfide bonds.
- GPD human liver glyceraldehyde-3-phosphate-dehydrogenase
- asialoglycoprotein receptor As the expression of the asialoglycoprotein receptor is exclusive to hepatocytes, but not species specific, the presence of HBV in extrahepatic tissue has been explained by the presence of possible asialoglycoprotein-related molecules in these non-hepatic cells.
- UP50 contains also RGD motif that is known to interact with fibronectin and therefore is speculated to be a component of the extracellular matrix. This protein is expressed widely in many tissues but shows highest level in aorta. Collectively, the data presented herein suggests that these proteins are binding proteins/ligands that may play a role in normal development in general and in HBV infection as cofactors and can therefore be used to modulate virus infection, tissue organization and cell fate and behavior.
- an isolated nucleic acid comprising (a) a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) a polynucleotide encoding a polypeptide being at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C.
- the polynucleotide encodes a polypeptide capable of specifically binding HBV particles.
- the polynucleotide encodes a polypeptide capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- polynucleotide encodes a polypeptide capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- polynucleotide is as set forth in SEQ ID NOs:1, 3, 5 or portions thereof.
- nucleic acid construct comprising the isolated nucleic acid described herein.
- a host cell comprising the isolated nucleic acid described herein.
- transgenic animal comprising the isolated nucleic acid described herein.
- an antisense molecule capable of base pairing under physiological conditions with a polynucleotide (a) at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoding a polypeptide being at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C.
- composition comprising, as an active ingredient, the antisense molecule described herein, and a pharmaceutically acceptable carrier.
- nucleic acid construct transcribable to produce the antisense molecule described herein.
- a host cell comprising the antisense molecule described herein.
- transgenic animal comprising the antisense molecule described herein.
- a recombinant protein comprising a polypeptide (a) at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoded by a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) encoded by a polynucleotide hybridizable with SEQ ID NOs:3, 5 or portions thereof at 68° C.
- polypeptide is as set fourth in SEQ ID NOs:2, 4, 6 or portions thereof.
- polypeptide is capable of specifically binding HBV particles.
- polypeptide is capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- polypeptide is capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- the recombinant protein is characterized by at least one of the following (a) at least one EGF like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- composition comprising, as an active ingredient, the recombinant protein described herein, and a pharmaceutically acceptable carrier.
- an antibody capable of specific interaction with the recombinant protein described herein.
- a phage display library comprising a plurality of phages each displaying a portion of the recombinant protein described herein.
- a phage displaying at least a portion of the recombinant protein described herein.
- a method of isolating a polypeptide with HBV binding activity from a biological fluid comprising the steps of (a) producing a purified HBV derived polypeptide; (b) binding the purified HBV derived polypeptide to a solid matrix to thereby obtain an affinity solid matrix; and (c) using the affinity solid matrix for affinity purification of the polypeptide with HBV binding activity from the biological fluid.
- the method further comprising the step of concentrating the biological fluid prior to step (c).
- the HBV derived polypeptide is a HBV preS1 peptide or a portion thereof.
- the HBV derived polypeptide is as set forth in SEQ ID NOs:8 or 9.
- the biological fluid is urine.
- the biological fluid is concentrated urine.
- a method of inhibiting HBV attachment to a hepatic cell comprising the step of exposing the cell to a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
- a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell comprising a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- a method of inhibiting HBV attachment to a hepatic cell comprising the step of loading the cell with an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
- a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell comprising an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- the purified HBV derived polypeptide is HBsAg preS1 protein or a portion thereof.
- the recombinant urine derived protein includes a polypeptide selected from the group consisting of (a) at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) being encoded by a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); and (c) being encoded by a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C.
- GCG Genetic Computer Group
- GCG Genetic Computer Group
- polypeptide is as set fourth in SEQ ID NOs:2, 4, 6 or portions thereof.
- polypeptide is capable of specifically binding HBV particles.
- polypeptide is capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- polypeptide is capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- the recombinant urine derived protein is characterized by at least one of the following (a) at least one EGF like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- the present invention successfully addresses the shortcomings of the presently known configurations by providing new horizons for combating HBV infections and opening new horizons in HBV research.
- FIG. 1 a is a diagrammatic representation of the structure of the HBsAg gene and the preS1 region used for the preparation of a recombinant protein. Also shown is the sequence (SEQ ID NO:9) and position of a synthetic peptide of 29 amino acids used in the examples hereinbelow.
- FIG. 1 b shows a His-preS1 recombinant protein expressed in E. coli BL21 cells, induced with IPTG (0.1 mM) soluble fraction, purified on Ninta-affinity column, run on a reducing SDS-PAGE (15%) gel and stained with coomassie brilliant blue.
- M molecular mass as determined by a low range molecular weight standard (BioRad).
- FIG. 1 c shows a gel filtration purification of a synthetic peptide composed of the preS1 amino acids 21-49 (SEQ ID NO:9) in which absorbance at OD280 is plotted as a function of fraction number.
- FIG. 2 demonstrates isolation of preS1 binding proteins from concentrated human urine conducted by 12% SDS-PAGE which was silver stained. Prior to loading on the gel, concentrated urine was loaded on a recombinant preS1 protein affinity column. After washing, bound proteins were eluted by low pH buffer containing: 0.2 M glycine pH 2.5, 50% PEG and 10% TWEEN20. Lanes E-1 to E-3 represent eluted fractions 1 to 3, respectively. Lane M represents a 10 kDa ladder marker. UP50 and UP43 are indicated by the left arrows.
- FIG. 3 is an SDS-PAGE silver stained gradient gel (5-20%) of UP-proteins enrichment by the synthetic peptide preS(21-47) column.
- Urine proteins remaining on the recombinant preS1 protein column were loaded on a second 21-47 synthetic peptide affinity column (pep) or on a preS1 recombinant affinity column (pre S1), as indicated.
- Majority of the UP50 and UP43 were retained on the column (fractions B) and barely seen in the follow-through (FT) fractions.
- UP50 was much more enriched than UP43.
- Molecular masses (kDa) are indicated on the left by arrows.
- FIG. 4 demonstrates, using an ELISA test, that UP43 binds HBV HBsAg particles.
- ELISA plates were coated with affinity-purified UP43 at decreasing dilutions for 1 hour and then blocked with 0.05% gelatin for 30 minutes.
- 0.5 ng/ml HBV HBsAg particles were added to the immobilized UP43 and incubated for 1 hour.
- the plate was then incubated with goat antibodies against HBsAg particles (Biotechnology General, Israel) diluted 1:2000) for 1 hour and for an additional hour with horse radish peroxidase labeled donkey anti goat antibodies (diluted 1:2500). All reactions were performed at 37° C.
- FIG. 5 shows an SDS-PAGE coomassie brilliant blue stained gel (12%) of UP43 either treated (+) or not treated ( ⁇ ) with N-glycanase over-night at 37° C. Molecular masses (kDa) are indicated on the left. Decreased size of UP43 after treatment demonstrates that it is a glycosylated protein.
- FIG. 6 shows that UP43 is identical to a protein known as S1-5. Sequences of three fragments of UP43 are identical to the published S1-5 clone (Databank accession No. AAA65590).
- FIG. 7 demonstrates UP50-GFP location within cells.
- Cos1 cells were transfected with a UP50-GFP plasmid (see Example 1 of the Examples section) and the transfected cells were visualized by confocal laser scanning microscopy.
- FIG. 8 shows the UP50 amino-acid sequence.
- UP50 was trypsin digested and 4 fragments were microsequenced (underlined regions). These sequences were used to clone the entire up50 cDNA, as is further detailed in the Examples section below.
- FIGS. 9 a and 9 b show the tissue distribution of up50 mRNA.
- the size and stringency of the dots ( 9 a ) are in correlation with the level of expression in the corresponding tissues.
- FIG. 10 is a comparison of the sequence of the extended UP protein family UPH1, UP50, and UP43 (SEQ ID NOs:6, 4 and 2 respectively).
- the sequence of UP43, UP50 and the homologous UPH1 are compared using Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3).
- FIG. 11 shows hydrophobicity plots of the three proteins UP50, UPH1, and UP43 as well as schematic representations of amino acid sequences indicating transmembrane domains, hydroxylation sites, signal peptide domains, cell attachment sequences, glycosylation sites, and EGF like domains.
- the present invention is of a group of genes, and the profteins encoded thereby, which are capable of interfering with Hepatitis B virus (HBV) infection and of methods for identifying, purifying, isolating and characterizing related genes and gene products.
- the present invention is further of a method for the isolation of soluble forms of the cellular receptor(s) for HBV on hepatocytes from bodily fluids, including, but not limited to, urine, and to purification of these soluble form binding proteins by means including, but not limited to, affinity columns.
- the present invention is further of the use of these genes and their translation products to establish experimental models for HBV infection, whether in cell culture or in animals.
- the present invention is further of the use of these genes and their translation products for therapeutic purposes.
- the present invention is further of the use of these genes and their translation products to screen for additional ligand/receptor interactions.
- the present invention is further of the use of these genes and their translation products to prepare specific detectors of these proteins, including, but not limited to, antibodies, phage-display libraries, specific PCR primers, lectins, DNA probes, RNA probes, and non-antibody proteins for diagnostic and therapeutic purposes.
- HBV derived polypeptides representing portions of the preS1 region of HBsAg
- one recombinant SEQ ID NO:8
- one synthetic SEQ ID NO:9
- affinity columns were used to affinity capture soluble proteins from concentrated human urine samples.
- the proteins were trypsin digested, proteolytic portions thereof microsequenced and their corresponding cDNAs isolated and sequenced.
- ELISA approach it was found that the proteins bind HBV particles.
- GFL fusion constructs it was found that the proteins are membrane associated proteins.
- glyconase it was found that the proteins are in fact glycoproteins.
- the proteins are characterized by disulfide bonds.
- sequence analysis programs it was found that (i) at least one of the proteins may be characterized by alternative initiation of translation; (ii) the proteins include several EGF repeats; (iii) some EGF repeats contain aspartic-acid and asparagine that undergo hydroxylation; (iv) all proteins have a transmembrane domain at the C-terminus, suggesting that they are membrane associated; (v) they also contain a signal-peptide at the N-terminus, suggesting that the N-terminus is positioned out of the cells.
- an isolated nucleic acid comprising (a) a polynucleotide at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) a polynucleotide encoding a polypeptide being at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous (identical+similar amino acids) with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG
- the above isolated nucleic acids thus include both complementary DNA (cDNA), genomic DNA and composite DNA, variants, natural mutants, induced mutants, alleles, and homologs from human and other species, including, for example, primates.
- cDNA complementary DNA
- genomic DNA genomic DNA
- composite DNA variants, natural mutants, induced mutants, alleles, and homologs from human and other species, including, for example, primates.
- complementary DNA includes sequences which originally result from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such sequences can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
- genomic DNA includes sequences which originally derive from a chromosome and reflect a contiguous portion of a chromosome.
- composite DNA includes sequences which are at least partially complementary and at least partially genomic.
- a composite sequence can include some exonal sequences required to encode the polypeptides described herein, as well as some intronic sequences interposing therebetween.
- the intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.
- this aspect of the present invention encompasses (i) polynucleotides as set forth in SEQ ID NOs:1, 3 and 5; (ii) fragments thereof; (iii) genomic sequences including same; (iv) sequences hybridizable therewith; (v) sequences homologous thereto; (vi) sequences encoding similar polypeptides with different codon usage; (vii) altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.
- the polynucleotide encodes a polypeptide capable of specifically binding HBV particles, to HBsAg preS1 protein or a portion thereof, e.g., SEQ ID NOs:8 or 9.
- HBV particles refers to HBV assembled coat proteins, which are produced by transforming a cell with a gene or genes encoding such proteins, such that the cell produces the coat proteins and the coat proteins are integrated in the cell membrane which is thereafter used to form the HBV particles.
- HBV particles For further details of the preparation of HBV particles the reader is referred to Shouval et al. (1994), which is incorporated herein by reference.
- nucleic acid construct such as an expression construct or an antisense construct.
- constructs are well known in the art, are commercially available and may include additional sequences, such as, for example, one or more promoter and enhancer sequences, a cloning site, one or more prokaryote or eukaryote marker genes with their associated promoters, one or more prokaryotic and/or eukaryotic origins of replication, a translation start site, a polyadenylation signal, and the like.
- the nucleic acid construct according to this aspect of the present invention further comprising a promoter for regulating the expression of the isolated nucleic acid in a sense or antisense orientation.
- promoters are known to be cis-acting sequence elements required for transcription as they serve to bind DNA dependent RNA polymerase which transcribes sequences present downstream thereof.
- down stream sequences can be in either one of two possible orientations to result in the transcription of sense RNA which is translatable by the ribozyme machinery or antisense RNA which typically does not contain translatable sequences, yet can duplex or triplex with endogenous sequences, either mRNA or chromosomal DNA and hamper gene expression, all as further detailed hereinunder.
- the isolated nucleic acid described herein is an essential element of the invention, it is modular and can be used in different contexts.
- the promoter of choice that is used in conjunction with this invention is of secondary importance, and will comprise any suitable promoter. It will be appreciated by one skilled in the art, however, that it is necessary to make sure that the transcription start site(s) will be located upstream of an open reading frame.
- the promoter that is selected comprises an element that is active in the particular host cells of interest. These elements may be selected from transcriptional regulators that activate the transcription of genes essential for the survival of these cells in conditions of stress or starvation, including the heat shock proteins.
- a construct according to the present invention preferably further includes an appropriate selectable marker.
- the construct further includes an origin of replication.
- the construct is a shuttle vector, which can propagate both in E. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible for propagation in cells, or integration in the genome, of an organism of choice.
- the construct according to this aspect of the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
- the nucleic acid construct according to this aspect of the present invention further includes a positive and a negative selection markers and may therefore be employed for selecting for homologous recombination events, including, but not limited to, homologous recombination employed in knock-in and knock-out procedures.
- a knock-out or knock-in constructs including both positive and negative selection genes for efficiently selecting transfected embryonic stem cells that underwent a homologous recombination event with the construct. Such cells can be introduced into developing embryos to generate chimeras, the offspring thereof can be tested for carrying the knock-out or knock-in constructs.
- Knock-out and/or knock-in constructs according to the present invention can be used to further investigate the functionality of the genes/proteins described herein. Such constructs can also be used in somatic and/or germ cells gene therapy. Additional detail can be found in Fukushige, S. and Ikeda, J. E.: Trapping of mammalian promoters by Cre-lox site-specific recombination. DNA Res 3 (1996) 73-80; Bedell, M. A., Jenkins, N. A. and Copeland, N. G.: Mouse models of human disease. Part I: Techniques and resources for genetic analysis in mice. Genes and Development 11 (1997) 1-11; Bermingham, J. J., Scherer, S.
- a host cell comprising the isolated nucleic acid described herein.
- a host cell can be either a prokaryote or a eukaryote cell.
- the nucleic acid can either be integrated into the cell's genome or be extrachromosomal.
- transgenic animal comprising the isolated nucleic acid described herein.
- Methods of generating transgenic animals are well known in the art and are therefore not further described herein.
- Such cells and animals can find utility in the propagation of HBV. It will be appreciated that so far culture propagation of HBV is impractical.
- the cells and animals described herein can, however, be employed for propagation of the virus, as a receptor therefore is expressed by such cells or animals.
- such cells and animals can be used to further study the involvement of the genes reported herein in HBV attachment.
- a pair of oligonucleotides each independently of at least 17, at least 18, at least 19, at least 20, at least 22, at least 25, at least 30 or at least 40 bases specifically hybridizable with the isolated nucleic acid described herein in an opposite orientation so as to direct exponential amplification of a portion thereof in a nucleic acid amplification reaction, such as a polymerase chain reaction.
- a nucleic acid amplification reaction such as a polymerase chain reaction.
- the polymerase chain reaction and other nucleic acid amplification reactions are well known in the art and require no further description herein.
- the pair of oligonucleotides according to this aspect of the present invention are preferably selected to have compatible melting temperatures (Tm), e.g., melting temperatures which differ by less than that 7° C., preferably less than 5° C., more preferably less than 4° C., most preferably less than 3° C., ideally between 3° C. and zero ° C. Consequently, according to yet an additional aspect of the present invention there is provided a nucleic acid amplification product obtained using the pair of primers described herein.
- Such a nucleic acid amplification product can be isolated by gel electrophoresis or any other size based separation technique. Alternatively, such a nucleic acid amplification product can be isolated by affinity separation, either stranded affinity or sequence affinity.
- affinity separation either stranded affinity or sequence affinity.
- such a product can be further genetically manipulated by restriction, ligation and the like, to serve any one of a plurality of applications.
- an antisense molecule capable of base pairing under physiological conditions with a polynucleotide (a) at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoding a polypeptide being at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty
- Such an antisense molecule can be a single stranded DNA, RNA, or polynucleotide analog of at least 10 bases, preferably between 10 and 15, more preferably between 50 and 20 bases, most preferably, at least 17, at least 18, at least 19, at least 20, at least 22, at least 25, at least 30 or at least 40 bases.
- nucleic acid construct transcribable to produce the antisense molecule described herein.
- Such a construct is further described hereinabove and can be used to generate a host cell or a transgenic animal comprising an antisense molecule as described herein.
- Such an antisense oligonucleotide is readily synthesizable using solid phase oligonucleotide synthesis.
- antisense or sense oligonucleotides or analogs that bind to the genomic DNA by strand displacement or the formation of a triple helix may prevent transcription.
- antisense oligonucleotides or analogs that bind target mRNA molecules lead to the enzymatic cleavage of the hybrid by intracellular RNase H.
- the oligonucleotides or oligonucleotide analogs provide a duplex hybrid recognized and destroyed by the RNase H enzyme. Alternatively, such hybrid formation may lead to interference with correct splicing.
- antisense oligonucleotides or analogs that bind target mRNA molecules prevent, by steric hindrance, binding of essential translation factors (ribosomes), to the target mRNA, a phenomenon known in the art as hybridization arrest, disabling the translation of such mRNAs.
- antisense sequences which as described hereinabove may arrest the expression of any endogenous and/or exogenous gene depending on their specific sequence, attracted much attention by scientists and pharmacologists who were devoted at developing the antisense approach into a new pharmacological tool.
- antisense oligonucleotides have been shown to arrest hematopoietic cell proliferation, growth, entry into the S phase of the cell cycle, reduced survival and prevent receptor mediated responses.
- the oligonucleotides or analogs must fulfill the following requirements (i) sufficient specificity in binding to the target sequence; (ii) solubility in water; (iii) stability against intra- and extracellular nucleases; (iv) capability of penetration through the cell membrane; and (v) when used to treat an organism, low toxicity.
- Unmodified oligonucleotides are typically impractical for use as antisense sequences since they have short in vivo half-lives, during which they are degraded rapidly by nucleases. Furthermore, they are difficult to prepare in more than milligram quantities. In addition, such oligonucleotides are poor cell membrane penetraters.
- Oligonucleotides can be modified either in the base, the sugar or the phosphate moiety. These modifications include, for example, the use of methylphosphonates, monothiophosphates, dithiophosphates, phosphoramidates, phosphate esters, bridged phosphorothioates, bridged phosphoramidates, bridged methylenephosphonates, dephospho internucleotide analogs with siloxane bridges, carbonate bridges, carboxymethyl ester bridges, carbonate bridges, carboxymethyl ester bridges, acetamide bridges, carbamate bridges, thioether bridges, sulfoxy bridges, sulfono bridges, various “plastic” DNAs, ⁇ -anomeric bridges and borane derivatives.
- International patent application WO 89/12060 discloses various building blocks for synthesizing oligonucleotide analogs, as well as oligonucleotide analogs formed by joining such building blocks in a defined sequence.
- the building blocks may be either “rigid” (i.e., containing a ring structure) or “flexible” (i.e., lacking a ring structure). In both cases, the building blocks contain a hydroxy group and a mercapto group, through which the building blocks are said to join to form oligonucleotide analogs.
- the linking moiety in the oligonucleotide analogs is selected from the group consisting of sulfide (—S—), sulfoxide (—SO—), and sulfone (—SO 2 —).
- antisense technology requires pairing of messenger RNA with an oligonucleotide to form a double helix that inhibits translation.
- the concept of antisense-mediated gene therapy was already introduced in 1978 for cancer therapy. This approach was based on certain genes that are crucial in cell division and growth of cancer cells. Synthetic fragments of genetic substance DNA can achieve this goal. Such molecules bind to the targeted gene molecules in RNA of tumor cells, thereby inhibiting the translation of the genes and resulting in dysfunctional growth of these cells. Other mechanisms has also been proposed. These strategies have been used, with some success in treatment of cancers, as well as other illnesses, including viral and other infectious diseases.
- Antisense oligonucleotides are typically synthesized in lengths of 13-30 nucleotides. The life span of oligonucleotide molecules in blood is rather short. Thus, they have to be chemically modified to prevent destruction by ubiquitous nucleases present in the body. Phosphorothioates are very widely used modification in antisense oligonucleotide ongoing clinical trials. A new generation of antisense molecules consist of hybrid antisense oligonucleotide with a central portion of synthetic DNA while four bases on each end have been modified with 2′O-methyl ribose to resemble RNA.
- RNA oligonucleotides may also be used for antisense inhibition as they form a stable RNA-RNA duplex with the target, suggesting efficient inhibition.
- RNA oligonucleotides are typically expressed inside the cells using vectors designed for this purpose. This approach is favored when attempting to target a mRNA that encodes an abundant and long-lived protein.
- Antisense therapeutics has the potential to treat many life-threatening diseases with a number of advantages over traditional drugs.
- Traditional drugs intervene after a disease-causing protein is formed.
- Antisense therapeutics block mRNA transcription/translation and intervene before a protein is formed, and since antisense therapeutics target only one specific mRNA, they should be more effective with fewer side effects than current protein-inhibiting therapy.
- a second option for disrupting gene expression at the level of transcription uses synthetic oligonucleotides capable of hybridizing with double stranded DNA. A triple helix is formed. Such oligonucleotides may prevent binding of transcription factors to the gene's promoter and therefore inhibit transcription. Alternatively, they may prevent duplex unwinding and, therefore, transcription of genes within the triple helical structure.
- a pharmaceutical composition comprising the antisense oligonucleotide described herein and a pharmaceutically acceptable carrier.
- the pharmaceutically acceptable carrier can be, for example, a liposome loaded with the antisense oligonucleotide.
- Formulations for topical administration may include, but are not limited to, lotions, ointments, gels, creams, suppositories, drops, liquids, sprays and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, sachets, capsules or tablets. Thickeners, diluents, flavorings, dispersing aids, emulsifiers or binders may be desirable.
- Formulations for parenteral administration may include, but are not limited to, sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
- a ribozyme comprising the antisense oligonucleotide described herein and a ribozyme sequence fused thereto.
- a ribozyme is readily synthesizable using solid phase oligonucleotide synthesis.
- Ribozymes are being increasingly used for the sequence-specific inhibition of gene expression by the cleavage of mRNAs encoding proteins of interest.
- the possibility of designing ribozymes to cleave any specific target RNA has rendered them valuable tools in both basic research and therapeutic applications.
- ribozymes In the therapeutics area, ribozymes have been exploited to target viral RNAs in infectious diseases, dominant oncogenes in cancers and specific somatic mutations in genetic disorders.
- Most notably, several ribozyme gene therapy protocols for HIV patients are already in Phase 1 trials. More recently, ribozymes have been used for transgenic animal research, gene target validation and pathway elucidation.
- Several ribozymes are in various stages of clinical trials.
- ANGIOZYME was the first chemically synthesized ribozyme to be studied in human clinical trials. ANGIOZYME specifically inhibits formation of the VEGF-r (Vascular Endothelial Growth Factor receptor), a key component in the angiogenesis pathway. Ribozyme Pharmaceuticals, Inc., as well as other firms have demonstrated the importance of anti-angiogenesis therapeutics in animal models.
- HEPTAZYME a ribozyme designed to selectively destroy Hepatitis C Virus (HCV) RNA, was found effective in decreasing Hepatitis C viral RNA in cell culture assays (Ribozyme Pharmaceuticals, Incorporated—WEB home page).
- a recombinant protein comprising a polypeptide (a) at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoded by a polynucleotide at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50,
- this aspect of the present invention encompasses (i) polypeptides as set forth in SEQ ID NOs:2, 4 or 6; (ii) fragments thereof; (iii) polypeptides homologous thereto; and (iv) altered polypeptides characterized by mutations, such as deletion, insertion or substitution of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.
- polypeptide described herein is preferably capable of specifically binding HBV particles and to HBsAg preS1 protein or a portion thereof.
- the recombinant protein according to the present invention is characterized by at least one of the following: (a) at least one EGF-like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- a pharmaceutical composition comprising, as an active ingredient, the recombinant protein described herein and a pharmaceutical acceptable carrier which is further described above.
- a recombinant protein when administered in vivo or in vitro, can protect against HBV attachment and infection.
- a peptide or a peptide analog comprising a stretch of at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids or analogs thereof derived from a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100% identical or homologous (identical+similar) to SEQ ID NOs:2, 4 or 6 using as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3).
- GCG Genetic Computer Group
- the peptide or a peptide analog according to this aspect of the present invention comprises a stretch of at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids or analogs thereof derived from SEQ ID NOs:4, 5, 9or 10.
- derived from a polypeptide refers to peptides derived from the specified protein or proteins and further to homologous peptides derived from equivalent regions of proteins homologous to the specified proteins of the same or other species.
- the term further relates to permissible amino acid alterations and peptidomimetics designed based on the amino acid sequence of the specified proteins or their homologous proteins.
- amino acid is understood to include the 20 naturally occurring amino acids; those amino acids often modified post-translationally in vivo, including for example hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acids including, but not limited to, 2-aminoadipic acid, hydroxylysine, isodesmosine, nor-valine, nor-leucine and ornithine.
- amino acid includes both D- and L-amino acids.
- R is, for example, methyl, ethyl or propyl, located at any one or more of the n carbons.
- Each one, or more, of the amino acids can include a D-isomer thereof.
- enlarged aromatic residues such as, but not limited to, H 2 N—(C 6 H 6 )—CH 2 —COOH, p-aminophenyl alanine, H 2 N—F(NH)—NH—(C 6 H 6 )—CH 2 —COOH, p-guanidinophenyl alanine or pyridinoalanine (Pal) can also be employed.
- Side chains of amino acid derivatives if these are Ser, Tyr, Lys, Cys or Orn
- Cyclic derivatives of amino acids can also be used.
- Cyclization can be obtained through amide bond formation, e.g., by incorporating Glu, Asp, Lys, Orn, di-amino butyric (Dab) acid, di-aminopropionic (Dap) acid at various positions in the chain (—CO—NH or —NH—CO bonds).
- Peptide bonds (—CO—NH—) within the peptide may be substituted by N-methylated bonds (—N(CH 3 )—CO—), ester bonds (—C(R)H—C—O—O—C(R)—N—), ketomethylen bonds (—CO—CH 2 —), ⁇ -aza bonds (—NH—N(R)—CO—), wherein R is any alkyl, e.g., methyl, carba bonds (—CH 2 —NH—), hydroxyethylene bonds (—CH(OH)—CH 2 —), thioamide bonds (—CS—NH—), olefinic double bonds (—CH ⁇ CH—), retro amide bonds (—NH—CO—), peptide derivatives (—N(R)—CH 2 —CO—), wherein R is the “normal” side chain, naturally presented on the carbon atom.
- Trp, Tyr and Phe may be substituted for synthetic non-natural acid such as TIC, naphthylelanine (Nol), ring-methylated derivatives of Phe, halogenated derivatives of Phe or o-methyl-Tyr.
- a display library comprising a plurality of display vehicles (such as phages, viruses or bacteria) each displaying at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids derived from a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100% homologous (identical+similar) to SEQ ID NOs:2, 4 or 6 as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3).
- GCG Genetic Computer Group
- this aspect of the present invention substantially every 6, 7, 8, 9, 10, 10-15, 12-17 or 15-20 consecutive amino acids derived from the polypeptide described herein are displayed by at least one of the plurality of display vehicles, so as to provide a highly representative library.
- the consecutive amino acids or amino acid analogs of the peptide or peptide analog according to this aspect of the present invention are derived from SEQ ID NOs:2, 4 or 6. Methods of constructing display libraries are well known in the art.
- a phage displaying at least a portion of the recombinant protein described herein which can therefore be used, for example, as an anti-HBV medicament, either prophylactically or post infection.
- an antibody comprising an immunoglobulin specifically recognizing and binding a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95% -100% homologous to SEQ ID NOs:2, 4 or 6 as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3).
- GCG Genetic Computer Group
- the antibody specifically recognizing and binding the polypeptides set forth in SEQ ID NOs:2, 4 or 6.
- the present invention can utilize serum immunoglobulins, polyclonal antibodies or fragments thereof, (i.e., immunoreactive derivative of an antibody), or monoclonal antibodies or fragments thereof.
- Monoclonal antibodies or purified fragments of the monoclonal antibodies having at least a portion of an antigen binding region including such as Fv, F(abl)2, Fab fragments (Harlow and Lane, 1988 Antibody, Cold Spring Harbor), single chain antibodies (U.S. Pat. No. 4,946,778), chimeric or humanized antibodies and complementarily determining regions (CDR) may be prepared by conventional procedures.
- Purification of these serum immunoglobulins antibodies or fragments can be accomplished by a variety of methods known to those of skill including, precipitation by ammonium sulfate or sodium sulfate followed by dialysis against saline, ion exchange chromatography, affinity or immunoaffinity chromatography as well as gel filtration, zone electrophoresis, etc. (see Goding in, Monoclonal Antibodies: Principles and Practice, 2nd ed., pp. 104-126, 1986, Orlando, Fla., Academic Press). Under normal physiological conditions antibodies are found in plasma and other body fluids and in the membrane of certain cells and are produced by lymphocytes of the type denoted B cells or their functional equivalent.
- Antibodies of the IgG class are made up of four polypeptide chains linked together by disulfide bonds.
- the four chains of intact IgG molecules are two identical heavy chains referred to as H-chains and two identical light chains referred to as L-chains.
- Additional classes includes IgD, IgE, IgA, IgM and related proteins.
- a recombinant protein of the present invention may be used to generate antibodies in vitro. More preferably, the recombinant protein of the present invention is used to elicit antibodies in vivo.
- a suitable host animal is immunized with the recombinant protein of the present invention.
- the animal host used is a mouse of an inbred strain.
- Animals are typically immunized with a mixture comprising a solution of the recombinant protein of the present invention in a physiologically acceptable vehicle, and any suitable adjuvant, which achieves an enhanced immune response to the immunogen.
- the primary immunization conveniently may be accomplished with a mixture of a solution of the recombinant protein of the present invention and Freund's complete adjuvant, said mixture being prepared in the form of a water in oil emulsion.
- the immunization may be administered to the animals intramuscularly, intradermally, subcutaneously, intraperitoneally, into the footpads, or by any appropriate route of administration.
- the immunization schedule of the immunogen may be adapted as required, but customarily involves several subsequent or secondary immunizations using a milder adjuvant such as Freund's incomplete adjuvant.
- Antibody titers and specificity of binding to the protein can be determined during the immunization schedule by any convenient method including by way of example radioimmunoassay, or enzyme linked immunosorbant assay, which is known as the ELISA assay. When suitable antibody titers are achieved, antibody producing lymphocytes from the immunized animals are obtained, and these are cultured, selected and cloned, as is known in the art.
- lymphocytes may be obtained in large numbers from the spleens of immunized animals, but they may also be retrieved from the circulation, the lymph nodes or other lymphoid organs. Lymphocytes are then fused with any suitable myeloma cell line, to yield hybridomas, as is well known in the art. Alternatively, lymphocytes may also be stimulated to grow in culture, and may be immortalized by methods known in the art including the exposure of these lymphocytes to a virus, a chemical or a nucleic acid such as an oncogene, according to established protocols.
- hybridomas are cultured under suitable culture conditions, for example in multiwell plates, and the culture supernatants are screened to identify cultures containing antibodies that recognize the hapten of choice.
- Hybridomas that secrete antibodies that recognize the recombinant protein of the present invention are cloned by limiting dilution and expanded, under appropriate culture conditions.
- Monoclonal antibodies are purified and characterized in terms of immunoglobulin type and binding affinity.
- a method of isolating a polypeptide with HBV binding activity from a biological fluid is effected by (a) producing a purified HBV derived polypeptide; (b) binding the purified HBV derived polypeptide to a solid matrix to thereby obtain an affinity solid matrix; and (c) using the affinity solid matrix for affinity purification of the polypeptide with HBV binding activity from the biological fluid.
- the biological fluid is concentrated prior to step (c).
- the HBV derived polypeptide can be, for example, a HBV preS1 peptide or a portion thereof, which is suspected of involvement in attachment.
- the HBV derived polypeptide can be as set forth in SEQ ID NO:8 or 9.
- the biological fluid employed is preferably urine, however, other fluids, such as serum, blood, nasal secretions, tears, saliva, etc. are also applicable.
- the present invention provides a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell.
- the pharmaceutical composition comprising a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- a method of inhibiting HBV attachment to a hepatic cell is effected by loading the cell with an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
- the present invention further provides a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell the pharmaceutical composition comprising an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- Preparation of the affinity columns For the preparation of the affinity columns first a recombinant preS1 protein was prepared.
- the HBV preS1 gene was obtained by PCR amplification from a plasmid containing the entire HBV genome (cloned at the laboratory of W. J. Rutter at the UCSF).
- the following primers were used for amplification: 5′-GGAGATCTTCAAAACCTGGCAAAGGC-3′ (SEQ ID NO:10) and 5′-GAATTCCACTGCATGGCCTG-3′ (SEQ ID NO:11).
- the PCR product was cloned into the p-RSET- B vector (Invitrogene).
- the constructed plasmid was sequenced using the Weizmann Institute service center (see, SEQ ID NO:7).
- Recombinant His tagged pre-S1 protein (see SEQ ID NO:8) was expressed in E. coli B121 cells.
- Cells were grown overnight at 37° C. in M9ZB medium containing 0.4% glucose. The overnight culture was then diluted 1:50 with fresh M9ZB medium and was further grown at 37° C. When the OD (600 nm) reached 0.7-0.8 the cells were induced with IPTG (1 mM).
- the soluble fraction was purified to homogeneity from cell extracts by metal affinity chromatography using a Ninta-affinity column (Quiagene) and analyzed by SDS-PAGE.
- a synthetic peptide affinity column was also prepared.
- a 29 amino-acid long peptide (SEQ IF NO:9) that was reported to be sufficient to interact with hepatocytes was synthesized at the Weizmann Institute service center.
- SEQ IF NO:9 A 29 amino-acid long peptide that was reported to be sufficient to interact with hepatocytes was synthesized at the Weizmann Institute service center.
- the synthetic peptide was further purified by gel filtration on a Sephadex G-25 column using 0.1 M NaOAc, pH 4.7, buffer. The purified fractions were stored at 4° C. until used.
- Protein purification Concentrated human urine ( ⁇ 1000) was passed through the recombinant preS1 protein and/or the synthetic peptide affinity column, which were pre-equilibrated in PBS. The column was washed with PBS and then washed with 0.5 M NaCl, in order to wash out the non-specific associated proteins. The bound fraction was then eluted by a low pH buffer containing: 0.2 M glycine pH 2.5, 50% PEG and 10% TWEEN20.
- ELISA ELISA plates were coated with preS1-affinity-purified proteins at varying dilution for 1 hour and then blocked with 0.05% gelatin for 30 minutes. 0.5 ng/ml HBsAg particles (obtained from Biotechnology general, Israel) were added to the immobilized proteins and incubated for 1 hour. Next, the plate was incubated with goat antibodies directed against HBsAg particles (diluted 1:2000) for 1 hour and for an additional hour with donkey anti goat antibodies (diluted 1:2500). All reactions were performed at 37° C.
- RNA of Hep3B cells was subjected to RT-PCR reaction (Promega) using the following primers: For cDNA synthesis: 5′-GACTTGAATTCCTGTGGTTGA-3′ (SEQ ID NO:12); for DNA amplification (PCR): 5′-GCCAGCACCATGGCAACCAGT-3′ (SEQ ID NO:13) and 5′-GACTTGAATTCCTGTGGTTGA-3′ (SEQ ID NO:14).
- the PCR product was digested with NcoI and EcoRI restriction enzymes (Fermentas) and cloned into the NcoI and EcoRI sites in the pRSET vector (Invitrogen). The sequence of the cloned PCR fragment was confirmed by DNA sequencing performed at the Weizmann Institute services center.
- UP50 An EcoRI—BamHI fragment from I.M.A.G.E. clone number 12937 (Accession No. r16451) was labeled with 32 P-dATP (Amersham, 3000 Ci/mmole) by nick translation. About 10 6 cpm labeled probe was used to screen a human kidney gt10 cDNA library (obtained from O. Reiner at the Weizmann Institute, Israel) using standard plaque lifting and hybridization techniques. The inserts of positive plaques were rescued by PCR reaction, using phage derived primers. These fragments were cloned into pGEM-T vectors and sequences at the Weizmann. Another PCR reaction was employed, using a primer from up50 and a primer from the vector. The right clone was sequenced at the Weizmann Institute service center.
- GFP chimera plasmids up50 cDNA was cloned upstream to GFP in pEGFPN1 plasmid (clontech). Cos1 cells were transfected and the expression of the chimera protein was visualized by a florescent microscope.
- the preS1 region of HBsAg is expected to contain the receptor binding region (Neurath et al., 1985; Petit et al., 1991).
- HBV receptor purification a recombinant His-tagged preS1 protein (FIGS. 1 a and 1 b , SEQ ID NOs:7-8) was prepared. The recombinant protein was purified to homogeneity by employing a Ninta-affinity column (Quiagene). Also, a 29 amino-acid long peptide that was reported to be sufficient to interact with hepatocytes was synthesized (SEQ ID NO:9). This synthetic peptide was further purified on a G25 column to obtain a homogenous peptide (FIG. 1 c ).
- the recombinant preS1 protein (SEQ ID NO:7) was covalently cross-linked to beads (Affinity gel 10, BioRad) according to the manufacturer's instructions and was used for affinity chromatography. Concentrated urine ( ⁇ 1000) was passed through the column, the column was washed and the bound proteins were eluted at low pH (see methods). The eluted fractions were analyzed on SDS-PAGE gel and silver stained. Two major bands appeared after elution from the preS1 column (FIG. 2, lane E2). The estimated molecular masses of the stained proteins were 50 and 43, and therefore they were named UP50 and UP43, respectively.
- Example 2 Further purification of the proteins described in Example 2 was achieved by using a second affinity chromatography column, composed of the synthetic peptide that contain the preSl amino-acids 21-49 region (FIGS. 1 a and 1 c ). It has been reported that a similar synthetic peptide may block the attachment of HBV to hepatocytes, and therefore it is likely to contain the receptor binding sequence motif (Neurath et al., 1986). The eluted fractions were reloaded on a column that contained beads with cross-linked synthetic peptide, washed and eluted as for the first column. Both proteins, but especially UP50, were specifically retained on the column, indicating that they interact with the small preS1 region reported to be involved in hepatocyte binding (FIG. 3).
- the UP43 Protein is a Glycoprotein with Disulfide Bonds
- UP43 is an EGF-Repeat Containing Protein
- SEQ ID NOs:1, 2 for cDNA and amino acids of UP43, respectively revealed that it is identical to S1-5 (Databank accession No. AAA65590) published previously (FIG. 6). It has been shown that S1-5 is overexpressed in prematurely senescent Werner syndrome (WS) cells, in senescent and quiescent human diploid fibroblasts (HDF) (Lecka et al., 1995). The S1-5 transcript, when injected into cells, causes stimulation of DNA synthesis.
- WS prematurely senescent Werner syndrome
- HDF senescent and quiescent human diploid fibroblasts
- the proteins include five to six epidermal growth factor (EGF)-like domains, depending on the choice of translational start site (Doolittle et al., 1984). This domain is defined by the spacing of six conserved cysteines over a sequence of 35-40 amino acids. The six cysteines form three disulfide bonds.
- the proteins further includes an N-glycosylation site at Asn-249, as was confirmed by biochemical tests. A highly hydrophobic sequence of 14 amino acids was found at the C-terminus of the proteins, which could serve as a transmembrane domain.
- the putative proteins further contain a hydrophobic amino acid sequence at their N terminus, which may serve as a secretory signal peptide, and a possible signal sequence cleavage site.
- up50 cDNA was fused with the Green Fluorescence Protein (GFP) cDNA.
- GFP Green Fluorescence Protein
- a cDNA fragment encoding a GFP, of 27 kDa molecular mass was fused to a up50 cDNA, such that the in the fused protein product the GFP amino acid sequence is located at the C terminus of UP50, so as not to disrupt the putative secretory signal at the N terminus.
- the construct was transfected to Cos1 cells.
- UP50-GFL was localized on cell membrane (FIG. 7) confirming the membrane association suggested in Example 6.
- UP50 is an EGF-Repeat Containing Protein and is Similar to UP43
- up50 cDNA was 32 p labeled by random priming and was incubated with this blot in a hybridization reaction. Although up50 is expressed in many adult and fetal tissues, there are some differences at the level of expression (FIGS. 9 a and 9 b ). The highest level of expression was obtained in aorta (square 2 C of the grid in FIG. 9 a ) and the lowest in brain, medulla oblongata and spinal cord.
- up43 up43
- results were similar but not identical to those obtained with the up50 probe.
- expression of up43 can be easily detected in the different brain regions.
- liver where expression of these proteins is moderate.
- CD4 receptor is not sufficient for infection as cofactors are required for infection.
- a chemokine family of proteins which is ubiquitously expressed in T cells plays the role of cofactor.
- UP homologue 1 A close and novel UP50 homologue was found screening the EST database (Databank accession No. r16451, FIG. 10) and was named UP homologue 1 (UPH1).
- the sequence of UPH1 revealed that unlike UP50, it does not include an RGD motif and therefore it is unlikely to interact with fibronectin, otherwise it includes the other motifs found in the UP family, as is further described herein.
- All the UP proteins contain similar EGF repeats of a calcium binding type found in numerous other proteins, such as described in Davis, 1990. Also, some EGF repeats contain aspartic-acid and asparagine that undergo hydroxylation (FIG. 11). All UP proteins have a transmembrane domain at the C-terminus, suggesting that they are membrane associated. They also contain a signal-peptide (the highly hydrophobic region) at the N-terminus, suggesting that the N-terminus is positioned out of the cells (FIG. 11).
- HBV hepatitis B virus
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
An isolated nucleic acid, a recombinant protein encoded thereby and uses thereof. The isolated nucleic acid including (a) a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) a polynucleotide encoding a polypeptide being at least 60% homologous with SEQ ID NO:4 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and 32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
Description
- This application is a divisional of U.S. patent application Ser. No. 10/443,923, filed May 23, 2003, which is a divisional of U.S. patent application Ser. No. 09/409,096, filed Sep. 30, 1999, now U.S. Pat. No. 6,589,534.
- The present invention relates to a group of genes, and the proteins encoded thereby, which are capable of interfering with Hepatitis B virus (HBV) infection and to methods for identifying, purifying, isolating and characterizing related genes and gene products. The present invention further relates to isolation of soluble forms of the cellular receptor(s) for HBV on hepatocytes from bodily fluids, including, but not limited to, urine, and to purification of these soluble form binding proteins by means including, but not limited to, affinity columns. The present invention further relates to the use of these genes and their translation products to establish experimental models for HBV infection, whether in cell culture or in animals. The present invention further relates to the use of these genes and their translation products for therapeutic purposes. The present invention further relates to the use of these genes and their translation products to screen for additional binding protein interactions. The present invention further relates to the use of these genes and their translation products to prepare specific detectors of these proteins, including, but not limited to, antibodies, phage-display libraries, specific PCR primers, lectins, DNA probes, RNA probes, and non-antibody proteins for diagnostic and therapeutic purposes.
- Hepatitis B virus (HBV) is an enveloped RNA virus that infects human liver and replicates via reverse-transcription of the pregenomic RNA. Infected patients develop acute hepatitis, which is often self-limiting, but may develop into chronic hepatitis with high risk of liver cirrhosis and primary liver carcinoma in roughly 10% of all cases. The World Health Organization estimates that there will be 400 million carriers Worldwide in year 2000. Effective vaccines exist, but anti viral drugs with good and long term efficacy are not available. Little is known about how HBV infects liver cells and the HBV cellular receptor(s) remain unknown. Many proteins have been identified which bind to the viral envelope associated proteins, HBsAg, or related proteins, but none are considered genuine HBV receptors (reviewed in De et al., 1997 and in references cited therein). Some of these binding proteins are found in serum and some in hepatocytes. None of these molecules have been convincingly tied to infectivity, disqualifying them as genuine HBV receptors. These molecules are of three types, S binding proteins, preS2 binding proteins, and preS1 binding proteins. A brief summary of the characteristics of the three groups is provided herein.
- The S binding proteins: HBsAg containing only the S protein binds to a 34-kDa liver protein, which is identified as the phospholipid-binding protein endonexin II (also known as annexin V). Endonexin II has calcium channel activity and it thought to be located primarily, but not exclusively, intracellularly. The biological significance of this remains unclear, as the observed interaction may simply reflect the known ability of endonexin II to bind phospholipids, which are abundant in HBsAg lipoprotein. It was subsequently demonstrated that delipidated HBsAg had a drastically diminished capacity to bind endonexin II, leading to speculation that it might play a role in a postbinding membrane fusion event.
- It has also been demonstrated that plasma membranes, derived from human liver, contain apolipoprotein H (Apo H), a 46-kDa protein which binds HBsAg. This protein is a glycoprotein with four N-linked carbohydrate chains, which is present in the serum and is not an integral transmembrane protein of the hepatocyte. Its role in infection is uncertain. Moreover, it has been proven that the interaction between Apo H and HBsAg involves triglycerides and not HBV proteins. However, Apo H might play a role in delivery of the virus from the periphery to the liver.
- Since binding of these molecules does not involve the preS determinant, they are unlikely to be the sole component of HBV attachment.
- The preS2 binding proteins: Some researchers presumed that HBV binds to liver cells via a polymerized form of human serum albumin (pHSA) because a correlation between high viremia and the presence of a so-called pHSA receptor was observed. The preS2-specific domain does possess a pHSA binding activity, however, only pHSA from human or chimpanzee serum binds to preS2. Moreover, pHSA binds to liver cells, albeit in a non-species specific fashion. Furthermore, membranes from fresh human liver are able to bind natural HBs spheres or recombinant preS2 when they are pretreated with pHSA. These observations would suggest that the preS2 domain acts via pHSA as a species- and organ-specific attachment site of HBV except that identification of the exact binding site for pHSA within the preS2 domain is controversial.
- The potential importance of pHSA binding for HBV infection has reduced by the observation that native albumin in physiologic concentrations blocks the binding of pHSA to HBsAg. This finding is especially significant considering that the minute concentration of natural pHSA present in serum is negligible when compared with the serum albumin concentration.
- The N-linked glycan at the amino end of the preS2 domain has also been suggested as a potential binding site for human hepatocytes on the preS2 domain. This suggestion stems from an unusual glycan structure composed of one mannose chain and two complex chains which is liver specific and able to bind directly to HepG2 cells. Selective removal of this preS2 glycan reduces the preS2 binding by 70%.
- It has also been reported that anti-idiotypic antibodies, raised against an epitope localized in the N-terminal part of preS2 protein, recognized human fibronectin, a component of the extracellular matrix. This binding is thought to be species specific because no binding was found between the preS2-associated epitopes with mouse liver. It is currently hypothesized that fibronectin may contribute to the initial binding of the circulating virus.
- The preS1 binding proteins: Many researchers suggest possible roles for preS1 binding molecules in viral entry, although no conclusive evidence that these proteins play a role in permissive infection is available.
- A portion of preS1, identified as being involved in attachment to HepG2 cells, is highly homologous to the Fc moiety of the α-chain of immunoglobulin A (IgA). Since IgA binds to liver plasma membranes, a common receptor for the attachment of HBV and IgA to human liver cells has been proposed. However, known receptors for IgA do not appear to be the receptors for HBV.
- Anti-idiotypic antibodies have been used to paratope anti-preS(21-47) antibodies, which may represent a mirror image of the binding site on the receptor and thus be able to react with the receptor. These antibodies reacted with a 35-kDa protein and with three other related components of 40-, 43-, and 50-kDa in HepG2 membrane extracts. The 35-kDa protein, identified as the human liver glyceraldehyde-3-phosphate-dehydrogenase (GAPD) is a key enzyme for glycolysis, and the 50-kDa protein seems to contain intrachain disulfide bonds.
- In addition, 31-kDa proteins that cross-linked in vitro to a synthetic preS1 peptide (
amino acids 21 to 47) has also been identified. - Other researchers also identified a 50-kDa protein in normal human serum, which interacts with the epitopes localized within the preS1 and preS2 domains. They characterized this molecule as a glycoprotein with N-linked carbohydrate chains, which requires intact disulfide bonds in order to bind preS proteins. This 50-kDa protein blocks the binding of the preS1- and preS2-specific MAbs to HBV. This protein was detected on the surface of human hepatocytes by specific monoclonal antibodies, but not on hepatocytes from other species or in HepG2 cell membranes.
- It has also been argued that the asialoglycoprotein receptor on the surface of hepatocytes is responsible for the binding of HBV, mediated by an epitope located in the preS1 domain.
- As the expression of the asialoglycoprotein receptor is exclusive to hepatocytes, but not species specific, the presence of HBV in extrahepatic tissue has been explained by the presence of possible asialoglycoprotein-related molecules in these non-hepatic cells.
- In summary, although some of the proteins described hereinabove are able to bind virus envelope proteins, they but do not contain the molecular determinants of true receptors. Others with appropriate molecular determinants, fail to bind HBV. None of these molecules have a demonstrable role in initiating HBV infection of hepatocytes.
- There is thus a widely recognized need for, and it would be advantageous to identify true HBV binding proteins, which can be effectively used as, for example, therapeutic agents.
- While reducing the present invention to practice proteins were purified from concentrated human urine that bind HBsAg preS1 protein and a 29 amino-acids synthetic peptide with the sequence of HBsAg suspected to be essential for HBV infection, that satisfy a possible receptor function. Partial sequence of two of the purified proteins was determined and the corresponding cDNAs were cloned. Interestingly, the two proteins are similar and belong to the same protein family (a third protein was found in an EST library). These three proteins are membrane associated glycoproteins with EGF repeats, a characteristic structure of a very large group of cellular receptor and ligands. One of the proteins (which is referred to herein as UP50) contains also RGD motif that is known to interact with fibronectin and therefore is speculated to be a component of the extracellular matrix. This protein is expressed widely in many tissues but shows highest level in aorta. Collectively, the data presented herein suggests that these proteins are binding proteins/ligands that may play a role in normal development in general and in HBV infection as cofactors and can therefore be used to modulate virus infection, tissue organization and cell fate and behavior.
- Thus, according to one aspect of the present invention there is provided an isolated nucleic acid comprising (a) a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) a polynucleotide encoding a polypeptide being at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
- According to further features in preferred embodiments of the invention described below, the polynucleotide encodes a polypeptide capable of specifically binding HBV particles.
- According to still further features in the described preferred embodiments the polynucleotide encodes a polypeptide capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- According to still further features in the described preferred embodiments the polynucleotide encodes a polypeptide capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- According to still further features in the described preferred embodiments the polynucleotide is as set forth in SEQ ID NOs:1, 3, 5 or portions thereof.
- According to another aspect of the present invention there is provided a nucleic acid construct comprising the isolated nucleic acid described herein.
- According to yet another aspect of the present invention there is provided a host cell comprising the isolated nucleic acid described herein.
- According to still another aspect of the present invention there is provided a transgenic animal comprising the isolated nucleic acid described herein.
- According to an additional aspect of the present invention there is provided an antisense molecule capable of base pairing under physiological conditions with a polynucleotide (a) at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoding a polypeptide being at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
- According to yet an additional aspect of the present invention there is provided a pharmaceutical composition comprising, as an active ingredient, the antisense molecule described herein, and a pharmaceutically acceptable carrier.
- According to still an additional aspect of the present invention there is provided a nucleic acid construct transcribable to produce the antisense molecule described herein.
- According to a further aspect of the present invention there is provided a host cell comprising the antisense molecule described herein.
- According to yet a further aspect of the present invention there is provided a transgenic animal comprising the antisense molecule described herein.
- According to still a further aspect of the present invention there is provided a recombinant protein comprising a polypeptide (a) at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoded by a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) encoded by a polynucleotide hybridizable with SEQ ID NOs:3, 5 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
- According to further features in preferred embodiments of the invention described below, the polypeptide is as set fourth in SEQ ID NOs:2, 4, 6 or portions thereof.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding HBV particles.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- According to still further features in the described preferred embodiments the recombinant protein is characterized by at least one of the following (a) at least one EGF like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- According to another aspect of the present invention there is provided a pharmaceutical composition comprising, as an active ingredient, the recombinant protein described herein, and a pharmaceutically acceptable carrier.
- According to yet another aspect of the present invention there is provided an antibody capable of specific interaction with the recombinant protein described herein.
- According to still another aspect of the present invention there is provided a phage display library comprising a plurality of phages each displaying a portion of the recombinant protein described herein.
- According to an additional aspect of the present invention there is provided a phage displaying at least a portion of the recombinant protein described herein.
- According to yet an additional aspect of the present invention there is provided a method of isolating a polypeptide with HBV binding activity from a biological fluid, the method comprising the steps of (a) producing a purified HBV derived polypeptide; (b) binding the purified HBV derived polypeptide to a solid matrix to thereby obtain an affinity solid matrix; and (c) using the affinity solid matrix for affinity purification of the polypeptide with HBV binding activity from the biological fluid.
- According to further features in preferred embodiments of the invention described below, the method further comprising the step of concentrating the biological fluid prior to step (c).
- According to still further features in the described preferred embodiments the HBV derived polypeptide is a HBV preS1 peptide or a portion thereof.
- According to still further features in the described preferred embodiments the HBV derived polypeptide is as set forth in SEQ ID NOs:8 or 9.
- According to still further features in the described preferred embodiments the biological fluid is urine.
- According to still further features in the described preferred embodiments the biological fluid is concentrated urine.
- According to still an additional aspect of the present invention there is provided a method of inhibiting HBV attachment to a hepatic cell the method comprising the step of exposing the cell to a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
- According to a further aspect of the present invention there is provided a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell the pharmaceutical composition comprising a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- According to yet a further aspect of the present invention there is provided a method of inhibiting HBV attachment to a hepatic cell the method comprising the step of loading the cell with an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
- According to still a further aspect of the present invention there is provided a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell the pharmaceutical composition comprising an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- According to further features in preferred embodiments of the invention described below, the purified HBV derived polypeptide is HBsAg preS1 protein or a portion thereof.
- According to still further features in the described preferred embodiments the recombinant urine derived protein includes a polypeptide selected from the group consisting of (a) at least 60% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) being encoded by a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); and (c) being encoded by a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
- According to still further features in the described preferred embodiments the polypeptide is as set fourth in SEQ ID NOs:2, 4, 6 or portions thereof.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding HBV particles.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding to HBsAg preS1 protein or a portion thereof.
- According to still further features in the described preferred embodiments the polypeptide is capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
- According to still further features in the described preferred embodiments the recombinant urine derived protein is characterized by at least one of the following (a) at least one EGF like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- The present invention successfully addresses the shortcomings of the presently known configurations by providing new horizons for combating HBV infections and opening new horizons in HBV research.
- The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
- In the drawings:
- FIG. 1a is a diagrammatic representation of the structure of the HBsAg gene and the preS1 region used for the preparation of a recombinant protein. Also shown is the sequence (SEQ ID NO:9) and position of a synthetic peptide of 29 amino acids used in the examples hereinbelow.
- FIG. 1b shows a His-preS1 recombinant protein expressed in E. coli BL21 cells, induced with IPTG (0.1 mM) soluble fraction, purified on Ninta-affinity column, run on a reducing SDS-PAGE (15%) gel and stained with coomassie brilliant blue. M—molecular mass as determined by a low range molecular weight standard (BioRad).
- FIG. 1c shows a gel filtration purification of a synthetic peptide composed of the preS1 amino acids 21-49 (SEQ ID NO:9) in which absorbance at OD280 is plotted as a function of fraction number.
- FIG. 2 demonstrates isolation of preS1 binding proteins from concentrated human urine conducted by 12% SDS-PAGE which was silver stained. Prior to loading on the gel, concentrated urine was loaded on a recombinant preS1 protein affinity column. After washing, bound proteins were eluted by low pH buffer containing: 0.2 M glycine pH 2.5, 50% PEG and 10% TWEEN20. Lanes E-1 to E-3 represent eluted
fractions 1 to 3, respectively. Lane M represents a 10 kDa ladder marker. UP50 and UP43 are indicated by the left arrows. - FIG. 3 is an SDS-PAGE silver stained gradient gel (5-20%) of UP-proteins enrichment by the synthetic peptide preS(21-47) column. Urine proteins remaining on the recombinant preS1 protein column were loaded on a second 21-47 synthetic peptide affinity column (pep) or on a preS1 recombinant affinity column (pre S1), as indicated. Majority of the UP50 and UP43 were retained on the column (fractions B) and barely seen in the follow-through (FT) fractions. UP50 was much more enriched than UP43. Molecular masses (kDa) are indicated on the left by arrows.
- FIG. 4 demonstrates, using an ELISA test, that UP43 binds HBV HBsAg particles. ELISA plates were coated with affinity-purified UP43 at decreasing dilutions for 1 hour and then blocked with 0.05% gelatin for 30 minutes. 0.5 ng/ml HBV HBsAg particles were added to the immobilized UP43 and incubated for 1 hour. The plate was then incubated with goat antibodies against HBsAg particles (Biotechnology General, Israel) diluted 1:2000) for 1 hour and for an additional hour with horse radish peroxidase labeled donkey anti goat antibodies (diluted 1:2500). All reactions were performed at 37° C.
- FIG. 5 shows an SDS-PAGE coomassie brilliant blue stained gel (12%) of UP43 either treated (+) or not treated (−) with N-glycanase over-night at 37° C. Molecular masses (kDa) are indicated on the left. Decreased size of UP43 after treatment demonstrates that it is a glycosylated protein.
- FIG. 6 shows that UP43 is identical to a protein known as S1-5. Sequences of three fragments of UP43 are identical to the published S1-5 clone (Databank accession No. AAA65590).
- FIG. 7 demonstrates UP50-GFP location within cells. Cos1 cells were transfected with a UP50-GFP plasmid (see Example 1 of the Examples section) and the transfected cells were visualized by confocal laser scanning microscopy.
- FIG. 8 shows the UP50 amino-acid sequence. UP50 was trypsin digested and 4 fragments were microsequenced (underlined regions). These sequences were used to clone the entire up50 cDNA, as is further detailed in the Examples section below.
- FIGS. 9a and 9 b show the tissue distribution of up50 mRNA. A commercial “master-blot” that contains RNA from different human tissues (9 b), was hybridized to a up50 cDNA probe. The size and stringency of the dots (9 a) are in correlation with the level of expression in the corresponding tissues.
- FIG. 10 is a comparison of the sequence of the extended UP protein family UPH1, UP50, and UP43 (SEQ ID NOs:6, 4 and 2 respectively). The sequence of UP43, UP50 and the homologous UPH1 are compared using Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3).
- FIG. 11 shows hydrophobicity plots of the three proteins UP50, UPH1, and UP43 as well as schematic representations of amino acid sequences indicating transmembrane domains, hydroxylation sites, signal peptide domains, cell attachment sequences, glycosylation sites, and EGF like domains.
- The present invention is of a group of genes, and the profteins encoded thereby, which are capable of interfering with Hepatitis B virus (HBV) infection and of methods for identifying, purifying, isolating and characterizing related genes and gene products. The present invention is further of a method for the isolation of soluble forms of the cellular receptor(s) for HBV on hepatocytes from bodily fluids, including, but not limited to, urine, and to purification of these soluble form binding proteins by means including, but not limited to, affinity columns. The present invention is further of the use of these genes and their translation products to establish experimental models for HBV infection, whether in cell culture or in animals. The present invention is further of the use of these genes and their translation products for therapeutic purposes. The present invention is further of the use of these genes and their translation products to screen for additional ligand/receptor interactions. The present invention is further of the use of these genes and their translation products to prepare specific detectors of these proteins, including, but not limited to, antibodies, phage-display libraries, specific PCR primers, lectins, DNA probes, RNA probes, and non-antibody proteins for diagnostic and therapeutic purposes.
- The principles and operation of a according to the present invention may be better understood with reference to the drawings and accompanying descriptions.
- Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
- While reducing the present invention to practice purified HBV derived polypeptides, representing portions of the preS1 region of HBsAg, one recombinant (SEQ ID NO:8) and one synthetic (SEQ ID NO:9), were used to create two affinity columns. These columns were used to affinity capture soluble proteins from concentrated human urine samples. Several proteins were thus identified and some were further characterized. The proteins were trypsin digested, proteolytic portions thereof microsequenced and their corresponding cDNAs isolated and sequenced. Using ELISA approach it was found that the proteins bind HBV particles. Using GFL fusion constructs it was found that the proteins are membrane associated proteins. Using glyconase it was found that the proteins are in fact glycoproteins. Using reducing gel electrophoresis conditions it was found the proteins are characterized by disulfide bonds. Using sequence analysis programs it was found that (i) at least one of the proteins may be characterized by alternative initiation of translation; (ii) the proteins include several EGF repeats; (iii) some EGF repeats contain aspartic-acid and asparagine that undergo hydroxylation; (iv) all proteins have a transmembrane domain at the C-terminus, suggesting that they are membrane associated; (v) they also contain a signal-peptide at the N-terminus, suggesting that the N-terminus is positioned out of the cells.
- Thus, according to one aspect of the present invention there is provided an isolated nucleic acid comprising (a) a polynucleotide at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) a polynucleotide encoding a polypeptide being at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous (identical+similar amino acids) with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); and/or (c) a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 65, 68 or 72° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 65, 68 or 72° C. with 3×SSC and 0.1% SDS or in addition with 0.1×SSC and 0.1% SDS.
- The above isolated nucleic acids thus include both complementary DNA (cDNA), genomic DNA and composite DNA, variants, natural mutants, induced mutants, alleles, and homologs from human and other species, including, for example, primates.
- As used herein in the specification the phrase “complementary DNA” includes sequences which originally result from reverse transcription of messenger RNA using a reverse transcriptase or any other RNA dependent DNA polymerase. Such sequences can be subsequently amplified in vivo or in vitro using a DNA dependent DNA polymerase.
- As used herein in the specification the phrase “genomic DNA” includes sequences which originally derive from a chromosome and reflect a contiguous portion of a chromosome.
- As used herein in the specification the phrase “composite DNA” includes sequences which are at least partially complementary and at least partially genomic. A composite sequence can include some exonal sequences required to encode the polypeptides described herein, as well as some intronic sequences interposing therebetween. The intronic sequences can be of any source, including of other genes, and typically will include conserved splicing signal sequences. Such intronic sequences may further include cis acting expression regulatory elements.
- Having the isolated nucleic acids described in the Examples section that follows available, and employing conventional cloning, screening and other techniques, one can readily isolate additional cDNAs, genomic DNAs, variants, natural mutants, induced mutants, alleles, and homologs from human and other species, including, for example, primates, which relate to these nucleic acids. Such techniques are described in detail, in, for example, Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); and in “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994).
- Thus, this aspect of the present invention encompasses (i) polynucleotides as set forth in SEQ ID NOs:1, 3 and 5; (ii) fragments thereof; (iii) genomic sequences including same; (iv) sequences hybridizable therewith; (v) sequences homologous thereto; (vi) sequences encoding similar polypeptides with different codon usage; (vii) altered sequences characterized by mutations, such as deletion, insertion or substitution of one or more nucleotides, either naturally occurring or man induced, either randomly or in a targeted fashion.
- According to a preferred embodiment of the present invention, the polynucleotide encodes a polypeptide capable of specifically binding HBV particles, to HBsAg preS1 protein or a portion thereof, e.g., SEQ ID NOs:8 or 9.
- As used herein in the specification and in the claims section that follows, the term HBV particles refers to HBV assembled coat proteins, which are produced by transforming a cell with a gene or genes encoding such proteins, such that the cell produces the coat proteins and the coat proteins are integrated in the cell membrane which is thereafter used to form the HBV particles. For further details of the preparation of HBV particles the reader is referred to Shouval et al. (1994), which is incorporated herein by reference.
- For many applications it is required that the isolated nucleic acid described herein will be integrated in a nucleic acid construct, such as an expression construct or an antisense construct. Such constructs are well known in the art, are commercially available and may include additional sequences, such as, for example, one or more promoter and enhancer sequences, a cloning site, one or more prokaryote or eukaryote marker genes with their associated promoters, one or more prokaryotic and/or eukaryotic origins of replication, a translation start site, a polyadenylation signal, and the like.
- Thus, according to a preferred embodiment the nucleic acid construct according to this aspect of the present invention further comprising a promoter for regulating the expression of the isolated nucleic acid in a sense or antisense orientation. Such promoters are known to be cis-acting sequence elements required for transcription as they serve to bind DNA dependent RNA polymerase which transcribes sequences present downstream thereof. Such down stream sequences can be in either one of two possible orientations to result in the transcription of sense RNA which is translatable by the ribozyme machinery or antisense RNA which typically does not contain translatable sequences, yet can duplex or triplex with endogenous sequences, either mRNA or chromosomal DNA and hamper gene expression, all as further detailed hereinunder.
- While the isolated nucleic acid described herein is an essential element of the invention, it is modular and can be used in different contexts. The promoter of choice that is used in conjunction with this invention is of secondary importance, and will comprise any suitable promoter. It will be appreciated by one skilled in the art, however, that it is necessary to make sure that the transcription start site(s) will be located upstream of an open reading frame. In a preferred embodiment of the present invention, the promoter that is selected comprises an element that is active in the particular host cells of interest. These elements may be selected from transcriptional regulators that activate the transcription of genes essential for the survival of these cells in conditions of stress or starvation, including the heat shock proteins.
- A construct according to the present invention preferably further includes an appropriate selectable marker. In a more preferred embodiment according to the present invention the construct further includes an origin of replication. In another most preferred embodiment according to the present invention the construct is a shuttle vector, which can propagate both inE. coli (wherein the construct comprises an appropriate selectable marker and origin of replication) and be compatible for propagation in cells, or integration in the genome, of an organism of choice. The construct according to this aspect of the present invention can be, for example, a plasmid, a bacmid, a phagemid, a cosmid, a phage, a virus or an artificial chromosome.
- Alternatively, the nucleic acid construct according to this aspect of the present invention further includes a positive and a negative selection markers and may therefore be employed for selecting for homologous recombination events, including, but not limited to, homologous recombination employed in knock-in and knock-out procedures. One ordinarily skilled in the art can readily design a knock-out or knock-in constructs including both positive and negative selection genes for efficiently selecting transfected embryonic stem cells that underwent a homologous recombination event with the construct. Such cells can be introduced into developing embryos to generate chimeras, the offspring thereof can be tested for carrying the knock-out or knock-in constructs. Knock-out and/or knock-in constructs according to the present invention can be used to further investigate the functionality of the genes/proteins described herein. Such constructs can also be used in somatic and/or germ cells gene therapy. Additional detail can be found in Fukushige, S. and Ikeda, J. E.: Trapping of mammalian promoters by Cre-lox site-specific recombination. DNA Res 3 (1996) 73-80; Bedell, M. A., Jenkins, N. A. and Copeland, N. G.: Mouse models of human disease. Part I: Techniques and resources for genetic analysis in mice. Genes and Development 11 (1997) 1-11; Bermingham, J. J., Scherer, S. S., O'Connell, S., Arroyo, E., Kalla, K. A., Powell, F. L. and Rosenfeld, M. G.: Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10 (1996) 1751-62, which are incorporated herein by reference.
- According to yet another aspect of the present invention there is provided a host cell comprising the isolated nucleic acid described herein. Such a host cell can be either a prokaryote or a eukaryote cell. The nucleic acid can either be integrated into the cell's genome or be extrachromosomal.
- According to still another aspect of the present invention there is provided a transgenic animal comprising the isolated nucleic acid described herein. Methods of generating transgenic animals are well known in the art and are therefore not further described herein.
- Such cells and animals can find utility in the propagation of HBV. It will be appreciated that so far culture propagation of HBV is impractical. The cells and animals described herein can, however, be employed for propagation of the virus, as a receptor therefore is expressed by such cells or animals. In another case, where, either antisense or gene knock-out or knock-in techniques are employed, such cells and animals can be used to further study the involvement of the genes reported herein in HBV attachment.
- According to an additional aspect of the present invention there is provided a pair of oligonucleotides each independently of at least 17, at least 18, at least 19, at least 20, at least 22, at least 25, at least 30 or at least 40 bases specifically hybridizable with the isolated nucleic acid described herein in an opposite orientation so as to direct exponential amplification of a portion thereof in a nucleic acid amplification reaction, such as a polymerase chain reaction. The polymerase chain reaction and other nucleic acid amplification reactions are well known in the art and require no further description herein. The pair of oligonucleotides according to this aspect of the present invention are preferably selected to have compatible melting temperatures (Tm), e.g., melting temperatures which differ by less than that 7° C., preferably less than 5° C., more preferably less than 4° C., most preferably less than 3° C., ideally between 3° C. and zero ° C. Consequently, according to yet an additional aspect of the present invention there is provided a nucleic acid amplification product obtained using the pair of primers described herein. Such a nucleic acid amplification product can be isolated by gel electrophoresis or any other size based separation technique. Alternatively, such a nucleic acid amplification product can be isolated by affinity separation, either stranded affinity or sequence affinity. In addition, once isolated, such a product can be further genetically manipulated by restriction, ligation and the like, to serve any one of a plurality of applications.
- According to an additional aspect of the present invention there is provided an antisense molecule capable of base pairing under physiological conditions with a polynucleotide (a) at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoding a polypeptide being at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 65, 68 or 72° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 65, 68 or 72° C. with 3×SSC and 0.1% SDS or in addition with 0.1×SSC and 0.1% SDS.
- Such an antisense molecule can be a single stranded DNA, RNA, or polynucleotide analog of at least 10 bases, preferably between 10 and 15, more preferably between 50 and 20 bases, most preferably, at least 17, at least 18, at least 19, at least 20, at least 22, at least 25, at least 30 or at least 40 bases.
- According to still an additional aspect of the present invention there is provided a nucleic acid construct transcribable to produce the antisense molecule described herein. Such a construct is further described hereinabove and can be used to generate a host cell or a transgenic animal comprising an antisense molecule as described herein.
- Such an antisense oligonucleotide is readily synthesizable using solid phase oligonucleotide synthesis.
- The ability of chemically synthesizing oligonucleotides and analogs thereof having a selected predetermined sequence offers means for downmodulating gene expression. Three types of gene expression modulation strategies may be considered.
- At the transcription level, antisense or sense oligonucleotides or analogs that bind to the genomic DNA by strand displacement or the formation of a triple helix, may prevent transcription. At the transcript level, antisense oligonucleotides or analogs that bind target mRNA molecules lead to the enzymatic cleavage of the hybrid by intracellular RNase H. In this case, by hybridizing to the targeted mRNA, the oligonucleotides or oligonucleotide analogs provide a duplex hybrid recognized and destroyed by the RNase H enzyme. Alternatively, such hybrid formation may lead to interference with correct splicing. As a result, in both cases, the number of the target mRNA intact transcripts ready for translation is reduced or eliminated. At the translation level, antisense oligonucleotides or analogs that bind target mRNA molecules prevent, by steric hindrance, binding of essential translation factors (ribosomes), to the target mRNA, a phenomenon known in the art as hybridization arrest, disabling the translation of such mRNAs.
- Thus, antisense sequences, which as described hereinabove may arrest the expression of any endogenous and/or exogenous gene depending on their specific sequence, attracted much attention by scientists and pharmacologists who were devoted at developing the antisense approach into a new pharmacological tool.
- For example, several antisense oligonucleotides have been shown to arrest hematopoietic cell proliferation, growth, entry into the S phase of the cell cycle, reduced survival and prevent receptor mediated responses.
- For efficient in vivo inhibition of gene expression using antisense oligonucleotides or analogs, the oligonucleotides or analogs must fulfill the following requirements (i) sufficient specificity in binding to the target sequence; (ii) solubility in water; (iii) stability against intra- and extracellular nucleases; (iv) capability of penetration through the cell membrane; and (v) when used to treat an organism, low toxicity.
- Unmodified oligonucleotides are typically impractical for use as antisense sequences since they have short in vivo half-lives, during which they are degraded rapidly by nucleases. Furthermore, they are difficult to prepare in more than milligram quantities. In addition, such oligonucleotides are poor cell membrane penetraters.
- Thus it is apparent that in order to meet all the above listed requirements, oligonucleotide analogs need to be devised in a suitable manner. Therefore, an extensive search for modified oligonucleotides has been initiated.
- For example, problems arising in connection with double-stranded DNA (dsDNA) recognition through triple helix formation have been diminished by a clever “switch back” chemical linking, whereby a sequence of polypurine on one strand is recognized, and by “switching back”, a homopurine sequence on the other strand can be recognized. Also, good helix formation has been obtained by using artificial bases, thereby improving binding conditions with regard to ionic strength and pH.
- In addition, in order to improve half-life as well as membrane penetration, a large number of variations in polynucleotide backbones have been done, nevertheless with little success.
- Oligonucleotides can be modified either in the base, the sugar or the phosphate moiety. These modifications include, for example, the use of methylphosphonates, monothiophosphates, dithiophosphates, phosphoramidates, phosphate esters, bridged phosphorothioates, bridged phosphoramidates, bridged methylenephosphonates, dephospho internucleotide analogs with siloxane bridges, carbonate bridges, carboxymethyl ester bridges, carbonate bridges, carboxymethyl ester bridges, acetamide bridges, carbamate bridges, thioether bridges, sulfoxy bridges, sulfono bridges, various “plastic” DNAs, α-anomeric bridges and borane derivatives.
- International patent application WO 89/12060 discloses various building blocks for synthesizing oligonucleotide analogs, as well as oligonucleotide analogs formed by joining such building blocks in a defined sequence. The building blocks may be either “rigid” (i.e., containing a ring structure) or “flexible” (i.e., lacking a ring structure). In both cases, the building blocks contain a hydroxy group and a mercapto group, through which the building blocks are said to join to form oligonucleotide analogs. The linking moiety in the oligonucleotide analogs is selected from the group consisting of sulfide (—S—), sulfoxide (—SO—), and sulfone (—SO2—).
- International patent application WO 92/20702 describe an acyclic oligonucleotide which includes a peptide backbone on which any selected chemical nucleobases or analogs are stringed and serve as coding characters as they do in natural DNA or RNA. These new compounds, known as peptide nucleic acids (PNAs), are not only more stable in cells than their natural counterparts, but also bind natural DNA and
RNA 50 to 100 times more tightly than the natural nucleic acids cling to each other. PNA oligomers can be synthesized from the four protected monomers containing thymine, cytosine, adenine and guanine by Merrifield solid-phase peptide synthesis. In order to increase solubility in water and to prevent aggregation, a lysine amide group is placed at the C-terminal region. - Thus, in one aspect antisense technology requires pairing of messenger RNA with an oligonucleotide to form a double helix that inhibits translation. The concept of antisense-mediated gene therapy was already introduced in 1978 for cancer therapy. This approach was based on certain genes that are crucial in cell division and growth of cancer cells. Synthetic fragments of genetic substance DNA can achieve this goal. Such molecules bind to the targeted gene molecules in RNA of tumor cells, thereby inhibiting the translation of the genes and resulting in dysfunctional growth of these cells. Other mechanisms has also been proposed. These strategies have been used, with some success in treatment of cancers, as well as other illnesses, including viral and other infectious diseases. Antisense oligonucleotides are typically synthesized in lengths of 13-30 nucleotides. The life span of oligonucleotide molecules in blood is rather short. Thus, they have to be chemically modified to prevent destruction by ubiquitous nucleases present in the body. Phosphorothioates are very widely used modification in antisense oligonucleotide ongoing clinical trials. A new generation of antisense molecules consist of hybrid antisense oligonucleotide with a central portion of synthetic DNA while four bases on each end have been modified with 2′O-methyl ribose to resemble RNA. In preclinical studies in laboratory animals, such compounds have demonstrated greater stability to metabolism in body tissues and an improved safety profile when compared with the first-generation unmodified phosphorothioate. Dozens of other nucleotide analogs have also been tested in antisense technology.
- RNA oligonucleotides may also be used for antisense inhibition as they form a stable RNA-RNA duplex with the target, suggesting efficient inhibition. However, due to their low stability RNA oligonucleotides are typically expressed inside the cells using vectors designed for this purpose. This approach is favored when attempting to target a mRNA that encodes an abundant and long-lived protein.
- Recent scientific publications have validated the efficacy of antisense compounds in animal models of hepatitis, cancers, coronary artery restenosis and other diseases. The first antisense drug was recently approved by the FDA. This drug, Fomivirsen, developed by Isis, is indicated for local treatment of cytomegalovirus in patients with AIDS who are intolerant of or have a contraindication to other treatments for CMV retinitis or who were insufficiently responsive to previous treatments for CMV retinitis.
- Several antisense compounds are now in clinical trials in the United States. These include locally administered antivirals, systemic cancer therapeutics. Antisense therapeutics has the potential to treat many life-threatening diseases with a number of advantages over traditional drugs. Traditional drugs intervene after a disease-causing protein is formed. Antisense therapeutics, however, block mRNA transcription/translation and intervene before a protein is formed, and since antisense therapeutics target only one specific mRNA, they should be more effective with fewer side effects than current protein-inhibiting therapy.
- A second option for disrupting gene expression at the level of transcription uses synthetic oligonucleotides capable of hybridizing with double stranded DNA. A triple helix is formed. Such oligonucleotides may prevent binding of transcription factors to the gene's promoter and therefore inhibit transcription. Alternatively, they may prevent duplex unwinding and, therefore, transcription of genes within the triple helical structure.
- Thus, according to a further aspect of the present invention there is provided a pharmaceutical composition comprising the antisense oligonucleotide described herein and a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier can be, for example, a liposome loaded with the antisense oligonucleotide. Formulations for topical administration may include, but are not limited to, lotions, ointments, gels, creams, suppositories, drops, liquids, sprays and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, sachets, capsules or tablets. Thickeners, diluents, flavorings, dispersing aids, emulsifiers or binders may be desirable. Formulations for parenteral administration may include, but are not limited to, sterile aqueous solutions which may also contain buffers, diluents and other suitable additives.
- According to still a further aspect of the present invention there is provided a ribozyme comprising the antisense oligonucleotide described herein and a ribozyme sequence fused thereto. Such a ribozyme is readily synthesizable using solid phase oligonucleotide synthesis.
- Ribozymes are being increasingly used for the sequence-specific inhibition of gene expression by the cleavage of mRNAs encoding proteins of interest. The possibility of designing ribozymes to cleave any specific target RNA has rendered them valuable tools in both basic research and therapeutic applications. In the therapeutics area, ribozymes have been exploited to target viral RNAs in infectious diseases, dominant oncogenes in cancers and specific somatic mutations in genetic disorders. Most notably, several ribozyme gene therapy protocols for HIV patients are already in
Phase 1 trials. More recently, ribozymes have been used for transgenic animal research, gene target validation and pathway elucidation. Several ribozymes are in various stages of clinical trials. ANGIOZYME was the first chemically synthesized ribozyme to be studied in human clinical trials. ANGIOZYME specifically inhibits formation of the VEGF-r (Vascular Endothelial Growth Factor receptor), a key component in the angiogenesis pathway. Ribozyme Pharmaceuticals, Inc., as well as other firms have demonstrated the importance of anti-angiogenesis therapeutics in animal models. HEPTAZYME, a ribozyme designed to selectively destroy Hepatitis C Virus (HCV) RNA, was found effective in decreasing Hepatitis C viral RNA in cell culture assays (Ribozyme Pharmaceuticals, Incorporated—WEB home page). - According to still a further aspect of the present invention there is provided a recombinant protein comprising a polypeptide (a) at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% homologous with SEQ ID NOs:2, 4, 6 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); (b) encoded by a polynucleotide at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or preferably 95-100% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); or (c) encoded by a polynucleotide hybridizable with SEQ ID NOs:1, 3, 5 or portions thereof at 65, 68 or 72° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and32p labeled probe and wash at 65, 68 or 72° C. with 3×SSC and 0.1% SDS or in addition with 0.1×SSC and 0.1% SDS.
- Thus, this aspect of the present invention encompasses (i) polypeptides as set forth in SEQ ID NOs:2, 4 or 6; (ii) fragments thereof; (iii) polypeptides homologous thereto; and (iv) altered polypeptides characterized by mutations, such as deletion, insertion or substitution of one or more amino acids, either naturally occurring or man induced, either randomly or in a targeted fashion.
- The polypeptide described herein is preferably capable of specifically binding HBV particles and to HBsAg preS1 protein or a portion thereof.
- The recombinant protein according to the present invention is characterized by at least one of the following: (a) at least one EGF-like domain; (b) at least one transmembrane domain; (c) at least one site for attachment of a hydroxyl side chain; (d) a signal peptide; (e) an RGD attachment sequence; (f) at least one glycosylation site; and (g) at least one disulfide bond.
- According to still a further aspect of the present invention there is provided a pharmaceutical composition comprising, as an active ingredient, the recombinant protein described herein and a pharmaceutical acceptable carrier which is further described above. Such a recombinant protein, when administered in vivo or in vitro, can protect against HBV attachment and infection.
- According to another aspect of the present invention there is provided a peptide or a peptide analog comprising a stretch of at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids or analogs thereof derived from a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100% identical or homologous (identical+similar) to SEQ ID NOs:2, 4 or 6 using as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3). Preferably, the peptide or a peptide analog according to this aspect of the present invention comprises a stretch of at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids or analogs thereof derived from SEQ ID NOs:4, 5, 9or 10.
- As used herein in the specification and in the claims section below the phrase “derived from a polypeptide” refers to peptides derived from the specified protein or proteins and further to homologous peptides derived from equivalent regions of proteins homologous to the specified proteins of the same or other species. The term further relates to permissible amino acid alterations and peptidomimetics designed based on the amino acid sequence of the specified proteins or their homologous proteins.
- As used herein in the specification and in the claims section below the term “amino acid” is understood to include the 20 naturally occurring amino acids; those amino acids often modified post-translationally in vivo, including for example hydroxyproline, phosphoserine and phosphothreonine; and other unusual amino acids including, but not limited to, 2-aminoadipic acid, hydroxylysine, isodesmosine, nor-valine, nor-leucine and ornithine. Furthermore, the term “amino acid” includes both D- and L-amino acids. Further elaboration of the possible amino acids usable according to the present invention and examples of non-natural amino acids are given hereinunder.
-
- wherein R is, for example, methyl, ethyl or propyl, located at any one or more of the n carbons.
- Each one, or more, of the amino acids can include a D-isomer thereof. Positively charged aliphatic carboxylic acids, such as, but not limited to, H2N(CH2)nCOOH, wherein n=2-4 and H2N—C(NH)—NH(CH2)nCOOH, wherein n=2-3, as well as by hydroxy Lysine, N-methyl Lysine or ornithine (Orn) can also be employed. Additionally, enlarged aromatic residues, such as, but not limited to, H2N—(C6H6)—CH2—COOH, p-aminophenyl alanine, H2N—F(NH)—NH—(C6H6)—CH2—COOH, p-guanidinophenyl alanine or pyridinoalanine (Pal) can also be employed. Side chains of amino acid derivatives (if these are Ser, Tyr, Lys, Cys or Orn) can be protected-attached to alkyl, aryl, alkyloyl or aryloyl moieties. Cyclic derivatives of amino acids can also be used. Cyclization can be obtained through amide bond formation, e.g., by incorporating Glu, Asp, Lys, Orn, di-amino butyric (Dab) acid, di-aminopropionic (Dap) acid at various positions in the chain (—CO—NH or —NH—CO bonds). Backbone to backbone cyclization can also be obtained through incorporation of modified amino acids of the formulas H—N((CH2)n—COOH)—C(R)H—COOH or H—N((CH2)n—COOH)—C(R)H—NH2, wherein n=1-4, and further wherein R is any natural or non-natural side chain of an amino acid. Cyclization via formation of S—S bonds through incorporation of two Cys residues is also possible. Additional side-chain to side chain cyclization can be obtained via formation of an interaction bond of the formula —(—CH2—)n—S—CH2—C—, wherein n=1 or 2, which is possible, for example, through incorporation of Cys or homoCys and reaction of its free SH group with, e.g., bromoacetylated Lys, Orn, Dab or Dap. Peptide bonds (—CO—NH—) within the peptide may be substituted by N-methylated bonds (—N(CH3)—CO—), ester bonds (—C(R)H—C—O—O—C(R)—N—), ketomethylen bonds (—CO—CH2—), α-aza bonds (—NH—N(R)—CO—), wherein R is any alkyl, e.g., methyl, carba bonds (—CH2—NH—), hydroxyethylene bonds (—CH(OH)—CH2—), thioamide bonds (—CS—NH—), olefinic double bonds (—CH═CH—), retro amide bonds (—NH—CO—), peptide derivatives (—N(R)—CH2—CO—), wherein R is the “normal” side chain, naturally presented on the carbon atom. These modifications can occur at any of the bonds along the peptide chain and even at several (2-3) at the same time. Natural aromatic amino acids, Trp, Tyr and Phe, may be substituted for synthetic non-natural acid such as TIC, naphthylelanine (Nol), ring-methylated derivatives of Phe, halogenated derivatives of Phe or o-methyl-Tyr.
- According to still another aspect of the present invention there is provided a display library comprising a plurality of display vehicles (such as phages, viruses or bacteria) each displaying at least 6, at least 7, at least 8, at least 9, at least 10, 10-15, 12-17, or 15-20 consecutive amino acids derived from a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95%-100% homologous (identical+similar) to SEQ ID NOs:2, 4 or 6 as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3). According to a preferred embodiment of this aspect of the present invention substantially every 6, 7, 8, 9, 10, 10-15, 12-17 or 15-20 consecutive amino acids derived from the polypeptide described herein are displayed by at least one of the plurality of display vehicles, so as to provide a highly representative library. Preferably, the consecutive amino acids or amino acid analogs of the peptide or peptide analog according to this aspect of the present invention are derived from SEQ ID NOs:2, 4 or 6. Methods of constructing display libraries are well known in the art. such methods are described, for example, in Young A C, et al., “The three-dimensional structures of a polysaccharide binding antibody toCryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes” J Mol Biol 1997 Dec 12;274(4):622-34; Giebel L B et al. “Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities” Biochemistry 1995
Nov 28;34(47):15430-5; Davies E L et al., “Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes” J Immunol Methods 1995 Oct 12;186(1):125-35; Jones C. R. T. al. “Current trends in molecular recognition and bioseparation” J Chromatogr A 1995 Jul 14;707(1):3-22; Deng S J et al. “Basis for selection of improved carbohydrate-binding single-chain antibodies from synthetic gene libraries” Proc Natl Acad Sci U S A 1995 May 23;92(11):4992-6; and Deng S J et al. “Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display” J Biol Chem 1994Apr 1;269(13):9533-8, which are incorporated herein by reference. Display libraries according to this aspect of the present invention can be used to identify and isolate polypeptides which are capable of regulating HBV attachment/infection e.g., in vivo. Thus, according to an additional aspect of the present invention there is provided a phage displaying at least a portion of the recombinant protein described herein, which can therefore be used, for example, as an anti-HBV medicament, either prophylactically or post infection. - According to still another aspect of the present invention there is provided an antibody comprising an immunoglobulin specifically recognizing and binding a polypeptide at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% or more, say 95% -100% homologous to SEQ ID NOs:2, 4 or 6 as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3). According to a preferred embodiment of this aspect of the present invention the antibody specifically recognizing and binding the polypeptides set forth in SEQ ID NOs:2, 4 or 6.
- The present invention can utilize serum immunoglobulins, polyclonal antibodies or fragments thereof, (i.e., immunoreactive derivative of an antibody), or monoclonal antibodies or fragments thereof. Monoclonal antibodies or purified fragments of the monoclonal antibodies having at least a portion of an antigen binding region, including such as Fv, F(abl)2, Fab fragments (Harlow and Lane, 1988 Antibody, Cold Spring Harbor), single chain antibodies (U.S. Pat. No. 4,946,778), chimeric or humanized antibodies and complementarily determining regions (CDR) may be prepared by conventional procedures. Purification of these serum immunoglobulins antibodies or fragments can be accomplished by a variety of methods known to those of skill including, precipitation by ammonium sulfate or sodium sulfate followed by dialysis against saline, ion exchange chromatography, affinity or immunoaffinity chromatography as well as gel filtration, zone electrophoresis, etc. (see Goding in, Monoclonal Antibodies: Principles and Practice, 2nd ed., pp. 104-126, 1986, Orlando, Fla., Academic Press). Under normal physiological conditions antibodies are found in plasma and other body fluids and in the membrane of certain cells and are produced by lymphocytes of the type denoted B cells or their functional equivalent. Antibodies of the IgG class are made up of four polypeptide chains linked together by disulfide bonds. The four chains of intact IgG molecules are two identical heavy chains referred to as H-chains and two identical light chains referred to as L-chains. Additional classes includes IgD, IgE, IgA, IgM and related proteins.
- Methods for the generation and selection of monoclonal antibodies are well known in the art, as summarized for example in reviews such as Tramontano and Schloeder, Methods in Enzymology 178, 551-568, 1989. A recombinant protein of the present invention may be used to generate antibodies in vitro. More preferably, the recombinant protein of the present invention is used to elicit antibodies in vivo. In general, a suitable host animal is immunized with the recombinant protein of the present invention. Advantageously, the animal host used is a mouse of an inbred strain. Animals are typically immunized with a mixture comprising a solution of the recombinant protein of the present invention in a physiologically acceptable vehicle, and any suitable adjuvant, which achieves an enhanced immune response to the immunogen. By way of example, the primary immunization conveniently may be accomplished with a mixture of a solution of the recombinant protein of the present invention and Freund's complete adjuvant, said mixture being prepared in the form of a water in oil emulsion. Typically the immunization may be administered to the animals intramuscularly, intradermally, subcutaneously, intraperitoneally, into the footpads, or by any appropriate route of administration. The immunization schedule of the immunogen may be adapted as required, but customarily involves several subsequent or secondary immunizations using a milder adjuvant such as Freund's incomplete adjuvant. Antibody titers and specificity of binding to the protein can be determined during the immunization schedule by any convenient method including by way of example radioimmunoassay, or enzyme linked immunosorbant assay, which is known as the ELISA assay. When suitable antibody titers are achieved, antibody producing lymphocytes from the immunized animals are obtained, and these are cultured, selected and cloned, as is known in the art. Typically, lymphocytes may be obtained in large numbers from the spleens of immunized animals, but they may also be retrieved from the circulation, the lymph nodes or other lymphoid organs. Lymphocytes are then fused with any suitable myeloma cell line, to yield hybridomas, as is well known in the art. Alternatively, lymphocytes may also be stimulated to grow in culture, and may be immortalized by methods known in the art including the exposure of these lymphocytes to a virus, a chemical or a nucleic acid such as an oncogene, according to established protocols. After fusion, the hybridomas are cultured under suitable culture conditions, for example in multiwell plates, and the culture supernatants are screened to identify cultures containing antibodies that recognize the hapten of choice. Hybridomas that secrete antibodies that recognize the recombinant protein of the present invention are cloned by limiting dilution and expanded, under appropriate culture conditions. Monoclonal antibodies are purified and characterized in terms of immunoglobulin type and binding affinity.
- According to yet an additional aspect of the present invention there is provided a method of isolating a polypeptide with HBV binding activity from a biological fluid. The method according to this aspect of the present invention is effected by (a) producing a purified HBV derived polypeptide; (b) binding the purified HBV derived polypeptide to a solid matrix to thereby obtain an affinity solid matrix; and (c) using the affinity solid matrix for affinity purification of the polypeptide with HBV binding activity from the biological fluid. According to a preferred embodiment of the method, the biological fluid is concentrated prior to step (c). The HBV derived polypeptide can be, for example, a HBV preS1 peptide or a portion thereof, which is suspected of involvement in attachment. Thus, for example, the HBV derived polypeptide can be as set forth in SEQ ID NO:8 or 9. The biological fluid employed is preferably urine, however, other fluids, such as serum, blood, nasal secretions, tears, saliva, etc. are also applicable.
- According to still an additional aspect of the present invention there is provided a method of inhibiting HBV attachment to a hepatic cell. The method according to this aspect of the present invention is effected by exposing the cell to a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide. Accordingly, the present invention provides a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell. The pharmaceutical composition comprising a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- According to yet a further aspect of the present invention there is provided a method of inhibiting HBV attachment to a hepatic cell. The method according to this aspect of the present invention is effected by loading the cell with an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide. Accordingly, the present invention further provides a pharmaceutical composition for inhibiting HBV attachment to a hepatic cell the pharmaceutical composition comprising an antisense molecule being targeted against a mRNA encoding a recombinant urine derived protein, the recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide, and a pharmaceutically acceptable carrier.
- Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
- Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non-limiting fashion.
- Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and recombinant DNA techniques. Such techniques are thoroughly explained in the literature. See, for example, “Molecular Cloning: A laboratory Manual” Sambrook et al., (1989); “Current Protocols in Molecular Biology” Volumes I-III Ausubel, R. M., ed. (1994); Cell Biology: A Laboratory Handbook38 Volumes I-III Cellis, J. E., ed. (1994); “Current Protocols in Immunology” Volumes I-III Coligan J. E., ed. (1994); “Oligonucleotide Synthesis” Gait, M. J., ed. (1984); “Nucleic Acid Hybridization” Hames, B. D., and Higgins S. J., eds. (1985); “Transcription and Translation” Hames, B. D., and Higgins S. J., eds. (1984); “Animal Cell Culture” Freshney, R. I., ed. (1986); “Immobilized Cells and Enzymes” IRL Press, (1986); “A Practical Guide to Molecular Cloning” Perbal, B., (1984) and “Methods and Enzymology” Vol. 1-317 Academic Press; all of which are incorporated by reference as if fully set forth herein. Other general references are provided throughout this document. The procedures therein are believed to be well known in the art and are provided for the convenience of the reader. All the information contained therein is incorporated herein by reference.
- Preparation of the affinity columns: For the preparation of the affinity columns first a recombinant preS1 protein was prepared. The HBV preS1 gene was obtained by PCR amplification from a plasmid containing the entire HBV genome (cloned at the laboratory of W. J. Rutter at the UCSF). The following primers were used for amplification: 5′-GGAGATCTTCAAAACCTGGCAAAGGC-3′ (SEQ ID NO:10) and 5′-GAATTCCACTGCATGGCCTG-3′ (SEQ ID NO:11). The PCR product was cloned into the p-RSET- B vector (Invitrogene). The constructed plasmid was sequenced using the Weizmann Institute service center (see, SEQ ID NO:7). Recombinant His tagged pre-S1 protein (see SEQ ID NO:8) was expressed inE. coli B121 cells. Cells were grown overnight at 37° C. in M9ZB medium containing 0.4% glucose. The overnight culture was then diluted 1:50 with fresh M9ZB medium and was further grown at 37° C. When the OD (600 nm) reached 0.7-0.8 the cells were induced with IPTG (1 mM). The soluble fraction was purified to homogeneity from cell extracts by metal affinity chromatography using a Ninta-affinity column (Quiagene) and analyzed by SDS-PAGE.
- A synthetic peptide affinity column was also prepared. A 29 amino-acid long peptide (SEQ IF NO:9) that was reported to be sufficient to interact with hepatocytes was synthesized at the Weizmann Institute service center. To obtain purified and homogenous peptide the synthetic peptide was further purified by gel filtration on a Sephadex G-25 column using 0.1 M NaOAc, pH 4.7, buffer. The purified fractions were stored at 4° C. until used.
- For the preparation of the affinity column about 10 mg of either the recombinant preS1 protein or the synthetic peptide was covalently cross-linked to MSH activated beads Affinity-gel 10 (Bio-Rad) according to the manufacturer's instructions, and used for affinity chromatography.
- Protein purification: Concentrated human urine (×1000) was passed through the recombinant preS1 protein and/or the synthetic peptide affinity column, which were pre-equilibrated in PBS. The column was washed with PBS and then washed with 0.5 M NaCl, in order to wash out the non-specific associated proteins. The bound fraction was then eluted by a low pH buffer containing: 0.2 M glycine pH 2.5, 50% PEG and 10% TWEEN20.
- ELISA: ELISA plates were coated with preS1-affinity-purified proteins at varying dilution for 1 hour and then blocked with 0.05% gelatin for 30 minutes. 0.5 ng/ml HBsAg particles (obtained from Biotechnology general, Israel) were added to the immobilized proteins and incubated for 1 hour. Next, the plate was incubated with goat antibodies directed against HBsAg particles (diluted 1:2000) for 1 hour and for an additional hour with donkey anti goat antibodies (diluted 1:2500). All reactions were performed at 37° C.
- Analysis of UP43: The UP43 was treated with N-glyconase that removes the sugar residues. Protein solution in TBS pH-8.0 , 0.5% SDS and 50 mM β-Mercaptoethanol was boiled for 5 minutes. The protein sample was then brought to 0.25% of NP-40 and 0.3 units of N-glyconase was added and incubated overnight at 37° C. The reaction was stopped by boiling for 5 minutes and the protein was analyzed by a 12% SDS-PAGE.
- cDNAs Isolation:
- UP43—RNA of Hep3B cells was subjected to RT-PCR reaction (Promega) using the following primers: For cDNA synthesis: 5′-GACTTGAATTCCTGTGGTTGA-3′ (SEQ ID NO:12); for DNA amplification (PCR): 5′-GCCAGCACCATGGCAACCAGT-3′ (SEQ ID NO:13) and 5′-GACTTGAATTCCTGTGGTTGA-3′ (SEQ ID NO:14). The PCR product was digested with NcoI and EcoRI restriction enzymes (Fermentas) and cloned into the NcoI and EcoRI sites in the pRSET vector (Invitrogen). The sequence of the cloned PCR fragment was confirmed by DNA sequencing performed at the Weizmann Institute services center.
- UP50—An EcoRI—BamHI fragment from I.M.A.G.E. clone number 12937 (Accession No. r16451) was labeled with32P-dATP (Amersham, 3000 Ci/mmole) by nick translation. About 106 cpm labeled probe was used to screen a human kidney gt10 cDNA library (obtained from O. Reiner at the Weizmann Institute, Israel) using standard plaque lifting and hybridization techniques. The inserts of positive plaques were rescued by PCR reaction, using phage derived primers. These fragments were cloned into pGEM-T vectors and sequences at the Weizmann. Another PCR reaction was employed, using a primer from up50 and a primer from the vector. The right clone was sequenced at the Weizmann Institute service center.
- UPH1—See results section.
- Construction of GFP chimera plasmids: up50 cDNA was cloned upstream to GFP in pEGFPN1 plasmid (clontech). Cos1 cells were transfected and the expression of the chimera protein was visualized by a florescent microscope.
- Based on previous research, the preS1 region of HBsAg is expected to contain the receptor binding region (Neurath et al., 1985; Petit et al., 1991). For HBV receptor purification a recombinant His-tagged preS1 protein (FIGS. 1a and 1 b, SEQ ID NOs:7-8) was prepared. The recombinant protein was purified to homogeneity by employing a Ninta-affinity column (Quiagene). Also, a 29 amino-acid long peptide that was reported to be sufficient to interact with hepatocytes was synthesized (SEQ ID NO:9). This synthetic peptide was further purified on a G25 column to obtain a homogenous peptide (FIG. 1c).
- The recombinant preS1 protein (SEQ ID NO:7) was covalently cross-linked to beads (Affinity gel 10, BioRad) according to the manufacturer's instructions and was used for affinity chromatography. Concentrated urine (×1000) was passed through the column, the column was washed and the bound proteins were eluted at low pH (see methods). The eluted fractions were analyzed on SDS-PAGE gel and silver stained. Two major bands appeared after elution from the preS1 column (FIG. 2, lane E2). The estimated molecular masses of the stained proteins were 50 and 43, and therefore they were named UP50 and UP43, respectively.
- Further purification of the proteins described in Example 2 was achieved by using a second affinity chromatography column, composed of the synthetic peptide that contain the preSl amino-acids 21-49 region (FIGS. 1a and 1 c). It has been reported that a similar synthetic peptide may block the attachment of HBV to hepatocytes, and therefore it is likely to contain the receptor binding sequence motif (Neurath et al., 1986). The eluted fractions were reloaded on a column that contained beads with cross-linked synthetic peptide, washed and eluted as for the first column. Both proteins, but especially UP50, were specifically retained on the column, indicating that they interact with the small preS1 region reported to be involved in hepatocyte binding (FIG. 3).
- In order to test their capability to interact with HBsAg particles, ELISA was performed on immobilized affmity-purified urine proteins to which HBV particles had been added. As shown in FIG. 4, HBsAg particles interact with the affinity purified urine proteins, in a dose-dependent manner.
- After treatment with N-glyconase that removes sugar residues, the protein migration of UP43 was faster, indicating that it is a glycoprotein (FIG. 5). The fact that this protein (and also UP50, see below) are glycosylated suggests that they are secreted proteins. UP43's migration was slower in reduced gel than in non-reduced one. This indicates that the protein contains disulfide bonds.
- Microsequencing of four fragments of UP43 and isolation and sequencing of a full length cDNA thereof (SEQ ID NOs:1, 2 for cDNA and amino acids of UP43, respectively) revealed that it is identical to S1-5 (Databank accession No. AAA65590) published previously (FIG. 6). It has been shown that S1-5 is overexpressed in prematurely senescent Werner syndrome (WS) cells, in senescent and quiescent human diploid fibroblasts (HDF) (Lecka et al., 1995). The S1-5 transcript, when injected into cells, causes stimulation of DNA synthesis. Four distinct cDNA fragments containing ATG codons in the same ORF suggest that there is an alternative initiation of translation/splicing in the 5′ end, allowing the synthesis of four different UP43 proteins in the calculated molecular weights range of 54.6 kDa to 43.1 kDa (Lecka-Czernik et al., 1995).
- The proteins include five to six epidermal growth factor (EGF)-like domains, depending on the choice of translational start site (Doolittle et al., 1984). This domain is defined by the spacing of six conserved cysteines over a sequence of 35-40 amino acids. The six cysteines form three disulfide bonds. The proteins further includes an N-glycosylation site at Asn-249, as was confirmed by biochemical tests. A highly hydrophobic sequence of 14 amino acids was found at the C-terminus of the proteins, which could serve as a transmembrane domain. The putative proteins further contain a hydrophobic amino acid sequence at their N terminus, which may serve as a secretory signal peptide, and a possible signal sequence cleavage site. These findings suggest that the proteins translated from the up43 gene are membrane-associated.
- In order to determine the localization of UP50 in the cell, up50 cDNA was fused with the Green Fluorescence Protein (GFP) cDNA. Thus a cDNA fragment encoding a GFP, of 27 kDa molecular mass, was fused to a up50 cDNA, such that the in the fused protein product the GFP amino acid sequence is located at the C terminus of UP50, so as not to disrupt the putative secretory signal at the N terminus. The construct was transfected to Cos1 cells. UP50-GFL was localized on cell membrane (FIG. 7) confirming the membrane association suggested in Example 6.
- Four peptides derived from trypsin digested UP50 were sequenced. These peptides are underlined in FIG. 8. The peptides showed 100% identity to the translation product of an I.M.A.G.E. clone (clone number 12937), which was ordered and sequenced. The clone contained only about 300 coding nucleotides. Consequently, isolation of the complete up50 cDNA was accomplished and its sequence determined (FIG. 8, SEQ ID NOs:1, 2 for cDNA and amino acids of UP50, respectively). Inspection of the amino acid sequence of the C-terminus of UP50 revealed a region homologous to the C-terminus of UP43. In addition, UP50 migration was slower in reduced gel than in non-reduced one (data not shown), indicating that the protein contains disulfide bonds similar to those found in UP43. The sequence of up50 and UP50 revealed that this is a novel gene.
- To determine the tissue specificity of up50 expression, a commercial “master-blot” (Clontech) that contains an equal and normalized amount of RNA from different adult and fetal tissues was employed. up50 cDNA was32p labeled by random priming and was incubated with this blot in a hybridization reaction. Although up50 is expressed in many adult and fetal tissues, there are some differences at the level of expression (FIGS. 9a and 9 b). The highest level of expression was obtained in aorta (square 2C of the grid in FIG. 9a) and the lowest in brain, medulla oblongata and spinal cord.
- A similar analysis was done with a up43 probe (data not shown) and the results were similar but not identical to those obtained with the up50 probe. For example, expression of up43 can be easily detected in the different brain regions. Of particular interest is the liver, where expression of these proteins is moderate. The fact that these proteins are expressed in many tissues argues strongly against them being exclusively responsible for liver recognition by HBV. Therefore, a role of co-factor is attributed to these proteins. This situation is similar to that of the CD4 receptor in HIV infection. CD4 receptor is not sufficient for infection as cofactors are required for infection. In the case of HIV, a chemokine family of proteins which is ubiquitously expressed in T cells plays the role of cofactor.
- A close and novel UP50 homologue was found screening the EST database (Databank accession No. r16451, FIG. 10) and was named UP homologue 1 (UPH1). The EST clone, of which only 600 bp, 300 at each prime, were known was ordered and sequenced. It included the full cDNA (SEQ ID NOs:5, 6 for UPH1 cDNA and amino acids, respectively). The sequence of UPH1 revealed that unlike UP50, it does not include an RGD motif and therefore it is unlikely to interact with fibronectin, otherwise it includes the other motifs found in the UP family, as is further described herein.
- The homology between the amino (upper right, homology(identity)), SEQ ID NOs:2, 4 and 6) and nucleic (lower left, identity, SEQ ID NOs:1, 3 and 5) acids sequences of UP43, UP50 and UPH1 and the cDNA sequences encoding same, respectively, are given in the following Table:
UP43 UP50 UPH1 UP43 — 53(44.2) 58.1(49.9) UP50 52.8 — 60.5(50.3) UPH1 55.7 59.1 — - All the UP proteins contain similar EGF repeats of a calcium binding type found in numerous other proteins, such as described in Davis, 1990. Also, some EGF repeats contain aspartic-acid and asparagine that undergo hydroxylation (FIG. 11). All UP proteins have a transmembrane domain at the C-terminus, suggesting that they are membrane associated. They also contain a signal-peptide (the highly hydrophobic region) at the N-terminus, suggesting that the N-terminus is positioned out of the cells (FIG. 11).
- Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
- References
- 1. Davis, C. G. 1990. The many faces of epidermal growth factor repeats. New Biol 2: 410-9.
- 2. De, M. S., Z. J. Gong, W. Suwandhi, P. J. van, A. Soumillion and S. H. Yap. 1997. Organ and species specificity of hepatitis B virus (HBV) infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes. J Viral Hepat 4: 145-53.
- 3. Doolittle, R. F., D. F. Feng and M. S. Johnson. 1984. Computer-based characterization of epidermal growth factor precursor. Nature 307: 558-60.
- 4. Lecka-Czernik, B., Jr., Lumpkin, C. K., and S. Goldstein. 1995. An overexpressed gene transcript in senescent and quiescent human fibroblasts encoding a novel protein in the epidermal growth factor-like repeat family stimulates DNA synthesis. Mol Cell Biol 15: 120-8.
- 5. Neurath, A. R., S. B. Kent, N. Strick, P. Taylor and C. E. Stevens. 1985. Hepatitis B virus contains pre-S gene-encoded domains. Nature 315: 154-6.
- 6. Neurath, A. R., S. B. Kent, K. Parker, A. M. Prince, N. Strick, B. Brotman and P. Sproul. 1986. Antibodies to a synthetic peptide from the preS 120-145 region of the hepatitis B virus envelope are virus neutralizing. Vaccine 4: 35-7
- 7. Petit, M. A., S. Dubanchet, F. Capel, P. Voet, C. Dauguet and P. Hauser. 1991. HepG2 cell binding activities of different hepatitis B virus isolates: inhibitory effect of anti-HBs and anti-preS1(21-47). Virology 180: 483-91.
- 8. Shouval, D., Y. Ilan, R. Adler, R. Deepen, A. Panet, Z. Even-Chen, M. Gorecki and W. H. Gerlich. 1994. Improved immunogenicity in mice of a mammalian cell-derived recombinant hepatitis B vaccine containing pre-S1 and pre-S2 antigens as compared with conventional yeast-derived vaccines. Vaccine 12: 1453-9
-
1 14 1 2512 DNA Homo sapiens 1 caatgcactg acggatatga gtgggatcct gtgagacagc aatgcaaaga tattgatgaa 60 tgtgacattg tcccagacgc ttgtaaaggt ggaatgaagt gtgtcaacca ctatggagga 120 tacctctgcc ttccgaaaac agcccagatt attgtcaata atgaacagcc tcagcaggaa 180 acacaaccag cagaaggaac ctcaggggca accaccgggg ttgtagctgc cagcagcatg 240 gcaaccagtg gagtgttgcc cgggggtggt tttgtggcca gtgctgctgc agtcgcaggc 300 cctgaaatgc agactggccg aaataacttt gtcatccggc ggaacccagc tgaccctcag 360 cgcattccct ccaacccttc ccaccgtatc cagtgtgcag caggctacga gcaaagtgaa 420 cacaacgtgt gccaagacat agacgagtgc actgcaggga cgcacaactg tagagcagac 480 caagtgtgca tcaatttacg gggatccttt gcatgtcagt gccctcctgg atatcagaag 540 cgaggggagc agtgcgtaga catagatgaa tgtaccatcc ctccatattg ccaccaaaga 600 tgcgtgaata caccaggctc attttattgc cagtgcagtc ctgggtttca attggcagca 660 aacaactata cctgcgtaga tataaatgaa tgtgatgcca gcaatcaatg tgctcagcag 720 tgctacaaca ttcttggttc attcatctgt cagtgcaatc aaggatatga gctaagcagt 780 gacaggctca actgtgaaga cattgatgaa tgcagaacct caagctacct gtgtcaatat 840 caatgtgtca atgaacctgg gaaattctca tgtatgtgcc cccagggata ccaagtggtg 900 agaagtagaa catgtcaaga tataaatgag tgtgagacca caaatgaatg ccgggaggat 960 gaaatgtgtt ggaattatca tggcggcttc cgttgttatc cacgaaatcc ttgtcaagat 1020 ccctacattc taacaccaga gaaccgatgt gtttgcccag tctcaaatgc catgtgccga 1080 gaactgcccc agtcaatagt ctacaaatac atgagcatcc gatctgatag gtctgtgcca 1140 tcagacatct tccagataca ggccacaact atttatgcca acaccatcaa tacttttcgg 1200 attaaatctg gaaatgaaaa tggagagttc tacctacgac aaacaagtcc tgtaagtgca 1260 atgcttgtgc tcgtgaagtc attatcagga ccaagagaac atatcgtgga cctggagatg 1320 ctgacagtca gcagtatagg gaccttccgc acaagctctg tgttaagatt gacaataata 1380 gtggggccat tttcatttta gtcttttcta agagtcaacc acaggcattt aagtcagcca 1440 aagaatattg ttaccttaaa gcactatttt atttatagat atatctagtg catctacatc 1500 tctatactgt acactcaccc ataacaaaca attacaccat ggtataaagt gggcatttaa 1560 tatgtaaaga ttcaaagttt gtctttatta ctatatgtaa attagacatt aatccactaa 1620 actggtcttc ttcaagagag ctaagtatac actatctggt gaaacttgga ttctttccta 1680 taaaagtggg accaagcaat gatgatcttc tgtggtgctt aaggaaactt actagagctc 1740 cactaacagt ctcataagga ggcagccatc ataaccattg aatagcatgc aagggtaaga 1800 atgagttttt aactgctttg taagaaaatg gaaaaggtca ataaagatat atttctttag 1860 aaaatgggga tctgccatat ttgtgttggt ttttattttc atatccagcc taaaggtggt 1920 tgtttattat atagtaataa atcattgctg tacaacatgc tggtttctgt agggtatttt 1980 taattttgtc agaaatttta gattgtgaat attttgtaaa aaacagtaag caaaattttc 2040 cagaattccc aaaatgaacc agataccccc tagaaaatta tactattgag aaatctatgg 2100 ggaggatatg agaaaataaa ttccttctaa accacattgg aactgacctg aagaagcaaa 2160 ctcggaaaat ataataacat ccctgaattc aggcattcac aagatgcaga acaaaatgga 2220 taaaaggtat ttcactggag aagttttaat ttctaagtaa aatttaaatc ctaacacttc 2280 actaatttat aactaaaatt tctcatcttc gtacttgatg ctcacagagg aagaaaatga 2340 tgatggtttt tattcctggc atccagagtg acagtgaact taagcaaatt accctcctac 2400 ccaattctat ggaatatttt atacgtctcc ttgtttaaaa tctgactgct ttactttgat 2460 gtatcatatt tttaaataaa aataaatatt cctttagaag atcactctaa aa 2512 2 387 PRT Homo sapiens 2 Met Ala Thr Ser Gly Val Leu Pro Gly Gly Gly Phe Val Ala Ser Ala 1 5 10 15 Ala Ala Val Ala Gly Pro Glu Met Gln Thr Gly Arg Asn Asn Phe Val 20 25 30 Ile Arg Arg Asn Pro Ala Asp Pro Gln Arg Ile Pro Ser Asn Pro Ser 35 40 45 His Arg Ile Gln Cys Ala Ala Gly Tyr Glu Gln Ser Glu His Asn Val 50 55 60 Cys Gln Asp Ile Asp Glu Cys Thr Ala Gly Thr His Asn Cys Arg Ala 65 70 75 80 Asp Gln Val Cys Ile Asn Leu Arg Gly Ser Phe Ala Cys Gln Cys Pro 85 90 95 Pro Gly Tyr Gln Lys Arg Gly Glu Gln Cys Val Asp Ile Asp Glu Cys 100 105 110 Thr Ile Pro Pro Tyr Cys His Gln Arg Cys Val Asn Thr Pro Gly Ser 115 120 125 Phe Tyr Cys Gln Cys Ser Pro Gly Phe Gln Leu Ala Ala Asn Asn Tyr 130 135 140 Thr Cys Val Asp Ile Asn Glu Cys Asp Ala Ser Asn Gln Cys Ala Gln 145 150 155 160 Gln Cys Tyr Asn Ile Leu Gly Ser Phe Ile Cys Gln Cys Asn Gln Gly 165 170 175 Tyr Glu Leu Ser Ser Asp Arg Leu Asn Cys Glu Asp Ile Asp Glu Cys 180 185 190 Arg Thr Ser Ser Tyr Leu Cys Gln Tyr Gln Cys Val Asn Glu Pro Gly 195 200 205 Lys Phe Ser Cys Met Cys Pro Gln Gly Tyr Gln Val Val Arg Ser Arg 210 215 220 Thr Cys Gln Asp Ile Asn Glu Cys Glu Thr Thr Asn Glu Cys Arg Glu 225 230 235 240 Asp Glu Met Cys Trp Asn Tyr His Gly Gly Phe Arg Cys Tyr Pro Arg 245 250 255 Asn Pro Cys Gln Asp Pro Tyr Ile Leu Thr Pro Glu Asn Arg Cys Val 260 265 270 Cys Pro Val Ser Asn Ala Met Cys Arg Glu Leu Pro Gln Ser Ile Val 275 280 285 Tyr Lys Tyr Met Ser Ile Arg Ser Asp Arg Ser Val Pro Ser Asp Ile 290 295 300 Phe Gln Ile Gln Ala Thr Thr Ile Tyr Ala Asn Thr Ile Asn Thr Phe 305 310 315 320 Arg Ile Lys Ser Gly Asn Glu Asn Gly Glu Phe Tyr Leu Arg Gln Thr 325 330 335 Ser Pro Val Ser Ala Met Leu Val Leu Val Lys Ser Leu Ser Gly Pro 340 345 350 Arg Glu His Ile Val Asp Leu Glu Met Leu Thr Val Ser Ser Ile Gly 355 360 365 Thr Phe Arg Thr Ser Ser Val Leu Arg Leu Thr Ile Ile Val Gly Pro 370 375 380 Phe Ser Phe 385 3 2019 DNA Homo sapiens misc_feature (22)..(22) any nucleotide 3 accccggcgc tctccccgtg tnctctccac gactcgctcg gcccctctgg aataaaacac 60 ccgcgagccc cgagggccca gaggaggccg acgtgcccga gctcctccgg gggtcccgcc 120 cgcaagcttt cttctcgcct tcgcatctcc tcctcgcgcg tcttggacat gccaggaata 180 aaaaggatac tcactgttac cattctggct ctctgtcttc caagccctgg gaatgcacag 240 gcacagtgca cgaatggctt tgacctggat cgccagtcag gacagtgttt agatattgat 300 gaatgccgaa ccatccccga ggcctgccga ggagacatga tgtgtgttaa ccaaaatggg 360 gggtatttat gccattcccg gacaaaccct gtgtatcgag ggccctactc gaacccctac 420 tcgaccccct actcaggtcc gtacccagca gctgccccac cactctcagc tccaaactat 480 cccacgatct ccaggcctct tatatgccgc tttggatacc agatggatga aagcaaccaa 540 tgtgtggatg tggacgagtg tgcaacagat tcccaccagt gcaaccccac ccagatttgc 600 atcaatatga agggcgggta cacctgctcc tgcaccgacg gatattggct tttggaaggc 660 cagtgcttag acattgatga atgtcgctat ggttactgcc agcagctctg tgcgaatgtt 720 cctggatcct attcttgtac atgcaaccct ggttttaccc tcaatgagga tggaaggtct 780 tgccaagatg tgaacgagtg tgccaccgag aacccctgcg tgcaaacctg cgtcaacacc 840 tacggctctt tcatctgccg ctgtgaccca ggatatgaac ttgaggaaga tggcgttcat 900 tgcagtgata tggacgagtg cagcttctct gagttcctct gccaacatga gtgtgtgaac 960 cagcccggca catacttctg ctcctgccct ccaggctaca tcctgctgga tgacaaccga 1020 agctgccaag acatcaacga atgtgagcac aggaaccaca cgtgcaacct gcagcagacg 1080 tgctacaatt tacaaggggg cttcaaatgc atcgacccca tccgctgtga ggagccttat 1140 ctgaggatca gtgataaccg ctgtatgtgt cctgctgaga accctggctg cagagaccag 1200 ccctttacca tcttgtaccg ggacatggac gtggtgtcag gacgctccgt tcccgctgac 1260 atcttccaaa tgcaagccac gacccgctac cctggggcct attacatttt ccagatcaaa 1320 tctgggaatg agggcagaga attttacatg cggcaaacgg gccccatcag tgccaccctg 1380 gtgatgacac gccccatcaa agggccccgg gaaatccagc tggacttgga aatgatcact 1440 gtcaacactg tcatcaactt cagaggcagc tccgtgatcc gactgcggat atatgtgtcg 1500 cagtacccat tctgagcctc gggctggagc ctccgacgct gcctctcatt ggcaccaagg 1560 gacaggagaa gagaggaaat aacagagaga atgagagcga cacagacgtt aggcatttcc 1620 tgctgaacgt ttccccgaag agtcagcccc gacttcctga ctctcacctg tactattgca 1680 gacctgtcac cctgcaggac ttgccacccc cagttcctat gacacagtta tcaaaaagta 1740 ttatcattgc tcccctgata gaagattgtt ggtgaatttt caaggccttc agtttatttc 1800 cactattttc aaagaaaata gattaggttt gcgggggtct gagtctatgt tcaaagactg 1860 tgaacagctt gctgtcactt cttcacctct tccactcctt ctctcactgt gttactgctt 1920 tgcaaagacc cggggagctg gcggggaaac cctggggagt agctagtttg ctttttgcgt 1980 acacagaaga aggctatgta aacaaaccac agcaggatc 2019 4 448 PRT Homo sapiens 4 Met Pro Gly Ile Lys Arg Ile Leu Thr Val Thr Ile Leu Ala Leu Cys 1 5 10 15 Leu Pro Ser Pro Gly Asn Ala Gln Ala Gln Cys Thr Asn Gly Phe Asp 20 25 30 Leu Asp Arg Gln Ser Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Thr 35 40 45 Ile Pro Glu Ala Cys Arg Gly Asp Met Met Cys Val Asn Gln Asn Gly 50 55 60 Gly Tyr Leu Cys His Ser Arg Thr Asn Pro Val Tyr Arg Gly Pro Tyr 65 70 75 80 Ser Asn Pro Tyr Ser Thr Pro Tyr Ser Gly Pro Tyr Pro Ala Ala Ala 85 90 95 Pro Pro Leu Ser Ala Pro Asn Tyr Pro Thr Ile Ser Arg Pro Leu Ile 100 105 110 Cys Arg Phe Gly Tyr Gln Met Asp Glu Ser Asn Gln Cys Val Asp Val 115 120 125 Asp Glu Cys Ala Thr Asp Ser His Gln Cys Asn Pro Thr Gln Ile Cys 130 135 140 Ile Asn Met Lys Gly Gly Tyr Thr Cys Ser Cys Thr Asp Gly Tyr Trp 145 150 155 160 Leu Leu Glu Gly Gln Cys Leu Asp Ile Asp Glu Cys Arg Tyr Gly Tyr 165 170 175 Cys Gln Gln Leu Cys Ala Asn Val Pro Gly Ser Tyr Ser Cys Thr Cys 180 185 190 Asn Pro Gly Phe Thr Leu Asn Glu Asp Gly Arg Ser Cys Gln Asp Val 195 200 205 Asn Glu Cys Ala Thr Glu Asn Pro Cys Val Gln Thr Cys Val Asn Thr 210 215 220 Tyr Gly Ser Phe Ile Cys Arg Cys Asp Pro Gly Tyr Glu Leu Glu Glu 225 230 235 240 Asp Gly Val His Cys Ser Asp Met Asp Glu Cys Ser Phe Ser Glu Phe 245 250 255 Leu Cys Gln His Glu Cys Val Asn Gln Pro Gly Thr Tyr Phe Cys Ser 260 265 270 Cys Pro Pro Gly Tyr Ile Leu Leu Asp Asp Asn Arg Ser Cys Gln Asp 275 280 285 Ile Asn Glu Cys Glu His Arg Asn His Thr Cys Asn Leu Gln Gln Thr 290 295 300 Cys Tyr Asn Leu Gln Gly Gly Phe Lys Cys Ile Asp Pro Ile Arg Cys 305 310 315 320 Glu Glu Pro Tyr Leu Arg Ile Ser Asp Asn Arg Cys Met Cys Pro Ala 325 330 335 Glu Asn Pro Gly Cys Arg Asp Gln Pro Phe Thr Ile Leu Tyr Arg Asp 340 345 350 Met Asp Val Val Ser Gly Arg Ser Val Pro Ala Asp Ile Phe Gln Met 355 360 365 Gln Ala Thr Thr Arg Tyr Pro Gly Ala Tyr Tyr Ile Phe Gln Ile Lys 370 375 380 Ser Gly Asn Glu Gly Arg Glu Phe Tyr Met Arg Gln Thr Gly Pro Ile 385 390 395 400 Ser Ala Thr Leu Val Met Thr Arg Pro Ile Lys Gly Pro Arg Glu Ile 405 410 415 Gln Leu Asp Leu Glu Met Ile Thr Val Asn Thr Val Ile Asn Phe Arg 420 425 430 Gly Ser Ser Val Ile Arg Leu Arg Ile Tyr Val Ser Gln Tyr Pro Phe 435 440 445 5 1661 DNA Homo sapiens 5 atgctcccct gcgcctcctg cctacccggg tctctactgc tctgggcgct gctactgttg 60 ctcttgggat cagcttctcc tcaggattct gaagagcccg acagctacac ggaatgcaca 120 gatggctata cccagacagc caactgccgg gatgtcaacg agtgtctgac catccctgag 180 gcctgcaagg gggaaatgaa gtgcatcaac cactacgggg gctacttgtg cctgccccgc 240 tccgctgccg tcatcaacga cctacacggc gagggacccc cgccaccagt gcctcccgtc 300 aacacccaac ccctgcccac aggctatgag cccgacgatc aggacagctg tgtggatgtg 360 gacgagtgtg cccaggccct gcacgactgt cgccccagcc aggactgcca taacttgcct 420 ggctcctatc agtgcacctg ccctgatggt taccgcaaga tcgggcccga gtgtgtggac 480 atagacgagt gccgctaccg ctactgccag caccgctgcg tgaacctgcc tggctccttc 540 cgctgccagt gcgagccggg cttccagctg gggcctaaca accgctcctg tgttgatgtg 600 aacgagtgtg acatgggggc cccatgcgag cagcgctgct tcaactccta tgggaccttc 660 ctgtgtcgct gccaccaggg ctatgagctg catcgggatg gcttctcctg cagtgatatt 720 gatgagtgta gctactccag ctacctctgt cagtaccgct gcgtcaacga gccaggccgt 780 ttctcctgcc actgcccaca gggttaccag ctgctggcca cacgcctctg ccaagacatt 840 gatgagtgtg agtctggtgc gcaccagtgg tccgaggccc aaacctgtgt caatttccat 900 gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca ggtctctgag 960 aaccgctgtc tctgcccggc ctccaaccct ctatgtcgag agcagccttc atccattgtg 1020 caccgctaca tgaccatcac ctcggaagcg gagagacccg ctgacgtgtt ccagatccag 1080 gcgacctccg tctaccccgg tgcctacaat gcctttcaga tccgtgctgg aaactcgcag 1140 ggggactttt acattaggca aatcaacaac gtcagcgcca tgctggtcct cgcccggccg 1200 gttacgggcc cccgggagta cgtgctggac ctggagatgg tcaccatgaa ttccctcatg 1260 agctaccggg ccagctctgt actgaggctc accgtctttg taggggccta caccttctga 1320 ggagcaggag ggagccaccc tccctgcagc taccctagct gaggagcctg ttgtgagggg 1380 cagaatgaga aaggcccagg ggcccccatt gacaggagct gggagctctg caccacgagc 1440 ttcagtcacc ccgagaggag aggaggtaac gaggagggcg gacttccags cccsgsccag 1500 agatttggac ttggctggct tgcaggggtc ctaagaaact ccactctgga cagcgccagg 1560 aggccctggg ttccattcct aactctgcct caaactgtac atttggataa gccctagtag 1620 ttccctgggc ctgtttttct ataaaacgag gcaactggaa a 1661 6 439 PRT Homo sapiens 6 Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 1 5 10 15 Leu Leu Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu 20 25 30 Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Thr Gln Thr Ala Asn 35 40 45 Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala Cys Lys Gly 50 55 60 Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys Leu Pro Arg 65 70 75 80 Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro Pro Pro Pro 85 90 95 Val Pro Pro Val Asn Thr Gln Pro Leu Pro Thr Gly Tyr Glu Pro Asp 100 105 110 Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala Gln Ala Leu His 115 120 125 Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro Gly Ser Tyr Gln 130 135 140 Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 145 150 155 160 Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 165 170 175 Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 180 185 190 Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 195 200 205 Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 210 215 220 His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 225 230 235 240 Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 245 250 255 Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 260 265 270 Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 275 280 285 Gln Trp Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 290 295 300 Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 305 310 315 320 Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 325 330 335 Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Ala Glu Arg 340 345 350 Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 355 360 365 Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 370 375 380 Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 385 390 395 400 Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 405 410 415 Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 420 425 430 Phe Val Gly Ala Tyr Thr Phe 435 7 534 DNA Artificial sequence HBV derived insertion cloned in p-RSET- B 7 atgcggggtt ctcatcatca tcatcatcat ggtatggcta gcatgactgg tggacagcaa 60 atgggtcggg atctgtacga cgatgacgat aaggatccga gctcgagatc ttcaaaacct 120 cgcaaaggca tggggacgaa tctttctgtt cccaatcctc tgggattctt tcccgatcat 180 cagttggacc ctgcattcgg agccaactca aacaatccag attgggactt caaccccgtc 240 aaggacgact ggccagcagc caaccaagta ggagtgggag cattcgggcc aaggctcacc 300 cctccacacg gcggtatttt ggggtggagc cctcaggctc agggcatatt gaccacagtg 360 tcaacaattc ctcctcctgc ctccaccaat cggcagtcag gaaggcagcc tactcccatc 420 tctccacctc taagagacag tcatcctcag gccatgcagt ggaattcgaa gcttgatccg 480 gctgctaaca aagcccgaaa ggaagctgag ttggctgctg ccaccgctga gcaa 534 8 178 PRT Artificial sequence HBV derived recombinant protein 8 Met Arg Gly Ser His His His His His His Gly Met Ala Ser Met Thr 1 5 10 15 Gly Gly Gln Gln Met Gly Arg Asp Leu Tyr Asp Asp Asp Asp Lys Asp 20 25 30 Pro Ser Ser Arg Ser Ser Lys Pro Arg Lys Gly Met Gly Thr Asn Leu 35 40 45 Ser Val Pro Asn Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro 50 55 60 Ala Phe Gly Ala Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Val 65 70 75 80 Lys Asp Asp Trp Pro Ala Ala Asn Gln Val Gly Val Gly Ala Phe Gly 85 90 95 Pro Arg Leu Thr Pro Pro His Gly Gly Ile Leu Gly Trp Ser Pro Gln 100 105 110 Ala Gln Gly Ile Leu Thr Thr Val Ser Thr Ile Pro Pro Pro Ala Ser 115 120 125 Thr Asn Arg Gln Ser Gly Arg Gln Pro Thr Pro Ile Ser Pro Pro Leu 130 135 140 Arg Asp Ser His Pro Gln Ala Met Gln Trp Asn Ser Lys Leu Asp Pro 145 150 155 160 Ala Ala Asn Lys Ala Arg Lys Glu Ala Glu Leu Ala Ala Ala Thr Ala 165 170 175 Glu Gln 9 29 PRT Artificial sequence Synthetic peptide 9 Pro Leu Gly Phe Phe Pro Asp His Gln Leu Asp Pro Ala Phe Gly Ala 1 5 10 15 Asn Ser Asn Asn Pro Asp Trp Asp Phe Asn Pro Gly Lys 20 25 10 26 DNA Artificial sequence Synthetic oligonucleotide 10 ggagatcttc aaaacctggc aaaggc 26 11 20 DNA Artificial sequence Synthetic oligonucleotide 11 gaattccact gcatggcctg 20 12 21 DNA Artificial sequence Synthetic oligonucleotide 12 gacttgaatt cctgtggttg a 21 13 21 DNA Artificial sequence Synthetic oligonucleotide 13 gccagcacca tggcaaccag t 21 14 21 DNA Artificial sequence Synthetic oligonucleotide 14 gacttgaatt cctgtggttg a 21
Claims (8)
1. A method of inhibiting HBV attachment to a hepatic cell the method comprising the step of exposing the cell to a recombinant urine derived protein, said recombinant urine derived protein being capable of binding to a purified HBV derived polypeptide.
2. The method of claim 1 , wherein said purified HBV derived polypeptide is HBsAg preS1 protein or a portion thereof.
3. The method of claim 1 , wherein said recombinant urine derived protein includes a polypeptide selected from the group consisting of:
(a) at least 60% homologous with SEQ ID NO:4 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3);
(b) being encoded by a polynucleotide at least 60% identical to SEQ ID NOs:1, 3, 5 or portions thereof as determined using the Bestfit procedure of the DNA sequence analysis software package developed by the Genetic Computer Group (GCG) at the university of Wisconsin (gap creation penalty—50, gap extension penalty—3); and
(c) being encoded by a polynucleotide hybridizable with SEQ ID NO:3 or portions thereof at 68° C. in 6×SSC, 1% SDS, 5× Denharts, 10% dextran sulfate, 100 μg/ml salmon sperm DNA, and 32p labeled probe and wash at 68° C. with 3×SSC and 0.1% SDS.
4. The method of claim 3 , wherein said polypeptide is as set fourth in SEQ ID NO:4 or portions thereof.
5. The method of claim 3 , wherein said polypeptide is capable of specifically binding HBV particles.
6. The method of claim 3 , wherein said polypeptide is capable of specifically binding to HBsAg preS1 protein or a portion thereof.
7. The method of claim 3 , wherein said polypeptide is capable of specifically binding to a polypeptide as set forth in SEQ ID NOs:8 or 9.
8. The method of claim 3 , wherein said recombinant urine derived protein is characterized by at least one of the following:
(a) at least one EGF like domain;
(b) at least one transmembrane domain;
(c) at least one site for attachment of a hydroxyl side chain;
(d) a signal peptide;
(e) an RGD attachment sequence;
(f) at least one glycosylation site; and
(g) at least one disulfide bond.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/759,037 US20040138131A1 (en) | 1999-09-30 | 2004-01-20 | Hepatitis B virus binding proteins and uses thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/409,096 US6589534B1 (en) | 1999-09-30 | 1999-09-30 | Hepatitis B virus binding proteins and uses thereof |
US10/443,923 US20030185857A1 (en) | 1999-09-30 | 2003-05-23 | Hepatitis B virus binding proteins and uses thereof |
US10/759,037 US20040138131A1 (en) | 1999-09-30 | 2004-01-20 | Hepatitis B virus binding proteins and uses thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/443,923 Division US20030185857A1 (en) | 1999-09-30 | 2003-05-23 | Hepatitis B virus binding proteins and uses thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040138131A1 true US20040138131A1 (en) | 2004-07-15 |
Family
ID=23619033
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/409,096 Expired - Fee Related US6589534B1 (en) | 1999-09-30 | 1999-09-30 | Hepatitis B virus binding proteins and uses thereof |
US10/443,923 Abandoned US20030185857A1 (en) | 1999-09-30 | 2003-05-23 | Hepatitis B virus binding proteins and uses thereof |
US10/759,037 Abandoned US20040138131A1 (en) | 1999-09-30 | 2004-01-20 | Hepatitis B virus binding proteins and uses thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/409,096 Expired - Fee Related US6589534B1 (en) | 1999-09-30 | 1999-09-30 | Hepatitis B virus binding proteins and uses thereof |
US10/443,923 Abandoned US20030185857A1 (en) | 1999-09-30 | 2003-05-23 | Hepatitis B virus binding proteins and uses thereof |
Country Status (1)
Country | Link |
---|---|
US (3) | US6589534B1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100419555B1 (en) * | 2000-05-29 | 2004-02-19 | 주식회사유한양행 | A variable region of the monoclonal antibody against a s-surface antigen of hepatitis b virus and a gene encoding the same |
US7175658B1 (en) | 2000-07-20 | 2007-02-13 | Multi-Gene Vascular Systems Ltd. | Artificial vascular grafts, their construction and use |
HUP0300810A2 (en) | 2000-07-20 | 2003-08-28 | M.G.V.S. Ltd. | Artifical vascular grafts, and methods of producing and using same |
EP1281761A1 (en) | 2001-07-27 | 2003-02-05 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Hepatitis B virus pre-S1 derived synthetic polypeptides and their use thereof. |
USD517695S1 (en) | 2004-02-23 | 2006-03-21 | Tyco Healthcare Group Ip | Compression sleeve |
US7282038B2 (en) * | 2004-02-23 | 2007-10-16 | Tyco Healthcare Group Lp | Compression apparatus |
US7871387B2 (en) | 2004-02-23 | 2011-01-18 | Tyco Healthcare Group Lp | Compression sleeve convertible in length |
CN101014341A (en) * | 2004-08-13 | 2007-08-08 | 麦根克斯有限公司 | Compositions and methods for treating or preventing hepadnaviridae infection |
ATE503766T1 (en) * | 2004-10-28 | 2011-04-15 | Dobeel Co Ltd | METHOD FOR LARGE PRODUCTION OF MULTIMER MANNOSE-BINDING LECTIN |
GB0515294D0 (en) | 2005-07-26 | 2005-08-31 | Novamedix Distrib Ltd | Limited durability closure means for an inflatable medical garment |
US8029451B2 (en) | 2005-12-12 | 2011-10-04 | Tyco Healthcare Group Lp | Compression sleeve having air conduits |
US7931606B2 (en) * | 2005-12-12 | 2011-04-26 | Tyco Healthcare Group Lp | Compression apparatus |
US7871100B2 (en) * | 2007-03-27 | 2011-01-18 | Wonderland Nurserygoods Co., Ltd. | Collapsible stroller |
US8162861B2 (en) | 2007-04-09 | 2012-04-24 | Tyco Healthcare Group Lp | Compression device with strategic weld construction |
US8021388B2 (en) | 2007-04-09 | 2011-09-20 | Tyco Healthcare Group Lp | Compression device with improved moisture evaporation |
US8109892B2 (en) * | 2007-04-09 | 2012-02-07 | Tyco Healthcare Group Lp | Methods of making compression device with improved evaporation |
US8016778B2 (en) | 2007-04-09 | 2011-09-13 | Tyco Healthcare Group Lp | Compression device with improved moisture evaporation |
US8034007B2 (en) | 2007-04-09 | 2011-10-11 | Tyco Healthcare Group Lp | Compression device with structural support features |
US8016779B2 (en) | 2007-04-09 | 2011-09-13 | Tyco Healthcare Group Lp | Compression device having cooling capability |
US8506508B2 (en) | 2007-04-09 | 2013-08-13 | Covidien Lp | Compression device having weld seam moisture transfer |
US8029450B2 (en) | 2007-04-09 | 2011-10-04 | Tyco Healthcare Group Lp | Breathable compression device |
USD608006S1 (en) | 2007-04-09 | 2010-01-12 | Tyco Healthcare Group Lp | Compression device |
US8070699B2 (en) | 2007-04-09 | 2011-12-06 | Tyco Healthcare Group Lp | Method of making compression sleeve with structural support features |
US8128584B2 (en) | 2007-04-09 | 2012-03-06 | Tyco Healthcare Group Lp | Compression device with S-shaped bladder |
WO2009092396A1 (en) * | 2008-01-25 | 2009-07-30 | Universitätsklinikum Heidelberg | Hydrophobic modified pres-derived peptides of hepatitis b virus (hbv) and their use as hbv and hdv entry inhibitors |
US8114117B2 (en) | 2008-09-30 | 2012-02-14 | Tyco Healthcare Group Lp | Compression device with wear area |
US8636678B2 (en) | 2008-07-01 | 2014-01-28 | Covidien Lp | Inflatable member for compression foot cuff |
US8235923B2 (en) | 2008-09-30 | 2012-08-07 | Tyco Healthcare Group Lp | Compression device with removable portion |
US8828718B2 (en) * | 2009-04-03 | 2014-09-09 | Centre National De La Recherche Scientifique | Gene transfer vectors comprising genetic insulator elements and methods to identify genetic insulator elements |
US8652079B2 (en) | 2010-04-02 | 2014-02-18 | Covidien Lp | Compression garment having an extension |
US10751221B2 (en) | 2010-09-14 | 2020-08-25 | Kpr U.S., Llc | Compression sleeve with improved position retention |
US9205021B2 (en) | 2012-06-18 | 2015-12-08 | Covidien Lp | Compression system with vent cooling feature |
US9872812B2 (en) | 2012-09-28 | 2018-01-23 | Kpr U.S., Llc | Residual pressure control in a compression device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010016650A1 (en) * | 1996-04-18 | 2001-08-23 | Kenneth Jacobs | Method of treatment with a secreted protien |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5872234A (en) | 1997-06-27 | 1999-02-16 | Incyte Pharmaceuticals, Inc. | Human extracellular matrix proteins |
-
1999
- 1999-09-30 US US09/409,096 patent/US6589534B1/en not_active Expired - Fee Related
-
2003
- 2003-05-23 US US10/443,923 patent/US20030185857A1/en not_active Abandoned
-
2004
- 2004-01-20 US US10/759,037 patent/US20040138131A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010016650A1 (en) * | 1996-04-18 | 2001-08-23 | Kenneth Jacobs | Method of treatment with a secreted protien |
Also Published As
Publication number | Publication date |
---|---|
US6589534B1 (en) | 2003-07-08 |
US20030185857A1 (en) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6589534B1 (en) | Hepatitis B virus binding proteins and uses thereof | |
Sprengel et al. | Molecular cloning and expression of cDNA encoding a peripheral-type benzodiazepine receptor | |
Yu et al. | Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. | |
US6551595B1 (en) | Smallpox inhibitor of complement enzymes (SPICE) protein and methods of inhibiting complement activation | |
US6500672B1 (en) | Liver enriched transcription factor | |
CA2243446A1 (en) | Db, the receptor for leptin, nucleic acids encoding the receptor, and uses thereof | |
JP2000350582A (en) | New 7-transmembrane receptor | |
Wilson et al. | Identification and subcellular localization of human rab5b, a new member of the ras-related superfamily of GTPases. | |
EP0672136B1 (en) | Polypeptides, derived from endonexin 2, having hepatitis b virus receptor activity and their use in diagnostic and pharmaceutical compositions | |
AU733853B2 (en) | A G protein-coupled receptor with an enlarged extracellular domain | |
US6544759B1 (en) | Polynucleotides encoding a novel growth factor which acts through ErbB-4 kinase receptor tyrosine | |
US20040259196A1 (en) | T cell receptor variants expressed in mesenchymal cells and uses thereof | |
RU2186783C2 (en) | Rabbit antiserum inhibiting transport of cationic amino acids and pharmaceutical composition comprising thereof | |
EP1743940B1 (en) | Cardioinhibitory/ antihypertensive novel endogenous physiologically active peptide | |
US6552177B2 (en) | EH domain containing genes and proteins | |
JP2001511016A (en) | Single gene encoding isoforms in aortic-specific and striated muscle-specific muscle cells, and uses thereof | |
US7214774B2 (en) | Fetal polypeptides from human liver | |
Cathcart et al. | Polymorphism of Acute-Phase Serum Amyloid A Isoforms and Amyloid Resistance in Wild-TypeMus musculus czech | |
US6258557B1 (en) | Smooth muscle cell LIM promoter | |
US20020146801A1 (en) | RNA polymerase I transcription factor TIF-IA | |
WO1995004756A1 (en) | Complement inhibitor proteins of non-human primates | |
MXPA01001655A (en) | A single gene encoding aortic-specific and striated-specific muscle cell isoforms, its regulatory sequences and uses thereof. | |
US7368293B2 (en) | Liver enriched transcription factor | |
WO2005044846A1 (en) | Adrenomedullin 2 and use thereof | |
JPH07203970A (en) | Thymopoietin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |