US20040116390A1 - Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders - Google Patents
Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders Download PDFInfo
- Publication number
- US20040116390A1 US20040116390A1 US10/601,279 US60127903A US2004116390A1 US 20040116390 A1 US20040116390 A1 US 20040116390A1 US 60127903 A US60127903 A US 60127903A US 2004116390 A1 US2004116390 A1 US 2004116390A1
- Authority
- US
- United States
- Prior art keywords
- group
- creatine
- alkenyl
- straight
- branched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical class NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 102000004420 Creatine Kinase Human genes 0.000 title claims abstract description 37
- 108010042126 Creatine kinase Proteins 0.000 title claims abstract description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 35
- 208000008589 Obesity Diseases 0.000 title claims abstract description 17
- 235000020824 obesity Nutrition 0.000 title claims abstract description 17
- 230000002265 prevention Effects 0.000 title description 2
- DRBBFCLWYRJSJZ-UHFFFAOYSA-N N-phosphocreatine Chemical group OC(=O)CN(C)C(=N)NP(O)(O)=O DRBBFCLWYRJSJZ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 21
- 201000010099 disease Diseases 0.000 claims abstract description 14
- 230000037396 body weight Effects 0.000 claims abstract description 12
- 208000030159 metabolic disease Diseases 0.000 claims abstract description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 38
- 125000003118 aryl group Chemical group 0.000 claims description 36
- 125000003342 alkenyl group Chemical group 0.000 claims description 34
- 229960003624 creatine Drugs 0.000 claims description 33
- 239000006046 creatine Substances 0.000 claims description 33
- AMHZIUVRYRVYBA-UHFFFAOYSA-N 2-(2-amino-4,5-dihydroimidazol-1-yl)acetic acid Chemical compound NC1=NCCN1CC(O)=O AMHZIUVRYRVYBA-UHFFFAOYSA-N 0.000 claims description 19
- 208000035475 disorder Diseases 0.000 claims description 19
- 125000001424 substituent group Chemical group 0.000 claims description 18
- 239000004593 Epoxy Substances 0.000 claims description 16
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 claims description 16
- -1 creatine compound Chemical class 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 12
- 125000001246 bromo group Chemical group Br* 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 claims description 8
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical group C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 8
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 claims description 8
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 claims description 8
- 239000002342 ribonucleoside Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 6
- 125000000623 heterocyclic group Chemical group 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 230000004580 weight loss Effects 0.000 claims description 6
- 230000001225 therapeutic effect Effects 0.000 claims description 5
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- 108091028664 Ribonucleotide Proteins 0.000 claims description 4
- 229910006069 SO3H Inorganic materials 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 4
- 239000002336 ribonucleotide Substances 0.000 claims description 4
- 208000024172 Cardiovascular disease Diseases 0.000 claims description 3
- 208000031226 Hyperlipidaemia Diseases 0.000 claims description 3
- 206010020772 Hypertension Diseases 0.000 claims description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 2
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 claims description 2
- 125000006729 (C2-C5) alkenyl group Chemical group 0.000 claims description 2
- 125000006730 (C2-C5) alkynyl group Chemical group 0.000 claims description 2
- 206010006895 Cachexia Diseases 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 208000001132 Osteoporosis Diseases 0.000 claims description 2
- 125000003435 aroyl group Chemical group 0.000 claims description 2
- 201000008482 osteoarthritis Diseases 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 230000004584 weight gain Effects 0.000 claims description 2
- 229940123290 Creatine kinase inhibitor Drugs 0.000 claims 1
- 238000011301 standard therapy Methods 0.000 claims 1
- 235000019786 weight gain Nutrition 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 13
- 230000003278 mimic effect Effects 0.000 abstract description 4
- 102100023153 Sodium- and chloride-dependent creatine transporter 1 Human genes 0.000 abstract description 3
- 108010007169 creatine transporter Proteins 0.000 abstract description 3
- 239000003112 inhibitor Substances 0.000 abstract description 3
- 230000001413 cellular effect Effects 0.000 abstract description 2
- 238000004260 weight control Methods 0.000 abstract description 2
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 0 C=**(CC(O)=O)C(N)=N Chemical compound C=**(CC(O)=O)C(N)=N 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 5
- 208000016261 weight loss Diseases 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 210000001525 retina Anatomy 0.000 description 4
- MXCVZCJMBFRQEB-UHFFFAOYSA-N 3-(2-amino-4,5-dihydroimidazol-1-yl)propanoic acid Chemical compound NC1=NCCN1CCC(O)=O MXCVZCJMBFRQEB-UHFFFAOYSA-N 0.000 description 3
- KMXXSJLYVJEBHI-UHFFFAOYSA-N 3-guanidinopropanoic acid Chemical compound NC(=[NH2+])NCCC([O-])=O KMXXSJLYVJEBHI-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000006583 body weight regulation Effects 0.000 description 3
- 235000019577 caloric intake Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- 108091006112 ATPases Proteins 0.000 description 2
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- 102000004310 Ion Channels Human genes 0.000 description 2
- 108010044467 Isoenzymes Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- QTQXGKJIBKYPNO-UHFFFAOYSA-N [H]P(=O)(O)CN(C)C(=N)NP(=O)(O)O Chemical compound [H]P(=O)(O)CN(C)C(=N)NP(=O)(O)O QTQXGKJIBKYPNO-UHFFFAOYSA-N 0.000 description 2
- 210000003486 adipose tissue brown Anatomy 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 210000005171 mammalian brain Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229950007002 phosphocreatine Drugs 0.000 description 2
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000035924 thermogenesis Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 1
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- LWYWAUJJEVGBLG-UHFFFAOYSA-N CC(C(=O)O)N(C)C(=N)N Chemical compound CC(C(=O)O)N(C)C(=N)N LWYWAUJJEVGBLG-UHFFFAOYSA-N 0.000 description 1
- ZVKNCPHBYJISLE-UHFFFAOYSA-N CC(C(=O)O)N(C)C(=N)NP(=O)(O)O Chemical compound CC(C(=O)O)N(C)C(=N)NP(=O)(O)O ZVKNCPHBYJISLE-UHFFFAOYSA-N 0.000 description 1
- VOGVWTSQZYOBBW-UHFFFAOYSA-N CCCN(CC(=O)O)C(=N)N Chemical compound CCCN(CC(=O)O)C(=N)N VOGVWTSQZYOBBW-UHFFFAOYSA-N 0.000 description 1
- QGRIXRAQFXBRGR-UHFFFAOYSA-N CCCN(CC(=O)O)C(=N)NP(=O)(O)O Chemical compound CCCN(CC(=O)O)C(=N)NP(=O)(O)O QGRIXRAQFXBRGR-UHFFFAOYSA-N 0.000 description 1
- DXMQZKIEVHKNTN-UHFFFAOYSA-N CCN(CC(=O)O)C(=N)N Chemical compound CCN(CC(=O)O)C(=N)N DXMQZKIEVHKNTN-UHFFFAOYSA-N 0.000 description 1
- NHAJZLBWBWDLLR-UHFFFAOYSA-N CCN(CC(=O)O)C(=N)NP(=O)(O)O Chemical compound CCN(CC(=O)O)C(=N)NP(=O)(O)O NHAJZLBWBWDLLR-UHFFFAOYSA-N 0.000 description 1
- LSJOKOWBJOVVQP-UHFFFAOYSA-N CN(CCC(=O)O)C(=N)N Chemical compound CN(CCC(=O)O)C(=N)N LSJOKOWBJOVVQP-UHFFFAOYSA-N 0.000 description 1
- CCPHTQOSZNDQJA-UHFFFAOYSA-N CN(CCC(=O)O)C(=N)NP(=O)(O)O Chemical compound CN(CCC(=O)O)C(=N)NP(=O)(O)O CCPHTQOSZNDQJA-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 206010008531 Chills Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100181592 Mus musculus Lep gene Proteins 0.000 description 1
- NVBLZOPMEKQBGH-UHFFFAOYSA-N N=C(N)N1CCC1C(=O)O Chemical compound N=C(N)N1CCC1C(=O)O NVBLZOPMEKQBGH-UHFFFAOYSA-N 0.000 description 1
- ZXPRYJHVDMWTMA-UHFFFAOYSA-N N=C(N)N1CCCC1C(=O)O Chemical compound N=C(N)N1CCCC1C(=O)O ZXPRYJHVDMWTMA-UHFFFAOYSA-N 0.000 description 1
- BPMFZUMJYQTVII-UHFFFAOYSA-N N=C(N)NCC(=O)O Chemical compound N=C(N)NCC(=O)O BPMFZUMJYQTVII-UHFFFAOYSA-N 0.000 description 1
- UUZLOPBEONRDRY-UHFFFAOYSA-N N=C(NCC(=O)O)NP(=O)(O)O Chemical compound N=C(NCC(=O)O)NP(=O)(O)O UUZLOPBEONRDRY-UHFFFAOYSA-N 0.000 description 1
- IBHKHIXWUNCDFV-UHFFFAOYSA-N N=C(NCCC(=O)O)NP(=O)(O)O Chemical compound N=C(NCCC(=O)O)NP(=O)(O)O IBHKHIXWUNCDFV-UHFFFAOYSA-N 0.000 description 1
- OJZFSNUGZFFLMU-UHFFFAOYSA-N N=C(NP(=O)(O)O)N1CCC1C(=O)O Chemical compound N=C(NP(=O)(O)O)N1CCC1C(=O)O OJZFSNUGZFFLMU-UHFFFAOYSA-N 0.000 description 1
- HCDPBORELVACKK-UHFFFAOYSA-N N=C(NP(=O)(O)O)N1CCCC1C(=O)O Chemical compound N=C(NP(=O)(O)O)N1CCCC1C(=O)O HCDPBORELVACKK-UHFFFAOYSA-N 0.000 description 1
- CUPWIVAPVWUAHI-UHFFFAOYSA-N N=C1N(CC(=O)O)CCN1P(=O)(O)O Chemical compound N=C1N(CC(=O)O)CCN1P(=O)(O)O CUPWIVAPVWUAHI-UHFFFAOYSA-N 0.000 description 1
- WRNVNPUKSMJQPN-UHFFFAOYSA-N N=C1N(CCC(=O)O)CCN1P(=O)(O)O Chemical compound N=C1N(CCC(=O)O)CCN1P(=O)(O)O WRNVNPUKSMJQPN-UHFFFAOYSA-N 0.000 description 1
- WGGBVDLXZWTJQL-UHFFFAOYSA-N NC1=NC=CN1CC(=O)O Chemical compound NC1=NC=CN1CC(=O)O WGGBVDLXZWTJQL-UHFFFAOYSA-N 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- XHGXFDYKSGETKL-UHFFFAOYSA-N [H]P(=O)(O)CN(C)C(=N)N Chemical compound [H]P(=O)(O)CN(C)C(=N)N XHGXFDYKSGETKL-UHFFFAOYSA-N 0.000 description 1
- RBCIMGRCSSLBLX-UHFFFAOYSA-N [H]P(=O)(O)CN1CCN(P(=O)(O)O)C1=N Chemical compound [H]P(=O)(O)CN1CCN(P(=O)(O)O)C1=N RBCIMGRCSSLBLX-UHFFFAOYSA-N 0.000 description 1
- QZCRGYFZTVWVSX-UHFFFAOYSA-N [H]P(=O)(O)CN1CCNC1=N Chemical compound [H]P(=O)(O)CN1CCNC1=N QZCRGYFZTVWVSX-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 210000000593 adipose tissue white Anatomy 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006540 mitochondrial respiration Effects 0.000 description 1
- 108700039855 mouse a Proteins 0.000 description 1
- 230000004220 muscle function Effects 0.000 description 1
- 235000006286 nutrient intake Nutrition 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000013116 obese mouse model Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 235000018770 reduced food intake Nutrition 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
Definitions
- the present invention provides for new use for creatine compounds (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic agents. More particularly, the present invention provides a method of treating or preventing certain metabolic disorders of human and animal metabolism relating to aberrant body weight regulation as manifested in obesity and it's related disorders.
- Obesity which can be defined as a body weight more than 20% in excess of the ideal body weight, is a major health problem in Western affluent societies. It is associated with an increased risk for cardiovascular disease, hypertension, diabetes, hyperlipidaemia and an increased mortality rate. Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure. The molecular factors regulating food intake and body weight balance are incompletely understood. Five single-gene mutations resulting in obesity have been described in mice, implicating genetic factors in the etiology of obesity.
- Cachexia on the other hand is characterized by severe weight loss and imbalanced energy expenditure, examples being patients with cancer or HIV infections.
- the creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)).
- the components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine trasporter.
- the enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand.
- the creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps.
- Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
- the substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina, adipose tissue and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No.
- creatine compounds are collectively referred to as “creatine compounds.”
- the present invention provides a method of treating or preventing a metabolic disorder which relates to an imbalance in the regulation of body weight.
- a metabolic disorder which relates to an imbalance in the regulation of body weight. Examples would be obesity and its related disorders (such as cardiovascular disease, hypertension, diabetes, hyperlipidaemia, osteoporosis and osteoarthritis) and severe weight loss. It consists of administering to a patient susceptible to or experiencing said disorder a creatine compound (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic in the form of a pharmacologically acceptable salt as the pharmaceutical agent effective to treat or prevent the disease or condition.
- a creatine compound creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system
- Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure while severe weight loss is a result of a negative energy balance.
- the creatine kinase system is known to be involved in energy metabolism and it's substrates creatine phosphate, and ATP are among the highest energy compounds in the cell. It is now possible to modify this system and come up with compounds that can change energy balance and subsequently treat, prevent or ameliorate the diseases mentioned.
- the present invention also provides compositions containing creatine compounds in combination with a pharmaceutically acceptable carrier. Also, they could be used in combination with effective amounts of standard chemotherapeutic agents which act on regulating body weight and others to prophylactically and/or therapeutically treat a subject with a disease related to body weight control.
- Packaged drugs for treating subjects having energy imbalance resulting in weight loss or gain are also the subject of the present invention.
- the packaged drugs include a container holding the creatine compound, in combination with a pharmaceutically acceptable carrier, along with instructions for administering the same for the purpose of preventing, ameliorating, arresting or eliminating a disease related to glucose level regulation.
- treatment is meant the amelioration or total avoidance of the metabolic disorder as described herein.
- prevention is meant the avoidance of a currently recognized disease state, as described herein, in a patient evidencing some or all of the metabolic disorders described above.
- compositions may be administered in a sustained release formulation.
- sustained release is meant a formulation in which the drug becomes biologically available to the patient at a measured rate over a prolonged period.
- Such compositions are well known in the art.
- the method of the present invention generally comprises administering to an individual afflicted with a disease or susceptible to a disease involving body weight regulation, an amount of a compound or compounds which modulate one or more of the structural or functional components of the creatine kinase/phosphocreatine system sufficient to prevent, reduce or ameliorate symptoms of the disease.
- Components of the system which can be modulated include the enzyme creatine kinase, the substrates creatine, creatine phosphate, ADP, ATP, and the transporter of creatine.
- the term “modulate” means to change, affect or interfere with the functioning of the components in the creatine kinase/creatine phosphate enzyme system.
- the creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)).
- the components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine trasporter.
- the enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand.
- the creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps.
- Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
- Brown and white adipose tissue both contain creatine kinase and the substrates creatine and creatine phosphate, with activity of the enzyme 50 times higher in brown tissue (Bertlet et al., Biochim Biophys. Acta 437:166-174 (1976)). Brown fat tissue is responsible for energy expenditure and heat generation through the process of non-shivering thermogenesis. It was suggested that creatine may be involved in co-promoting mitochondrial respiration for thermogenesis.
- the substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No.
- creatine compound will be used herein to include creatine, and compounds which are structurally similar to it and analogues of creatine and creatine phosphate.
- the term “creatine compound” also includes compounds which “mimic” the activity of creatine, creatine phosphate, or creatine analogues i.e., compounds which modulate the creatine kinase system.
- the term “mimics” is intended to include compounds which may not be structurally similar to creatine but mimic the therapeutic activity of the creatine analogues or structurally similar compounds.
- creatine compounds will also include inhibitors of creatine kinase, ie.
- creatine kinase compounds which inhibit the activity of the enzyme creatine kinase, molecules that inhibit the creatine transporter or molecules that inhibit the binding of the enzyme to other structural proteins or enzymes or lipids.
- modulators of the creatine kinase system are compounds which modulate the activity of the enzyme, or the activity of the transporter of creatine, or the ability of the enzyme to associate with other cellular components. These could be substrates for the enzyme and they would have the ability to build in their phosphorylated state intracellularly. These types of molecules are also included in our term creatine compounds.
- creatine “analogue” is intended to include compounds which are structurally similar to creatine, compounds which are art-recognized as being analogues of creatine, and/or compounds which share the same function as creatine.
- Creatine ( ⁇ also known as N-(aminoiminomethyl)-N-methyl glycine; methylglycosamine or N-methyl-guanidino acetic acid is a well-known substance. (see the Merck Index , Eleventh Edition No. 2570, 1989). Creatine is phosphorylated chemically or enzymatically to creatine kinase to generate creatine phosphate, which is also well known (see The Merck Index, No. 7315). Both creatine and creatine phosphate (phosphocreatine) can be extracted from animals or tissue or synthesized chemically. Both are commercially available.
- Cyclocreatine is an essentially planer cyclic analogue of creatine. Although cyclocreatine is structurally similar to creatine, the two compounds are distinguishable both kinetically and thermodynamically. Cyclocreatine is phosphorylated efficiently by the enzyme creatine kinase in the forward reaction, both in vitro and in vivo. Rowley, G. L., J. AM. Chem. Soc. 93:5542-5551 (1971); McLaughlin, AC. et. al. J. Biol. Chem. 247, 4382-4388 (1972). It represents a class of substrate analogues of creatine kinase and which are believed to be active.
- Bisubstrate analogues of creatine kinase and non hydrolyizable substrate analogues of creatine phosphate can be designed readily and would be examples of creatine kinase modulators.
- Creatine phosphate compounds can be synthesized chemically or enzymatically. The chemical synthesis is well known. Annesley., T. M., Walker, J. B., Biochem. Biophys. Res. Commun., 74: 185-190 (1977); Cramer, F., Scheiffele, E. VOLLMAR, A., Chem. Ber., 95:1670-1682 (1962).
- Creatine compounds which are particularly useful in this invention include those encompassed by the following general formula:
- Y is selected from the group consisting of: —CO 2 H—NHOH, —NO 2 , —SO 3 H, —C( ⁇ O)NHSO 2 J and —P( ⁇ O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C 1 -C 6 straight chain alkyl, C 3 -C 6 branched alkyl, C 2 -C 6 alkenyl, C 3 -C 6 branched alkenyl, and aryl;
- A is selected from the group consisting of C, CH, C 1 -C 5 alkyl, C 2 -C 5 alkenyl, C 2 -C 5 alkynyl, and C 1 -C 5 alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of
- K where K is selected from the group consisting of: C 1 -C 6 straight alkyl, C 2 -C 6 straight alkenyl, C 1 -C 6 straight alkoyl, C 3 -C 6 branched alkyl, C 3 -C 6 branched alkenyl, and C 4 -C 6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: rromo, chloro, epoxy and acetoxy;
- M is selected from the group consisting of: hydrogen, C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 1 -C 4 alkoyl, C 3 -C 4 branched alkyl, C 3 -C 4 branched alkenyl, and C 4 branched alkoyl;
- X is selected from the group consisting of NR 1 , CHR 1 , CR 1 , O and S, wherein R 1 is selected from the group consisting of:
- K is selected from the group consisting of: C 1 -C 6 straight alkyl, C 2 -C 6 straight alkenyl, C 1 -C 6 straight alkoyl, C 3 -C 6 branched alkyl, C 3 -C 6 branched alkenyl, and C 4 -C 6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of —CH 2 L and —COCH 2 L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- Z 1 and Z 2 are chosen independently from the group consisting of: ⁇ O, —NHR 2 , —CH 2 R 2 , —NR 2 OH; wherein Z 1 and Z 2 may not both be ⁇ O and wherein R 2 is selected from the group consisting of:
- K is selected from the group consisting of: C 1 -C 6 straight alkyl; C 2 -C 6 straight alkenyl, C 1 -C 6 straight alkoyl, C 3 -C 6 branched alkyl, C 3 -C 6 branched alkenyl, and C 4 -C 6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH 2 L and —COCH 2 L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- B is selected from the group consisting of: —CO 2 H—NHOH, —SO 3 H, —NO 2 , OP( ⁇ O)(OH)(OJ) and —P( ⁇ O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C 1 -C 6 straight alkyl, C 3 -C 6 branched alkyl, C 2 -C 6 alkenyl, C 3 -C 6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C 1 -C 2 alkyl, C 2 alkenyl, and C 1 -C 2 alkoyl;
- D is selected from the group consisting of: C 1 -C 3 straight alkyl, C 3 branched alkyl, C 2 -C 3 straight alkenyl, C 3 branched alkenyl, C 1 -C 3 straight alkoyl, aryl and aroyl; and E is selected from the group consisting of —(PO 3 ) n NMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P( ⁇ O)(OCH 3 )(O)] m -Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P( ⁇ O)(OH)(CH 2 )] m -Q, where m is 0-3 and Q is a ribonucleo
- E is selected from the group consisting of —(PO 3 ) n NMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P( ⁇ O)(OCH 3 )(O)] m -Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P( ⁇ O)(OH)(CH 2 )] m -Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C( ⁇ O)G, and —CO 2 G, where G is
- R 1 may be connected by a single or double bond to an R 2 group to form a cycle of 5 to 7 members;
- R 1 may be connected by a single or double bond to the carbon or nitrogen of either Z 1 or Z 2 to form a cycle of 4 to 7 members.
- the modes of administration for these compounds includes but is not limited to, oral transdermal, or parenteral (eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion).
- parenteral eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion.
- the actual amount of drug needed will depend on factors such as the size, age and severity of disease in afflicted individual. Creatine has been given to athletes in the range of 2-8 gms/day to improve muscle function. Creatine phosphate was administered to patients with congestive heart failure also in the range of several gm/day and was very well tolerated. In experimental animal models of cancer or viral infections, were creatine compounds were shown to be active, amounts of 1 gm/kg/day were needed intraveniously or intraperitoneially.
- the creatine compound will be administered at dosages and for periods of time effective to reduce, ameliorate or eliminate the symptoms of the disease. Dose regimens may be adjusted for purposes of improving the therapeutic or prophylactic response of the compound. For example, several divided doses may be administered daily, one dose, or cyclic administration of the compounds to achieve the required therapeutic result.
- the creatine compounds can be formulated according to the selected route of administration.
- the addition of gelatin, flavoring agents, or coating material can be used for oral applications.
- carriers may include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles can include sodium chloride, potassium chloride among others.
- intravenous vehicles can include fluid and nutrient replenishers, electrolyte replenishers among others.
- Preservatives and other additives can also be present.
- antimicrobial, antioxidant, chelating agents, and inert gases can be added (see, generally, Remington's Pharmaceutical Sciences, 16th Edition, Mack, 1980).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Child & Adolescent Psychology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The present invention relates to the use of creatine compounds for treating or preventing a metabolic disorder related to body weight control such as obesity, and it's associated diseases in a patient experiencing said disorder. The creatine compounds which can be used in the present method include (1) analogues of creatine which can act as substrates or substrate analogues for the enzyme creatine kinase; (2) compounds which can act as inhibitors of creatine kinase; (3) compounds which can modulate the creatine transporter (4) N-phosphocreatine analogues bearing transferable or non-transferable moieties which mimic the N-phosphoryl group. (5) compounds which modify the association of creatine kinase with other cellular components.
Description
- The present application is a continuation-in-part of and claims priority to Provisional Application U.S. S. No. 60/005,882, filed Oct. 26, 1995, the entire disclosure of which is incorporated herein by reference.
- The present invention provides for new use for creatine compounds (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic agents. More particularly, the present invention provides a method of treating or preventing certain metabolic disorders of human and animal metabolism relating to aberrant body weight regulation as manifested in obesity and it's related disorders.
- There are several metabolic diseases of human and animal metabolism, eg., obesity and severe weight loss that relate to energy imbalance—where caloric intake versus energy expenditure—is imbalanced. Obesity, which can be defined as a body weight more than 20% in excess of the ideal body weight, is a major health problem in Western affluent societies. It is associated with an increased risk for cardiovascular disease, hypertension, diabetes, hyperlipidaemia and an increased mortality rate. Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure. The molecular factors regulating food intake and body weight balance are incompletely understood. Five single-gene mutations resulting in obesity have been described in mice, implicating genetic factors in the etiology of obesity. (Friedman, j. m., and Leibel, r. I. Cell 69: 217-220 (1990)). In the ob mouse a single gene mutation, obese, results in profound obesity, which is accompanied by diabetes (Friedman, J. M., et. al. Genomics 11: 1054-1062 (1991)). Cross-circulation experiments have suggested that the ob mice are deficient of a blood-borne factor regulating nutrient intake and energy metabolism (Coleman, D. L. Diabetologia 14: 141-148 (1978)). Using positional cloning technologies, the mouse ob gene, and subsequently its human homologue, have been recently cloned (Zhang, Y., et. al., Nature 372: 425-432 (1994)). Daily intraperitoneal injections of either mouse or human recombinant OB protein reduced the body weight of obese mice ob/ob by 30% after 2 weeks of injection. The protein reduced food intake and increased energy expenditure in the ob/ob mice (Halaas et. al., Science 269: 543-546 (1995)).
- Cachexia on the other hand is characterized by severe weight loss and imbalanced energy expenditure, examples being patients with cancer or HIV infections.
- The creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)). The components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine trasporter. The enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand. The creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps. Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
- The substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina, adipose tissue and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No. 5,324,731) described methods for inhibiting growth, transformation, or metastasis of mammalian cells using related compounds. Examples of such compounds include cyclocreatine, homocyclocreatine and beta guanidino propionic acid. These same inventors have also demonstrated the efficacy of such compounds for combating viral infections (U.S. Pat. No. 5,321,030). Eigebaly in U.S. Pat. No. 5,091,404 discloses the use of cyclocreatine for restoring functionality in muscle tissue. Cohn in PCT publication No. W094/16687 describes a method for inhibiting the growth of several tumors using creatine and related compounds.
- It is an object of the present invention to provide methods for treatment of metabolic diseases that relate to deregulated body weight by administering to an afflicted individual an amount of a compound or compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system sufficient to prevent, reduce or ameliorate the symptoms of the disease. These compounds are collectively referred to as “creatine compounds.”
- The present invention provides a method of treating or preventing a metabolic disorder which relates to an imbalance in the regulation of body weight. Examples would be obesity and its related disorders (such as cardiovascular disease, hypertension, diabetes, hyperlipidaemia, osteoporosis and osteoarthritis) and severe weight loss. It consists of administering to a patient susceptible to or experiencing said disorder a creatine compound (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic in the form of a pharmacologically acceptable salt as the pharmaceutical agent effective to treat or prevent the disease or condition.
- Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure while severe weight loss is a result of a negative energy balance. The creatine kinase system is known to be involved in energy metabolism and it's substrates creatine phosphate, and ATP are among the highest energy compounds in the cell. It is now possible to modify this system and come up with compounds that can change energy balance and subsequently treat, prevent or ameliorate the diseases mentioned. One can increase energy state or decrease it by using substrates or inhibitors for the enzyme creatine kinase, or modulators of the enzyme system (compounds which modify any of its components) such as the creatine transporter.
- The present invention also provides compositions containing creatine compounds in combination with a pharmaceutically acceptable carrier. Also, they could be used in combination with effective amounts of standard chemotherapeutic agents which act on regulating body weight and others to prophylactically and/or therapeutically treat a subject with a disease related to body weight control.
- Packaged drugs for treating subjects having energy imbalance resulting in weight loss or gain are also the subject of the present invention. The packaged drugs include a container holding the creatine compound, in combination with a pharmaceutically acceptable carrier, along with instructions for administering the same for the purpose of preventing, ameliorating, arresting or eliminating a disease related to glucose level regulation.
- By treatment is meant the amelioration or total avoidance of the metabolic disorder as described herein. By prevention is meant the avoidance of a currently recognized disease state, as described herein, in a patient evidencing some or all of the metabolic disorders described above.
- For all of these purposes, any convenient route of systemic administration is employed, e.g., orally, parenterally, intranasally or intrarectally. The above compositions may be administered in a sustained release formulation. By sustained release is meant a formulation in which the drug becomes biologically available to the patient at a measured rate over a prolonged period. Such compositions are well known in the art.
- The method of the present invention generally comprises administering to an individual afflicted with a disease or susceptible to a disease involving body weight regulation, an amount of a compound or compounds which modulate one or more of the structural or functional components of the creatine kinase/phosphocreatine system sufficient to prevent, reduce or ameliorate symptoms of the disease. Components of the system which can be modulated include the enzyme creatine kinase, the substrates creatine, creatine phosphate, ADP, ATP, and the transporter of creatine. As used herein, the term “modulate” means to change, affect or interfere with the functioning of the components in the creatine kinase/creatine phosphate enzyme system.
- The creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)). The components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine trasporter. The enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand. The creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps. Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
- Brown and white adipose tissue both contain creatine kinase and the substrates creatine and creatine phosphate, with activity of the enzyme 50 times higher in brown tissue (Bertlet et al.,Biochim Biophys. Acta 437:166-174 (1976)). Brown fat tissue is responsible for energy expenditure and heat generation through the process of non-shivering thermogenesis. It was suggested that creatine may be involved in co-promoting mitochondrial respiration for thermogenesis.
- The substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No. 5,324,731) described methods for inhibiting growth, transformation, or metastasis of mammalian cells using related compounds. Examples of such compounds include cyclocreatine, homocyclocreatine and beta guanidino propionic acid. These same inventors have also demonstrated the efficacy of such compounds for combating viral infections (U.S. Pat. No. 5,321,030). Elgebaly in U.S. Pat. No. 5,091,404 discloses the use of cyclocreatine for restoring functionality in muscle tissue. Cohn in PCT publication No. W094/16687 describes a method for inhibiting the growth of several tumors using creatine and related compounds.
- The term “creatine compound” will be used herein to include creatine, and compounds which are structurally similar to it and analogues of creatine and creatine phosphate. The term “creatine compound” also includes compounds which “mimic” the activity of creatine, creatine phosphate, or creatine analogues i.e., compounds which modulate the creatine kinase system. The term “mimics” is intended to include compounds which may not be structurally similar to creatine but mimic the therapeutic activity of the creatine analogues or structurally similar compounds. The term creatine compounds will also include inhibitors of creatine kinase, ie. compounds which inhibit the activity of the enzyme creatine kinase, molecules that inhibit the creatine transporter or molecules that inhibit the binding of the enzyme to other structural proteins or enzymes or lipids. The term “modulators” of the creatine kinase system” are compounds which modulate the activity of the enzyme, or the activity of the transporter of creatine, or the ability of the enzyme to associate with other cellular components. These could be substrates for the enzyme and they would have the ability to build in their phosphorylated state intracellularly. These types of molecules are also included in our term creatine compounds. The term creatine “analogue” is intended to include compounds which are structurally similar to creatine, compounds which are art-recognized as being analogues of creatine, and/or compounds which share the same function as creatine.
- Creatine (α also known as N-(aminoiminomethyl)-N-methyl glycine; methylglycosamine or N-methyl-guanidino acetic acid is a well-known substance. (see theMerck Index, Eleventh Edition No. 2570, 1989). Creatine is phosphorylated chemically or enzymatically to creatine kinase to generate creatine phosphate, which is also well known (see The Merck Index, No. 7315). Both creatine and creatine phosphate (phosphocreatine) can be extracted from animals or tissue or synthesized chemically. Both are commercially available.
- Cyclocreatine is an essentially planer cyclic analogue of creatine. Although cyclocreatine is structurally similar to creatine, the two compounds are distinguishable both kinetically and thermodynamically. Cyclocreatine is phosphorylated efficiently by the enzyme creatine kinase in the forward reaction, both in vitro and in vivo. Rowley, G. L., J. AM. Chem. Soc. 93:5542-5551 (1971); McLaughlin, AC. et. al. J. Biol. Chem. 247, 4382-4388 (1972). It represents a class of substrate analogues of creatine kinase and which are believed to be active.
-
-
- Most of these compounds have been previously synthesized for other purposes (Rowley et. al., J. Am. Chem. Soc., 93: 5542-5551, (1971); Mclaughlin et. al., J. Biol. Chem., 247: 4382-4388 (1972) Nguyen, A. C. K., “Synthesis and enzyme studies using creatine analogues”, Thesis, Dept of Pharmaceutical Chemistry, Univ. Calif., San Francisco, 1983; Lowe et al., J. Biol. Chem., 225:3944-3951(1980); Roberts et. al., J. Biol. Chem., 260:13502-13508 (1995) Roberts et. al., Arch. biochem. Biophy., 220:563-571, 1983, and Griffiths et. al., J. Biol. Chem., 251: 2049-2054 (1976). The contents of all of the forementioned references are expressly incorporated by reference. Further to the forementioned references, Kaddurah-Daouk et. al., (WO 92/08456; WO 90/09192; U.S. Pat. No. 5,324,731; U.S. Pat. No. 5,321,030) also provide citations for the synthesis of a plurality of creatine analogues. The contents of all the aforementioned references and patents are incorporated herein by reference.
- It will be possible to modify the substances described below to produce analogues which have enhanced characteristics, such as greater specificity for the enzyme, enhanced solubility or stability, enhanced cellular uptake, or better biding activity. Salts of products may be exchanged to other salts using standard protocols.
- Bisubstrate analogues of creatine kinase and non hydrolyizable substrate analogues of creatine phosphate (non transferable moieties which mimic the N phosphoryt group of creatine phosphate) can be designed readily and would be examples of creatine kinase modulators. Creatine phosphate compounds can be synthesized chemically or enzymatically. The chemical synthesis is well known. Annesley., T. M., Walker, J. B., Biochem. Biophys. Res. Commun., 74: 185-190 (1977); Cramer, F., Scheiffele, E. VOLLMAR, A., Chem. Ber., 95:1670-1682 (1962).
-
- and pharmaceutically acceptable salts thereof, wherein:
- a) Y is selected from the group consisting of: —CO2H—NHOH, —NO2, —SO3H, —C(═O)NHSO2J and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight chain alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl;
- b) A is selected from the group consisting of C, CH, C1-C5alkyl, C2-C5alkenyl, C2-C5alkynyl, and C1-C5alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of
- 1) K, where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: rromo, chloro, epoxy and acetoxy;
- 2) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of —CH2L and —COCH2L where L is independently selected from the group consisting of bromo, chloro, epoxy and acetoxy; and
- 3) —NH-M, wherein M is selected from the group consisting of: hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoyl, C3-C4 branched alkyl, C3-C4 branched alkenyl, and C4 branched alkoyl;
- c) X is selected from the group consisting of NR1, CHR1, CR1, O and S, wherein R1 is selected from the group consisting of:
- 1) hydrogen;
- 2) K where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 4) a C5-C9 a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon,
- 5) 2 C5-C9 a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and
- 6) a C5-C9 a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
- d) Z1 and Z2 are chosen independently from the group consisting of: ═O, —NHR2, —CH2R2, —NR2OH; wherein Z1 and Z2 may not both be ═O and wherein R2 is selected from the group consisting of:
- 1) hydrogen;
- 2) K, where K is selected from the group consisting of: C1-C6 straight alkyl; C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
- 4) 2 C4-C8 a-amino-carboxylic acid attached via the w-carbon;
- 5) B, wherein B is selected from the group consisting of: —CO2H—NHOH, —SO3H, —NO2, OP(═O)(OH)(OJ) and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C1-C2 alkyl, C2 alkenyl, and C1-C2 alkoyl;
- 6)-D-E, wherein D is selected from the group consisting of: C1-C3 straight alkyl, C3 branched alkyl, C2-C3 straight alkenyl, C3 branched alkenyl, C1-C3 straight alkoyl, aryl and aroyl; and E is selected from the group consisting of —(PO3)nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl, wherein E may be attached to any point to D, and if D is alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and
- 7)-E, wherein E is selected from the group consisting of —(PO3)nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
- e) if R1 and at least one R2 group are present, R1 may be connected by a single or double bond to an R2 group to form a cycle of 5 to 7 members;
- f) if two R2 groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and
- g) if R1 is present and Z1 or Z2 is selected from the group consisting of —NHR2, —CH2R2 and —NR2OH, then R1 may be connected by a single or double bond to the carbon or nitrogen of either Z1 or Z2 to form a cycle of 4 to 7 members.
- Currently preferred compounds include cyclocreatine, creatine phosphate and those included in Tables 1 and 2 hereinabove.
- The modes of administration for these compounds includes but is not limited to, oral transdermal, or parenteral (eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion). The actual amount of drug needed will depend on factors such as the size, age and severity of disease in afflicted individual. Creatine has been given to athletes in the range of 2-8 gms/day to improve muscle function. Creatine phosphate was administered to patients with congestive heart failure also in the range of several gm/day and was very well tolerated. In experimental animal models of cancer or viral infections, were creatine compounds were shown to be active, amounts of 1 gm/kg/day were needed intraveniously or intraperitoneially. For this invention the creatine compound will be administered at dosages and for periods of time effective to reduce, ameliorate or eliminate the symptoms of the disease. Dose regimens may be adjusted for purposes of improving the therapeutic or prophylactic response of the compound. For example, several divided doses may be administered daily, one dose, or cyclic administration of the compounds to achieve the required therapeutic result.
- The creatine compounds can be formulated according to the selected route of administration. The addition of gelatin, flavoring agents, or coating material can be used for oral applications. For solutions or emulsions in general, carriers may include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles can include sodium chloride, potassium chloride among others. In addition intravenous vehicles can include fluid and nutrient replenishers, electrolyte replenishers among others.
- Preservatives and other additives can also be present. For example, antimicrobial, antioxidant, chelating agents, and inert gases can be added (see, generally, Remington's Pharmaceutical Sciences, 16th Edition, Mack, 1980).
- Equivalents
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentati many equivalents to the specific embodiments of the invention described herein. Such equivalents a intended to be encompassed by the following claims.
Claims (13)
1. A method of treating or preventing a body disorder related to weight gain or loss in a subject afflicted with said disorder, comprising administering to the subject an amount of a creatine compound, or a pharmaceutically acceptable salt thereof, effective to treat, reduce, or prevent said disorder.
2. A method of claim 1 wherein said disorder is obesity.
3. A method of claim 1 wherein said disorder is cachexia.
4. A method of claim 1 wherein said disorder is obesity associated disorders such as cardiovascular disease, hypertension, hyperlipidaemia osteoporosis and osteoarthritis.
5. A method of claim 1 wherein the subject is a human.
6. A method for treating a metabolic disorder consisting of obesity and it's associated diseases, in a subject experiencing said disorder, comprising administering to the subject a therapeutic amount of a creatine analogue having the general formula:
and pharmaceutically acceptable salts thereof, wherein:
a) Y is selected from the group consisting of: —CO2H—NHOH, —NO2, —SO3H, —C(═O)NHSO2J and —P(═O(O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight chain alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl;
b) A is selected from the group consisting of C, CH, C1-C5alkyl, C2-C5alkenyl, C2-C5alkynyl, and C1-C5alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of:
1) K, where K is selected from the group consisting of C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of rromo, chloro, epoxy and acetoxy;
2) an aryl group selected from the group consisting of: a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of bromo, chloro, epoxy and acetoxy; and
3)-NH-M, wherein M is selected from the group consisting of: hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoyl, C3-C4 branched alkyl, C3-C4 branched alkenyl, and C4 branched alkoyl;
c) X is selected from the group consisting of NR1, CHR1, CR1, O and S, wherein R1 is selected from the group consisting of:
1) hydrogen;
2) K where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of bromo, chloro, epoxy and acetoxy;
3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of bromo, chloro, epoxy and acetoxy;
4) a C5-C9 a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
5) 2 C5-C9 a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and
6) a C5-C9 a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
d) Z1 and Z2 are chosen independently from the group consisting of: ═O, —NHR2, —CH2R2, —NR2OH; wherein Z1 and Z2 may not both be ═=O and wherein R2 is selected from the group consisting of:
1) hydrogen;
2) K, where K is selected from the group consisting of: C1-C6 straight alkyl; C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
4) 2 C4-C8 a-amino-carboxylic acid attached via the w-carbon;
5) B, wherein B is selected from the group consisting of: —CO2H—NHOH, —SO3H, —NO2, OP(═O)(OH)(OJ) and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C1-C2 alkyl, C2 alkenyl, and C1-C2 alkoyl;
6)-D-E, wherein D is selected from the group consisting of: C1-C3 straight alkyl, C3 branched alkyl, C2-C3 straight alkenyl, C3 branched alkenyl, C1-C3 straight alkoyl, aryl and aroyl; and E is selected from the group consisting of: —(PO3)nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl C3-C6 branched alkenyl, C4-C6 branched alkoyl, wherein E may be attached to any point to D, and if D is alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and
7)-E, wherein E is selected from the group consisting of —(PO3)nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
e) if R1 and at least one R2 group are present, R1 may be connected by a single or double bond to an 12 group to form a cycle of 5 to 7 members;
f) if two R2 groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and
g) if R1 is present and Z1 or Z2 is selected from the group consisting of —NHR2, —CH2R2 and —NR2OH, then R1 may be connected by a single or double bond to the carbon or nitrogen of either Z1 or Z2 to form a cycle of 4 to 7 members.
Currently preferred compounds include cyclocreatine, creatine phosphate and those included in Tables 1 and 2 hereinabove.
7. A method of claim 6 wherein the creatine compound is used in combination with standard therapies used to treat body weight disorders.
8. A method for treating obesity in a patient experiencing said disorder comprising the use of a creatine kinase inhibitor.
9. A method for treating obesity in a subject experiencing said disorder comprising administering to the subject an effective amount of a creatine kinase transporter regulator.
10. A method for treating obesity in a patient experiencing said disorder comprising the use of compounds which modify energy generation through the creatine kinase system.
11. A method for treating a body weight disorder in a patient experiencing said disorder comprising the use of creatine and creatine phosphate analogues.
12. The use of the creatine kinase structural coordinates to design compounds for the treatment of diseases related to body weight disorders.
13. The use of the creatine kinase system as a target for the design of therapeutics for the treatment of body weight disorders.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/601,279 US20040116390A1 (en) | 1995-10-26 | 2003-06-20 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
US12/317,782 US20090298943A1 (en) | 1995-10-26 | 2008-12-29 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US588295P | 1995-10-26 | 1995-10-26 | |
US08/736,967 US5998457A (en) | 1995-10-26 | 1996-10-25 | Creatine analogues for treatment of obesity |
US08/958,374 US20020035155A1 (en) | 1995-10-26 | 1997-10-27 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
US10/601,279 US20040116390A1 (en) | 1995-10-26 | 2003-06-20 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/958,374 Continuation US20020035155A1 (en) | 1995-10-26 | 1997-10-27 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/317,782 Continuation US20090298943A1 (en) | 1995-10-26 | 2008-12-29 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040116390A1 true US20040116390A1 (en) | 2004-06-17 |
Family
ID=26674880
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/736,967 Expired - Fee Related US5998457A (en) | 1995-10-26 | 1996-10-25 | Creatine analogues for treatment of obesity |
US08/958,374 Abandoned US20020035155A1 (en) | 1995-10-26 | 1997-10-27 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
US10/601,279 Abandoned US20040116390A1 (en) | 1995-10-26 | 2003-06-20 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
US12/317,782 Abandoned US20090298943A1 (en) | 1995-10-26 | 2008-12-29 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/736,967 Expired - Fee Related US5998457A (en) | 1995-10-26 | 1996-10-25 | Creatine analogues for treatment of obesity |
US08/958,374 Abandoned US20020035155A1 (en) | 1995-10-26 | 1997-10-27 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/317,782 Abandoned US20090298943A1 (en) | 1995-10-26 | 2008-12-29 | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders |
Country Status (1)
Country | Link |
---|---|
US (4) | US5998457A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040102419A1 (en) * | 1994-11-08 | 2004-05-27 | Avicena Group, Inc. | Use of creatine or creatine analogs for the treatment of diseases of the nervous system |
US20060128643A1 (en) * | 1998-04-02 | 2006-06-15 | The General Hospital Corporation | Compositions containing a combination of a creatine compound and a second agent |
US20060128671A1 (en) * | 1998-04-02 | 2006-06-15 | The General Hospital Corporation | Compositions containing a combination of a creatine compound and a second agent |
US20060241021A1 (en) * | 2002-06-04 | 2006-10-26 | University Of Cincinnati Children's Hospital Medical Center | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
US20070265221A1 (en) * | 2006-05-09 | 2007-11-15 | Weiss Robert G | Methods to improve creatine kinase metabolism and contractile function in cardiac muscle for the treatment of heart failure |
US20070281910A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Salicyl alcohol creatine phosphate prodrugs, compositions and uses thereof |
US20070281909A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine phosphate prodrugs, compositions and uses thereof |
US20070281995A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine analog prodrugs, compositions and uses thereof |
US20070281983A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine analog prodrugs, compositions and uses thereof |
US20070292403A1 (en) * | 2006-05-11 | 2007-12-20 | Avicena Group, Inc. | Methods of treating a neurological disorder with creatine monohydrate |
US20080051371A1 (en) * | 2006-06-06 | 2008-02-28 | Xenoport, Inc. | Creatine phosphate analog prodrugs, compositions and uses thereof |
US20090005450A1 (en) * | 2007-04-09 | 2009-01-01 | Belinda Tsao Nivaggioli | Use of creatine compounds for the treatment of eye disorders |
WO2011058364A1 (en) * | 2009-11-13 | 2011-05-19 | Isis Innovation Limited | Method of treatment and screening method |
US9233099B2 (en) | 2012-01-11 | 2016-01-12 | University Of Cincinnati | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998457A (en) * | 1995-10-26 | 1999-12-07 | Avicena Group, Inc. | Creatine analogues for treatment of obesity |
WO1999000122A1 (en) * | 1997-06-25 | 1999-01-07 | Ipr-Institute For Pharmaceutical Research Ag | Method for reducing body weight |
WO2000006150A1 (en) * | 1998-07-28 | 2000-02-10 | Synergen Ag | Use of creatine compounds for treatment of bone or cartilage cells and tissues |
US6444695B1 (en) | 2000-09-21 | 2002-09-03 | The Regents Of The University Of California | Inhibition of thrombin-induced platelet aggregation by creatine kinase inhibitors |
ITRM20010044A1 (en) * | 2001-01-29 | 2002-07-29 | Sigma Tau Healthscience Spa | SLIMMING FOOD SUPPLEMENT. |
US7138134B2 (en) * | 2001-12-18 | 2006-11-21 | Arizona Health Consulting Group, Llc | Preparation and administration of jojoba product for reducing weight, fat and blood lipid levels |
AU2003225277A1 (en) * | 2002-05-02 | 2003-11-17 | Robert Harris | Lipid removal from the body |
EP2123252B1 (en) | 2003-02-28 | 2017-07-05 | E-L Management Corp. | Method for increasing hair growth |
KR20050075507A (en) * | 2004-01-15 | 2005-07-21 | 재단법인서울대학교산학협력재단 | Composition comprising a cyclocreatine for preventing and treating osseous metabolic diseases |
DE102007004781A1 (en) * | 2007-01-31 | 2008-08-07 | Alzchem Trostberg Gmbh | Use of guanidinoacetic acid (salts) for the preparation of a health-promoting agent |
US7874536B2 (en) * | 2008-09-26 | 2011-01-25 | Groover David O | Angle ceiling hanger or bracket |
CN107312039B (en) | 2012-08-30 | 2019-06-25 | 江苏豪森药业集团有限公司 | A kind of preparation method of tenofovir prodrug |
EP3950673A1 (en) | 2014-04-30 | 2022-02-09 | Inspirna, Inc. | Inhibitors of creatine transport and uses thereof |
AU2020402994A1 (en) | 2019-12-11 | 2022-06-23 | Inspirna, Inc. | Methods of treating cancer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647453A (en) * | 1984-10-18 | 1987-03-03 | Peritain, Ltd. | Treatment for tissue degenerative inflammatory disease |
US5627172A (en) * | 1994-03-04 | 1997-05-06 | Natural Supplement Association, Incorporated | Method for reduction of serum blood lipids or lipoprotein fraction |
US5726146A (en) * | 1994-12-06 | 1998-03-10 | Natural Supplement Association, Incorporated | Non-steroidal, anabolic dietary supplement and method to increase lean mass without linked increase fat mass |
US5998457A (en) * | 1995-10-26 | 1999-12-07 | Avicena Group, Inc. | Creatine analogues for treatment of obesity |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321030A (en) * | 1989-02-14 | 1994-06-14 | Amira, Inc. | Creatine analogs having antiviral activity |
ES2114531T3 (en) * | 1989-02-14 | 1998-06-01 | Massachusetts Inst Technology | INHIBITION OF THE TRANSFORMATION OF CELLS THAT HAVE A HIGH ENZYMATIC ACTIVITY OF THE METABOLISM OF PURINAS. |
US5324731A (en) * | 1989-02-14 | 1994-06-28 | Amira, Inc. | Method of inhibiting transformation of cells in which purine metabolic enzyme activity is elevated |
US5091404A (en) * | 1990-10-05 | 1992-02-25 | Elgebaly Salwa A | Method for restoring functionality in muscle tissue |
AU6165894A (en) * | 1993-01-28 | 1994-08-15 | Trustees Of The University Of Pennsylvania, The | Use of creatine or analogs for the manufacture of a medicament for inhibiting tumor growth |
-
1996
- 1996-10-25 US US08/736,967 patent/US5998457A/en not_active Expired - Fee Related
-
1997
- 1997-10-27 US US08/958,374 patent/US20020035155A1/en not_active Abandoned
-
2003
- 2003-06-20 US US10/601,279 patent/US20040116390A1/en not_active Abandoned
-
2008
- 2008-12-29 US US12/317,782 patent/US20090298943A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647453A (en) * | 1984-10-18 | 1987-03-03 | Peritain, Ltd. | Treatment for tissue degenerative inflammatory disease |
US5627172A (en) * | 1994-03-04 | 1997-05-06 | Natural Supplement Association, Incorporated | Method for reduction of serum blood lipids or lipoprotein fraction |
US5726146A (en) * | 1994-12-06 | 1998-03-10 | Natural Supplement Association, Incorporated | Non-steroidal, anabolic dietary supplement and method to increase lean mass without linked increase fat mass |
US5998457A (en) * | 1995-10-26 | 1999-12-07 | Avicena Group, Inc. | Creatine analogues for treatment of obesity |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080119450A1 (en) * | 1994-11-08 | 2008-05-22 | Avicena Group, Inc. | Use of creatine or creatine analogs for the treatment of diseases of the nervous system |
US20040102419A1 (en) * | 1994-11-08 | 2004-05-27 | Avicena Group, Inc. | Use of creatine or creatine analogs for the treatment of diseases of the nervous system |
US20100303840A1 (en) * | 1994-11-08 | 2010-12-02 | Avicena Group, Inc. | Use of creatine or creatine analogs for the treatment of diseases of the nervous system |
US20060128643A1 (en) * | 1998-04-02 | 2006-06-15 | The General Hospital Corporation | Compositions containing a combination of a creatine compound and a second agent |
US20060128671A1 (en) * | 1998-04-02 | 2006-06-15 | The General Hospital Corporation | Compositions containing a combination of a creatine compound and a second agent |
US20060241021A1 (en) * | 2002-06-04 | 2006-10-26 | University Of Cincinnati Children's Hospital Medical Center | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
US20070027090A1 (en) * | 2002-06-04 | 2007-02-01 | University Of Cincinnati | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
US20090221706A1 (en) * | 2002-06-04 | 2009-09-03 | University Of Cincinnati | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
US20070265221A1 (en) * | 2006-05-09 | 2007-11-15 | Weiss Robert G | Methods to improve creatine kinase metabolism and contractile function in cardiac muscle for the treatment of heart failure |
JP2013100283A (en) * | 2006-05-09 | 2013-05-23 | Nanocor Therapeutics Inc | Method for improving creatine kinase metabolism and contractile function in cardiac muscle for treatment of heart failure |
EP2021009A4 (en) * | 2006-05-09 | 2010-11-03 | Nanocor Therapeutics Inc | Methods to improve creatine kinase metabolism and contractile function in cardiac muscle for the treatment of heart failure |
US20070292403A1 (en) * | 2006-05-11 | 2007-12-20 | Avicena Group, Inc. | Methods of treating a neurological disorder with creatine monohydrate |
US20070281910A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Salicyl alcohol creatine phosphate prodrugs, compositions and uses thereof |
US20080051371A1 (en) * | 2006-06-06 | 2008-02-28 | Xenoport, Inc. | Creatine phosphate analog prodrugs, compositions and uses thereof |
US20070281996A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine prodrugs, compositions and uses thereof |
US7683043B2 (en) | 2006-06-06 | 2010-03-23 | Xenoport, Inc. | Creatine phosphate analog prodrugs, compositions and uses thereof |
US20100137255A1 (en) * | 2006-06-06 | 2010-06-03 | Xenoport, Inc. | Creatine phosphate analog prodrugs, compositions and uses thereof |
US20070281983A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine analog prodrugs, compositions and uses thereof |
US20070281995A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine analog prodrugs, compositions and uses thereof |
US8202852B2 (en) | 2006-06-06 | 2012-06-19 | Xenoport, Inc. | Creatine phosphate analog prodrugs, compositions and uses thereof |
US20070281909A1 (en) * | 2006-06-06 | 2007-12-06 | Xenoport, Inc. | Creatine phosphate prodrugs, compositions and uses thereof |
US20090005450A1 (en) * | 2007-04-09 | 2009-01-01 | Belinda Tsao Nivaggioli | Use of creatine compounds for the treatment of eye disorders |
WO2011058364A1 (en) * | 2009-11-13 | 2011-05-19 | Isis Innovation Limited | Method of treatment and screening method |
US9233099B2 (en) | 2012-01-11 | 2016-01-12 | University Of Cincinnati | Methods of treating cognitive dysfunction by modulating brain energy metabolism |
Also Published As
Publication number | Publication date |
---|---|
US20020035155A1 (en) | 2002-03-21 |
US20090298943A1 (en) | 2009-12-03 |
US5998457A (en) | 1999-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090298943A1 (en) | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders | |
US6075031A (en) | Use of creatine analogues and creatine kinase modulators for the prevention and treatment of glucose metabolic disorders | |
EP0804183B1 (en) | Use of creatine or creatine analogs for the treatment of huntigton's disease, parkinson's disease and amyotrophic lateral sclerosis | |
AU759467B2 (en) | Compositions containing a combination of a creatine compound and a second agent | |
US5719119A (en) | Parenteral nutrition therapy with amino acids | |
AU648820B2 (en) | Product containing growth factor and glutamine and use of growth factor for the treatment of intestinal mucosa | |
EP0250559A1 (en) | Parenteral nutrition therapy with amino acids | |
JPWO2004019928A1 (en) | Liver disease treatment | |
US20060128671A1 (en) | Compositions containing a combination of a creatine compound and a second agent | |
JPS63307822A (en) | Amino acid infusion for renal failure | |
JPH06509362A (en) | Alpha-ketol glutarate usage | |
EP0076841A1 (en) | Improved solution for parenteral nutrition | |
EP0390887A1 (en) | Energy substrate containing hydroxy carboxylic acid | |
AU6246600A (en) | Use of creatine analogues for the treatment of disorders of glucose metabolism | |
JPS62135421A (en) | Amino acid transfusion solution for cancer | |
AU2006202505A1 (en) | Compositions containing a combination of a creatine compound and a second agent | |
Pisters et al. | Glutamine and cancer cachexia | |
Toback | Enhancement of Renal Regeneration by Amino Acid Administration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |