US20040115875A1 - Method and structure for forming precision mim fusible circuit elements using fuses and antifuses - Google Patents
Method and structure for forming precision mim fusible circuit elements using fuses and antifuses Download PDFInfo
- Publication number
- US20040115875A1 US20040115875A1 US10/707,449 US70744903A US2004115875A1 US 20040115875 A1 US20040115875 A1 US 20040115875A1 US 70744903 A US70744903 A US 70744903A US 2004115875 A1 US2004115875 A1 US 2004115875A1
- Authority
- US
- United States
- Prior art keywords
- links
- trim
- plate
- capacitor
- antifuses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5252—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
- H01L23/5223—Capacitor integral with wiring layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
- H01L23/5256—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- This invention generally relates to semiconductor integrated circuits and specifically to a method of fabricating precision circuit elements therein.
- Precision capacitors are required in a wide variety of integrated circuit applications. Decoupling capacitors are used for analog VDD to ground or analog VDD to another power source. Phase-locked-loops (PLL) are another application. Precision capacitors find wide usage in bipolar CMOS RF (radio frequency) applications for wired and wireless telephony and, recently, in series with the input of receivers operating in the gigahertz region.
- PLL Phase-locked-loops
- Integrated circuit capacitors are formed as metal-insulator-metal capacitors (MIM caps).
- BEOL Back end of line
- BEOL MIM caps have replaced the very large area silicon capacitors in an effort to save silicon wafer area.
- the MIM caps are not as close to the external package as desired. The closer the precision capacitor to the external package, the better the effectiveness of the MIM capacitor. Another reason the MIM caps are not precision capacitors is due to the high variability in thickness of the deposited insulator (dielectric).
- MIM capacitors are used on RF receiver circuits. MIM capacitors are sensitive to electrical overstress (EOS) and electrostatic discharge (ESD) events. MIM capacitors fail at human body model (HBM) ESD events of 100 to 300 Volts. The need to isolate the failing section of the MIM capacitor or eliminate the fail mechanism is important for circuit reliability and yield.
- EOS electrical overstress
- ESD electrostatic discharge
- Fuses have been used to aid in compensating for variations in manufactured components. For instance, a fuse may be used to selectively connect additional elements to create the desired output. This has been performed at the wafer level of fabrication of the semiconductor or microcircuit. Once the wafer is diced and packaged the component values are affected. This is particularly true of capacitors which are sensitive to packaging material and other sources of stray capacitance. Therefore, for precision components it is desirable to set the values of the fuses (i.e., open or short) subsequent to packaging.
- the present invention describes an apparatus and method for fabrication of a precision capacitor.
- the capacitors are fabricated as part of an integrated circuit assembly.
- the processing of the capacitor is such to provide a nominal capacitor close in value to the desired value.
- Additional trim capacitors are joined to the nominal capacitor through links.
- the links are fusible links or antifuses. By selectively blowing the fusible links or fusing the antifuses, trim capacitances are added or subtracted to personalize the nominal capacitor.
- the links are available for blowing or fusing, as appropriate, at any point in the manufacturing process or packaging level to personalize the capacitance.
- FIG. 1 shows a pictorial representation of a capacitor personalized by selectively blowing fuses of parallel connected capacitor plates
- FIG. 2 shows a schematic circuit diagram of the pictorial of FIG. 1 wherein capacitance is personalized by selectively blowing fuses of parallel connected capacitors;
- FIG. 3 shows a circuit diagram wherein capacitance is personalized by blowing fuses of series connected capacitors
- FIG. 4 shows a pictorial embodiment of an parallel capacitor alternative arrangement wherein a back up capacitor is used
- FIG. 5 shows a schematic circuit diagram of the pictorial of FIG. 4 wherein a back up capacitor is used in addition to personalizing capacitors;
- FIGS. 6 A- 6 C is a pictorial cross-sectional view of the fabrication of a conductor and a fuse by a Damascene process
- FIGS. 7 A- 7 B is a pictorial cross-sectional view of the fabrication of a capacitor by a Damascene process
- FIG. 8 is a pictorial cross-sectional view of an alternative method of creating a capacitor where both plates are copper.
- FIGS. 9 A- 9 B is a pictorial cross-sectional view of a dual Damascene process creating a capacitor and via to another microcircuit level.
- FIG. 1 A pictorial of the present invention is shown in FIG. 1, where capacitor formation in an integrated circuit die is generally shown as ( 100 ).
- the capacitor is formed by deposition of a common plate ( 102 ) and a top plate ( 104 ) separated by a dielectric (not shown).
- the top plate ( 104 ) is comprised of a core plate ( 106 ) and a plurality of smaller trim plates.
- Three such trim plates ( 108 ), ( 110 ), and ( 112 ) are shown for illustration purposes only and not for limitation. The number and size of the trim plates is based upon circuit design criteria.
- the trim plates ( 108 ), ( 110 ), and ( 112 ) are coupled by links ( 114 ) and ( 116 ).
- Trim plate ( 108 ) is coupled to the core plate ( 106 ) by the fusible link ( 118 ).
- the capacitance of the capacitor so formed is measured after the integrated circuit die is packaged.
- the links are fusible links
- the capacitance of this capacitor is personalized by selectively blowing the fusible links to decrease the capacitance and create a precision capacitor in the packaged die.
- antifuses can be substituted for the links ( 118 ), ( 116 ), and ( 114 ) of FIG. 1.
- the antifuses are selective blown to create an electrical path to the trim plates ( 108 ), ( 110 ), and ( 112 ), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- Antifuses are structures that, when first fabricated, are an open circuit. When the antifuse is “fused,” the open circuit becomes closed and conduction across the antifuse becomes possible. Thus, antifuses are used to perform the opposite function of a fuse. Typically an antifuse is fused by applying a sufficient voltage, called a “fusing voltage” across the antifuse structure. This voltage causes a current to flow and the structure to fuse together, resulting in a permanent electrical connection. Fuses are “blown” by applying a voltage across the fuse structure. This voltage causes a current to flow and the structure to open, resulting in a permanent open circuit. Personalization by fusing of antifuses or blowing of fuses can be achieved by any known means including a laser beam through an integrated circuit access window or, more likely, access to the links via package pins.
- a schematic representation of the precision capacitor of FIG. 1 is generally shown as ( 200 ) in FIG. 2.
- a common plate ( 202 ) is coupled to a first terminal ( 230 ).
- the common plate ( 202 ) of capacitor ( 204 ) also forms capacitors with trim plates ( 208 ), ( 210 ), and ( 212 ).
- Trim plate ( 212 ) is coupled by a link ( 214 ) to the trim plate ( 210 ).
- the trim plate ( 210 ) is coupled by a link ( 216 ) to the trim plate ( 208 ); and the trim plate ( 208 ) is coupled by a link ( 218 ) to a core plate ( 206 ).
- the core plate ( 206 ) is thence coupled to a second terminal ( 232 ).
- Trim plates ( 208 ), ( 210 ), and ( 212 ) represent the trim plates ( 108 ), ( 110 ), and ( 112 ) described in FIG. 1 herein above.
- Capacitor ( 206 ) represents the core plate described in FIG. 1 herein above. Selective blowing of links ( 214 ), ( 216 ), and ( 218 ), respectively, decreases the value of the capacitance between first terminal ( 230 ) and second terminal ( 232 ).
- antifuses can be substituted for the links ( 218 ), ( 216 ), and ( 214 ) of FIG. 2.
- the antifuses are selectively fused to create an electrical path to the trim plates ( 208 ), ( 210 ), and ( 212 ), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- FIG. 3 An alternative embodiment of the present invention is generally shown as ( 300 ) in FIG. 3 wherein the personalizing capacitors are series connected.
- a first plate ( 302 ) of a first capacitor ( 320 ) is coupled to a first terminal ( 330 ).
- a second plate ( 306 ) of first capacitor ( 320 ) is connected to a first plate ( 307 ) of a second capacitor ( 322 ).
- a link ( 318 ) is connected in parallel with the second capacitor ( 322 ) from first plate ( 306 ) to a second plate ( 308 ) of the second capacitor ( 322 ).
- the second plate ( 308 ) of the second capacitor ( 322 ) is connected to a first plate ( 309 ) of a third capacitor ( 324 ).
- a link ( 316 ) is connected in parallel with the third capacitor ( 324 ) from first plate ( 308 ) to a second plate ( 310 ) of the third capacitor ( 324 ).
- the second plate ( 310 ) of the third capacitor ( 324 ) is connected to a first plate ( 311 ) of a fourth capacitor ( 326 ).
- a link ( 314 ) is connected in parallel with the fourth capacitor ( 326 ) from first plate ( 310 ) to a second plate ( 312 ) of the fourth capacitor ( 326 ).
- the second plate ( 312 ) of the fourth capacitor ( 326 ) is connected to a second terminal ( 332 ).
- antifuses can be substituted for the links ( 318 ), ( 316 ), and ( 314 ) of FIG. 3.
- the antifuses are selectively fused to create an electrical path shorting ( 320 ), ( 322 ), and ( 324 ), respectively, and personalizing the capacitance. Capacitance between terminals ( 330 ) and ( 332 ) is increased as each series connected capacitor is shorted.
- FIG. 4 An alternative embodiment in FIG. 4 where a redundant capacitor is formed in 5 addition to trim plates is generally shown as ( 400 ).
- the capacitor is formed by deposition of a common plate ( 402 ) and a top plate ( 404 ) separated by a dielectric (not shown).
- the bottom plate ( 402 ) may be made accessible via a terminal ( 430 ) if desired.
- the top plate ( 404 ), which may be made accessible via a terminal ( 432 ) if desired, is comprised of a core plate ( 406 A), a plurality of redundant core plates ( 406 B), and a plurality of smaller trim plates.
- One such redundant core plates ( 406 B), and three such trim plates ( 408 ), ( 410 ), and ( 412 ) are shown for illustration purposes only and not for limitation.
- the number of redundant core plates and the number and size of the trim plates is based upon circuit design criteria.
- the trim plates ( 408 ), ( 410 ), and ( 412 ) are coupled by links ( 414 ) and ( 416 ).
- Trim plate ( 408 ) is coupled by a link ( 418 ) to the redundant core plate ( 406 B) via a link ( 422 ) and to the core plate ( 406 A) via a link ( 420 ).
- the capacitance of the capacitor ( 400 ) so formed is measured after the integrated circuit die is packaged. When the links are fuses, the capacitance of this capacitor is personalized by selectively blowing the links to decrease the capacitance and create a precision capacitor in the packaged die.
- links ( 420 ) and ( 422 ) are antifuses.
- links ( 420 ) and ( 422 ) are antifuses.
- a failure of a core plate ( 406 A) can be isolated and remedied by fusing of antifuse ( 422 ).
- antifuses can be substituted for the links ( 418 ), ( 416 ), and ( 414 ) of FIG. 4.
- the antifuses are selective blown to create an electrical path to the trim plates ( 408 ), ( 410 ), and ( 412 ), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- a schematic representation of the precision capacitor of FIG. 4 is generally shown as ( 500 ) in FIG. 5.
- a common plate ( 502 ) is coupled to a first terminal ( 530 ).
- the common plate ( 502 ) of capacitor ( 504 ) also forms capacitors with trim plates ( 508 ), ( 510 ), and ( 512 ).
- Trim plate ( 512 ) is coupled by a link ( 514 ) to the trim plate ( 510 ).
- trim plate ( 510 ) is coupled by a link ( 516 ) to the trim plate ( 508 ); and trim plate ( 508 ) is coupled by a link ( 518 ) to the redundant core plate ( 506 B) via a link ( 522 ) and to the core plate ( 506 A) via a link ( 520 ).
- Trim plates ( 508 ), ( 510 ), and ( 512 ) represent the trim plates ( 408 ), ( 410 ), and ( 412 ) described in FIG. 4 herein above.
- Capacitor ( 506 A) and ( 506 B) represents the core plate and redundant plate, respectively, described in FIG. 4 herein above and may also be connected to a second terminal ( 532 ) if desired.
- links are fuses, selective blowing of links ( 514 ), ( 516 ), and ( 518 ), respectively, decreases the value of the capacitance between first terminal ( 530 ) and second terminal ( 532 ).
- links ( 520 ) and ( 522 ) are antifuses.
- links ( 520 ) and ( 522 ) are antifuses.
- a failure of a core plate ( 506 A) can be isolated and remedied by fusing of antifuse ( 522 ).
- antifuses can be substituted for the links ( 518 ), ( 516 ), and ( 514 ) of FIG. 5.
- the antifuses are selectively fused to create an electrical path to the trim plates ( 508 ), ( 510 ), and ( 512 ), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- the fusible link structure preferably is formed concurrently with the capacitor structure, where, in this case, the capacitor structure consists of a copper electrode, a trough, a deposited dielectric, the liner film and then a second copper electrode.
- the method of construction can be a Damascene process as shown in FIGS. 6A through 6C.
- a first insulator film referred to as an interlevel dielectric, ILD 1 , ( 602 ) is formed on a silicon substrate ( 604 ).
- a second interlevel dielectric, ILD 2 , ( 606 ) is deposited upon ILD 1 ( 602 ).
- a reactive ion etch (ME) creates troughs ( 608 ) and ( 610 ) in ILD 2 ( 606 ) which will ultimately form a copper connector and a fuse in this example.
- a first refractory liner ( 612 ) is deposited over the exposed surfaces.
- a copper deposition ( 614 ) is applied to fill the troughs ( 608 ) and ( 610 ).
- a polishing operation removes the excess copper so that only the troughs ( 608 ) and ( 610 ) are filled with copper as shown in FIG. 6B.
- the copper forms conductive troughs ( 616 ) and ( 620 ).
- a mask, not shown, is used to allow removal of a portion of copper from the trough ( 620 ).
- the open portion of the trough ( 620 ) forms a fuse ( 618 ) by having only the liner ( 612 ) available to carry the current input therethrough.
- This fuse ( 618 ) can be blown in two ways: first excessive current in the trough ( 620 ) will cause overheating over the liner ( 612 ) and the liner will open circuit; secondly, a laser can be directed at the bare liner ( 612 ) to cause the fuse ( 618 ) to open. Alternatively, the copper could be left in the fuse ( 618 ) and a laser could be directed at the fuse ( 618 ) to cause it to open.
- FIGS. 7 A- 7 B One method of forming a capacitor is shown in FIGS. 7 A- 7 B.
- the trough ( 708 ) is 15 etched into ILD 2 ( 706 ) and overlayed with liner ( 712 ).
- Liner ( 712 ) is overlayed with an insulator ( 718 ).
- a second liner ( 722 ) is deposited on the insulator ( 718 ).
- a copper deposition ( 720 ) fills the remainder of trough ( 708 ).
- a polishing operation removes the excess copper to create a capacitor, shown in FIG. 7B, consisting of one plate ( 724 ) separated from a second plate ( 726 ) by a dielectric ( 728 ).
- FIG. 8 An alternative method of forming a capacitor is shown in FIG. 8.
- the trough ( 808 ) is etched into an ILD 2 ( 806 ) and overlayed with a refractory liner ( 812 ).
- a copper deposition fills the trough and is polished as herein above described to create a first copper plate ( 824 ).
- a second liner of refractory metal ( 826 ) is deposited to overlay the first copper plate ( 824 ).
- An oxide dielectric ( 828 ) is deposited on top of the second liner ( 826 ).
- a third liner ( 830 ) overlays the oxide dielectric ( 828 ).
- An additional ILD 3 overlays the first copper plate ( 824 ), second liner ( 826 ), oxide dielectric ( 828 ), and third liner ( 830 ).
- a trough ( 834 ) is etched into ILD 3 ( 832 ) to expose third liner ( 830 ).
- a fourth liner ( 836 ) overlays the trough ( 834 ). Copper is deposited on top of the fourth liner ( 836 ), and the excess polished off to create a second copper plate ( 838 ).
- a capacitor is thereby formed of second copper plate ( 838 ), dielectric ( 828 ), and first copper plate ( 824 ).
- a double Damascene process can also be used.
- two troughs are etched as shown in illustrative FIGS. 9 A- 9 B wherein a conductor ( 924 ) on one ILD is connected to a second conductor ( 938 ) on another ILD by a via conductor ( 934 ), as seen in FIG. 9B.
- the via between microcircuit levels may be a copper interconnect, a resistive or capacitive element, or other circuit element to connect the different levels.
- a first etch creates a trough ( 908 ) in ILD 2 ( 902 ).
- a first liner ( 912 ) is deposited in the trough ( 908 ).
- a copper deposition fills the remainder of the trough ( 908 ) and the excess copper and first liner ( 912 ) are polished off to create a first conductor ( 924 ).
- ILD 2 ( 906 ) is deposited to overlay the circuitry of ILD 1 ( 906 ).
- a second etch begins a double Damascene process by etching a second trough ( 930 ) (shown in FIG. 9A) deep enough to expose the first conductor ( 924 ).
- a second liner overlays the second trough ( 930 ) and the second trough is filled with copper ( 934 ), in this illustrative example.
- the excess copper and liner are polished off and a third etch creates the third trough ( 940 ) as shown in FIG.
- a third liner ( 936 ) overlays the third trough ( 940 ) and a copper deposition fills the third trough.
- a third polishing operation created the second conductor ( 938 ).
- a conductive link between two ILD has been created by the double Damascene process that created two troughs ( 930 ) and ( 940 ).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- This application is a divisional application of U.S. Ser. No. 09/525,088, filed Mar. 14, 2000, the disclosures of which are incorporated by reference herein in their entirety.
- This invention generally relates to semiconductor integrated circuits and specifically to a method of fabricating precision circuit elements therein.
- In the fabrication of electrical circuits, especially those formed in semiconductor integrated circuits, processing variations often prevent the manufacture of precise components, for example resistors and capacitors. Accordingly, there is a need for a method of trimming devices to obtain the precise values.
- Precision capacitors are required in a wide variety of integrated circuit applications. Decoupling capacitors are used for analog VDD to ground or analog VDD to another power source. Phase-locked-loops (PLL) are another application. Precision capacitors find wide usage in bipolar CMOS RF (radio frequency) applications for wired and wireless telephony and, recently, in series with the input of receivers operating in the gigahertz region.
- Trimming of capacitors finds application in A/D and D/A converters where the capacitors need to be matched. Experimentally, it has been shown that in fabricating the capacitors utilizing MOS technology, acceptable ratio matching accuracies of up to 10 bits can be obtained with good yields. However, to achieve accuracy greater than 10 bits, external means such as laser trimming is required to change the size and value of the capacitors as required which, in turn, will increase the typical yield. However, laser trimming is a very expensive and time consuming procedure. Another problem with laser trimming is that it must be performed at the wafer level before the device is packaged. Capacitor precision is affected by stray capacitance induced by the proximity of the packaging material.
- Integrated circuit capacitors are formed as metal-insulator-metal capacitors (MIM caps). “Back end of line” (BEOL) refers to the fabrication of the integrated circuit that occurs after the die contacts have been attached. BEOL MIM caps have replaced the very large area silicon capacitors in an effort to save silicon wafer area. However, the MIM caps are not as close to the external package as desired. The closer the precision capacitor to the external package, the better the effectiveness of the MIM capacitor. Another reason the MIM caps are not precision capacitors is due to the high variability in thickness of the deposited insulator (dielectric).
- MIM capacitors are used on RF receiver circuits. MIM capacitors are sensitive to electrical overstress (EOS) and electrostatic discharge (ESD) events. MIM capacitors fail at human body model (HBM) ESD events of 100 to 300 Volts. The need to isolate the failing section of the MIM capacitor or eliminate the fail mechanism is important for circuit reliability and yield.
- Fuses have been used to aid in compensating for variations in manufactured components. For instance, a fuse may be used to selectively connect additional elements to create the desired output. This has been performed at the wafer level of fabrication of the semiconductor or microcircuit. Once the wafer is diced and packaged the component values are affected. This is particularly true of capacitors which are sensitive to packaging material and other sources of stray capacitance. Therefore, for precision components it is desirable to set the values of the fuses (i.e., open or short) subsequent to packaging.
- Accordingly, improvements which overcome any or all of the problems are presently desirable.
- The present invention describes an apparatus and method for fabrication of a precision capacitor. In particular, the capacitors are fabricated as part of an integrated circuit assembly. The processing of the capacitor is such to provide a nominal capacitor close in value to the desired value. Additional trim capacitors are joined to the nominal capacitor through links. The links are fusible links or antifuses. By selectively blowing the fusible links or fusing the antifuses, trim capacitances are added or subtracted to personalize the nominal capacitor. The links are available for blowing or fusing, as appropriate, at any point in the manufacturing process or packaging level to personalize the capacitance.
- Further achieved is the capability of creating a precision capacitor and isolating segments of the precision capacitor which impact yield or fail due to EOS and ESD events. Such capacitor arrangements also provide an opportunity to determine failed capacitor locations for reliability purposes as well as an opportunity of providing redundant capacitors that can be introduced when a capacitor is damaged. This provides a mechanism of salvaging an otherwise irreparable microcircuit in the field.
- A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description of the invention and accompanying drawings that set forth an illustrative embodiment in which the principles of the invention are utilized.
- A better understanding of the features and advantages of the present invention will become better understood with regard to the following detailed description, appended claims, and the accompanying drawings where:
- FIG. 1 shows a pictorial representation of a capacitor personalized by selectively blowing fuses of parallel connected capacitor plates;
- FIG. 2 shows a schematic circuit diagram of the pictorial of FIG. 1 wherein capacitance is personalized by selectively blowing fuses of parallel connected capacitors;
- FIG. 3 shows a circuit diagram wherein capacitance is personalized by blowing fuses of series connected capacitors;
- FIG. 4 shows a pictorial embodiment of an parallel capacitor alternative arrangement wherein a back up capacitor is used;
- FIG. 5 shows a schematic circuit diagram of the pictorial of FIG. 4 wherein a back up capacitor is used in addition to personalizing capacitors;
- FIGS.6A-6C is a pictorial cross-sectional view of the fabrication of a conductor and a fuse by a Damascene process;
- FIGS.7A-7B is a pictorial cross-sectional view of the fabrication of a capacitor by a Damascene process;
- FIG. 8 is a pictorial cross-sectional view of an alternative method of creating a capacitor where both plates are copper; and
- FIGS.9A-9B is a pictorial cross-sectional view of a dual Damascene process creating a capacitor and via to another microcircuit level.
- A pictorial of the present invention is shown in FIG. 1, where capacitor formation in an integrated circuit die is generally shown as (100). The capacitor is formed by deposition of a common plate (102) and a top plate (104) separated by a dielectric (not shown). The top plate (104) is comprised of a core plate (106) and a plurality of smaller trim plates. Three such trim plates (108), (110), and (112) are shown for illustration purposes only and not for limitation. The number and size of the trim plates is based upon circuit design criteria. The trim plates (108), (110), and (112) are coupled by links (114) and (116). Trim plate (108) is coupled to the core plate (106) by the fusible link (118). The capacitance of the capacitor so formed is measured after the integrated circuit die is packaged. When the links are fusible links, the capacitance of this capacitor is personalized by selectively blowing the fusible links to decrease the capacitance and create a precision capacitor in the packaged die.
- Alternatively, antifuses can be substituted for the links (118), (116), and (114) of FIG. 1. In this configuration the antifuses are selective blown to create an electrical path to the trim plates (108), (110), and (112), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- Antifuses are structures that, when first fabricated, are an open circuit. When the antifuse is “fused,” the open circuit becomes closed and conduction across the antifuse becomes possible. Thus, antifuses are used to perform the opposite function of a fuse. Typically an antifuse is fused by applying a sufficient voltage, called a “fusing voltage” across the antifuse structure. This voltage causes a current to flow and the structure to fuse together, resulting in a permanent electrical connection. Fuses are “blown” by applying a voltage across the fuse structure. This voltage causes a current to flow and the structure to open, resulting in a permanent open circuit. Personalization by fusing of antifuses or blowing of fuses can be achieved by any known means including a laser beam through an integrated circuit access window or, more likely, access to the links via package pins.
- A schematic representation of the precision capacitor of FIG. 1 is generally shown as (200) in FIG. 2. A common plate (202) is coupled to a first terminal (230). The common plate (202) of capacitor (204) also forms capacitors with trim plates (208), (210), and (212). Trim plate (212) is coupled by a link (214) to the trim plate (210). Similarly, the trim plate (210) is coupled by a link (216) to the trim plate (208); and the trim plate (208) is coupled by a link (218) to a core plate (206). The core plate (206) is thence coupled to a second terminal (232). Trim plates (208), (210), and (212) represent the trim plates (108), (110), and (112) described in FIG. 1 herein above. Capacitor (206) represents the core plate described in FIG. 1 herein above. Selective blowing of links (214), (216), and (218), respectively, decreases the value of the capacitance between first terminal (230) and second terminal (232).
- Alternatively, antifuses can be substituted for the links (218), (216), and (214) of FIG. 2. In this configuration the antifuses are selectively fused to create an electrical path to the trim plates (208), (210), and (212), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- An alternative embodiment of the present invention is generally shown as (300) in FIG. 3 wherein the personalizing capacitors are series connected. A first plate (302) of a first capacitor (320) is coupled to a first terminal (330). A second plate (306) of first capacitor (320) is connected to a first plate (307) of a second capacitor (322). A link (318) is connected in parallel with the second capacitor (322) from first plate (306) to a second plate (308) of the second capacitor (322). The second plate (308) of the second capacitor (322) is connected to a first plate (309) of a third capacitor (324). A link (316) is connected in parallel with the third capacitor (324) from first plate (308) to a second plate (310) of the third capacitor (324). The second plate (310) of the third capacitor (324) is connected to a first plate (311) of a fourth capacitor (326). A link (314) is connected in parallel with the fourth capacitor (326) from first plate (310) to a second plate (312) of the fourth capacitor (326). The second plate (312) of the fourth capacitor (326) is connected to a second terminal (332). When the links are fusible links, selective blowing of links (314), (316), and (318), respectively, decreases the value of the capacitance between first terminal (330) and second terminal (332).
- Alternatively, antifuses can be substituted for the links (318), (316), and (314) of FIG. 3. In this configuration the antifuses are selectively fused to create an electrical path shorting (320), (322), and (324), respectively, and personalizing the capacitance. Capacitance between terminals (330) and (332) is increased as each series connected capacitor is shorted.
- An alternative embodiment in FIG. 4 where a redundant capacitor is formed in5 addition to trim plates is generally shown as (400). The capacitor is formed by deposition of a common plate (402) and a top plate (404) separated by a dielectric (not shown). The bottom plate (402) may be made accessible via a terminal (430) if desired. The top plate (404), which may be made accessible via a terminal (432) if desired, is comprised of a core plate (406A), a plurality of redundant core plates (406B), and a plurality of smaller trim plates. One such redundant core plates (406B), and three such trim plates (408), (410), and (412) are shown for illustration purposes only and not for limitation. The number of redundant core plates and the number and size of the trim plates is based upon circuit design criteria. The trim plates (408), (410), and (412) are coupled by links (414) and (416). Trim plate (408) is coupled by a link (418) to the redundant core plate (406B) via a link (422) and to the core plate (406A) via a link (420). The capacitance of the capacitor (400) so formed is measured after the integrated circuit die is packaged. When the links are fuses, the capacitance of this capacitor is personalized by selectively blowing the links to decrease the capacitance and create a precision capacitor in the packaged die.
- An advantage of this embodiment is realized when links (420) and (422) are antifuses. In this arrangement, a failure of a core plate (406A) can be isolated and remedied by fusing of antifuse (422).
- Alternatively, antifuses can be substituted for the links (418), (416), and (414) of FIG. 4. In this configuration the antifuses are selective blown to create an electrical path to the trim plates (408), (410), and (412), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- A schematic representation of the precision capacitor of FIG. 4 is generally shown as (500) in FIG. 5. A common plate (502) is coupled to a first terminal (530). The common plate (502) of capacitor (504) also forms capacitors with trim plates (508), (510), and (512). Trim plate (512) is coupled by a link (514) to the trim plate (510). Similarly, the trim plate (510) is coupled by a link (516) to the trim plate (508); and trim plate (508) is coupled by a link (518) to the redundant core plate (506B) via a link (522) and to the core plate (506A) via a link (520). Trim plates (508), (510), and (512) represent the trim plates (408), (410), and (412) described in FIG. 4 herein above. Capacitor (506A) and (506B) represents the core plate and redundant plate, respectively, described in FIG. 4 herein above and may also be connected to a second terminal (532) if desired. When the links are fuses, selective blowing of links (514), (516), and (518), respectively, decreases the value of the capacitance between first terminal (530) and second terminal (532).
- An advantage of this embodiment is realized when links (520) and (522) are antifuses. In this arrangement, a failure of a core plate (506A) can be isolated and remedied by fusing of antifuse (522).
- Alternatively, antifuses can be substituted for the links (518), (516), and (514) of FIG. 5. In this configuration the antifuses are selectively fused to create an electrical path to the trim plates (508), (510), and (512), respectively, and personalize the capacitance. Capacitance is increased with the addition of each trim plate.
- The fusible link structure preferably is formed concurrently with the capacitor structure, where, in this case, the capacitor structure consists of a copper electrode, a trough, a deposited dielectric, the liner film and then a second copper electrode. The method of construction can be a Damascene process as shown in FIGS. 6A through 6C. In an illustrative example of this process shown in FIG. 6A, a first insulator film referred to as an interlevel dielectric, ILD1, (602) is formed on a silicon substrate (604). A second interlevel dielectric, ILD2, (606) is deposited upon ILD 1 (602). Multiple interlevel dielectrics can be deposited in order to create multiple insulated levels of microcircuitry. A reactive ion etch (ME) creates troughs (608) and (610) in ILD2 (606) which will ultimately form a copper connector and a fuse in this example. A first refractory liner (612) is deposited over the exposed surfaces. A copper deposition (614) is applied to fill the troughs (608) and (610).
- A polishing operation removes the excess copper so that only the troughs (608) and (610) are filled with copper as shown in FIG. 6B. The copper forms conductive troughs (616) and (620). A mask, not shown, is used to allow removal of a portion of copper from the trough (620). The open portion of the trough (620) forms a fuse (618) by having only the liner (612) available to carry the current input therethrough. This fuse (618) can be blown in two ways: first excessive current in the trough (620) will cause overheating over the liner (612) and the liner will open circuit; secondly, a laser can be directed at the bare liner (612) to cause the fuse (618) to open. Alternatively, the copper could be left in the fuse (618) and a laser could be directed at the fuse (618) to cause it to open.
- One method of forming a capacitor is shown in FIGS.7A-7B. The trough (708) is 15 etched into ILD2 (706) and overlayed with liner (712). Liner (712) is overlayed with an insulator (718). A second liner (722) is deposited on the insulator (718). A copper deposition (720) fills the remainder of trough (708). A polishing operation removes the excess copper to create a capacitor, shown in FIG. 7B, consisting of one plate (724) separated from a second plate (726) by a dielectric (728).
- An alternative method of forming a capacitor is shown in FIG. 8. The trough (808) is etched into an ILD2 (806) and overlayed with a refractory liner (812). A copper deposition fills the trough and is polished as herein above described to create a first copper plate (824). A second liner of refractory metal (826) is deposited to overlay the first copper plate (824). An oxide dielectric (828) is deposited on top of the second liner (826). A third liner (830) overlays the oxide dielectric (828). An additional ILD3 (832) overlays the first copper plate (824), second liner (826), oxide dielectric (828), and third liner (830). In a similar manner a trough (834) is etched into ILD3 (832) to expose third liner (830). A fourth liner (836) overlays the trough (834). Copper is deposited on top of the fourth liner (836), and the excess polished off to create a second copper plate (838). A capacitor is thereby formed of second copper plate (838), dielectric (828), and first copper plate (824).
- A double Damascene process can also be used. In this method, two troughs are etched as shown in illustrative FIGS.9A-9B wherein a conductor (924) on one ILD is connected to a second conductor (938) on another ILD by a via conductor (934), as seen in FIG. 9B. The via between microcircuit levels may be a copper interconnect, a resistive or capacitive element, or other circuit element to connect the different levels. In FIG. 9A, a first etch creates a trough (908) in ILD2 (902). A first liner (912) is deposited in the trough (908). A copper deposition fills the remainder of the trough (908) and the excess copper and first liner (912) are polished off to create a first conductor (924). ILD2 (906) is deposited to overlay the circuitry of ILD1 (906). A second etch begins a double Damascene process by etching a second trough (930) (shown in FIG. 9A) deep enough to expose the first conductor (924). A second liner overlays the second trough (930) and the second trough is filled with copper (934), in this illustrative example. The excess copper and liner are polished off and a third etch creates the third trough (940) as shown in FIG. 9B. A third liner (936) overlays the third trough (940) and a copper deposition fills the third trough. A third polishing operation created the second conductor (938). A conductive link between two ILD has been created by the double Damascene process that created two troughs (930) and (940).
- While a preferred embodiment has been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/707,449 US20040115875A1 (en) | 2000-03-14 | 2003-12-15 | Method and structure for forming precision mim fusible circuit elements using fuses and antifuses |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/525,088 US6680520B2 (en) | 2000-03-14 | 2000-03-14 | Method and structure for forming precision MIM fusible circuit elements using fuses and antifuses |
US10/707,449 US20040115875A1 (en) | 2000-03-14 | 2003-12-15 | Method and structure for forming precision mim fusible circuit elements using fuses and antifuses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/525,088 Division US6680520B2 (en) | 2000-03-14 | 2000-03-14 | Method and structure for forming precision MIM fusible circuit elements using fuses and antifuses |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040115875A1 true US20040115875A1 (en) | 2004-06-17 |
Family
ID=24091862
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/525,088 Expired - Lifetime US6680520B2 (en) | 2000-03-14 | 2000-03-14 | Method and structure for forming precision MIM fusible circuit elements using fuses and antifuses |
US10/707,449 Abandoned US20040115875A1 (en) | 2000-03-14 | 2003-12-15 | Method and structure for forming precision mim fusible circuit elements using fuses and antifuses |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/525,088 Expired - Lifetime US6680520B2 (en) | 2000-03-14 | 2000-03-14 | Method and structure for forming precision MIM fusible circuit elements using fuses and antifuses |
Country Status (2)
Country | Link |
---|---|
US (2) | US6680520B2 (en) |
JP (1) | JP3701877B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075789A1 (en) * | 2005-09-30 | 2007-04-05 | International Business Machines Corporation | Structure and method for providing gate leakage isolation locally within analog circuits |
KR100855983B1 (en) | 2007-02-27 | 2008-09-02 | 삼성전자주식회사 | Capacitance trimming circuit of semiconductor device with vertically stacked capacitor layers |
US20120126364A1 (en) * | 2010-11-24 | 2012-05-24 | Lsi Corporation | Mitigation of detrimental breakdown of a high dielectric constant metal-insulator-metal capacitor in a capacitor bank |
US11145591B2 (en) * | 2019-11-18 | 2021-10-12 | International Business Machines Corporation | Integrated circuit (IC) device integral capacitor and anti-fuse |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6803306B2 (en) * | 2001-01-04 | 2004-10-12 | Broadcom Corporation | High density metal capacitor using via etch stopping layer as field dielectric in dual-damascence interconnect process |
US6830984B2 (en) * | 2002-02-15 | 2004-12-14 | Lsi Logic Corporation | Thick traces from multiple damascene layers |
TWI226125B (en) | 2002-07-08 | 2005-01-01 | Infineon Technologies Ag | Set of integrated capacitor arrangements, in particular integrated grid capacitors |
US6770554B1 (en) * | 2003-03-27 | 2004-08-03 | Applied Micro Circuits Corporation | On-chip interconnect circuits with use of large-sized copper fill in CMP process |
KR100548998B1 (en) * | 2003-09-25 | 2006-02-02 | 삼성전자주식회사 | Semiconductor element having fuse and capacitor at same level and method of manufacturing same |
US6876028B1 (en) * | 2003-09-30 | 2005-04-05 | International Business Machines Corporation | Metal-insulator-metal capacitor and method of fabrication |
US7300807B2 (en) | 2004-04-14 | 2007-11-27 | International Business Machines Corporation | Structure and method for providing precision passive elements |
KR100612564B1 (en) * | 2005-02-24 | 2006-08-11 | 매그나칩 반도체 유한회사 | Image sensor to reduce partition noise |
US7572682B2 (en) * | 2007-05-31 | 2009-08-11 | International Business Machines Corporation | Semiconductor structure for fuse and anti-fuse applications |
US20090257272A1 (en) * | 2008-04-10 | 2009-10-15 | Stembridge Benjamin J | Reduced size charge pump for dram system |
CN109411444B (en) | 2017-08-16 | 2020-09-15 | 联华电子股份有限公司 | Antifuse element and operation method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006405A (en) * | 1975-01-13 | 1977-02-01 | The Singer Company | Method and apparatus for measuring parameters of a conductive material which can be used in independently determining thickness and conductivity |
US4190854A (en) * | 1978-02-15 | 1980-02-26 | National Semiconductor Corporation | Trim structure for integrated capacitors |
US4687951A (en) * | 1984-10-29 | 1987-08-18 | Texas Instruments Incorporated | Fuse link for varying chip operating parameters |
US5353028A (en) * | 1992-05-14 | 1994-10-04 | Texas Instruments Incorporated | Differential fuse circuit and method utilized in an analog to digital converter |
US5512851A (en) * | 1994-10-27 | 1996-04-30 | Advanced Risc Machines Limited | Circuit synchronization when switching between multiple clock signals using a variable advance controller |
US5760674A (en) * | 1995-11-28 | 1998-06-02 | International Business Machines Corporation | Fusible links with improved interconnect structure |
US5795819A (en) * | 1996-06-28 | 1998-08-18 | International Business Machines Corporation | Integrated pad and fuse structure for planar copper metallurgy |
US5808351A (en) * | 1994-02-08 | 1998-09-15 | Prolinx Labs Corporation | Programmable/reprogramable structure using fuses and antifuses |
US6011433A (en) * | 1998-10-22 | 2000-01-04 | Pmc-Sierra Ltd. | Generalized procedure for the calibration of switched capacitor gain stages |
US6191025B1 (en) * | 1999-07-08 | 2001-02-20 | Taiwan Semiconductor Manufacturing Company | Method of fabricating a damascene structure for copper medullization |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512857A (en) * | 1994-11-22 | 1996-04-30 | Resound Corporation | Class AB amplifier allowing quiescent current and gain to be set independently |
-
2000
- 2000-03-14 US US09/525,088 patent/US6680520B2/en not_active Expired - Lifetime
-
2001
- 2001-03-13 JP JP2001070049A patent/JP3701877B2/en not_active Expired - Fee Related
-
2003
- 2003-12-15 US US10/707,449 patent/US20040115875A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006405A (en) * | 1975-01-13 | 1977-02-01 | The Singer Company | Method and apparatus for measuring parameters of a conductive material which can be used in independently determining thickness and conductivity |
US4190854A (en) * | 1978-02-15 | 1980-02-26 | National Semiconductor Corporation | Trim structure for integrated capacitors |
US4687951A (en) * | 1984-10-29 | 1987-08-18 | Texas Instruments Incorporated | Fuse link for varying chip operating parameters |
US5353028A (en) * | 1992-05-14 | 1994-10-04 | Texas Instruments Incorporated | Differential fuse circuit and method utilized in an analog to digital converter |
US5808351A (en) * | 1994-02-08 | 1998-09-15 | Prolinx Labs Corporation | Programmable/reprogramable structure using fuses and antifuses |
US5512851A (en) * | 1994-10-27 | 1996-04-30 | Advanced Risc Machines Limited | Circuit synchronization when switching between multiple clock signals using a variable advance controller |
US5760674A (en) * | 1995-11-28 | 1998-06-02 | International Business Machines Corporation | Fusible links with improved interconnect structure |
US5795819A (en) * | 1996-06-28 | 1998-08-18 | International Business Machines Corporation | Integrated pad and fuse structure for planar copper metallurgy |
US6011433A (en) * | 1998-10-22 | 2000-01-04 | Pmc-Sierra Ltd. | Generalized procedure for the calibration of switched capacitor gain stages |
US6191025B1 (en) * | 1999-07-08 | 2001-02-20 | Taiwan Semiconductor Manufacturing Company | Method of fabricating a damascene structure for copper medullization |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075789A1 (en) * | 2005-09-30 | 2007-04-05 | International Business Machines Corporation | Structure and method for providing gate leakage isolation locally within analog circuits |
US7268632B2 (en) | 2005-09-30 | 2007-09-11 | International Business Machines Corporation | Structure and method for providing gate leakage isolation locally within analog circuits |
KR100855983B1 (en) | 2007-02-27 | 2008-09-02 | 삼성전자주식회사 | Capacitance trimming circuit of semiconductor device with vertically stacked capacitor layers |
US20120126364A1 (en) * | 2010-11-24 | 2012-05-24 | Lsi Corporation | Mitigation of detrimental breakdown of a high dielectric constant metal-insulator-metal capacitor in a capacitor bank |
US8624352B2 (en) * | 2010-11-24 | 2014-01-07 | Lsi Corporation | Mitigation of detrimental breakdown of a high dielectric constant metal-insulator-metal capacitor in a capacitor bank |
US11145591B2 (en) * | 2019-11-18 | 2021-10-12 | International Business Machines Corporation | Integrated circuit (IC) device integral capacitor and anti-fuse |
Also Published As
Publication number | Publication date |
---|---|
US20020113297A1 (en) | 2002-08-22 |
JP3701877B2 (en) | 2005-10-05 |
US6680520B2 (en) | 2004-01-20 |
JP2001308280A (en) | 2001-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6680520B2 (en) | Method and structure for forming precision MIM fusible circuit elements using fuses and antifuses | |
US6677637B2 (en) | Intralevel decoupling capacitor, method of manufacture and testing circuit of the same | |
KR20010109209A (en) | Structures and methods of anti-fuse formation in soi | |
EP0603101A1 (en) | A self protective decoupling capacitor structure | |
US20190378793A1 (en) | Integration of guard ring with passive components | |
US20120146710A1 (en) | Fuse Device | |
US6908821B2 (en) | Apparatus for adjusting input capacitance of semiconductor device and fabricating method | |
EP0757846B1 (en) | Electronic component comprising a thin-film structure with passive elements | |
US20010002722A1 (en) | Methods of forming integrated circuit capacitors having electrodes therein that comprise conductive plugs | |
KR20030082910A (en) | Semiconductor memory device with series-connected antifuses-components | |
US10714422B2 (en) | Anti-fuse with self aligned via patterning | |
US20030094671A1 (en) | Antifuses | |
US6784045B1 (en) | Microchannel formation for fuses, interconnects, capacitors, and inductors | |
JP2001320026A (en) | Semiconductor device and its manufacturing method | |
KR100629541B1 (en) | Integrated semiconductor circuit with filling structure | |
US6469363B1 (en) | Integrated circuit fuse, with focusing of current | |
US7023070B2 (en) | Semiconductor device | |
US11101213B2 (en) | EFuse structure with multiple links | |
US6285068B1 (en) | Antifuses and method of fabricating the same | |
US6252291B1 (en) | Modifiable semiconductor circuit element | |
US6215170B1 (en) | Structure for single conductor acting as ground and capacitor plate electrode using reduced area | |
US12176048B2 (en) | One-time programmable fuse using thin film resistor layer, and related method | |
US7393721B2 (en) | Semiconductor chip with metallization levels, and a method for formation in interconnect structures | |
US20250096123A1 (en) | Tapered antifuse | |
JP2003347303A (en) | Manufacturing method for semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |