+

US20040107452A1 - Gene targeting in animal cells using isogenic DNA constructs - Google Patents

Gene targeting in animal cells using isogenic DNA constructs Download PDF

Info

Publication number
US20040107452A1
US20040107452A1 US10/722,661 US72266103A US2004107452A1 US 20040107452 A1 US20040107452 A1 US 20040107452A1 US 72266103 A US72266103 A US 72266103A US 2004107452 A1 US2004107452 A1 US 2004107452A1
Authority
US
United States
Prior art keywords
dna
cells
targeting
sequence
animal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/722,661
Inventor
Anton Berns
Els Robanus Maandag
Hein Riele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genpharm International Inc
Original Assignee
Genpharm International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genpharm International Inc filed Critical Genpharm International Inc
Priority to US10/722,661 priority Critical patent/US20040107452A1/en
Publication of US20040107452A1 publication Critical patent/US20040107452A1/en
Assigned to BIOPHARMA CREDIT PLC reassignment BIOPHARMA CREDIT PLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEXICON PHARMACEUTICALS, INC.
Assigned to LEXICON PHARMACEUTICALS, INC. reassignment LEXICON PHARMACEUTICALS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BIOPHARMA CREDIT PLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination

Definitions

  • the present invention relates generally to methods for modifying the genome of animal cells, including human cells, and more particularly, to methods for modifying a genomic DNA sequence by homologous recombination using substantially isogenic DNA constructs.
  • Targeted gene disruption by homologous recombination has met with variable success in higher eukaryotes. While it has been possible to isolate cells which have stably incorporated exogenously prepared DNA sequences, in the vast majority of these cells, the DNA has integrated randomly into the genome rather than at the desired target site via homologous recombination.
  • the ratio of the number of homologous recombinants to the total number of integration events varies, but typically, when there is no direct selection or enrichment for homologous recombinants, less than 1% of the integration events result from homologous recombination and ratios as low as 1 in 40,000 have been observed.
  • homologous recombinants can only be obtained amidst a large background of random integration events, then it may be impractical, if not impossible, to effectively target many genomic sequences.
  • the approaches taken to overcoming this problem have focused on developing special strategies to screen or select homologous recombinants from the large background of non-homologous or random integration events.
  • the targeted gene is itself a dominant selectable marker, it may be feasible to select directly for homologous recombinants. For example, knocking out the hprt gene (encoding hypoxanthine phosphoribosyl transferase) results in increased tolerance of the base analog 6-thioguanine (Thomas, K. and M.
  • the targeting constructs contain a marker gene, typically conferring drug resistance, deprived of transcriptional and/or translational start signals, in such a way that the juxtaposition of the marker gene and functional expression signals would be obtained on homologous recombination but only rarely on random integration. Sedivy, J., and P. Sharp, Proc. Nat'l Acad. Sci. USA 86:227-231 (1989).
  • PCR polymerase chain reaction
  • pools of cells are tested for potential homologous recombinants using pairs of primers which will be juxtaposed only if homologous recombination has occurred. Any pools containing potential homologous recombinants are then sub-divided and the procedure is continued until a small enough pool of cells can be analyzed individually.
  • the PCR protocols also require that appropriate regions of the DNAs have been sequenced and that oligonucleotide primers be obtained.
  • the present invention provides novel methods for modifying the genome of an animal cell comprising the steps of: constructing a DNA molecule in which desired sequence modifications are contained in a segment of DNA (a “targeting DNA”) that is substantially isogenic with a DNA in the cell genome (a “target DNA”); introducing the targeting DNA construct into the cell (e.g., by microinjection, electroporation, transfection, or calcium phosphate precipitation); and selecting cells in which the desired sequence modifications have been introduced into the genome via homologous recombination.
  • a targeting DNA e.g., by microinjection, electroporation, transfection, or calcium phosphate precipitation
  • the targeting DNA will be derived from a cell line that is closely related to the cell line which is being targeted; so that the sequence of the targeting DNA is substantially identical with the sequence of the target DNA (except for the desired sequence modifications).
  • substantially isogenic targeting DNA a substantial fraction of the cells in which integration has occurred will have undergone homologous recombination between the targeting DNA sequence and the target DNA sequence. Since the integration events are hereby enriched for homologous recombinants, it is possible to forego the use of special selection and screening protocols used to isolate rare homologous recombinants from a large background of non-homologous integration events.
  • a preferred cell type for targeting the genome of a mammalian organism is the embryonic stem cell.
  • the DNA construct contains an antibiotic resistance marker and the cells are first selected on a medium containing the antibiotic.
  • the present invention also provides novel methods for creating genetically modified animals comprising the steps of: modifying the genome of embryonic stem cells derived from the animal, as described above; introducing the modified embryonic stem cells into blastocysts derived from the same species of animal; and using a pseudo-pregnant female to carry the chimeric animal to term.
  • the resulting chimeric animal can in turn be bred to obtain non-chimeric animals in which the desired genetic alteration has been stably inherited through germ-line transmission.
  • the present invention can also be used for the direct targeting of animal zygotes.
  • the targeting DNA can be introduced by, for example, microinjection, and then, with mammals for example, the modified zygotes can be transferred to pseudo-pregnant females capable of carrying the animal to term.
  • somatic gene therapy the genome of somatic cells of an animal is directly modified using the substantially isogenic targeting DNA and then the modified cells are introduced into the same or a different animal.
  • the present invention provides cells exhibiting a recombination event at a preselected native target DNA site in the cell genome.
  • a collection of cells having undergone a recombination event will exhibit between about 10-90%, typically at least about 30 to 50%, recombination.
  • the cells exhibiting the desired characteristics may be selected for and isolated in accordance with standard techniques, and grown into animals.
  • FIG. 1 DNA targeting constructs.
  • Two additional isogenic targeting constructs generated by inserting the hprt-minigene (Van der Lugt, N., et al., Gene, (1991)) or the hyg gene (Te Riele, H., et al., Nature 348:649-651 (1990)) into the BglII site of exon 19 within a 17 kb 129-derived Rb fragment, giving 129Rb-hprt (c) and 129Rb-hyg (d), respectively. These two constructs were flanked by non-endogenous SalI sites. A and B indicate fragments used as probes to detect modifications at Rb.
  • FIG. 2 Sequence divergence between BALB/c and 129 DNA at the region of homology.
  • the upper part of the diagram represents the 10.5 kb.
  • the sequence was divided into nine smaller fragments, as shown by the solid vertical lines. Filled triangles represent extra nucleotides within a fragment in the BALB/c-derived sequence (above the line) or within the 129-derived sequence (below the line). Open triangles indicate length differences within a fragment that could result from nucleotide insertions or restriction site polymorphisms.
  • the lower part of the diagram shows nucleotide differences as determined by sequence analysis of the indicated regions.
  • gene targeting can be used to modify the genome of animal cells, including human cells, using an efficient technique involving homologous recombination between substantially isogenic DNA constructs.
  • an exogenous “targeting DNA” into eukaryotic cells, selecting for cells in which the targeting DNA has been stably integrated into the recipient cell genome is readily accomplished.
  • the methods provided for substantially increased frequency of recombination, one to three orders of magnitude higher, or more are pending upon the target and protocol.
  • homologous recombination the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence.
  • non-homologous (“random” or “illicit”) integration the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, apparently at one of a large number of potential locations.
  • studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).
  • Gene targeting represents a major advance in the ability to selectively manipulate animal cell genomes.
  • a particular DNA sequence can be targeted and modified in a site-specific and precise manner.
  • Different types of DNA sequences can be targeted for modification, including regulatory regions, coding regions and regions of DNA between genes.
  • regulatory regions include: promoter regions, enhancer regions, terminator regions and introns.
  • Coding regions can be modified to alter, enhance or eliminate, for example, the specificity of an antigen or antibody, the activity of an enzyme, the composition of a food protein, the sensitivity of protein to inactivation, the secretion of a protein, or the routing of a protein within a cell.
  • Introns and exons, as well as inter-genic regions are suitable targets for modification.
  • Modifications of DNA sequences can be of several types, including insertions, deletions, substitutions, or any combination of the preceding.
  • a specific example of a modification is the inactivation of a gene by site-specific integration of a nucleotide sequence that disrupts expression of the gene product.
  • Using such a technique to “knock out” a gene by targeting will avoid problems associated with the use of antisense RNA to disrupt functional expression of a gene product.
  • one approach to disrupting a target gene using the present invention would be to insert a selectable marker into the targeting DNA such that homologous recombination between the targeting DNA and the target DNA will result in insertion of the selectable marker into the coding region of the target gene.
  • a selectable marker into the targeting DNA which allows for selection of targeted cells that have stably incorporated the targeting DNA. This is especially useful when employing relatively low efficiency transformation techniques such as electroporation, calcium phosphate precipitation and liposome fusion, as discussed below, where typically fewer than 1 in 1000 cells will have stably incorporated the exogenous DNA.
  • selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence.
  • antibiotic resistance genes such as the neomycin resistance gene (neo), Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982); and the hygromycin resistance gene (hyg), Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990).
  • Selectable markers also include genes conferring the ability to grow on certain media substrates such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); and the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See Song, K- Y., et al. Proc. Nat'l Acad. Sci. USA 84:6820-6824 (1987).
  • selectable markers for use in mammalian cells, and plasmids carrying a variety of selectable markers, are described in Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989) (hereinafter “Sambrook”), see chapter 16.
  • the preferred location of the marker gene in the targeting construct will depend on the aim of the gene targeting. For example, if the aim is to disrupt target gene expression, then the selectable marker can be cloned into targeting DNA corresponding to coding sequence in the target DNA. Alternatively, if the aim is to express an altered product from the target gene, such as a protein with an amino acid substitution, then the coding sequence can be modified to code for the substitution, and the selectable marker can be placed outside of the coding region, in a nearby intron for example.
  • the selectable markers will depend on their own promoters for expression and the marker gene is derived from a very different organism than the organism being targeted (e.g. prokaryotic marker genes used in targeting mammalian cells), it is preferable to replace the original promoter with transcriptional machinery known to function in the recipient cells.
  • transcriptional machinery known to function in the recipient cells.
  • a large number of transcriptional initiation regions are available for such purposes including, for example, metallothionein promoters, thymidine kinase promoters, beta-actin promoters, immunoglobulin promoters, SV40 promoters and human cytomegalovirus promoters.
  • a widely used example is the pSV2-neo plasmid which has the bacterial neomycin phosphotransferase gene under control of the SV40 early promoter and confers in mammalian cells resistance to G418 (an antibiotic related to neomycin). Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982).
  • a number of other variations may be employed to enhance expression of the selectable markers in animal cells, such as the addition of a poly(A) sequence (see, e.g., Thomas, K., et al., Cell 44:419-428 (1986)); and the addition of synthetic translation initiation sequences (see, e.g., Thomas, K. and M. Capecchi, Cell 51:503-512 (1987)). Both constitutive and inducible promoters may be used.
  • the modification sequences may be desirable for the modification sequences (including selectable markers) to alter the transcriptional activity of the target gene.
  • selectable markers are used and it is not desirable to affect transcriptional activity of the target gene, it will be preferable to use selectable markers with an inducible promoter and/or to include a transcription termination sequence downstream of the selectable marker.
  • inducible promoters and transcription termination sequences are known and available. See, e.g., Sambrook, supra.
  • the target gene is highly expressed or readily inducible
  • selectable markers lacking their own promoters as a way to further enhance the frequency of obtaining homologous recombinants.
  • the likelihood of the selectable marker being highly expressed upon integration into the genome will be much greater for homologous recombination events (where the promoterless gene will have been placed in the vicinity of the target gene promoter) than for random integration into the genome.
  • Target genes can also be modified by deletions.
  • the sequence to be deleted will be absent or removed from the corresponding targeting DNA and thus the “modification sequence” will constitute a missing sequence relative to the target DNA.
  • the deletion will generally cover a portion of one or more exons and may include introns and flanking non-coding regions such as regulatory regions.
  • the deletion may be as small as one base pair or as large as tens of thousands of base pairs.
  • Another specific form of modification is the introduction of a new gene into the animal cell genome.
  • a gene from any source e.g., bacterial, plant, animal
  • Another form of modification is the insertion of a marker gene in a region outside of but proximal to a gene of interest.
  • This sort of modification results in the creation of a new linkage in the animal genome.
  • the precise function of a target sequence need not be known, so long as it is known to be associated with a particular trait.
  • Selectable markers can be introduced into precise locations adjacent to desirable genes to facilitate selection of desirable traits that are otherwise not selectable in culture. This procedure is of value, for instance, in order to facilitate animal breeding programs. Segregation of the trait through successive generations can be tracked by growing cells on the appropriate selective medium. Thus, the time required to breed improved varieties can be shortened.
  • regions identified by RFLP analysis to be associated with complex traits can be targeted and cells containing the traits can be selected in culture.
  • the targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified.
  • the substantially isogenic sequence is preferably at least about 97-98% identical with the corresponding target sequence (except for the desired sequence modifications), more preferably more preferably at least about 99.0-99.5% identical, most preferably about 99.6 to 99.9% identical.
  • the sequencers are typically 100% identical.
  • the targeting DNA and the target DNA preferably share stretches of DNA at least about 75 base pairs that are perfectly identical, more preferably at least about 150 base pairs that are perfectly identical, even more preferably at least about 500 base pairs that are perfectly identical.
  • targeting DNA derived from cells as closely related as possible to the cell line being targeted; more preferably, the targeting DNA is derived from cells of the same cell line as the cells being targeted. Most preferably, the targeting DNA is derived from cells of the same individual (or animal) as the cells being targeted.
  • the targeting DNA sequence is at least about 100-200 bp of substantially isogenic DNA, more preferably at least about 300-1000 bp and generally less than about 15,000 bp.
  • the amount of targeting DNA present on either side of a sequence modification can be manipulated to favor either-single or double crossover events, both of which can be obtained using the present invention.
  • a double crossover or “replacement-type” event the portion of the targeting DNA between the two crossovers will replace the corresponding portion of the target DNA.
  • the entire targeting DNA will generally be incorporated into the target sequence at the site of the single crossover.
  • the modification sequences are preferably flanked by targeting DNA such that, upon linearization, the modification sequences are located towards the middle of the flanking targeting DNA.
  • the targeting DNA should be designed such that the ends of the linearized targeting sequence correspond to target DNA sequences lying adjacent to each other in the genome, as described by Thomas, K., and M. Capecchi, Cell 51:503-512 (1987).
  • the DNA delivery molecule may contain only the targeting DNA with modification sequences or it may contain additional DNA flanking the targeting DNA. If this additional DNA contains a selectable marker, then it may be possible to further enrich for cells which have undergone double crossover homologous recombination because these cells will generally have lost the flanking selectable marker located outside the targeting DNA. Conversely, cells which have stably incorporated the flanking selectable marker are likely to have arisen by random integration of the DNA construct into the genome.
  • One such flanking selectable marker is the HSV-tk gene which confers sensitivity to the antibiotic gancyclovir. Mansour, S., et al., Nature 336:348-352 (1988).
  • Combinations of selectable markers can also be used to advantage.
  • a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is substantially isogenic with gene X.
  • the placement of this marker gene particularly whether it is in an exon or outside the coding sequence, will depend on the aim of the gene targeting.
  • the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics.
  • those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into gene X but the tk gene has been lost because it was located outside the region of the double crossover. As discussed above, it will be necessary to ensure that the selectable markers are adequately expressed in the recipient cells.
  • the targeting DNA construct may also contain replication systems which are functional in prokaryotes, especially E. coli, which were of use in constructing the DNA molecule, and for performing and analyzing genetic manipulations of the targeting sequence. Preferably, however, DNA sequence not required for the gene targeting is removed prior to introducing the DNA into cells to be targeted.
  • the DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the DNA delivery molecule or the fate of the molecule after introduction into the cells.
  • the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below.
  • the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells, or that affect the catalysis of homologous recombination.
  • Transformation of animal cells with the recombinant construct containing the targeting DNA can be carried out using essentially any method for introducing nucleotide sequences into animal cells including, as discussed below, microinjection, electroporation, calcium phosphate precipitation, and transfection using a virus or viral particle.
  • the cells in which the targeting DNA has stably integrated into the genome can be selected.
  • the choice of which one to use will generally depend upon the nature of the sequence that has been integrated. For example, if the targeting DNA contains a selectable marker, as described above, then the integration of targeting DNA into the genome results in the stable acquisition of the selectable marker.
  • the cells may be selected by virtue of a modification of the target gene. For example, if the target gene has a selectable phenotype, then modification of the target DNA may result in loss or alteration of that phenotype. In other situations, a selectable phenotype may result from juxtaposition of a DNA sequence present on the targeting DNA with DNA sequences present near the target DNA. For example, integration of a promoterless antibiotic resistance gene at the target site may result in expression of the resistance gene based on transcriptional activity at the target site.
  • PCR polymerase chain reaction
  • one PCR primer is directed to DNA in the modification sequence and another primer is directed to DNA near the target locus that is outside but proximal to the target DNA, such that integration results in the creation of a genomic DNA sequence in which the primer binding sites are facing each other in relative juxtaposition. After a number of rounds of amplification, DNA from such a locus will be present at much higher levels because it is being amplified exponentially rather than linearly.
  • Homologous recombination can be confirmed using standard DNA hybridization techniques, such as Southern blotting, to verify the presence of the integrated DNA in the desired genomic location.
  • the cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele.
  • Homozygosity in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.
  • the present invention can be used with a variety of cell types derived from a number of animal sources. As discussed above, the invention is especially useful with animals, such as non-murine animals, in which inbreeding is not very common.
  • animals such as non-murine animals, in which inbreeding is not very common.
  • the choice of particular cell types for targeting will generally depend on the purposes for which the site-directed mutagenesis is undertaken. For example, if whole animals carrying a particular mutation are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells may be used. The resulting chimeric animals can be bred in order to obtain non-chimeric animals in which the mutation has been transmitted through the germ line.
  • Another approach to creating genetically altered animals that can be used with the present invention is to modify zygotes directly.
  • the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term.
  • Cells of interest for somatic gene targeting include hematopoietic cells, T-lymphocytes and other cells of the immune system, epithelial cells, endothelial cells, adrenal medulla cells, keratinocytes, fibroblasts, osteoblasts, osteoclasts, neurons, ganglion cells, retinal cells, liver cells, myoblast cells, and cells of the islets of Langerhans.
  • stem cells which serve as the progenitors of the above cells and which may be an original progenitor cell or a progenitor cell that has already become dedicated to a particular cell lineage.
  • the techniques of the present invention are also useful in expanding basic knowledge with respect to animal cell function. For example, the expression of altered forms of genes and their promoters can be analyzed without position effects because the gene is altered in situ; and the function of sequences whose purpose is unknown can be determined by inactivating the sequence and observing changes in cell function.
  • the DNA to be modified by homologous recombination can be in any organelle of the animal cell including the nucleus and mitochondria and can be an intact gene, an exon or intron, a regulatory sequence or any region between genes.
  • Sequence changes that it would be desirable to introduce into the target DNA. These sequence modifications may include insertions, deletions or substitutions of DNA sequence, or any combination thereof, and may be as small as a single base pair or as large as tens of thousands of base pairs. Insertions include the insertion of entire genes which may be of animal, plant, prokaryotic or viral origin.
  • the molecule comprising at least the targeting DNA which is introduced into cells to be targeted.
  • the percentage of DNA sequence that is identically conserved between two homologous DNA sequences For example, if a first DNA sequence comprises 200 base pairs and a second sequence differs at two sites (e.g. a small insertion such as 4 nucleotides, and a small deletion), then the average sequence identity is about 99%.
  • DNA sequence that is at least about 70% identical with a reference DNA sequence.
  • An indication that two sequences are homologous is that they will hybridize with each other under fairly stringent conditions (see, e.g., Maniatis or Sambrook, infra).
  • DNA sequence that is identical with or nearly identical with a reference DNA sequence Indications that two sequences are isogenic is that they will hybridize with each other even under the most stringent hybridization conditions (see, e.g. Maniatis or Sambrook, infra); and will not exhibit sequence polymorphisms (i.e. they will not have different sites for cleavage by restriction endonucleases).
  • substantially isogenic refers to DNA that is at least about 97-99% identical with the reference DNA sequence, and preferably at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence.
  • homologous recombination refers to the process of DNA recombination based on sequence homology. The term embraces both crossing over and gene conversion. Cellular recombination enzymes are believed to be involved in the process of recognizing sequence identity between distinct nucleotide sequences. Three distinct types of homologous recombination have been distinguished based on the nature of the recombination substrates and the mechanisms believed to be involved in mediating recombination: “chromosomal recombination,” “extrachromosomal recombination” and “gene targeting” (see definitions, infra).
  • intrachromosomal recombination or recombination between chromosomes (“interchromosomal recombination”).
  • interchromosomal recombination is the mitotic recombination between homologous chromosomes.
  • a gene the expression of which allows cells containing the gene to be identified on a particular medium.
  • a selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite.
  • the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype may be, for example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.
  • the animal cells are from an animal belonging to the phylum chordata, more preferably the subphylum vertebrate.
  • the animal cells are non-murine mammalian cells, including human cells.
  • the targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified.
  • the targeting DNA can be constructed exclusively from genomic DNA, from cDNA, from synthetic DNA or from any combination of the above.
  • the genomic DNA can be cloned from a library of genomic DNA fragments in a bacteriophage vector (e.g., lambda phage), in a plasmid vector (e.g., pBR322 derivative), or in a cosmid vector; using techniques well-known in the art of recombinant DNA.
  • cDNA can, e.g., be prepared from a mRNA population which forms the basis of preparation of a cDNA library.
  • synthetic DNA fragments can be prepared based upon knowledge of the nucleotide sequence of the target DNA.
  • Modification of the targeting DNA will depend on two basic considerations: firstly, what modifications are desired in the target DNA; secondly, whether selectable sequences should be included as an aid in isolating homologous recombinants.
  • the modified targeting DNA will already be available. If for example, a mutant version of a particular gene is already available as a recombinant DNA construct, then the targeting DNA may be obtained from that source using standard cloning techniques. See, e.g., Sambrook. As discussed above, the efficiency of homologous recombination depends in part on the isogenicity of the targeting DNA and the target DNA. Where the modification is available in a different cell line than that being targeted, it may be preferable to clone the modification sequence out of the original DNA and into DNA sequence that is more nearly isogenic with the target DNA. In general, such cloning will be performed in prokaryotic organisms, using standard cloning techniques. Id.
  • a targeting DNA with desired sequence modifications is not already available, then a fragment of substantially isogenic targeting DNA can be obtained and modified. Generally, the isogenic targeting DNA will be most easily modified after being cloned onto vectors that can be used in prokaryotic organism such as E. coli. If an appropriate fragment of isogenic targeting DNA is not already available, then a gene library of the cell line to be targeted can be prepared and screened for the desired sequence using techniques well known in the art. See, e.g., Sambrook. Once the targeting DNA is cloned, insertions, deletions and alterations of DNA sequences can be achieved by techniques well known in the art. See, Sambrook. If the sequence of the target DNA is known, it is also possible to obtain synthetic DNA fragments in which one or more of the base pairs are specifically altered, added or removed.
  • One particular type of modification is the insertion of a gene within the targeting DNA.
  • a selectable marker as an insert to facilitate selection of recombinants.
  • a wide variety of such markers are generally known and available; and can be readily cloned into a desired targeting DNA construct using well known techniques. See, e.g., Sambrook.
  • cloning of the targeting DNA will be performed in E. coli, and standard plasmids such as pUC and pBR322 derivatives can be used. In many cases, it will be possible to use these plasmid DNAs directly as DNA delivery molecules; but it is preferable to minimize the amount of extraneous DNA on the delivery molecule.
  • DNA sequence that will not be involved in targeting or selection of homologous recombinants can be removed prior to introduction of the DNA into the recipient cells.
  • the DNA will be linearized by cutting with a restriction enzyme prior to introduction into the cell. See, Sambrook. Where biological methods of DNA introduction are used, such as a virus or viral capsid, the DNA delivery molecule will be tailored accordingly to the particular system. For example, particular viral capsids generally work most efficiently with DNA sequences that are within a particular size range.
  • the DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the molecule or the fate of the molecule after introduction into the cells.
  • the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below.
  • the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells or molecules that affect the catalysis of homologous recombination.
  • the present invention can be used with essentially any cell into which DNA can be introduced.
  • DNA can be introduced into animal cells.
  • the choice of cell type will depend on the particular goal of the site-directed mutagenesis. For example, embryonic stem cells or zygotes may be targeted for generating modified animals; whereas both germ-line and somatic cells may be usefully targeted for gene therapy.
  • the choice of cells may also affect (or be affected by) the choice of transformation technique, as discussed below. Growth and manipulation of the cells can be performed using standard procedures as described in Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, N.Y. (1986).
  • Electroporation has the advantage of ease and has been found to be broadly applicable, but a substantial fraction of the targeted cells may be killed during electroporation. Therefore, for sensitive cells or cells which are only obtainable in small numbers, microinjection directly into nuclei may be preferable. Also, where a high efficiency of DNA incorporation is especially important, such as targeting without the use of a selectable marker (as discussed above), direct microinjection into nuclei is an advantageous method because typically 5-25% of targeted cells will have stably incorporated the microinjected DNA. Retroviral vectors are also highly efficient but in some cases they are subject to other shortcomings, as described by Ellis, J., and A. Bernstein, Molec.
  • Targeting constructs can be microinjected directly into animal cell nuclei using micropipettes to mechanically transfer the recombinant DNA. This method has the advantage of not exposing the DNA to cellular compartments other than the nucleus and of yielding stable recombinants at high frequency. See, Capecchi, M., Cell 22:479-488 (1980).
  • the targeting DNA can also be introduced into the animal cells by electroporation.
  • animal cells are electroporated in the presence of DNA containing the targeting construct.
  • Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids.
  • the pores created during electroporation permit the uptake of macromolecules such as DNA. Procedures are described in, e.g., Potter, H., et al., Proc. Nat'l. Acad. Sci. USA 81:7161-7165 (1984); and Sambrook, ch. 16.
  • the targeting constructs may also be transferred into cells by other-methods of direct update, for example, using calcium phosphate. See, e.g., Graham, F., and A. Van der Eb, Virology 52:456-467 (1973); and Sambrook, ch.16.
  • Encapsulation of DNA within artificial membrane vesicles (liposomes) followed by fusion of the liposomes with the target cell membrane can also be used to introduce DNA into animal cells. See Mannino, R. and S. Gould-Fogerite, BioTechniaues, 6:682 (1988).
  • Viruses and empty viral capsids can also be used to incorporate DNA and transfer the DNA to animal cells.
  • DNA can be incorporated into empty polyoma viral capsids and then delivered to polyoma-susceptible cells. See, e.g., Slilaty, S. and H. Aposhian, Science 220:725 (1983).
  • Protoplast fusion typically involves the fusion of bacterial protoplasts carrying high numbers of a plasmid of interest with cultured animal cells, usually mediated by treatment with polyethylene glycol. Rassoulzadegan, M., et al., Nature, 295:257 (1982).
  • nucleic acid segments Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987.
  • the gene targeting event will itself result in a selectable phenotype, in which case the targeted cells can be screened directly for homologous recombination. For example, disrupting the gene hprt results in resistance to 6-thioguanine.
  • the targeting will not result in such an easily selectable phenotype and, if a low efficiency transformation technique such as calcium phosphate precipitation is being used, it is preferable to include in the targeting DNA construct a selectable marker such that the stable integration of the targeting DNA construct in the genome will lead to a selectable phenotype. For example, if the targeting DNA contains a neo gene, then selection for integrants can be achieved by selecting cells able to grow on G418.
  • the relative frequency of targeting to a gene may be further improved by using a selectable marker which lacks its own promoter, since the likelihood of adequate expression of the selectable marker is greater where integration into a gene has occurred than for integration into the large parts of the genome that are believed to be transcriptionally quiescent.
  • the frequency of homologous recombination relative to random integration into the genome is substantially improved.
  • the frequency is typically improved by a factor of 5 to 10, 50 to 100 or 1000 or more depending upon the particular old, targeting sequencers and other parameters known by the skilled artisan.
  • gene targeting may itself result in a readily selectable phenotype.
  • selectable markers in the targeting DNA can be employed which will be preferentially expressed upon integration into the target gene by homologous recombination.
  • Another approach is to utilize the polymerase chain reaction to screen the cells for homologous recombinants.
  • the standard approach for confirming that a cell has undergone a homologous recombination event is to isolate genomic DNA and perform a Southern hybridization analysis to demonstrate that genomic DNA fragments hybridizing with a labelled probe of the target DNA have been rearranged because of the modification of the target DNA.
  • Southern hybridization is described in Sambrook and Maniatis. Given the high frequency of homologous recombination obtainable with the present invention, the targeted cells can be checked directly for homologous recombination.
  • the cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele.
  • Homozygosity in which both alleles are modified, can be achieved in a number of ways.
  • One approach exemplified below, is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker.
  • homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics.
  • Embryonic stem cells which have been modified can be injected into the blastocoel of a blastocyst and grown in the uterus of a pseudopregnant female.
  • the blastocysts can be obtained from a different parental line than the embryonic stem cells.
  • the blastocysts and embryonic stem cells may be derived from parental lines with different hair color or other readily observable phenotype.
  • the resulting chimeric animals can be bred in order to obtain non-chimeric animals which have received the modified genes through germ-line transmission.
  • Targeting DNA can also be introduced directly into a zygote nucleus using, for example, microinjection.
  • Selectable markers and/or other aspects of the present invention can be employed and the zygotes can be grown into animals using techniques well known in the art.
  • the targeted organism can be introduced into the uterus of a pseudo-pregnant female capable of carrying the developing animal to term.
  • somatic gene therapy can be employed to, e.g., alter the expression of a gene, or correct a defective gene, or introduce a new gene in somatic cells of a human or other animal.
  • the somatic cells are first modified, using the methods described above, and then introduced into the same or a different individual (see Friedman, Science 244:1275-1281).
  • the target DNA selected was the retinoblastoma susceptibility gene (Rb) in mouse embryonic stem cells of line E14.
  • the targeting DNA consisted of a 10.5 kb HpaI fragment of Rb sequence from around the 19th and 20th exons of the gene (see FIG. 1 b ).
  • the 10.5 kb targeting DNA sequence was either isolated from a mouse strain 129-derived DNA library (“129Rb”), or a BALB/c-derived DNA library (“B/cRb”). Since the recipient embryonic stem cells were also derived from mouse strain 129 (Hooper, M., et al., Nature 326:292-295 (1987)), the 129Rb targeting DNA will be substantially isogenic with the target DNA. As discussed below, the B/cRb targeting DNA sequence is very similar to the 129Rb sequence but differs by about 0.5-1.0% (i.e. one sequence difference per 100-200 nucleotides).
  • the chosen sequence modification was disruption of the Rb gene coding sequence by insertion of the neomycin phosphotransferase (neo) gene into the 19th exon of the gene.
  • the neo marker was derived from plasmid pMClneo poly(A) (Thomas, K., and M. Capecchi, Cell 51:503-512 (1987)). A mutation present in the neo coding sequence and reducing its ability to confer G418 resistance was corrected (see Yenofsky, R., et al. Proc. Nat'l Acad. Sci. USA 87:3435-3439 (1990). The neo marker was flanked by 2.5 and 8.0 kb of Rb sequence.
  • FIG. 1 b The resulting constructs, 129Rb-neo and B/cRb-neo are shown in FIG. 1 b.
  • the targeting DNA sequences were separated from flanking vector DNA by cleavage with a restriction enzyme followed by gel electrophoresis and purification by electroelution.
  • Embryonic stem cell line E14 derived from mouse strain 129, was grown on BRL conditioned medium (Hooper, M., et al., Nature 326:292-295 (1987)). Cells (3 ⁇ 10 7 ) were mixed with 90 micrograms of targeting DNA (either 129Rb-neo or B/cRb-neo) in a volume of 600 microliters of PBS buffer and electroporated using a Biorad Gene pulser (0.8 kV, 3 micro F, electrode distance 0.4 cm). Cells were reseeded on 10-cm tissue culture dishes at a density of about 10 7 cells per plate. G418 (200 micrograms/ml) selection was started after one day; after eight days, colonies were randomly picked and grown up for analysis.
  • Double crossing-over at the Rb-locus will integrate the neo marker into the 19th exon of the Rb gene, thereby disrupting the coding sequence (FIG. 1 a ).
  • G418-resistant colonies obtained from both electroporation experiments were analyzed by Southern hybridization. DNA from individual G418-resistant colonies was analyzed in the following way: 1-2 ⁇ 10 6 cells were embedded in 50 microliters of 0.05% of low melting point agarose in PBS buffer and incubated in 1 ml of EDTA (0.5M), Sarcosyl (1%) and Proteinase K (1 mg) for 48 h at 50° C.
  • the targeting construct contained a selectable marker, an hprt minigene, embedded in 17 kb of targeting DNA from the retinoblastoma susceptibility gene derived from mouse line 129 (see FIG. 1 c ).
  • the cells to be targeted were the mouse embryonic stem cell line E14Tg2a, an HPRT-minus derivative of cell line E14 (which was derived from cell line 129; see Hooper, M., et al., Nature 326:292-295 (1987)). Cells were electroporated with targeting DNA as described in Example 2.
  • HAT-20 was subjected to gene targeting using the constructs 129Rb-neo and B/cRb-neo (described above in Example I). HAT-20 cells were electroporated with 90 micrograms of targeting constructs B/cRb-neo and 129Rb-neo and the linearized vector pMClneo poly(A). G418 R colonies were scored after 8 days; 6-Thioguanine (10 ⁇ g/ml) was added and surviving colonies were counted 8 days later. From each electroporation experiment individual colonies were picked and grown up for DNA analysis.
  • Double crossing-over at the previously targeted Rb allele will substitute hprt for neo, giving colonies resistant to both G418 (neo+) and 6-Thioguanine (Hprt ⁇ ).
  • the ratio of homologous recombinants (resistant to both 6-TG and G418) to the total number of integrations (G418 R ) was much higher with 129Rb-neo than with B/cRb-neo (see Table 1).
  • Some 6-TG-resistant colonies were also seen after electroporation of HAT-20 with the plasmid pMClneo poly(A), albeit at a much lower rate than with either targeting construct (Table 1).
  • DNA of individual clones (6-TG R and G418 R ) was digested with PstI and analyzed by Southern hybridization. Using fragment A (FIG. 1 b ) as a probe, bands of the expected size appeared, corresponding to the wild type Rb allele (4.9 kb), the Rb allele containing hprt (7.7 kb) and the Rb allele containing neo (3.9 kb).
  • Colonies resistant to both 6-TG and G418, obtained upon electroporation of HAT-20 with B/cRb-neo (a), 129Rb-neo (b) and pMClneo poly(A) (c) were analyzed as described in Example I.
  • the retinoblastoma (Rb) allele of mouse embryonic stem cell line E14 was disrupted by homologous recombination with a BALB/c-derived targeting construct employing a standard positive/negative selection strategy as described by Capecchi and co-workers (see Mansour, S., et al, Nature 336:348-352 (1988), and using approximately 18 kb of Rb targeting sequence, three correct integrations of a neo marker into the 19th exon of the Rb gene were isolated from a background of 3600 random integration events.
  • One of these single Rb knock-out cell lines was used as the recipient in a second electroporation experiment with an isogenic targeting construct, consisting of a hygromycin resistance gene (hyg) embedded in 17 kb of a 129-derived Rb sequence (see 129Rb-hyg, FIG. 1 d ). Electroporation conditions and DNA analysis were similar as described in the legend to FIG. 1. In a typical experiment, 8 ⁇ 10 7 cells were electroporated with 90 micrograms of 129Rb-hyg DNA (FIG. 1 d ). Hygromycin B (150 micrograms/ml) selection was started after one day.
  • the results also exemplify the effect of using isogenic targeting.
  • isogenic targeting DNA With a fairly homologous targeting DNA, and employing a positive/negative selection strategy, less than 0.1% of the cells (approximately 1/1200) were homologous recombinants. In contrast, using isogenic targeting DNA, about 75% of the cells were correctly targeted without having to employ special selection techniques.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides novel methods for modifying the genome of an animal cell which typically comprise the steps of: constructing a DNA molecule in which desired sequence modifications are contained in a segment of DNA (a “targeting DNA”) that is substantially isogenic with a DNA in the cell genome (a “target DNA”); introducing the targeting DNA construct into the cell (e.g., by microinjection, electroporation, transfection, or calcium phosphate precipitation); and selecting cells in which the desired sequence modifications have been introduced into the genome via homologous recombination.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to methods for modifying the genome of animal cells, including human cells, and more particularly, to methods for modifying a genomic DNA sequence by homologous recombination using substantially isogenic DNA constructs. [0001]
  • BACKGROUND OF THE INVENTION
  • Targeted gene disruption by homologous recombination has met with variable success in higher eukaryotes. While it has been possible to isolate cells which have stably incorporated exogenously prepared DNA sequences, in the vast majority of these cells, the DNA has integrated randomly into the genome rather than at the desired target site via homologous recombination. The ratio of the number of homologous recombinants to the total number of integration events varies, but typically, when there is no direct selection or enrichment for homologous recombinants, less than 1% of the integration events result from homologous recombination and ratios as low as 1 in 40,000 have been observed. Variations in the relative targeting efficiency have not been clearly attributable to differences in the length of homologous sequence present in the targeting constructs. Nor has any unequivocal correlation been documented between recombination efficiency and transcriptional activity of the target gene or chromosomal location of the target gene. [0002]
  • If the homologous recombinants can only be obtained amidst a large background of random integration events, then it may be impractical, if not impossible, to effectively target many genomic sequences. The approaches taken to overcoming this problem have focused on developing special strategies to screen or select homologous recombinants from the large background of non-homologous or random integration events. In a few situations in which the targeted gene is itself a dominant selectable marker, it may be feasible to select directly for homologous recombinants. For example, knocking out the hprt gene (encoding hypoxanthine phosphoribosyl transferase) results in increased tolerance of the base analog 6-thioguanine (Thomas, K. and M. Capecchi, [0003] Cell 51:503-512 (1987). However, such particularized methods are not widely applicable. Other selection procedures aim at the enrichment for the desired homologous recombination event by suppressing colony formation due to random integrations of the targeting construct. In single selection protocols, the targeting constructs contain a marker gene, typically conferring drug resistance, deprived of transcriptional and/or translational start signals, in such a way that the juxtaposition of the marker gene and functional expression signals would be obtained on homologous recombination but only rarely on random integration. Sedivy, J., and P. Sharp, Proc. Nat'l Acad. Sci. USA 86:227-231 (1989). The double or “positive/negative” selection procedure developed by Capecchi and co-workers makes use of an autonomously expressed marker gene, but the targeting construct is flanked by a second gene which is detrimental to the cell and which tends to be lost on homologous recombination but not on random integration. Mansour, S., at al., Nature 336:348-352 (1988).
  • Another approach has involved the use of screening procedures based on the polymerase chain reaction (“PCR”), in which pools of cells are tested for potential homologous recombinants using pairs of primers which will be juxtaposed only if homologous recombination has occurred. Any pools containing potential homologous recombinants are then sub-divided and the procedure is continued until a small enough pool of cells can be analyzed individually. Zimmer, A., et al., [0004] Nature 338:150-153 (1989); and Joyner, A., et al., Nature 338:153-156 (1989). Besides the labor involved in screening, the PCR protocols also require that appropriate regions of the DNAs have been sequenced and that oligonucleotide primers be obtained.
  • The relative inefficiency of homologous recombination is even more problematic when working with cells that are not easily reproduced in vitro and for which the aforementioned selection and screening protocols may be impractical, if not impossible. For example, there are a large variety of cell types, including many stem cell types, which are difficult or impossible to clonally reproduce in vitro. If the relative frequency of homologous recombination itself could be improved, then it might be feasible to target a variety of cells which are not amenable to specialized isolation techniques such as positive/negative selection or PCR screening. (See, W091/01140, which is incorporated herein by reference.) [0005]
  • Thus, there remains a significant need for gene targeting systems in which homologous recombinants can be routinely and efficiently obtained at a high enough frequency to obviate the necessity of special selection and screening protocols. The present invention fulfills these and other needs. [0006]
  • SUMMARY OF THE INVENTION
  • The present invention provides novel methods for modifying the genome of an animal cell comprising the steps of: constructing a DNA molecule in which desired sequence modifications are contained in a segment of DNA (a “targeting DNA”) that is substantially isogenic with a DNA in the cell genome (a “target DNA”); introducing the targeting DNA construct into the cell (e.g., by microinjection, electroporation, transfection, or calcium phosphate precipitation); and selecting cells in which the desired sequence modifications have been introduced into the genome via homologous recombination. [0007]
  • Preferably, the targeting DNA will be derived from a cell line that is closely related to the cell line which is being targeted; so that the sequence of the targeting DNA is substantially identical with the sequence of the target DNA (except for the desired sequence modifications). By using substantially isogenic targeting DNA, a substantial fraction of the cells in which integration has occurred will have undergone homologous recombination between the targeting DNA sequence and the target DNA sequence. Since the integration events are hereby enriched for homologous recombinants, it is possible to forego the use of special selection and screening protocols used to isolate rare homologous recombinants from a large background of non-homologous integration events. [0008]
  • Although the present invention has been applied to laboratory mice strains such as BALB/c and 129, the invention will be even more useful for gene targeting in non-murine animals. The typical mouse strains used in laboratories tend to be fairly inbred and, as a result, there is smaller likelihood of sequence divergence in an allele derived from different lines (see, e.g., Bishop, C., et al., [0009] Nature 315:70-72 (1985)). In contrast, many other animals are not so inbred, and there is a greater chance of sequence divergence between alleles derived from different individuals. The restriction fragment length polymorphisms (“RFLPs”), useful in “fingerprinting” human DNA, are an example of this phenomenon in a non-inbred species.
  • A preferred cell type for targeting the genome of a mammalian organism is the embryonic stem cell. Preferably, the DNA construct contains an antibiotic resistance marker and the cells are first selected on a medium containing the antibiotic. [0010]
  • The present invention also provides novel methods for creating genetically modified animals comprising the steps of: modifying the genome of embryonic stem cells derived from the animal, as described above; introducing the modified embryonic stem cells into blastocysts derived from the same species of animal; and using a pseudo-pregnant female to carry the chimeric animal to term. The resulting chimeric animal can in turn be bred to obtain non-chimeric animals in which the desired genetic alteration has been stably inherited through germ-line transmission. [0011]
  • The present invention can also be used for the direct targeting of animal zygotes. The targeting DNA can be introduced by, for example, microinjection, and then, with mammals for example, the modified zygotes can be transferred to pseudo-pregnant females capable of carrying the animal to term. Similarly, for somatic gene therapy, the genome of somatic cells of an animal is directly modified using the substantially isogenic targeting DNA and then the modified cells are introduced into the same or a different animal. [0012]
  • In another aspect, the present invention provides cells exhibiting a recombination event at a preselected native target DNA site in the cell genome. Thus, in view of the increased efficiency of recombination utilizing the methods of the present invention, a collection of cells having undergone a recombination event will exhibit between about 10-90%, typically at least about 30 to 50%, recombination. The cells exhibiting the desired characteristics may be selected for and isolated in accordance with standard techniques, and grown into animals.[0013]
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1. DNA targeting constructs. (a) The retinoblastoma (Rb) locus around [0014] exons 19 and 20 (black boxes), in mouse strain 129. Restriction enzyme sites are as follows: B=BglII, E=EcoRI, H=HindIII, Hp=HpaI, P=PstI, and S=StuI. Except for the StuI site, these sites are also present in the corresponding BALB/c region. (b) The DNA targeting constructs containing the neo gene inserted into the BglII site of exon 19 within a 10.5 kb Rb HpaI fragment derived from mouse strains 129 (targeting construct “129Rb-neo”) or BALB/c (targeting construct “B/cRb-neo”). The neo marker was flanked by 2.5 and 8 kb of Rb sequence. (c) and (d). Two additional isogenic targeting constructs generated by inserting the hprt-minigene (Van der Lugt, N., et al., Gene, (1991)) or the hyg gene (Te Riele, H., et al., Nature 348:649-651 (1990)) into the BglII site of exon 19 within a 17 kb 129-derived Rb fragment, giving 129Rb-hprt (c) and 129Rb-hyg (d), respectively. These two constructs were flanked by non-endogenous SalI sites. A and B indicate fragments used as probes to detect modifications at Rb.
  • FIG. 2. Sequence divergence between BALB/c and 129 DNA at the region of homology. The upper part of the diagram represents the 10.5 kb. Rb sequence present in targeting constructs B/cRb-neo and 129Rb-neo (see FIG. 1[0015] b). The sequence was divided into nine smaller fragments, as shown by the solid vertical lines. Filled triangles represent extra nucleotides within a fragment in the BALB/c-derived sequence (above the line) or within the 129-derived sequence (below the line). Open triangles indicate length differences within a fragment that could result from nucleotide insertions or restriction site polymorphisms. The lower part of the diagram shows nucleotide differences as determined by sequence analysis of the indicated regions.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In accordance with the present invention, gene targeting can be used to modify the genome of animal cells, including human cells, using an efficient technique involving homologous recombination between substantially isogenic DNA constructs. By introducing an exogenous “targeting DNA” into eukaryotic cells, selecting for cells in which the targeting DNA has been stably integrated into the recipient cell genome is readily accomplished. The methods provided for substantially increased frequency of recombination, one to three orders of magnitude higher, or more are pending upon the target and protocol. [0016]
  • There are two general events believed to be responsible for stable integration. In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous (“random” or “illicit”) integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, apparently at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome). [0017]
  • Gene targeting represents a major advance in the ability to selectively manipulate animal cell genomes. Using this technique, a particular DNA sequence can be targeted and modified in a site-specific and precise manner. Different types of DNA sequences can be targeted for modification, including regulatory regions, coding regions and regions of DNA between genes. Examples of regulatory regions include: promoter regions, enhancer regions, terminator regions and introns. By modifying these regulatory regions, the timing and level of expression of a gene can be altered. Coding regions can be modified to alter, enhance or eliminate, for example, the specificity of an antigen or antibody, the activity of an enzyme, the composition of a food protein, the sensitivity of protein to inactivation, the secretion of a protein, or the routing of a protein within a cell. Introns and exons, as well as inter-genic regions, are suitable targets for modification. [0018]
  • Modifications of DNA sequences can be of several types, including insertions, deletions, substitutions, or any combination of the preceding. A specific example of a modification is the inactivation of a gene by site-specific integration of a nucleotide sequence that disrupts expression of the gene product. Using such a technique to “knock out” a gene by targeting will avoid problems associated with the use of antisense RNA to disrupt functional expression of a gene product. For example, one approach to disrupting a target gene using the present invention would be to insert a selectable marker into the targeting DNA such that homologous recombination between the targeting DNA and the target DNA will result in insertion of the selectable marker into the coding region of the target gene. [0019]
  • It may be preferable to incorporate a selectable marker into the targeting DNA which allows for selection of targeted cells that have stably incorporated the targeting DNA. This is especially useful when employing relatively low efficiency transformation techniques such as electroporation, calcium phosphate precipitation and liposome fusion, as discussed below, where typically fewer than 1 in 1000 cells will have stably incorporated the exogenous DNA. Using high efficiency methods, such as microinjection into nuclei, typically from 5-25% of the cells will have incorporated the targeting DNA; and it is therefore feasible to screen the targeted cells directly without the necessity of first selecting for stable integration of a selectable marker. [0020]
  • Examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence. A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo), Southern, P., and P. Berg, [0021] J. Mol. Appl. Genet. 1:327-341 (1982); and the hygromycin resistance gene (hyg), Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990). Selectable markers also include genes conferring the ability to grow on certain media substrates such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); and the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See Song, K- Y., et al. Proc. Nat'l Acad. Sci. USA 84:6820-6824 (1987). Other selectable markers for use in mammalian cells, and plasmids carrying a variety of selectable markers, are described in Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989) (hereinafter “Sambrook”), see chapter 16.
  • If a selectable marker is used, the preferred location of the marker gene in the targeting construct will depend on the aim of the gene targeting. For example, if the aim is to disrupt target gene expression, then the selectable marker can be cloned into targeting DNA corresponding to coding sequence in the target DNA. Alternatively, if the aim is to express an altered product from the target gene, such as a protein with an amino acid substitution, then the coding sequence can be modified to code for the substitution, and the selectable marker can be placed outside of the coding region, in a nearby intron for example. [0022]
  • If the selectable markers will depend on their own promoters for expression and the marker gene is derived from a very different organism than the organism being targeted (e.g. prokaryotic marker genes used in targeting mammalian cells), it is preferable to replace the original promoter with transcriptional machinery known to function in the recipient cells. A large number of transcriptional initiation regions are available for such purposes including, for example, metallothionein promoters, thymidine kinase promoters, beta-actin promoters, immunoglobulin promoters, SV40 promoters and human cytomegalovirus promoters. A widely used example is the pSV2-neo plasmid which has the bacterial neomycin phosphotransferase gene under control of the SV40 early promoter and confers in mammalian cells resistance to G418 (an antibiotic related to neomycin). Southern, P., and P. Berg, [0023] J. Mol. Appl. Genet. 1:327-341 (1982). A number of other variations may be employed to enhance expression of the selectable markers in animal cells, such as the addition of a poly(A) sequence (see, e.g., Thomas, K., et al., Cell 44:419-428 (1986)); and the addition of synthetic translation initiation sequences (see, e.g., Thomas, K. and M. Capecchi, Cell 51:503-512 (1987)). Both constitutive and inducible promoters may be used.
  • In some cases, it may be desirable for the modification sequences (including selectable markers) to alter the transcriptional activity of the target gene. However, if selectable markers are used and it is not desirable to affect transcriptional activity of the target gene, it will be preferable to use selectable markers with an inducible promoter and/or to include a transcription termination sequence downstream of the selectable marker. A variety of inducible promoters and transcription termination sequences are known and available. See, e.g., Sambrook, supra. [0024]
  • Where the target gene is highly expressed or readily inducible, it may be advantageous to use selectable markers lacking their own promoters as a way to further enhance the frequency of obtaining homologous recombinants. In that way, the likelihood of the selectable marker being highly expressed upon integration into the genome will be much greater for homologous recombination events (where the promoterless gene will have been placed in the vicinity of the target gene promoter) than for random integration into the genome. [0025]
  • Target genes can also be modified by deletions. In the case of a deletion, the sequence to be deleted will be absent or removed from the corresponding targeting DNA and thus the “modification sequence” will constitute a missing sequence relative to the target DNA. The deletion will generally cover a portion of one or more exons and may include introns and flanking non-coding regions such as regulatory regions. The deletion may be as small as one base pair or as large as tens of thousands of base pairs. [0026]
  • Another specific form of modification is the introduction of a new gene into the animal cell genome. By flanking the new gene with sequences substantially isogenic with target DNA in the host cell, it is possible to introduce the gene in a site-specific fashion at the targeted location. Using this approach, a gene from any source (e.g., bacterial, plant, animal) can be introduced into an animal cell to impart new characteristics to the cell or to allow the animal cell to produce desired polypeptides which can then be isolated from the animal or from its cells in vitro. [0027]
  • Another form of modification is the insertion of a marker gene in a region outside of but proximal to a gene of interest. This sort of modification results in the creation of a new linkage in the animal genome. For this approach, the precise function of a target sequence need not be known, so long as it is known to be associated with a particular trait. Selectable markers can be introduced into precise locations adjacent to desirable genes to facilitate selection of desirable traits that are otherwise not selectable in culture. This procedure is of value, for instance, in order to facilitate animal breeding programs. Segregation of the trait through successive generations can be tracked by growing cells on the appropriate selective medium. Thus, the time required to breed improved varieties can be shortened. As an example of this kind of approach, regions identified by RFLP analysis to be associated with complex traits can be targeted and cells containing the traits can be selected in culture. [0028]
  • The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence is preferably at least about 97-98% identical with the corresponding target sequence (except for the desired sequence modifications), more preferably more preferably at least about 99.0-99.5% identical, most preferably about 99.6 to 99.9% identical. Particularly for non-inbred animals (e.g., other than mice strains 129 and BALB/c), the sequencers are typically 100% identical. The targeting DNA and the target DNA preferably share stretches of DNA at least about 75 base pairs that are perfectly identical, more preferably at least about 150 base pairs that are perfectly identical, even more preferably at least about 500 base pairs that are perfectly identical. Accordingly, it is preferable to use targeting DNA derived from cells as closely related as possible to the cell line being targeted; more preferably, the targeting DNA is derived from cells of the same cell line as the cells being targeted. Most preferably, the targeting DNA is derived from cells of the same individual (or animal) as the cells being targeted. [0029]
  • Preferably, the targeting DNA sequence is at least about 100-200 bp of substantially isogenic DNA, more preferably at least about 300-1000 bp and generally less than about 15,000 bp. The amount of targeting DNA present on either side of a sequence modification can be manipulated to favor either-single or double crossover events, both of which can be obtained using the present invention. In a double crossover or “replacement-type” event, the portion of the targeting DNA between the two crossovers will replace the corresponding portion of the target DNA. In a single crossover or “insertion-type” event, the entire targeting DNA will generally be incorporated into the target sequence at the site of the single crossover. To promote double crossovers, the modification sequences are preferably flanked by targeting DNA such that, upon linearization, the modification sequences are located towards the middle of the flanking targeting DNA. If single crossovers are desired, the targeting DNA should be designed such that the ends of the linearized targeting sequence correspond to target DNA sequences lying adjacent to each other in the genome, as described by Thomas, K., and M. Capecchi, [0030] Cell 51:503-512 (1987).
  • The DNA delivery molecule may contain only the targeting DNA with modification sequences or it may contain additional DNA flanking the targeting DNA. If this additional DNA contains a selectable marker, then it may be possible to further enrich for cells which have undergone double crossover homologous recombination because these cells will generally have lost the flanking selectable marker located outside the targeting DNA. Conversely, cells which have stably incorporated the flanking selectable marker are likely to have arisen by random integration of the DNA construct into the genome. One such flanking selectable marker is the HSV-tk gene which confers sensitivity to the antibiotic gancyclovir. Mansour, S., et al., [0031] Nature 336:348-352 (1988).
  • Combinations of selectable markers can also be used to advantage. For example, to target non-selectable gene “X,” a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is substantially isogenic with gene X. As discussed above, the placement of this marker gene, particularly whether it is in an exon or outside the coding sequence, will depend on the aim of the gene targeting. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into gene X but the tk gene has been lost because it was located outside the region of the double crossover. As discussed above, it will be necessary to ensure that the selectable markers are adequately expressed in the recipient cells. [0032]
  • The targeting DNA construct may also contain replication systems which are functional in prokaryotes, especially [0033] E. coli, which were of use in constructing the DNA molecule, and for performing and analyzing genetic manipulations of the targeting sequence. Preferably, however, DNA sequence not required for the gene targeting is removed prior to introducing the DNA into cells to be targeted.
  • The DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the DNA delivery molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells, or that affect the catalysis of homologous recombination. [0034]
  • Transformation of animal cells with the recombinant construct containing the targeting DNA can be carried out using essentially any method for introducing nucleotide sequences into animal cells including, as discussed below, microinjection, electroporation, calcium phosphate precipitation, and transfection using a virus or viral particle. [0035]
  • After the targeting DNA has been introduced into the animal cells, the cells in which the targeting DNA has stably integrated into the genome can be selected. The choice of which one to use will generally depend upon the nature of the sequence that has been integrated. For example, if the targeting DNA contains a selectable marker, as described above, then the integration of targeting DNA into the genome results in the stable acquisition of the selectable marker. In some situations the cells may be selected by virtue of a modification of the target gene. For example, if the target gene has a selectable phenotype, then modification of the target DNA may result in loss or alteration of that phenotype. In other situations, a selectable phenotype may result from juxtaposition of a DNA sequence present on the targeting DNA with DNA sequences present near the target DNA. For example, integration of a promoterless antibiotic resistance gene at the target site may result in expression of the resistance gene based on transcriptional activity at the target site. [0036]
  • It is also possible, although not essential, to use the polymerase chain reaction (PCR) to screen cells in which homologous integration has occurred. In an advantageous application, one PCR primer is directed to DNA in the modification sequence and another primer is directed to DNA near the target locus that is outside but proximal to the target DNA, such that integration results in the creation of a genomic DNA sequence in which the primer binding sites are facing each other in relative juxtaposition. After a number of rounds of amplification, DNA from such a locus will be present at much higher levels because it is being amplified exponentially rather than linearly. [0037]
  • Homologous recombination can be confirmed using standard DNA hybridization techniques, such as Southern blotting, to verify the presence of the integrated DNA in the desired genomic location. [0038]
  • Where the cells contain more than one copy of a gene, the cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles. [0039]
  • The present invention can be used with a variety of cell types derived from a number of animal sources. As discussed above, the invention is especially useful with animals, such as non-murine animals, in which inbreeding is not very common. The choice of particular cell types for targeting will generally depend on the purposes for which the site-directed mutagenesis is undertaken. For example, if whole animals carrying a particular mutation are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells may be used. The resulting chimeric animals can be bred in order to obtain non-chimeric animals in which the mutation has been transmitted through the germ line. [0040]
  • Another approach to creating genetically altered animals that can be used with the present invention is to modify zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term. [0041]
  • Besides altering organisms through germ-line modifications, gene targeting can also be used to modify somatic cells. Cells of interest for somatic gene targeting include hematopoietic cells, T-lymphocytes and other cells of the immune system, epithelial cells, endothelial cells, adrenal medulla cells, keratinocytes, fibroblasts, osteoblasts, osteoclasts, neurons, ganglion cells, retinal cells, liver cells, myoblast cells, and cells of the islets of Langerhans. Also of interest will be the stem cells which serve as the progenitors of the above cells and which may be an original progenitor cell or a progenitor cell that has already become dedicated to a particular cell lineage. [0042]
  • In addition to applications such as the production of transgenic animals and gene-therapy, the techniques of the present invention are also useful in expanding basic knowledge with respect to animal cell function. For example, the expression of altered forms of genes and their promoters can be analyzed without position effects because the gene is altered in situ; and the function of sequences whose purpose is unknown can be determined by inactivating the sequence and observing changes in cell function. [0043]
  • The following list of terms, intended to supplement the descriptions above, will be useful in understanding the present invention: [0044]
  • Target DNA Sequence [0045]
  • The DNA to be modified by homologous recombination. The target DNA can be in any organelle of the animal cell including the nucleus and mitochondria and can be an intact gene, an exon or intron, a regulatory sequence or any region between genes. [0046]
  • Desired Sequence Modifications [0047]
  • Sequence changes that it would be desirable to introduce into the target DNA. These sequence modifications may include insertions, deletions or substitutions of DNA sequence, or any combination thereof, and may be as small as a single base pair or as large as tens of thousands of base pairs. Insertions include the insertion of entire genes which may be of animal, plant, prokaryotic or viral origin. [0048]
  • Targeting DNA Sequence [0049]
  • A DNA sequence containing the desired sequence modifications and which is, except for the sequence modifications, substantially isogenic with the target DNA. [0050]
  • DNA Delivery Molecule [0051]
  • The molecule comprising at least the targeting DNA which is introduced into cells to be targeted. [0052]
  • Uninterrupted Sequence Identity [0053]
  • The length of a stretch of DNA sequence that is identically conserved between two homologous DNA sequences. [0054]
  • Average Sequence Identity [0055]
  • The percentage of DNA sequence that is identically conserved between two homologous DNA sequences. For example, if a first DNA sequence comprises 200 base pairs and a second sequence differs at two sites (e.g. a small insertion such as 4 nucleotides, and a small deletion), then the average sequence identity is about 99%. [0056]
  • Homologous DNA Sequence or Homologous DNA [0057]
  • DNA sequence that is at least about 70% identical with a reference DNA sequence. An indication that two sequences are homologous is that they will hybridize with each other under fairly stringent conditions (see, e.g., Maniatis or Sambrook, infra). [0058]
  • Isogenic or Substantially Isogenic DNA [0059]
  • DNA sequence that is identical with or nearly identical with a reference DNA sequence. Indications that two sequences are isogenic is that they will hybridize with each other even under the most stringent hybridization conditions (see, e.g. Maniatis or Sambrook, infra); and will not exhibit sequence polymorphisms (i.e. they will not have different sites for cleavage by restriction endonucleases). The term “substantially isogenic” refers to DNA that is at least about 97-99% identical with the reference DNA sequence, and preferably at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence. Indications that two sequences are substantially isogenic is that they will still hybridize with each other under the most stringent conditions (see, Sambrook) and they will only rarely exhibit RFLPs or sequence polymorphisms (relative to the number that would be statistically expected for sequences of their particular length which share at least about 97-99% sequence identity). [0060]
  • Homologous Recombination [0061]
  • The term “homologous recombination” refers to the process of DNA recombination based on sequence homology. The term embraces both crossing over and gene conversion. Cellular recombination enzymes are believed to be involved in the process of recognizing sequence identity between distinct nucleotide sequences. Three distinct types of homologous recombination have been distinguished based on the nature of the recombination substrates and the mechanisms believed to be involved in mediating recombination: “chromosomal recombination,” “extrachromosomal recombination” and “gene targeting” (see definitions, infra). [0062]
  • Chromosomal Recombination [0063]
  • Homologous recombination between two DNA sequences within a single chromosome (“intrachromosomal recombination”) or recombination between chromosomes (“interchromosomal recombination”). A common example of interchromosomal recombination is the mitotic recombination between homologous chromosomes. [0064]
  • Extrachromosomal Recombination [0065]
  • Homologous recombination between two DNA sequences neither of which are located on chromosomes. An example of extrachromosomal recombination is the recombination between two viruses transfected into a single recipient cell. [0066]
  • Gene Targeting [0067]
  • Homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not. [0068]
  • Non-Homologous or “Random” Integration [0069]
  • Any process by which DNA is integrated into the genome that does not involve homologous recombination. It appears to be a random process in which incorporation can occur at any of a large number of genomic locations. [0070]
  • Selectable Marker [0071]
  • A gene, the expression of which allows cells containing the gene to be identified on a particular medium. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype may be, for example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell. [0072]
  • Animal Cell [0073]
  • A cell of a multicellular eukaryotic organism of, for example, the phyla chordata, echinodermata, coelenterata, annelida, and arthropoda. Preferably, the animal cells are from an animal belonging to the phylum chordata, more preferably the subphylum vertebrate. Most preferably, the animal cells are non-murine mammalian cells, including human cells. [0074]
  • EXPERIMENTAL
  • A. General Methods [0075]
  • Generally, the nomenclature and standard laboratory procedures with respect to recombinant DNA technology can be found in Maniatis, T. et al., [0076] Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1982) (hereinafter “Maniatis”); and now in Second Edition by Sambrook, J., et al. (1989) (hereinafter “Sambrook”). Other general references are provided throughout this document. The procedures therein are believed to be well known in the art, and are provided for the convenience of the reader. Maniatis, Sambrook, and the other general references are specifically incorporated herein by reference.
  • B. Preparation of the Targeting DNA [0077]
  • 1) Isolation of Isogenic DNA [0078]
  • The targeting DNA comprises a sequence in which the desired sequence modifications are flanked by DNA substantially isogenic with a corresponding target sequence in the genome to be modified. The targeting DNA can be constructed exclusively from genomic DNA, from cDNA, from synthetic DNA or from any combination of the above. The genomic DNA can be cloned from a library of genomic DNA fragments in a bacteriophage vector (e.g., lambda phage), in a plasmid vector (e.g., pBR322 derivative), or in a cosmid vector; using techniques well-known in the art of recombinant DNA. cDNA can, e.g., be prepared from a mRNA population which forms the basis of preparation of a cDNA library. Alternatively, synthetic DNA fragments can be prepared based upon knowledge of the nucleotide sequence of the target DNA. [0079]
  • 2) Modifying the Targeting DNA [0080]
  • Modification of the targeting DNA will depend on two basic considerations: firstly, what modifications are desired in the target DNA; secondly, whether selectable sequences should be included as an aid in isolating homologous recombinants. [0081]
  • In some situations, the modified targeting DNA will already be available. If for example, a mutant version of a particular gene is already available as a recombinant DNA construct, then the targeting DNA may be obtained from that source using standard cloning techniques. See, e.g., Sambrook. As discussed above, the efficiency of homologous recombination depends in part on the isogenicity of the targeting DNA and the target DNA. Where the modification is available in a different cell line than that being targeted, it may be preferable to clone the modification sequence out of the original DNA and into DNA sequence that is more nearly isogenic with the target DNA. In general, such cloning will be performed in prokaryotic organisms, using standard cloning techniques. Id. [0082]
  • If a targeting DNA with desired sequence modifications is not already available, then a fragment of substantially isogenic targeting DNA can be obtained and modified. Generally, the isogenic targeting DNA will be most easily modified after being cloned onto vectors that can be used in prokaryotic organism such as [0083] E. coli. If an appropriate fragment of isogenic targeting DNA is not already available, then a gene library of the cell line to be targeted can be prepared and screened for the desired sequence using techniques well known in the art. See, e.g., Sambrook. Once the targeting DNA is cloned, insertions, deletions and alterations of DNA sequences can be achieved by techniques well known in the art. See, Sambrook. If the sequence of the target DNA is known, it is also possible to obtain synthetic DNA fragments in which one or more of the base pairs are specifically altered, added or removed.
  • One particular type of modification is the insertion of a gene within the targeting DNA. As discussed above, it will often be advantageous to include a selectable marker as an insert to facilitate selection of recombinants. A wide variety of such markers are generally known and available; and can be readily cloned into a desired targeting DNA construct using well known techniques. See, e.g., Sambrook. [0084]
  • C. Construction of DNA Delivery Molecules [0085]
  • Typically, cloning of the targeting DNA will be performed in [0086] E. coli, and standard plasmids such as pUC and pBR322 derivatives can be used. In many cases, it will be possible to use these plasmid DNAs directly as DNA delivery molecules; but it is preferable to minimize the amount of extraneous DNA on the delivery molecule. Thus, DNA sequence that will not be involved in targeting or selection of homologous recombinants can be removed prior to introduction of the DNA into the recipient cells. Preferably, the DNA will be linearized by cutting with a restriction enzyme prior to introduction into the cell. See, Sambrook. Where biological methods of DNA introduction are used, such as a virus or viral capsid, the DNA delivery molecule will be tailored accordingly to the particular system. For example, particular viral capsids generally work most efficiently with DNA sequences that are within a particular size range.
  • As discussed above, the DNA delivery molecule containing the targeting DNA may also contain DNA sequences or proteins that affect the uptake of the molecule or the fate of the molecule after introduction into the cells. For example, the DNA delivery molecule may be a viral capsid containing the targeting DNA, as discussed below. Also, the DNA delivery molecule may contain sequences or DNA binding proteins that affect degradation or localization of the molecule following entry into the targeted cells or molecules that affect the catalysis of homologous recombination. [0087]
  • D. Cells to be Targeted [0088]
  • The present invention can be used with essentially any cell into which DNA can be introduced. As discussed in the following section, there are a variety of methods applicable for introducing DNA into animal cells. The choice of cell type will depend on the particular goal of the site-directed mutagenesis. For example, embryonic stem cells or zygotes may be targeted for generating modified animals; whereas both germ-line and somatic cells may be usefully targeted for gene therapy. The choice of cells may also affect (or be affected by) the choice of transformation technique, as discussed below. Growth and manipulation of the cells can be performed using standard procedures as described in Hogan, B., et al, [0089] Manipulating the Mouse Embryo, Cold Spring Harbor, N.Y. (1986).
  • E. Introduction of the DNA into the Cells [0090]
  • Any technique that can be used to introduce DNA into the animal cells of choice can be employed. Electroporation has the advantage of ease and has been found to be broadly applicable, but a substantial fraction of the targeted cells may be killed during electroporation. Therefore, for sensitive cells or cells which are only obtainable in small numbers, microinjection directly into nuclei may be preferable. Also, where a high efficiency of DNA incorporation is especially important, such as targeting without the use of a selectable marker (as discussed above), direct microinjection into nuclei is an advantageous method because typically 5-25% of targeted cells will have stably incorporated the microinjected DNA. Retroviral vectors are also highly efficient but in some cases they are subject to other shortcomings, as described by Ellis, J., and A. Bernstein, [0091] Molec. Cell. Biol. 9:1621-1627 (1989). Where lower efficiency techniques are used, such as electroporation, calcium phosphate precipitation or liposome fusion, it is preferable to have a selectable marker in the targeting DNA so that stable transformants can be readily selected, as discussed above. A variety of such transformation techniques are well known in the art, including:
  • (1) Direct Microinjection into Nuclei: [0092]
  • Targeting constructs can be microinjected directly into animal cell nuclei using micropipettes to mechanically transfer the recombinant DNA. This method has the advantage of not exposing the DNA to cellular compartments other than the nucleus and of yielding stable recombinants at high frequency. See, Capecchi, M., [0093] Cell 22:479-488 (1980).
  • (2) Electroporation: [0094]
  • The targeting DNA can also be introduced into the animal cells by electroporation. In this technique, animal cells are electroporated in the presence of DNA containing the targeting construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. The pores created during electroporation permit the uptake of macromolecules such as DNA. Procedures are described in, e.g., Potter, H., et al., [0095] Proc. Nat'l. Acad. Sci. USA 81:7161-7165 (1984); and Sambrook, ch. 16.
  • (3) Calcium Phosphate Precipitation: [0096]
  • The targeting constructs may also be transferred into cells by other-methods of direct update, for example, using calcium phosphate. See, e.g., Graham, F., and A. Van der Eb, [0097] Virology 52:456-467 (1973); and Sambrook, ch.16.
  • (4) Liposomes: [0098]
  • Encapsulation of DNA within artificial membrane vesicles (liposomes) followed by fusion of the liposomes with the target cell membrane can also be used to introduce DNA into animal cells. See Mannino, R. and S. Gould-Fogerite, [0099] BioTechniaues, 6:682 (1988).
  • (5) Viral Capsids: [0100]
  • Viruses and empty viral capsids can also be used to incorporate DNA and transfer the DNA to animal cells. For example, DNA can be incorporated into empty polyoma viral capsids and then delivered to polyoma-susceptible cells. See, e.g., Slilaty, S. and H. Aposhian, [0101] Science 220:725 (1983).
  • (6) Transfection Using Polybrene or DEAE-Dextran: [0102]
  • These techniques are described in Sambrook, ch. 16. [0103]
  • (7) Protoplast Fusion: [0104]
  • Protoplast fusion typically involves the fusion of bacterial protoplasts carrying high numbers of a plasmid of interest with cultured animal cells, usually mediated by treatment with polyethylene glycol. Rassoulzadegan, M., et al., [0105] Nature, 295:257 (1982).
  • (8) Ballistic Penetration: [0106]
  • Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., [0107] Nature, 327, 70-73, 1987.
  • F. Selection for Integration Events [0108]
  • In some situations, the gene targeting event will itself result in a selectable phenotype, in which case the targeted cells can be screened directly for homologous recombination. For example, disrupting the gene hprt results in resistance to 6-thioguanine. In many cases, however, the targeting will not result in such an easily selectable phenotype and, if a low efficiency transformation technique such as calcium phosphate precipitation is being used, it is preferable to include in the targeting DNA construct a selectable marker such that the stable integration of the targeting DNA construct in the genome will lead to a selectable phenotype. For example, if the targeting DNA contains a neo gene, then selection for integrants can be achieved by selecting cells able to grow on G418. [0109]
  • The relative frequency of targeting to a gene may be further improved by using a selectable marker which lacks its own promoter, since the likelihood of adequate expression of the selectable marker is greater where integration into a gene has occurred than for integration into the large parts of the genome that are believed to be transcriptionally quiescent. [0110]
  • G. Isolation of Homologous Recombinants [0111]
  • Using the present invention, the frequency of homologous recombination relative to random integration into the genome is substantially improved. The frequency is typically improved by a factor of 5 to 10, 50 to 100 or 1000 or more depending upon the particular old, targeting sequencers and other parameters known by the skilled artisan. In some cases, it will be feasible to directly obtain cells in which homologous recombination at the target locus has occurred. For example, gene targeting may itself result in a readily selectable phenotype. Also, selectable markers in the targeting DNA can be employed which will be preferentially expressed upon integration into the target gene by homologous recombination. Another approach is to utilize the polymerase chain reaction to screen the cells for homologous recombinants. See, e.g., Zimmer, A., et al., [0112] Nature, Vol. 338, pp.150-153 (1989); and Joyner, A., et al., Nature, Vol. 338, pp. 153-156 (1989).
  • However, using the present invention, a relatively large fraction of the stable integrants will be correctly targeted to the gene of interest rather than incorporated at random sites throughout the genome. Accordingly, it will be feasible to obtain homologous recombinants without the necessity of employing any special selection protocols or carrying out PCR-based screening. [0113]
  • The standard approach for confirming that a cell has undergone a homologous recombination event is to isolate genomic DNA and perform a Southern hybridization analysis to demonstrate that genomic DNA fragments hybridizing with a labelled probe of the target DNA have been rearranged because of the modification of the target DNA. Southern hybridization is described in Sambrook and Maniatis. Given the high frequency of homologous recombination obtainable with the present invention, the targeted cells can be checked directly for homologous recombination. [0114]
  • H. Targeting Both Alleles of a Target Sequence [0115]
  • Where the cells contain more than one copy of a gene, the cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach, exemplified below, is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. [0116]
  • In some situations, it may be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles. [0117]
  • I. Production of Genetically Altered Animals [0118]
  • Embryonic stem cells which have been modified can be injected into the blastocoel of a blastocyst and grown in the uterus of a pseudopregnant female. In order to readily detect chimeric progeny, the blastocysts can be obtained from a different parental line than the embryonic stem cells. For example, the blastocysts and embryonic stem cells may be derived from parental lines with different hair color or other readily observable phenotype. The resulting chimeric animals can be bred in order to obtain non-chimeric animals which have received the modified genes through germ-line transmission. Techniques for the introduction of embryonic stem cells into blastocysts and the resulting generation of chimeric animals are well known (see e.g., Bradley, A. [0119] Production and analysis of chimaeric mice, pp. 113-151 in Robertson, E. (ed.), Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Oxford IRL Press (1987); and Hogan, B., et al, Manipulating the Mouse Embryo, Cold Spring Harbor, N.Y. (1986)).
  • Targeting DNA can also be introduced directly into a zygote nucleus using, for example, microinjection. Selectable markers and/or other aspects of the present invention can be employed and the zygotes can be grown into animals using techniques well known in the art. In the case of mammals, the targeted organism can be introduced into the uterus of a pseudo-pregnant female capable of carrying the developing animal to term. [0120]
  • J. Somatic Gene Therapy [0121]
  • Similarly, the methods described above can be employed for somatic gene therapy to, e.g., alter the expression of a gene, or correct a defective gene, or introduce a new gene in somatic cells of a human or other animal. The somatic cells are first modified, using the methods described above, and then introduced into the same or a different individual (see Friedman, [0122] Science 244:1275-1281).
  • EXAMPLE 1 Gene Targeting Using Isogenic Targeting Constructs
  • A. Targeting Constructs: [0123]
  • The target DNA selected was the retinoblastoma susceptibility gene (Rb) in mouse embryonic stem cells of line E14. The targeting DNA consisted of a 10.5 kb HpaI fragment of Rb sequence from around the 19th and 20th exons of the gene (see FIG. 1[0124] b).
  • Two different sources of Rb sequence were used for the targeting DNA. The 10.5 kb targeting DNA sequence was either isolated from a mouse strain 129-derived DNA library (“129Rb”), or a BALB/c-derived DNA library (“B/cRb”). Since the recipient embryonic stem cells were also derived from mouse strain 129 (Hooper, M., et al., [0125] Nature 326:292-295 (1987)), the 129Rb targeting DNA will be substantially isogenic with the target DNA. As discussed below, the B/cRb targeting DNA sequence is very similar to the 129Rb sequence but differs by about 0.5-1.0% (i.e. one sequence difference per 100-200 nucleotides).
  • The chosen sequence modification was disruption of the Rb gene coding sequence by insertion of the neomycin phosphotransferase (neo) gene into the 19th exon of the gene. The neo marker was derived from plasmid pMClneo poly(A) (Thomas, K., and M. Capecchi, [0126] Cell 51:503-512 (1987)). A mutation present in the neo coding sequence and reducing its ability to confer G418 resistance was corrected (see Yenofsky, R., et al. Proc. Nat'l Acad. Sci. USA 87:3435-3439 (1990). The neo marker was flanked by 2.5 and 8.0 kb of Rb sequence. The resulting constructs, 129Rb-neo and B/cRb-neo are shown in FIG. 1b. The targeting DNA sequences were separated from flanking vector DNA by cleavage with a restriction enzyme followed by gel electrophoresis and purification by electroelution.
  • B. Gene Targeting [0127]
  • Embryonic stem cell line E14, derived from [0128] mouse strain 129, was grown on BRL conditioned medium (Hooper, M., et al., Nature 326:292-295 (1987)). Cells (3×107) were mixed with 90 micrograms of targeting DNA (either 129Rb-neo or B/cRb-neo) in a volume of 600 microliters of PBS buffer and electroporated using a Biorad Gene pulser (0.8 kV, 3 micro F, electrode distance 0.4 cm). Cells were reseeded on 10-cm tissue culture dishes at a density of about 107 cells per plate. G418 (200 micrograms/ml) selection was started after one day; after eight days, colonies were randomly picked and grown up for analysis.
  • C. Analysis [0129]
  • Double crossing-over at the Rb-locus will integrate the neo marker into the 19th exon of the Rb gene, thereby disrupting the coding sequence (FIG. 1[0130] a). G418-resistant colonies obtained from both electroporation experiments were analyzed by Southern hybridization. DNA from individual G418-resistant colonies was analyzed in the following way: 1-2×106 cells were embedded in 50 microliters of 0.05% of low melting point agarose in PBS buffer and incubated in 1 ml of EDTA (0.5M), Sarcosyl (1%) and Proteinase K (1 mg) for 48 h at 50° C. Agarose blocks were washed three times in Tris (10 mM), EDTA (10 mM), pH 8 plus PMSF (0.1 mM) and once in the appropriate restriction enzyme buffer. DNA digestion took place in 100 microliters of restriction enzyme buffer containing 50 units of restriction enzyme EcoRI for 6 hours at 37° C. Agarose blocks were melted at 65° C. and loaded onto 0.7% agarose gels for Southern analysis following standard procedures (see Maniatis or Sambrook). Using fragment A (FIG. 1b) as the hybridization probe, the non-modified Rb locus appears as a band of 9.7 kb (Rb); whereas integration of neo by homologous recombination gives a 4.9 kb band (neo).
  • D. Results [0131]
  • Although the targeting constructs 129Rb-neo and B/cRb-neo were identical, except for the origin of the Rb sequence, the results obtained with the two constructs were different. Using B/cRb-neo, 1 homologous recombinant was detected amidst 144 random integration events. In contrast, of 94 analyzed G418-resistant colonies obtained with 129Rb-neo, 33 underwent homologous recombination at one of the Rb alleles. Thus, gene targeting was about 45-fold more efficient with 129Rb-neo than with B/cRb-neo. The isogenic targeting construct allowed the easy recovery of homologous recombinants (1 out of 3 resistant colonies) without the use of any enrichment protocol. [0132]
  • E. Analysis of the Sequence Divergence Between the 129 and BALB/c Targeting DNAs [0133]
  • A comparison of the 129-derived and the BALB/c-derived DNAs, (“129Rb” and “B/cRb,” respectively) was made to confirm that even small amounts of sequence divergence can substantially affect the frequency of homologous recombination. The 10.5 kb Rb fragments present in targeting constructs 129Rb-neo and B/cRb-neo were separated into nine smaller fragments (as shown in FIG. 2). Two of these fragments fell into regions that were entirely sequenced. The remaining seven fragments were separated in a low melting point agarose gel, recovered from the gel, and digested with Hinf1, Taq1, or both, using standard techniques (see e.g., Sambrook, supra). The digested fragments were radioactively labelled and analyzed in a sequencing gel (see, id.). [0134]
  • The restriction digestion patterns of the two fragments were identical for 8 out of the 13 enzymes tested, showing that no gross alterations had occurred. Five restriction site polymorphisms were seen, suggesting that 5 base pair substitutions were present within the 275 basepairs (bp) analyzed in this way. Second, 1102 nucleotides around the site where the neo marker was inserted and 585 [0135] nucleotides 5 kb away from this site were sequenced. Within these two regions (containing 1687 nucleotides) nine basepair substitutions, three small deletions (1, 4 and 6 nucleotides) and a polymorphic CA-repeat (a 14 bp deletion) were detected in the BALB/c sequence with respect to the 129 sequence. The longest stretch of perfect homology within the sequenced region was 278 nt. Finally, to detect deletions/insertions in the remainder of the targeting constructs, the 10.5 kb Rb fragments were digested into 9 smaller fragments (see FIG. 2). Two of these fragments fell in the region already sequenced, the remaining seven were further digested with restriction enzymes, radioactively labelled and analyzed on a sequencing gel. By this analysis, 3 deletions (2, 2 and 5 nucleotides) and three small insertions (1, 2 and 10 nucleotides) were detected in the BALB/c fragment with respect to the 129 fragment. A summary of the sequence and restriction fragment length analyses is given in FIG. 2. Based on these results, we estimate that on the average one sequence difference (a base pair substitution or a deletion/insertion) was present per 160 nucleotides, for an overall sequence divergence in the range of about 0.5-1.0%. Thus, even though the two targeting constructs shared an average sequence identity of about 99%, they nevertheless exhibited a significant difference in their efficiency as gene targeting substrates.
  • EXAMPLE 2 Successive Targeting Using Two Different Selectable Markers, Targeting a Selectable Marker
  • A. First Round of Gene Targeting [0136]
  • The targeting construct contained a selectable marker, an hprt minigene, embedded in 17 kb of targeting DNA from the retinoblastoma susceptibility gene derived from mouse line 129 (see FIG. 1[0137] c). The cells to be targeted were the mouse embryonic stem cell line E14Tg2a, an HPRT-minus derivative of cell line E14 (which was derived from cell line 129; see Hooper, M., et al., Nature 326:292-295 (1987)). Cells were electroporated with targeting DNA as described in Example 2.
  • Integration of the hprt minigene into the ES cell genome results in the acquisition of the ability to grow on HAT medium. Of 35 tested colonies that were selected on HAT medium, 8 contained the hprt-minigene correctly integrated into the 19th exon of one of the Rb alleles via homologous recombination. None of the homologous recombinants contained additional hprt copies integrated elsewhere in the genome. One of these clones, designated HAT-20, was used as the recipient for a second targeting experiment. [0138]
  • B. Second Round of Gene Targeting [0139]
  • Clone HAT-20 was subjected to gene targeting using the constructs 129Rb-neo and B/cRb-neo (described above in Example I). HAT-20 cells were electroporated with 90 micrograms of targeting constructs B/cRb-neo and 129Rb-neo and the linearized vector pMClneo poly(A). G418[0140] R colonies were scored after 8 days; 6-Thioguanine (10 μg/ml) was added and surviving colonies were counted 8 days later. From each electroporation experiment individual colonies were picked and grown up for DNA analysis. Double crossing-over at the previously targeted Rb allele will substitute hprt for neo, giving colonies resistant to both G418 (neo+) and 6-Thioguanine (Hprt−). The ratio of homologous recombinants (resistant to both 6-TG and G418) to the total number of integrations (G418R) was much higher with 129Rb-neo than with B/cRb-neo (see Table 1). Some 6-TG-resistant colonies were also seen after electroporation of HAT-20 with the plasmid pMClneo poly(A), albeit at a much lower rate than with either targeting construct (Table 1).
  • DNA of individual clones (6-TG[0141] R and G418R) was digested with PstI and analyzed by Southern hybridization. Using fragment A (FIG. 1b) as a probe, bands of the expected size appeared, corresponding to the wild type Rb allele (4.9 kb), the Rb allele containing hprt (7.7 kb) and the Rb allele containing neo (3.9 kb). Colonies resistant to both 6-TG and G418, obtained upon electroporation of HAT-20 with B/cRb-neo (a), 129Rb-neo (b) and pMClneo poly(A) (c) were analyzed as described in Example I.
  • DNA analysis of 18 colonies obtained with 129Rb-neo confirmed that all 18 resulted from homologous recombination with the target allele. In contrast, analysis of the colonies obtained using the B/cRb-neo construct demonstrated that 14 out of 29 colonies resistant to 6-TG resulted from the spontaneous loss of the hprt containing allele rather than from homologous recombination. Analysis of colonies obtained using pMClneo-poly(A) revealed that they had all lost the hprt containing Rb allele, possible by loss of the entire chromosome. Corrected for the spontaneous loss of the hprt minigene in the HAT-20 ES cell line, the frequency of homologous recombination was 1/200 for the B/cRb construct, but reached 1/10 using the isogenic targeting construct (129Rb). In summary, using isogenic DNA resulted in a 20-fold increase in the efficiency of gene targeting by homologous recombination. [0142]
    TABLE 1
    Efficiency of homologous recombination
    Number
    of cells G418R G418R & 6-TGR Efficiency*
    DNA (HAT-20) (total) (HR) (HR/total)
    B/cRb-neo   5 × 107 11500 105 1/200
    129Rb-neo   5 × 107 13500 1260 1/10 
    pMClneo p (A) 2.5 × 107 5470 11
  • EXAMPLE 3 Targeting Both Alleles of a Gene; and a Comparison of Positive/Negative Selection and Isogenic Targeting
  • In the first step, the retinoblastoma (Rb) allele of mouse embryonic stem cell line E14 was disrupted by homologous recombination with a BALB/c-derived targeting construct employing a standard positive/negative selection strategy as described by Capecchi and co-workers (see Mansour, S., et al, [0143] Nature 336:348-352 (1988), and using approximately 18 kb of Rb targeting sequence, three correct integrations of a neo marker into the 19th exon of the Rb gene were isolated from a background of 3600 random integration events.
  • One of these single Rb knock-out cell lines was used as the recipient in a second electroporation experiment with an isogenic targeting construct, consisting of a hygromycin resistance gene (hyg) embedded in 17 kb of a 129-derived Rb sequence (see 129Rb-hyg, FIG. 1[0144] d). Electroporation conditions and DNA analysis were similar as described in the legend to FIG. 1. In a typical experiment, 8×107 cells were electroporated with 90 micrograms of 129Rb-hyg DNA (FIG. 1d). Hygromycin B (150 micrograms/ml) selection was started after one day. Approximately 15,000 hygromycin B resistant colonies were obtained and, after 12 days of growth, a number of individual colonies were picked and grown up for DNA analysis. DNA derived from 61 different Hygromycin B-resistant colonies was digested with EcoRI and analyzed by Southern hybridization. Using fragment B (FIG. 1d) as a probe, different sized bands, corresponding to the non-modified Rb allele (9.7 kb), the Rb allele with neo integrated (11.5 kb) and the Rb allele with hyg integrated (4.9 kb), could be observed. The Southern analysis revealed that approximately 75% of the Hygromycin B-resistant colonies tested (48 out of 61) resulted from homologous recombination. Thus, not only were homologous recombinants readily obtainable, they were the predominant type of cell arising from integration of the targeting DNA. Furthermore, all 48 of these lines had undergone homologous recombination at the Rb locus. In 40 of the lines, the hyg gene was correctly integrated into the remaining wild-type copy of the Rb gene thus giving cell lines in which both Rb alleles had been disrupted. In the other 8 lines, the hyg targeting DNA had incorporated by homologous recombination but the target had been the already modified allele in which the hyg targeting sequence replaced neo. By selecting the recombinants on both G418 and hygromycin, it is possible to select against cells in which the second targeting DNA has merely replaced the first.
  • The results also exemplify the effect of using isogenic targeting. With a fairly homologous targeting DNA, and employing a positive/negative selection strategy, less than 0.1% of the cells (approximately 1/1200) were homologous recombinants. In contrast, using isogenic targeting DNA, about 75% of the cells were correctly targeted without having to employ special selection techniques. [0145]
  • The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. [0146]

Claims (36)

What is claimed is:
1. A method for modifying a preselected DNA sequence in a cell of a non-inbred animal by homologous recombination between a native target DNA sequence in the preselected DNA sequence and a targeting DNA sequence introduced into the cell, said method comprising:
isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.
2. A method according to claim 1, wherein the animal cell is a mammalian cell.
3. A method according to claim 1, wherein the sequence modifications in the targeting DNA comprise an insertion of a selectable marker.
4. A method according to claim 3, wherein the selectable marker is a gene conferring resistance to an inhibitory compound.
5. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound substantially lacks its own transcriptional and/or translational start signals.
6. A method according to claim 4, wherein the gene conferring resistance to an inhibitory compound is preferentially expressed when integrated into the genome by homologous recombination between the targeting DNA sequence and the target DNA sequence.
7. A method according to claim 3, wherein the selectable marker is a gene conferring the ability to grow on a selected substrate.
8. A method according to claim 1, wherein the targeting DNA sequence is at least about 99% identical with the target DNA sequence except for the desired sequence modifications.
9. A method for modifying a non-murine animal cell genome by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:
introducing into cells to be targeted a DNA delivery molecule comprising the targeting DNA; and
isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.
10. A method according to claim 9, wherein the targeting DNA is introduced into the cell by microinjection.
11. A method according to claim 9, wherein the targeting DNA sequence is at least about 99.5-99.9% identical with the target DNA sequence except for the desired sequence modifications.
12. A method according to claim 9, wherein the native target DNA is an immunoglobulin gene.
13. A method according to claim 9, wherein the targeting DNA comprises an isogenic sequence of about 75 to 150 base pairs that is identical with a corresponding sequence in the target DNA.
14. A method according to claim 9, wherein the sequence modifications in the targeting DNA comprise one or more modifications selected from the group consisting of insertions, deletions and substitutions.
15. A method for modifying a cell genome of an animal by homologous recombination between a target DNA sequence in the animal cell genome and a targeting DNA sequence introduced into the animal cell, said method comprising:
introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted, wherein the targeting DNA was prepared from cells of the same individual animal or a sibling thereof; and
isolating cells in which preselected sequence modifications have been incorporated into the genome by homologous recombination between the target DNA and the targeting DNA, wherein the target DNA and the targeting DNA are substantially isogenic except for the preselected sequence modifications.
16. A method for enhancing homologous recombination between a native target DNA sequence in a non-murine mammalian cell line and a targeting DNA sequence introduced into the cell line, said method comprising the steps of:
isolating targeting DNA derived from a second cell line wherein said targeting DNA is substantially isogenic with the target DNA; and
introducing desired sequence-modifications into the targeting DNA; and
introducing a DNA delivery molecule comprising the targeting DNA into cells to be targeted; and
isolating cells in which one or more of the sequence modifications are incorporated into the genome by homologous recombination between the target DNA and the targeting DNA.
17. A method according to claim 16, wherein the second cell line is identical with the mammalian cell line.
18. A method for producing a genetically modified mammal comprising:
modifying the genome of embryonic stem cells of the desired mammal in accordance with claim 1, 9 or 15; and
incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and
growing the blastocyst into a chimeric animal.
19. A method for producing a genetically modified mammal comprising:
modifying the genome of embryonic stem-cells of the desired mammal in accordance with claim 1, 9 or 15; and
incorporating the modified embryonic stem cells into a blastocyst derived from said mammal; and
growing the blastocyst into a chimeric animal.
breeding the chimeric animal to obtain a non-chimeric offspring in which the genetic alteration has been acquired through germ-line transmission.
20. A method for producing a genetically modified animal comprising:
modifying the genome of a zygote of the desired animal in accordance with claim 1, 9 or 15; and
growing the zygote into an animal.
21. A method for gene therapy of an animal comprising:
introducing into cells of a first animal to be targeted a DNA delivery molecule comprising a targeting DNA sequence from a second animal, which sequence is capable of effecting homologous recombination with a substantially isogenic target DNA sequence, other than preselected sequence modifications, in the first animal cell genome;
isolating cells in which the preselected sequence modifications have been incorporated into the genome; and
introducing the modified cells into the first animal.
22. A method according to claim 21, wherein the first animal and the second animal are members of the same species.
23. A method according to claim 21, wherein the first animal is a sibling of the second animal.
24. A method according to claim 21, wherein the cells are somatic cells.
25. A method according to claim 21, wherein the cells are hematopoietic cells.
26. A method according to claim 21, wherein modifying the genome comprises correcting a defective gene.
27. A method according to claim 21, wherein modifying the genome comprises inactivating a gene.
28. A composition comprising a collection of cells between about 10 to 90% of which exhibit a recombination event at a preselected native target DNA segment of the cells, which recombination event is selected from the group consisting of an addition of an exogenous DNA segment to the native DNA segment, a substitution of an exogenous DNA segment for the native DNA segment, and a deletion of the native DNA segment from the cell; wherein genomes of the cells exhibiting the event consist essentially of substantially isogenic DNA proximate to the recombination event except for the exogenous DNA.
29. A composition of claim 28, wherein about 30% of the cells exhibit the recombination event.
30. A component of claim 28, wherein the cells are isolated from an in-bred mouse.
31. A composition of claim 28, wherein the exogenous DNA segment is from a cell of a different species than cells in the collection.
32. A non-human animal comprising cells with a homologous recombination event at a preselected native target DNA segment in the cell genome, wherein genomes of the cells consist essentially of substantially isogenic DNA proximate to the target DNA segment except for preselected sequence modifications which are incapable of undergoing homologous recombination in the cells unless linked to a second DNA segment homologous to the native target DNA segment.
33. A non-human animal of claim 32, wherein the recombination event is a deletion, insertion or substitution.
34. A non-human animal of claim 32, wherein the cells are murine.
35. A non-human animal of claim 34, wherein the mouse cells comprise a DNA segment from a different manual.
36. A non-human animal of claim 35, wherein the DNA segment encodes a human immunoglobulin gene.
US10/722,661 1991-08-20 2003-11-24 Gene targeting in animal cells using isogenic DNA constructs Abandoned US20040107452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/722,661 US20040107452A1 (en) 1991-08-20 2003-11-24 Gene targeting in animal cells using isogenic DNA constructs

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US74834291A 1991-08-20 1991-08-20
US21612194A 1994-03-22 1994-03-22
US56313895A 1995-11-27 1995-11-27
US70032496A 1996-08-08 1996-08-08
US08/908,348 US5789215A (en) 1991-08-20 1997-08-07 Gene targeting in animal cells using isogenic DNA constructs
US11629898A 1998-07-15 1998-07-15
US09/253,818 US6653113B1 (en) 1991-08-20 1999-02-19 High efficiency gene targeting in mouse embryonic stem cells
US10/722,661 US20040107452A1 (en) 1991-08-20 2003-11-24 Gene targeting in animal cells using isogenic DNA constructs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/253,818 Continuation US6653113B1 (en) 1991-08-20 1999-02-19 High efficiency gene targeting in mouse embryonic stem cells

Publications (1)

Publication Number Publication Date
US20040107452A1 true US20040107452A1 (en) 2004-06-03

Family

ID=25009055

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/908,348 Expired - Lifetime US5789215A (en) 1991-08-20 1997-08-07 Gene targeting in animal cells using isogenic DNA constructs
US09/253,818 Expired - Fee Related US6653113B1 (en) 1991-08-20 1999-02-19 High efficiency gene targeting in mouse embryonic stem cells
US10/722,661 Abandoned US20040107452A1 (en) 1991-08-20 2003-11-24 Gene targeting in animal cells using isogenic DNA constructs

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/908,348 Expired - Lifetime US5789215A (en) 1991-08-20 1997-08-07 Gene targeting in animal cells using isogenic DNA constructs
US09/253,818 Expired - Fee Related US6653113B1 (en) 1991-08-20 1999-02-19 High efficiency gene targeting in mouse embryonic stem cells

Country Status (3)

Country Link
US (3) US5789215A (en)
AU (1) AU2515992A (en)
WO (1) WO1993004169A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236378A1 (en) * 2008-09-30 2011-09-29 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
WO2015035034A1 (en) * 2013-09-04 2015-03-12 Mice With Horns, Llc Materials and methods for correcting recessive mutations in animals
US9580491B2 (en) 2010-03-31 2017-02-28 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
WO2018226893A2 (en) 2017-06-06 2018-12-13 Zymergen Inc. A high-throughput (htp) genomic engineering platform for improving saccharopolyspora spinosa

Families Citing this family (562)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048729A (en) 1987-05-01 2000-04-11 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
FR2646438B1 (en) * 1989-03-20 2007-11-02 Pasteur Institut A METHOD FOR SPECIFIC REPLACEMENT OF A COPY OF A GENE PRESENT IN THE RECEIVER GENOME BY INTEGRATION OF A GENE DIFFERENT FROM THAT OR INTEGRATION
US6605712B1 (en) * 1990-12-20 2003-08-12 Arch Development Corporation Gene transcription and ionizing radiation: methods and compositions
WO1993004169A1 (en) * 1991-08-20 1993-03-04 Genpharm International, Inc. Gene targeting in animal cells using isogenic dna constructs
US7217571B1 (en) * 1991-08-21 2007-05-15 The Regents Of The University Of California Gene therapy by small fragment homologous replacement
US5641670A (en) * 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
PT101031B (en) 1991-11-05 2002-07-31 Transkaryotic Therapies Inc PROCESS FOR THE SUPPLY OF PROTEINS BY GENETIC THERAPY
US6063630A (en) 1991-11-05 2000-05-16 Transkaryotic Therapies, Inc. Targeted introduction of DNA into primary or secondary cells and their use for gene therapy
US6270989B1 (en) 1991-11-05 2001-08-07 Transkaryotic Therapies, Inc. Protein production and delivery
US6692737B1 (en) 1991-11-05 2004-02-17 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
US6054288A (en) * 1991-11-05 2000-04-25 Transkaryotic Therapies, Inc. In vivo protein production and delivery system for gene therapy
US5733761A (en) * 1991-11-05 1998-03-31 Transkaryotic Therapies, Inc. Protein production and protein delivery
US6531124B1 (en) 1992-07-10 2003-03-11 Transkaryotic Therapies, Inc. In vivo production and delivery of insulinotropin for gene therapy
US6670178B1 (en) 1992-07-10 2003-12-30 Transkaryotic Therapies, Inc. In Vivo production and delivery of insulinotropin for gene therapy
US5859310A (en) * 1993-06-14 1999-01-12 Basf Aktiengesellschaft Mice transgenic for a tetracycline-controlled transcriptional activator
US5654168A (en) * 1994-07-01 1997-08-05 Basf Aktiengesellschaft Tetracycline-inducible transcriptional activator and tetracycline-regulated transcription units
US5866755A (en) * 1993-06-14 1999-02-02 Basf Aktiengellschaft Animals transgenic for a tetracycline-regulated transcriptional inhibitor
US5589362A (en) * 1993-06-14 1996-12-31 Basf Aktiengesellschaft Tetracycline regulated transcriptional modulators with altered DNA binding specificities
US5888981A (en) 1993-06-14 1999-03-30 Basf Aktiengesellschaft Methods for regulating gene expression
US6004941A (en) * 1993-06-14 1999-12-21 Basf Aktiengesellschaft Methods for regulating gene expression
CA2165162C (en) * 1993-06-14 2000-05-23 Hermann Bujard Tight control of gene expression in eucaryotic cells by tetracycline-responsive promoters
US5814618A (en) * 1993-06-14 1998-09-29 Basf Aktiengesellschaft Methods for regulating gene expression
US5789156A (en) * 1993-06-14 1998-08-04 Basf Ag Tetracycline-regulated transcriptional inhibitors
US5912411A (en) 1993-06-14 1999-06-15 University Of Heidelberg Mice transgenic for a tetracycline-inducible transcriptional activator
US5663070A (en) * 1993-11-15 1997-09-02 Lxr Biotechnology Inc. Recombinant production of a soluble splice variant of the Fas (Apo-1) antigen, fas TM
CA2177827C (en) * 1993-11-30 2007-08-28 Michael C. Kiefer Novel apoptosis-modulating proteins, dna encoding the proteins and methods of use thereof
DE69432901T2 (en) 1993-12-23 2004-05-27 Merck & Co., Inc. EXPRESSION SYSTEM OF ANTIBODIES FOR HOMOLOGICAL RECOMBINATION IN MURINE CELLS
US5998131A (en) * 1994-10-07 1999-12-07 Lxr Biotechnology, Inc. Screening methods for the identification of compounds capable of abrogating BaK-BHRF-1 protein interactions
EP0786007A1 (en) * 1994-10-14 1997-07-30 Basf Aktiengesellschaft Transgenic nonhuman animal having functionally disrupted interleukin-1-beta converting enzyme gene
US5824789A (en) * 1995-06-07 1998-10-20 Systemix, Inc. Human growth factors, nucleotide sequence encoding growth factors, and method of use thereof
PT842289E (en) * 1995-07-26 2005-01-31 Mixis France Sa RECOMBINATION APPROVAL IN EUCARIOT CELLS WITH INACTIVATION OF THE REPAIR SYSTEM OF INCORRECT PAINTS
US6699663B1 (en) 1995-12-14 2004-03-02 The General Hospital Corporation Molecular sequence of swine retrovirus
CA2237545A1 (en) 1995-12-14 1997-06-19 The General Hospital Corporation Molecular sequence of swine retrovirus and methods of use
US20050136066A1 (en) * 1996-06-12 2005-06-23 Yajun Guo Cellular vaccines and immunotherapeutics and methods for their preparation
US6805869B2 (en) 1996-06-12 2004-10-19 Shanghai Cp Guojian Pharmaceutical Co., Ltd. Cellular vaccines and immunotherapeutics and methods for their preparation
US20070299005A1 (en) 1996-09-24 2007-12-27 Tanox, Inc. Family of genes encoding apoptosis-related peptides, peptides encoded thereby and methods of use thereof
DE69735375T3 (en) 1996-09-24 2010-09-02 Tanox, Inc., Houston GENE FAMILY OF APOPTOSIS-RELATED PEPTIDES, THEREFORE, ENCODED PEPTIDES AND METHOD FOR THE PRODUCTION THEREOF
AU7137398A (en) 1997-04-16 1998-11-11 Millennium Pharmaceuticals, Inc. Crsp protein (cysteine-rich secreted proteins), nucleic acid molecules encoding them and uses therefor
US7316923B1 (en) 1997-09-26 2008-01-08 Athersys, Inc. Compositions and methods for non-targeted activation of endogenous genes
US6897066B1 (en) * 1997-09-26 2005-05-24 Athersys, Inc. Compositions and methods for non-targeted activation of endogenous genes
US6194633B1 (en) 1998-01-26 2001-02-27 University Of Iowa Research Foundation Non-human animal having a functionally disrupted SLP-76 gene
US6335185B1 (en) 1998-02-03 2002-01-01 University Technologies International Inc. Bacteriophage vectors generated by bacteriophage/plasmid recombination
US6733991B1 (en) 1998-05-08 2004-05-11 Osi Pharmaceuticals, Inc. AGS proteins and nucleic acid molecules and uses therefor
US6746852B1 (en) 1998-05-08 2004-06-08 Osi Pharmaceuticals, Inc. AGS proteins and nucleic acid molecules and uses thereof
US20070178475A1 (en) * 1998-09-17 2007-08-02 Nehls Michael C Novel human polynucleotides and polypeptides encoded thereby
EP1141028B1 (en) 1998-12-23 2010-02-17 Pfizer Inc. Human monoclonal antibodies to ctla-4
EE05627B1 (en) 1998-12-23 2013-02-15 Pfizer Inc. Human monoclonal antibodies to CTLA-4
US7109003B2 (en) 1998-12-23 2006-09-19 Abgenix, Inc. Methods for expressing and recovering human monoclonal antibodies to CTLA-4
AU3382800A (en) 1999-02-26 2000-09-14 Millennium Pharmaceuticals, Inc. Secreted proteins and uses thereof
US6833268B1 (en) 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
US20020034772A1 (en) * 1999-06-29 2002-03-21 Orlow Seth J. Methods and compositions that affect melanogenesis
US7291714B1 (en) 1999-06-30 2007-11-06 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
EP1201759B1 (en) * 1999-07-14 2010-03-10 Transgenic Inc. Trap vector and gene trapping method by using the same
CA2383456C (en) 1999-08-23 2016-06-07 Clive Wood Pd-1, a receptor for b7-4, and uses therefor
US7605238B2 (en) 1999-08-24 2009-10-20 Medarex, Inc. Human CTLA-4 antibodies and their uses
KR20020047132A (en) 1999-08-24 2002-06-21 메다렉스, 인코포레이티드 Human ctla-4 antibodies and their uses
US6852911B1 (en) * 1999-08-31 2005-02-08 Fertiseed Ltd. Method of producing a male sterile plant by exogenic allelism
US6716614B1 (en) 1999-09-02 2004-04-06 Lexicon Genetics Incorporated Human calcium dependent proteases, polynucleotides encoding the same, and uses thereof
US6541252B1 (en) 2000-05-19 2003-04-01 Lexicon Genetics Incorporated Human kinases and polynucleotides encoding the same
US7414170B2 (en) * 1999-11-19 2008-08-19 Kirin Beer Kabushiki Kaisha Transgenic bovines capable of human antibody production
US7820878B2 (en) * 1999-11-19 2010-10-26 Kyowa Hakko Kirin Co., Ltd. Production of ungulates, preferably bovines that produce human immunoglobulins
US7074983B2 (en) * 1999-11-19 2006-07-11 Kirin Beer Kabushiki Kaisha Transgenic bovine comprising human immunoglobulin loci and producing human immunoglobulin
AU1777301A (en) * 1999-11-19 2001-05-30 Hematech, Llc Production of ungulates, preferably bovines that produce human immunoglobulins
WO2001042442A2 (en) 1999-12-10 2001-06-14 Cytos Biotechnology Ag Activation of endogenous genes by genomic introduction of a replicon
CN102504024A (en) * 2000-02-10 2012-06-20 雅培制药有限公司 Antibodies that bind human interleukin-18 and methods of making and using
US7045314B2 (en) * 2000-04-04 2006-05-16 Baxter International Inc. Method for the production of bacterial toxins
US6686180B2 (en) 2000-04-04 2004-02-03 Baxter International Inc. Method for the production of bacterial toxins
AU2001261650A1 (en) * 2000-05-15 2001-11-26 Geron Corporation Ovine tissue for xenotransplantation
DE10024334B4 (en) * 2000-05-17 2006-06-01 Medigene Ag Method for introducing nucleic acid into a cell (transfection) by means of calcium phosphate
GB0018876D0 (en) * 2000-08-01 2000-09-20 Applied Research Systems Method of producing polypeptides
CA2422155A1 (en) * 2000-08-03 2002-02-14 Wim Van Schooten Production of humanized antibodies in transgenic animals
US20020031829A1 (en) * 2000-08-15 2002-03-14 Brian Zambrowicz Arrayed collection of genomic clones
JP5113314B2 (en) 2000-09-01 2013-01-09 ザ センター フォー ブラッド リサーチ インク Modified polypeptide stabilized in desired conformation and method for producing the polypeptide
UA83458C2 (en) 2000-09-18 2008-07-25 Байоджен Айдек Ма Інк. The isolated polypeptide baff-r (the receptor of the factor of activation of b-cells of the family tnf)
KR100584047B1 (en) * 2000-10-30 2006-05-30 지텍 코포레이션 Multifunctional energy system that can be operated as a fuel cell, reformer, or thermal plant
US7105348B2 (en) * 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US6586251B2 (en) * 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
MXPA03004688A (en) 2000-11-28 2003-09-05 Wyeth Corp Expression analysis of fkbp nucleic acids and polypeptides useful in the diagnosis and treatment of prostate cancer.
CA2429749A1 (en) 2000-11-28 2002-06-06 Wyeth Expression analysis of kiaa nucleic acids and polypeptides useful in the diagnosis and treatment of prostate cancer
KR100915483B1 (en) 2000-12-06 2009-09-03 로버트 제이 하리리 Method of collecting placental stem cells
US7311905B2 (en) 2002-02-13 2007-12-25 Anthrogenesis Corporation Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells
US7491534B2 (en) 2000-12-22 2009-02-17 Kirin Holdings Kabushiki Kaisha Methods for altering cell fate to generate T-cells specific for an antigen of interest
US20020142397A1 (en) * 2000-12-22 2002-10-03 Philippe Collas Methods for altering cell fate
ATE502106T1 (en) 2000-12-22 2011-04-15 Kyowa Hakko Kirin Co Ltd METHOD FOR CLONING NON-HUMAN MAMMALS USING REPROGRAMMED DONOR CHROMATIN OR DONOR CELLS
ES2344592T3 (en) 2001-01-05 2010-09-01 Pfizer Inc. ANTIBODIES AGAINST THE RECEIVER OF THE SIMILAR GROWTH FACTOR TO INSULIN I.
ES2558626T3 (en) 2001-02-14 2016-02-05 Anthrogenesis Corporation Placenta post-partum of mammals, their use and placental stem cells thereof
EP2336299A1 (en) 2001-02-14 2011-06-22 Anthrogenesis Corporation Post-partum mammalian placenta, its use and placental stem cells therefrom
JP3929250B2 (en) * 2001-03-08 2007-06-13 株式会社ルネサステクノロジ Semiconductor device
US8981061B2 (en) 2001-03-20 2015-03-17 Novo Nordisk A/S Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof
US8231878B2 (en) 2001-03-20 2012-07-31 Cosmo Research & Development S.P.A. Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof
WO2002076196A1 (en) 2001-03-22 2002-10-03 Abbott Gmbh & Co. Kg Transgenic animals expressing antibodies specific for genes of interest and uses thereof
AU2002254431A1 (en) * 2001-03-27 2002-10-08 M. Eric Gershwin Antibodies against autoantigens of primary biliary cirrhosis and methods of making and using them
CA2442066C (en) 2001-04-02 2005-11-01 Wyeth Pd-1, a receptor for b7-4, and uses therefor
ES2380007T3 (en) * 2001-04-06 2012-05-07 The University Of Chicago Induction by chemotherapeutic agents of the activity of the Egr-1 promoter in gene therapy
US20040242523A1 (en) * 2003-03-06 2004-12-02 Ana-Farber Cancer Institue And The Univiersity Of Chicago Chemo-inducible cancer gene therapy
US8034791B2 (en) 2001-04-06 2011-10-11 The University Of Chicago Activation of Egr-1 promoter by DNA damaging chemotherapeutics
BR0208944A (en) 2001-04-16 2006-10-10 Wyeth Corp streptococus pneumoniae open reading frames encoding polypeptide antigens and their uses
WO2002085924A2 (en) * 2001-04-23 2002-10-31 Abgenix, Inc. ANTI-α3(IV)NC1 MONOCLONAL ANTIBODIES AND ANIMAL MODEL FOR HUMAN ANTI-GLOMERULAR BASEMENT MEMBRANE AUTOANTIBODY DISEASE
EP1399541A4 (en) 2001-05-22 2005-04-13 Univ Chicago RNA POLYMERASE DEPENDENT ON SINGLE VIBRATION N4 DNA
US20030211040A1 (en) 2001-08-31 2003-11-13 Paul Greengard Phosphodiesterase activity and regulation of phosphodiesterase 1B-mediated signaling in brain
US20030092183A1 (en) * 2001-09-21 2003-05-15 Fisher Katherine E. Rapid creation of gene targeting vectors using homologous recombination in yeast
EP1450605B1 (en) * 2001-10-26 2011-12-07 Baylor College Of Medicine Composition to alter bone properties in a subject
AR039067A1 (en) * 2001-11-09 2005-02-09 Pfizer Prod Inc ANTIBODIES FOR CD40
CA2466415C (en) 2001-11-09 2020-01-21 Dana-Farber Cancer Institute, Inc. Pgc-1.beta., a novel pgc-1 homologue and uses therefor
CN1615151A (en) * 2001-12-11 2005-05-11 阿德维希斯公司 Plasmid mediated suplementation for treating chronically ill subjects
US6578724B1 (en) * 2001-12-29 2003-06-17 United States Can Company Connector for use in packaging aerosol containers
US20060009409A1 (en) 2002-02-01 2006-01-12 Woolf Tod M Double-stranded oligonucleotides
ATE556714T1 (en) 2002-02-01 2012-05-15 Life Technologies Corp DOUBLE STRANDED OLIGONUCLEOTIDES
US20030166282A1 (en) 2002-02-01 2003-09-04 David Brown High potency siRNAS for reducing the expression of target genes
EP2292091A1 (en) 2002-02-13 2011-03-09 Anthrogenesis Corporation Embryonic-like stem cells derived from post-partum mammalian placenta and uses and methods of treatment using said cells
US7153685B2 (en) 2002-03-11 2006-12-26 The Board Of Trustees Of The University Of Illinois Tamoxifen and 4-hydroxytamoxifen-activated system for regulated production of proteins in eukaryotic cells
JP2005530490A (en) * 2002-03-29 2005-10-13 シェーリング コーポレイション Human monoclonal antibody and method for interleukin-5 and composition comprising the same
CA2481207C (en) * 2002-04-12 2015-06-30 Medarex, Inc. Methods of treatment using ctla-4 antibodies
US7498171B2 (en) 2002-04-12 2009-03-03 Anthrogenesis Corporation Modulation of stem and progenitor cell differentiation, assays, and uses thereof
CA2484360A1 (en) * 2002-05-02 2003-11-13 The University Of North Carolina At Chapel Hill In vitro mutagenesis, phenotyping, and gene mapping
JP2005536192A (en) * 2002-05-09 2005-12-02 ニューヨーク ユニバーシティ Melanogenesis assay
US20050121254A1 (en) * 2002-05-29 2005-06-09 Marcus Hofmann Device for establishing noise in a motor vehicle
EP2801616A1 (en) 2002-06-17 2014-11-12 Thrasos Innovation, Inc. Single domain TDF-related compounds and analogs thereof
EP1636561B1 (en) 2002-07-15 2011-02-09 Board Of Regents, The University Of Texas System Combinatorial protein library screening by periplasmic expression
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
CN100480260C (en) 2002-07-18 2009-04-22 克鲁塞尔荷兰公司 Recombinant production of mixtures of antibodies
WO2007116408A2 (en) * 2006-04-11 2007-10-18 Nanodiagnostics Israel Ltd. Pluripotent stem cells characterized by expression of germline specific genes
EP1546346A4 (en) * 2002-07-23 2006-02-08 Nanodiagnostics Inc Embryonic stem cell markers and uses thereof
KR20130012595A (en) 2002-08-12 2013-02-04 제네렉스, 인코포레이티드 Methods and compositions concerning poxviruses and cancer
GB0218803D0 (en) * 2002-08-13 2002-09-18 Nl Kanker I Targeted gene modification by single-standed DNA oligonucleotides
AU2003265556A1 (en) 2002-08-20 2004-03-11 Millenium Pharmaceuticals, Inc. Compositions, kits, and methods for identification, assessment, prevention, and therapy of cervical cancer
US20080260744A1 (en) * 2002-09-09 2008-10-23 Omeros Corporation G protein coupled receptors and uses thereof
AU2003300776A1 (en) * 2002-09-09 2004-05-25 Omeros Corporation G protein coupled receptors and uses thereof
AU2003290689A1 (en) * 2002-11-08 2004-06-03 Kyowa Hakko Kirin Co., Ltd. Transgenic ungulates having reduced prion protein activity and uses thereof
CA2505534A1 (en) 2002-11-26 2004-06-10 Anthrogenesis Corporation Cytotherapeutics, cytotherapeutic units and methods for treatments using them
EP1578799B8 (en) 2002-12-02 2011-03-23 Amgen Fremont Inc. Antibodies directed to tumor necrosis factor and uses thereof
KR20050096974A (en) * 2003-02-07 2005-10-06 위스콘신 얼럼나이 리서어치 화운데이션 Directed genetic modifications of human stem cells
EP1613750B1 (en) 2003-03-19 2015-10-14 Amgen Fremont Inc. Antibodies against t cell immunoglobulin domain and mucin domain 1 (tim-1) antigen and uses thereof
TW200424214A (en) * 2003-04-21 2004-11-16 Advisys Inc Plasmid mediated GHRH supplementation for renal failures
EP2395016A3 (en) 2003-05-30 2012-12-19 Merus B.V. Design and use of paired variable regions of specific binding molecules
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
US9572840B2 (en) 2003-06-27 2017-02-21 DePuy Synthes Products, Inc. Regeneration and repair of neural tissue using postpartum-derived cells
CA2530285C (en) 2003-06-27 2019-12-24 Abgenix, Inc. Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
AU2004252568B2 (en) 2003-06-27 2011-06-30 Ethicon, Incorporated Regeneration and repair of neural tissue using postpartum-derived cells
US8790637B2 (en) 2003-06-27 2014-07-29 DePuy Synthes Products, LLC Repair and regeneration of ocular tissue using postpartum-derived cells
US7875272B2 (en) 2003-06-27 2011-01-25 Ethicon, Incorporated Treatment of stroke and other acute neuraldegenerative disorders using postpartum derived cells
US9592258B2 (en) 2003-06-27 2017-03-14 DePuy Synthes Products, Inc. Treatment of neurological injury by administration of human umbilical cord tissue-derived cells
US20070224615A1 (en) * 2003-07-09 2007-09-27 Invitrogen Corporation Methods for assaying protein-protein interactions
CA2531698A1 (en) 2003-07-09 2005-01-27 Sentigen Biosciences, Inc. Method for assaying protein-protein interaction
HN2004000285A (en) 2003-08-04 2006-04-27 Pfizer Prod Inc ANTIBODIES DIRECTED TO c-MET
MXPA06001353A (en) 2003-08-08 2006-05-04 Abgenix Inc Antibodies directed to parathyroid hormone (pth) and uses thereof.
AR045563A1 (en) 2003-09-10 2005-11-02 Warner Lambert Co ANTIBODIES DIRECTED TO M-CSF
MXPA06003402A (en) 2003-10-07 2006-06-27 Millennium Pharm Inc Nucleic acid molecules and proteins for the identification, assessment, prevention, and therapy of ovarian cancer.
US7968684B2 (en) 2003-11-12 2011-06-28 Abbott Laboratories IL-18 binding proteins
WO2005046450A2 (en) 2003-11-12 2005-05-26 Children's Hospital Medical Center Method for diagnosis and treatment of pulmonary disorders
US20050100965A1 (en) 2003-11-12 2005-05-12 Tariq Ghayur IL-18 binding proteins
US7371539B2 (en) 2003-12-03 2008-05-13 President And Fellows Of Harvard College Targeted polypeptide degradation
JP4315982B2 (en) * 2004-01-09 2009-08-19 ファイザー インコーポレイティッド Antibodies against MAdCAM
US7625549B2 (en) * 2004-03-19 2009-12-01 Amgen Fremont Inc. Determining the risk of human anti-human antibodies in transgenic mice
CA2564989C (en) 2004-03-19 2014-05-27 Amgen, Inc. Reducing the risk of human and anti-human antibodies through v gene manipulation
EP1749102A4 (en) 2004-04-22 2009-02-25 Kirin Pharma Kk TRANSGENIC ANIMALS AND USES THEREOF
US7622108B2 (en) 2004-04-23 2009-11-24 Bioe, Inc. Multi-lineage progenitor cells
CA2571218C (en) 2004-06-17 2015-11-03 William D. Carlson Tdf-related compounds and analogs thereof
WO2006012304A2 (en) 2004-06-25 2006-02-02 The Salk Institute For Biological Studies Increasing life span by modulation of smek
AU2005259221B2 (en) 2004-07-01 2011-02-10 Innate Pharma Antibodies binding to receptors KIR2DL1, -2, 3 but not KIR2DS4 and their therapeutic use
CA2573821A1 (en) * 2004-07-16 2006-01-26 Pfizer Products Inc. Combination treatment for non-hematologic malignancies using an anti-igf-1r antibody
US20080026457A1 (en) 2004-10-22 2008-01-31 Kevin Wells Ungulates with genetically modified immune systems
ES2679282T3 (en) 2004-10-22 2018-08-23 Revivicor Inc. Transgenic pigs that lack endogenous immunoglobulin light chain
EP2808389A1 (en) 2004-11-12 2014-12-03 Asuragen, Inc. Methods and compositions involving MIRNA and MIRNA inhibitor molecules
DE602005025525D1 (en) 2004-11-17 2011-02-03 Amgen Inc COMPLETE HUMAN MONOCLONAL ANTIBODIES AGAINST IL-13
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
ATE476994T1 (en) 2004-11-30 2010-08-15 Curagen Corp ANTIBODIES TO GPNMB AND THEIR USES
TW200635946A (en) 2004-12-20 2006-10-16 Abgenix Inc Binding proteins specific for human matriptase
EP1838733B1 (en) 2004-12-21 2011-08-24 Medimmune Limited Antibodies directed to angiopoietin-2 and uses thereof
PT1835924E (en) 2004-12-23 2013-11-19 Ethicon Inc Treatment of parkinson's disease and related disorders using postpartum derived cells
AU2006208286A1 (en) 2005-01-26 2006-08-03 Amgen Fremont Inc. Antibodies against interleukin-1 beta
US7402730B1 (en) 2005-02-03 2008-07-22 Lexicon Pharmaceuticals, Inc. Knockout animals manifesting hyperlipidemia
AR053553A1 (en) 2005-03-08 2007-05-09 Pharmacia & Upjohn Co Llc COMPOSITION OF ANTI BODIES ANTI MOLECULA OF CELLULAR ADRESIN MUCOSA (ANTI-MADCAM)
JP2008536869A (en) 2005-04-15 2008-09-11 プレジデント・アンド・フエローズ・オブ・ハーバード・カレツジ Method of modulating bone formation and mineralization by modulating KRC activity
ZA200709291B (en) * 2005-04-25 2009-01-28 Pfizer Antibodies to myostatin
CA2763671A1 (en) 2005-04-26 2006-11-02 Pfizer Inc. P-cadherin antibodies
WO2006128149A1 (en) * 2005-05-26 2006-11-30 Lexicon Genetics Incorporated Methods and compositions for defining gene function
US8642330B2 (en) * 2005-08-08 2014-02-04 Onconon, Llc Antibody compositions, methods for treating neoplastic disease and methods for regulating fertility
US20070059833A1 (en) * 2005-09-07 2007-03-15 Maxcyte, Inc. Use of Nucleases to Improve Viability and Enhance Transgene Expression in Transfected Cells
WO2007030668A2 (en) * 2005-09-07 2007-03-15 Jennerex Biotherapeutics Ulc Systemic treatment of metastatic and/or systemically-disseminated cancers using gm-csf-expressing poxviruses
PT2960253T (en) 2005-09-07 2018-07-31 Pfizer Human monoclonal antibodies to activin receptor-like kinase-1
US8980246B2 (en) 2005-09-07 2015-03-17 Sillajen Biotherapeutics, Inc. Oncolytic vaccinia virus cancer therapy
CA2621992C (en) 2005-09-09 2020-08-04 The Johns Hopkins University Manipulation of regulatory t cell and dc function by targeting neuritin gene using antibodies, agonists and antagonists
AU2006292224B2 (en) 2005-09-19 2013-08-01 Histogenics Corporation Cell-support matrix and a method for preparation thereof
PL2497780T3 (en) 2005-09-20 2015-09-30 Thrasos Innovation Inc TDF-related compounds and analogs thereof
US9388382B2 (en) 2005-10-05 2016-07-12 The Board Of Trustees Of The University Of Illinois Isolation of CD14 negative, CD45 positive and CD117 positive embryonic-like stem cells free of monocytes from human umbilical cord blood mononuclear cells
UA92504C2 (en) 2005-10-12 2010-11-10 Эли Лилли Энд Компани Anti-myostatin monoclonal antibody
NZ597304A (en) 2005-10-13 2013-06-28 Anthrogenesis Corp Immunomodulation using placental stem cells
ES2626025T3 (en) 2005-10-18 2017-07-21 Precision Biosciences Rationally designed meganucleases with sequence specificity and altered DNA binding affinity
JP2009515897A (en) 2005-11-10 2009-04-16 キュラジェン コーポレイション Methods of treating ovarian and renal cancer using antibodies to immunoglobulin domains of murine domain and mucin domain 1 (TIM-1) antigen
CA2630157C (en) 2005-12-07 2018-01-09 Medarex, Inc. Ctla-4 antibody dosage escalation regimens
BRPI0619786A2 (en) 2005-12-13 2011-10-18 Astrazeneca Ab specific binding protein, nucleic acid molecule, vector, host cell, human monoclonal antibody, method of determining insulin-ii growth factor (igf-1i) and insulin-like growth factor i (igf-1) level in a patient sample, use of the specifically binding protein, and, conjugated
DK1963368T6 (en) 2005-12-13 2020-06-29 Lilly Co Eli Anti-IL-17 ANTIBODIES
US9175261B2 (en) 2005-12-16 2015-11-03 DePuy Synthes Products, Inc. Human umbilical cord tissue cells for inhibiting adverse immune response in histocompatibility-mismatched transplantation
US9125906B2 (en) 2005-12-28 2015-09-08 DePuy Synthes Products, Inc. Treatment of peripheral vascular disease using umbilical cord tissue-derived cells
DK2471906T3 (en) 2005-12-29 2019-02-04 Celularity Inc Placenta stem cell populations
AR056857A1 (en) 2005-12-30 2007-10-24 U3 Pharma Ag DIRECTED ANTIBODIES TO HER-3 (RECEIVER OF THE HUMAN EPIDERMAL GROWTH FACTOR-3) AND ITS USES
JP5404052B2 (en) 2006-01-12 2014-01-29 アレクシオン ファーマシューティカルズ, インコーポレイテッド Antibody to OX-2 / CD200 and use thereof
US20090089889A9 (en) * 2006-01-18 2009-04-02 Chen Howard Y Neuromedin u receptor subtype 1 deficient transgenic mice and uses thereof
US20090317421A1 (en) 2006-01-18 2009-12-24 Dominique Missiakas Compositions and methods related to staphylococcal bacterium proteins
CN101578297A (en) * 2006-04-07 2009-11-11 美国政府健康及人类服务部 Antibody compositions and methods for treatment of neoplastic disease
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
US7875453B2 (en) 2006-06-14 2011-01-25 Bioe Llc Differentiation of multi-lineage progenitor cells to hepatocytes
US20080004410A1 (en) * 2006-06-30 2008-01-03 Yu-Chin Lai Hydrophilic macromonomers having alpha,beta-conjugated carboxylic terminal group and medical devices incorporating same
WO2008014484A1 (en) 2006-07-27 2008-01-31 University Of Maryland, Baltimore Cellular receptor for antiproliferative factor
CL2007002225A1 (en) 2006-08-03 2008-04-18 Astrazeneca Ab SPECIFIC UNION AGENT FOR A RECEIVER OF THE GROWTH FACTOR DERIVED FROM PLATES (PDGFR-ALFA); NUCLEIC ACID MOLECULA THAT CODIFIES IT; VECTOR AND CELL GUESTS THAT UNDERSTAND IT; CONJUGADO UNDERSTANDING THE AGENT; AND USE OF THE AGENT OF A
BRPI0715141A2 (en) 2006-08-03 2013-06-04 Astrazeneca Ab bleaching agent, isolated antibody, isolated antibody fragment, nucleic acid molecule, vector, host cell, methods for producing a targeted binding agent, for producing an antibody, for producing an antibody fragment, for treating a malignant tumor in an animal, to treat inflammation, and to inhibit alpha6 interaction with its ligand, and, conjugated
US8350011B2 (en) 2006-08-04 2013-01-08 Medimmune Limited Antibodies to ErbB2
WO2008022154A2 (en) * 2006-08-14 2008-02-21 Wyeth Methods of identifying agents for treating neurological disorders
US9580515B2 (en) 2006-08-21 2017-02-28 Zensun (Shanghai) Science & Technology, Co., Ltd. Neukinase, a downstream protein of neuregulin
CN101506235B (en) 2006-09-01 2012-07-25 人类多细胞株治疗学公司 Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
ES2551892T3 (en) 2006-09-15 2015-11-24 Ottawa Health Research Institute Oncolytic rhabdovirus
PT2078073E (en) 2006-10-12 2013-11-11 Ethicon Inc Kidney-derived cells and methods of use in tissue repair and regeneration
US8835163B2 (en) 2006-10-18 2014-09-16 The Board Of Trustees Of The University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
EP2468848A3 (en) 2006-10-20 2012-09-26 Arizona Board Regents For And On Behalf Of Arizona State University Modified cyanobacteria
DK2102239T3 (en) 2006-11-30 2012-05-29 Res Dev Foundation IMPROVED IMMUNOGLOBULIN LIBRARIES
NZ612888A (en) 2007-02-12 2015-02-27 Anthrogenesis Corp Treatment of inflammatory diseases using placental stem cells
WO2008112542A1 (en) * 2007-03-09 2008-09-18 The Curators Of The University Of Missouri Methods for conditional and inducible transgene expression to direct the development of stem cells
KR20080084528A (en) 2007-03-15 2008-09-19 제네렉스 바이오테라퓨틱스 인크. Oncolytic Vaccinia Virus Cancer Treatment
EP3524626A1 (en) 2007-03-22 2019-08-14 Biogen MA Inc. Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and uses thereof
EP2137300B1 (en) 2007-04-26 2011-10-26 Ramot at Tel-Aviv University Ltd. Pluripotent autologous stem cells from oral or gastrointestinal mucosa
WO2008137475A2 (en) 2007-05-01 2008-11-13 Research Development Foundation Immunoglobulin fc libraries
US8012474B2 (en) 2007-08-02 2011-09-06 Nov Immune S.A. Anti-RANTES antibodies
US9200253B1 (en) 2007-08-06 2015-12-01 Anthrogenesis Corporation Method of producing erythrocytes
JOP20080381B1 (en) 2007-08-23 2023-03-28 Amgen Inc Antigen Binding Proteins to Proprotein Convertase subtillisin Kexin type 9 (pcsk9)
EP2615113A3 (en) 2007-08-23 2013-11-13 Amgen Inc. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9)
KR101661946B1 (en) 2007-08-31 2016-10-05 유니버시티 오브 시카고 Methods and compositions related to immunizing against staphylococcal lung diseases and conditions
DK2207809T3 (en) * 2007-09-26 2013-10-07 U3 Pharma Gmbh Heparin-binding epidermal growth factor-like growth factor antigen-binding proteins
KR20190132556A (en) 2007-09-28 2019-11-27 안트로제네시스 코포레이션 Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells
US8663980B2 (en) 2007-10-26 2014-03-04 Janssen Biotech, Inc. Vectors, host cells, and methods of production and uses
CA2705164A1 (en) 2007-11-12 2009-05-22 U3 Pharma Gmbh Axl antibodies
AU2008335324A1 (en) * 2007-12-07 2009-06-18 Precision Biosciences, Inc. Rationally-designed meganucleases with recognition sequences found in DNase hypersensitive regions of the human genome
CA2708776A1 (en) * 2007-12-10 2009-06-18 Aliva Biopharmaceuticals, Inc. Methods for sequential replacement of targeted region by homologous recombination
MX2010007530A (en) 2008-01-10 2010-11-10 Res Dev Foundation Vaccines and diagnostics for ehrlichia chaffeensis.
US9746471B2 (en) 2008-01-25 2017-08-29 Multivir Inc. P53 biomarkers
WO2009114321A2 (en) * 2008-03-11 2009-09-17 Precision Biosciencs, Inc. Rationally-designed meganucleases for maize genome engineering
US20100071083A1 (en) * 2008-03-12 2010-03-18 Smith James J Temperature-dependent meganuclease activity
WO2009117439A2 (en) 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
AU2009241351A1 (en) * 2008-04-28 2009-11-05 Precision Biosciences, Inc. Fusion molecules of rationally-designed DNA-binding proteins and effector domains
ES2587395T3 (en) 2008-06-04 2016-10-24 Cellular Dynamics International, Inc. Procedures for the production of IPS cells using a non-viral approach
EP3211075B1 (en) 2008-07-14 2018-10-24 Precision Biosciences, Inc. Recognition sequences for i-crei-derived meganucleases and uses thereof
CA2734128A1 (en) 2008-08-12 2010-02-18 Cellular Dynamics International, Inc. Methods for the production of ips cells
WO2010022089A2 (en) 2008-08-18 2010-02-25 University Of Maryland, Baltimore Derivatives of apf and methods of use
MY160892A (en) 2008-08-18 2017-03-31 Pfizer Antibodies to ccr2
KR20240052847A (en) 2008-08-20 2024-04-23 셀룰래리티 인코포레이티드 Improved cell composition and methods of making the same
WO2010032060A1 (en) 2008-09-19 2010-03-25 Medimmune Llc Antibodies directed to dll4 and uses thereof
WO2010042481A1 (en) 2008-10-06 2010-04-15 University Of Chicago Compositions and methods related to bacterial eap, emp, and/or adsa proteins
EP2348827B1 (en) 2008-10-27 2015-07-01 Revivicor, Inc. Immunocompromised ungulates
EP3121197A1 (en) 2008-11-10 2017-01-25 Alexion Pharmaceuticals, Inc. Methods and compositions for treating complement-associated disorders
BRPI0922184A2 (en) 2008-11-19 2020-08-18 Anthrogenesis Corporation isolated cell, isolated cell population, degradable permanent or decellularized matrix or synthetic structure, and method for treating an individual
WO2010068738A1 (en) 2008-12-10 2010-06-17 Dana-Farber Cancer Institute, Inc. Mek mutations conferring resistance to mek inhibitors
SG172160A1 (en) 2008-12-17 2011-07-28 Scripps Research Inst Generation and maintenance of stem cells
US10179900B2 (en) 2008-12-19 2019-01-15 DePuy Synthes Products, Inc. Conditioned media and methods of making a conditioned media
ES2665883T3 (en) 2008-12-19 2018-04-30 DePuy Synthes Products, Inc. Treatment of pulmonary and pulmonary diseases and disorders
CA2748158A1 (en) 2008-12-23 2010-07-01 Astrazeneca Ab Targeted binding agents directed to .alpha.5.beta.1 and uses thereof
WO2010080985A1 (en) 2009-01-08 2010-07-15 Dana-Farber Cancer Institute, Inc. Compositions and methods for induced brown fat differentiation
US8492133B2 (en) 2009-01-20 2013-07-23 Ramot At Tel Aviv University, Ltd. MIR-21 promoter driven targeted cancer therapy
JP5908394B2 (en) 2009-03-26 2016-04-26 デピュイ・シンセス・プロダクツ・インコーポレイテッド Human umbilical cord tissue cells as a therapy for Alzheimer's disease
WO2011127032A1 (en) 2010-04-05 2011-10-13 University Of Chicago Compositions and methods related to protein a (spa) antibodies as an enhancer of immune response
PL3281947T3 (en) 2009-04-03 2020-07-27 The University Of Chicago Compositions and methods related to protein a (spa) variants
EP2424885B1 (en) 2009-04-28 2016-03-23 Vanderbilt University Compositions and methods for the treatment of disorders involving epithelial cell apoptosis
RU2605318C2 (en) 2009-05-05 2016-12-20 Новиммун С.А. Anti-il-17f antibodies and methods for use thereof
KR101813464B1 (en) 2009-06-05 2018-01-30 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 Reprogramming T cells and hematopoietic cells
EP2261242A1 (en) 2009-06-10 2010-12-15 Universite Catholique De Louvain Aspartate-N-acetyltransferase enzyme, diagnostic method and therapeutic method
CN105340834B (en) 2009-07-08 2018-11-06 科马布有限公司 Animal model and treatment molecule
US9445581B2 (en) 2012-03-28 2016-09-20 Kymab Limited Animal models and therapeutic molecules
WO2011025826A1 (en) 2009-08-26 2011-03-03 Research Development Foundation Methods for creating antibody libraries
CN107303302A (en) 2009-09-14 2017-10-31 希拉金股份有限公司 Oncolytic vaccinia virus combines cancer therapy
CN102686722B (en) 2009-09-23 2014-11-05 达芬奇生物科技有限责任公司 Umbilical cord lining stem cells and methods and material for isolating and culturing same
US8323972B2 (en) 2009-09-30 2012-12-04 Advanced Technologies And Regenerative Medicine, Llc Mammary artery derived cells and methods of use in tissue repair and regeneration
US8889413B2 (en) 2009-09-30 2014-11-18 DePuy Synthes Products, LLC Mammary artery derived cells and methods of use in tissue repair and regeneration
MX337982B (en) 2009-10-16 2016-03-30 Scripps Research Inst Induction of pluripotent cells.
AU2010314844B2 (en) 2009-11-09 2015-03-12 Alexion Pharmaceuticals, Inc. Reagents and methods for detecting PNH type II white blood cells and their identification as risk factors for thrombotic disorders
HUE035605T2 (en) 2009-11-13 2018-05-28 Daiichi Sankyo Europe Gmbh Materials and Methods for the Treatment or Prevention of HER-3-Related Diseases
ES2793330T3 (en) 2009-11-24 2020-11-13 Medimmune Ltd Specific binding agents against B7-H1
WO2011070440A2 (en) 2009-12-10 2011-06-16 Ottawa Hospital Research Institute Oncolytic rhabdovirus
RU2012134369A (en) 2010-01-11 2014-02-20 Алексион Фармасьютикалз, Инк BIOMARKERS OF IMMUNOMODULATING EFFECTS IN PEOPLE EXPOSED TO ANTIMETAL TREATMENT AGAINST CD200
US9745589B2 (en) 2010-01-14 2017-08-29 Cornell University Methods for modulating skeletal remodeling and patterning by modulating SHN2 activity, SHN3 activity, or SHN2 and SHN3 activity in combination
WO2011091134A2 (en) 2010-01-22 2011-07-28 Dana-Farber Cancer Institute, Inc. Compositions,kits, and methods for identification, assessment, prevention, and therapy of metabolic disorders
CA2787992A1 (en) 2010-01-26 2011-08-04 Anthrogenesis Corporation Treatment of bone-related cancers using placental stem cells
TWI518325B (en) 2010-02-04 2016-01-21 自治醫科大學 Identification, assessment, and therapy of cancers with innate or acquired resistance to alk inhibitors
US10080799B2 (en) 2010-02-12 2018-09-25 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions related to glycoprotein-immunoglobulin fusions
RU2571930C2 (en) 2010-02-25 2015-12-27 Дана-Фарбер Кэнсер Инститьют, Инк. Braf mutations ensuing resistance to braf inhibitors
WO2011108930A1 (en) 2010-03-04 2011-09-09 Interna Technologies Bv A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS DIAGNOSTIC AND THERAPEUTIC USES IN DISEASES OR CONDITIONS ASSOCIATED WITH EMT
JP5909482B2 (en) 2010-03-31 2016-04-26 ザ スクリプス リサーチ インスティテュート Cell reprogramming
US9249195B2 (en) 2010-04-07 2016-02-02 Vanderbilt University Reovirus vaccines and methods of use therefor
KR101993254B1 (en) 2010-04-07 2019-06-26 안트로제네시스 코포레이션 Angiogenesis using placental stem cells
US8383793B2 (en) 2010-04-15 2013-02-26 St. Jude Children's Research Hospital Methods and compositions for the diagnosis and treatment of cancer resistant to anaplastic lymphoma kinase (ALK) kinase inhibitors
CA2796601C (en) 2010-04-19 2019-03-26 Research Development Foundation Rtef-1 variants and uses thereof
SI2563813T1 (en) 2010-04-30 2015-12-31 Alexion Pharmaceuticals, Inc. Anti-c5a antibodies and methods for using the antibodies
MX342966B (en) 2010-06-09 2016-10-19 Dana Farber Cancer Inst Inc A mek 1 mutation conferring resistance to raf and mek inhibitors.
WO2011159726A2 (en) 2010-06-14 2011-12-22 The Scripps Research Institute Reprogramming of cells to a new fate
CA2802087A1 (en) 2010-06-15 2011-12-22 Cellular Dynamics International, Inc. A compendium of ready-built stem cell models for interrogation of biological response
DK2582794T4 (en) 2010-06-15 2024-07-22 Fujifilm Cellular Dynamics Inc GENERATION OF INDUCED PLURIPOTENT STEM CELLS FROM SMALL VOLUMES OF PERIPHERAL BLOOD
AU2011270959A1 (en) 2010-06-22 2013-01-10 Musc Foundation For Research Development Antibodies to the C3d fragment of complement component 3
JP6002128B2 (en) 2010-07-02 2016-10-05 ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago Compositions and methods related to protein A (SpA) variants
NZ719520A (en) 2010-07-06 2017-07-28 Int Tech Bv Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma, or in diseases or conditions associated with activated braf pathway
US8785192B2 (en) 2010-07-07 2014-07-22 Cellular Dynamics International, Inc. Endothelial cell production by programming
AU2011279201B2 (en) 2010-07-13 2016-01-21 Celularity Inc. Methods of generating natural killer cells
DK2597945T3 (en) 2010-07-26 2020-09-21 Trianni Inc Transgenic animals and methods for their use
US10793829B2 (en) 2010-07-26 2020-10-06 Trianni, Inc. Transgenic mammals and methods of use thereof
US10662256B2 (en) 2010-07-26 2020-05-26 Trianni, Inc. Transgenic mammals and methods of use thereof
EP2601289B1 (en) 2010-08-04 2017-07-12 Cellular Dynamics International, Inc. Reprogramming immortalized b cells
WO2012018404A2 (en) 2010-08-06 2012-02-09 U3 Pharma Gmbh Use of her3 binding agents in prostate treatment
AU2011288412A1 (en) 2010-08-13 2013-02-21 Medimmune Limited Monomeric polypeptides comprising variant Fc regions and methods of use
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
US9095540B2 (en) 2010-09-09 2015-08-04 The University Of Chicago Methods and compositions involving protective staphylococcal antigens
EP2618829B1 (en) 2010-09-22 2019-05-01 The Regents of the University of Colorado, a body corporate Smad7 for use in the treatment of oral mucositis or psoriasis
EP2622065B1 (en) 2010-10-01 2016-09-07 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Manipulation of stem cell function by p53 isoforms
KR101975688B1 (en) 2010-12-22 2019-05-07 페이트 세러퓨틱스, 인코포레이티드 Cell culture platform for single cell sorting and enhanced reprogramming of iPSCs
AU2011352036A1 (en) 2010-12-31 2013-07-18 Anthrogenesis Corporation Enhancement of placental stem cell potency using modulatory RNA molecules
EP2661278B1 (en) 2011-01-04 2019-06-19 SillaJen Biotherapeutics, Inc. Tumor specific complement dependent cytotoxicity (cdc) antibodies generated by administration of oncolytic vaccinia virus, for use in the treatment of cancer
EP2474617A1 (en) 2011-01-11 2012-07-11 InteRNA Technologies BV Mir for treating neo-angiogenesis
US9315566B2 (en) 2011-01-24 2016-04-19 National University Of Singapore Pathogenic mycobacteria-derived mannose-capped lipoarabinomannan antigen binding proteins
EP2670487B1 (en) 2011-02-03 2019-09-04 Alexion Pharmaceuticals, Inc. Use of an anti-cd200 antibody for prolonging the survival of allografts
AU2012214643B2 (en) 2011-02-07 2016-12-15 Research Development Foundation Engineered immunoglobulin Fc polypeptides
US9956236B2 (en) 2011-02-07 2018-05-01 Cornell University Methods for increasing immune responses using agents that directly bind to and activate IRE-1
EP2673358B1 (en) 2011-02-08 2019-01-09 FUJIFILM Cellular Dynamics, Inc. Hematopoietic precursor cell production by programming
US8628773B2 (en) 2011-04-07 2014-01-14 Amgen Inc. Antigen binding proteins
WO2012136653A1 (en) 2011-04-08 2012-10-11 Novvac Aps Proteins and nucleic acids useful in vaccines targeting staphylococcus aureus
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
US8945588B2 (en) 2011-05-06 2015-02-03 The University Of Chicago Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides
JOP20200043A1 (en) 2011-05-10 2017-06-16 Amgen Inc Ways to treat or prevent cholesterol disorders
WO2012158818A2 (en) 2011-05-16 2012-11-22 Fabion Pharmaceuticals, Inc. Multi-specific fab fusion proteins and methods of use
ES2931180T3 (en) 2011-05-19 2022-12-27 Fund Publica Andaluza Progreso Y Salud Highly inducible dual promoter lentiviral Tet-on type system
DK2714059T3 (en) 2011-06-01 2019-01-21 Celularity Inc TREATMENT OF PAIN WHEN USING PLACENT STAM CELLS
WO2012167382A1 (en) 2011-06-08 2012-12-13 Children's Hospital Of Eastern Ontario Research Institute Inc. Compositions and methods for glioblastoma treatment
EP2732029B1 (en) 2011-07-11 2019-01-16 FUJIFILM Cellular Dynamics, Inc. Methods for cell reprogramming and genome engineering
US9156911B2 (en) 2011-07-18 2015-10-13 Amgen Inc. Apelin antigen-binding proteins and uses thereof
BR112014003315A2 (en) 2011-08-15 2017-03-01 Univ Chicago antibody-related compositions and methods for staphylococcal protein
WO2013026015A1 (en) 2011-08-18 2013-02-21 Dana-Farber Cancer Institute, Inc. Muc1 ligand traps for use in treating cancers
CA2848368C (en) 2011-09-13 2023-02-14 Dana-Farber Cancer Institute, Inc. Compositions and methods for brown fat induction and activity using fndc5
JP2014533930A (en) 2011-09-19 2014-12-18 カイマブ・リミテッド Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
EP2761008A1 (en) 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
WO2013053076A1 (en) 2011-10-10 2013-04-18 Zensun (Shanghai)Science & Technology Limited Compositions and methods for treating heart failure
US9273102B2 (en) 2011-10-12 2016-03-01 Niels Iversen Møller Peptides derived from Campylobacter jejuni and their use in vaccination
US9221906B2 (en) 2011-11-01 2015-12-29 Bionomics Inc. Methods of inhibiting solid tumor growth by administering GPR49 antibodies
EP2773664A1 (en) 2011-11-01 2014-09-10 Bionomics, Inc. Anti-gpr49 antibodies
WO2013067060A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
AU2012332588B2 (en) 2011-11-01 2017-09-07 Bionomics, Inc. Methods of blocking cancer stem cell growth
IN2014CN04183A (en) 2011-11-08 2015-07-17 Pfizer
TWI679212B (en) 2011-11-15 2019-12-11 美商安進股份有限公司 Binding molecules for e3 of bcma and cd3
KR20140091064A (en) 2011-11-16 2014-07-18 암젠 인크 Methods of treating epidermal growth factor deletion mutant viii related disorders
US9253965B2 (en) 2012-03-28 2016-02-09 Kymab Limited Animal models and therapeutic molecules
ES2886147T3 (en) 2011-12-22 2021-12-16 Interna Tech B V MiRNAs for the treatment of head and neck cancer
ES2676556T3 (en) 2011-12-23 2018-07-20 Depuy Synthes Products Llc Detection of cells derived from human umbilical cord tissue
EA034778B1 (en) 2012-02-06 2020-03-19 Инхибркс, Инк. Cd47 antibodies and methods of use thereof
JP6411218B2 (en) 2012-02-15 2018-10-24 ノヴォ ノルディスク アー/エス Antibodies that bind to and block trigger receptor 1 (TREM-1) expressed in bone marrow cells
US9550830B2 (en) 2012-02-15 2017-01-24 Novo Nordisk A/S Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1)
US9663568B2 (en) 2012-02-15 2017-05-30 Novo Nordisk A/S Antibodies that bind peptidoglycan recognition protein 1
MX347917B (en) 2012-03-09 2017-05-17 Lexicon Pharmaceuticals Inc Imidazo [1, 2 - b] pyridazine - based compounds, compositions comprising them, and uses thereof.
JP6418950B2 (en) 2012-03-09 2018-11-07 レクシコン ファーマシューティカルズ インコーポレイテッド Pyrazolo [1,5-a] pyrimidine compounds, compositions containing them, and methods of using them
HUE036040T2 (en) 2012-03-09 2018-06-28 Lexicon Pharmaceuticals Inc Inhibition of adaptor associated kinase 1 for the treatment of pain
GB2502127A (en) 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
US9534059B2 (en) 2012-04-13 2017-01-03 Children's Medical Center Corporation TIKI inhibitors
EP2844275B1 (en) 2012-04-26 2020-05-13 University of Chicago Staphylococcal coagulase antigens and methods of their use
AU2013252888B2 (en) 2012-04-26 2018-06-14 University Of Chicago Compositions and methods related to antibodies that neutralize coagulase activity during Staphylococcus aureus disease
EA039663B1 (en) 2012-05-03 2022-02-24 Амген Инк. Use of an anti-pcsk9 antibody for lowering serum cholesterol ldl and treating cholesterol related disorders
SG11201408228QA (en) 2012-06-11 2015-01-29 Amgen Inc Dual receptor antagonistic antigen-binding proteins and uses thereof
PE20150643A1 (en) 2012-06-22 2015-05-29 Cytomx Therapeutics Inc ANTI-JAGGED 1 / JAGGED 2 CROSS-REACTIVE ANTIBODIES ACTIVABLE ANTI-JAGGED ANTIBODIES AND METHODS OF USE OF THEM
US8901305B2 (en) 2012-07-31 2014-12-02 Bristol-Myers Squibb Company Aryl lactam kinase inhibitors
US9890216B2 (en) 2012-10-23 2018-02-13 Board Of Regents, The University Of Texas System Antibodies with engineered IgG Fc domains
EP2917348A1 (en) 2012-11-06 2015-09-16 InteRNA Technologies B.V. Combination for use in treating diseases or conditions associated with melanoma, or treating diseases or conditions associated with activated b-raf pathway
US10125373B2 (en) 2013-01-22 2018-11-13 Arizona Board Of Regents On Behalf Of Arizona State University Geminiviral vector for expression of rituximab
JO3519B1 (en) 2013-01-25 2020-07-05 Amgen Inc Antibody combinations for CDH19 and CD3
ES2728936T3 (en) 2013-01-25 2019-10-29 Amgen Inc Antibodies directed against CDH19 for melanoma
EP2953635A4 (en) 2013-02-05 2016-10-26 Anthrogenesis Corp NATURAL KILLER CELLS FROM PLACENTA
ES2944477T3 (en) 2013-02-06 2023-06-21 Inhibrx Inc Non-Platelet Reducing and Non-Red Cell Reducing CD47 Antibodies and Methods of Using Them
WO2014130706A1 (en) 2013-02-20 2014-08-28 Regeneron Pharmaceuticals, Inc. Genetic modification of rats
EP2958994B1 (en) 2013-02-21 2019-05-29 Turnstone Limited Partnership Vaccine composition
AU2014218807A1 (en) 2013-02-22 2015-09-03 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
US10086093B2 (en) 2013-02-28 2018-10-02 The General Hospital Corporation miRNA profiling compositions and methods of use
US20160010094A1 (en) 2013-03-01 2016-01-14 University Of Pretoria Transgenic cell selection
EP2964774B1 (en) 2013-03-08 2020-05-06 The Regents of The University of Colorado, A Body Corporate Ptd-smad7 therapeutics
WO2014140368A1 (en) 2013-03-15 2014-09-18 Amgen Research (Munich) Gmbh Antibody constructs for influenza m2 and cd3
DK2970449T3 (en) 2013-03-15 2019-11-25 Amgen Res Munich Gmbh SINGLE-CHAINED BINDING MOLECULES COVERING N-TERMINAL ABP
US9788534B2 (en) 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
US9783618B2 (en) 2013-05-01 2017-10-10 Kymab Limited Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
JP6267792B2 (en) 2013-06-28 2018-01-24 アムジエン・インコーポレーテツド Methods for treating homozygous familial hypercholesterolemia
EP3019475A1 (en) 2013-07-08 2016-05-18 Bristol-Myers Squibb Company Aryl amide kinase inhibitors
EP3033356B1 (en) 2013-08-14 2020-01-15 Sachdev Sidhu Antibodies against frizzled proteins and methods of use thereof
EP3035921A1 (en) 2013-08-20 2016-06-29 Bristol-Myers Squibb Company Imidazopyridazine kinase inhibitors useful to treating a disease or disorder mediated by aak1, such as alzheimer's disease, bipolar disorder, pain, schizophrenia
TW201542550A (en) 2013-09-06 2015-11-16 Lexicon Pharmaceuticals Inc Pyrazolo[1,5-a]pyrimidinyl compound, composition comprising the same, and method of using the same
CA2923857A1 (en) 2013-09-09 2015-03-12 Figene, Llc Gene therapy for the regeneration of chondrocytes or cartilage type cells
CA2941192A1 (en) 2013-09-11 2015-03-19 Bristol-Myers Squibb Company Aryl ether-base kinase inhibitors
EP3049521B1 (en) 2013-09-25 2019-03-06 Cornell University Compounds for inducing anti-tumor immunity and methods thereof
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
TW201546284A (en) 2013-10-01 2015-12-16 Kymab Ltd Animal model and therapeutic molecule
US9737542B2 (en) 2013-10-11 2017-08-22 Bristol-Myers Squibb Company Pyrrolotriazine kinase inhibitors
EP3065775B1 (en) 2013-11-08 2020-09-30 The Board of Regents of the University of Texas System Vh4 antibodies against gray matter neuron and astrocyte
CA2929555A1 (en) 2013-11-08 2015-05-14 Baylor Research Institute Nuclear localization of glp-1 stimulates myocardial regeneration and reverses heart failure
EP4227685A3 (en) 2013-12-03 2024-02-28 Evaxion Biotech A/S Proteins and nucleic acids useful in vaccines targeting staphylococcus aureus
EP3094736A4 (en) 2014-01-14 2017-10-25 Dana-Farber Cancer Institute, Inc. Compositions and methods for identification, assessment, prevention, and treatment of melanoma using pd-l1 isoforms
JP6908381B2 (en) 2014-01-29 2021-07-28 デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド Antibodies to MUC1-C / extracellular domain (MUC1-C / ECD)
EP3105332A4 (en) 2014-02-14 2018-01-10 University of Utah Research Foundation Methods and compositions for inhibiting retinopathy of prematurity
EP3110836A1 (en) 2014-02-25 2017-01-04 Research Development Foundation Sty peptides for inhibition of angiogenesis
SG11201606934SA (en) 2014-03-04 2016-09-29 Fate Therapeutics Inc Improved reprogramming methods and cell culture platforms
TW201620911A (en) 2014-03-17 2016-06-16 雷西肯製藥股份有限公司 Inhibitors of adapter associated kinase 1, compositions comprising them, and methods of their use
SI3126351T1 (en) 2014-04-02 2018-11-30 Bristol-Myers Squibb Company Biaryl kinase inhibitors
US9546214B2 (en) 2014-04-04 2017-01-17 Bionomics, Inc. Humanized antibodies that bind LGR5
WO2015158810A1 (en) 2014-04-17 2015-10-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Polypeptides and uses thereof for reducing cd95-mediated cell motility
US20170107486A1 (en) 2014-04-21 2017-04-20 Cellular Dynamics International, Inc. Hepatocyte production via forward programming by combined genetic and chemical engineering
ES2869459T3 (en) 2014-05-16 2021-10-25 Medimmune Llc Molecules with altered neonate fc receptor binding that have enhanced therapeutic and diagnostic properties
TWI695011B (en) 2014-06-18 2020-06-01 美商梅爾莎納醫療公司 Monoclonal antibodies against her2 epitope and methods of use thereof
CA2955253C (en) 2014-07-17 2023-03-07 Novo Nordisk A/S Site directed mutagenesis of trem-1 antibodies for decreasing viscosity
MX384418B (en) 2014-07-31 2025-03-14 Amgen Res Munich Gmbh Bi-specific single-chain antibody construct with enhanced tissue distribution.
EP3174901B1 (en) 2014-07-31 2019-06-26 Amgen Research (Munich) GmbH Optimized cross-species specific bispecific single chain antibody constructs
AR101669A1 (en) 2014-07-31 2017-01-04 Amgen Res (Munich) Gmbh ANTIBODY CONSTRUCTS FOR CDH19 AND CD3
WO2016025510A1 (en) 2014-08-12 2016-02-18 Rappolee Daniel A Systems and methods to detect stem cell stress and uses thereof
WO2016075305A2 (en) 2014-11-13 2016-05-19 Evaxion Biotech Aps Peptides derived from acinetobacter baumannii and their use in vaccination
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
EP3244918A2 (en) 2015-01-12 2017-11-22 Evaxion Biotech ApS Proteins and nucleic acids useful in vaccines targeting klebsiella pneumoniae
EP3250675A1 (en) 2015-01-28 2017-12-06 SABIC Global Technologies B.V. Methods and compositions for high-efficiency production of biofuel and/or biomass
US10457737B2 (en) 2015-02-09 2019-10-29 Research Development Foundation Engineered immunoglobulin Fc polypeptides displaying improved complement activation
WO2016134293A1 (en) 2015-02-20 2016-08-25 Baylor College Of Medicine p63 INACTIVATION FOR THE TREATMENT OF HEART FAILURE
US10174044B2 (en) 2015-04-10 2019-01-08 Bristol-Myers Squibb Company Fused pyridines as kinase inhibitors
DK3283524T3 (en) 2015-04-17 2023-05-30 Amgen Res Munich Gmbh BISPECIFIC ANTIBODY CONSTRUCTIONS AGAINST CDH3 and CD3
WO2016196366A1 (en) 2015-05-29 2016-12-08 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Extension of replicative lifespan in diseases of premature aging using p53 isoforms
EP4116316A1 (en) 2015-07-04 2023-01-11 Evaxion Biotech A/S Proteins and nucleic acids useful in vaccines targeting pseudomonas aeruginosa
TW202346349A (en) 2015-07-31 2023-12-01 德商安美基研究(慕尼黑)公司 Antibody constructs for dll3 and cd3
TWI744242B (en) 2015-07-31 2021-11-01 德商安美基研究(慕尼黑)公司 Antibody constructs for egfrviii and cd3
TWI829617B (en) 2015-07-31 2024-01-21 德商安美基研究(慕尼黑)公司 Antibody constructs for flt3 and cd3
TWI796283B (en) 2015-07-31 2023-03-21 德商安美基研究(慕尼黑)公司 Antibody constructs for msln and cd3
TWI717375B (en) 2015-07-31 2021-02-01 德商安美基研究(慕尼黑)公司 Antibody constructs for cd70 and cd3
US10526408B2 (en) 2015-08-28 2020-01-07 Research Development Foundation Engineered antibody FC variants
CN108290843B (en) 2015-10-01 2021-08-24 百时美施贵宝公司 Biaryl kinase inhibitors
SG10202111851YA (en) 2015-10-16 2021-12-30 Fate Therapeutics Inc Platform for the Induction & Maintenance of Ground State Pluripotency
KR20180063333A (en) 2015-10-20 2018-06-11 후지필름 셀룰러 다이내믹스, 인코포레이티드 Specified differentiation of pluripotent stem cells into immune cells
US12194080B2 (en) 2015-10-29 2025-01-14 Dana-Farber Cancer Institute, Inc. Methods for identification, assessment, prevention, and treatment of metabolic disorders using PM20D1 and N-lipidated amino acids
SG11201803419PA (en) 2015-10-30 2018-05-30 The Regents Of The Universtiy Of California Methods of generating t-cells from stem cells and immunotherapeutic methods using the t-cells
LT3370733T (en) 2015-11-02 2021-10-25 Board Of Regents, The University Of Texas System METHODS OF BLOCKING CD40 ACTIVATION AND IMMUNE CONTROL POINTS
US20190038713A1 (en) 2015-11-07 2019-02-07 Multivir Inc. Compositions comprising tumor suppressor gene therapy and immune checkpoint blockade for the treatment of cancer
PT3373968T (en) 2015-11-09 2024-07-18 Us Gov Health & Human Services Glypican 2 as a cancer marker and therapeutic target
US10813346B2 (en) 2015-12-03 2020-10-27 Trianni, Inc. Enhanced immunoglobulin diversity
EP4039709A1 (en) 2016-02-03 2022-08-10 Amgen Research (Munich) GmbH Bcma and cd3 bispecific t cell engaging antibody constructs
CA3011942A1 (en) 2016-02-03 2017-08-10 Amgen Research (Munich) Gmbh Psma and cd3 bispecific t cell engaging antibody constructs
EA039859B1 (en) 2016-02-03 2022-03-21 Эмджен Рисерч (Мюник) Гмбх Bispecific antibody constructs binding egfrviii and cd3
WO2017136734A1 (en) 2016-02-04 2017-08-10 Trianni, Inc. Enhanced production of immunoglobulins
WO2017144523A1 (en) 2016-02-22 2017-08-31 Evaxion Biotech Aps Proteins and nucleic acids useful in vaccines targeting staphylococcus aureus
JP7137474B2 (en) 2016-03-15 2022-09-14 メルサナ セラピューティクス,インコーポレイティド NaPi2b targeting antibody-drug conjugates and methods of use thereof
EP3430058A4 (en) 2016-03-15 2019-10-23 Generon (Shanghai) Corporation Ltd. MULTISPECIFIC FAB FUSION PROTEINS AND THEIR USE
KR20180138205A (en) 2016-03-22 2018-12-28 바이오노믹스 리미티드 Administration of anti-LGR5 monoclonal antibody
WO2017168348A1 (en) 2016-03-31 2017-10-05 Baylor Research Institute Angiopoietin-like protein 8 (angptl8)
JOP20170091B1 (en) 2016-04-19 2021-08-17 Amgen Res Munich Gmbh Giving a bispecific formulation that binds to CD33 and CD3 for use in a modality for the treatment of myeloid leukemia
WO2017216384A1 (en) 2016-06-17 2017-12-21 Evaxion Biotech Aps Vaccination targeting ichthyophthirius multifiliis
WO2017220787A1 (en) 2016-06-24 2017-12-28 Evaxion Biotech Aps Vaccines against aearomonas salmonicida infection
WO2018005975A1 (en) 2016-07-01 2018-01-04 Research Development Foundation Elimination of proliferating cells from stem cell-derived grafts
WO2018015575A1 (en) 2016-07-22 2018-01-25 Evaxion Biotech Aps Chimeric proteins for inducing immunity towards infection with s. aureus
WO2018035429A1 (en) 2016-08-18 2018-02-22 Wisconsin Alumni Research Foundation Peptides that inhibit syndecan-1 activation of vla-4 and igf-1r
EP3506943B1 (en) 2016-09-02 2025-01-29 The Regents of The University of California Methods and compositions involving interleukin-6 receptor alpha-binding single chain variable fragments
WO2018049261A1 (en) 2016-09-09 2018-03-15 Icellhealth Consulting Llc Oncolytic virus expressing immune checkpoint modulators
EP3523422B1 (en) 2016-10-05 2024-12-25 FUJIFILM Cellular Dynamics, Inc. Generating mature lineages from induced pluripotent stem cells with mecp2 disruption
US20200263139A1 (en) 2016-10-05 2020-08-20 FUJIFILM Cellular Dynamics, Inc. Methods for directed differentiation of pluripotent stem cells to hla homozygous immune cells
US20200009203A1 (en) 2016-12-12 2020-01-09 Multivir Inc. Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases
US11718648B2 (en) 2017-01-05 2023-08-08 Evaxion Biotech A/S Vaccines targeting Pseudomonas aeruginosa
JOP20190189A1 (en) 2017-02-02 2019-08-01 Amgen Res Munich Gmbh Low ph pharmaceutical composition comprising t cell engaging antibody constructs
MX2019011897A (en) 2017-04-18 2019-11-28 Fujifilm Cellular Dynamics Inc Antigen-specific immune effector cells.
CA3060856A1 (en) 2017-05-05 2018-11-08 Amgen Inc. Pharmaceutical composition comprising bispecific antibody constructs for improved storage and administration
CN118406148A (en) 2017-07-14 2024-07-30 辉瑞大药厂 Antibodies against MADCAM
WO2019086603A1 (en) 2017-11-03 2019-05-09 Interna Technologies B.V. Mirna molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation
EP3710014A1 (en) 2017-11-14 2020-09-23 Henry Ford Health System Compositions for use in the treatment and prevention of cardiovascular disorders resulting from cerebrovascular injury
EA202091422A1 (en) 2017-12-11 2020-08-28 Эмджен Инк. METHOD FOR CONTINUOUS PRODUCTION OF PRODUCTS BASED ON BISPECIFIC ANTIBODIES
TW201940518A (en) 2017-12-29 2019-10-16 美商安進公司 Bispecific antibody construct directed to MUC17 and CD3
JP2021509815A (en) 2018-01-05 2021-04-08 オタワ ホスピタル リサーチ インスティチュート Modified vaccinia vector
WO2019145399A1 (en) 2018-01-24 2019-08-01 Evaxion Biotech Aps Vaccines for prophylaxis of s. aureus infections
IL276164B2 (en) 2018-01-26 2024-11-01 Regeneron Pharma Antibodies against TMPRSS2 and antigen-binding fragments
AU2019322487B2 (en) 2018-03-19 2024-04-18 Multivir Inc. Methods and compositions comprising tumor suppressor gene therapy and CD122/CD132 agonists for the treatment of cancer
BR112020018691A2 (en) 2018-03-26 2021-01-05 Regeneron Pharmaceuticals, Inc. ANTI-PFRH5 ANTIBODIES AND ANTIGEN BINDING FRAGMENTS OF THE SAME
AU2019244479B2 (en) 2018-03-30 2024-12-19 Les Hopitaux Universitaires De Geneve Micro RNA expression constructs and uses thereof
CA3092387A1 (en) 2018-04-02 2019-10-10 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
SG11202012360YA (en) 2018-07-16 2021-01-28 Regeneron Pharma Anti-il36r antibodies
US20210301017A1 (en) 2018-07-30 2021-09-30 Amgen Research (Munich) Gmbh Prolonged administration of a bispecific antibody construct binding to cd33 and cd3
SG11202100987RA (en) 2018-08-03 2021-02-25 Amgen Res Munich Gmbh Antibody constructs for cldn18.2 and cd3
CA3109732A1 (en) 2018-08-27 2020-03-05 Affimed Gmbh Cryopreserved nk cells preloaded with an antibody construct
KR20210102870A (en) 2018-08-30 2021-08-20 테나야 테라퓨틱스, 인코포레이티드 Cardiac Cell Reprogramming with Myocardin and ASCL1
US20220000932A1 (en) 2018-09-28 2022-01-06 Henry Ford Health System Use of extracellular vesicles in combination with tissue plasminogen activator and/or thrombectomy to treat stroke
EP3863670A1 (en) 2018-10-11 2021-08-18 Amgen Inc. Downstream processing of bispecific antibody constructs
EP3870207A1 (en) 2018-10-22 2021-09-01 Evaxion Biotech ApS Vaccines targeting m. catharrhalis
CN113474370B (en) 2019-02-01 2025-04-01 瑞泽恩制药公司 Anti-IL2 receptor gamma antigen binding protein
WO2020171889A1 (en) 2019-02-19 2020-08-27 University Of Rochester Blocking lipid accumulation or inflammation in thyroid eye disease
EP3931206A1 (en) 2019-02-27 2022-01-05 Evaxion Biotech ApS Vaccines targeting h. influenzae
US20220259547A1 (en) 2019-06-13 2022-08-18 Amgeng Inc. Automated biomass-based perfusion control in the manufacturing of biologics
SG10201905939WA (en) 2019-06-26 2021-01-28 Cell Mogrify Australia Pty Ltd Cell culture methods and compositions
EP3997226A1 (en) 2019-07-11 2022-05-18 Tenaya Therapeutics, Inc. Cardiac cell reprogramming with micrornas and other factors
CN119925596A (en) 2019-07-19 2025-05-06 费城儿童医院 Chimeric antigen receptor containing a glypican 2 binding domain
CA3148591A1 (en) 2019-07-26 2021-02-04 Amgen Inc. Anti-il13 antigen binding proteins
WO2021050640A1 (en) 2019-09-10 2021-03-18 Amgen Inc. Purification method for bispecific antigen-binding polypeptides with enhanced protein l capture dynamic binding capacity
US20210147525A1 (en) 2019-10-18 2021-05-20 The Regents Of The University Of California Methods and compositions for treating pathogenic blood vessel disorders
CA3156683A1 (en) 2019-11-13 2021-05-20 Amgen Inc. Method for reduced aggregate formation in downstream processing of bispecific antigen-binding molecules
WO2021113644A1 (en) 2019-12-05 2021-06-10 Multivir Inc. Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer
KR20220117300A (en) 2019-12-20 2022-08-23 암젠 인크 Mesothelin-targeting CD40 agonistic multispecific antibody constructs for the treatment of solid tumors
AU2020414409A1 (en) 2019-12-27 2022-06-16 Affimed Gmbh Method for the production of bispecific FcyRIIl x CD30 antibody construct
EP4087593A1 (en) 2020-01-06 2022-11-16 Evaxion Biotech A/S Vaccines targeting neisseria gonorrhoeae
US20230093169A1 (en) 2020-01-22 2023-03-23 Amgen Research (Munch) Gmbh Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof
US11999799B2 (en) 2020-02-10 2024-06-04 Regeneron Pharmaceuticals, Inc. Anti-TMPRSS2 antibodies and antigen-binding fragments
US20230103731A1 (en) 2020-03-02 2023-04-06 Tenaya Therapeutics, Inc. Gene vector control by cardiomyocyte-expressed micrornas
EP4118113A1 (en) 2020-03-12 2023-01-18 Amgen Inc. Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor
WO2021188851A1 (en) 2020-03-19 2021-09-23 Amgen Inc. Antibodies against mucin 17 and uses thereof
EP4127148A1 (en) 2020-03-25 2023-02-08 Erasmus University Rotterdam Medical Center Reporter system for radionuclide imaging
CR20220552A (en) 2020-04-02 2023-01-17 Regeneron Pharma Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
AU2021275049A1 (en) 2020-05-19 2022-12-22 Amgen Inc. MAGEB2 binding constructs
CA3179819A1 (en) 2020-05-26 2021-12-02 Alina Baum Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
IL298558A (en) 2020-05-27 2023-01-01 Antion Biosciences Sa Adapter molecules redirect CAR T cells to the antigen of interest
MX2022014902A (en) 2020-05-29 2023-01-04 Amgen Inc Adverse effects-mitigating administration of a bispecific antibody construct binding to cd33 and cd3.
AU2021280332A1 (en) 2020-05-29 2022-12-01 FUJIFILM Cellular Dynamics, Inc. Bilayer of retinal pigmented epithelium and photoreceptors and use thereof
JP2023528377A (en) 2020-05-29 2023-07-04 フジフィルム セルラー ダイナミクス,インコーポレイテッド Double cell aggregates of retinal pigment epithelium and photoreceptors and methods of use thereof
WO2022053130A1 (en) 2020-09-09 2022-03-17 Sid Alex Group, S.R.O. Antago-mir-155 for treatment of v-src, c-src-tyrosine kinase-induced cancers
US20240018198A1 (en) 2020-09-28 2024-01-18 Vestaron Corporation Mu-diguetoxin-dc1a variant polypeptides for pest control
US20230365709A1 (en) 2020-10-08 2023-11-16 Affimed Gmbh Trispecific binders
US12006550B2 (en) 2020-10-12 2024-06-11 University Of South Carolina Targeting treatment for ADAM30 in pathological cells
AU2021374036A1 (en) 2020-11-06 2023-06-08 Amgen Inc. Polypeptide constructs selectively binding to cldn6 and cd3
JP2023549116A (en) 2020-11-06 2023-11-22 アムジエン・インコーポレーテツド Multitarget bispecific antigen binding molecules with increased selectivity
CN116635421A (en) 2020-11-06 2023-08-22 安进公司 Polypeptide constructs that bind CD3
JP2023548345A (en) 2020-11-06 2023-11-16 アムジエン・インコーポレーテツド Antigen-binding domain with reduced clipping rate
EP4291216A1 (en) 2021-02-09 2023-12-20 University of Houston System Oncolytic virus for systemic delivery and enhanced anti-tumor activities
EP4294445A1 (en) 2021-02-19 2023-12-27 Pfizer Inc. Methods of protecting rna
WO2022187626A1 (en) 2021-03-05 2022-09-09 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-variant-spike glycoprotein antibodies and antigen-binding fragments
MX2023011690A (en) 2021-04-02 2023-12-15 Amgen Inc Mageb2 binding constructs.
KR20240005837A (en) 2021-05-03 2024-01-12 아스텔라스 인스티튜트 포 리제너러티브 메디슨 Method for generating mature corneal endothelial cells
CA3217862A1 (en) 2021-05-05 2022-11-10 Radius Pharmaceuticals, Inc. Animal model having homologous recombination of mouse pth1 receptor
AU2022269312A1 (en) 2021-05-06 2023-10-19 Amgen Research (Munich) Gmbh Cd20 and cd22 targeting antigen-binding molecules for use in proliferative diseases
TW202309268A (en) 2021-05-07 2023-03-01 安斯泰來再生醫藥協會 Methods of generating mature hepatocytes
WO2022251443A1 (en) 2021-05-26 2022-12-01 FUJIFILM Cellular Dynamics, Inc. Methods to prevent rapid silencing of genes in pluripotent stem cells
CN117915944A (en) 2021-07-05 2024-04-19 伊沃逊生物科技股份公司 Vaccines targeting Neisseria gonorrhoeae
WO2023287875A1 (en) 2021-07-14 2023-01-19 Regeneron Pharmaceuticals, Inc. Anti-sars-cov-2-spike glycoprotein antibodies and antigen-binding fragments
AU2022320948A1 (en) 2021-07-30 2024-01-18 Affimed Gmbh Duplexbodies
IL312060A (en) 2021-11-03 2024-06-01 Affimed Gmbh Bispecific CD16A binders
JP2024543828A (en) 2021-11-03 2024-11-26 アフィメド ゲーエムベーハー Bispecific CD16A binders
EP4436595A1 (en) 2021-11-22 2024-10-02 Pfizer Inc. Reducing risk of antigen mimicry in immunogenic medicaments
WO2023122805A1 (en) 2021-12-20 2023-06-29 Vestaron Corporation Sorbitol driven selection pressure method
GB2614309A (en) 2021-12-24 2023-07-05 Stratosvir Ltd Improved vaccinia virus vectors
EP4469079A1 (en) 2022-01-28 2024-12-04 Pfizer Inc. Coronavirus antigen variants
US20230338477A1 (en) 2022-02-02 2023-10-26 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
TW202337497A (en) 2022-02-18 2023-10-01 中國大陸商重慶明道浩悅生物科技有限公司 Intranasal formulations and anti-sars-cov-2-spike protein antibodies
CA3242289A1 (en) 2022-03-16 2023-09-21 University Of Houston System Persistent hsv gene delivery system
GB202205265D0 (en) 2022-04-11 2022-05-25 Mogrify Ltd Cell conversion
GB202206507D0 (en) 2022-05-04 2022-06-15 Antion Biosciences Sa Expression construct
EP4518889A1 (en) 2022-05-04 2025-03-12 Evaxion Biotech A/S Staphylococcal protein variants and truncates
EP4522651A1 (en) 2022-05-12 2025-03-19 Amgen Research (Munich) GmbH Multichain multitargeting bispecific antigen-binding molecules of increased selectivity
CN119546338A (en) 2022-06-10 2025-02-28 研究发展基金会 Engineered FcRIIB-selective IgG1 Fc variants and their uses
EP4547824A1 (en) 2022-06-29 2025-05-07 Fujifilm Holdings America Corporation Ipsc-derived astrocytes and methods of use thereof
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
US20240052051A1 (en) 2022-07-29 2024-02-15 Regeneron Pharmaceuticals, Inc. Anti-tfr:payload fusions and methods of use thereof
WO2024026406A2 (en) 2022-07-29 2024-02-01 Vestaron Corporation Next Generation ACTX Peptides
WO2024059675A2 (en) 2022-09-14 2024-03-21 Amgen Inc. Bispecific molecule stabilizing composition
IL319122A (en) 2022-09-28 2025-04-01 Regeneron Pharma Antibody resistant modified receptors to enhance cell-based therapies
US20240182561A1 (en) 2022-11-04 2024-06-06 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
WO2024107759A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Anti-fgfr3 antibodies and antigen-binding fragments and methods of use thereof
WO2024130212A1 (en) 2022-12-16 2024-06-20 Turnstone Biologics Corp. Recombinant vaccinia virus encoding one or more natural killer cell and t lymphocyte inhibitors
WO2024186630A1 (en) 2023-03-03 2024-09-12 Henry Ford Health System Use of extracellular vesicles for the treatment of cancer
GB202306619D0 (en) 2023-05-04 2023-06-21 Antion Biosciences Sa Cell
WO2024259378A1 (en) 2023-06-14 2024-12-19 Amgen Inc. T cell engager masking molecules
US20250049896A1 (en) 2023-07-28 2025-02-13 Regeneron Pharmaceuticals, Inc. Anti-tfr:acid sphingomyelinase for treatment of acid sphingomyelinase deficiency
US20250041455A1 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
WO2025049524A1 (en) 2023-08-28 2025-03-06 Regeneron Pharmaceuticals, Inc. Cxcr4 antibody-resistant modified receptors
WO2025050009A2 (en) 2023-09-01 2025-03-06 Children's Hospital Medical Center Identification of targets for immunotherapy in melanoma using splicing-derived neoantigens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859587A (en) * 1984-06-04 1989-08-22 Institut Merieux Recombinant herpes simplex viruses, vaccines and methods
US4950599A (en) * 1987-01-29 1990-08-21 Wolf Bertling Method for exchanging homologous DNA sequences in a cell using polyoma encapsulated DNA fragments
US4997757A (en) * 1987-12-23 1991-03-05 Genebiomed, Inc. Process for detecting potential carcinogens
US5175384A (en) * 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
US5346818A (en) * 1988-12-09 1994-09-13 Degussa Aktiengesellschaft Method for the conjugative transfer of mobilizable vectors for E. coli to gram-positive bacteria and vectors suitable for use in such a method
US5416260A (en) * 1989-07-25 1995-05-16 University Of North Carolina At Chapel Hill Homologous recombination for universal donor cells and chimeric mammalian hosts
US5464764A (en) * 1989-08-22 1995-11-07 University Of Utah Research Foundation Positive-negative selection methods and vectors
US5612205A (en) * 1990-08-29 1997-03-18 Genpharm International, Incorporated Homologous recombination in mammalian cells
US5789215A (en) * 1991-08-20 1998-08-04 Genpharm International Gene targeting in animal cells using isogenic DNA constructs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646438B1 (en) * 1989-03-20 2007-11-02 Pasteur Institut A METHOD FOR SPECIFIC REPLACEMENT OF A COPY OF A GENE PRESENT IN THE RECEIVER GENOME BY INTEGRATION OF A GENE DIFFERENT FROM THAT OR INTEGRATION
ES2090297T5 (en) * 1989-11-06 2005-03-01 Cell Genesys, Inc. PRODUCTION OF PROTEINS THAT USE HOMOLOGICAL RECOMBINATION.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859587A (en) * 1984-06-04 1989-08-22 Institut Merieux Recombinant herpes simplex viruses, vaccines and methods
US4950599A (en) * 1987-01-29 1990-08-21 Wolf Bertling Method for exchanging homologous DNA sequences in a cell using polyoma encapsulated DNA fragments
US4997757A (en) * 1987-12-23 1991-03-05 Genebiomed, Inc. Process for detecting potential carcinogens
US5175384A (en) * 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
US5346818A (en) * 1988-12-09 1994-09-13 Degussa Aktiengesellschaft Method for the conjugative transfer of mobilizable vectors for E. coli to gram-positive bacteria and vectors suitable for use in such a method
US5416260A (en) * 1989-07-25 1995-05-16 University Of North Carolina At Chapel Hill Homologous recombination for universal donor cells and chimeric mammalian hosts
US5464764A (en) * 1989-08-22 1995-11-07 University Of Utah Research Foundation Positive-negative selection methods and vectors
US5487992A (en) * 1989-08-22 1996-01-30 University Of Utah Research Foundation Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same
US5627059A (en) * 1989-08-22 1997-05-06 University Of Utah Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same
US5631153A (en) * 1989-08-22 1997-05-20 University Of Utah Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same
US5612205A (en) * 1990-08-29 1997-03-18 Genpharm International, Incorporated Homologous recombination in mammalian cells
US5789215A (en) * 1991-08-20 1998-08-04 Genpharm International Gene targeting in animal cells using isogenic DNA constructs

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10555506B2 (en) 2008-09-30 2020-02-11 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10638736B2 (en) 2008-09-30 2020-05-05 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US9346873B2 (en) 2008-09-30 2016-05-24 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10575504B2 (en) 2008-09-30 2020-03-03 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10561123B2 (en) 2008-09-30 2020-02-18 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US20110236378A1 (en) * 2008-09-30 2011-09-29 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10492476B2 (en) 2008-09-30 2019-12-03 Ablexis, Llc Non-human mammals for the production of chimeric antibodies
US10494445B2 (en) 2010-03-31 2019-12-03 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10836832B2 (en) 2010-03-31 2020-11-17 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11352444B2 (en) 2010-03-31 2022-06-07 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US9580491B2 (en) 2010-03-31 2017-02-28 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10604587B2 (en) 2010-03-31 2020-03-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10618977B2 (en) 2010-03-31 2020-04-14 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10626188B2 (en) 2010-03-31 2020-04-21 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11242409B2 (en) 2010-03-31 2022-02-08 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10662255B2 (en) 2010-03-31 2020-05-26 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10829564B2 (en) 2010-03-31 2020-11-10 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US10526420B2 (en) 2010-03-31 2020-01-07 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11104743B2 (en) 2010-03-31 2021-08-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11104744B2 (en) 2010-03-31 2021-08-31 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
US11220555B2 (en) 2010-03-31 2022-01-11 Ablexis, Llc Genetic engineering of non-human animals for the production of chimeric antibodies
WO2015035034A1 (en) * 2013-09-04 2015-03-12 Mice With Horns, Llc Materials and methods for correcting recessive mutations in animals
WO2018226893A2 (en) 2017-06-06 2018-12-13 Zymergen Inc. A high-throughput (htp) genomic engineering platform for improving saccharopolyspora spinosa

Also Published As

Publication number Publication date
WO1993004169A1 (en) 1993-03-04
AU2515992A (en) 1993-03-16
US5789215A (en) 1998-08-04
US6653113B1 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US6653113B1 (en) High efficiency gene targeting in mouse embryonic stem cells
CA2128862C (en) Homogenotization of gene-targeting events
Thomas et al. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors
US5998209A (en) Generation of large genomic DNA deletions
US6566579B1 (en) I-Sce I induced gene replacement and gene conversion in embryonic stem cells
US5721367A (en) Homologous recombination in mammalian cells
Stacey et al. Use of double-replacement gene targeting to replace the murine α-lactalbumin gene with its human counterpart in embryonic stem cells and mice
Tang et al. A Cre/loxP‐deleter transgenic line in mouse strain 129S1/SvImJ
TsUZUKI et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice.
Doetschman et al. Targeted mutation of the Hprt gene in mouse embryonic stem cells.
US6204061B1 (en) Cells and non-human organisms containing predetermined genomic modifications and positive-negative selection methods and vectors for making same
Reid et al. Cotransformation and gene targeting in mouse embryonic stem cells
Koller et al. Toward an animal model of cystic fibrosis: targeted interruption of exon 10 of the cystic fibrosis transmembrane regulator gene in embryonic stem cells.
CA2308016A1 (en) Efficient construction of gene targeting vectors
US6929909B2 (en) Gene targeting vectors comprising conditional positive selection markers
WO1997035967A2 (en) Transgenic organisms with altered telomerase activity
Vazquez et al. Factors affecting the efficiency of introducing precise genetic changes in ES cells by homologous recombination: tag-and-exchange versus the Cre-loxp system
WO1998026042A1 (en) Induced chromosomal deletion
Lan et al. Generation of a germ cell nuclear factor conditional allele in mice
US6884622B1 (en) Method for preparing a mammalian cell deficient in HPRT
USH2056H1 (en) Model for von Hippel-Lindau disease
Reid et al. Gene targeting and electroporation
Fabb et al. Yeast artificial chromosome vectors
Cook Gene targeting strategies to study chemokine function in vivo
Melton Gene targeting in animals.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BIOPHARMA CREDIT PLC, UNITED KINGDOM

Free format text: SECURITY INTEREST;ASSIGNOR:LEXICON PHARMACEUTICALS, INC.;REEL/FRAME:044958/0377

Effective date: 20171204

AS Assignment

Owner name: LEXICON PHARMACEUTICALS, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BIOPHARMA CREDIT PLC;REEL/FRAME:053767/0445

Effective date: 20200908

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载