US20040105898A1 - Acidified nitrite as an antimicrobial agent - Google Patents
Acidified nitrite as an antimicrobial agent Download PDFInfo
- Publication number
- US20040105898A1 US20040105898A1 US10/701,295 US70129503A US2004105898A1 US 20040105898 A1 US20040105898 A1 US 20040105898A1 US 70129503 A US70129503 A US 70129503A US 2004105898 A1 US2004105898 A1 US 2004105898A1
- Authority
- US
- United States
- Prior art keywords
- pharmaceutically acceptable
- acidifying agent
- dosage form
- acid
- nitrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 title claims description 41
- 239000004599 antimicrobial Substances 0.000 title description 4
- 239000002535 acidifier Substances 0.000 claims abstract description 49
- 238000011282 treatment Methods 0.000 claims abstract description 42
- 239000002243 precursor Substances 0.000 claims abstract description 39
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 28
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 28
- -1 nitrite ions Chemical class 0.000 claims abstract description 22
- 239000003814 drug Substances 0.000 claims abstract description 21
- 239000002552 dosage form Substances 0.000 claims abstract description 17
- 230000000699 topical effect Effects 0.000 claims abstract description 11
- 230000003612 virological effect Effects 0.000 claims abstract description 11
- 239000003937 drug carrier Substances 0.000 claims abstract description 6
- 230000001580 bacterial effect Effects 0.000 claims abstract description 5
- 230000002538 fungal effect Effects 0.000 claims abstract description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 302
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 33
- 239000002253 acid Substances 0.000 claims description 26
- 241000700605 Viruses Species 0.000 claims description 21
- 239000006071 cream Substances 0.000 claims description 18
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 17
- 229960004889 salicylic acid Drugs 0.000 claims description 17
- 210000002615 epidermis Anatomy 0.000 claims description 16
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 claims description 10
- 150000007524 organic acids Chemical class 0.000 claims description 10
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 claims description 9
- 235000010385 ascorbyl palmitate Nutrition 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 9
- 239000002674 ointment Substances 0.000 claims description 8
- 239000012790 adhesive layer Substances 0.000 claims description 7
- 238000001727 in vivo Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 208000008588 molluscum contagiosum Diseases 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 4
- 210000002683 foot Anatomy 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 206010017533 Fungal infection Diseases 0.000 claims description 3
- 208000031888 Mycoses Diseases 0.000 claims description 3
- 208000036142 Viral infection Diseases 0.000 claims description 3
- 235000015165 citric acid Nutrition 0.000 claims description 3
- 230000001404 mediated effect Effects 0.000 claims description 3
- 239000004005 microsphere Substances 0.000 claims description 3
- 206010001986 Amoebic dysentery Diseases 0.000 claims description 2
- 239000005711 Benzoic acid Substances 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 241000589601 Francisella Species 0.000 claims description 2
- 208000009889 Herpes Simplex Diseases 0.000 claims description 2
- 208000007514 Herpes zoster Diseases 0.000 claims description 2
- 241001137872 Leishmania sp. Species 0.000 claims description 2
- 241001467578 Microbacterium Species 0.000 claims description 2
- 241001631646 Papillomaviridae Species 0.000 claims description 2
- 241001147693 Staphylococcus sp. Species 0.000 claims description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 2
- 235000010233 benzoic acid Nutrition 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 239000002502 liposome Substances 0.000 claims description 2
- 235000002906 tartaric acid Nutrition 0.000 claims description 2
- 239000011975 tartaric acid Substances 0.000 claims description 2
- 201000004647 tinea pedis Diseases 0.000 claims description 2
- 208000035143 Bacterial infection Diseases 0.000 claims 1
- 208000022362 bacterial infectious disease Diseases 0.000 claims 1
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 150000002829 nitrogen Chemical class 0.000 claims 1
- 239000003826 tablet Substances 0.000 claims 1
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 50
- 210000004027 cell Anatomy 0.000 description 38
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 27
- 201000010153 skin papilloma Diseases 0.000 description 26
- 208000000260 Warts Diseases 0.000 description 24
- 235000010288 sodium nitrite Nutrition 0.000 description 24
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 210000003491 skin Anatomy 0.000 description 21
- 230000000694 effects Effects 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 12
- 229960005070 ascorbic acid Drugs 0.000 description 11
- 230000012010 growth Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 235000010323 ascorbic acid Nutrition 0.000 description 10
- 239000011668 ascorbic acid Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 239000001993 wax Substances 0.000 description 7
- 206010015150 Erythema Diseases 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 5
- 102100023543 Vascular cell adhesion protein 1 Human genes 0.000 description 5
- 206010065173 Viral skin infection Diseases 0.000 description 5
- 230000001640 apoptogenic effect Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000002434 immunopotentiative effect Effects 0.000 description 5
- 210000002540 macrophage Anatomy 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- NGWWJSVRCMRJJM-QMMMGPOBSA-N (2s)-3-(4-hydroxyphenyl)-2-(2-oxohydrazinyl)propanoic acid Chemical compound O=NN[C@H](C(=O)O)CC1=CC=C(O)C=C1 NGWWJSVRCMRJJM-QMMMGPOBSA-N 0.000 description 4
- 101000934372 Homo sapiens Macrosialin Proteins 0.000 description 4
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 4
- 102100025136 Macrosialin Human genes 0.000 description 4
- 108010000134 Vascular Cell Adhesion Molecule-1 Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000031018 biological processes and functions Effects 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 231100000321 erythema Toxicity 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 3
- VYZAHLCBVHPDDF-UHFFFAOYSA-N Dinitrochlorobenzene Chemical compound [O-][N+](=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 VYZAHLCBVHPDDF-UHFFFAOYSA-N 0.000 description 3
- 208000005577 Gastroenteritis Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 108010028275 Leukocyte Elastase Proteins 0.000 description 3
- 102100033174 Neutrophil elastase Human genes 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 235000019647 acidic taste Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000840 anti-viral effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 230000002055 immunohistochemical effect Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 150000002826 nitrites Chemical class 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 210000003296 saliva Anatomy 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000029812 viral genome replication Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ZIIQCSMRQKCOCT-YFKPBYRVSA-N S-nitroso-N-acetyl-D-penicillamine Chemical compound CC(=O)N[C@@H](C(O)=O)C(C)(C)SN=O ZIIQCSMRQKCOCT-YFKPBYRVSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000004211 gastric acid Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000036074 healthy skin Effects 0.000 description 2
- 210000002443 helper t lymphocyte Anatomy 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000008073 immune recognition Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 229940057995 liquid paraffin Drugs 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Chemical group O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 238000007388 punch biopsy Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000003079 salivary gland Anatomy 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- QXQAPNSHUJORMC-UHFFFAOYSA-N 1-chloro-4-propylbenzene Chemical compound CCCC1=CC=C(Cl)C=C1 QXQAPNSHUJORMC-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 208000002064 Dental Plaque Diseases 0.000 description 1
- 108010033478 E coli K88 antigen Proteins 0.000 description 1
- 241000305071 Enterobacterales Species 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 1
- 241000701085 Human alphaherpesvirus 3 Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010022678 Intestinal infections Diseases 0.000 description 1
- 235000000072 L-ascorbyl-6-palmitate Nutrition 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010048685 Oral infection Diseases 0.000 description 1
- 241000700629 Orthopoxvirus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000700639 Parapoxvirus Species 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 206010037888 Rash pustular Diseases 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 206010066901 Treatment failure Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 241000711975 Vesicular stomatitis virus Species 0.000 description 1
- 208000012544 Viral Skin disease Diseases 0.000 description 1
- NWGKJDSIEKMTRX-BFWOXRRGSA-N [(2r)-2-[(3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)C1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-BFWOXRRGSA-N 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000035618 desquamation Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 230000000369 enteropathogenic effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006052 feed supplement Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001959 inorganic nitrate Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000004005 nitrosamines Chemical class 0.000 description 1
- 235000021590 normal diet Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 230000024241 parasitism Effects 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 208000029561 pustule Diseases 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- BWMISRWJRUSYEX-SZKNIZGXSA-N terbinafine hydrochloride Chemical compound Cl.C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 BWMISRWJRUSYEX-SZKNIZGXSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 230000002227 vasoactive effect Effects 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates in one aspect to acidified nitrite as an antimicrobial agent, and to a complex of nitrogen oxides arising from the interaction of nitrite and acid as an antiviral composition for the treatment of viral diseases of the skin by topical application thereto.
- nitrogen oxides include in particular NO which is of importance particularly if acidified.
- An active entero-salivary circulation in man provides a continuous flow of nitrate into the mouth where it is rapidly reduced to nitrite by bacteria on the tongue.
- the effect of salivary nitrate excretion is to provide a precursor for the generation of nitrogen oxides by the break down of the nitrite.
- Endogenous and dietary nitrate is actively concentrated by salivary glands to more than 10 times the concentration in plasma and secreted in saliva.
- saliva provides a continuous source of nitrate to the upper gastrointestinal tract.
- Oral conversion of nitrate to nitrite is rapid and is restricted to the surface of the tongue in man and to the posterior third of the tongue in the rat.
- entero-salivary circulation of nitrate is not known but it may well be that gastric acid by itself is not always sufficient to destroy many ingested micro-organisms and that the primary role of salivary nitrate secretion and conversion to nitrite is as a precursor for nitrogen oxides in the lumen of the stomach which will kill swallowed micro-organisms.
- the above identified mechanism is also applicable to the destruction of micro-organisms on an in the skin. For example athlete's foot or tidea pedis.
- U.S. Pat. No. 4,595,591 reveals a composition comprising an aqueous solution of nitric acid and nitrous acid at a pH below 1 preferably with a organic acid and copper and cadmium ions for the treatment of superficial lesion of the skin, for example tumorous growths.
- U.S. Pat. No. 5,648,101 provides a vaso-active composition comprising NO adapted for delivery to a body site inter alia by means of a cream or ointment.
- the NO is generated from an admixture of ferrous sulphate, an organic acid and an inorganic nitrite and caused to be reactive in the presence of moisture adjacent or at the site. Acidification is not discussed.
- WO 96/02268 reveals the inhibition of a virus by nitric oxide (NO 2 ) derived from a complex unstable organic molecule, but the advantages of reduction of pH at the environment of use have not been appreciated, neither have the beneficial effects the chemical release of the NO and NO 2 moieties immediately adjacent to the environment of use, been realized.
- NO 2 nitric oxide
- WO 93/25213 reveals a composition comprising nitrous oxide contained in a dermatological composition comprising as an essential feature a fatty acid or a lower alkyl ester thereof, pH values, particularly at the environment of use, are not mentioned.
- nitrite at concentrations of up to 4% in an inert carrier cream or ointment when mixed with an organic acid such as salicylic acid reacts to produce oxides of nitrogen which are effective in killing infectious organisms on the skin including fungi, yeast, bacteria and viruses.
- an organic acid such as salicylic acid
- the above identified mechanism is also useful in the sterilisation of objects such as dentures by utilising a sterilizing nitrate solution.
- Conventional solutions which are effective in sterilising dentures often taste unpleasant due to chlorine-based disinfectants.
- a combination of nitrite and acid results in a antimicrobial solution which has little or no taste.
- Other objects such as contact lenses may be sterilised in the same way.
- Gastroenteritis continues to be a major problem in rearing pigs and other farm animals. Enteropathogenic Escherichia coli (especially those bearing the K88 antigen) are particularly implicated. Although gastric acidity is thought to be one of the main host defence systems which provides a barrier to orally-acquired infection, this is clearly ineffective in preventing organisms from reaching the more distal intestine in these animals.
- viruses In order for viruses to survive and reproduce they must evade recognition by the hosts immune responses. The mechanism by which this is achieved is largely unknown but an effective immune response eradicates the infection. Viruses are obligate intracellular pathogens. They reproduce using the host's metabolic machinery.
- Acyclovir which is effective against herpes virus, is a deoxyguanosine analogue which competes with deoxyguanosine triphosphate as a substrate for viral thymidine kinase and when phosphorylated and incorporated in the viral DNA causes premature DNA chain termination.
- anti-viral drugs are only effective for a limited number of viral infections and viruses can mutate to overcome the effectiveness of the drugs.
- molluscum contagiosum 1 and 2 which are related to orthopox and parapox viruses and share some homology with vaccinia
- Current therapies comprise physical destruction with manual extrusion, liquid nitrogen therapy or curettage, all of which are painful and not very effective and may cause scarring. The pain of these therapies is particularly pertinent because the majority of patients are under the age of 10 years.
- An alternative treatment for warts is by use of dinitrochlorobenzene.
- Such treatment is intended to make the patient allergic to dinitrochlorobenzene, whereupon the patient's immune system mounts an immune response to the dinitrochlorobenzene at the site of the wart and the wart in some cases disappears, presumably as a result of immuno-potentiation.
- Immuno-potentiation can be an effective treatment but subjecting the patient to an allergic reaction caused by dinitrochlorobenzene can be hazardous, variable and difficult to control.
- a dosage form for the treatment of bacterial, virus, or fungal conditions in the human or animal body which comprises:—
- a pharmaceutically acceptable acidifying agent in an amount sufficient to reduce the pH at an environment of use to below pH4, and
- said acidifying agent and said source of nitrite ions or nitrate precursor are separately disposed in respective pharmaceutically acceptable carriers for admixture at the intended environment of use to release NO or NO 2 ions.
- the acidifying agent is an organic acid, for example salicylic acid or ascorbic acid.
- the precursor for the NO 2 or NO moiety may be an alkaline metal or alkaline earth metal nitrate capable of conversion to NO 2 or NO by enzymic action.
- the pharmaceutical acceptable carrier or diluent may be an inert cream or ointment.
- the acidifying agent and the source of nitrite ions or precursor therefor are separately disposed in said cream or ointment for admixture to release NO 2 or NO ions at the environment of use.
- an acid composition may be presented for administration in tablet or liquid form.
- the components of the nitrogen oxide can work synergistically or alone.
- Nitrogen oxides for example NO and NO 2 , particularly can diffuse through the epidermis. In the case of warts this allows them to reach the stem cells which are at the base of the epidermis and are the cells which contain the pool of established virus. Once at the infected cells the nitrogen oxide complex can facilitate programmed cell death, selectively in infected cells, which may then be taken up by phagocytes and antigen presenting cells leading to immune recognition of the previously hidden viral antigens. Once recognized, specific immunity will lead to destruction of all infected cells through cellular and humoural responses.
- a method of exposing virally infected cells at or adjacent an environment of use to a mammalian immune response in vivo which comprises applying to said cells an admixture of nitrogen oxides generated by admixing at the environment of use a pharmaceutically acceptable acidifying agent in an amount sufficient to reduce the pH at the environment of use to below pH4 and a pharmaceutically acceptable source of nitrogen oxides or a nitrate precursor therefor.
- a topical medicament for the in vivo potentiation of the immune system during a viral skin infection resultant from virus replication in the epidermis of topical formulations comprising a separately disposed source of pharmaceutically acceptable nitrogen oxides, and a separately disposed pharmaceutically acceptable acidifying agent, for admixture, at an intended environment of use to release NO and NO 2 moieties.
- viruses replicating in the epidermis which cause the viral skin infection are selected from molluscum contagiosum, herpes simplex type 1 and 2, varicella zoster virus and papilloma virus.
- Treatment using the acidified nitrogen oxide source has been shown to be particularly effective in viral skin infections caused by the aforementioned viruses.
- the source of nitrogen oxides contains nitric oxide and may also contain NO ⁇ or NO+ nitrosium ions or a precursor therefor produced when a pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor, are brought into intimate contact at a site of biological action (environment of use).
- the pharmaceutically acceptable acidifying agent, the pharmaceutically acceptable donor nitrogen oxides or a precursor therefor are each separately disposed in a pharmaceutically acceptable carrier or diluent.
- the pharmaceutically acceptable acidifying agent is an organic acid or salt with a low pH such as ascorbyl palmitate.
- the organic acid may be selected from at least one of ascorbic acid, ascorbyl palmitate, salicylic acid, lactic acid, citric acid, formic acid, benzoic acid and tartaric acid.
- the choice of acidifying agent depends on the type of infection of the skin and the reaction of the infected areas to treatment.
- the use of reducing acids such as ascorbic acid gives a quick burst of NO and NO 2 with significantly more NO produced compared to the amount of NO 2 produced.
- the other organic acids such as salicylic acid give a sustained concentration of NO and NO 2 over a certain time period wherein the ratio of NO to NO 2 is low.
- the concentration of the inorganic nitrite for example sodium nitrite (or other alkali metal nitrites), as the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor depends on the acid used and the concentration of the acid used.
- the reducing acid ascorbic acid is highly reactive so therefore only between 1-10% is required with stoichiometric concentrations of the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor (e.g. sodium or other alkali metal nitrite).
- Ascorbyl palmitate is more stable but requires a higher concentration than ascorbic acid because the palmitate has a higher molecular weight. A concentration of between 3% and 25% of ascorbyl palmitate is thus required. If salicylic acid is used, concentrations of between 0.5% and 30% are appropriate, citric acid requires a yet higher concentration of up to 45%. (All % given herein are by weight).
- the concentration of sodium nitrite required to react with the above mentioned concentrations of organic acid is between 0.5% and 30%, preferably between 5% and 20%.
- Other pharmaceutically acceptable sources of nitrogen oxides or a precursor therefor require different ranges of concentration.
- the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor are in stoichiometric concentrations. If the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor are in stoichiometric concentrations, after the reaction is completed there will be no unreacted compounds left. Accordingly any compounds remaining on the infected area will not be able to contaminate healthy skin with the active medicament or anything the treated area touches such as furniture and clothing.
- the medicament is in the form of a paint, a varnish, an ointment, a wax, a salve, or a cream.
- These embodiments allow the pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides, or a precursor therefor to be applied directly to the infected area.
- the treatment comprising the topical application of separate compositions according to this invention is preferably continued for at least one month, and more preferably two months.
- a two-part delivery system for the topical application of a medicament for the in vivo treatment of the epidermis, the said system comprising separately;
- a first waxy component comprising a pharmaceutically acceptable acidifying agent
- a second waxy component comprising a pharmaceutically acceptable source of nitrogen oxides whereby if topically applied in vivo simultaneously, or immediately sequentially, to the environment of use, active nitrogen oxides are released therefrom.
- the first and second waxy components comprise a paraffin.
- the acidifying agent is preferably a reducing organic acid or salt such as ascorbic acid or ascorbyl palmitate.
- the source of nitrogen oxides may be an alkali metal nitrite such as sodium nitrite.
- the invention provides for the use of a source of oxide(s) of nitrogen in the manufacture of a composition for the treatment or prophylaxis of a viral skin infection by a virus selected from herpes simplex types 1 and 2, varicella zoster, vaccinia or papilloma, and particularly from molluscum contagiosum.
- a delivery system for the topical application of a medicament for the in vivo treatment of the epidermis comprising an adhesive layer and a support layer impregnated with at least one of the components of the medicament, characterized in that the components of the medicament are a pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor, and a means of combining the pharmaceutically acceptable acidifying agent with the donor of nitrogen oxides.
- the delivery system may comprise two layers, which when in situ release the oxides of nitrogen including nitric oxide. The activation can be by pressure applied or by hydration from the skin.
- the delivery system is adapted for the potentiation of the immune system during a viral skin infection resultant from virus replication with the delivery system in place, such a system may, for example, resemble an adhesive plaster so it is then simple to apply physical pressure to the exterior of the plaster.
- the donor of pharmaceutically acceptable nitrogen oxides may be aqueous and encapsulated in microspheres or liposomes disposed in the support, preferably in the form of a film or a gauze.
- the film or gauze allows increased concentrations of the pharmaceutically acceptable acidifying agent to be used. If a solution of salicylic acid is used then only a concentration of 20-26% by weight is applied, but if salicylic acid is impregnated in the film or the gauze then a concentration of 26 to 44% by weight can be applied.
- a further advantage of using an adhesive layer is that it can be used to occlude the infected area during treatment which increases the concentration of nitrogen oxides being absorbed through the epidermis.
- the adhesive layer can be a decoratively patterned in order to appeal to children.
- the integrity of the vehicle is disrupted by pressure after application of the adhesive layer and film or gauze to a site of viral infected skin. If the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrogen oxide donors or precursors therefor are not kept separate until administration at the site of biological action they will react together thus rendering the medicament less effective. Accordingly, in this embodiment it is necessary for the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrites or precursors therefor to be retained separately within the film or gauze layer.
- the application to the site of biological action of pressure applied to the adhesive layer, and therefore the film or gauze layer, can result in the vehicles, such as the microspheres or lipsomes, breaking and the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrogen oxide donors or precursors therefor reacting, thus treating the infected area.
- the delivery system may be used in conjunction with a topically applied medicament.
- the topically applied medicament being either a pharmaceutically acceptable acidifying agent or a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor.
- the delivery system is an ideal form of treatment for the verrucae on the feet because the delivery system is hidden from view.
- a sterilant composition comprising a pharmaceutically acceptable acidifying agent,
- an animal feed supplement comprising a pharmaceutically acceptable acidifying agent and,
- a pharmaceutically acceptable source of nitrite ions or a nitrate precursor therefor in an amount sufficient to produce a beneficial anti-microbial pharmalogical effect, but insufficient to produce adverse action in the target animal.
- the acidifying agent may be salicylic or ascorbic acid as above, and the source of nitrite ions or nitrate precursor therefor may be in an inorganic nitrate as set forth above.
- the supplement should be included in an amount sufficient to ensure that each adult animal will receive a balanced dose of between 0.3 to 5.0 g/day and preferably about 1 g/day.
- FIG. 1 shows a diagram indicative of the effect of exposure to nitrate and differing hydrogen ion concentrations on the survival of C albicans where the vertical axis is the optical density in absorbance units and the horizontal axis is the pH.
- FIG. 2 shows growth curves of E coli following exposure to acid alone or acid with a nitrite where the vertical axes are optical density in absorbance units and the horizontal axes are time in hours.
- FIG. 3 shows growth curves of E coli following exposure to pH3 in various nitrite concentrations where the vertical axis shows the optical density in absorbance units and the horizontal axis is time in hours.
- FIG. 4 shows the generation of nitric oxide from sodium nitrite at different levels of acidity where the vertical axis is the nitric oxide concentration (nM) and the horizontal axis is Ph.
- FIG. 7 shows a Kaplan Meier plot of the outcome of the treatment of patients with molluscum contagiosum as a function of time
- FIG. 8 shows a graph of NO and NO2 release from 0.083 g of 10% Ap wax with 0.014 g of 10% sodium nitrite wax to give 21 ⁇ moles of NaNO 2 and 25 ⁇ moles of ascorbyl palmitate.
- the curve with “squares” denotes NO values whereas the curve with “circles” denotes NO 2 values.
- FIG. 1 The effect of exposure to nitrite and differing hydrogen ion concentrations on the survival of C albicans is shown in FIG. 1.
- the open bars show the growth of C albicans measured by the optical density method following exposure to acid alone for 1 hour, while the closed bars show growth following exposure to acid and 250 ⁇ M sodium nitrite.
- the nitrite was in fact effective in eliminating C albicans at pH 1 at all concentrations above 250 ⁇ M (data not shown). 5 nN nitrite killed C albicans at up to pH5. It is significant that a random sample of 10 laboratory personnel on a normal diet had fasting salivary nitrite which varied from 23 to 220 ⁇ M (mean 114 ⁇ M) rising to 409 to 1890 ⁇ M (mean 1030) 45 minutes after ingestion of 200 mg potassium nitrate solution.
- FIG. 2 shows growth curves of E coli following exposure to acid alone (open symbols) or acid and 250 ⁇ M nitrite (closed symbols). Growth was significantly (p ⁇ 0.05) impaired at pH 2,3 and 4 in the presence of nitrite compared with control.
- E coli strain NCTC 10418 grown on MacConkey's agar
- nutrient both Oxoid CM1
- FIG. 2 The results shown in FIG. 2 are a mean of 20 experiments. As can be seen from FIG. 2 E coli is more susceptible to acid than C albicans. Nevertheless exposure to pH 2 for one hour does not kill all the organisms as there is significant growth in the nutrient broth. At pH3 many more organisms survive. The addition of 250 ⁇ M nitrite to the exposure medium eliminates E coli at pH2 and significantly reduces the viability of this organism at pH3 and pH4. Nitrite at this concentration had no effect above pH4.
- FIG. 3 shows growth curves of E coli following exposure to pH3 in various nitrite concentrations (10-1000 ⁇ M final concentration). The methods are those as for FIG. 2.
- FIG. 3 shows that there is a direct relationship between the toxic effects of nitrite on E coli and nitrate concentration at pH3. Even 110 ⁇ M had a discernable effect whereas 1 mM killed E coli completely.
- FIG. 4 shows the generation of nitric oxide from sodium nitrite (as ⁇ M) at different acidities. Conditions were the same as those used for the exposure of organisms in FIG. 1. In particular nitrite was added to citrate/phosphate buffer to achieve final concentrations shown in FIG. 4. Nitric oxide concentrations in the buffer were measured by a nitric oxide sensitive meter (ISO—NO, World Precision Instruments) connected to a Maclab acquisition system and Macintosh computer. Measurements were recorded continually and readings were taken at 2 minutes when nitric oxide concentration had reached a steady state. FIG. 4 shows the release of nitric oxide as a result of reducing pH. Nitric oxide, which we have shown is generated under experimental conditions in FIG.
- ISO—NO World Precision Instruments
- nitric acid When produced enzymatically by activated leucocytes, nitric acid will kill Leishmania sp., Staphylococcus sp., Francisella sp. and Microbacterium as well as C albicans. Reaction with superoxide under acid conditions may additionally produce highly reactive hydroxyl radicals.
- E coli is closely related to Salmonella, Shigella and other pathogenic enterobacteria; all important causes of gastroenteritis in the mammal.
- Nitrate itself is a innocuous precursor which only produces microbiocidal species when converted to nitrite and subjected to acid conditions. It is possible that Lactobacilli sp. transiently produce sufficient acid in the mouth after a carbohydrate meal to control the growth of oral pathogens but clearly a moderate intake of nitrate may be a desirable prerequisite in any contaminated environment despite any potential as a precursor of nitrosamines.
- intestinal nitrogen oxides may be inadequate if the oral flora which convert nitrate to nitrite are suppressed following therapy with broad-spectrum antibiotics. Similarly if gastric acid production is reduced, or if nitrate intake, which is largely dependent on leafy vegetables, is low this protective mechanism will be impaired. These are precisely the situations which predispose to oral and intestinal infections.
- the invention provides a dosage form for the treatment of bacterial, viral or fungal conditions, a method of sterilising an object, and a composition therefor.
- the warts were prepared by scraping or abrading the skin to remove the dead skin then the sodium nitrite containing formulation was applied before applying the selected acidifying agent. The warts were treated every night and every three days the warts were rescrapped or abraded.
- Subjects applied 2% w/w ascorbic acid in aqueous cream to a control site and an active site. Either the low dose or the high does nitrite cream was also applied to the active site. The creams were applied 3 times daily at 8 hourly intervals and both the control and the active sites were then occluded with an adhesive polythene/plastic dressing.
- the thickness of the control and active sites were measured using a ‘Mitotoyu’ spring thickness gauge and redness was measured using reflectance erythema metre.
- Two 4 mm punch biopsies were taken from the active and control sites; one for formalin fixation for histological assessment, mass cell stains, neutrophil elastase and in situ nick end labelling and the other for snap freezing and OCT embedding for the other immunohistochemical stains.
- Immunohistochemical was performed using a streptavidin biotin method and DAB detection with the antibodies in Table 3 and using ApopTag Plus in situ nick end labelling detection kit to identify apoptotic cells.
- Histology of all actively treated sites showed a significant increase in oedema, endothelial swelling, cloudy swelling of keratinocytes, and a mixed infiltrate of lymphocytes and neutrophils. These changes were quantified on a 0-4 ordinal scale and were similar in low does, high dose, short exposure and long exposure. The number of mast cells seen in Azure A stained sections was similar in control and nitrogen oxide complex treated skin.
- a cytotoxic effect was seen in all keratinocytes which was manifest as cloudy swelling. When extensive this leads to the formation of bullae high in the epidermis filled with acute inflammatory cells and cells which have undergone cytotoxic changes with constriction of the nucleus and cloudy swelling of clear cytoplasm around them. Only a minority of these degenerate cells had undergone apoptosis as judged by staining with ApopTag. Within the viable epidermis, there was also an increase in apoptotic cells. This suggests that normal keratinocytes, not virally infected and relatively resistant to the well known apoptotic effects of nitric oxide. Apoptotic cells were also detected in the dermis, particularly around adnexal structures. The positive nitrosotyrosine staining around sebaceous glands suggests that the nitrogen oxide complex was preferentially absorbed through follicles.
- Nitrogen oxide complex treated skin showed significant increases in immuno-competent cells expressing CD3, CD8, CD68 and neutrophil elastase and in the adhesion molecules which attract trafficking of the cells to the site, ICAM-1 and VCAM-1.
- the presence of nitrosotyrosine staining in these cells is indicative of the formation of peroxynitrite (ONOO—) and of p53 which indicates that part of the effect of the complex is mediated through toxicity towards DNA in these cells.
- nitrogen oxide complex did cause some apoptosis but this was surprisingly small at the doses used and we postulate that the effect is likely to be in infected cells.
- the antigen processing cells of the skin were seen to lose dendricity and drop from the epidermis so there were significantly fewer in the treated skin. As these cells behave in this way when activated and functioning to process a newly recognized antigen, this would seem to offer further evidence for an immunopotentiating role for the nitrogen oxide complex. Ki-67 staining for dividing cells did not differ in control or active sites. This would suggest that in warts, for example, the action is not one of reducing cell proliferation. Kruskal-Walls test was used to test the effects of time or duration of nitrogen oxide complex treatment on clinical and immunohistochemical response. The effect of the dosage on the skins reaction is given in Table 5.
- CD4 positive cells There were fewer CD4 positive cells in the high dose than the low dose group, and likewise with CD68 positive cells. Although Ki-67 positive cells were not significantly different between the control site and the nitrogen oxide complex treated site, there was a significant increase with high dose compared with low dose.
- Ki67 was counted in the epidermis and ApopTag positive cells counted per standard section through a 3 mm punch biopsy. All other counts were done by computerized image analysis on a fixed standard measuring frame and are expressed as cells per mm 2. TABLE 5 High Dose Low Dose (cells/mm2) (cells/mm2) Kruskal- Mean S.D. Mean S.D. Wallis Test Ki67 152 35.2 73.6 8 0.01 CD4 280 78.4 936 185.6 0.02 CD68 379.2 65.6 916.8 262.4 0.04
- the nitrogen oxide complexes of the invention may be formed by a combination of ascorbic acid and nitrite on the skin, which causes the release of nitrogen oxides, inter alia nitric oxide, nitrous oxide, nitrogen dioxide and dinitrogen trioxide.
- nitrogen oxides inter alia nitric oxide, nitrous oxide, nitrogen dioxide and dinitrogen trioxide.
- the increase in T helper cells and macrophages was greater in low dose subjects and suggests that at lower doses nitrogen oxides can be pro-inflammatory but at higher doses becomes cytotoxic to the immunocompetent cells and begins to exert an inhibitory effect.
- the nitrogen oxide complex led to a marked induction of ICAM-1 and a moderate increase in VCAM-1 expression.
- the pattern of inflammation was unusual in showing a marked infiltrate of macrophages after only 24 hours, so showing that activated macrophages use nitrogen oxides to specifically attract more macrophages to kill a pathogen.
- a two part component delivery system was made up. Each component was in the form of a wax stick which can be rubbed onto an effective area at regular intervals in accordance with a physician's instructions.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates in one aspect to acidified nitrite as an antimicrobial agent, and to a complex of nitrogen oxides arising from the interaction of nitrite and acid as an antiviral composition for the treatment of viral diseases of the skin by topical application thereto. Such nitrogen oxides include in particular NO which is of importance particularly if acidified.
- An active entero-salivary circulation in man provides a continuous flow of nitrate into the mouth where it is rapidly reduced to nitrite by bacteria on the tongue. The effect of salivary nitrate excretion is to provide a precursor for the generation of nitrogen oxides by the break down of the nitrite.
- In brief we have found that exposure of a yeast,Candida albicans and the bacterium E coli to concentrations of nitrite in saliva together with acid conditions similar to those found in the stomach for one hour caused a dose-dependent reduction in their survival. It is apparent therefore that the generation of nitrogen oxides and/or nitrous acid in the mouth and in the gastrointestinal tract, particularly the upper gastrointestinal tract, from acidified nitrite is preventative of microbial infection.
- In the mouth bacteria rapidly reduce nitrates to nitrites. Once swallowed the acid conditions of the stomach protonate the nitrite to form nitrous acid (pKa approx 3.5). The nitrous acid in turn dissociates to form oxides of nitrogen as shown below.
- NO2 −+H+═HNO2 (1)
- 2HNO2═H2O+N2O3 (2)
- N2O3═NO+NO2 (3)
- N2O3+C2H8O6=2NO+H2O+C6H6O6 (4)
- Endogenous and dietary nitrate is actively concentrated by salivary glands to more than 10 times the concentration in plasma and secreted in saliva. Thus the saliva provides a continuous source of nitrate to the upper gastrointestinal tract. Oral conversion of nitrate to nitrite is rapid and is restricted to the surface of the tongue in man and to the posterior third of the tongue in the rat.
- The function of the entero-salivary circulation of nitrate is not known but it may well be that gastric acid by itself is not always sufficient to destroy many ingested micro-organisms and that the primary role of salivary nitrate secretion and conversion to nitrite is as a precursor for nitrogen oxides in the lumen of the stomach which will kill swallowed micro-organisms.
- The above identified mechanism is also applicable to the destruction of micro-organisms on an in the skin. For example athlete's foot or tidea pedis.
- In WO 95/22335 we have disclosed a pharmaceutical composition comprising a pharmaceutically acceptable source of nitrites and a pharmaceutically acceptable acidifying agent, inter alia for the direct treatment of disease by topical application. These compounds have a direct effect on the organism concerned but the precise mode of action is not known.
- U.S. Pat. No. 4,595,591 reveals a composition comprising an aqueous solution of nitric acid and nitrous acid at a pH below 1 preferably with a organic acid and copper and cadmium ions for the treatment of superficial lesion of the skin, for example tumorous growths.
- U.S. Pat. No. 5,648,101 provides a vaso-active composition comprising NO adapted for delivery to a body site inter alia by means of a cream or ointment. The NO is generated from an admixture of ferrous sulphate, an organic acid and an inorganic nitrite and caused to be reactive in the presence of moisture adjacent or at the site. Acidification is not discussed.
- WO 96/02268 reveals the inhibition of a virus by nitric oxide (NO2) derived from a complex unstable organic molecule, but the advantages of reduction of pH at the environment of use have not been appreciated, neither have the beneficial effects the chemical release of the NO and NO2 moieties immediately adjacent to the environment of use, been realized.
- WO 93/25213 reveals a composition comprising nitrous oxide contained in a dermatological composition comprising as an essential feature a fatty acid or a lower alkyl ester thereof, pH values, particularly at the environment of use, are not mentioned.
- All are single formulations which are admixed well prior to application to the environment of use so that NO and NO2 all escape prior to use and hence have a very limited utility.
- We have now found inter alia that nitrite at concentrations of up to 4% in an inert carrier cream or ointment when mixed with an organic acid such as salicylic acid reacts to produce oxides of nitrogen which are effective in killing infectious organisms on the skin including fungi, yeast, bacteria and viruses. The combination of nitrite and acid causes mild erythema (redness) of the skin due to release of nitric oxides at the environment of use but this causes no significant inflammation.
- We have also found that as far as viruses, as opposed to bacteria for example, are concerned, that the above nitrogen oxide complex, comprising for example NO and/or NO2 while it may effect replication to a degree, more importantly modifies the virally infected cells such that the immune system can recognize the viral particles. Inter alia, this is supported by the fact that the complex is less effective in immunosuppressed hosts. Generally the greater the percent of nitric oxide (NO) the better the immuno-potentiation. If possible up to 100% NO can be used.
- It is thought, although more work is required, that smaller molecules, particularly NO and NO2 penetrate the skin by direct diffusion or via the seat glands or hair follicles through the epidermis to the sweat cells. It has been found that although the healthy keratinocytes find the oxides of nitrogen toxic they do not die as they are relatively resistant to its effects. However, the surprising clinical results in our examples lead us to believe that virally infected cells are more susceptible to these effects, leading to destruction of the virally infected cells via a combination of toxicity leading to programmed cell death and potentiation of the immune response to the presence of the virus.
- The above identified mechanism is also useful in the sterilisation of objects such as dentures by utilising a sterilizing nitrate solution. Conventional solutions which are effective in sterilising dentures often taste unpleasant due to chlorine-based disinfectants. A combination of nitrite and acid results in a antimicrobial solution which has little or no taste. Other objects such as contact lenses may be sterilised in the same way.
- Gastroenteritis continues to be a major problem in rearing pigs and other farm animals. EnteropathogenicEscherichia coli (especially those bearing the K88 antigen) are particularly implicated. Although gastric acidity is thought to be one of the main host defence systems which provides a barrier to orally-acquired infection, this is clearly ineffective in preventing organisms from reaching the more distal intestine in these animals.
- The role of NO as a compound which inhibits viral replication in vitro has been disclosed by J. B. Mannick; 63rd Forum in Immunology, and papers in Intervirology 1995; 38: 206-213, Trends in Microbiology 1995; 3: 81-82, Science 1993; 261: 1445-1448, and The Journal of Clinical Investigation 1993; 91: 2446-2452. The above papers disclose the effects of NO on various viruses, for example herpes simplex virus, vaccinia virus and vesicular stomatitis virus. Exogenous NO donors such as S-nitroso-N-acetyl penicillamine (SNAP) or SIN-1 were used in vitro to determine the role of NO as an antiviral compound. Application of exogenous NO to cell-lines infected with the virus under test resulted in inhibition of the viral DNA replication. The exact mechanism of the inhibition seemed to differ depending on the virus involved. For example in the case of vaccinia virus it is thought that the NO may inhibit replication by binding to non-haem iron or thiol groups that are essential for the catalytic activity of enzymes involved in vaccinia replication. In this in vitro model the antiviral effects of NO do not require immune recognition of infected cells thus providing an early defence against viral pathogens prior to the development of a specific immune response.
- In order for viruses to survive and reproduce they must evade recognition by the hosts immune responses. The mechanism by which this is achieved is largely unknown but an effective immune response eradicates the infection. Viruses are obligate intracellular pathogens. They reproduce using the host's metabolic machinery.
- At present drug treatment of viral diseases is predicted upon a small number of compounds which block the replication of the virus. For example Acyclovir, which is effective against herpes virus, is a deoxyguanosine analogue which competes with deoxyguanosine triphosphate as a substrate for viral thymidine kinase and when phosphorylated and incorporated in the viral DNA causes premature DNA chain termination.
- Unfortunately anti-viral drugs are only effective for a limited number of viral infections and viruses can mutate to overcome the effectiveness of the drugs. In the case of molluscum contagiosum 1 and 2, which are related to orthopox and parapox viruses and share some homology with vaccinia, other forms of treatment have to be used. Current therapies comprise physical destruction with manual extrusion, liquid nitrogen therapy or curettage, all of which are painful and not very effective and may cause scarring. The pain of these therapies is particularly pertinent because the majority of patients are under the age of 10 years.
- In the case of recalcitrant warts, destructive therapies such as liquid nitrogen can be used in cases where the conventional salicylic acid paints have not resulted in the warts disappearance. One problem with warts is that the viral pool is in the stem cells which are found at the base of the epidermis. The aforementioned treatments often remove the virus particles and thus the infection from the top layer of the epidermis, but they do not penetrate deep enough to remove the stem cells and therefore the origins of the infection. This can result in the re-emergence of the warts.
- An alternative treatment for warts is by use of dinitrochlorobenzene. Such treatment is intended to make the patient allergic to dinitrochlorobenzene, whereupon the patient's immune system mounts an immune response to the dinitrochlorobenzene at the site of the wart and the wart in some cases disappears, presumably as a result of immuno-potentiation. Immuno-potentiation can be an effective treatment but subjecting the patient to an allergic reaction caused by dinitrochlorobenzene can be hazardous, variable and difficult to control.
- According therefore to a first aspect of the present invention there is provided a dosage form for the treatment of bacterial, virus, or fungal conditions in the human or animal body which comprises:—
- a pharmaceutically acceptable acidifying agent in an amount sufficient to reduce the pH at an environment of use to below pH4, and
- a pharmaceutically acceptable source of nitrite ions or a nitrate precursor therefor;
- wherein said acidifying agent and said source of nitrite ions or nitrate precursor are separately disposed in respective pharmaceutically acceptable carriers for admixture at the intended environment of use to release NO or NO2 ions.
- Preferably the acidifying agent is an organic acid, for example salicylic acid or ascorbic acid. The precursor for the NO2 or NO moiety may be an alkaline metal or alkaline earth metal nitrate capable of conversion to NO2 or NO by enzymic action.
- The pharmaceutical acceptable carrier or diluent may be an inert cream or ointment. In a particularly preferred form of the invention the acidifying agent and the source of nitrite ions or precursor therefor are separately disposed in said cream or ointment for admixture to release NO2 or NO ions at the environment of use. Alternatively an acid composition may be presented for administration in tablet or liquid form.
- Depending on the type of viral infection the components of the nitrogen oxide can work synergistically or alone. Nitrogen oxides, for example NO and NO2, particularly can diffuse through the epidermis. In the case of warts this allows them to reach the stem cells which are at the base of the epidermis and are the cells which contain the pool of established virus. Once at the infected cells the nitrogen oxide complex can facilitate programmed cell death, selectively in infected cells, which may then be taken up by phagocytes and antigen presenting cells leading to immune recognition of the previously hidden viral antigens. Once recognized, specific immunity will lead to destruction of all infected cells through cellular and humoural responses.
- Accordingly therefore to a further aspect of this invention there is provided a method of exposing virally infected cells at or adjacent an environment of use to a mammalian immune response in vivo, which comprises applying to said cells an admixture of nitrogen oxides generated by admixing at the environment of use a pharmaceutically acceptable acidifying agent in an amount sufficient to reduce the pH at the environment of use to below pH4 and a pharmaceutically acceptable source of nitrogen oxides or a nitrate precursor therefor.
- According to a second aspect of the invention there is provided the use in the manufacture of a topical medicament for the in vivo potentiation of the immune system during a viral skin infection resultant from virus replication in the epidermis, of topical formulations comprising a separately disposed source of pharmaceutically acceptable nitrogen oxides, and a separately disposed pharmaceutically acceptable acidifying agent, for admixture, at an intended environment of use to release NO and NO2moieties.
- Preferably the viruses replicating in the epidermis which cause the viral skin infection are selected from molluscum contagiosum,
herpes simplex type - Conveniently the source of nitrogen oxides contains nitric oxide and may also contain NO− or NO+ nitrosium ions or a precursor therefor produced when a pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor, are brought into intimate contact at a site of biological action (environment of use).
- If the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable donor of nitrogen oxides, or a precursor therefor were brought into contact before reaching the site of biological action the efficacy of the treatment is diminished as the nitrogen oxides become progressively more inactive with time.
- In a preferred embodiment the pharmaceutically acceptable acidifying agent, the pharmaceutically acceptable donor nitrogen oxides or a precursor therefor are each separately disposed in a pharmaceutically acceptable carrier or diluent.
- Preferably the pharmaceutically acceptable acidifying agent is an organic acid or salt with a low pH such as ascorbyl palmitate. The organic acid may be selected from at least one of ascorbic acid, ascorbyl palmitate, salicylic acid, lactic acid, citric acid, formic acid, benzoic acid and tartaric acid.
- The choice of acidifying agent depends on the type of infection of the skin and the reaction of the infected areas to treatment. The use of reducing acids such as ascorbic acid gives a quick burst of NO and NO2 with significantly more NO produced compared to the amount of NO2 produced. The other organic acids such as salicylic acid give a sustained concentration of NO and NO2 over a certain time period wherein the ratio of NO to NO2 is low. The concentration of the inorganic nitrite, for example sodium nitrite (or other alkali metal nitrites), as the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor depends on the acid used and the concentration of the acid used. The reducing acid ascorbic acid is highly reactive so therefore only between 1-10% is required with stoichiometric concentrations of the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor (e.g. sodium or other alkali metal nitrite). Ascorbyl palmitate is more stable but requires a higher concentration than ascorbic acid because the palmitate has a higher molecular weight. A concentration of between 3% and 25% of ascorbyl palmitate is thus required. If salicylic acid is used, concentrations of between 0.5% and 30% are appropriate, citric acid requires a yet higher concentration of up to 45%. (All % given herein are by weight).
- The concentration of sodium nitrite required to react with the above mentioned concentrations of organic acid is between 0.5% and 30%, preferably between 5% and 20%. Other pharmaceutically acceptable sources of nitrogen oxides or a precursor therefor require different ranges of concentration.
- Preferably the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor are in stoichiometric concentrations. If the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor are in stoichiometric concentrations, after the reaction is completed there will be no unreacted compounds left. Accordingly any compounds remaining on the infected area will not be able to contaminate healthy skin with the active medicament or anything the treated area touches such as furniture and clothing.
- In a preferred embodiment the medicament is in the form of a paint, a varnish, an ointment, a wax, a salve, or a cream. These embodiments allow the pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides, or a precursor therefor to be applied directly to the infected area. The treatment comprising the topical application of separate compositions according to this invention is preferably continued for at least one month, and more preferably two months.
- In a further aspect of the present invention there is provided a two-part delivery system for the topical application of a medicament for the in vivo treatment of the epidermis, the said system comprising separately;
- a first waxy component comprising a pharmaceutically acceptable acidifying agent;
- and a second waxy component comprising a pharmaceutically acceptable source of nitrogen oxides whereby if topically applied in vivo simultaneously, or immediately sequentially, to the environment of use, active nitrogen oxides are released therefrom.
- In a further embodiment, the first and second waxy components comprise a paraffin. The acidifying agent is preferably a reducing organic acid or salt such as ascorbic acid or ascorbyl palmitate. The source of nitrogen oxides may be an alkali metal nitrite such as sodium nitrite.
- The use of a reducing acid or salt thereof results in a product released at the environment of use which comprises a major amount of NO which has significant therapeutic and immunological effects.
- Thus the invention provides for the use of a source of oxide(s) of nitrogen in the manufacture of a composition for the treatment or prophylaxis of a viral skin infection by a virus selected from
herpes simplex types - In a further aspect of the invention there is provided a delivery system for the topical application of a medicament for the in vivo treatment of the epidermis, comprising an adhesive layer and a support layer impregnated with at least one of the components of the medicament, characterized in that the components of the medicament are a pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor, and a means of combining the pharmaceutically acceptable acidifying agent with the donor of nitrogen oxides. For example the delivery system may comprise two layers, which when in situ release the oxides of nitrogen including nitric oxide. The activation can be by pressure applied or by hydration from the skin.
- Preferably the delivery system is adapted for the potentiation of the immune system during a viral skin infection resultant from virus replication with the delivery system in place, such a system may, for example, resemble an adhesive plaster so it is then simple to apply physical pressure to the exterior of the plaster.
- Conveniently the donor of pharmaceutically acceptable nitrogen oxides may be aqueous and encapsulated in microspheres or liposomes disposed in the support, preferably in the form of a film or a gauze. The film or gauze allows increased concentrations of the pharmaceutically acceptable acidifying agent to be used. If a solution of salicylic acid is used then only a concentration of 20-26% by weight is applied, but if salicylic acid is impregnated in the film or the gauze then a concentration of 26 to 44% by weight can be applied.
- A further advantage of using an adhesive layer is that it can be used to occlude the infected area during treatment which increases the concentration of nitrogen oxides being absorbed through the epidermis.
- Another advantage of using the delivery system as just described, instead of two creams or ointments, is that the components of the medicament will only be applied to the infected site, i.e. no spillage will occur. It is also easier for the elderly, who may have shaky hands, to apply the adhesive layer rather than applying a paint. For the treatment of molluscum contagiosum, which is mainly found in those under the age of 10 years, the adhesive layer can be a decoratively patterned in order to appeal to children.
- As stated above preferably the integrity of the vehicle is disrupted by pressure after application of the adhesive layer and film or gauze to a site of viral infected skin. If the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrogen oxide donors or precursors therefor are not kept separate until administration at the site of biological action they will react together thus rendering the medicament less effective. Accordingly, in this embodiment it is necessary for the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrites or precursors therefor to be retained separately within the film or gauze layer. The application to the site of biological action of pressure applied to the adhesive layer, and therefore the film or gauze layer, can result in the vehicles, such as the microspheres or lipsomes, breaking and the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrogen oxide donors or precursors therefor reacting, thus treating the infected area.
- In another aspect the delivery system may be used in conjunction with a topically applied medicament. The topically applied medicament being either a pharmaceutically acceptable acidifying agent or a pharmaceutically acceptable donor of nitrogen oxides or a precursor therefor.
- It is thus possible to provide only one of either the pharmaceutically acceptable acidifying agent or the pharmaceutically acceptable nitrogen oxide donors or precursors therefor impregnated in the film or gauze layer. The other compound, which is not impregnated in the film or gauze can then be applied topically to the infected site. The advantage of this arrangement is that the film or gauze layer can be larger than the infected site but a reaction between the pharmaceutically acceptable acidifying agent and the pharmaceutically acceptable nitrogen oxide donors or precursors therefor only occurs at the infected site where the medicament had been topically applied.
- It is also possible to vary the treatment regime by changing the topically applied medicament without changing the compound in the delivery system. For example if the pharmaceutically acceptable nitrogen oxide donors or precursors therefor are impregnated in the film or gauze, then the type of pharmaceutically acceptable acidifying agent that is topically applied can be altered and the same adhesive and film or gauze layers utilized.
- The delivery system is an ideal form of treatment for the verrucae on the feet because the delivery system is hidden from view.
- In a further aspect of the invention there is provided a method of sterilising an object which method comprises the steps of:
- 1) preparing a pharmaceutically acceptable acidifying agent and a pharmaceutically acceptable source of nitrite ions,
- 2) mixing said acidifying agent with said source of nitrite ions in a liquid carrier or diluent in contact with said object thereby to reduce the pH to below 4 while causing said sterilant nitrite ions to sterilize said object.
- In a further form of the invention there is provided a sterilant composition comprising a pharmaceutically acceptable acidifying agent,
- a pharmaceutically acceptable source of nitrite ions or a nitrate precursor therefor,
- and a pharmaceutically acceptable carrier or diluent therefor wherein the acidifying agent is adapted to reduce the pH at the environment of use to below pH4.
- In a still further form of the invention there is provided an animal feed supplement comprising a pharmaceutically acceptable acidifying agent and,
- a pharmaceutically acceptable source of nitrite ions or a nitrate precursor therefor, in an amount sufficient to produce a beneficial anti-microbial pharmalogical effect, but insufficient to produce adverse action in the target animal.
- The acidifying agent may be salicylic or ascorbic acid as above, and the source of nitrite ions or nitrate precursor therefor may be in an inorganic nitrate as set forth above. Where the animal is the pig, the supplement should be included in an amount sufficient to ensure that each adult animal will receive a balanced dose of between 0.3 to 5.0 g/day and preferably about 1 g/day.
- The invention will now be described, by way of illustration only, with reference to the following examples and figures accompanying the specification.
- FIG. 1 shows a diagram indicative of the effect of exposure to nitrate and differing hydrogen ion concentrations on the survival ofC albicans where the vertical axis is the optical density in absorbance units and the horizontal axis is the pH.
- FIG. 2 shows growth curves ofE coli following exposure to acid alone or acid with a nitrite where the vertical axes are optical density in absorbance units and the horizontal axes are time in hours.
- FIG. 3 shows growth curves ofE coli following exposure to pH3 in various nitrite concentrations where the vertical axis shows the optical density in absorbance units and the horizontal axis is time in hours.
- FIG. 4 shows the generation of nitric oxide from sodium nitrite at different levels of acidity where the vertical axis is the nitric oxide concentration (nM) and the horizontal axis is Ph.
- FIG. 5 shows a graph of the duration of the warts compared to the time for wart disappearance with the formulations given in Example 7, where n=32;
- FIG. 6 shows the outcome of the treatment of patients with warts as a function of time, where n=32.
- FIG. 7 shows a Kaplan Meier plot of the outcome of the treatment of patients with molluscum contagiosum as a function of time; and
- FIG. 8 shows a graph of NO and NO2 release from 0.083 g of 10% Ap wax with 0.014 g of 10% sodium nitrite wax to give 21μ moles of NaNO2 and 25μ moles of ascorbyl palmitate. In FIG. 4 the curve with “squares” denotes NO values whereas the curve with “circles” denotes NO2 values.
- With reference to FIG. 1 a single colony ofC albicans was used to inoculate an overnight culture in Sabouraud's broth. 10 μl of this broth was added to 940 μl of a citrate/phosphate buffered Sabouraud's broth to which was added sodium nitrite (50 μl; final concentration 250 μM) or distilled water as a control. After one hour incubation at 37° C., 10 μl was removed and cultured in 190 μl standard Sabourauds broth with continual agitation (Gallenkamp orbital incubator) in a 96-well microtitre plate at 37° C. Growth was monitored by measurement of optical density at 570 nm at regular time intervals. The results are a mean of 16 separate experiments.
- The effect of exposure to nitrite and differing hydrogen ion concentrations on the survival ofC albicans is shown in FIG. 1. The open bars show the growth of C albicans measured by the optical density method following exposure to acid alone for 1 hour, while the closed bars show growth following exposure to acid and 250 μM sodium nitrite. There is a significant difference from the control at p>0.05 (Mann-Whitney U test). It is apparent therefore that the incubation of C albicans in acid alone for one hour had little effect on the number of viable organisms subsequently grown, whereas in contrast the addition of sodium nitrite at 250 μM incrementally killed C albicans as the pH was reduced to below 4. The nitrite was in fact effective in eliminating C albicans at
pH 1 at all concentrations above 250 μM (data not shown). 5 nN nitrite killed C albicans at up to pH5. It is significant that a random sample of 10 laboratory personnel on a normal diet had fasting salivary nitrite which varied from 23 to 220 μM (mean 114 μM) rising to 409 to 1890 μM (mean 1030) 45 minutes after ingestion of 200 mg potassium nitrate solution. - FIG. 2 shows growth curves ofE coli following exposure to acid alone (open symbols) or acid and 250 μM nitrite (closed symbols). Growth was significantly (p<0.05) impaired at
pH - The same methods were used as in FIG. 1 exceptE coli (strain NCTC 10418 grown on MacConkey's agar) was used and nutrient both (Oxoid CM1) was used in place of Sabouraud's broth. The results shown in FIG. 2 are a mean of 20 experiments. As can be seen from FIG. 2 E coli is more susceptible to acid than C albicans. Nevertheless exposure to
pH 2 for one hour does not kill all the organisms as there is significant growth in the nutrient broth. At pH3 many more organisms survive. The addition of 250 μM nitrite to the exposure medium eliminates E coli at pH2 and significantly reduces the viability of this organism at pH3 and pH4. Nitrite at this concentration had no effect above pH4. - FIG. 3 shows growth curves ofE coli following exposure to pH3 in various nitrite concentrations (10-1000 μM final concentration). The methods are those as for FIG. 2. FIG. 3 shows that there is a direct relationship between the toxic effects of nitrite on E coli and nitrate concentration at pH3. Even 110 μM had a discernable effect whereas 1 mM killed E coli completely.
- FIG. 4 shows the generation of nitric oxide from sodium nitrite (as μM) at different acidities. Conditions were the same as those used for the exposure of organisms in FIG. 1. In particular nitrite was added to citrate/phosphate buffer to achieve final concentrations shown in FIG. 4. Nitric oxide concentrations in the buffer were measured by a nitric oxide sensitive meter (ISO—NO, World Precision Instruments) connected to a Maclab acquisition system and Macintosh computer. Measurements were recorded continually and readings were taken at 2 minutes when nitric oxide concentration had reached a steady state. FIG. 4 shows the release of nitric oxide as a result of reducing pH. Nitric oxide, which we have shown is generated under experimental conditions in FIG. 4 readily diffuses through cell membranes and has a high affinity for iron-sulphur containing respiratory enzymes and damages bacterial DNA. When produced enzymatically by activated leucocytes, nitric acid will kill Leishmania sp., Staphylococcus sp., Francisella sp. and Microbacterium as well asC albicans. Reaction with superoxide under acid conditions may additionally produce highly reactive hydroxyl radicals.
- In a study to investigate the effect of a combination of salicylic acid at 2% w/w and sodium nitrite at 2% w/w in 9 patient volunteers with microbiologically proven fungal infection of the feet, application of the treatment produced a microbiological cure in all but one patient after 2 weeks of therapy. The symptom score (derived from a scoring system which measures erythema, vesicles, pustules, desquamation, encrustation and pruritus) decreased from a mean of 7 before treatment to a mean of 2 following treatment.
- Investigation of the use of nitrate or nitrite administered topically in the mouth in the form of toothpaste, mouthwash or other orally acceptable vehicle to reduce the number of caries-producing organisms in dental plaque and to treat to prevent infection withC albicans or other harmful organisms showed such application to be effective.
- The observation that oxides of nitrogen produced non-enzymatically from nitrite under conditions simulating those in the stomach killsC albicans and E coli extends these observations to the intestinal tract. E coli is closely related to Salmonella, Shigella and other pathogenic enterobacteria; all important causes of gastroenteritis in the mammal.
- These results provide a rationale for active secretion of nitrate by the salivary glands. Nitrate itself is a innocuous precursor which only produces microbiocidal species when converted to nitrite and subjected to acid conditions. It is possible that Lactobacilli sp. transiently produce sufficient acid in the mouth after a carbohydrate meal to control the growth of oral pathogens but clearly a moderate intake of nitrate may be a desirable prerequisite in any contaminated environment despite any potential as a precursor of nitrosamines.
- Further the production of intestinal nitrogen oxides may be inadequate if the oral flora which convert nitrate to nitrite are suppressed following therapy with broad-spectrum antibiotics. Similarly if gastric acid production is reduced, or if nitrate intake, which is largely dependent on leafy vegetables, is low this protective mechanism will be impaired. These are precisely the situations which predispose to oral and intestinal infections.
- Whereas the foregoing study has concentrated onC albicans and E coli and the other organisms mentioned, it may also be important for providing protection from other serious gut pathogens which when swallowed may cause duodenal ulceration, for example Helicobacter pylori, amoebic dysentery and chronic intestinal parasitism. Accordingly the invention provides a dosage form for the treatment of bacterial, viral or fungal conditions, a method of sterilising an object, and a composition therefor.
- The above also suggests an inexpensive and simple means of prevention of gastroenteritis in farmed pigs by modification of dietary nitrate intake without the use of antibiotics.
- 32 subjects with recalcitrant viral warts were treated with varying formulations of sodium nitrite acidified with the acid specified. The exact formulations are given in Table 1. All 32 patients had failed to respond to conventional topical wart applications and at least two treatments with liquid nitrogen. 12 subjects had plantar warts, 12 hand warts, 5 subungal or peri-ungal and 1 plane of the warts of the hand, 1 perianal and 1 lip wart.
- The warts had a duration with median 24 months this implies that the patients had a low chance of spontaneous improvement (See FIG. 5).
No. of patients Acid Nitrite treated Salicylic 5% cream Sodium nitrite 5 % cream 5 Ascorbic acid 5%cream Sodium nitrite 5% cream 7 Ascorbic acid 10%cream Sodium nitrite 10 % cream 2 Salicylic acid 23% in Sodium nitrite 10% +9 alcohol based wart paint copper acetate 0.5% Salicylic acid 23% in Sodium nitrite 10% cream 3 alcohol based wart paint Salicylic acid 23% in Sodium nitrite 15 % solution 6 alcohol based wart paint - The warts were prepared by scraping or abrading the skin to remove the dead skin then the sodium nitrite containing formulation was applied before applying the selected acidifying agent. The warts were treated every night and every three days the warts were rescrapped or abraded.
- Clearance of the warts occurred with a median duration of 2 months regardless of the formulation of the treatment (see FIGS. 5 and 6). Copper was included to catalyze the release of nitrogen oxides from glutathione and proteins that had become nitrosated to extend the release of nitrogen oxides.
- Four treatment failures were seen; three of these in patients who were being treated with immunosuppressive drug therapy for Lupus erthematosus, kidney transplant and dermatomyositis. Accordingly there was an 88% cure rate in all the subjects and a 96% cure rate if the immunosuppressed patients were excluded. Existing treatments such as using liquid nitrogen or salicylic acid paints result in 50-80% clearance.
- 30 patients with molluscum contagiosum lesions took part in a double blind trial. They were randomly treated with either 5% sodium nitrite co-applied with 5% salicylic acid under occlusion or 5% sodium nitrite without acidification. The mean age of the subjects was 7 years (with one outlier of 47 not included in the mean). The infection had a mean duration of 8.23+3.959 months. No significant difference was found in the number of lesions per patient or the number of times treatment was applied in the two groups.
- In the case of co-application the sodium nitrate was applied to the skin with a cotton bud and then a fresh cotton bud was used to apply the salicylic acid. In the case of the sole application of sodium nitrite it was applied with a cotton bud. In both cases, if possible, the area was covered with “cling-film” or Sellotape.
- As seen in Table 2 in the group treated with the active treatment 70% of the patients were cured and 28% of those in the control group were cured. The mean time to cure was 1.83+0.91 months
TABLE 2 Treatment Cured Not cured Acid and Nitrite 12 4 Control 4 10 - Kaplan Meier plots were performed for active and control patients (FIG. 7) and analyzed by the Logrank test which showed a significant difference in the survival curves with cure being greater in the active group (p=0.0183).
- 12 volunteers with no current or recent history of skin disease and taking no mediation randomly applied either low dose (0.5% nitrite) or high dose (5% nitrite) of a nitrogen oxide complex to their skin.
- Subjects applied 2% w/w ascorbic acid in aqueous cream to a control site and an active site. Either the low dose or the high does nitrite cream was also applied to the active site. The creams were applied 3 times daily at 8 hourly intervals and both the control and the active sites were then occluded with an adhesive polythene/plastic dressing.
- The last application of the cream was made 5 hours before the assessment of the reaction to allow the immediate vasodilatory effects of the nitrogen oxide complex to subside, so measuring only residual inflammation.
- The thickness of the control and active sites were measured using a ‘Mitotoyu’ spring thickness gauge and redness was measured using reflectance erythema metre. Two 4 mm punch biopsies were taken from the active and control sites; one for formalin fixation for histological assessment, mass cell stains, neutrophil elastase and in situ nick end labelling and the other for snap freezing and OCT embedding for the other immunohistochemical stains.
- Immunohistochemical was performed using a streptavidin biotin method and DAB detection with the antibodies in Table 3 and using ApopTag Plus in situ nick end labelling detection kit to identify apoptotic cells.
- Staining was quantified by computerized image analysis and data analyzed by Wilcoxon's test for paired samples and Kruskal-Wallis' test for non-parametric analysis of variance in the multiple independent samples analyzed for effects of dose and duration (see Tables 4,5 and 6).
TABLE 3 Epitope Titre Cells Stained CD1a 0.0451388889 Langerhans cells CD3 0.555555556 pan-T cell CD4 1:150 T-helper cells CD8 0.555555556 T-cells suppressor/cytotoxic CD54 1:100 ICAM-1 CD6 0.0486111111 Macrophages CD106 1:100 VCAM-1 p53 0.0763888889 Wild type p53 protein Nitrosotyrosine* 1:100 Nitrosated tyrosine Neutrophil elastase 1:100 Neutrophils ApopTag** Manufacturers Apoptotic cells instructions - The reflectance erythema measurement of the nitrogen oxide complex treated sites was 32.25±5.46 (mean+sd) significantly higher than the control sites 18.08±5.81 (p=0.0022, Wilcoxon's) Skin fold thickness was 5.04±0.75 mm in the nitrogen oxide complex treated patches which was significantly greater than that of control skin 3.25±0.54 (p=0.0022, Wilcoxon's). These measures were not significantly influenced by dose or duration of exposure, except there was a trend for greater skin fold thickness in the high dose group (5.4 mm±0.21 vs 4.7 mm±0.32) (p=0.075).
- Histology of all actively treated sites showed a significant increase in oedema, endothelial swelling, cloudy swelling of keratinocytes, and a mixed infiltrate of lymphocytes and neutrophils. These changes were quantified on a 0-4 ordinal scale and were similar in low does, high dose, short exposure and long exposure. The number of mast cells seen in Azure A stained sections was similar in control and nitrogen oxide complex treated skin.
- A cytotoxic effect was seen in all keratinocytes which was manifest as cloudy swelling. When extensive this leads to the formation of bullae high in the epidermis filled with acute inflammatory cells and cells which have undergone cytotoxic changes with constriction of the nucleus and cloudy swelling of clear cytoplasm around them. Only a minority of these degenerate cells had undergone apoptosis as judged by staining with ApopTag. Within the viable epidermis, there was also an increase in apoptotic cells. This suggests that normal keratinocytes, not virally infected and relatively resistant to the well known apoptotic effects of nitric oxide. Apoptotic cells were also detected in the dermis, particularly around adnexal structures. The positive nitrosotyrosine staining around sebaceous glands suggests that the nitrogen oxide complex was preferentially absorbed through follicles.
- Nitrogen oxide complex treated skin showed significant increases in immuno-competent cells expressing CD3, CD8, CD68 and neutrophil elastase and in the adhesion molecules which attract trafficking of the cells to the site, ICAM-1 and VCAM-1. The presence of nitrosotyrosine staining in these cells is indicative of the formation of peroxynitrite (ONOO—) and of p53 which indicates that part of the effect of the complex is mediated through toxicity towards DNA in these cells. In healthy skin nitrogen oxide complex did cause some apoptosis but this was surprisingly small at the doses used and we postulate that the effect is likely to be in infected cells. The antigen processing cells of the skin (CD1a positive) were seen to lose dendricity and drop from the epidermis so there were significantly fewer in the treated skin. As these cells behave in this way when activated and functioning to process a newly recognized antigen, this would seem to offer further evidence for an immunopotentiating role for the nitrogen oxide complex. Ki-67 staining for dividing cells did not differ in control or active sites. This would suggest that in warts, for example, the action is not one of reducing cell proliferation. Kruskal-Walls test was used to test the effects of time or duration of nitrogen oxide complex treatment on clinical and immunohistochemical response. The effect of the dosage on the skins reaction is given in Table 5. There were fewer CD4 positive cells in the high dose than the low dose group, and likewise with CD68 positive cells. Although Ki-67 positive cells were not significantly different between the control site and the nitrogen oxide complex treated site, there was a significant increase with high dose compared with low dose.
- After 24 and 48 hours exposure to the nitrogen oxide complex the extent of apoptosis was measured, see Table 6. There was significantly greater apoptosis after 48 hours than after 24 hours. The CD4 positive cells count rose significantly after 48 hours compared to after 12 hours. The difference for p53 was not quite statistically significant. Similarly, cloudy swelling tended to be greater in the longer duration treatment but was not statistically significant.
TABLE 4 Nitrogen Significance Oxide Complex Control Wilcoxon's Mean S.D. Mean S.D. Test ApopTag 12.5 10.1 0.41 1.6 0.0033 Ki67 6.82 3.82 6.62 2.854 0.67 CD1a* 0.86 0.69 3.43 0.53 0.022 CD3 574.7 396.3 216.1 122.1 0.0186 CD4 608.2 458.2 176.3 149.9 0.0125 CD8 275.7 193.1 122.1 106.1 0.0284 CD68 673.1 542.4 301.4 361.3 0.0044 Nitro-sotyrosine* 3.4 0.7 0.9 1.1 0.043 p53 214.4 266.4 22.08 53.8 0.0029 Neutrophils 569.4 385.9 71 113.1 0.043 ICAM-1 705.9 704.5 201.9 160.9 0.0209 VCAM-1 1.5 1.17 0.5 0.9 0.0357 - Ki67 was counted in the epidermis and ApopTag positive cells counted per standard section through a 3 mm punch biopsy. All other counts were done by computerized image analysis on a fixed standard measuring frame and are expressed as cells per
mm 2.TABLE 5 High Dose Low Dose (cells/mm2) (cells/mm2) Kruskal- Mean S.D. Mean S.D. Wallis Test Ki67 152 35.2 73.6 8 0.01 CD4 280 78.4 936 185.6 0.02 CD68 379.2 65.6 916.8 262.4 0.04 -
TABLE 6 12/24* hrs 48 hrs Kruskal- Mean S.D. Mean S.D. Wallis Test ApopTag* 3.5 1.82 14.16 2.56 <0.005 CD4 285.9 193.6 824 193.6 0.05 Cloudy swelling** 1.7 0.33 2.5 0.224 0.07 p53 70.1 47.04 335.2 125.7 0.07 - The nitrogen oxide complexes of the invention may be formed by a combination of ascorbic acid and nitrite on the skin, which causes the release of nitrogen oxides, inter alia nitric oxide, nitrous oxide, nitrogen dioxide and dinitrogen trioxide. The increase in T helper cells and macrophages was greater in low dose subjects and suggests that at lower doses nitrogen oxides can be pro-inflammatory but at higher doses becomes cytotoxic to the immunocompetent cells and begins to exert an inhibitory effect. The nitrogen oxide complex led to a marked induction of ICAM-1 and a moderate increase in VCAM-1 expression. The pattern of inflammation was unusual in showing a marked infiltrate of macrophages after only 24 hours, so showing that activated macrophages use nitrogen oxides to specifically attract more macrophages to kill a pathogen.
- The promotion of apotosis and recruitment of all the immunocompetent cells required for effective recognition of a pathogen by the immune system of a host, results from application of a preparation of a combination of nitrite or precursor of nitrogen oxides and an acidifying agent. Accordingly, these findings support a potential immunopotentiating effect of the combination of nitrite or other precursor of nitrogen oxides such as NO or NO2 and a acidifying agent.
- A two part component delivery system was made up. Each component was in the form of a wax stick which can be rubbed onto an effective area at regular intervals in accordance with a physician's instructions.
- The two components were made up as follows:
- 10% ASCORBYL PALMITATE
Component Ascorbyl Palmitate 10% White Soft Paraffin 25 Light Liquid Paraffin 20 Hard Paraffin 20 Arlacel 165 15 Cetosteryl Alcohol 10 - Method
- 1. Weigh all the components into a vessel.
- 2. Heat the vessel and stir the mixture until all the components have melted and the mixture is homogenous.
- 3. Pour the molten wax into jars and allow to cool to room temperature.
- 10% SODIUM NITRITE WAX
Components Phase A Light Liquid Paraffin 7.5% White Soft Paraffin 20 Arlacel 582 10 Cetosteryl alcohol 10 Phenoxyethanol 1 Phase B Sodium Nitrite 10 Purified Water 20 - Method
- 1. Weigh the Phase A components into a vessel, heat to 70° C. and stir until homogenous.
- 2. Weigh the Phase B components into another vessel heat to 70° C. and stir, ensure that all the sodium nitrite has dissolved.
- 3. When both phases have reach 70° C., add phase A to phase B and homogenize for 5 minutes.
- 4. Pour the molten wax into jars and allow to cool to room temperature.
- As is shown from FIG. 8, the use of this admixture tends to release a substantial excess of NO from the two-part delivery system. This is possibly because NO is a small molecule which results in a more effective treatment of viral skin diseases.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/701,295 US20040105898A1 (en) | 1994-02-21 | 2003-11-03 | Acidified nitrite as an antimicrobial agent |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9403284A GB9403284D0 (en) | 1994-02-21 | 1994-02-21 | Acidified nitrite as antimicrobial agent |
GB9403284.4 | 1994-03-07 | ||
GB9404365A GB9404365D0 (en) | 1994-03-07 | 1994-03-07 | Acidified nitrate as antimicrobial agent |
GB9404365.0 | 1994-03-07 | ||
PCT/GB1995/000338 WO1995022335A1 (en) | 1994-02-21 | 1995-02-17 | Acidified nitrite as an antimicrobial agent |
US69693096A | 1996-08-21 | 1996-08-21 | |
GBGB9804469.6A GB9804469D0 (en) | 1998-03-02 | 1998-03-02 | Antiviral composition |
GB9804469.6 | 1998-03-02 | ||
PCT/GB1999/000605 WO1999044622A1 (en) | 1998-03-02 | 1999-03-01 | Inorganic nitrite and organic acid in combination as topical antiviral composition |
US09/330,654 US6709681B2 (en) | 1995-02-17 | 1999-06-11 | Acidified nitrite as an antimicrobial agent |
US10/701,295 US20040105898A1 (en) | 1994-02-21 | 2003-11-03 | Acidified nitrite as an antimicrobial agent |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/330,654 Continuation US6709681B2 (en) | 1994-02-21 | 1999-06-11 | Acidified nitrite as an antimicrobial agent |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040105898A1 true US20040105898A1 (en) | 2004-06-03 |
Family
ID=23290709
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/330,654 Expired - Fee Related US6709681B2 (en) | 1994-02-21 | 1999-06-11 | Acidified nitrite as an antimicrobial agent |
US10/116,203 Abandoned US20020155174A1 (en) | 1999-06-11 | 2002-04-04 | Acidified nitrite as an antimicrobial agent |
US10/701,295 Abandoned US20040105898A1 (en) | 1994-02-21 | 2003-11-03 | Acidified nitrite as an antimicrobial agent |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/330,654 Expired - Fee Related US6709681B2 (en) | 1994-02-21 | 1999-06-11 | Acidified nitrite as an antimicrobial agent |
US10/116,203 Abandoned US20020155174A1 (en) | 1999-06-11 | 2002-04-04 | Acidified nitrite as an antimicrobial agent |
Country Status (1)
Country | Link |
---|---|
US (3) | US6709681B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050036949A1 (en) * | 2001-10-19 | 2005-02-17 | Tucker Arthur Tudor | Therapeutic composition and use |
US20060182815A1 (en) * | 2004-07-09 | 2006-08-17 | Use of nitrite salts for the treatment of cardiovascular conditions | |
US20080260865A1 (en) * | 2005-05-19 | 2008-10-23 | University Of Cincinnati | Methods for Treating Bacterial Respiratory Tract Infections in an Individual Using Acidified Nitrite |
WO2009055008A1 (en) * | 2007-10-24 | 2009-04-30 | Wharton Innovative Products, Llc | Two part lotion for the delivery of nitrite ions to the skin |
US20090196930A1 (en) * | 2007-12-27 | 2009-08-06 | Aires Pharmaceuticals, Inc. | Aerosolized nitrite and nitric oxide -donating compounds and uses thereof |
ITMI20081652A1 (en) * | 2008-09-16 | 2010-03-17 | Antica Ritrovati Medicinal I S A R M Srl Soc | TRANSDERMIC COMPOSITIONS FOR HYPOSENSIBILIZING SPECIFIC IMMUNOTHERAPY |
WO2010035253A1 (en) * | 2008-09-28 | 2010-04-01 | Joshua Waldhorn | Effective nitric oxide generating preparations |
US20100247682A1 (en) * | 2003-07-09 | 2010-09-30 | The United States Of America As Represented By The Secretary | Use of nitrite salts for the treatment of cardiovascular conditions |
US8282967B2 (en) | 2005-05-27 | 2012-10-09 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
US8981139B2 (en) | 2011-02-28 | 2015-03-17 | The University Of North Carolina At Chapel Hill | Tertiary S-nitrosothiol-modified nitric—oxide-releasing xerogels and methods of using the same |
US9526738B2 (en) | 2009-08-21 | 2016-12-27 | Novan, Inc. | Topical gels and methods of using the same |
US9919072B2 (en) | 2009-08-21 | 2018-03-20 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
US10322082B2 (en) | 2014-07-11 | 2019-06-18 | Novan, Inc. | Topical antiviral compositions and methods of using the same |
US10322081B2 (en) | 2014-07-11 | 2019-06-18 | Novan, Inc. | Topical antiviral compositions and methods of using the same |
EP3569237A1 (en) | 2009-02-11 | 2019-11-20 | Hope Medical Enterprise, Inc. D.b.a. Hope Pharmaceuticals | Sodium nitrite-containing pharmaceutical compositions |
US10849864B2 (en) | 2015-07-28 | 2020-12-01 | Novan, Inc. | Combinations and methods for the treatment and/or prevention of fungal infections |
US10925689B2 (en) | 2014-07-14 | 2021-02-23 | Novan, Inc. | Nitric oxide releasing nail coating compositions, nitric oxide releasing nail coatings, and methods of using the same |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6709681B2 (en) * | 1995-02-17 | 2004-03-23 | Aberdeen University | Acidified nitrite as an antimicrobial agent |
GB9905425D0 (en) * | 1999-03-09 | 1999-05-05 | Queen Mary & Westfield College | Pharmaceutical composition |
GB0119011D0 (en) * | 2001-08-03 | 2001-09-26 | Univ Aberdeen | Treatment of nail infections |
US20040180015A1 (en) * | 2002-01-07 | 2004-09-16 | Kross Robert D. | Long-acting disinfecting nitrous acid compositions and related processes |
US20030175362A1 (en) * | 2002-01-07 | 2003-09-18 | Kross Robert D. | Disinfecting nitrous acid compositions and process for using the same |
WO2004094050A2 (en) * | 2003-04-23 | 2004-11-04 | The University Of Akron | Sequestered reactive materials |
US20090136410A1 (en) * | 2003-07-25 | 2009-05-28 | Smith Daniel J | Stabilization and ionic triggering of nitric oxide release |
EP1694399B1 (en) * | 2003-12-15 | 2011-11-02 | Nitricare HB | Device for administering therapeutic agents |
US8017074B2 (en) | 2004-01-07 | 2011-09-13 | Noxilizer, Inc. | Sterilization system and device |
JP2007521118A (en) * | 2004-01-07 | 2007-08-02 | ノクシライザー,インコーポレイテッド | Sterilization system and equipment |
CA2576957C (en) | 2004-08-18 | 2013-04-02 | Geno Llc | Conversion of nitrogen dioxide (no2) to nitric oxide (no) |
US7618594B2 (en) | 2004-08-18 | 2009-11-17 | Geno Llc | Conversion of nitrogen dioxide (NO2) to nitric oxide (NO) |
US8412706B2 (en) * | 2004-09-15 | 2013-04-02 | Within3, Inc. | Social network analysis |
US8880521B2 (en) * | 2004-09-15 | 2014-11-04 | 3Degrees Llc | Collections of linked databases |
US8577886B2 (en) * | 2004-09-15 | 2013-11-05 | Within3, Inc. | Collections of linked databases |
US8635217B2 (en) * | 2004-09-15 | 2014-01-21 | Michael J. Markus | Collections of linked databases |
US20070260599A1 (en) * | 2004-09-15 | 2007-11-08 | Mcguire Heather A | Social network analysis |
WO2006084914A2 (en) * | 2005-02-11 | 2006-08-17 | Nolabs Ab | Device for gastric treatment and manufacturing process for the same |
EP1700611A1 (en) * | 2005-02-11 | 2006-09-13 | NOLabs AB | Device for treatment of disorders in the oral cavity, and manufacturing process for the same |
MX2007009691A (en) * | 2005-02-11 | 2008-02-12 | Nolabs Ab | Device and method for treatment of dermatomycosis, and in particular onychomycosis. |
EP1707224A1 (en) * | 2005-02-11 | 2006-10-04 | NOLabs AB | Pharmaceutical mixture with nitric oxide booster, device for applying the mixture and manufacturing method therefor |
BRPI0606834A2 (en) * | 2005-02-11 | 2009-07-21 | Nolabs Ab | nitric oxide (no) uses, configured non-implantable device, configured device manufacturing process, use of nitric oxide eluting polymer (no) and treatment method |
WO2006084911A2 (en) * | 2005-02-11 | 2006-08-17 | Nolabs Ab | Improved device for application of medicaments, manufacturing method therefor, and method of treatment |
CA2603828A1 (en) | 2005-03-24 | 2006-09-28 | Nolabs Ab | Cosmetic treatment with nitric oxide, device for performing said treatment and manufacturing method therefor |
WO2007005463A2 (en) * | 2005-06-29 | 2007-01-11 | S.M.A.R.T. Link Medical, Inc. | Collections of linked databases |
US8190681B2 (en) * | 2005-07-27 | 2012-05-29 | Within3, Inc. | Collections of linked databases and systems and methods for communicating about updates thereto |
US10395326B2 (en) * | 2005-11-15 | 2019-08-27 | 3Degrees Llc | Collections of linked databases |
GB0715556D0 (en) * | 2007-08-09 | 2007-09-19 | Insense Ltd | Improvements relating to skin dressings |
US9278157B2 (en) | 2007-08-09 | 2016-03-08 | Insense Limited | Nitric oxide-generating skin dressings |
CN101939014B (en) | 2007-11-15 | 2016-04-27 | 路易斯安那州大学及农业和机械学院管理委员会 | The application of nitrite in chronic ischemia |
JP5554723B2 (en) | 2008-01-28 | 2014-07-23 | ゲノ エルエルシー | Conversion from nitrogen dioxide (NO2) to nitrogen monoxide (NO) |
US8501090B2 (en) * | 2008-03-24 | 2013-08-06 | Christian S. Minton | Anti-microbial gas apparatus and method |
US8298589B1 (en) * | 2008-06-13 | 2012-10-30 | Board Of Regents, The University Of Texas System | Nitrite formulations and their use as nitric oxide prodrugs |
US8607785B2 (en) | 2008-08-21 | 2013-12-17 | Geno Llc | Systems and devices for generating nitric oxide |
EP2334279A4 (en) * | 2008-10-16 | 2013-03-20 | Novan Inc | Nitric oxide releasing particles for oral care applications |
EP2361099B1 (en) | 2009-02-23 | 2012-09-12 | Noxilizer, Inc. | Method for gas sterilization |
WO2010147742A2 (en) | 2009-06-18 | 2010-12-23 | Theravasc Inc. | Use of nitrite salts in treating tissue damage |
AU2010263098B2 (en) | 2009-06-22 | 2016-01-07 | VERO Biotech LLC. | Nitric oxide therapies |
WO2011047013A1 (en) * | 2009-10-13 | 2011-04-21 | Novan, Inc. | Nitric oxide-releasing coatings |
ES2633618T3 (en) | 2009-10-14 | 2017-09-22 | Theravasc Inc. | Pharmaceutical nitrite formulations and their uses |
US8932650B2 (en) * | 2011-01-11 | 2015-01-13 | Kantian Skincare LLC | Multifunctional topical formulation for the treatment of acne vulgaris and other skin conditions |
ES2804263T3 (en) | 2011-07-05 | 2021-02-05 | Novan Inc | Topical compositions |
KR20160120785A (en) | 2011-08-17 | 2016-10-18 | 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 | Method of producing physiological and therapeutic levels of nitric oxide through an oral delivery system |
CN103622917B (en) * | 2012-08-23 | 2017-12-29 | 尼奥克斯(文莱)控股有限公司 | Delay based on microencapsulation nitrite and acidifying hydrogel produces nitric oxide production system and method |
DK2958573T3 (en) | 2013-02-20 | 2019-08-05 | The Board Of Supervisors Of The Louisiana State Univ Mechanical And Agricultural College | PHARMACEUTICAL FORMULATIONS OF NITRITES AND APPLICATIONS THEREOF |
US9855211B2 (en) | 2013-02-28 | 2018-01-02 | Novan, Inc. | Topical compositions and methods of using the same |
CA2920110C (en) | 2013-08-08 | 2022-05-31 | Novan, Inc. | Compositions and kits including a nitric oxide releasing compound and a hydrogel |
AU2014337031A1 (en) * | 2013-10-18 | 2016-06-02 | Bovicor Pharmatech Inc. | Preparation and delivery of sustained nitric oxide releasing solutions |
CN105473166A (en) * | 2013-10-31 | 2016-04-06 | 奥里根股份有限公司 | Methods for using nitric oxide in a plasma state to treat medical conditions and diseases |
WO2015138406A1 (en) | 2014-03-14 | 2015-09-17 | 12th Man Technologies, Inc. | Treating diseases using nitric oxide releasing solutions |
CA2919733A1 (en) | 2014-08-08 | 2016-02-08 | Novan, Inc. | Topical compositions and methods of using the same |
CA2982943C (en) * | 2015-03-11 | 2019-07-23 | University Of Cincinnati | Compositions and methods for treating bacterial infection |
CN104957634B (en) * | 2015-07-29 | 2017-06-27 | 无锡宏瑞生物医药科技有限公司 | It is a kind of can blocking nitrosamine formation generation and the composition of helicobacter pylori can be killed |
WO2017151905A1 (en) | 2016-03-02 | 2017-09-08 | Novan, Inc. | Compositions for treating inflammation and methods of treating the same |
US11166980B2 (en) | 2016-04-13 | 2021-11-09 | Novan, Inc. | Compositions, systems, kits, and methods for treating an infection |
EP3764793A4 (en) | 2018-03-13 | 2021-12-22 | SaNOtize Research and Developmemt Corp. | Nitric oxide releasing compositions |
JP2023533588A (en) * | 2020-07-16 | 2023-08-03 | サノタイズ リサーチ アンド ディベロップメント コープ. | Methods of Treating Conditions Responsive to Nitric Oxide Therapy |
CA3237722A1 (en) * | 2020-11-12 | 2022-05-19 | Thermolife International, Llc | Methods of increasing blood oxygen saturation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4673639A (en) * | 1985-09-09 | 1987-06-16 | Allegheny-Singer Research Institute | Dry form micronitrous acid streptococci extraction-agglutination test |
US4720384A (en) * | 1985-05-03 | 1988-01-19 | E. I. Du Pont De Nemours And Company | Manufacture of hollow fine tubular drug delivery systems |
US4803066A (en) * | 1986-03-22 | 1989-02-07 | Smith & Nephew Associated Companies P.L.C. | Antibacterial and/or antifungal compositions for topical application |
US6103275A (en) * | 1998-06-10 | 2000-08-15 | Nitric Oxide Solutions | Systems and methods for topical treatment with nitric oxide |
US6203275B1 (en) * | 1996-03-06 | 2001-03-20 | Hitachi, Ltd | Centrifugal compressor and diffuser for centrifugal compressor |
US6709681B2 (en) * | 1995-02-17 | 2004-03-23 | Aberdeen University | Acidified nitrite as an antimicrobial agent |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US206343A (en) | 1878-07-23 | Improvement in embalming compositions | ||
US65174A (en) | 1867-05-28 | Court-house | ||
GB375738A (en) | 1932-02-02 | 1932-06-30 | Samuel Mawhinney | A lotion for human use |
US4191750A (en) | 1976-03-08 | 1980-03-04 | Milton Hodosh | Method for treating canker sores |
CH629100A5 (en) | 1979-09-27 | 1982-04-15 | Solco Basel Ag | Hautpraeparat. |
JPS5985278A (en) | 1982-11-05 | 1984-05-17 | Agency Of Ind Science & Technol | Preservation of food and preserving material |
US4923899A (en) | 1987-12-22 | 1990-05-08 | Cetylite Industries, Inc. | Sterilant composition |
JPH0622540B2 (en) | 1985-12-18 | 1994-03-30 | 株式会社祥光化学研究所 | Structure with deodorant and antibacterial activity |
JP2623171B2 (en) | 1990-12-12 | 1997-06-25 | 富士写真フイルム株式会社 | Method and apparatus for perforating a joint detection hole in photographic paper |
JP3640392B2 (en) | 1992-06-08 | 2005-04-20 | ピットミー・インターナショナル・ナムローゼ・フェンノートシャップ | Dermatological composition |
MY128187A (en) | 1993-06-23 | 2007-01-31 | Icn Switzerland Ag | Preparation for skin and mucous membrane |
JP3875262B2 (en) | 1994-02-21 | 2007-01-31 | アバディーン ユニヴァーシティ | Acidified nitrite as a disinfectant |
AU2970595A (en) | 1994-07-15 | 1996-02-16 | Brigham And Women's Hospital | Inhibition of virus by nitric oxide |
US6190704B1 (en) | 1994-09-23 | 2001-02-20 | New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery | Regulation of wound healing by nitric oxide |
US5648101A (en) | 1994-11-14 | 1997-07-15 | Tawashi; Rashad | Drug delivery of nitric oxide |
US20030175362A1 (en) * | 2002-01-07 | 2003-09-18 | Kross Robert D. | Disinfecting nitrous acid compositions and process for using the same |
-
1999
- 1999-06-11 US US09/330,654 patent/US6709681B2/en not_active Expired - Fee Related
-
2002
- 2002-04-04 US US10/116,203 patent/US20020155174A1/en not_active Abandoned
-
2003
- 2003-11-03 US US10/701,295 patent/US20040105898A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4720384A (en) * | 1985-05-03 | 1988-01-19 | E. I. Du Pont De Nemours And Company | Manufacture of hollow fine tubular drug delivery systems |
US4673639A (en) * | 1985-09-09 | 1987-06-16 | Allegheny-Singer Research Institute | Dry form micronitrous acid streptococci extraction-agglutination test |
US4803066A (en) * | 1986-03-22 | 1989-02-07 | Smith & Nephew Associated Companies P.L.C. | Antibacterial and/or antifungal compositions for topical application |
US6709681B2 (en) * | 1995-02-17 | 2004-03-23 | Aberdeen University | Acidified nitrite as an antimicrobial agent |
US6203275B1 (en) * | 1996-03-06 | 2001-03-20 | Hitachi, Ltd | Centrifugal compressor and diffuser for centrifugal compressor |
US6103275A (en) * | 1998-06-10 | 2000-08-15 | Nitric Oxide Solutions | Systems and methods for topical treatment with nitric oxide |
US7048951B1 (en) * | 1998-06-10 | 2006-05-23 | Nioxx, Llc | Systems and methods for topical treatment with nitric oxide |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050036949A1 (en) * | 2001-10-19 | 2005-02-17 | Tucker Arthur Tudor | Therapeutic composition and use |
US20100247682A1 (en) * | 2003-07-09 | 2010-09-30 | The United States Of America As Represented By The Secretary | Use of nitrite salts for the treatment of cardiovascular conditions |
US9700578B2 (en) | 2003-07-09 | 2017-07-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of nitrite salts for the treatment of cardiovascular conditions |
US9675637B2 (en) | 2003-07-09 | 2017-06-13 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of nitrite salts for the treatment of cardiovascular conditions |
US9387224B2 (en) | 2003-07-09 | 2016-07-12 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Treatment of specific cardiovascular conditions with nitrite |
US8927030B2 (en) | 2003-07-09 | 2015-01-06 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of nitrite salts for the treatment of cardiovascular conditions |
US20060182815A1 (en) * | 2004-07-09 | 2006-08-17 | Use of nitrite salts for the treatment of cardiovascular conditions | |
US20080260865A1 (en) * | 2005-05-19 | 2008-10-23 | University Of Cincinnati | Methods for Treating Bacterial Respiratory Tract Infections in an Individual Using Acidified Nitrite |
US8557300B2 (en) | 2005-05-19 | 2013-10-15 | University Of Cincinnati | Methods for treating bacterial respiratory tract infections in an individual using acidified nitrite |
US9403852B2 (en) | 2005-05-27 | 2016-08-02 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US11691995B2 (en) | 2005-05-27 | 2023-07-04 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US8282967B2 (en) | 2005-05-27 | 2012-10-09 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US8956658B2 (en) | 2005-05-27 | 2015-02-17 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US8962029B2 (en) | 2005-05-27 | 2015-02-24 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
US9403851B2 (en) | 2005-05-27 | 2016-08-02 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
WO2009055008A1 (en) * | 2007-10-24 | 2009-04-30 | Wharton Innovative Products, Llc | Two part lotion for the delivery of nitrite ions to the skin |
US20090130233A1 (en) * | 2007-10-24 | 2009-05-21 | Baker Christopher G | Two part lotion |
US20090196930A1 (en) * | 2007-12-27 | 2009-08-06 | Aires Pharmaceuticals, Inc. | Aerosolized nitrite and nitric oxide -donating compounds and uses thereof |
WO2010031519A1 (en) * | 2008-09-16 | 2010-03-25 | Societa' Antica Ritrovati Medicinali S.A.R.M. S.R.L. | Transcutaneous compositions for specific immuno-modulatory treatment |
ITMI20081652A1 (en) * | 2008-09-16 | 2010-03-17 | Antica Ritrovati Medicinal I S A R M Srl Soc | TRANSDERMIC COMPOSITIONS FOR HYPOSENSIBILIZING SPECIFIC IMMUNOTHERAPY |
WO2010035253A1 (en) * | 2008-09-28 | 2010-04-01 | Joshua Waldhorn | Effective nitric oxide generating preparations |
EP3569237A1 (en) | 2009-02-11 | 2019-11-20 | Hope Medical Enterprise, Inc. D.b.a. Hope Pharmaceuticals | Sodium nitrite-containing pharmaceutical compositions |
EP3862007A1 (en) | 2009-02-11 | 2021-08-11 | Hope Medical Enterprises, Inc. d.b.a. Hope Pharmaceuticals | Sodium nitrite-containing pharmaceutical compositions |
US9737561B2 (en) | 2009-08-21 | 2017-08-22 | Novan, Inc. | Topical gels and methods of using the same |
US9919072B2 (en) | 2009-08-21 | 2018-03-20 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
US11583608B2 (en) | 2009-08-21 | 2023-02-21 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
US10376538B2 (en) | 2009-08-21 | 2019-08-13 | Novan, Inc. | Topical gels and methods of using the same |
US9526738B2 (en) | 2009-08-21 | 2016-12-27 | Novan, Inc. | Topical gels and methods of using the same |
US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
US8981139B2 (en) | 2011-02-28 | 2015-03-17 | The University Of North Carolina At Chapel Hill | Tertiary S-nitrosothiol-modified nitric—oxide-releasing xerogels and methods of using the same |
US9713652B2 (en) | 2011-02-28 | 2017-07-25 | The University Of North Carolina At Chapel Hill | Nitric oxide-releasing S-nitrosothiol-modified silica particles and methods of making the same |
US10736839B2 (en) | 2014-07-11 | 2020-08-11 | Novan, Inc. | Topical antiviral compositions, delivery systems, and methods of using the same |
US11040006B2 (en) | 2014-07-11 | 2021-06-22 | Novan, Inc. | Topical antiviral compositions, delivery systems, and methods of using the same |
US10322081B2 (en) | 2014-07-11 | 2019-06-18 | Novan, Inc. | Topical antiviral compositions and methods of using the same |
US10322082B2 (en) | 2014-07-11 | 2019-06-18 | Novan, Inc. | Topical antiviral compositions and methods of using the same |
US11723858B2 (en) | 2014-07-11 | 2023-08-15 | Novan, Inc. | Topical antiviral compositions, delivery systems, and methods of using the same |
US10925689B2 (en) | 2014-07-14 | 2021-02-23 | Novan, Inc. | Nitric oxide releasing nail coating compositions, nitric oxide releasing nail coatings, and methods of using the same |
US10849864B2 (en) | 2015-07-28 | 2020-12-01 | Novan, Inc. | Combinations and methods for the treatment and/or prevention of fungal infections |
Also Published As
Publication number | Publication date |
---|---|
US6709681B2 (en) | 2004-03-23 |
US20020155174A1 (en) | 2002-10-24 |
US20020136750A1 (en) | 2002-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6709681B2 (en) | Acidified nitrite as an antimicrobial agent | |
US10786531B2 (en) | Mineral salt-sulfonic acid compositions and methods of use | |
FI114852B (en) | Acidified nitrate as antimicrobial agent | |
JP5634655B2 (en) | Treatment of drug-resistant organisms | |
AU758264B2 (en) | Inorganic nitrite and organic acid in combination as topical antiviral composition | |
EP0463190B1 (en) | Minerals in bioavailable form | |
AU2005247328B2 (en) | Polycationic antimicrobial therapeutic | |
US9962347B2 (en) | Broad spectrum pharmacological composition for treatment of various infections and diseases and methods of use | |
JP4700808B2 (en) | Fulvic acid and its use in the treatment of various conditions | |
JPH10509437A (en) | Deodorant, antimicrobial and preservative compositions and methods of using them | |
JPH0768124B2 (en) | Zinc glycerolate complex and additions for pharmaceutical applications | |
KR20070092095A (en) | Disinfection compositions and methods for their preparation and use | |
KR0163563B1 (en) | Topical drug in combination for treatment of skin lesions | |
CN110090219A (en) | A kind of quick treatment is had a toothache with the drug of oral inflammation and preparation method thereof | |
Barabas et al. | Povidone-iodine | |
JP3058659B2 (en) | Minerals in bioavailable form | |
US20180161294A1 (en) | Broad spectrum pharmacological composition for treatmentof various infections and diseases and methodsof use | |
US20090130233A1 (en) | Two part lotion | |
ZA200604768B (en) | Disinfecting composition and methods of making and using same | |
MXPA06005233A (en) | Disinfecting composition and methods of making and using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABERDEEN UNIVERSITY, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENJAMIN, NIGEL;DOUGALL, HAMISH;REEL/FRAME:017214/0366;SIGNING DATES FROM 19990812 TO 19990909 Owner name: ABERDEEN UNIVERSITY, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENJAMIN, NIGEL;DOUGALL, HAMISH;ORMEROD, ANTHONY;REEL/FRAME:017217/0805;SIGNING DATES FROM 20011017 TO 20011220 |
|
AS | Assignment |
Owner name: NIOXX, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN;REEL/FRAME:023369/0269 Effective date: 20091009 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |