US20040098976A1 - Diesel aftertreatment systems - Google Patents
Diesel aftertreatment systems Download PDFInfo
- Publication number
- US20040098976A1 US20040098976A1 US10/301,361 US30136102A US2004098976A1 US 20040098976 A1 US20040098976 A1 US 20040098976A1 US 30136102 A US30136102 A US 30136102A US 2004098976 A1 US2004098976 A1 US 2004098976A1
- Authority
- US
- United States
- Prior art keywords
- reductant
- set forth
- heating element
- exhaust gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 106
- 238000010438 heat treatment Methods 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000002485 combustion reaction Methods 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims description 45
- 239000003054 catalyst Substances 0.000 claims description 19
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 238000013021 overheating Methods 0.000 abstract description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 47
- 239000007789 gas Substances 0.000 description 31
- 239000000446 fuel Substances 0.000 description 19
- 230000008901 benefit Effects 0.000 description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/0231—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/36—Arrangements for supply of additional fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/16—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2390/00—Arrangements for controlling or regulating exhaust apparatus
- F01N2390/02—Arrangements for controlling or regulating exhaust apparatus using electric components only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/08—Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
- F01N2610/107—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance using glow plug heating elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a system and a method for improving performance of an exhaust gas aftertreatment device and, more particularly, to using an air assist heated reductant delivery system to enhance system performance and reduce fuel penalty.
- the inventors herein have recognized several disadvantages with this approach. Namely, if delivery of the reductant has been shut off, or reduced, as dictated by the operating conditions, some reductant may remain in the annular space, in contact with the heating element, and may therefore clog up the annular opening around the heating device by carbonation of the residual fuel. Such carbon build up may lead to a blockage of the passage at the tip by which the vaporized fuel enters the exhaust stream. Further, there is a delay in introducing the reductant into the exhaust gas stream due to the time it takes for the reductant to travel down the length of the heating element. Additionally, durability of the heating element is reduced because its temperature is not controlled and adjusted based on operating conditions, and due to soot contamination. Yet another disadvantage of the prior art approach is that extra power is consumed due to the above-mentioned lack of temperature control.
- the present invention teaches a system and a method for introducing evaporated reductant into an exhaust gas stream entering a lean exhaust gas aftertreatment device while eliminating the above-mentioned disadvantages of the prior art approaches.
- a reductant delivery system includes: an evaporator unit including at least a heating element; a mixing device having at least one inlet and at least one outlet, said outlet coupled to said evaporator unit; and a controller for introducing reductant and air into said mixing device through said inlet, injecting a mixture of said reductant and said air through said outlet into said evaporator unit, said controller adjusting a temperature of said heating device to evaporate said mixture.
- a method for operating a reductant delivery system for an exhaust gas aftertreatment device includes: operating in a first mode where a reductant and air mixture is injected into the reductant delivery system and the heating element is turned on; and operating in a second mode where said reductant and air mixture is injected into the reductant delivery system, and the heating element is turned off.
- the present invention provides a number of advantages.
- creating a mixture of reductant and air improves the exhaust gas aftertreatment device efficiency, due to the enhanced mixing of the reductant with the bulk exhaust flow and improved catalytic action relative to the use of liquid phase reductant.
- mixing reductant with air breaks up the reductant in small particles, thus resulting in faster evaporation process.
- injecting air into the vaporizer unit prevents lacquering and soot deposits on the surface of the heating element.
- the inventors have recognized that dynamically controlling the temperature of the heating element to take advantage of the heat supplied by the exhaust gasses prevents overheating, improves the heating element durability and reduces power consumption.
- Yet another advantage of the present invention is that the heating element temperature can be controlled to ignite the injected reductant and air mixture, and thus produce carbon monoxide (CO), which further improves NOx reduction in the ALNC.
- CO carbon monoxide
- FIGS. 1A and 1B are schematic diagrams of an engine wherein the invention is used to advantage
- FIG. 2 is a an example of one embodiment of an emission control system wherein the present invention is used to advantage
- FIGS. 3A, 3B and 3 C are examples of reductant delivery systems in accordance with the present invention.
- FIG. 4 is a high level flowchart of an exemplary routine for controlling a temperature of the heating element of the reductant delivery system in accordance with the present invention
- FIGS. 5 and 6 describe an exemplary routine and a modification curve for determining an amount of reductant to be delivered to the exhaust gas aftertreatment device in accordance with the present invention.
- Internal combustion engine 10 comprising a plurality of cylinders, one cylinder of which is shown in FIG. 1, is controlled by electronic engine controller 12 .
- Engine 10 includes combustion chamber 30 and cylinder walls 32 with piston 36 positioned therein and connected to crankshaft 40 .
- Combustion chamber 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valve 52 and exhaust valve 54 .
- Intake manifold 44 is also shown having fuel injector 80 coupled thereto for delivering liquid fuel in proportion to the pulse width of signal FPW from controller 12 . Both fuel quantity, controlled by signal FPW and injection timing are adjustable.
- Fuel is delivered to fuel injector 80 by a fuel system (not shown) including a fuel tank, fuel pump, and fuel rail (not shown).
- Controller 12 is shown in FIG. 1 as a conventional microcomputer including: microprocessor unit 102 , input/output ports 104 , read-only memory 106 , random access memory 108 , and a conventional data bus. Controller 12 is shown receiving various signals from sensors coupled to engine 10 , in addition to those signals previously discussed, including: engine coolant temperature (ECT) from temperature sensor 112 coupled to cooling sleeve 114 ; a measurement of manifold pressure (MAP) from pressure sensor 116 coupled to intake manifold 44 ; a measurement (AT) of manifold temperature from temperature sensor 117 ; an engine speed signal (RPM) from engine speed sensor 118 coupled to crankshaft 40 .
- ECT engine coolant temperature
- MAP manifold pressure
- AT measurement
- RPM engine speed signal
- An emission control system 20 coupled to an exhaust manifold 48 , is described in detail in FIG. 2 below.
- engine 10 is a direct injection engine with injector 80 located to inject fuel directly into cylinder 30 .
- Emission control system 20 is coupled downstream of an internal combustion engine 10 described with particular reference in FIG. 1.
- Catalyst 14 is an Active Lean NOx Catalyst (ALNC) capable of reducing NOx in an oxygen rich environment.
- Oxidation catalyst 13 is coupled upstream of the ALNC and may be a precious metal catalyst, preferably one containing platinum.
- the oxidation catalyst exothermically combusts hydrocarbons (HC) in the incoming exhaust gas from the engine thus supplying heat to rapidly warm up the Active Lean NOx Catalyst (ALNC) 14 .
- carbon monoxide (CO) produced as a result of HC combustion in the oxidation catalyst 13 improves NOx reduction in the ALNC.
- Particulate filter 15 is coupled downstream of the ALNC and is capable of storing carbon particles from the exhaust.
- a reductant delivery system 16 is coupled to the exhaust gas manifold between the oxidation catalyst and the ALNC. Alternative embodiments of the reductant delivery system are described later herein with particular reference to FIGS. 3 A- 3 C.
- FIG. 3A generally represents an example of one embodiment of a reductant delivery system according to the present invention.
- the system comprises an evaporator unit 21 housing an elongated heating element 22 .
- the heating element is an electrically heated cylindrically shaped heating element.
- the heating element could be rectangular shaped to increase its surface contact area with the injected reductant and air mixture.
- an oxidizing catalytic coating may be added to the evaporator unit such as, for example, a coating on the inner surface of the heating element housing and a catalytic cap at the point where the evaporated reductant and air mixture enters the exhaust gas manifold, to facilitate CO generation.
- the catalytic coating may be a precious metal coating, preferably one containing Platinum or Palladium.
- Controller 12 controls the temperature of the heating element by providing a PWM signal of varying duty cycles. The duty cycle of the PWM control signal to the heating element is determined from a prestored table based on operating conditions to achieve desired heating element temperature.
- the mixing unit 23 has a reductant inlet and an air inlet and an outlet 24 coupled to the evaporator unit 21 through which a mixture of reductant and air is injected into the housing and subsequently comes into contact with the surface of the heating element 22 .
- both air and reductant can be injected through a single input.
- the reductant can be supplied to the mixing unit 23 from the fuel tank or from a storage vessel.
- Air pump 25 supplies pressurized air to the mixing unit 23 thereby creating a mixture of reductant and air.
- the outlet 24 is configured so that it delivers the reductant and air mixture to a specific area on the surface of the heating element.
- outlet 24 could be configured to deliver the reductant and air mixture to more than one area on the surface of the heating element.
- the controller 12 can selectively enable and disable injection of the mixture to these areas depending on operating conditions such as engine speed, load, exhaust gas temperature, etc. For example, when the amount of reductant required is high, such as at high load conditions, it may be necessary to enable delivery of the reductant and air mixture to more than one area on the surface of the heating element.
- FIG. 3B shows an alternate design for the heating element housing.
- the heating element is surrounded by a delivery tube the inner diameter of which is wide enough to allow the heating element to be housed.
- the delivery tube has a narrow channel drilled into it, which serves as a passage for the air and reductant mixture.
- the air and reductant mixture is injected into the narrow channel and is rapidly vaporized by the heat provided by the enclosed heating element without coming into direct contact with its surface.
- the durability of the heating element is further improved since the reductant and air mixture never comes into direct contact its surface.
- the delivery tube has one or more holes at its tip through which the evaporated reductant and air mixture enters the exhaust gas manifold.
- FIG. 3C shows an alternative embodiment of the heating element housing shown in FIG. 3B wherein a porous oxidizing catalytic plug, preferably one containing Platinum or Palladium, is placed at the tip of the delivery tube to facilitate conversion of the vaporized hydrocarbons to carbon monoxide. Additionally, one or more ports may be drilled into the delivery tube along its length and plugged up with porous oxidizing catalytic material to further facilitate conversion of hydrocarbons into carbon monoxide.
- a porous oxidizing catalytic plug preferably one containing Platinum or Palladium
- an improved reductant delivery system and method are presented.
- Mixing reductant with air causes the reductant to be well distributed inside the reductant delivery system and thus speeds up the vaporization process.
- system durability is improved by reducing lacquering and soot deposits through better distribution of the reductant and faster evaporation process.
- the system performance is further improved through the addition of an oxidizing catalytic coating.
- routines described in FIGS. 4 and 5 below may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various steps or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases, omitted. Likewise, the order of processing is not necessarily required to achieve the objects, features and advantages of the invention, but is provided for ease of illustration and description. Although not explicitly illustrated, one of ordinary skill in the art will recognize that one or more of the illustrated steps or functions may be repeatedly performed depending on the particular strategy being used.
- step 100 desired heating element temperature, T des , is determined. This determination is based on what function the reductant evaporator system is performing such as whether the mixture is to be evaporated or combusted.
- step 200 the routine proceeds to step 200 wherein operating conditions known to have an effect on the heating element temperature, such as the exhaust gas temperature upstream of the ALNC, are evaluated.
- the exhaust gas temperature can be determined from a temperature sensor coupled in the exhaust gas manifold, or estimated based on parameters such as engine speed, load, engine temperature, ignition timing, etc.
- step 300 optimal duty cycle to achieve desired heating element temperature is determined from a prestored experimentally determined temperature map of the heating element based on operating conditions such as the exhaust gas temperature in this example.
- the routine then proceeds to step 400 wherein the duty cycle of the heating element control signal is adjusted to achieve desired heating element temperature.
- the routine then exits.
- step 500 the amount of NOx in the exhaust gas mixture entering the device, NOx fg , is estimated based on engine operating conditions. These conditions may include engine speed, engine load, exhaust temperatures, exhaust gas aftertreatment device temperatures, injection timing, engine temperature, and any other parameter know to those skilled in the art to indicate the amount of NOx produced by the combustion presses. Alternatively, a NOx sensor may be used to measure the amount of NOx in the exhaust gas mixture.
- RA fg is the amount of reductant in the exhaust gas mixture entering the device, which can be determined based on engine operating conditions.
- This initial reductant amount, RA inj — 1 is evaluated at steady state and yields a base reductant quantity to be injected for each engine speed and load point.
- the amount is calibrated to achieve a certain feedgas reductant to NOx ratio, R des .
- the ratio is typically obtained as a trade-off between NOx conversion and the fuel penalty due to reductant injection, and in this example is set at approximately 10.
- the steady-state base reductant injection amount, RA inj — 1 is modified to account for engine operating conditions, such as engine coolant temperature, T c , exhaust gas temperature, T eg , EGR valve position, EGR pos , start of injection, SOI, and other parameters:
- RA inj — 2 RA inj — 1 ⁇ f 1 ( T c ) ⁇ f 2 ( T eg ) ⁇ f 3 ( SoI ) ⁇ f 4 ( EGR pos )
- step 900 a low pass filter is applied to smooth out the noise:
- step 1000 wherein the reductant amount is further modified to account for engine transient behaviors as represented by the changes in the pedal position:
- RA inj — 3 RA inj — 2 ⁇ f 5 ( pps — diff — p )
- step 1100 the desired temperature of the heating element is obtained as described with particular reference to FIG. 4, thus achieving optimum temperature for reductant and air mixture evaporation.
- the routine then proceeds to step 1200 wherein the areas on the surface of the heating element to which a reductant and air mixture is injected are selected basedlon operating conditions.
- f 5 An example of f 5 is shown with particular reference to FIG. 6.
- the amount of reductant to be injected should be adjusted to account for increases and decreases in the amount of NOx in the exhaust gas entering the device. This can be accomplished by continuously monitoring engine parameters that are capable of providing a measure of engine transient behaviors, such as a pedal position sensor, and continuously adjusting the amount of reductant to be injected as a function of filtered instantaneous changes in these parameters. Since NOx production typically increases at tip-in and decreases at tip-out, the result of such operation would be to increase the base injected amount in the former case, and decrease the base injected amount in the latter case. Further, using a reductant vaporizer unit ensures fast system response, more efficient system operation, better emission control, and improved fuel economy.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
- The present invention relates to a system and a method for improving performance of an exhaust gas aftertreatment device and, more particularly, to using an air assist heated reductant delivery system to enhance system performance and reduce fuel penalty.
- Current emission control regulations necessitate the use of catalysts in the exhaust systems of automotive vehicles in order to convert carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) produced during engine operation into harmless exhaust gasses. Vehicles equipped with diesel or lean gasoline engines offer the benefits of increased fuel economy. Such vehicles have to be equipped with lean exhaust aftertreatment devices, such as, for example, Active Lean NOx Catalysts (ALNC), which are capable of continuously reducing NOx emissions, even in an oxygen rich environment. In order to maximize NOx reduction in the ALNC, a hydrocarbon-based reductant, such as fuel (HC), has to be added to the exhaust gas entering the device. However, introducing fuel as a reductant reduces overall vehicle fuel economy. Therefore, in order to achieve high levels of NOx conversion in the ALNC while concurrently minimizing the fuel penalty, it is important to optimize usage of injected reductant.
- In this regard, it is known that improved NOx conversion can be achieved by introducing the reductant in vapor rather than liquid form. Introducing the reductant in vapor form allows better distribution and mixing of the reductant with the exhaust gas entering the NOx reduction device.
- One such system is described in U.S. Pat. No. 5,771,689, wherein a reductant is introduced into the exhaust system via an evaporator device that has a hollow body with a heating element protruding into its interior. The evaporator device protrudes into the wall of the exhaust pipe upstream of the catalyst. The reductant is introduced so that it flows through the narrow space between the hollow body and the heating element until it reaches the tip of the heating element from where it enters the exhaust pipe in vapor form and mixes with the exhaust gas entering the catalyst.
- The inventors herein have recognized several disadvantages with this approach. Namely, if delivery of the reductant has been shut off, or reduced, as dictated by the operating conditions, some reductant may remain in the annular space, in contact with the heating element, and may therefore clog up the annular opening around the heating device by carbonation of the residual fuel. Such carbon build up may lead to a blockage of the passage at the tip by which the vaporized fuel enters the exhaust stream. Further, there is a delay in introducing the reductant into the exhaust gas stream due to the time it takes for the reductant to travel down the length of the heating element. Additionally, durability of the heating element is reduced because its temperature is not controlled and adjusted based on operating conditions, and due to soot contamination. Yet another disadvantage of the prior art approach is that extra power is consumed due to the above-mentioned lack of temperature control.
- The present invention teaches a system and a method for introducing evaporated reductant into an exhaust gas stream entering a lean exhaust gas aftertreatment device while eliminating the above-mentioned disadvantages of the prior art approaches.
- In accordance with the present invention, a reductant delivery system includes: an evaporator unit including at least a heating element; a mixing device having at least one inlet and at least one outlet, said outlet coupled to said evaporator unit; and a controller for introducing reductant and air into said mixing device through said inlet, injecting a mixture of said reductant and said air through said outlet into said evaporator unit, said controller adjusting a temperature of said heating device to evaporate said mixture.
- In another aspect of the present invention, a method for operating a reductant delivery system for an exhaust gas aftertreatment device, the system including at least a heating element, includes: operating in a first mode where a reductant and air mixture is injected into the reductant delivery system and the heating element is turned on; and operating in a second mode where said reductant and air mixture is injected into the reductant delivery system, and the heating element is turned off.
- The present invention provides a number of advantages. In particular, creating a mixture of reductant and air improves the exhaust gas aftertreatment device efficiency, due to the enhanced mixing of the reductant with the bulk exhaust flow and improved catalytic action relative to the use of liquid phase reductant. Additionally, mixing reductant with air breaks up the reductant in small particles, thus resulting in faster evaporation process. Additionally, injecting air into the vaporizer unit prevents lacquering and soot deposits on the surface of the heating element. Further, the inventors have recognized that dynamically controlling the temperature of the heating element to take advantage of the heat supplied by the exhaust gasses prevents overheating, improves the heating element durability and reduces power consumption.
- Yet another advantage of the present invention is that the heating element temperature can be controlled to ignite the injected reductant and air mixture, and thus produce carbon monoxide (CO), which further improves NOx reduction in the ALNC.
- It is a further advantage of this invention that CO generation is increased (and thus NOx conversion efficiency increased) by placing an oxidizing catalyst in the path of the reductant and air mixture prior to its mixing with the exhaust gasses.
- The above advantages and other advantages, objects and features of the present invention will be readily apparent from the following detailed description of the preferred embodiments when taken in connection with the accompanying drawings.
- The objects and advantages described herein will be more fully understood by reading an example of an embodiment in which the invention is used to advantage, referred to herein as the Description of Preferred Embodiment, with reference to the drawings, wherein:
- FIGS. 1A and 1B are schematic diagrams of an engine wherein the invention is used to advantage;
- FIG. 2 is a an example of one embodiment of an emission control system wherein the present invention is used to advantage;
- FIGS. 3A, 3B and3C are examples of reductant delivery systems in accordance with the present invention;
- FIG. 4 is a high level flowchart of an exemplary routine for controlling a temperature of the heating element of the reductant delivery system in accordance with the present invention;
- FIGS. 5 and 6 describe an exemplary routine and a modification curve for determining an amount of reductant to be delivered to the exhaust gas aftertreatment device in accordance with the present invention.
-
Internal combustion engine 10, comprising a plurality of cylinders, one cylinder of which is shown in FIG. 1, is controlled byelectronic engine controller 12.Engine 10 includescombustion chamber 30 and cylinder walls 32 withpiston 36 positioned therein and connected tocrankshaft 40.Combustion chamber 30 is shown communicating withintake manifold 44 andexhaust manifold 48 viarespective intake valve 52 andexhaust valve 54.Intake manifold 44 is also shown havingfuel injector 80 coupled thereto for delivering liquid fuel in proportion to the pulse width of signal FPW fromcontroller 12. Both fuel quantity, controlled by signal FPW and injection timing are adjustable. Fuel is delivered tofuel injector 80 by a fuel system (not shown) including a fuel tank, fuel pump, and fuel rail (not shown). -
Controller 12 is shown in FIG. 1 as a conventional microcomputer including:microprocessor unit 102, input/output ports 104, read-only memory 106,random access memory 108, and a conventional data bus.Controller 12 is shown receiving various signals from sensors coupled toengine 10, in addition to those signals previously discussed, including: engine coolant temperature (ECT) fromtemperature sensor 112 coupled tocooling sleeve 114; a measurement of manifold pressure (MAP) frompressure sensor 116 coupled tointake manifold 44; a measurement (AT) of manifold temperature fromtemperature sensor 117; an engine speed signal (RPM) fromengine speed sensor 118 coupled tocrankshaft 40. - An
emission control system 20, coupled to anexhaust manifold 48, is described in detail in FIG. 2 below. - Referring now to FIG. 1B, an alternative embodiment is shown where
engine 10 is a direct injection engine withinjector 80 located to inject fuel directly intocylinder 30. - Referring now to FIG. 2, an example of an emission control system in accordance with the present invention is described.
Emission control system 20 is coupled downstream of aninternal combustion engine 10 described with particular reference in FIG. 1. Catalyst 14 is an Active Lean NOx Catalyst (ALNC) capable of reducing NOx in an oxygen rich environment. Oxidation catalyst 13 is coupled upstream of the ALNC and may be a precious metal catalyst, preferably one containing platinum. The oxidation catalyst exothermically combusts hydrocarbons (HC) in the incoming exhaust gas from the engine thus supplying heat to rapidly warm up the Active Lean NOx Catalyst (ALNC) 14. Additionally, carbon monoxide (CO) produced as a result of HC combustion in the oxidation catalyst 13 improves NOx reduction in the ALNC. Particulate filter 15 is coupled downstream of the ALNC and is capable of storing carbon particles from the exhaust. - A
reductant delivery system 16 is coupled to the exhaust gas manifold between the oxidation catalyst and the ALNC. Alternative embodiments of the reductant delivery system are described later herein with particular reference to FIGS. 3A-3C. - The diagram of FIG. 3A generally represents an example of one embodiment of a reductant delivery system according to the present invention. The system comprises an
evaporator unit 21 housing anelongated heating element 22. In this example, the heating element is an electrically heated cylindrically shaped heating element. Alternatively, the heating element could be rectangular shaped to increase its surface contact area with the injected reductant and air mixture. - In yet another alternative embodiment, an oxidizing catalytic coating may be added to the evaporator unit such as, for example, a coating on the inner surface of the heating element housing and a catalytic cap at the point where the evaporated reductant and air mixture enters the exhaust gas manifold, to facilitate CO generation. The catalytic coating may be a precious metal coating, preferably one containing Platinum or Palladium.
Controller 12 controls the temperature of the heating element by providing a PWM signal of varying duty cycles. The duty cycle of the PWM control signal to the heating element is determined from a prestored table based on operating conditions to achieve desired heating element temperature. The mixingunit 23 has a reductant inlet and an air inlet and anoutlet 24 coupled to theevaporator unit 21 through which a mixture of reductant and air is injected into the housing and subsequently comes into contact with the surface of theheating element 22. - In an alternative embodiment (not shown), both air and reductant can be injected through a single input. The reductant can be supplied to the mixing
unit 23 from the fuel tank or from a storage vessel.Air pump 25 supplies pressurized air to the mixingunit 23 thereby creating a mixture of reductant and air. Theoutlet 24 is configured so that it delivers the reductant and air mixture to a specific area on the surface of the heating element. Alternatively,outlet 24 could be configured to deliver the reductant and air mixture to more than one area on the surface of the heating element. Thecontroller 12 can selectively enable and disable injection of the mixture to these areas depending on operating conditions such as engine speed, load, exhaust gas temperature, etc. For example, when the amount of reductant required is high, such as at high load conditions, it may be necessary to enable delivery of the reductant and air mixture to more than one area on the surface of the heating element. - FIG. 3B shows an alternate design for the heating element housing. As can be seen in the drawing, the heating element is surrounded by a delivery tube the inner diameter of which is wide enough to allow the heating element to be housed. The delivery tube has a narrow channel drilled into it, which serves as a passage for the air and reductant mixture. The air and reductant mixture is injected into the narrow channel and is rapidly vaporized by the heat provided by the enclosed heating element without coming into direct contact with its surface. In this embodiment, the durability of the heating element is further improved since the reductant and air mixture never comes into direct contact its surface. The delivery tube has one or more holes at its tip through which the evaporated reductant and air mixture enters the exhaust gas manifold.
- FIG. 3C shows an alternative embodiment of the heating element housing shown in FIG. 3B wherein a porous oxidizing catalytic plug, preferably one containing Platinum or Palladium, is placed at the tip of the delivery tube to facilitate conversion of the vaporized hydrocarbons to carbon monoxide. Additionally, one or more ports may be drilled into the delivery tube along its length and plugged up with porous oxidizing catalytic material to further facilitate conversion of hydrocarbons into carbon monoxide.
- Therefore, according to the present invention, an improved reductant delivery system and method are presented. Mixing reductant with air causes the reductant to be well distributed inside the reductant delivery system and thus speeds up the vaporization process. Also, system durability is improved by reducing lacquering and soot deposits through better distribution of the reductant and faster evaporation process. The system performance is further improved through the addition of an oxidizing catalytic coating.
- As will be appreciated by one of ordinary skill in the art, the routines described in FIGS. 4 and 5 below may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various steps or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases, omitted. Likewise, the order of processing is not necessarily required to achieve the objects, features and advantages of the invention, but is provided for ease of illustration and description. Although not explicitly illustrated, one of ordinary skill in the art will recognize that one or more of the illustrated steps or functions may be repeatedly performed depending on the particular strategy being used.
- Referring now to FIG. 4, an exemplary routine for controlling the temperature of the heating element of the reductant delivery system in accordance with the present invention is described. First, in
step 100, desired heating element temperature, Tdes, is determined. This determination is based on what function the reductant evaporator system is performing such as whether the mixture is to be evaporated or combusted. Next, the routine proceeds to step 200 wherein operating conditions known to have an effect on the heating element temperature, such as the exhaust gas temperature upstream of the ALNC, are evaluated. The exhaust gas temperature can be determined from a temperature sensor coupled in the exhaust gas manifold, or estimated based on parameters such as engine speed, load, engine temperature, ignition timing, etc. Next, instep 300, optimal duty cycle to achieve desired heating element temperature is determined from a prestored experimentally determined temperature map of the heating element based on operating conditions such as the exhaust gas temperature in this example. The routine then proceeds to step 400 wherein the duty cycle of the heating element control signal is adjusted to achieve desired heating element temperature. The routine then exits. - Therefore, by generating a map of the heating element temperature based on operating conditions, such as the exhaust gas temperature, or any parameter known to affect the temperature of the heated element, it is possible to dynamically control the temperature of the heated element to achieve optimal reductant and air mixture delivery while minimizing power consumption and preventing overheating of the heating element. In other words, it is possible to take advantage of the heat provided by the exhaust gas passing through the reductant delivery system when controlling the temperature of the heating element. For example, higher exhaust gas temperature result in less power requirements, while lower exhaust gas temperatures result in higher power requirements. It is also possible to completely turn off power supply when the exhaust gas temperature is high enough to keep the heating element at desired temperature such as at high engine load conditions.
- Referring now to FIG. 5, an exemplary routine for controlling injection of a reductant into exhaust flow using a reductant vaporizer system as described in FIG. 3A is presented. First, in
step 500, the amount of NOx in the exhaust gas mixture entering the device, NOxfg, is estimated based on engine operating conditions. These conditions may include engine speed, engine load, exhaust temperatures, exhaust gas aftertreatment device temperatures, injection timing, engine temperature, and any other parameter know to those skilled in the art to indicate the amount of NOx produced by the combustion presses. Alternatively, a NOx sensor may be used to measure the amount of NOx in the exhaust gas mixture. Next, instep 600, the steady-state reductant injection amount, RAinj— 1, is calculated based on the following equation: - wherein RAfg is the amount of reductant in the exhaust gas mixture entering the device, which can be determined based on engine operating conditions. This initial reductant amount, RAinj
— 1, is evaluated at steady state and yields a base reductant quantity to be injected for each engine speed and load point. The amount is calibrated to achieve a certain feedgas reductant to NOx ratio, Rdes. The ratio is typically obtained as a trade-off between NOx conversion and the fuel penalty due to reductant injection, and in this example is set at approximately 10. Next, instep 700, the steady-state base reductant injection amount, RAinj— 1, is modified to account for engine operating conditions, such as engine coolant temperature, Tc, exhaust gas temperature, Teg, EGR valve position, EGRpos, start of injection, SOI, and other parameters: - RA inj
— 2 =RA inj— 1 ·f 1(T c)·f 2(T eg)·f 3(SoI)·f 4(EGR pos) -
- where TB is the sampling rate, and pps(t) denotes the pedal position at time t. Next, in
step 900, a low pass filter is applied to smooth out the noise: - pps — diff — lp(t)=(1−k f)·pps — diff — lp(t−1)+k f ·pps — diff(t−1)
- where kf controls the rate of filtering. The routine then proceeds to step 1000 wherein the reductant amount is further modified to account for engine transient behaviors as represented by the changes in the pedal position:
- RA inj
— 3 =RA inj— 2 ·f 5(pps — diff — p) - where function f5 is shaped to allow overinjection of reductant during pedal position tip-in and underinjection of reductant during pedal position tip-out. In an alternative embodiment, instead of pedal position, engine speed or fuel demand sensor, or any other parameter known to those skilled in the art to provide a measure of engine transient behavior may be used to obtain RAinj
— 3 Next, instep 1100, the desired temperature of the heating element is obtained as described with particular reference to FIG. 4, thus achieving optimum temperature for reductant and air mixture evaporation. The routine then proceeds to step 1200 wherein the areas on the surface of the heating element to which a reductant and air mixture is injected are selected basedlon operating conditions. These areas are selected from a prestored map based on such parameters as the amount of reductant to be delivered, engine load, speed, exhaust gas temperature, catalyst temperature, throttle position, etc. For example, at high engine loads it may be desirable to inject the reductant and air mixture faster than at low engine loads, and delivery to more than one area will therefore be enabled. The routine then exits. An example of f5 is shown with particular reference to FIG. 6. - Therefore, according to the present invention, in order to achieve more efficient exhaust aftertreatment device performance, the amount of reductant to be injected should be adjusted to account for increases and decreases in the amount of NOx in the exhaust gas entering the device. This can be accomplished by continuously monitoring engine parameters that are capable of providing a measure of engine transient behaviors, such as a pedal position sensor, and continuously adjusting the amount of reductant to be injected as a function of filtered instantaneous changes in these parameters. Since NOx production typically increases at tip-in and decreases at tip-out, the result of such operation would be to increase the base injected amount in the former case, and decrease the base injected amount in the latter case. Further, using a reductant vaporizer unit ensures fast system response, more efficient system operation, better emission control, and improved fuel economy.
- This concludes the description of the invention. The reading of it by those skilled in the art would bring to mind many alterations and modifications without departing from the spirit and the scope of the invention. Accordingly, it is intended that the scope of the invention is defined by the following claims:
Claims (32)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/301,361 US20040098976A1 (en) | 2002-11-21 | 2002-11-21 | Diesel aftertreatment systems |
DE10347134A DE10347134A1 (en) | 2002-11-21 | 2003-10-10 | Diesel exhaust aftertreatment systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/301,361 US20040098976A1 (en) | 2002-11-21 | 2002-11-21 | Diesel aftertreatment systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040098976A1 true US20040098976A1 (en) | 2004-05-27 |
Family
ID=32312170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/301,361 Abandoned US20040098976A1 (en) | 2002-11-21 | 2002-11-21 | Diesel aftertreatment systems |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040098976A1 (en) |
DE (1) | DE10347134A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080066452A1 (en) * | 2006-09-18 | 2008-03-20 | Christopher Oberski | Engine-Off Ammonia Vapor Management System and Method |
US20080223021A1 (en) * | 2007-03-15 | 2008-09-18 | Furqan Shaikh | Ammonia vapor management system and method |
US20090140068A1 (en) * | 2005-09-20 | 2009-06-04 | Marco Ranalli | Injection Nozzle Having Heating Element And Heat Accumulator And Method For Introducing An Oxidizable Fluid Into An Exhaust System Upstream Of A Catalytic Converter Or Filter |
WO2010148237A3 (en) * | 2009-06-18 | 2011-03-31 | Cummins Ip, Inc. | Apparatus, system, and method for reductant line heating control |
US20140248042A1 (en) * | 2013-03-04 | 2014-09-04 | Faurecia Emissions Control Technologies, Germany Gmbh | Vaporizer |
JP2015140792A (en) * | 2014-01-30 | 2015-08-03 | 株式会社デンソー | reducing agent addition device |
WO2015158948A1 (en) * | 2014-04-17 | 2015-10-22 | Wärtsilä Finland Oy | System and method of catalyst frost protection of selective catalytic reduction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6260353B1 (en) * | 1998-07-10 | 2001-07-17 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | NOx reduction system for combustion exhaust gas |
-
2002
- 2002-11-21 US US10/301,361 patent/US20040098976A1/en not_active Abandoned
-
2003
- 2003-10-10 DE DE10347134A patent/DE10347134A1/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6260353B1 (en) * | 1998-07-10 | 2001-07-17 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | NOx reduction system for combustion exhaust gas |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090140068A1 (en) * | 2005-09-20 | 2009-06-04 | Marco Ranalli | Injection Nozzle Having Heating Element And Heat Accumulator And Method For Introducing An Oxidizable Fluid Into An Exhaust System Upstream Of A Catalytic Converter Or Filter |
US20080066452A1 (en) * | 2006-09-18 | 2008-03-20 | Christopher Oberski | Engine-Off Ammonia Vapor Management System and Method |
US8209961B2 (en) | 2006-09-18 | 2012-07-03 | Ford Global Technologies, Llc | Engine-off ammonia vapor management system and method |
US7726118B2 (en) * | 2006-09-18 | 2010-06-01 | Ford Global Technologies, Llc | Engine-off ammonia vapor management system and method |
US20100236219A1 (en) * | 2006-09-18 | 2010-09-23 | Ford Global Technologies, Llc | Engine-off ammonia vapor management system and method |
US20110232611A1 (en) * | 2007-03-15 | 2011-09-29 | Ford Global Technologies, Llc | Ammonia vapor management system and method |
US7954311B2 (en) | 2007-03-15 | 2011-06-07 | Ford Global Technologies, Llc | Ammonia vapor management system and method |
US20080223021A1 (en) * | 2007-03-15 | 2008-09-18 | Furqan Shaikh | Ammonia vapor management system and method |
US8621848B2 (en) | 2007-03-15 | 2014-01-07 | Ford Global Technologies, Llc | Ammonia vapor management system and method |
US20110083621A1 (en) * | 2009-06-18 | 2011-04-14 | Cummins Ip, Inc. | Apparatus, System, and Method for Reductant Line Heating Control |
WO2010148237A3 (en) * | 2009-06-18 | 2011-03-31 | Cummins Ip, Inc. | Apparatus, system, and method for reductant line heating control |
US8561392B2 (en) | 2009-06-18 | 2013-10-22 | Cummins Ip, Inc. | Apparatus, system, and method for reductant line heating control |
US20140248042A1 (en) * | 2013-03-04 | 2014-09-04 | Faurecia Emissions Control Technologies, Germany Gmbh | Vaporizer |
US9624800B2 (en) * | 2013-03-04 | 2017-04-18 | Faurecia Emissions Control Technologies, Germany, GmbH | Vaporizer |
JP2015140792A (en) * | 2014-01-30 | 2015-08-03 | 株式会社デンソー | reducing agent addition device |
WO2015158948A1 (en) * | 2014-04-17 | 2015-10-22 | Wärtsilä Finland Oy | System and method of catalyst frost protection of selective catalytic reduction |
KR20160146848A (en) * | 2014-04-17 | 2016-12-21 | 바르실라 핀랜드 오이 | System and method of catalyst frost protection of selective catalytic reduction |
CN106460604A (en) * | 2014-04-17 | 2017-02-22 | 瓦锡兰芬兰有限公司 | System and method of catalyst frost protection of selective catalytic reduction |
KR101856895B1 (en) * | 2014-04-17 | 2018-06-19 | 바르실라 핀랜드 오이 | System and method of catalyst frost protection of selective catalytic reduction |
Also Published As
Publication number | Publication date |
---|---|
DE10347134A1 (en) | 2004-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6834498B2 (en) | Diesel aftertreatment systems | |
US6895747B2 (en) | Diesel aftertreatment systems | |
US6823663B2 (en) | Exhaust gas aftertreatment systems | |
US6928806B2 (en) | Exhaust gas aftertreatment systems | |
US6892530B2 (en) | Exhaust gas aftertreatment systems | |
US6167698B1 (en) | Exhaust gas purification system for a lean burn engine | |
EP1431533B1 (en) | Emissions control system for increasing selective catalytic reduction efficiency | |
US5606856A (en) | Arrangement for an after treatment of exhaust gases from an internal combustion engine | |
US10408103B1 (en) | Method to power multiple electric heaters with a single power source | |
JP2004514829A (en) | Apparatus and method for post-treating exhaust gas | |
US6862879B2 (en) | Diesel aftertreatment system | |
US20130064744A1 (en) | Heated injection system for diesel engine exhaust systems | |
US7475535B2 (en) | Diesel aftertreatment systems | |
US20050066652A1 (en) | Diesel aftertreatment systems | |
EP2447494B1 (en) | Exhaust emission control device for internal combustion engine | |
RU152002U1 (en) | EMISSION TOXICITY REDUCTION DEVICE | |
US20040098976A1 (en) | Diesel aftertreatment systems | |
US11047286B2 (en) | Exhaust gas control apparatus for internal combustion engine | |
JP3855444B2 (en) | Reducing agent supply device for internal combustion engine | |
Son et al. | A study on the practicability of a secondary air injection for emission reduction | |
JPH0777032A (en) | Exhaust purifier for diesel engine | |
JP2007192148A (en) | Exhaust emission control device and exhaust emission control method for internal combustion engine | |
KR19990025889U (en) | Engine air-fuel ratio control device of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FORD MOTOR COMPANY, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN NIEUWSTADT, MICHIEL J.;UPADHYAY, DEVESH;GOEBELBECKER, MICHAEL;AND OTHERS;REEL/FRAME:013560/0978 Effective date: 20021106 Owner name: FORD GLOBAL TECHNOLOGIES, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FORD MOTOR COMPANY A DELAWARE CORPORATION;REEL/FRAME:013554/0455 Effective date: 20021107 |
|
AS | Assignment |
Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN Free format text: MERGER;ASSIGNOR:FORD GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:013987/0838 Effective date: 20030301 Owner name: FORD GLOBAL TECHNOLOGIES, LLC,MICHIGAN Free format text: MERGER;ASSIGNOR:FORD GLOBAL TECHNOLOGIES, INC.;REEL/FRAME:013987/0838 Effective date: 20030301 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |