US20040096956A1 - Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules - Google Patents
Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules Download PDFInfo
- Publication number
- US20040096956A1 US20040096956A1 US10/690,396 US69039603A US2004096956A1 US 20040096956 A1 US20040096956 A1 US 20040096956A1 US 69039603 A US69039603 A US 69039603A US 2004096956 A1 US2004096956 A1 US 2004096956A1
- Authority
- US
- United States
- Prior art keywords
- antibody
- antigen
- dna
- cells
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- Monoclonal and polyclonal antibodies are useful for a variety of purposes.
- the precise antigen specificity of antibodies makes them powerful tools that can be used for the detection, quantitation, purification and neutralization of antigens.
- Polyclonal antibodies are produced in vivo by immunizing animals, such as rabbits and goats, with antigens, bleeding the animals and isolating polyclonal antibody molecules from the blood.
- Monoclonal antibodies are produced by hybridoma cells, which are made by fusing, in vitro, immortal plasmacytoma cells with antibody producing cells (Kohler, G. and C. Milstein, Nature, 256:495 (1975)) obtained from animals immunized in vivo with antigen.
- a method of producing antibodies which avoids the limitations of presently-available methods, such as the requirement for immunization of an animal and in vivo steps, would be very useful, particularly if it made it possible to produce a wider range of antibody types than can be made using presently-available techniques and if it made it possible to produce human antibody types.
- the present invention relates to a method of producing libraries of genes encoding antigen-combining molecules or antibodies; a method of producing-antigen-combining molecules, also referred to as antibodies, which does not require an in vivo procedure, as is required by presently-available methods; a method of obtaining antigen-combining molecules (antibodies) of selected or defined specificity which does not require an in vivo procedure; vectors useful in the present method and antibodies produced or obtained by the method.
- the present invention relates to an in vitro process for synthesizing DNA encoding families of antigen-combining molecules or proteins.
- DNA containing genes encoding antigen-combining molecules is obtained and combined with oligonucleotides which are homologous to regions of the genes which are conserved.
- Sequence-specific gene amplification is then carried out using the DNA containing genes encoding antigen-combining proteins as template and the homologous oligonucleotides as primers.
- This invention also relates to a method of creating is diverse libraries of DNAs encoding families of antigen-combining proteins by cloning the product of the in vitro process for synthesizing DNA, described in the preceeding paragraph, into an appropriate vector (e.g., a plasmid, viral or retroviral vector).
- an appropriate vector e.g., a plasmid, viral or retroviral vector.
- the subject invention provides an alternative method for the production of antigen-combining molecules, which are useful affinity reagents for the detection and neutralization of antigens and the delivery of molecules to antigenic sites.
- the claimed method differs from production of polyclonal antibody molecules derived by immunization of live animals and from production of mono-clonal antibody molecules through the use of hybridoma cell lines in that it does not require an in vivo immunization step, as do presently available methods. Rather, diverse libraries of genes which encode-antigen-combining sites comprising a significant proportion of an animal's repertoire of antibody combining sites are made, as described in detail herein. These genes are expressed in living cells, from which molecules of desired antigenic selectivity can be isolated and purified for various uses.
- Antigen-combining molecules are produced by the present method in the following manner, which is described in greater deail below. Initially, a library of antibody genes which includes a set of variable regions encoding a large, diverse and random group of specificities derived from animal or human immunoglobulins is produced by amplifying or cloning diverse genomic fragments or cDNAs of antibody mRNAs found in antibody-producing tissue.
- the diversity of the resulting libraries can be increased by means of random mutagenesis.
- the gene libraries are introduced into cultured host cells, which may be eukaryotic or prokaryotic, in which they are expressed. Genes encoding antibodies of desired antigenic specificity are identified, using a method described herein or known techniques, isolated and expressed in quantities in appropriate host cells, from which the encoded antibody can be purified.
- a library of genes encoding immunoglobulin heavy chain regions and a library of genes encoding immunoglobulin light chain regions are constructed. This is carried out by obtaining antibody-encoding DNA, which is either genomic fragments or cDNAs of antibody mRNAs, amplfying or cloning the fragments or cDNAs; and introducing them into a standard framework antibody gene vector, which is used to introduce the antibody-encoding DNA into cells in which the DNA is expressed.
- the vector includes a framework gene encoding a protein, such as a gene encoding an antibody heavy chain or an antibody light chain which can be of any origin (human, non-human) and can be derived from any of a number of existing DNAs encoding heavy chain immuno-globulins or light chain immunoglobulins.
- a framework gene encoding a protein, such as a gene encoding an antibody heavy chain or an antibody light chain which can be of any origin (human, non-human) and can be derived from any of a number of existing DNAs encoding heavy chain immuno-globulins or light chain immunoglobulins.
- Such vectors are also a subject of the present invention and are described in greater detail in a subsequent section.
- Genes from one or both of the libraries are introduced into appropriate host cells, in which the genes are expressed, resulting in production of a wide variety of antigen-combining molecules.
- Genes encoding antigen-combining molecules of desired specificity are identified by identifying cells producing antigen-combining molecules which react with a selected antigen and then obtaining the genes of interest.
- the genes of interest can subsequently be introduced into an appropriate host cell (or can be further modified and then introduced into an appropriate host cell) for further production of antigen-combining molecules, which can be purified and used for the same purposes for which conventionally-produced antibodies are used.
- antigen-combining molecules which are of wider diversity than are antibodies available as a result of known methods; novel antigen-combining molecules with a diverse range of specificities and affinities and antigen-combining molecules which are predominantly human in origin.
- antigen-combining molecules are a subject of the present invention and can be used clinically for diagnostic, therapeutic and prophylactic purposes, as well as in research contexts, and for other purposes.
- FIG. 1 is a schematic representation of the method of the present invention by which antigen-combining molecules, or antibodies, are produced.
- FIG. 2 is a schematic representation of amplification or cloning of IgM heavy chain variable region DNA from mRNA, using the polymerase chain reaction.
- Panel A shows the relevant regions of the poly adenylated mRNA encoding the secreted form of the IgM heavy chain.
- S denotes the sequences encoding the signal peptide which causes the nascent peptide to cross the plasma membrane.
- V, D and J together comprise the variable region.
- C H 1, C H 2, and C H 3 are the three constant domains of C ⁇ . Hinge encodes the hinge region.
- C, B and Z are oligonucleotide PCR primers (discussed below).
- Panel B shows the reverse transcript DNA product of the mRNA primed by oligonucleotide Z, with the addition of poly-dC by terminal transferase at the 3′ end.
- Panel C is a schematic representation of the annealing of primer A to the reverse transcript DNA.
- Panel D shows the final double stranded DNA PCR product made utilizing primers A and B.
- Panel E shows the product of PCR annealed to primer C.
- Panel F is a blowup of Panel E, showing in greater detail the structure of primer C.
- Primer C consists of two parts: a 3′ part complementary to IgM heavy chain mRNA as shown, and a 5′ part which contains restriction site RE2 and spacer.
- Panel G shows the final double stranded DNA PCR product made utilizing primers A and C and the product of the previous PCR (depicted in D) as template. The S, V, D, J regions are again depicted.
- FIG. 3 is a schematic representation of the heavy chain framework vector pFHC.
- the circular plasmid (above) is depicted linearized (below) and its relevant components are shown: animal cell antibiotic resistance marker; bacterial replication origin; bacterial cell antibiotic resistance marker; C ⁇ enhancer; LTR containing the viral promoter from the Moloney MLV retrovirus DNA; PCR primer (D); cDNA cloning site containing restriction endonuclease sites, RE1 and RE2, separated by spacer DNA; C ⁇ exons; and poly A addition and termination sequences derived from the C ⁇ gene or having the same sequence as the C ⁇ gene.
- FIG. 4 depicts a nucleotide sequence of the C H 1 exon of the C ⁇ gene, and its encoded amino acid sequence (Panel A). The nucleotide coordinate numbers are listed above the line of nucleotide sequences. Panel B depicts the N-doped sequence, as defined in the text.
- the present invention provides a method of producing antigen-combining molecules (or antibodies) which does not require an in vivo immunization procedure and which makes it possible to produce antigen-combining molecules with far greater diversity than is shown by antibodies produced by currently-available techniques.
- the present invention relates to a method of producing libraries of genes encoding antigen-combining molecules (antibody proteins) with diverse antigen-combining specificities; a method of producing such antigen-combining molecules, antigen-combining molecules produced by the method and vectors useful in the method.
- the following is a description of generation of such libraries, of the present method of producing antigen-combining molecules of selected specificity and of vectors useful in producing antigen-combining molecules of the present invention.
- the process makes use of techniques which are known to those of skill in the art and can be applied as described herein to produce and identify antigen-combining molecules of desired antigenic specificity: the polymerase chain reaction (PCR), to amplify and clone diverse cDNAs encoding antibody mRNAs found in antibody-producing tissue; mutagenesis protocols to further increase the diversity of these cDNAs; gene transfer protocols to introduce antibody genes into cultured (prokaryotic and eukaryotic) cells for the purpose of expressing them; and screening protocols to detect genes encoding antibodies of the desired antigenic specificity.
- PCR polymerase chain reaction
- FIG. 1 A general outline of the present method is represented in FIG. 1.
- a key step in the production of antigen-combining molecules by the present method is the construction of a “library” of antibody genes which include “variable” regions encoding a large, diverse, but random set of specificities.
- the library can be of human or non-human origin and is constructed as follows:
- genomic DNA encoding antibodies or cDNAs of antibody mRNA is obtained.
- This DNA can be obtained from any source of antibody-producing cells, such as spleen cells, peripheral blood cells, lymph nodes, inflammatory tissue cells and bone marrow cells. It can also be obtained from a genomic library or cDNA library of B cells.
- the antibody-producing cells can be of human or non-human origin; genomic DNA or mRNA can be obtained directly from the tissue (i.e., without previous treatment to remove cells which do not produce antibody) or can be obtained after the tissue has been treated to increase concentration of antibody-producing cells or to select a particular type(s) of antibody-producing cells (i.e., treated to enrich the content of antibody-producing cells).
- Antibody-producing cells can be stimulated by an agent which stimulates antibody mRNA production (e.g., lipopolysaccharide) before DNA is obtained.
- Antibody-encoding DNA is amplified and cloned using a known technique, such as the PCR using appropriately-selected primers, in order to produce sufficient quantities of the DNA and to modify the DNA in such a manner (e.g., by addition of appropriate restriction sites) that it can be introduced as an insert into an E. coli cloning vector.
- This cloning vector can serve as the expression vector or the inserts can later be introduced into an expression vector, such as the framework antibody gene vector described below.
- Amplified and cloned DNA can be further diversified, using mutagenesis, such as PCR, in order to produce a greater diversity or wider repertoire of antigen-binding molecules, as well as novel antigen-binding molecules.
- Cloned antibody-encoding DNA is introduced into an expression vector, such as the framework antibody gene vector of the present invention, which can be a plasmid, viral or retroviral vector. Cloned antibody-encoding DNA is inserted into the vector in such a manner that the cloned DNA will be expressed as protein in appropriate host cells. It is essential that the expression vector used make it possible for the DNA insert to be expressed as a protein in the host cell.
- One expression vector useful in the present method is referred to as the framework antibody gene vector.
- Vectors useful in the present method contain antibody constant region or portions thereof in such a manner that when amplified DNA is inserted, the vector expresses a chimeric gene product comprising a variable region and a constant region in proper register. The two regions present in the chimeric gene product can be from the same type of immunoglobulin molecule or from two different types of immunoglobulin molecules.
- These libraries of antibody-encoding genes are then expressed in cultured cells, which can be eukaryotic or prokaryotic.
- the libraries can be introduced into host cells separately or together. Introduction of the antibody-encoding DNA in vitro into host cells (by infection, transformation or transfection) is carried out using known techniques, such as electroporation, protoplast fusion or calcium phosphate co-precipitation. If only one library is introduced into a host cell, the host cell will generally be one which makes the other antibody chain, thus making it possible to produce complete/functional antigen-binding molecules. For example, if a heavy chain library produced by the present method is introduced into host cells, the host cells will generally be cultured cells, such as myeloma cells or E. coli, which naturally produce the other (i.e., light) chain of the immunoglobulin or are engineered to do so. Alternatively, both libraries can be introduced into appropriate host cells, either simultaneously or sequentially.
- Host cells in which the antibody-encoding DNA is expressed can be eukaryotic or prokaryotic. They can be immortalized cultured animal cells, such as a myeloma cell line which has been shown to efficiently express and secrete introduced immunoglobulin genes (Morrison, S. L. et al., Ann. N.Y. Acad. Sci., 507:187 (1987); Kohler, G. and C. Milstein, Eur. J. Immunol., 6:511 (1976); Oi, V. T., et al., Immunoglobulin Gene Expression in Transformed Lymphoid Cells, 80:825 (1983); Davis, A. C. and M. J. Shulman, Immunol. Today, 10:119 (1989)).
- One host cell which can be used to express the antibody-encoding DNA is the J558L cell line or the SP2/0 cell line.
- Cells expressing antigen-combining molecules with a desired specificity for a given antigen can then be selected by a variety of means, such as testing for reactivity with a selected antigen using nitrocellulose layering.
- the antibodies identified thereby can be of human origin, nonhuman origin or a combination of both. That is, all or some of the components (e.g., heavy chain, light chain, variable regions, constant regions) can be encoded by DNA of human or nonhuman origin, which, when expressed produces the encoded chimeric protein which, in turn, may be human, nonhuman or a combination of both.
- all or some of the regions are referred to as being of human origin or of nonhuman origin, based on the source of the DNA encoding the antigen-combining molecule region in question.
- the resulting antigen-combining molecule has a heavy chain variable region of mouse origin.
- Antibodies produced may be used for such purposes as drug delivery, tumor imaging and other therapeutic, diagnostic and prophylactic uses.
- antibodies of a desired binding specificity are obtained, their genes may be isolated and further mutagenized to create additional antigen combining diversity or antibodies of higher affinity for antigen.
- Cells expressing antibody reactive to antigen are identified by a nitrocellulose filter overlay and antibody is prepared from cells identified as expressing it.
- nitrocellulose filter overlay As described in a subsequent section, there are alternative methods of library construction, other expression systems which can be used, and alternative selection systems for identifying antibody-producing cells or viruses.
- Step 1 in this specific protocol is construction of libraries of genes in E. coli which encode immunoglobulin heavy chains. This is followed by the use of random mutagenesis to increase the diversity of the library, which is an optional procedure.
- Step 2 is introduction of the library, by transfection, into myeloma cells.
- Step 3 is identification of myeloma cells expressing antibody with the desired specificity, using the nitrocellulose filter overlay technique or techniques known to those of skill in the art.
- Step 4 is isolation of the gene(s) encoding the antibody with the desired specificity and their expression in appropriate host cells, to produce antigen-combining fragments useful for a variety of purposes.
- pFHC E. coli plasmid vector
- pFHC contains a “framework” gene, which can be any antibody heavy chain and serves as a site into which the amplified cloned gene product (genomic DNA or cDNA of antibody mRNAs) is introduced.
- pFHC is useful as a vector for this purpose because it contains RE1 and RE2 cloning sites.
- Other vectors which include a framework gene and other cloning sites can be used for this purpose as well.
- the framework gene includes a transcriptional promoter (e.g., a powerful promoter, such as a Moloney LTR (Mulligan, R. C., In Experimental Manipulation of Gene Expression, New York Adacemic Press, p. 155 (1983)) and a C ⁇ chain transcriptional enhancer to increase the level of transcriptions from the promoter (Gillies, S. D., et al., Cell, 33:717 (1983), a cloning site containing RE1 and RE2; part of the C ⁇ heavy chain gene encoding secreted protein; and poly A addition and termination sequences (FIG. 3).
- a transcriptional promoter e.g., a powerful promoter, such as a Moloney LTR (Mulligan, R. C., In Experimental Manipulation of Gene Expression, New York Adacemic Press, p. 155 (1983)
- a C ⁇ chain transcriptional enhancer to increase the level of transcriptions from the promoter
- the framework antibody gene vector of the present invention also includes a selectable marker (e.g., an antibiotic resistance gene such as the neomycin resistance gene, neo R ) for animal cells; sequences for bacterial replication (ori); and a selectable marker (e.g., the ampicillin resistance gene, Amp R ) for bacterial cells.
- the framework gene can be of any origin (human, non-human), and can derive from any one of a number of existing DNAs encoding heavy chain immunoglobulins (Tucker, P. W., et al., Science, 206:1299 (1979); Honjo, T., et al., Cell, 18:559 (1979); Bothwell, A. L.
- the vector retains the introns between the C H 1, hinge, C H 2 and C H 3 exons.
- the “variable region” of the gene which includes the V, D and J regions of the antibody heavy chain and which encodes the antigen binding site, is deleted and replaced with two consecutive restriction endonuclease cloning sites, RE1 and RE2.
- the restriction endonuclease site RE1 occurs just 3′ to the LTR promoter and the restriction endonuclease site RE2 occurs within the constant region just 3′ to the J region (see FIG. 3).
- Another key step in the production of antigen-combining molecules in this embodiment of the present invention is construction in an E. coli vector of a library of cDNAs encoding the variable region of mouse immunoglobulin genes.
- the pFHC vector which includes cloning sites designated RE1 and RE2, is used for cloning heavy chain variable regions, although any cloning vector with cloning sites having the same or similar characteristics (described below) can be used.
- a light chain vector can be designed, using the above described procedures and procedures known to a person of ordinary skill in the art.
- non-immune mouse spleens are used as the starting material.
- mRNA is prepared directly from the spleen or from spleen processed in such a manner that it is enriched for resting B cells. Enrichment of tissue results in a more uniform representation of antibody diversity in the starting materials.
- Lymphocytes can be purified from spleen using ficoll gradients (Boyum, A., Scand. J. of Clinical Invest., 21:77 (1968)). B cells are separated from other cells (e.g., T cells) by panning with anti-IgM coated dishes (Wysocki , L. J. and V. L. Sato, Proc. Natl. Acad. Sci.
- Poly A+ mRNA from total mouse spleen is prepared according to published methods (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Production of antibody mRNA can first be stimulated by lipopolysaccharide (LPS) (Andersson, J. A., et al., J. Exp. Med., 145:1511 (1977)). First strand cDNA is prepared to this mRNA population using as primer an oligonucleotide, Z, which is complementary to C ⁇ in the C H 1 region 3′ to J. This primer is designated Z in FIG. 2.
- LPS lipopolysaccharide
- First strand cDNA is then elongated by the terminal transferase reaction with dCTP to form a poly dC tail (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)).
- PCR polymerase chain reaction
- Primer B is complementary to all C ⁇ genes, which encode the heavy chain of molecules of the IgM class, the Ig class expressed by all B cell clones prior to class switching (Schimizu, A. and T. Honjo, Cell, 36:801-803 (1984)) and present in resting B cells.
- the resultant PCR product includes a significant proportion of cDNAs encompassing the various V H regions expressed as IgM in the mouse. (The use of other primers complementary to the cDNA genes encoding the constant regions of other immunoglobulin heavy chains can be used in parallel reactions to obtain the variable regions expressed on these molecules, but for simplicity these are not described).
- Primer C like primer B, is complementary to the C ⁇ gene 3′ to J and just 5′ to primer B (see FIG. 2).
- Primer C contains the RE2 site at its 5′ end.
- the RE2 sequence is chosen in such a manner that when it is incorporated into the framework vector, no alteration of coding sequence of the C ⁇ chain occurs (See FIGS. 2 and 3).
- This method of amplifying C ⁇ cDNAs incorporates the idea of nested primers for cloning a gene when the nucleotide sequence of only one region of the gene is known (Ohara, O., et al., Proc. Natl. Acad. Sci. USA, 86:5673 (1989)).
- the PCR product is then cleaved with restriction enzymes RE1 and RE2 and cloned into the RE1 and RE2 sites of the pFHC vector (described below).
- the sequence of primers and of RE1 and RE2 sites are selected so that when the PCR product is cloned into these sites, the sites are recreated and the cloned antibody gene fragments are brought back into the proper frame with respect to the framework immunoglobulin gene present in pFHC. This results in creation of a C ⁇ minigene which lacks the intron normally present between J and the C H 1 region of C ⁇ (See FIG. 3). These procedures result in production of the heavy chain library used to produce antigen-binding molecules of the present invention, as described further below.
- diversity of the heavy chain variable region is increased by random mutagenesis, using techniques known to those of skill in the art.
- the library produced as described above is amplified again, using PCR under conditions of limiting nucleotide concentration. Such conditions are known to increase the infidelity of the polymerization and result in production of mutant products.
- Primers useful for this reaction are Primers C and D, as represented in FIGS. 2 and 3. Primer D derives from pFHC just 5′ to RE1.
- the PCR product, after cleavage with RE1 and RE2 is recloned into the framework vector pFHC. To the extent that mutation affects codons of the antigen binding region, this procedure increases the diversity of the binding domains.
- the starter library has a complexity of 10 6 elements, and an average of one mutation is introduced per complementarity determining region, and it is assumed that the complementarity determining region is 40 amino acids in size and that any of six amino acid substitutions can occur at a mutated codon
- the diversity of the library can be increased by a factor of about 40 ⁇ 6, or 240, for single amino acid changes and 240 ⁇ 240, or about 6 ⁇ 10 4 , for double amino acid changes, yielding a final diversity of approximately 10 11 . This is considered to be in the range of the diversity of antibodies which animals produce (Tonegawa, S., Nature, 302:575 (1983)).
- the framework vector for the light chain library includes components similar to those in the vector for the heavy chain library: the enhancer, promoter, a bacterial selectable marker, an animal selectable marker, bacterial origin of replication and light chain exons encoding the constant regions.
- the animal selectable marker should differ from the animal selectable in pFHC. For example, if pFHC contains neo R , pFLC can contain Eco gpt.
- a light chain library which contains diverse light chain fragments, is prepared as described above for construction of the heavy chain library.
- the primers used are different from those described above for heavy chain library construction.
- the primers are complementary to light chain mRNA encoding constant regions.
- the framework vector contains the light chain constant region exons.
- the library of immunoglobulin chain genes produced as described is subsequently introduced into a line of immortalized cultured animal cells, referred to as the “host” cells, in which the genes in the library are expressed.
- the host cells particularly useful for this purpose are plasmacytoma cell lines or myeloma cell lines which have been shown to efficiently express and secrete introduced immunoglobulin genes (Morrison, S. L., et al., Ann. N.Y. Acad. Sci., 507:187 (1987); Kohler, G. and C. Milstein, Eur. J. Immunol., 6:511 (1976); Galfre and C. Milstein, Methods Enzymol., 73:3 (1981); Davis, A. C. and M. J.
- the J558L cell line can be cotransfected using electro-poration or protoplast fusion (Morrison, S. L., et al., Ann. N.Y. Acad. Sci., 507:187 (1987)) and transfected cells selected on the basis of auxotrophic markers present on light and heavy chain libraries.
- chimeric antibodies antibodies encoded by all or part of two or more genes
- These chimeric antibodies are of two types: those in which one chain is encoded by a host cell gene and the other chain is encoded by an exogenously introduced antibody gene and those in which both the light and the heavy chain are encoded by an exogenous antibody gene. Both types of antibodies will be secreted.
- a library of cells producing antibodies of diverse specificities is produced as a result.
- the library of cells can be stored and maintained indefinitely by continuous culture and/or by freezing. A virtually unlimited number of cells can be obtained by this process.
- Cells producing antigen-binding molecules of selected specificity can be identified and isolated using nitrocellulose filter layering or known techniques.
- the same methods employed to identify and isolate hybridoma cells producing a desired antibody can be used:—cells are pooled and the supernatants tested for reactivity with antigen (Harlow, E. and D. Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y., p. 283 (1988). Subsequently, individual clones of cells are identified, using known techniques.
- a preferred method for identification and isolation of cells makes use of nitrocellulose filter overlays, which allow the screening of a large number of cells.
- Cells from the library of transfected myeloma cells are seeded in 10 cm 2 petri dishes in soft agar (Cook, W. D. and M. D. Scharff, PNAS, 74:5687 (1977); Paige, C. J., et al., Methods in Enzymol., 150:257 (1987)) at a density of 10 4 colony forming units, and allowed to form small colonies (approximately 300 cells). A large number of dishes (>100) may be so seeded. Cells are then overlayed with a thin film of agarose ( ⁇ 1 mm) and the agarose is allowed to harden. The agarose contains culture medium without serum.
- Nitrocellulose filters (or other protein-binding filters) are layered on top of the agarose, and the dishes are incubated overnight. During this time, antibodies secreted by the cells will diffuse through the agarose and adhere to the nitrocellulose filters. The nitrocellulose filters are keyed to the underlying plate and removed for processing.
- the method for processing nitrocellulose filters is identical to the methods used for Western blotting (Harlow, E. and D. Lane, Antibodies: Laboratory Manual, Cold Spring Harbor, N.Y., p. 283 (1988)).
- the antibody molecules are adsorbed to the nitrocellulose filter.
- the filters, as prepared above, are then blocked.
- the desired antigen for example, keyhole lymphet hemocyanin (KLH), which has been iodinated with radioactive 125 I, is then applied in Western blotting buffers to the filters. (Other, non radiographic methods can be used for detection). After incubation, the filters are washed and dried and used to expose autoradiography film according to standard procedures.
- KLH keyhole lymphet hemocyanin
- the autoradiography film will be exposed.
- Cells expressing the KLH reactive antibody can be identified by determining the location on the dish corresponding to an exposed filter; cells identified in this manner can be isolated using known techniques. Cells which are isolated from a region of the dish can then be rescreened, to insure the isolation of the clone of antigen-binding molecule-producing cells.
- the gene(s) encoding an antigen-binding molecule of selected specificity can be isolated. This can be carried out, for example, as follows: primers D and C (see FIGS. 2 and 3) are used in a polymerase chain reaction, to produce all the heavy chain variable region genes introduced into the candidate host cell from the library. These genes are cloned again in the framework vector pFHC at the RE1 and RE2 sites. Similarly, all the light chain regions introduced into the host cell from the library are cloned into the light chain vector, pFLC. Members of the family of vectors so obtained are then transformed pairwise into myeloma cells, which are tested for the ability to produce and secrete the antibody with the desired selectivity.
- antigen-binding molecules whose affinity for a selected antigen is altered (e.g., different from the affinity of a corresponding antigen-binding molecule produced by the present method). This can be carried out, for example, to increase the affinity of an antigen-binding molecule by randomly mutagenizing the genes isolated as described above using previously-described mutagenesis methods.
- the variable region of antigen-binding molecule-encoding genes can be sequenced and site directed mutagenesis performed to mutate the complementarity determining regions (CDR) (Kabat, E. A., J. Immunol., 141:S 25-36 (1988)). Both processes result in production of a sublibrary of genes which can be screened for antigen-binding molecules of higher affinity or of altered affinity after the genes are expressed in myeloma cells.
- variable regions Only following heavy-chain class switching are these variable regions expressed with a heavy chain of a different class (Shimizu, A. and T. Honjo, Cell, 36:801-803 (1984)).
- the predominant population of B cells in nonimmune spleen cells is IgM + -cells (Cooper, M. D. and P. Burrows, In Immunoglobulin Genes, Academic Press, N.Y. p. 1 (1989)).
- unidirectional nested PCR amplification is described above, other PCR procedures, as well as other DNA amplification techniques can be used to amplify DNA as needed in the present invention.
- bidirectional PCR amplification of antibody variable regions can be carried out.
- Framework vectors other than one using a mouse C ⁇ heavy chain constant region, which contains the C ⁇ enhancer and introns and a viral promoter can be used for inserting the products of PCR.
- the vectors described were chosen for their subsequent use in the expression of the antibody genes, but any eukaryotic or prokaryotic cloning vector could be used to create a library of diverse cDNA genes encoding variable regions of antibody molecules.
- the inserts from this vector could be transferred to any number of expression vectors.
- other framework vectors which include intronless genes can be constructed, as can other heavy chain constant regions.
- viral vectors or retroviral vectors can be used to introduce genes into myeloma cells.
- the source for antibody molecule mRNAs can also be varied. Purified resting B lymphocytes from mouse nonimmunized spleen are described above as such a source. However, total spleens (immunized or not) from other animals, including humans, can be used, as can any source of antibody-producing cells (e.g., peripheral blood, lymph nodes, inflammatory tissue, bone marrow).
- antibody-producing cells e.g., peripheral blood, lymph nodes, inflammatory tissue, bone marrow.
- H and L chain gene DNA into myeloma cells using cotransformation by electroporation or protoplast fusion methods is described above (Morrison, S. L. and V. T. Oi, Adv. Immunol., 44:65 (1989)).
- any means by which DNA can be introduced into living cells in vivo can be used, provided that it does not significantly interfere with the ability of the transformed cells to express the introduced DNA.
- a method other than cotransformation can be used.
- Cotransfection was chosen for its simplicity, and because both the H and L chains can be introduced into myeloma cells. It may be possible to introduce only the H chain into myeloma cells.
- retroviral infection may be used.
- Replication-incompetent retroviral vectors can be readily constructed which can be packaged into infective particles by helper cells (Mann, R., et al., Cell, 33:153-159 (1903)).
- Viral titers of 10 5 infectious units per ml. can be achieved, making possible the transfer of very large numbers of genes, into myeloma cells.
- Methods of identifying antigen-binding molecule-expressing cells expressing an antigen-binding molecule of selected specificity other than the nitrocellulose filter overlay technique described above can be used.
- An important characteristic of any method is that it be useful to screen large numbers of different antibodies.
- the nitrocellulose filter overlay technique for example, if 300 dishes are prepared and 10 4 independent transformed host cells per dish are screened, and if, on average, each cell produces ten different antibody molecules, then 300 ⁇ 10 4 ⁇ 3, or about 10 7 different antibodies can be screened at once. However, if the antibody molecules can be displayed on the cell surface, still larger numbers of cells can be screened using affinity matrices to pre-enrich for antigen-binding cells.
- BCL 1 B 1 immortal B cell lines, such as BCL 1 B 1 , which will express IgM both on the cell surface and as a secreted form (Granowicz, E. S., et al., J. Immunol., 125:976 (1980)). If such cells are infected by retroviral vectors containing the terminal C ⁇ exons, the infected cells will likely produce both secreted and membrane bond forms of IgM (Webb, C. F., et al., J. Immunol., 143:3934-3939 (1989)). Still other methods can be used to detect antibody production. If the host cell is E. coli, a nitrocellulose overlay is possible, and such methods have been frequently used to detect E.
- Viral coating can be used as a means of identifying viruses encoding antigen-combining molecules.
- a viral vector is used to direct the synthesis of diverse antibody molecules.
- the virus Upon lytic infection of host cells, and subsequent cell lysis, the virus becomes “coated” with the antibody product it directs. That is, the antibody molecule becomes physically linked to the outside of a mature virus particle, which can direct its synthesis.
- Methods for viral coating are described below.
- Viruses coated by antibody can be physically selected on the basis of their affinity to antigen which is attached to a solid support. The number of particles which can be screened using this approach is well in excess of 10 9 and it is possible that 10 11 different antibody genes could be screened in this manner.
- an affinity matrix containing antigen used to purify those viruses encoding antibody molecules with affinity to antigen and which coat the surface of the virus which encodes those antibodies is used.
- One method of viral coating is as follows—: A diverse library of bacteriophage ⁇ encoding parts of antibody molecules that are expressed in infected E. coli and which retain the ability to bind antigens is created, using known techniques (Orlandi, R., et al., Proc. Natl. Acad. Sci. USA, 86:3833 (1989); Huse, W. D., et al., Science, 246:1275 (1989); Better, M., et al., Science, 240:1041 (1988); Skerra, A. and A. Pluckthon, Science, 240:1038 (1988)). Bacteria infected with phage are embedded in a thin film of semisolid agar.
- Greater than 10 7 infected bacteria may be plated in the presence of an excess of uninfected bacteria in a volume of 1 ml of agar and spread over a 10 cm 2 surface.
- the agar contains monovalent antibody “A” (Parham, P., In Handbook of Experimental Immunology: Immunochem., Blackwell Scientific Publishers, Cambridge, Mass., pp. 14.1-14.23 (1986)), which can bind the ⁇ coat proteins and which has been chemically coupled to monovalent antibody “B”, which can bind an epitope on all viral directed antibody molecules.
- Monovalent antibodies are used to prevent the crosslinking of viral particles. Upon lytic burst, progeny phage particles become effectively cross linked to the antibody molecule they encode.
- a nitrocellulose filter (or other protein binding filter) is prepared as an affinity matrix by adsorbing the desired antigen. The filter is then blocked so that no other proteins bind nonspecifically. The filter is overlayed upon the agar, and coated phage are allowed to bind to the antigen by way of their adherent antibody molecules. Filters are washed to remove nonspecifically bound phage. Specifically bound phage therefore represent phage encoding antibodies with the desired specificity. These can now be propagated by reinfection of bacteria.
- the present invention makes it possible to produce antigen-binding molecules which, like antibodies produced by presently-available techniques, bind to a selected antigen (i.e., having binding specifity).
- Antibodies produced as described can be used, for example, to detect and neutralize antigens and deliver molecules to antigenic sites.
- IgM heavy chain variable DNA is amplified from mRNA by the procedure represented schematically in FIG. 2.
- Panel A depicts the relevant regions of the poly adenylated mRNA encoding the secreted form of the IgM heavy chain.
- S denotes the sequences encoding the signal peptide which causes the nascent peptide to cross the plasma membrane, a necessary step in the processing and secretion of the antibody.
- V, D and J derive from separate exons and together comprise the variable region.
- C H 1, C H 2, and C H 3 are the three constant domains of C ⁇ . “Hinge” encodes the hinge region.
- Primer C, B and Z are oligonucleotide PCR primers used in the amplification process.
- Primers B and Z are complementary to the mRNA, and occur in the order shown relative to C.
- Primer C in addition to being complementary to mRNA, has an extra bit of sequence at its 5′ end which allows the cloning of its PCR product. This is described below.
- Panel B depicts the reverse transcript DNA product of the mRNA primed by oligonucleotide Z, with the addition of poly-dC by terminal transferase at the 3′ end of the product.
- Panel C depicts the annealing of primer A to the reverse transcript DNA represented in Panel B.
- Primer A contains the restriction endonuclease site RE1, with additional DNA at its 5′ end.
- the constraints on the RE1 site are described in Example 2.
- Panel D depicts the final double stranded DNA PCR product made utilizing primers A and B.
- Panel E depicts the PCR product shown in Panel D annealed to Primer C.
- Panel F is a blow up of panel E showing the structure of primer C.
- Primer C consists of two parts: a 3′ part complementary to IgM heavy chain mRNA as shown, and a 5′ part which contains restriction site RE2. and spacer. Constraints on RE2 are described in Example 2.
- Panel G depicts the final double stranded DNA PCR product utilizing Primers A and C and the product of the previous PCR (depicted in Panel D) as template. The S, V, D, J regions are again depicted.
- a heavy chain framework vector designated pFHC, is constructed, using known techniques (See FIG. 3). It is useful for introducing antibody-encoding DNA into host cells, in which the DNA is expressed, resulting in antibody production.
- the circular plasmid (above) is depicted linearized (below) and its relevant components are shown.
- the neomycin antibiotic resistance gene (neo R ) is useful for selecting transformed animal cells (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)).
- the bacterial replication origin and ampicillin antibiotic resistance genes useful respectively, for replication in E. coli and rendering E.
- coli resistant to ampicillin can derive from any number of bacterial plasmids, including PBR322 (Sambrook, J., et al., Molecular Cloning: A Laborator Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)).
- the C ⁇ enhancer which derives from the intron between exons J and C H 1 of the C ⁇ gene, derives from any one of the cloned C ⁇ genes (Kawakami, T., et al., Nucleic Acids Research, 8:3933 (1980); Honjo, T., Ann. Rev. Immunol., 1:499 (1983)) and increases levels of transcription from antibody genes.
- LTR contains the viral promoter from the Moloney MLV retrovirus DNA (Mulligan, R. C., Experimental Manipulation of Gene Expression, New York Academic Press, p. 155 (1983)).
- D represents the PCR primer described in the text, depicted in its 5′ to 3′ orientation. The only constraints on D are its orientation, its complementarity to pFHC and its order relative to the RE1 and RE2 cloning sites. Preferably, D is within 100 nucleotides of RE1.
- the cDNA cloning site contains restriction endonuclease sites RE1 and RE2, separated by spacer DNA which allows their efficient cleavage. The constraints on RE1 and RE2 are described below.
- C H 1 The C ⁇ exons, as described in the text and literature, direct the synthesis of IgM heavy chain. Only part of C H 1 is present, as described below. C H 3 is chosen to contain the C ⁇ s region which specifies a secreted form of the heavy chain ((Kawakami, T., et al., Nucleic Acids Research, 8:3933 (1980); Honjo, T., Ann. Rev. Immunol., 1:499 (1983)). Finally, pFHC contains poly A addition and termination sequences which can be derived from the C ⁇ gene itself (Honjo, T., Ann. Rev.
- the plasmid can be produced by combining the individual components, or nucleic acid segments, depicted in FIG. 3, using PCR cassette assembly (See below). Because the entire nucleotide sequence of each component is defined, the entire nucleotide sequence of the plasma is defined.
- RE1 The constraints on RE1 are simple. It should be the sole cleavage site on the plasmid for its restriction endonuclease.
- the choice of RE1 can be made by computer based sequence analysis (Intelligenetics Suite, Release 5:35, Intelligenetics).
- RE2 The constraints on RE2 are more complex. First, it must be the sole cleavage site on the plasmid for its restriction endonuclease, as described for RE1. Moreover, the RE2 site must be such that when the PCR product is inserted, a gene is thereby created which is capable of directing the synthesis of a complete IgM heavy chain. This limits the choices for RE2, but the choices available can be determined by computer based sequence analysis. The choices can be determined as follows. First, a list of restriction endonucleases that do not cleave pFHC is compiled (see Table 1).
- the rare non-cutters are surveyed by computer analysis for those which will cleave the N-doped sequence.
- the search program will show a possible restriction endonuclease site, assuming a match between N and the restriction endonuclease cutting site. For example, with 39 rare non-cutters, 22 will cleave the N-doped sequence of C ⁇ C H 1, many of them several times (see Table 2).
- Def means a definite cut site, of which there are none, because of the Ns.
- Pos means a possible cleavage site at the indicated nucleotide position if N is chosen appropriately.
- Y indicates any pyrimidine, “R” indicates any purine and “N” indicates any nucleotide.
- the nucleotide positions refer to coordinates represented in FIG. 4.
- Line 1 represents part of the actual amino acid sequence specified by the mouse C ⁇ C H 1 gene region
- line 2 is the actual nucleotide sequence.
- a cleavage site for the rare non-cutter BssHII is created.
- the new sequence (containing the BssHII site) GCG CGC still encodes the identical amino acid sequence. Therefore, the sequence of the primer C is chosen to be the complement of line 3, and RE2 is the BssHII site.
- a primer will function in the PCR and vector construction as desired. Other examples are possible, and the same process can be used in designing vectors and primers for cloning light chain variable regions.
- the process of PCR cassette assembly is a method of constructing plasmid molecules (in this case the plasmid pFHC) from fragments of DNA of known nucleotide sequence.
- Each fragment is then individually PCR amplified using synthesized oligonucleotide primers complementary to the terminal sequences of the fragment. These primers are synthesized to contain on their 5′ ends restriction endonuclease cleavage sites from the compiled list.
- each PCR product can be so designed that each fragment can be assembled one by one into a larger plasmid structure by cleavage and ligation and transformation into E. coli.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
- This application is a continuation of, and hereby claims priority to and incorporates by reference in their entirety, co-pending U.S. patent application Ser. No. 09/798,720, filed on Mar. 2, 2001 which is a continuation of U.S. patent application Ser. No. 09/439,732, filed Nov. 12, 1999, now U.S. Pat. No. 6,303,313; which is a continuation of abandoned U.S. patent application Ser. No. 08/997,195, filed Dec. 23, 1997; which is a continuation of U.S. patent application Ser. No. 08/315,269, filed Sep. 29, 1994, now U.S. Pat. No. 5,780,225; which is a continuation of U.S. patent application Ser. No. 07/919,730, filed Jul. 24, 1992, now U.S. Pat. No. 5,284,555; which is a continuation of abandoned U.S. application Ser. No. 07/464,350, filed Jan. 11, 1990. This application also claims priority to and incorporates by reference PCT Application No. PCT/US91/00209, filed Jan. 10, 1991.
- Monoclonal and polyclonal antibodies are useful for a variety of purposes. The precise antigen specificity of antibodies makes them powerful tools that can be used for the detection, quantitation, purification and neutralization of antigens.
- Polyclonal antibodies are produced in vivo by immunizing animals, such as rabbits and goats, with antigens, bleeding the animals and isolating polyclonal antibody molecules from the blood. Monoclonal antibodies are produced by hybridoma cells, which are made by fusing, in vitro, immortal plasmacytoma cells with antibody producing cells (Kohler, G. and C. Milstein, Nature, 256:495 (1975)) obtained from animals immunized in vivo with antigen.
- Current methods for producing polyclonal and monoclonal antibodies are limited by several factors. First, methods for producing either polyclonal or monoclonal antibodies require an in vivo immunization step. This can be time consuming and require large amounts of antigen. Second, the repertoire of antibodies expressed in vivo is restricted by physiological processes, such as those which mediate self-tolerance that disable auto-reactive B cells (Goodnow, C. C., et al., Nature, 334:676 (1988); Goodnow, J. W.,Basic and Clinical Immunology, Ed. 5, Los Altos, Calif., Large Medical Publications (1984); Young, C. R., Molecular Immunology, New York, Marcel Dekker (1984)). Third, although antibodies can exist in millions of different forms, each with its own unique binding site for antigen, antibody diversity is restricted by genetic mechanisms for generating antibody diversity (Honjo, T., Ann. Rev. Immunol., 1:499 (1983); Tonegawa, S., Nature: 302:575 (1983)). Fourth, not all the antibody molecules which can be generated will be generated in a given animal. As a result, raising high affinity antibodies to a given antigen can be very time consuming and can often fail. Fifth, the production of human antibodies of desired specificity is very problematical.
- A method of producing antibodies which avoids the limitations of presently-available methods, such as the requirement for immunization of an animal and in vivo steps, would be very useful, particularly if it made it possible to produce a wider range of antibody types than can be made using presently-available techniques and if it made it possible to produce human antibody types.
- The present invention relates to a method of producing libraries of genes encoding antigen-combining molecules or antibodies; a method of producing-antigen-combining molecules, also referred to as antibodies, which does not require an in vivo procedure, as is required by presently-available methods; a method of obtaining antigen-combining molecules (antibodies) of selected or defined specificity which does not require an in vivo procedure; vectors useful in the present method and antibodies produced or obtained by the method.
- The present invention relates to an in vitro process for synthesizing DNA encoding families of antigen-combining molecules or proteins. In this process, DNA containing genes encoding antigen-combining molecules is obtained and combined with oligonucleotides which are homologous to regions of the genes which are conserved. Sequence-specific gene amplification is then carried out using the DNA containing genes encoding antigen-combining proteins as template and the homologous oligonucleotides as primers.
- This invention also relates to a method of creating is diverse libraries of DNAs encoding families of antigen-combining proteins by cloning the product of the in vitro process for synthesizing DNA, described in the preceeding paragraph, into an appropriate vector (e.g., a plasmid, viral or retroviral vector).
- The subject invention provides an alternative method for the production of antigen-combining molecules, which are useful affinity reagents for the detection and neutralization of antigens and the delivery of molecules to antigenic sites. The claimed method differs from production of polyclonal antibody molecules derived by immunization of live animals and from production of mono-clonal antibody molecules through the use of hybridoma cell lines in that it does not require an in vivo immunization step, as do presently available methods. Rather, diverse libraries of genes which encode-antigen-combining sites comprising a significant proportion of an animal's repertoire of antibody combining sites are made, as described in detail herein. These genes are expressed in living cells, from which molecules of desired antigenic selectivity can be isolated and purified for various uses.
- Antigen-combining molecules are produced by the present method in the following manner, which is described in greater deail below. Initially, a library of antibody genes which includes a set of variable regions encoding a large, diverse and random group of specificities derived from animal or human immunoglobulins is produced by amplifying or cloning diverse genomic fragments or cDNAs of antibody mRNAs found in antibody-producing tissue.
- In an optional step, the diversity of the resulting libraries can be increased by means of random mutagenesis. The gene libraries are introduced into cultured host cells, which may be eukaryotic or prokaryotic, in which they are expressed. Genes encoding antibodies of desired antigenic specificity are identified, using a method described herein or known techniques, isolated and expressed in quantities in appropriate host cells, from which the encoded antibody can be purified.
- Specifically, a library of genes encoding immunoglobulin heavy chain regions and a library of genes encoding immunoglobulin light chain regions are constructed. This is carried out by obtaining antibody-encoding DNA, which is either genomic fragments or cDNAs of antibody mRNAs, amplfying or cloning the fragments or cDNAs; and introducing them into a standard framework antibody gene vector, which is used to introduce the antibody-encoding DNA into cells in which the DNA is expressed. The vector includes a framework gene encoding a protein, such as a gene encoding an antibody heavy chain or an antibody light chain which can be of any origin (human, non-human) and can be derived from any of a number of existing DNAs encoding heavy chain immuno-globulins or light chain immunoglobulins. Such vectors are also a subject of the present invention and are described in greater detail in a subsequent section. Genes from one or both of the libraries are introduced into appropriate host cells, in which the genes are expressed, resulting in production of a wide variety of antigen-combining molecules.
- Genes encoding antigen-combining molecules of desired specificity are identified by identifying cells producing antigen-combining molecules which react with a selected antigen and then obtaining the genes of interest. The genes of interest can subsequently be introduced into an appropriate host cell (or can be further modified and then introduced into an appropriate host cell) for further production of antigen-combining molecules, which can be purified and used for the same purposes for which conventionally-produced antibodies are used.
- Through use of the method described, it is possible to produce antigen-combining molecules which are of wider diversity than are antibodies available as a result of known methods; novel antigen-combining molecules with a diverse range of specificities and affinities and antigen-combining molecules which are predominantly human in origin. Such antigen-combining molecules are a subject of the present invention and can be used clinically for diagnostic, therapeutic and prophylactic purposes, as well as in research contexts, and for other purposes.
- FIG. 1 is a schematic representation of the method of the present invention by which antigen-combining molecules, or antibodies, are produced.
- FIG. 2 is a schematic representation of amplification or cloning of IgM heavy chain variable region DNA from mRNA, using the polymerase chain reaction.
- Panel A shows the relevant regions of the poly adenylated mRNA encoding the secreted form of the IgM heavy chain. S denotes the sequences encoding the signal peptide which causes the nascent peptide to cross the plasma membrane. V, D and J together comprise the variable region. CH1, CH2, and
C H3 are the three constant domains of Cμ. Hinge encodes the hinge region. C, B and Z are oligonucleotide PCR primers (discussed below). - Panel B shows the reverse transcript DNA product of the mRNA primed by oligonucleotide Z, with the addition of poly-dC by terminal transferase at the 3′ end.
- Panel C is a schematic representation of the annealing of primer A to the reverse transcript DNA.
- Panel D shows the final double stranded DNA PCR product made utilizing primers A and B.
- Panel E shows the product of PCR annealed to primer C.
- Panel F is a blowup of Panel E, showing in greater detail the structure of primer C. Primer C consists of two parts: a 3′ part complementary to IgM heavy chain mRNA as shown, and a 5′ part which contains restriction site RE2 and spacer.
- Panel G shows the final double stranded DNA PCR product made utilizing primers A and C and the product of the previous PCR (depicted in D) as template. The S, V, D, J regions are again depicted.
- FIG. 3 is a schematic representation of the heavy chain framework vector pFHC. The circular plasmid (above) is depicted linearized (below) and its relevant components are shown: animal cell antibiotic resistance marker; bacterial replication origin; bacterial cell antibiotic resistance marker; Cμ enhancer; LTR containing the viral promoter from the Moloney MLV retrovirus DNA; PCR primer (D); cDNA cloning site containing restriction endonuclease sites, RE1 and RE2, separated by spacer DNA; Cμ exons; and poly A addition and termination sequences derived from the Cμ gene or having the same sequence as the Cμ gene.
- FIG. 4 depicts a nucleotide sequence of the CH1 exon of the Cμ gene, and its encoded amino acid sequence (Panel A). The nucleotide coordinate numbers are listed above the line of nucleotide sequences. Panel B depicts the N-doped sequence, as defined in the text.
- The present invention provides a method of producing antigen-combining molecules (or antibodies) which does not require an in vivo immunization procedure and which makes it possible to produce antigen-combining molecules with far greater diversity than is shown by antibodies produced by currently-available techniques.
- The present invention relates to a method of producing libraries of genes encoding antigen-combining molecules (antibody proteins) with diverse antigen-combining specificities; a method of producing such antigen-combining molecules, antigen-combining molecules produced by the method and vectors useful in the method. The following is a description of generation of such libraries, of the present method of producing antigen-combining molecules of selected specificity and of vectors useful in producing antigen-combining molecules of the present invention.
- As described below, the process makes use of techniques which are known to those of skill in the art and can be applied as described herein to produce and identify antigen-combining molecules of desired antigenic specificity: the polymerase chain reaction (PCR), to amplify and clone diverse cDNAs encoding antibody mRNAs found in antibody-producing tissue; mutagenesis protocols to further increase the diversity of these cDNAs; gene transfer protocols to introduce antibody genes into cultured (prokaryotic and eukaryotic) cells for the purpose of expressing them; and screening protocols to detect genes encoding antibodies of the desired antigenic specificity. A general outline of the present method is represented in FIG. 1.
- A key step in the production of antigen-combining molecules by the present method is the construction of a “library” of antibody genes which include “variable” regions encoding a large, diverse, but random set of specificities. The library can be of human or non-human origin and is constructed as follows:
- Initially, genomic DNA encoding antibodies or cDNAs of antibody mRNA (referred to as antibody-encoding DNA) is obtained. This DNA can be obtained from any source of antibody-producing cells, such as spleen cells, peripheral blood cells, lymph nodes, inflammatory tissue cells and bone marrow cells. It can also be obtained from a genomic library or cDNA library of B cells. The antibody-producing cells can be of human or non-human origin; genomic DNA or mRNA can be obtained directly from the tissue (i.e., without previous treatment to remove cells which do not produce antibody) or can be obtained after the tissue has been treated to increase concentration of antibody-producing cells or to select a particular type(s) of antibody-producing cells (i.e., treated to enrich the content of antibody-producing cells). Antibody-producing cells can be stimulated by an agent which stimulates antibody mRNA production (e.g., lipopolysaccharide) before DNA is obtained.
- Antibody-encoding DNA is amplified and cloned using a known technique, such as the PCR using appropriately-selected primers, in order to produce sufficient quantities of the DNA and to modify the DNA in such a manner (e.g., by addition of appropriate restriction sites) that it can be introduced as an insert into anE. coli cloning vector. This cloning vector can serve as the expression vector or the inserts can later be introduced into an expression vector, such as the framework antibody gene vector described below. Amplified and cloned DNA can be further diversified, using mutagenesis, such as PCR, in order to produce a greater diversity or wider repertoire of antigen-binding molecules, as well as novel antigen-binding molecules.
- Cloned antibody-encoding DNA is introduced into an expression vector, such as the framework antibody gene vector of the present invention, which can be a plasmid, viral or retroviral vector. Cloned antibody-encoding DNA is inserted into the vector in such a manner that the cloned DNA will be expressed as protein in appropriate host cells. It is essential that the expression vector used make it possible for the DNA insert to be expressed as a protein in the host cell. One expression vector useful in the present method is referred to as the framework antibody gene vector. Vectors useful in the present method contain antibody constant region or portions thereof in such a manner that when amplified DNA is inserted, the vector expresses a chimeric gene product comprising a variable region and a constant region in proper register. The two regions present in the chimeric gene product can be from the same type of immunoglobulin molecule or from two different types of immunoglobulin molecules.
- These libraries of antibody-encoding genes are then expressed in cultured cells, which can be eukaryotic or prokaryotic. The libraries can be introduced into host cells separately or together. Introduction of the antibody-encoding DNA in vitro into host cells (by infection, transformation or transfection) is carried out using known techniques, such as electroporation, protoplast fusion or calcium phosphate co-precipitation. If only one library is introduced into a host cell, the host cell will generally be one which makes the other antibody chain, thus making it possible to produce complete/functional antigen-binding molecules. For example, if a heavy chain library produced by the present method is introduced into host cells, the host cells will generally be cultured cells, such as myeloma cells orE. coli, which naturally produce the other (i.e., light) chain of the immunoglobulin or are engineered to do so. Alternatively, both libraries can be introduced into appropriate host cells, either simultaneously or sequentially.
- Host cells in which the antibody-encoding DNA is expressed can be eukaryotic or prokaryotic. They can be immortalized cultured animal cells, such as a myeloma cell line which has been shown to efficiently express and secrete introduced immunoglobulin genes (Morrison, S. L. et al.,Ann. N.Y. Acad. Sci., 507:187 (1987); Kohler, G. and C. Milstein, Eur. J. Immunol., 6:511 (1976); Oi, V. T., et al., Immunoglobulin Gene Expression in Transformed Lymphoid Cells, 80:825 (1983); Davis, A. C. and M. J. Shulman, Immunol. Today, 10:119 (1989)). One host cell which can be used to express the antibody-encoding DNA is the J558L cell line or the SP2/0 cell line.
- Cells expressing antigen-combining molecules with a desired specificity for a given antigen can then be selected by a variety of means, such as testing for reactivity with a selected antigen using nitrocellulose layering. The antibodies identified thereby can be of human origin, nonhuman origin or a combination of both. That is, all or some of the components (e.g., heavy chain, light chain, variable regions, constant regions) can be encoded by DNA of human or nonhuman origin, which, when expressed produces the encoded chimeric protein which, in turn, may be human, nonhuman or a combination of both. In such antigen-combining molecules, all or some of the regions (e.g., heavy and light chain variable and constant regions) are referred to as being of human origin or of nonhuman origin, based on the source of the DNA encoding the antigen-combining molecule region in question. For example, in the case in which DNA encoding mouse heavy chain variable region is expressed in host cells, the resulting antigen-combining molecule has a heavy chain variable region of mouse origin. Antibodies produced may be used for such purposes as drug delivery, tumor imaging and other therapeutic, diagnostic and prophylactic uses.
- Once antibodies of a desired binding specificity are obtained, their genes may be isolated and further mutagenized to create additional antigen combining diversity or antibodies of higher affinity for antigen.
- The following is a detailed description of a specific experimental protocol which embodies the concepts described above. Although the following is a description of one particular embodiment, the same procedures can be used to produce libraries in which the immunoglobulin and the heavy chain class are different or in which light chain genes are amplified and cloned. The present invention is not intended to be limited to this example. In the embodiment presented below, a diverse heavy chain gene library is constructed. Using the principles described in relation to the heavy chain gene library, a diverse light chain gene library is also constructed. These are co-expressed in an immortal tumor cell capable of producing antibodies, such as plasma-cytoma cells or myeloma cells. Cells expressing antibody reactive to antigen are identified by a nitrocellulose filter overlay and antibody is prepared from cells identified as expressing it. As described in a subsequent section, there are alternative methods of library construction, other expression systems which can be used, and alternative selection systems for identifying antibody-producing cells or viruses.
- Step 1 in this specific protocol is construction of libraries of genes inE. coli which encode immunoglobulin heavy chains. This is followed by the use of random mutagenesis to increase the diversity of the library, which is an optional procedure. Step 2 is introduction of the library, by transfection, into myeloma cells.
Step 3 is identification of myeloma cells expressing antibody with the desired specificity, using the nitrocellulose filter overlay technique or techniques known to those of skill in the art. Step 4 is isolation of the gene(s) encoding the antibody with the desired specificity and their expression in appropriate host cells, to produce antigen-combining fragments useful for a variety of purposes. - One key step in construction of the library of cDNAs encoding the variable region of mouse heavy chain genes is construction of anE. coli plasmid vector, designated pFHC. pFHC contains a “framework” gene, which can be any antibody heavy chain and serves as a site into which the amplified cloned gene product (genomic DNA or cDNA of antibody mRNAs) is introduced. pFHC is useful as a vector for this purpose because it contains RE1 and RE2 cloning sites. Other vectors which include a framework gene and other cloning sites can be used for this purpose as well. The framework gene includes a transcriptional promoter (e.g., a powerful promoter, such as a Moloney LTR (Mulligan, R. C., In Experimental Manipulation of Gene Expression, New York Adacemic Press, p. 155 (1983)) and a Cμ chain transcriptional enhancer to increase the level of transcriptions from the promoter (Gillies, S. D., et al., Cell, 33:717 (1983), a cloning site containing RE1 and RE2; part of the Cμ heavy chain gene encoding secreted protein; and poly A addition and termination sequences (FIG. 3). The framework antibody gene vector of the present invention (pFHC) also includes a selectable marker (e.g., an antibiotic resistance gene such as the neomycin resistance gene, neoR) for animal cells; sequences for bacterial replication (ori); and a selectable marker (e.g., the ampicillin resistance gene, AmpR) for bacterial cells. The framework gene can be of any origin (human, non-human), and can derive from any one of a number of existing DNAs encoding heavy chain immunoglobulins (Tucker, P. W., et al., Science, 206:1299 (1979); Honjo, T., et al., Cell, 18:559 (1979); Bothwell, A. L. M., et al., Cell, 24:625 (1981); Liu, A.Y, et al., Gene, 54:33 (1987); Kawakami, T., et al., Nuc. Acids. Res., 8:3933 (1980)). In this embodiment, the vector retains the introns between the CH1, hinge, CH2 and
C H3 exons. The “variable region” of the gene, which includes the V, D and J regions of the antibody heavy chain and which encodes the antigen binding site, is deleted and replaced with two consecutive restriction endonuclease cloning sites, RE1 and RE2. The restriction endonuclease site RE1 occurs just 3′ to the LTR promoter and the restriction endonuclease site RE2 occurs within the constant region just 3′ to the J region (see FIG. 3). - Another key step in the production of antigen-combining molecules in this embodiment of the present invention is construction in anE. coli vector of a library of cDNAs encoding the variable region of mouse immunoglobulin genes. In this embodiment, the pFHC vector, which includes cloning sites designated RE1 and RE2, is used for cloning heavy chain variable regions, although any cloning vector with cloning sites having the same or similar characteristics (described below) can be used. Similarly, a light chain vector can be designed, using the above described procedures and procedures known to a person of ordinary skill in the art.
- In this embodiment, non-immune mouse spleens are used as the starting material. mRNA is prepared directly from the spleen or from spleen processed in such a manner that it is enriched for resting B cells. Enrichment of tissue results in a more uniform representation of antibody diversity in the starting materials. Lymphocytes can be purified from spleen using ficoll gradients (Boyum, A.,Scand. J. of Clinical Invest., 21:77 (1968)). B cells are separated from other cells (e.g., T cells) by panning with anti-IgM coated dishes (Wysocki , L. J. and V. L. Sato, Proc. Natl. Acad. Sci. 75:2844 (1978)). Because activated cells express the IL-2 receptor but resting B cells do not, resting B cells can be separated yet further from activated cells by panning. Further purification by size fractionation on a Cell Sorter results in a fairly homogeneous population of resting B cells.
- Poly A+ mRNA from total mouse spleen is prepared according to published methods (Sambrook, J., et al.,Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Production of antibody mRNA can first be stimulated by lipopolysaccharide (LPS) (Andersson, J. A., et al., J. Exp. Med., 145:1511 (1977)). First strand cDNA is prepared to this mRNA population using as primer an oligonucleotide, Z, which is complementary to Cμ in the CH1
region 3′ to J. This primer is designated Z in FIG. 2. First strand cDNA is then elongated by the terminal transferase reaction with dCTP to form a poly dC tail (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). - This DNA product is then used as template in a polymerase chain reaction (PCR) to amplify cDNAs encoding antibody variable regions (Saiki, R. K., et al.,Science, 239:487 (1988); Ohara, O., et al., Proc. Natl. Acad. Sci. USA, 86:5673 (1989)). Initially, PCR is carried out with two primers: primer A and primer B, as represented in FIG. 2. Primer A contains the RE1 site at its 5′ end, followed by poly dG. Primer B is complementary to the constant (CH1) region of the Cμ gene, 3′ to the J region and 5′ to primer Z (see FIG. 2). Primer B is complementary to all Cμ genes, which encode the heavy chain of molecules of the IgM class, the Ig class expressed by all B cell clones prior to class switching (Schimizu, A. and T. Honjo, Cell, 36:801-803 (1984)) and present in resting B cells. The resultant PCR product includes a significant proportion of cDNAs encompassing the various VH regions expressed as IgM in the mouse. (The use of other primers complementary to the cDNA genes encoding the constant regions of other immunoglobulin heavy chains can be used in parallel reactions to obtain the variable regions expressed on these molecules, but for simplicity these are not described).
- Next, the product of the first PCR procedure is used again for PCR with primer A and primer C. Primer C, like primer B, is complementary to the
Cμ gene 3′ to J and just 5′ to primer B (see FIG. 2). Primer C contains the RE2 site at its 5′ end. The RE2 sequence is chosen in such a manner that when it is incorporated into the framework vector, no alteration of coding sequence of the Cμ chain occurs (See FIGS. 2 and 3). This method of amplifying Cμ cDNAs, referred to as unidirectional nested PCR, incorporates the idea of nested primers for cloning a gene when the nucleotide sequence of only one region of the gene is known (Ohara, O., et al., Proc. Natl. Acad. Sci. USA, 86:5673 (1989)). The PCR product is then cleaved with restriction enzymes RE1 and RE2 and cloned into the RE1 and RE2 sites of the pFHC vector (described below). The sequence of primers and of RE1 and RE2 sites are selected so that when the PCR product is cloned into these sites, the sites are recreated and the cloned antibody gene fragments are brought back into the proper frame with respect to the framework immunoglobulin gene present in pFHC. This results in creation of a Cμ minigene which lacks the intron normally present between J and the CH1 region of Cμ (See FIG. 3). These procedures result in production of the heavy chain library used to produce antigen-binding molecules of the present invention, as described further below. - Optionally, diversity of the heavy chain variable region is increased by random mutagenesis, using techniques known to those of skill in the art.
- For example, the library produced as described above is amplified again, using PCR under conditions of limiting nucleotide concentration. Such conditions are known to increase the infidelity of the polymerization and result in production of mutant products. Primers useful for this reaction are Primers C and D, as represented in FIGS. 2 and 3. Primer D derives from pFHC just 5′ to RE1. The PCR product, after cleavage with RE1 and RE2, is recloned into the framework vector pFHC. To the extent that mutation affects codons of the antigen binding region, this procedure increases the diversity of the binding domains. For example, if the starter library has a complexity of 106 elements, and an average of one mutation is introduced per complementarity determining region, and it is assumed that the complementarity determining region is 40 amino acids in size and that any of six amino acid substitutions can occur at a mutated codon, the diversity of the library can be increased by a factor of about 40×6, or 240, for single amino acid changes and 240×240, or about 6×104, for double amino acid changes, yielding a final diversity of approximately 1011. This is considered to be in the range of the diversity of antibodies which animals produce (Tonegawa, S., Nature, 302:575 (1983)). Even greater diversity can be generated by the random combination of H and L chains, the result of co-expression in host cells (see below). It is, thus, theoretically possible to generate a more diverse antibody library in vitro than can be generated in vivo. This library of genes is called the “high diversity” heavy chain library. It may be propagated indefinitely in E. coli. A high diversity light chain library can be prepared similarly.
- The framework vector for the light chain library, designated pFLC, includes components similar to those in the vector for the heavy chain library: the enhancer, promoter, a bacterial selectable marker, an animal selectable marker, bacterial origin of replication and light chain exons encoding the constant regions. For pFLC, the animal selectable marker should differ from the animal selectable in pFHC. For example, if pFHC contains neoR, pFLC can contain Eco gpt.
- A light chain library, which contains diverse light chain fragments, is prepared as described above for construction of the heavy chain library. In constructing the light chain library, the primers used are different from those described above for heavy chain library construction. In this instance, the primers are complementary to light chain mRNA encoding constant regions. The framework vector contains the light chain constant region exons.
- The library of immunoglobulin chain genes produced as described is subsequently introduced into a line of immortalized cultured animal cells, referred to as the “host” cells, in which the genes in the library are expressed. Particularly useful for this purpose are plasmacytoma cell lines or myeloma cell lines which have been shown to efficiently express and secrete introduced immunoglobulin genes (Morrison, S. L., et al.,Ann. N.Y. Acad. Sci., 507:187 (1987); Kohler, G. and C. Milstein, Eur. J. Immunol., 6:511 (1976); Galfre and C. Milstein, Methods Enzymol., 73:3 (1981); Davis, A. C. and M. J. Shulman, Immunol. Today, 10:119 (1989)). For example, the J558L cell line can be cotransfected using electro-poration or protoplast fusion (Morrison, S. L., et al., Ann. N.Y. Acad. Sci., 507:187 (1987)) and transfected cells selected on the basis of auxotrophic markers present on light and heavy chain libraries.
- As a result of cotransformation and selection for markers on both light chain and heavy chain vectors, most transformed host cells will express several copies of immunoglobulin heavy and light chains from the diverse library, and will express chimeric antibodies (antibodies encoded by all or part of two or more genes) (Nisonoff, A., et al.,In The Antibody Molecule, Academic Press, NY p. 238 (1975)). These chimeric antibodies are of two types: those in which one chain is encoded by a host cell gene and the other chain is encoded by an exogenously introduced antibody gene and those in which both the light and the heavy chain are encoded by an exogenous antibody gene. Both types of antibodies will be secreted. A library of cells producing antibodies of diverse specificities is produced as a result. The library of cells can be stored and maintained indefinitely by continuous culture and/or by freezing. A virtually unlimited number of cells can be obtained by this process.
- Cells producing antigen-binding molecules of selected specificity (i.e., which bind to a selected antigen) can be identified and isolated using nitrocellulose filter layering or known techniques. The same methods employed to identify and isolate hybridoma cells producing a desired antibody can be used:—cells are pooled and the supernatants tested for reactivity with antigen (Harlow, E. and D. Lane,Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y., p. 283 (1988). Subsequently, individual clones of cells are identified, using known techniques. A preferred method for identification and isolation of cells makes use of nitrocellulose filter overlays, which allow the screening of a large number of cells. Cells from the library of transfected myeloma cells are seeded in 10 cm2 petri dishes in soft agar (Cook, W. D. and M. D. Scharff, PNAS, 74:5687 (1977); Paige, C. J., et al., Methods in Enzymol., 150:257 (1987)) at a density of 104 colony forming units, and allowed to form small colonies (approximately 300 cells). A large number of dishes (>100) may be so seeded. Cells are then overlayed with a thin film of agarose (<1 mm) and the agarose is allowed to harden. The agarose contains culture medium without serum. Nitrocellulose filters (or other protein-binding filters) are layered on top of the agarose, and the dishes are incubated overnight. During this time, antibodies secreted by the cells will diffuse through the agarose and adhere to the nitrocellulose filters. The nitrocellulose filters are keyed to the underlying plate and removed for processing.
- The method for processing nitrocellulose filters is identical to the methods used for Western blotting (Harlow, E. and D. Lane,Antibodies: Laboratory Manual, Cold Spring Harbor, N.Y., p. 283 (1988)). The antibody molecules are adsorbed to the nitrocellulose filter. The filters, as prepared above, are then blocked. The desired antigen, for example, keyhole lymphet hemocyanin (KLH), which has been iodinated with radioactive 125I, is then applied in Western blotting buffers to the filters. (Other, non radiographic methods can be used for detection). After incubation, the filters are washed and dried and used to expose autoradiography film according to standard procedures. Where the filters have adsorbed antibody molecules which are capable of binding KLH, the autoradiography film will be exposed. Cells expressing the KLH reactive antibody can be identified by determining the location on the dish corresponding to an exposed filter; cells identified in this manner can be isolated using known techniques. Cells which are isolated from a region of the dish can then be rescreened, to insure the isolation of the clone of antigen-binding molecule-producing cells.
- The gene(s) encoding an antigen-binding molecule of selected specificity can be isolated. This can be carried out, for example, as follows: primers D and C (see FIGS. 2 and 3) are used in a polymerase chain reaction, to produce all the heavy chain variable region genes introduced into the candidate host cell from the library. These genes are cloned again in the framework vector pFHC at the RE1 and RE2 sites. Similarly, all the light chain regions introduced into the host cell from the library are cloned into the light chain vector, pFLC. Members of the family of vectors so obtained are then transformed pairwise into myeloma cells, which are tested for the ability to produce and secrete the antibody with the desired selectivity. Purification of the antibody from these cells can then be accomplished using standard procedures (Johnstone, A. and R. Thorpe,Immunochem. in Practice, Blackwell Scientific, Oxford, p. 27 (1982); Harlow, E. and D. Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, N.Y., p. 283 (1988)).
- It is also possible to produce antigen-binding molecules whose affinity for a selected antigen is altered (e.g., different from the affinity of a corresponding antigen-binding molecule produced by the present method). This can be carried out, for example, to increase the affinity of an antigen-binding molecule by randomly mutagenizing the genes isolated as described above using previously-described mutagenesis methods. Alternatively, the variable region of antigen-binding molecule-encoding genes can be sequenced and site directed mutagenesis performed to mutate the complementarity determining regions (CDR) (Kabat, E. A.,J. Immunol., 141:S 25-36 (1988)). Both processes result in production of a sublibrary of genes which can be screened for antigen-binding molecules of higher affinity or of altered affinity after the genes are expressed in myeloma cells.
- In addition to those described above for use in the method of the present invention, other materials (e.g., starting materials, primers) and procedures can be used in carrying out the method. For example, use of PCR technology to clone a large collection of cDNA genes encoding variable regions of heavy chains has been described above. Although primers from the Cμ class were described as being used in unidirectional nested PCR, the present invention is not limited to these conditions. For example, primers from any of the other heavy chain classes (Cγ3, Cγ1, Cγ2b, Cα for example) or from light chains can be used. Cμ was described as of particular use because of the fact that the entire repertoire of heavy chain variable regions are initially expressed as IgM. Only following heavy-chain class switching are these variable regions expressed with a heavy chain of a different class (Shimizu, A. and T. Honjo, Cell, 36:801-803 (1984)). In addition, the predominant population of B cells in nonimmune spleen cells is IgM+-cells (Cooper, M. D. and P. Burrows, In Immunoglobulin Genes, Academic Press, N.Y. p. 1 (1989)). Although unidirectional nested PCR amplification is described above, other PCR procedures, as well as other DNA amplification techniques can be used to amplify DNA as needed in the present invention. For example, bidirectional PCR amplification of antibody variable regions can be carried out. This approach requires use of
multiple degenerate 5′ primers (Orlandi, R., et al., Proc. Natl. Acad. Sci. USA, 86:3833 (1989); Sastry, L., et al., Proc. Natl. Acad. Sci. USA, 86:5728 (1989)). Bidirectional amplification may not pick up the same full diversity of genes as can be expected from unidirectional PCR. - In addition, methods of introducing further diversity into the antibody library other than the method for random mutagenesis utilizing PCR described above can be used. Other methods of random mutagenesis, such as that described by Sambrook, et al. (Sambrook, J., et al.,Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. (1989)) can be used, as can direct mutagenesis of the complementarity determining regions (CDRs).
- Framework vectors other than one using a mouse Cμ heavy chain constant region, which contains the Cμ enhancer and introns and a viral promoter (described previously) can be used for inserting the products of PCR. The vectors described were chosen for their subsequent use in the expression of the antibody genes, but any eukaryotic or prokaryotic cloning vector could be used to create a library of diverse cDNA genes encoding variable regions of antibody molecules. The inserts from this vector could be transferred to any number of expression vectors. For example, other framework vectors which include intronless genes can be constructed, as can other heavy chain constant regions. In addition to plasmid vectors, viral vectors or retroviral vectors can be used to introduce genes into myeloma cells.
- The source for antibody molecule mRNAs can also be varied. Purified resting B lymphocytes from mouse nonimmunized spleen are described above as such a source. However, total spleens (immunized or not) from other animals, including humans, can be used, as can any source of antibody-producing cells (e.g., peripheral blood, lymph nodes, inflammatory tissue, bone marrow).
- Introduction of H and L chain gene DNA into myeloma cells using cotransformation by electroporation or protoplast fusion methods is described above (Morrison, S. L. and V. T. Oi,Adv. Immunol., 44:65 (1989)). However, any means by which DNA can be introduced into living cells in vivo can be used, provided that it does not significantly interfere with the ability of the transformed cells to express the introduced DNA. In fact, a method other than cotransformation, can be used. Cotransfection was chosen for its simplicity, and because both the H and L chains can be introduced into myeloma cells. It may be possible to introduce only the H chain into myeloma cells. Moreover, the H chain itself in many cases carries sufficient binding affinity for antigen. However, other methods can also be used. For example, retroviral infection may be used. Replication-incompetent retroviral vectors can be readily constructed which can be packaged into infective particles by helper cells (Mann, R., et al., Cell, 33:153-159 (1903)). Viral titers of 105 infectious units per ml. can be achieved, making possible the transfer of very large numbers of genes, into myeloma cells.
- Further increases in the diversity of antibody-producing cells than results from the method described above can be generated if light and heavy chain genes are introduced separately into myeloma cells. Light chain genes can be introduced into one set of myeloma cells with one selectable marker, and heavy chains into another set of cells with a different selectable marker. Myeloma cells containing and expressing both H and L chains could then be generated by the highly efficient process of polyethylene glycol mediated cell fusion (Pontecorvo, G.,Somatic Cell Genetics, 1:397 (1975)). Thus, a method of screening diverse libraries of antibody genes using animal cells is not limited by the number of cells which can be generated, but by the number of cells which can be screened.
- Methods of identifying antigen-binding molecule-expressing cells expressing an antigen-binding molecule of selected specificity other than the nitrocellulose filter overlay technique described above can be used. An important characteristic of any method is that it be useful to screen large numbers of different antibodies. With the nitrocellulose filter overlay technique, for example, if 300 dishes are prepared and 104 independent transformed host cells per dish are screened, and if, on average, each cell produces ten different antibody molecules, then 300×104×3, or about 107 different antibodies can be screened at once. However, if the antibody molecules can be displayed on the cell surface, still larger numbers of cells can be screened using affinity matrices to pre-enrich for antigen-binding cells. There are immortal B cell lines, such as BCL1B1, which will express IgM both on the cell surface and as a secreted form (Granowicz, E. S., et al., J. Immunol., 125:976 (1980)). If such cells are infected by retroviral vectors containing the terminal Cμ exons, the infected cells will likely produce both secreted and membrane bond forms of IgM (Webb, C. F., et al., J. Immunol., 143:3934-3939 (1989)). Still other methods can be used to detect antibody production. If the host cell is E. coli, a nitrocellulose overlay is possible, and such methods have been frequently used to detect E. coli producing particular proteins (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). Other methods of detection are possible and one in particular, which involves the concept of “viral coating”, is discussed below.
- Viral coating can be used as a means of identifying viruses encoding antigen-combining molecules. In this method, a viral vector is used to direct the synthesis of diverse antibody molecules. Upon lytic infection of host cells, and subsequent cell lysis, the virus becomes “coated” with the antibody product it directs. That is, the antibody molecule becomes physically linked to the outside of a mature virus particle, which can direct its synthesis. Methods for viral coating are described below. Viruses coated by antibody can be physically selected on the basis of their affinity to antigen which is attached to a solid support. The number of particles which can be screened using this approach is well in excess of 109 and it is possible that 1011 different antibody genes could be screened in this manner. In one embodiment, an affinity matrix containing antigen used to purify those viruses encoding antibody molecules with affinity to antigen and which coat the surface of the virus which encodes those antibodies is used.
- One method of viral coating is as follows—: A diverse library of bacteriophage λ encoding parts of antibody molecules that are expressed in infectedE. coli and which retain the ability to bind antigens is created, using known techniques (Orlandi, R., et al., Proc. Natl. Acad. Sci. USA, 86:3833 (1989); Huse, W. D., et al., Science, 246:1275 (1989); Better, M., et al., Science, 240:1041 (1988); Skerra, A. and A. Pluckthon, Science, 240:1038 (1988)). Bacteria infected with phage are embedded in a thin film of semisolid agar. Greater than 107 infected bacteria may be plated in the presence of an excess of uninfected bacteria in a volume of 1 ml of agar and spread over a 10 cm2 surface. The agar contains monovalent antibody “A” (Parham, P., In Handbook of Experimental Immunology: Immunochem., Blackwell Scientific Publishers, Cambridge, Mass., pp. 14.1-14.23 (1986)), which can bind the λ coat proteins and which has been chemically coupled to monovalent antibody “B”, which can bind an epitope on all viral directed antibody molecules. Monovalent antibodies are used to prevent the crosslinking of viral particles. Upon lytic burst, progeny phage particles become effectively cross linked to the antibody molecule they encode. Because lysis occurs in semisolid medium, in which diffusion is slow, cross linking between a given phage and the antibody encoded by another phage is minimized. A nitrocellulose filter (or other protein binding filter) is prepared as an affinity matrix by adsorbing the desired antigen. The filter is then blocked so that no other proteins bind nonspecifically. The filter is overlayed upon the agar, and coated phage are allowed to bind to the antigen by way of their adherent antibody molecules. Filters are washed to remove nonspecifically bound phage. Specifically bound phage therefore represent phage encoding antibodies with the desired specificity. These can now be propagated by reinfection of bacteria.
- Thus the present invention makes it possible to produce antigen-binding molecules which, like antibodies produced by presently-available techniques, bind to a selected antigen (i.e., having binding specifity). Antibodies produced as described can be used, for example, to detect and neutralize antigens and deliver molecules to antigenic sites.
- IgM heavy chain variable DNA is amplified from mRNA by the procedure represented schematically in FIG. 2. In FIG. 2, Panel A depicts the relevant regions of the poly adenylated mRNA encoding the secreted form of the IgM heavy chain. In Panel A, S denotes the sequences encoding the signal peptide which causes the nascent peptide to cross the plasma membrane, a necessary step in the processing and secretion of the antibody. V, D and J derive from separate exons and together comprise the variable region. CH1, CH2, and
C H3 are the three constant domains of Cμ. “Hinge” encodes the hinge region. C, B and Z are oligonucleotide PCR primers used in the amplification process. The only constraints on Primers B and Z are that they are complementary to the mRNA, and occur in the order shown relative to C. Primer C, in addition to being complementary to mRNA, has an extra bit of sequence at its 5′ end which allows the cloning of its PCR product. This is described below. Panel B depicts the reverse transcript DNA product of the mRNA primed by oligonucleotide Z, with the addition of poly-dC by terminal transferase at the 3′ end of the product. Panel C depicts the annealing of primer A to the reverse transcript DNA represented in Panel B. Primer A contains the restriction endonuclease site RE1, with additional DNA at its 5′ end. The constraints on the RE1 site are described in Example 2. Panel D depicts the final double stranded DNA PCR product made utilizing primers A and B. Panel E depicts the PCR product shown in Panel D annealed to Primer C. Panel F is a blow up of panel E showing the structure of primer C. Primer C consists of two parts: a 3′ part complementary to IgM heavy chain mRNA as shown, and a 5′ part which contains restriction site RE2. and spacer. Constraints on RE2 are described in Example 2. Panel G depicts the final double stranded DNA PCR product utilizing Primers A and C and the product of the previous PCR (depicted in Panel D) as template. The S, V, D, J regions are again depicted. - A heavy chain framework vector, designated pFHC, is constructed, using known techniques (See FIG. 3). It is useful for introducing antibody-encoding DNA into host cells, in which the DNA is expressed, resulting in antibody production. The circular plasmid (above) is depicted linearized (below) and its relevant components are shown. The neomycin antibiotic resistance gene (neoR) is useful for selecting transformed animal cells (Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). The bacterial replication origin and ampicillin antibiotic resistance genes, useful respectively, for replication in E. coli and rendering E. coli resistant to ampicillin, can derive from any number of bacterial plasmids, including PBR322 (Sambrook, J., et al., Molecular Cloning: A Laborator Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). The Cμ enhancer, which derives from the intron between exons J and CH1 of the Cμ gene, derives from any one of the cloned Cμ genes (Kawakami, T., et al., Nucleic Acids Research, 8:3933 (1980); Honjo, T., Ann. Rev. Immunol., 1:499 (1983)) and increases levels of transcription from antibody genes. LTR contains the viral promoter from the Moloney MLV retrovirus DNA (Mulligan, R. C., Experimental Manipulation of Gene Expression, New York Academic Press, p. 155 (1983)). D represents the PCR primer described in the text, depicted in its 5′ to 3′ orientation. The only constraints on D are its orientation, its complementarity to pFHC and its order relative to the RE1 and RE2 cloning sites. Preferably, D is within 100 nucleotides of RE1. The cDNA cloning site contains restriction endonuclease sites RE1 and RE2, separated by spacer DNA which allows their efficient cleavage. The constraints on RE1 and RE2 are described below. The Cμ exons, as described in the text and literature, direct the synthesis of IgM heavy chain. Only part of CH1 is present, as described below.
C H3 is chosen to contain the Cμs region which specifies a secreted form of the heavy chain ((Kawakami, T., et al., Nucleic Acids Research, 8:3933 (1980); Honjo, T., Ann. Rev. Immunol., 1:499 (1983)). Finally, pFHC contains poly A addition and termination sequences which can be derived from the Cμ gene itself (Honjo, T., Ann. Rev. Immunol., 1:499 (1983); Kawakami, T., et al., Nucleic Acids Research, 8:3933 (1980)). One potential advantage of using the entire Cμ gene is that in some host cell systems, a membrane bound and secreted form of IgM may be expressed (Granowicz, E. S., et al., J. Immunol, 125:976 (1980)). - The plasmid can be produced by combining the individual components, or nucleic acid segments, depicted in FIG. 3, using PCR cassette assembly (See below). Because the entire nucleotide sequence of each component is defined, the entire nucleotide sequence of the plasma is defined.
- The constraints on RE1 are simple. It should be the sole cleavage site on the plasmid for its restriction endonuclease. The choice of RE1 can be made by computer based sequence analysis (Intelligenetics Suite, Release 5:35, Intelligenetics).
- The constraints on RE2 are more complex. First, it must be the sole cleavage site on the plasmid for its restriction endonuclease, as described for RE1. Moreover, the RE2 site must be such that when the PCR product is inserted, a gene is thereby created which is capable of directing the synthesis of a complete IgM heavy chain. This limits the choices for RE2, but the choices available can be determined by computer based sequence analysis. The choices can be determined as follows. First, a list of restriction endonucleases that do not cleave pFHC is compiled (see Table 1).
TABLE 1 Non-Cutting Enzymes for the Mouse Cμ Gene AatII AhaII AseI AvrII BgII BspHI BssHII BstBI ClaI DraI EagI EcoRI EcoRV FspI HgaI HincII HpaI KpnI MluI NaeI NarI NdeI NotI NruI PaeR7I PvuI RsrII SacII SaII ScaI SfII SnaBI SpeI SphI SspI StuI TthlllI XbaI XhoI - These are called the “rare non-cutters.” Next, the sequence of CH1 is rewritten with “N” at the third position of each codon and entered into the computer. This is called the “N-doped sequence” (See FIG. 4). Next, the rare non-cutters are surveyed by computer analysis for those which will cleave the N-doped sequence. The search program will show a possible restriction endonuclease site, assuming a match between N and the restriction endonuclease cutting site. For example, with 39 rare non-cutters, 22 will cleave the N-doped sequence of Cμ CH1, many of them several times (see Table 2). In this table, “Def” means a definite cut site, of which there are none, because of the Ns. “Pos” means a possible cleavage site at the indicated nucleotide position if N is chosen appropriately. “Y” indicates any pyrimidine, “R” indicates any purine and “N” indicates any nucleotide. The nucleotide positions refer to coordinates represented in FIG. 4.
TABLE 2 ENZYME RECOGNITION CUT SITE AatII (GACGTC) Def none Pos 250 309 AhaII (GRCGYC) Def none Pos 247 306 AvrII (CCTAGG) Def none Pos 204 BspHI (TCATGA) Def none Pos 138 BsshII (GCGCGC) Def none Pos 189 EcoRI (GAATTC) Def none Pos 195 334 EcoRV (GATATC) Def none Pos 214 HgaI (GACGCNNNNN) Def none (NNNNNNNNNNGCGTC) Pos 284 HincII (GTYRAC) Def none Pos 183 220 HpaI (GTTAAC) Def none Pos 220 KpnI (GGTACC) Def none Pos 408 NruI (TCGCGA) Def none Pos 174 193 303 PaeR7 (CTCGAG) Def none Pos 190 339 PvuI (CGATCG) Def none Pos 178 ScaI (AGTACT) Def none Pos 209 266 284 SpeI (ACTAGT) Def none Pos 131 167 359 SphI (GCATGC) Def none Pos 338 SspI (AATATT) Def none Pos 371 StuI (AGGCCT) Def none Pos 149 TthlllI (GACNNNGTC) Def none Pos 212 XbaI (TCTAGA) Def none Pos 338 XhoI (CTCGAG) Def none Pos 190 339 - Most of these cleavage sites (about 60%) are compatible with the amino acids specified by CH1. Therefore, it is possible to mutate CH1 to create a unique site for such an enzyme without altering the amino acid sequence incoded by CH1. One sequence which illustrates this is shown below:
1) . . . ala met gly cys leu ala arg asp . . . 2) . . . GCC ATG GGC TGC CTA GCC CGG GAC . . . 3) . . . GCC ATG GGC TGC CTA GCG CGC GAC . . . --------- BssHII - Line 1 represents part of the actual amino acid sequence specified by the mouse Cμ CH1 gene region, and line 2 is the actual nucleotide sequence. By changing the sequence to the indicated nucleotides underlined on
line 3, a cleavage site for the rare non-cutter BssHII is created. The new sequence (containing the BssHII site) GCG CGC still encodes the identical amino acid sequence. Therefore, the sequence of the primer C is chosen to be the complement ofline 3, and RE2 is the BssHII site. Such a primer will function in the PCR and vector construction as desired. Other examples are possible, and the same process can be used in designing vectors and primers for cloning light chain variable regions. - The choice for primer C puts a constraint on pFHC. In the example shown, the CH1 region contained on pFHC must begin at its 5′ nd with the mutant sequence GCG CGC. Such mutant fragments can b readily made by the process of PCR cassette assembly described below.
- The process of PCR cassette assembly is a method of constructing plasmid molecules (in this case the plasmid pFHC) from fragments of DNA of known nucleotide sequence. One first compiles a list of restriction endonucleases that do not cleave any of the fragments. Each fragment is then individually PCR amplified using synthesized oligonucleotide primers complementary to the terminal sequences of the fragment. These primers are synthesized to contain on their 5′ ends restriction endonuclease cleavage sites from the compiled list. Thus, each PCR product can be so designed that each fragment can be assembled one by one into a larger plasmid structure by cleavage and ligation and transformation intoE. coli. Using this method, it is also possible to make minor modifications to modify the terminal sequence of the fragment being amplified. This is done by altering the PCR primer slightly so that a mismatch occurs. In this way it is possible to amplify the Cμ gene starting precisely from the desired point in CH1 (as determined by oligo C above) and creating the RE2 endonuclease cleavage site.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.
-
1 6 1 313 DNA Artificial Sequence Synthesized Nucleotide Sequence 1 agt cag tcc ttc cca aat gtc ttc ccc ctc gtc tcc tgc gag agc ccc 48 Ser Gln Ser Phe Pro Asn Val Phe Pro Leu Val Ser Cys Glu Ser Pro 1 5 10 15 ctg tct gat aag aat ctg gtg gcc atg ggc tgc cta gcc cgg gac ttc 96 Leu Ser Asp Lys Asn Leu Val Ala Met Gly Cys Leu Ala Arg Asp Phe 20 25 30 ctg ccc agc acc att tcc ttc acc tgg aac tac cag aac aac act gaa 144 Leu Pro Ser Thr Ile Ser Phe Thr Trp Asn Tyr Gln Asn Asn Thr Glu 35 40 45 gtc atc cag ggt atc aga acc ttc cca aca ctg agg aca ggg ggc aag 192 Val Ile Gln Gly Ile Arg Thr Phe Pro Thr Leu Arg Thr Gly Gly Lys 50 55 60 tac cta gcc acc tcg cag gtg ttg ctg tct ccc aag agc atc ctt gaa 240 Tyr Leu Ala Thr Ser Gln Val Leu Leu Ser Pro Lys Ser Ile Leu Glu 65 70 75 80 ggt tca gat gaa tac ctg gta tgc aaa atc cac tac gga ggc aaa aac 288 Gly Ser Asp Glu Tyr Leu Val Cys Lys Ile His Tyr Gly Gly Lys Asn 85 90 95 aga gat ctg cat gtg ccc att cca g 313 Arg Asp Leu His Val Pro Ile Pro 100 2 104 PRT Artificial Sequence Synthesized Peptide 2 Ser Gln Ser Phe Pro Asn Val Phe Pro Leu Val Ser Cys Glu Ser Pro 1 5 10 15 Leu Ser Asp Lys Asn Leu Val Ala Met Gly Cys Leu Ala Arg Asp Phe 20 25 30 Leu Pro Ser Thr Ile Ser Phe Thr Trp Asn Tyr Gln Asn Asn Thr Glu 35 40 45 Val Ile Gln Gly Ile Arg Thr Phe Pro Thr Leu Arg Thr Gly Gly Lys 50 55 60 Tyr Leu Ala Thr Ser Gln Val Leu Leu Ser Pro Lys Ser Ile Leu Glu 65 70 75 80 Gly Ser Asp Glu Tyr Leu Val Cys Lys Ile His Tyr Gly Gly Lys Asn 85 90 95 Arg Asp Leu His Val Pro Ile Pro 100 3 313 DNA Artificial Sequence Synthesized Nucleotide Sequence 3 agncantcnt tnccnaangt nttnccnctn gtntcntgng anagnccnct ntcnganaan 60 aanctngtng cnatngcntg nctngcncgn ganttnctnc cnagnacnat ntcnttnacn 120 tgnaantanc anaanaanac ngangtnatn canggnatna gnacnttncc nacnctnagn 180 acnggnggna antanctngc nacntcncan gtnttnctnt cnccnaanag natnctngan 240 ggntcngang antanctngt ntgnaanatn cantanggng gnaanaanag nganctncan 300 gtnccnatnc cng 313 4 8 PRT Artificial Sequence Synthesized Nucleotide Sequence 4 Ala Met Gly Cys Leu Ala Arg Asp 1 5 5 24 DNA Artificial Sequence Synthesized Nucleotide Sequence 5 gccatgggct gcctagcccg ggac 24 6 24 DNA Artificial Sequence Synthesized Nucleotide Sequence 6 gccatgggct gcctagcgcg cgac 24
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/690,396 US20040096956A1 (en) | 1990-01-11 | 2003-10-20 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46435090A | 1990-01-11 | 1990-01-11 | |
PCT/US1991/000209 WO1991010737A1 (en) | 1990-01-11 | 1991-01-10 | Production of antibodies using gene libraries |
WOPCT/US91/00209 | 1991-01-10 | ||
US07/919,730 US5284555A (en) | 1991-08-15 | 1992-07-24 | Process for preparing organophosphines |
US08/315,269 US5780225A (en) | 1990-01-12 | 1994-09-29 | Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US99719597A | 1997-12-23 | 1997-12-23 | |
US09/439,732 US6303313B1 (en) | 1990-01-11 | 1999-11-12 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US09/798,720 US6635424B2 (en) | 1990-01-11 | 2001-03-02 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US10/690,396 US20040096956A1 (en) | 1990-01-11 | 2003-10-20 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/798,720 Continuation US6635424B2 (en) | 1990-01-11 | 2001-03-02 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040096956A1 true US20040096956A1 (en) | 2004-05-20 |
Family
ID=23843589
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/439,732 Expired - Fee Related US6303313B1 (en) | 1990-01-11 | 1999-11-12 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US09/798,720 Expired - Fee Related US6635424B2 (en) | 1990-01-11 | 2001-03-02 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US09/800,229 Expired - Fee Related US6479243B1 (en) | 1990-01-11 | 2001-03-05 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US10/690,396 Abandoned US20040096956A1 (en) | 1990-01-11 | 2003-10-20 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/439,732 Expired - Fee Related US6303313B1 (en) | 1990-01-11 | 1999-11-12 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US09/798,720 Expired - Fee Related US6635424B2 (en) | 1990-01-11 | 2001-03-02 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US09/800,229 Expired - Fee Related US6479243B1 (en) | 1990-01-11 | 2001-03-05 | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
Country Status (3)
Country | Link |
---|---|
US (4) | US6303313B1 (en) |
AU (1) | AU7247191A (en) |
WO (1) | WO1991010737A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090318308A1 (en) * | 2006-05-30 | 2009-12-24 | Millegen | Highly diversified antibody libraries |
Families Citing this family (526)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU7247191A (en) | 1990-01-11 | 1991-08-05 | Molecular Affinities Corporation | Production of antibodies using gene libraries |
DE59109264D1 (en) * | 1990-02-01 | 2004-10-28 | Dade Behring Marburg Gmbh | Production and use of gene banks of human antibodies ("human antibody libraries") |
US5427908A (en) * | 1990-05-01 | 1995-06-27 | Affymax Technologies N.V. | Recombinant library screening methods |
US6172197B1 (en) | 1991-07-10 | 2001-01-09 | Medical Research Council | Methods for producing members of specific binding pairs |
GB9015198D0 (en) | 1990-07-10 | 1990-08-29 | Brien Caroline J O | Binding substance |
GB9206318D0 (en) * | 1992-03-24 | 1992-05-06 | Cambridge Antibody Tech | Binding substances |
US7063943B1 (en) | 1990-07-10 | 2006-06-20 | Cambridge Antibody Technology | Methods for producing members of specific binding pairs |
US6916605B1 (en) | 1990-07-10 | 2005-07-12 | Medical Research Council | Methods for producing members of specific binding pairs |
US6225447B1 (en) | 1991-05-15 | 2001-05-01 | Cambridge Antibody Technology Ltd. | Methods for producing members of specific binding pairs |
US5962255A (en) * | 1992-03-24 | 1999-10-05 | Cambridge Antibody Technology Limited | Methods for producing recombinant vectors |
US5858657A (en) * | 1992-05-15 | 1999-01-12 | Medical Research Council | Methods for producing members of specific binding pairs |
DE69230142T2 (en) | 1991-05-15 | 2000-03-09 | Cambridge Antibody Technology Ltd. | METHOD FOR PRODUCING SPECIFIC BINDING PAIRS |
US6492160B1 (en) | 1991-05-15 | 2002-12-10 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
US5733731A (en) * | 1991-10-16 | 1998-03-31 | Affymax Technologies N.V. | Peptide library and screening method |
US5270170A (en) * | 1991-10-16 | 1993-12-14 | Affymax Technologies N.V. | Peptide library and screening method |
ES2313867T3 (en) * | 1991-12-02 | 2009-03-16 | Medical Research Council | ANTI-AUTO ANTIBODY PRODUCTION OF ANTIBODY SEGMENT REPERTORIES EXPRESSED ON THE PAYMENT SURFACE. |
US5733743A (en) * | 1992-03-24 | 1998-03-31 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
DK1231268T3 (en) | 1994-01-31 | 2005-11-21 | Univ Boston | Polyclonal antibody libraries |
US7597886B2 (en) | 1994-11-07 | 2009-10-06 | Human Genome Sciences, Inc. | Tumor necrosis factor-gamma |
US6696248B1 (en) | 1995-08-18 | 2004-02-24 | Morphosys Ag | Protein/(poly)peptide libraries |
ES2176484T3 (en) * | 1995-08-18 | 2002-12-01 | Morphosys Ag | PROTEIN BANKS / (POLI) PEPTIDES. |
US7368111B2 (en) | 1995-10-06 | 2008-05-06 | Cambridge Antibody Technology Limited | Human antibodies specific for TGFβ2 |
US7888466B2 (en) | 1996-01-11 | 2011-02-15 | Human Genome Sciences, Inc. | Human G-protein chemokine receptor HSATU68 |
DE19739685A1 (en) * | 1997-09-10 | 1999-03-11 | Eichel Streiber Christoph Von | Monoclonal antibodies for the therapy and prophylaxis of diseases caused by Clostridium difficile |
EP1093457B8 (en) | 1998-03-19 | 2011-02-02 | Human Genome Sciences, Inc. | Cytokine receptor common gamma chain like |
EP2357192A1 (en) | 1999-02-26 | 2011-08-17 | Human Genome Sciences, Inc. | Human endokine alpha and methods of use |
WO2001077137A1 (en) | 2000-04-12 | 2001-10-18 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US6492497B1 (en) | 1999-04-30 | 2002-12-10 | Cambridge Antibody Technology Limited | Specific binding members for TGFbeta1 |
EA011384B1 (en) | 1999-06-01 | 2009-02-27 | Байоджен Айдек Ма Инк. | Method for the treatment of inflammatory disorder |
US20040001826A1 (en) | 1999-06-30 | 2004-01-01 | Millennium Pharmaceuticals, Inc. | Glycoprotein VI and uses thereof |
US7291714B1 (en) | 1999-06-30 | 2007-11-06 | Millennium Pharmaceuticals, Inc. | Glycoprotein VI and uses thereof |
US8101553B1 (en) * | 2000-02-22 | 2012-01-24 | Medical & Biological Laboratories Co., Ltd. | Antibody library |
US20030031675A1 (en) | 2000-06-06 | 2003-02-13 | Mikesell Glen E. | B7-related nucleic acids and polypeptides useful for immunomodulation |
WO2001096528A2 (en) | 2000-06-15 | 2001-12-20 | Human Genome Sciences, Inc. | Human tumor necrosis factor delta and epsilon |
CA2407910C (en) | 2000-06-16 | 2013-03-12 | Steven M. Ruben | Antibodies that immunospecifically bind to blys |
GB0022978D0 (en) | 2000-09-19 | 2000-11-01 | Oxford Glycosciences Uk Ltd | Detection of peptides |
CA2429544C (en) * | 2000-11-17 | 2010-10-19 | University Of Rochester | In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells |
US20050196755A1 (en) * | 2000-11-17 | 2005-09-08 | Maurice Zauderer | In vitro methods of producing and identifying immunoglobulin molecules in eukaryotic cells |
EP2412384A1 (en) | 2000-11-28 | 2012-02-01 | MedImmune, LLC | Methods of administering/dosing anti-RSV antibodies for prophylaxis and treatment |
EP3569610A3 (en) | 2000-12-12 | 2020-03-18 | Medlmmune, LLC | Molecules with extended half lives, compositions and uses thereof |
JP2005503116A (en) | 2001-02-09 | 2005-02-03 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | Human G protein chemokine receptor (CCR5) HDGNR10 |
US8231878B2 (en) | 2001-03-20 | 2012-07-31 | Cosmo Research & Development S.P.A. | Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof |
US8981061B2 (en) | 2001-03-20 | 2015-03-17 | Novo Nordisk A/S | Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof |
WO2002083704A1 (en) | 2001-04-13 | 2002-10-24 | Human Genome Sciences, Inc. | Vascular endothelial growth factor 2 |
DE60236735D1 (en) * | 2001-04-13 | 2010-07-29 | Biogen Idec Inc | ANTIBODIES TO VLA-1 |
EP1572874B1 (en) | 2001-05-25 | 2013-09-18 | Human Genome Sciences, Inc. | Antibodies that immunospecifically bind to trail receptors |
US6867189B2 (en) | 2001-07-26 | 2005-03-15 | Genset S.A. | Use of adipsin/complement factor D in the treatment of metabolic related disorders |
ES2545090T3 (en) | 2001-12-21 | 2015-09-08 | Human Genome Sciences, Inc. | Albumin and GCSF fusion proteins |
US7244592B2 (en) * | 2002-03-07 | 2007-07-17 | Dyax Corp. | Ligand screening and discovery |
CN1646160A (en) * | 2002-03-13 | 2005-07-27 | 拜奥根Idec马萨诸塞公司 | Anti-alpha V beta 6 antibodies |
GB0207533D0 (en) | 2002-04-02 | 2002-05-08 | Oxford Glycosciences Uk Ltd | Protein |
EP2270049A3 (en) | 2002-04-12 | 2011-03-09 | Medimmune, Inc. | Recombinant anti-interleukin-9-antibody |
CA2488682C (en) | 2002-06-10 | 2014-04-01 | Vaccinex, Inc. | Gene differentially expressed in breast and bladder cancer and encoded polypeptides |
US7425618B2 (en) | 2002-06-14 | 2008-09-16 | Medimmune, Inc. | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
WO2004016750A2 (en) | 2002-08-14 | 2004-02-26 | Macrogenics, Inc. | FcϜRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF |
AU2003294232A1 (en) | 2002-10-16 | 2004-05-04 | Euro-Celtique S.A. | Antibodies that bind cell-associated CA 125/O722P and methods of use thereof |
WO2004065551A2 (en) | 2003-01-21 | 2004-08-05 | Bristol-Myers Squibb Company | Polynucleotide encoding a novel acyl coenzyme a, monoacylglycerol acyltransferase-3 (mgat3), and uses thereof |
DE10303974A1 (en) | 2003-01-31 | 2004-08-05 | Abbott Gmbh & Co. Kg | Amyloid β (1-42) oligomers, process for their preparation and their use |
DK1594542T3 (en) | 2003-02-20 | 2010-10-11 | Seattle Genetics Inc | Anti-CD70 antibody-drug conjugates and their use in the treatment of cancer |
GEP20094629B (en) | 2003-03-19 | 2009-03-10 | Biogen Idec Inc | Nogo receptor binding protein |
CA2521826C (en) | 2003-04-11 | 2013-08-06 | Jennifer L. Reed | Recombinant il-9 antibodies and uses thereof |
WO2005010040A1 (en) | 2003-07-15 | 2005-02-03 | Barros Research Institute | Eimeria tenella antigen for immunotherapy of coccidiosis |
JP2007511738A (en) | 2003-08-08 | 2007-05-10 | ジーンニュース インコーポレーテッド | Biomarkers for osteoarthritis and uses thereof |
ES2458636T3 (en) | 2003-08-18 | 2014-05-06 | Medimmune, Llc | Humanization of antibodies |
IL158287A0 (en) | 2003-10-07 | 2004-05-12 | Yeda Res & Dev | Antibodies to nik, their preparation and use |
WO2005051422A1 (en) | 2003-11-21 | 2005-06-09 | Celltech R & D Limited | Method for the treatment of multiple sclerosis by inhibiting il-17 activity |
GB0329825D0 (en) | 2003-12-23 | 2004-01-28 | Celltech R&D Ltd | Biological products |
CN102816241B (en) | 2004-02-09 | 2015-07-22 | 人类基因科学公司 | Albumin fusion proteins |
US7973139B2 (en) | 2004-03-26 | 2011-07-05 | Human Genome Sciences, Inc. | Antibodies against nogo receptor |
CA2578670C (en) | 2004-04-15 | 2017-03-07 | University Of Florida Research Foundation, Inc. | Neural proteins as biomarkers for nervous system injury and other neural disorders |
ES2442386T3 (en) | 2004-04-23 | 2014-02-11 | Bundesrepublik Deutschland Letztvertreten Durch Das Robert Koch-Institut Vertreten Durch Seinen Pr | Method for the treatment of conditions mediated by T cells by the decrease of positive ICOS cells in vivo. |
RS52593B (en) | 2004-06-24 | 2013-04-30 | Biogen Idec Ma Inc. | Treatment of conditions involving demyelination |
CA2576193A1 (en) | 2004-08-03 | 2006-02-16 | Biogen Idec Ma Inc. | Taj in neuronal function |
EP1793850A4 (en) | 2004-09-21 | 2010-06-30 | Medimmune Inc | Antibodies against and methods for producing vaccines for respiratory syncytial virus |
WO2006047417A2 (en) | 2004-10-21 | 2006-05-04 | University Of Florida Research Foundation, Inc. | Detection of cannabinoid receptor biomarkers and uses thereof |
WO2006047639A2 (en) | 2004-10-27 | 2006-05-04 | Medimmune, Inc. | Modulation of antibody specificity by tailoring the affinity to cognate antigens |
GB0426146D0 (en) | 2004-11-29 | 2004-12-29 | Bioxell Spa | Therapeutic peptides and method |
CN101495498B (en) | 2005-02-07 | 2013-09-18 | 基因信息公司 | Mild osteoarthritis biomarkers and uses thereof |
EP1853718B1 (en) | 2005-02-15 | 2015-08-05 | Duke University | Anti-cd19 antibodies and uses in oncology |
JP2008531730A (en) | 2005-03-04 | 2008-08-14 | キュアーディーエム、インク. | Methods and pharmaceutical compositions for treating type 1 diabetes mellitus and other conditions |
WO2006102095A2 (en) | 2005-03-18 | 2006-09-28 | Medimmune, Inc. | Framework-shuffling of antibodies |
GB0506912D0 (en) | 2005-04-05 | 2005-05-11 | Celltech R&D Ltd | Biological products |
ES2707152T3 (en) | 2005-04-15 | 2019-04-02 | Macrogenics Inc | Covalent diabodies and uses thereof |
CA2605507C (en) | 2005-04-19 | 2016-06-28 | Seattle Genetics, Inc. | Humanized anti-cd70 binding agents and uses thereof |
WO2006121852A2 (en) | 2005-05-05 | 2006-11-16 | Duke University | Anti-cd19 antibody therapy for autoimmune disease |
CA2726759C (en) | 2005-05-25 | 2016-02-16 | Curedm Group Holdings, Llc | Human proislet peptide, derivatives and analogs thereof, and methods of using same |
CA2613512A1 (en) | 2005-06-23 | 2007-01-04 | Medimmune, Inc. | Antibody formulations having optimized aggregation and fragmentation profiles |
CN103145842A (en) | 2005-06-30 | 2013-06-12 | Abbvie公司 | Il-12/p40 binding proteins |
WO2007008604A2 (en) | 2005-07-08 | 2007-01-18 | Bristol-Myers Squibb Company | Single nucleotide polymorphisms associated with dose-dependent edema and methods of use thereof |
CA2902070A1 (en) | 2005-07-08 | 2007-01-18 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
CN104072614B (en) | 2005-07-08 | 2017-04-26 | 生物基因Ma公司 | Anti-alpha[v]beta[6] antibodies and uses thereof |
US20080307549A1 (en) | 2005-08-03 | 2008-12-11 | Adelaide Research & Innovation Pty Ltd. | Polysaccharide Synthases |
US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
EP1928506A4 (en) | 2005-08-19 | 2009-10-21 | Abbott Lab | Dual variable domain immunoglobin and uses thereof |
EP2500356A3 (en) | 2005-08-19 | 2012-10-24 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
US8906864B2 (en) | 2005-09-30 | 2014-12-09 | AbbVie Deutschland GmbH & Co. KG | Binding domains of proteins of the repulsive guidance molecule (RGM) protein family and functional fragments thereof, and their use |
EP2319941A3 (en) | 2005-10-21 | 2011-08-17 | GeneNews Inc. | Method and apparatus for correlating levels of biomarker products with disease |
EP2510934A1 (en) | 2005-11-04 | 2012-10-17 | Biogen Idec MA Inc. | Methods for promoting neurite outgrowth and survival of dopaminergic neurons |
JP5191392B2 (en) | 2005-11-07 | 2013-05-08 | ザ スクリプス リサーチ インスティチュート | Compositions and methods for modulating the specificity of tissue factor signaling |
EP2567973B1 (en) | 2005-11-28 | 2014-05-14 | Zymogenetics, Inc. | IL-21 antagonists |
KR101434935B1 (en) | 2005-11-30 | 2014-10-01 | 애브비 인코포레이티드 | Monoclonal Antibodies to Amyloid Beta Proteins and Their Uses |
RU2442793C2 (en) | 2005-11-30 | 2012-02-20 | Эбботт Лэборетриз | ANTISUBSTANCES AGAINST GLOBULOMER Aβ, THEIR ANTIGEN-BINDING PARTS, CORRESPONDING HYBRIDOMAS, NUCLEIC ACIDS, VECTORS, HOST CELLS, WAYS OF PRODUCTION OF MENTIONED ANTISUBSTANCES, COMPOSITIONS CONTAINING MENTIONED ANTISUBSTANCES, APPLICATION OF MENTIONED ANTISUBSTANCES AND WAYS OF APPLICATION OF MENTIONED ANTISUBSTANCES |
WO2007064882A2 (en) | 2005-12-02 | 2007-06-07 | Biogen Idec Ma Inc. | Treatment of conditions involving demyelination |
ES2525325T3 (en) | 2005-12-09 | 2014-12-22 | Ucb Pharma S.A. | Antibody molecules that have specificity for human IL-6 |
CN100366752C (en) * | 2005-12-28 | 2008-02-06 | 河北省农林科学院遗传生理研究所 | Method for deriving mulriple DNA sequences from atom destructurizing |
BRPI0707276B1 (en) | 2006-01-27 | 2021-08-31 | Biogen Ma Inc | NOGO RECEPTOR ANTAGONIST FUSION POLYPEPTIDE |
US8389688B2 (en) | 2006-03-06 | 2013-03-05 | Aeres Biomedical, Ltd. | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
PL2034830T3 (en) * | 2006-05-25 | 2015-04-30 | Biogen Ma Inc | Anti-vla-1 antibody for treating stroke |
GB0611116D0 (en) | 2006-06-06 | 2006-07-19 | Oxford Genome Sciences Uk Ltd | Proteins |
JP2009544761A (en) | 2006-06-14 | 2009-12-17 | マクロジェニクス,インコーポレーテッド | Method of treating autoimmune disease using low toxicity immunosuppressive monoclonal antibody |
PL2029173T3 (en) | 2006-06-26 | 2017-04-28 | Macrogenics, Inc. | Fc riib-specific antibodies and methods of use thereof |
US7572618B2 (en) | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
WO2008008315A2 (en) | 2006-07-10 | 2008-01-17 | Biogen Idec Ma Inc. | Compositions and methods for inhibiting growth of smad4-deficient cancers |
MY157757A (en) | 2006-07-18 | 2016-07-15 | Sanofi Aventis | Antagonist antibody against epha2 for the treatment of cancer |
AU2007290570C1 (en) | 2006-08-28 | 2013-08-15 | Kyowa Kirin Co., Ltd. | Antagonistic human LIGHT-specific human monoclonal antibodies |
EP3910065A1 (en) | 2006-09-08 | 2021-11-17 | AbbVie Bahamas Ltd. | Interleukin -13 binding proteins |
JP2010506842A (en) | 2006-10-16 | 2010-03-04 | メディミューン,エルエルシー | Molecules with reduced half-life, compositions thereof and uses |
GB0620729D0 (en) | 2006-10-18 | 2006-11-29 | Ucb Sa | Biological products |
EP1914242A1 (en) | 2006-10-19 | 2008-04-23 | Sanofi-Aventis | Novel anti-CD38 antibodies for the treatment of cancer |
US20100150914A1 (en) | 2006-11-09 | 2010-06-17 | Irm Llc | Agonist trkb antibodies and uses thereof |
WO2008064306A2 (en) | 2006-11-22 | 2008-05-29 | Curedm, Inc. | Methods and compositions relating to islet cell neogenesis |
US8455626B2 (en) | 2006-11-30 | 2013-06-04 | Abbott Laboratories | Aβ conformer selective anti-aβ globulomer monoclonal antibodies |
CA2699837C (en) | 2006-12-01 | 2017-06-13 | Seattle Genetics, Inc. | Variant target binding agents and uses thereof |
CN101678100A (en) | 2006-12-06 | 2010-03-24 | 米迪缪尼有限公司 | methods of treating systemic lupus erythematosus |
EA036660B1 (en) | 2007-01-09 | 2020-12-04 | Байоджен Эмэй Инк. | Sp35 ANTIBODY OR ANTIGEN-BINDING FRAGMENT THEREOF AND USE THEREOF IN TREATING DISORDERS OF THE CENTRAL NERVOUS SYSTEM |
US8128926B2 (en) | 2007-01-09 | 2012-03-06 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
US8685666B2 (en) | 2007-02-16 | 2014-04-01 | The Board Of Trustees Of Southern Illinois University | ARL-1 specific antibodies and uses thereof |
WO2008101184A2 (en) | 2007-02-16 | 2008-08-21 | The Board Of Trustees Of Southern Illinois University | Arl-1 specific antibodies |
WO2008104803A2 (en) | 2007-02-26 | 2008-09-04 | Oxford Genome Sciences (Uk) Limited | Proteins |
EP2447719B1 (en) | 2007-02-26 | 2016-08-24 | Oxford BioTherapeutics Ltd | Proteins |
WO2008104386A2 (en) | 2007-02-27 | 2008-09-04 | Abbott Gmbh & Co. Kg | Method for the treatment of amyloidoses |
GEP20146112B (en) | 2007-03-22 | 2014-06-25 | Ucb Pharma Sa | Binding proteins, including antibodies, antibody derivatives and antibody fragments, that specifically bind cd154 and usage thereof |
BRPI0809674A2 (en) | 2007-03-30 | 2014-10-07 | Medimmune Llc | WATER FORMULATION, STERILE, STABLE, PHARMACEUTICAL UNIT FORM, SEALED CONTAINER, KIT, METHOD TO PREVENT, CONTROL, TREAT OR IMPROVE INFLAMMATORY DISORDER, COMPOSITION, PROCESS FOR PREPARATION, PREPARATION FOR PREPARATION, PREPARATION AND PREPARATION |
SG194368A1 (en) | 2007-05-04 | 2013-11-29 | Technophage Investigacao E Desenvolvimento Em Biotecnologia Sa | Engineered rabbit antibody variable domains and uses thereof |
AU2008247382B2 (en) | 2007-05-07 | 2014-06-05 | Medimmune, Llc | Anti-ICOS antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
SI2068927T1 (en) | 2007-05-14 | 2016-05-31 | Medimmune, Llc | Methods of reducing eosinophil levels |
WO2009151717A2 (en) | 2008-04-02 | 2009-12-17 | Macrogenics, Inc. | Bcr-complex-specific antibodies and methods of using same |
CN101821288A (en) | 2007-06-21 | 2010-09-01 | 宏观基因有限公司 | Covalent diabodies and uses thereof |
NZ599756A (en) | 2007-08-30 | 2013-09-27 | Curedm Group Holdings Llc | Compositions and methods of using proislet peptides and analogs thereof |
GB0717337D0 (en) | 2007-09-06 | 2007-10-17 | Ucb Pharma Sa | Method of treatment |
CA2700714C (en) | 2007-09-26 | 2018-09-11 | Ucb Pharma S.A. | Dual specificity antibody fusions |
PT2219452E (en) | 2007-11-05 | 2016-01-26 | Medimmune Llc | Methods of treating scleroderma |
WO2009067546A2 (en) | 2007-11-19 | 2009-05-28 | Celera Corpration | Lung cancer markers and uses thereof |
US9308257B2 (en) | 2007-11-28 | 2016-04-12 | Medimmune, Llc | Protein formulation |
FR2924440B1 (en) * | 2007-12-04 | 2015-01-09 | Pf Medicament | NEW METHOD FOR GENERATING AND SCREENING AN ANTIBODY BANK |
GB0800277D0 (en) | 2008-01-08 | 2008-02-13 | Imagination Tech Ltd | Video motion compensation |
AU2009203350B2 (en) | 2008-01-11 | 2014-03-13 | Gene Techno Science Co., Ltd. | Humanized anti-alpha9 integrin antibodies and the uses thereof |
CA2711736A1 (en) | 2008-01-18 | 2009-07-23 | Medimmune, Llc | Cysteine engineered antibodies for site-specific conjugation |
WO2009100309A2 (en) | 2008-02-08 | 2009-08-13 | Medimmune, Llc | Anti-ifnar1 antibodies with reduced fc ligand affinity |
US8962803B2 (en) | 2008-02-29 | 2015-02-24 | AbbVie Deutschland GmbH & Co. KG | Antibodies against the RGM A protein and uses thereof |
EP2098536A1 (en) | 2008-03-05 | 2009-09-09 | 4-Antibody AG | Isolation and identification of antigen- or ligand-specific binding proteins |
US20110020368A1 (en) | 2008-03-25 | 2011-01-27 | Nancy Hynes | Treating cancer by down-regulating frizzled-4 and/or frizzled-1 |
ES2587937T3 (en) | 2008-04-02 | 2016-10-27 | Macrogenics, Inc. | HER2 / neu specific antibodies and methods to use them |
RU2556129C2 (en) | 2008-04-11 | 2015-07-10 | Сиэтл Дженетикс, Инк. | Diagnostics and treatment of malignant tumours of pancreas, ovaries and other malignant tumours |
GB0807413D0 (en) | 2008-04-23 | 2008-05-28 | Ucb Pharma Sa | Biological products |
CN104530233B (en) | 2008-04-24 | 2018-01-30 | 株式会社遗传科技 | The amino acid sequence RGD of extracellular matrix protein Humanized antibody specific and its application |
SG190572A1 (en) | 2008-04-29 | 2013-06-28 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
US8163551B2 (en) | 2008-05-02 | 2012-04-24 | Seattle Genetics, Inc. | Methods and compositions for making antibodies and antibody derivatives with reduced core fucosylation |
MY159667A (en) | 2008-05-09 | 2017-01-13 | Abbvie Inc | Antibodies to receptor of advanced glycation end products (rage) and uses thereof |
EP2304439A4 (en) | 2008-05-29 | 2012-07-04 | Nuclea Biotechnologies Llc | Anti-phospho-akt antibodies |
TW201006485A (en) | 2008-06-03 | 2010-02-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
AR072001A1 (en) | 2008-06-03 | 2010-07-28 | Abbott Lab | IMMUNOGLOBULIN WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
WO2010033279A2 (en) | 2008-06-04 | 2010-03-25 | Macrogenics, Inc. | Antibodies with altered binding to fcrn and methods of using same |
RU2559525C2 (en) | 2008-07-08 | 2015-08-10 | Эббви Инк | Proteins binding prostaglandin e2 and using them |
JP5674654B2 (en) | 2008-07-08 | 2015-02-25 | アッヴィ・インコーポレイテッド | Prostaglandin E2 double variable domain immunoglobulin and use thereof |
EP2982695B1 (en) | 2008-07-09 | 2019-04-03 | Biogen MA Inc. | Compositions comprising antibodies to lingo or fragments thereof |
EP2350270B1 (en) | 2008-10-24 | 2018-03-07 | The Government of the United States of America, as represented by the Secretary, Department of Health & Human Services | Human ebola virus species and compositions and methods thereof |
BRPI0921845A2 (en) | 2008-11-12 | 2019-09-17 | Medimmune Llc | stable sterile aqueous formulation, pharmaceutical unit dosage form, pre-filled syringe, and methods for treating a disease or disorder, treating or preventing rejection, depleting unique expressing t cells in a human patient, and disrupting central germinal architecture in a secondary lymphoid organ of a primate |
BRPI0918122A8 (en) | 2008-12-19 | 2017-01-24 | Macrogenics Inc | diabody, diabody, and dart molecule |
CA2748757A1 (en) | 2008-12-31 | 2010-07-08 | Biogen Idec Ma Inc. | Anti-lymphotoxin antibodies |
GB0900425D0 (en) | 2009-01-12 | 2009-02-11 | Ucb Pharma Sa | Biological products |
CA2749572A1 (en) | 2009-01-14 | 2010-07-22 | Iq Therapeutics Bv | Combination antibodies for the treatment and prevention of disease caused by bacillus anthracis and related bacteria and their toxins |
US20130122052A1 (en) | 2009-01-20 | 2013-05-16 | Homayoun H. Zadeh | Antibody mediated osseous regeneration |
US20120058131A1 (en) | 2009-01-21 | 2012-03-08 | Oxford Biotherapeutics Ltd | Pta089 protein |
WO2010087972A2 (en) | 2009-01-29 | 2010-08-05 | Abbott Laboratories | Il-1 binding proteins |
WO2010087927A2 (en) | 2009-02-02 | 2010-08-05 | Medimmune, Llc | Antibodies against and methods for producing vaccines for respiratory syncytial virus |
WO2010093993A2 (en) | 2009-02-12 | 2010-08-19 | Human Genome Sciences, Inc. | Use of b lymphocyte stimulator protein antagonists to promote transplantation tolerance |
MA33122B1 (en) | 2009-02-17 | 2012-03-01 | Ucb Pharma Sa | Antibody molecules with quality for human ox40 |
US8835610B2 (en) | 2009-03-05 | 2014-09-16 | Abbvie Inc. | IL-17 binding proteins |
WO2010100247A1 (en) | 2009-03-06 | 2010-09-10 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | Novel therapy for anxiety |
WO2010104208A1 (en) | 2009-03-10 | 2010-09-16 | Gene Techno Science Co., Ltd. | Generation, expression and characterization of the humanized k33n monoclonal antibody |
GB0904214D0 (en) | 2009-03-11 | 2009-04-22 | Ucb Pharma Sa | Biological products |
EP2241323A1 (en) | 2009-04-14 | 2010-10-20 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Tenascin-W and brain cancers |
UA108201C2 (en) | 2009-04-20 | 2015-04-10 | ANTIBODIES SPECIFIC TO CADGERINE-17 | |
CA2762837C (en) * | 2009-05-20 | 2021-08-03 | Novimmune S.A. | Synthetic polypeptide libraries and methods for generating naturally diversified polypeptide variants |
KR101805202B1 (en) | 2009-05-29 | 2017-12-07 | 모르포시스 아게 | A collection and methods for its use |
JP5918129B2 (en) | 2009-06-22 | 2016-05-18 | メディミューン,エルエルシー | Engineered Fc region for site-specific conjugation |
DK2464664T3 (en) | 2009-08-13 | 2016-01-18 | Crucell Holland Bv | ANTIBODIES AGAINST HUMAN RESPIRATORY SYNCYTIAL VIRUS (RSV) AND METHODS FOR USING IT |
EP2292266A1 (en) | 2009-08-27 | 2011-03-09 | Novartis Forschungsstiftung, Zweigniederlassung | Treating cancer by modulating copine III |
CN105131112A (en) | 2009-08-29 | 2015-12-09 | Abbvie公司 | Therapeutic dll4 binding proteins |
CA2772628A1 (en) | 2009-09-01 | 2011-03-10 | Abbott Laboratories | Dual variable domain immunoglobulins and uses thereof |
ES2667258T3 (en) | 2009-09-10 | 2018-05-10 | Ucb Biopharma Sprl | Multivalent antibodies |
EP2480573A1 (en) | 2009-09-22 | 2012-08-01 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Treating cancer by modulating mex-3 |
GB201005063D0 (en) | 2010-03-25 | 2010-05-12 | Ucb Pharma Sa | Biological products |
TW201116297A (en) | 2009-10-02 | 2011-05-16 | Sanofi Aventis | Antibodies that specifically bind to the EphA2 receptor |
US20120231004A1 (en) | 2009-10-13 | 2012-09-13 | Oxford Biotherapeutic Ltd. | Antibodies |
CA2775959A1 (en) | 2009-10-15 | 2011-04-21 | Abbott Laboratories | Dual variable domain immunoglobulins and uses thereof |
WO2011045352A2 (en) | 2009-10-15 | 2011-04-21 | Novartis Forschungsstiftung | Spleen tyrosine kinase and brain cancers |
US9234037B2 (en) | 2009-10-27 | 2016-01-12 | Ucb Biopharma Sprl | Method to generate antibodies to ion channels |
GB0922434D0 (en) | 2009-12-22 | 2010-02-03 | Ucb Pharma Sa | antibodies and fragments thereof |
GB0922435D0 (en) | 2009-12-22 | 2010-02-03 | Ucb Pharma Sa | Method |
CA2778673A1 (en) | 2009-10-27 | 2011-05-05 | Karen Margrete Miller | Function modifying nav 1.7 antibodies |
UY32979A (en) | 2009-10-28 | 2011-02-28 | Abbott Lab | IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
US20120213801A1 (en) | 2009-10-30 | 2012-08-23 | Ekaterina Gresko | Phosphorylated Twist1 and cancer |
TW201121568A (en) | 2009-10-31 | 2011-07-01 | Abbott Lab | Antibodies to receptor for advanced glycation end products (RAGE) and uses thereof |
US20120282177A1 (en) | 2009-11-02 | 2012-11-08 | Christian Rohlff | ROR1 as Therapeutic and Diagnostic Target |
EP2499491B1 (en) | 2009-11-11 | 2015-04-01 | Gentian AS | Immunoassay for assessing related analytes of different origin |
GB0920127D0 (en) | 2009-11-17 | 2009-12-30 | Ucb Pharma Sa | Antibodies |
GB0920324D0 (en) | 2009-11-19 | 2010-01-06 | Ucb Pharma Sa | Antibodies |
BR112012013734A2 (en) | 2009-12-08 | 2017-01-10 | Abbott Gmbh & Co Kg | monoclonal antibodies against the rgm a protein for use in the treatment of retinal nerve fiber layer degeneration. |
GB201000467D0 (en) | 2010-01-12 | 2010-02-24 | Ucb Pharma Sa | Antibodies |
RU2605928C2 (en) | 2010-03-02 | 2016-12-27 | Эббви Инк. | Therapeutic dll4-binding proteins |
US20130004519A1 (en) | 2010-03-05 | 2013-01-03 | Ruth Chiquet-Ehrismann | Smoci, tenascin-c and brain cancers |
GB201005064D0 (en) | 2010-03-25 | 2010-05-12 | Ucb Pharma Sa | Biological products |
TR201903279T4 (en) | 2010-03-25 | 2019-03-21 | Ucb Biopharma Sprl | Disulfide stabilized DVD-IG molecules. |
MX360403B (en) | 2010-04-15 | 2018-10-31 | Abbvie Inc | Amyloid-beta binding proteins. |
EP2561076A1 (en) | 2010-04-19 | 2013-02-27 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Modulating xrn1 |
EP2380909A1 (en) | 2010-04-26 | 2011-10-26 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | PTK-7 protein involved in breast cancer |
NZ603226A (en) | 2010-04-30 | 2015-02-27 | Alexion Pharma Inc | Anti-c5a antibodies and methods for using the antibodies |
EP2569335B1 (en) | 2010-05-14 | 2018-08-22 | Orega Biotech | Methods of treating and/or preventing cell proliferation disorders with il-17 antagonists |
AU2011252883B2 (en) | 2010-05-14 | 2015-09-10 | Abbvie Inc. | IL-1 binding proteins |
WO2011154485A1 (en) | 2010-06-10 | 2011-12-15 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Treating cancer by modulating mammalian sterile 20-like kinase 3 |
WO2012006500A2 (en) | 2010-07-08 | 2012-01-12 | Abbott Laboratories | Monoclonal antibodies against hepatitis c virus core protein |
NZ718973A (en) | 2010-07-09 | 2019-01-25 | Janssen Vaccines & Prevention Bv | Anti-human respiratory syncytial virus (rsv) antibodies and methods of use |
UY33492A (en) | 2010-07-09 | 2012-01-31 | Abbott Lab | IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME |
ES2667100T3 (en) | 2010-08-02 | 2018-05-09 | Macrogenics, Inc. | Covalent Diabodies and Their Uses |
KR20130100118A (en) | 2010-08-03 | 2013-09-09 | 아비에 인코포레이티드 | Dual variable domain immunoglobulins and uses therof |
EP2603524A1 (en) | 2010-08-14 | 2013-06-19 | AbbVie Inc. | Amyloid-beta binding proteins |
US9505829B2 (en) | 2010-08-19 | 2016-11-29 | Zoetis Belgium S.A. | Anti-NGF antibodies and their use |
GB201014033D0 (en) | 2010-08-20 | 2010-10-06 | Ucb Pharma Sa | Biological products |
JP2013539364A (en) | 2010-08-26 | 2013-10-24 | アッヴィ・インコーポレイテッド | Dual variable domain immunoglobulins and uses thereof |
EP2614080A1 (en) | 2010-09-10 | 2013-07-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Phosphorylated twist1 and metastasis |
US20140093506A1 (en) | 2010-11-15 | 2014-04-03 | Marc Buehler | Anti-fungal-agents |
NZ609707A (en) | 2010-11-19 | 2014-12-24 | Morphosys Ag | A collection and methods for its use |
SG10201604699VA (en) | 2010-12-21 | 2016-07-28 | Abbvie Inc | Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use |
TW201307388A (en) | 2010-12-21 | 2013-02-16 | Abbott Lab | IL-1 binding proteins |
AU2011349049B2 (en) | 2010-12-22 | 2016-08-11 | Teva Pharmaceuticals Australia Pty Ltd | Modified antibody with improved half-life |
US10208349B2 (en) | 2011-01-07 | 2019-02-19 | Ucb Biopharma Sprl | Lipocalin 2 as a biomarker for IL-17 inhibitor therapy efficacy |
GB201100282D0 (en) | 2011-01-07 | 2011-02-23 | Ucb Pharma Sa | Biological methods |
EP2663577B1 (en) | 2011-01-14 | 2017-04-12 | UCB Biopharma SPRL | Antibody binding il-17a and il-17f |
US20120189633A1 (en) | 2011-01-26 | 2012-07-26 | Kolltan Pharmaceuticals, Inc. | Anti-kit antibodies and uses thereof |
RU2625034C2 (en) | 2011-04-20 | 2017-07-11 | МЕДИММЬЮН, ЭлЭлСи | Antibodies and other molecules binding b7-h1 and pd-1 |
SG195073A1 (en) | 2011-05-21 | 2013-12-30 | Macrogenics Inc | Deimmunized serum-binding domains and their use for extending serum half-life |
EP2717911A1 (en) | 2011-06-06 | 2014-04-16 | Novartis Forschungsstiftung, Zweigniederlassung | Protein tyrosine phosphatase, non-receptor type 11 (ptpn11) and triple-negative breast cancer |
US9244074B2 (en) | 2011-06-07 | 2016-01-26 | University Of Hawaii | Biomarker of asbestos exposure and mesothelioma |
US9561274B2 (en) | 2011-06-07 | 2017-02-07 | University Of Hawaii | Treatment and prevention of cancer with HMGB1 antagonists |
DK2718320T3 (en) | 2011-06-10 | 2018-03-26 | Medimmune Ltd | ANTI-PSEUDOMONAS-PSL BINDING MOLECULES AND APPLICATIONS THEREOF |
SG10201605323SA (en) | 2011-06-28 | 2016-08-30 | Oxford Biotherapeutics Ltd | Antibodies to adp-ribosyl cyclase 2 |
RS55716B1 (en) | 2011-06-28 | 2017-07-31 | Oxford Biotherapeutics Ltd | Therapeutic and diagnostic target |
AU2012283039A1 (en) | 2011-07-13 | 2014-01-30 | Abbvie Inc. | Methods and compositions for treating asthma using anti-IL-13 antibodies |
GB201112056D0 (en) | 2011-07-14 | 2011-08-31 | Univ Leuven Kath | Antibodies |
US9676854B2 (en) | 2011-08-15 | 2017-06-13 | Medimmune, Llc | Anti-B7-H4 antibodies and their uses |
US20140234903A1 (en) | 2011-09-05 | 2014-08-21 | Eth Zurich | Biosynthetic gene cluster for the production of peptide/protein analogues |
ES2908046T3 (en) | 2011-09-09 | 2022-04-27 | Medimmune Ltd | Anti-siglec-15 antibodies and uses thereof. |
WO2013063095A1 (en) | 2011-10-24 | 2013-05-02 | Abbvie Inc. | Immunobinders directed against sclerostin |
CN104053671A (en) | 2011-11-01 | 2014-09-17 | 生态学有限公司 | Antibodies and methods for treating cancer |
EP2773373B1 (en) | 2011-11-01 | 2018-08-22 | Bionomics, Inc. | Methods of blocking cancer stem cell growth |
US9221907B2 (en) | 2011-11-01 | 2015-12-29 | Bionomics Inc. | Anti-GPR49 monoclonal antibodies |
AU2012332590B2 (en) | 2011-11-01 | 2016-10-20 | Bionomics, Inc. | Anti-GPR49 antibodies |
EP2776838A1 (en) | 2011-11-08 | 2014-09-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Early diagnostic of neurodegenerative diseases |
EP2776022A1 (en) | 2011-11-08 | 2014-09-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | New treatment for neurodegenerative diseases |
DK2776466T3 (en) | 2011-11-11 | 2017-11-20 | Ucb Biopharma Sprl | Albumin-binding antibodies and binding fragments thereof |
CA2855570A1 (en) | 2011-12-14 | 2013-06-20 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
CA2855840C (en) | 2011-12-14 | 2023-08-29 | AbbVie Deutschland GmbH & Co. KG | Composition and method for the diagnosis and treatment of iron-related disorders |
EP3539982B1 (en) | 2011-12-23 | 2025-02-19 | Pfizer Inc. | Engineered antibody constant regions for site-specific conjugation and methods and uses therefor |
UY34558A (en) | 2011-12-30 | 2013-07-31 | Abbvie Inc | DUAL SPECIFIC UNION PROTEINS DIRECTED AGAINST IL-13 AND / OR IL-17 |
WO2013102825A1 (en) | 2012-01-02 | 2013-07-11 | Novartis Ag | Cdcp1 and breast cancer |
GB201201332D0 (en) | 2012-01-26 | 2012-03-14 | Imp Innovations Ltd | Method |
CN107880124B (en) | 2012-01-27 | 2021-08-13 | 艾伯维德国有限责任两合公司 | Compositions and methods for diagnosing and treating diseases associated with neural mutations |
CN108324943B (en) | 2012-02-10 | 2024-03-08 | 思进股份有限公司 | Detection and treatment of CD30+ cancers |
NO2814844T3 (en) | 2012-02-15 | 2017-12-30 | ||
US9550830B2 (en) | 2012-02-15 | 2017-01-24 | Novo Nordisk A/S | Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1) |
EP2814842B1 (en) | 2012-02-15 | 2018-08-22 | Novo Nordisk A/S | Antibodies that bind peptidoglycan recognition protein 1 |
AU2013221635B2 (en) | 2012-02-16 | 2017-12-07 | Santarus, Inc. | Anti-VLA1 (CD49a) antibody pharmaceutical compositions |
GB201203051D0 (en) | 2012-02-22 | 2012-04-04 | Ucb Pharma Sa | Biological products |
GB201203071D0 (en) | 2012-02-22 | 2012-04-04 | Ucb Pharma Sa | Biological products |
WO2013142808A1 (en) | 2012-03-23 | 2013-09-26 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Pathogenic phlebovirus isolates and compositions and methods of use |
US20150266961A1 (en) | 2012-03-29 | 2015-09-24 | Novartis Forschungsstiftung, Zweigniederlassung, Fridrich Miescher Institute | Inhibition of interleukin-8 and/or its receptor cxcr1 in the treatment of her2/her3-overexpressing breast cancer |
WO2013151649A1 (en) | 2012-04-04 | 2013-10-10 | Sialix Inc | Glycan-interacting compounds |
CA2873623C (en) | 2012-05-14 | 2021-11-09 | Biogen Idec Ma Inc. | Lingo-2 antagonists for treatment of conditions involving motor neurons |
JP6122948B2 (en) | 2012-05-15 | 2017-04-26 | モルフォテック, インコーポレイテッド | Methods for the treatment of gastric cancer |
EP2859018B1 (en) | 2012-06-06 | 2021-09-22 | Zoetis Services LLC | Caninized anti-ngf antibodies and methods thereof |
US10048253B2 (en) | 2012-06-28 | 2018-08-14 | Ucb Biopharma Sprl | Method for identifying compounds of therapeutic interest |
EP2866831A1 (en) | 2012-06-29 | 2015-05-06 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Treating diseases by modulating a specific isoform of mkl1 |
EP2870242A1 (en) | 2012-07-05 | 2015-05-13 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | New treatment for neurodegenerative diseases |
WO2014006115A1 (en) | 2012-07-06 | 2014-01-09 | Novartis Ag | Combination of a phosphoinositide 3-kinase inhibitor and an inhibitor of the il-8/cxcr interaction |
AR091755A1 (en) | 2012-07-12 | 2015-02-25 | Abbvie Inc | PROTEINS OF UNION TO IL-1 |
GB201213652D0 (en) | 2012-08-01 | 2012-09-12 | Oxford Biotherapeutics Ltd | Therapeutic and diagnostic target |
TW201414837A (en) | 2012-10-01 | 2014-04-16 | Univ Pennsylvania | Compositions and methods for calibrating stromal cells to treat cancer |
US20150273056A1 (en) | 2012-10-12 | 2015-10-01 | The Brigham And Women's Hospital, Inc. | Enhancement of the immune response |
US9163093B2 (en) | 2012-11-01 | 2015-10-20 | Abbvie Inc. | Anti-DLL4/VEGF dual variable domain immunoglobulin and uses thereof |
EP2935332B1 (en) | 2012-12-21 | 2021-11-10 | MedImmune, LLC | Anti-h7cr antibodies |
US9550986B2 (en) | 2012-12-21 | 2017-01-24 | Abbvie Inc. | High-throughput antibody humanization |
GB201223276D0 (en) | 2012-12-21 | 2013-02-06 | Ucb Pharma Sa | Antibodies and methods of producing same |
AU2013202668B2 (en) | 2012-12-24 | 2014-12-18 | Adelaide Research & Innovation Pty Ltd | Inhibition of cancer growth and metastasis |
US20140288097A1 (en) | 2013-02-07 | 2014-09-25 | The Regents Of The University Of California | Use of translational profiling to identify target molecules for therapeutic treatment |
GB201302447D0 (en) | 2013-02-12 | 2013-03-27 | Oxford Biotherapeutics Ltd | Therapeutic and diagnostic target |
EP2971046A4 (en) | 2013-03-14 | 2016-11-02 | Abbott Lab | Hcv core lipid binding domain monoclonal antibodies |
TW202146054A (en) | 2013-03-15 | 2021-12-16 | 德商艾伯維德國有限及兩合公司 | Anti-egfr antibody drug conjugate formulations |
US10035860B2 (en) | 2013-03-15 | 2018-07-31 | Biogen Ma Inc. | Anti-alpha V beta 6 antibodies and uses thereof |
US9469686B2 (en) | 2013-03-15 | 2016-10-18 | Abbott Laboratories | Anti-GP73 monoclonal antibodies and methods of obtaining the same |
US10035859B2 (en) | 2013-03-15 | 2018-07-31 | Biogen Ma Inc. | Anti-alpha V beta 6 antibodies and uses thereof |
JP2016522793A (en) | 2013-03-15 | 2016-08-04 | アッヴィ・インコーポレイテッド | Bispecific binding protein directed against IL-1β and / or IL-17 |
KR20150132864A (en) | 2013-03-15 | 2015-11-26 | 애브비 인코포레이티드 | Antibody drug conjugate(adc) purification |
CA2911514A1 (en) | 2013-05-06 | 2014-11-13 | Scholar Rock, Inc. | Compositions and methods for growth factor modulation |
MX376808B (en) | 2013-05-24 | 2025-03-07 | Medimmune Llc | ANTI-B7-H5 ANTIBODIES AND THEIR USES. |
WO2014197849A2 (en) | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Anti-c10orf54 antibodies and uses thereof |
CA2914566A1 (en) | 2013-06-07 | 2014-12-11 | Duke University | Inhibitors of complement factor h |
EP3030902B1 (en) | 2013-08-07 | 2019-09-25 | Friedrich Miescher Institute for Biomedical Research | New screening method for the treatment friedreich's ataxia |
DK3041507T3 (en) | 2013-08-26 | 2021-07-26 | Biontech Res And Development Inc | NUCLEIC ACIDS ENCOODING HUMAN ANTIBODIES TO SIALYL-LEWIS A |
US10344319B2 (en) | 2013-10-28 | 2019-07-09 | Dots Technology Corp. | Allergen detection |
US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
GB201403775D0 (en) | 2014-03-04 | 2014-04-16 | Kymab Ltd | Antibodies, uses & methods |
US9738702B2 (en) | 2014-03-14 | 2017-08-22 | Janssen Biotech, Inc. | Antibodies with improved half-life in ferrets |
US9546214B2 (en) | 2014-04-04 | 2017-01-17 | Bionomics, Inc. | Humanized antibodies that bind LGR5 |
EP3888690A3 (en) | 2014-05-16 | 2021-10-20 | MedImmune, LLC | Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties |
SG10201912986PA (en) | 2014-05-28 | 2020-02-27 | Agenus Inc | Anti-gitr antibodies and methods of use thereof |
GB201409558D0 (en) | 2014-05-29 | 2014-07-16 | Ucb Biopharma Sprl | Method |
ES2863074T3 (en) | 2014-06-04 | 2021-10-08 | Biontech Res And Development Inc | Human monoclonal antibodies against ganglioside GD2 |
EP3154579A1 (en) | 2014-06-13 | 2017-04-19 | Friedrich Miescher Institute for Biomedical Research | New treatment against influenza virus |
EP3157535A1 (en) | 2014-06-23 | 2017-04-26 | Friedrich Miescher Institute for Biomedical Research | Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small rnas |
GB201411320D0 (en) | 2014-06-25 | 2014-08-06 | Ucb Biopharma Sprl | Antibody construct |
WO2016001830A1 (en) | 2014-07-01 | 2016-01-07 | Friedrich Miescher Institute For Biomedical Research | Combination of a brafv600e inhibitor and mertk inhibitor to treat melanoma |
US9139648B1 (en) | 2014-07-15 | 2015-09-22 | Kymab Limited | Precision medicine by targeting human NAV1.9 variants for treatment of pain |
GB201412659D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
GB201412658D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
TN2017000008A1 (en) | 2014-07-17 | 2018-07-04 | Novo Nordisk As | Site directed mutagenesis of trem-1 antibodies for decreasing viscosity. |
EP3197557A1 (en) | 2014-09-24 | 2017-08-02 | Friedrich Miescher Institute for Biomedical Research | Lats and breast cancer |
TWI707870B (en) | 2014-10-01 | 2020-10-21 | 英商梅迪繆思有限公司 | Antibodies to ticagrelor and methods of use |
US9879087B2 (en) | 2014-11-12 | 2018-01-30 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
PL3218005T3 (en) | 2014-11-12 | 2023-05-02 | Seagen Inc. | Glycan-interacting compounds and methods of use |
WO2016094837A2 (en) | 2014-12-11 | 2016-06-16 | Igenica Biotherapeutics, Inc. | Anti-c10orf54 antibodies and uses thereof |
WO2016094881A2 (en) | 2014-12-11 | 2016-06-16 | Abbvie Inc. | Lrp-8 binding proteins |
EP3237450B1 (en) | 2014-12-22 | 2021-03-03 | The Rockefeller University | Anti-mertk agonistic antibodies and uses thereof |
US10435467B2 (en) | 2015-01-08 | 2019-10-08 | Biogen Ma Inc. | LINGO-1 antagonists and uses for treatment of demyelinating disorders |
SG11201704160XA (en) | 2015-03-03 | 2017-06-29 | Kymab Ltd | Antibodies, uses & methods |
EP3273992B1 (en) | 2015-03-23 | 2020-05-13 | Jounce Therapeutics, Inc. | Antibodies to icos |
JP2018518152A (en) | 2015-03-27 | 2018-07-12 | ユニバーシティ オブ サザン カリフォルニア | CAR T cell therapy directed to LHR for treating solid tumors |
GB201506869D0 (en) | 2015-04-22 | 2015-06-03 | Ucb Biopharma Sprl | Method |
GB201506870D0 (en) | 2015-04-22 | 2015-06-03 | Ucb Biopharma Sprl | Method |
EP3288542B1 (en) | 2015-04-29 | 2021-12-29 | University Of South Australia | Compositions and methods for administering antibodies |
WO2016179518A2 (en) | 2015-05-06 | 2016-11-10 | Janssen Biotech, Inc. | Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof |
AU2016256911B2 (en) | 2015-05-07 | 2022-03-31 | Agenus Inc. | Anti-OX40 antibodies and methods of use thereof |
MY195000A (en) | 2015-05-27 | 2022-12-30 | Ucb Biopharma Sprl | Method for the treatment of neurological disease |
PT3303394T (en) | 2015-05-29 | 2020-07-01 | Ludwig Inst For Cancer Res Ltd | Anti-ctla-4 antibodies and methods of use thereof |
KR102661078B1 (en) | 2015-05-29 | 2024-05-23 | 애브비 인코포레이티드 | Anti-CD40 antibodies and uses thereof |
CA2987992A1 (en) | 2015-06-04 | 2016-12-08 | University Of Southern California | Lym-1 and lym-2 targeted car cell immunotherapy |
TW201710286A (en) | 2015-06-15 | 2017-03-16 | 艾伯維有限公司 | Binding proteins against VEGF, PDGF, and/or their receptors |
GB201510758D0 (en) | 2015-06-18 | 2015-08-05 | Ucb Biopharma Sprl | Novel TNFa structure for use in therapy |
GB201601073D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies |
GB201601075D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies molecules |
GB201601077D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibody molecule |
KR102434314B1 (en) | 2015-09-01 | 2022-08-19 | 아게누스 인코포레이티드 | Anti-PD-1 antibodies and methods of using them |
WO2017053889A2 (en) | 2015-09-23 | 2017-03-30 | Precision Immunotherapy, Inc. | Flt3 directed car cells for immunotherapy |
US10968277B2 (en) | 2015-10-22 | 2021-04-06 | Jounce Therapeutics, Inc. | Gene signatures for determining ICOS expression |
EP3368570A1 (en) | 2015-10-27 | 2018-09-05 | UCB Biopharma SPRL | Methods of treatment using anti-il-17a/f antibodies |
US20180348224A1 (en) | 2015-10-28 | 2018-12-06 | Friedrich Miescher Institute For Biomedical Resear Ch | Tenascin-w and biliary tract cancers |
WO2017083582A1 (en) | 2015-11-12 | 2017-05-18 | Siamab Therapeutics, Inc. | Glycan-interacting compounds and methods of use |
AU2016365318B2 (en) | 2015-12-02 | 2024-04-18 | Board Of Regents, The University Of Texas System | Antibodies and molecules that immunospecifically bind to BTN1A1 and the therapeutic uses thereof |
US11253590B2 (en) | 2015-12-02 | 2022-02-22 | Stsciences, Inc. | Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator) |
GB201521389D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Method |
GB201521383D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl And Ucb Celltech | Method |
GB201521393D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521382D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521391D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
US10829562B2 (en) | 2015-12-10 | 2020-11-10 | Katholieke Universiteit Leuven | Haemorrhagic disorder due to ventricular assist device |
GB201602413D0 (en) | 2016-02-10 | 2016-03-23 | Nascient Ltd | Method |
US11072652B2 (en) | 2016-03-10 | 2021-07-27 | Viela Bio, Inc. | ILT7 binding molecules and methods of using the same |
WO2017161414A1 (en) | 2016-03-22 | 2017-09-28 | Bionomics Limited | Administration of an anti-lgr5 monoclonal antibody |
CN109415441B (en) | 2016-05-24 | 2023-04-07 | 英斯梅德股份有限公司 | Antibodies and methods of making same |
MA45123A (en) | 2016-05-27 | 2019-04-10 | Agenus Inc | ANTI-TIM-3 ANTIBODIES AND THEIR METHODS OF USE |
KR102531889B1 (en) | 2016-06-20 | 2023-05-17 | 키맵 리미티드 | Anti-PD-L1 and IL-2 cytokines |
TW201811824A (en) | 2016-07-06 | 2018-04-01 | 美商西建公司 | Antibodies with low immunogenicity and uses thereof |
CA3030099A1 (en) | 2016-07-08 | 2018-01-11 | Staten Biotechnology B.V. | Anti-apoc3 antibodies and methods of use thereof |
WO2018017964A2 (en) | 2016-07-21 | 2018-01-25 | Emory University | Ebola virus antibodies and binding agents derived therefrom |
GB201616596D0 (en) | 2016-09-29 | 2016-11-16 | Nascient Limited | Epitope and antibodies |
JP2019530875A (en) | 2016-10-03 | 2019-10-24 | アボット・ラボラトリーズAbbott Laboratories | Improved method for assessing UCH-L1 status in patient samples |
TWI843168B (en) | 2016-10-11 | 2024-05-21 | 美商艾吉納斯公司 | Anti-lag-3 antibodies and methods of use thereof |
RU2019114863A (en) | 2016-11-02 | 2020-12-03 | Иммуноджен, Инк. | COMBINED TREATMENT WITH ANTIBODY-DRUG CONJUGATES AND PARP INHIBITORS |
WO2018083248A1 (en) | 2016-11-03 | 2018-05-11 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses & methods |
KR102431830B1 (en) | 2016-11-07 | 2022-08-16 | 주식회사 뉴라클사이언스 | Anti-family 19, member A5 antibodies with sequence similarity and methods of use thereof |
US11401330B2 (en) | 2016-11-17 | 2022-08-02 | Seagen Inc. | Glycan-interacting compounds and methods of use |
WO2018100628A1 (en) * | 2016-11-29 | 2018-06-07 | 国立大学法人東北大学 | Establishing metal allergy animal model that is highly sensitive/susceptive to metal |
WO2018106864A1 (en) | 2016-12-07 | 2018-06-14 | Agenus Inc. | Antibodies and methods of use thereof |
EP4289484A3 (en) | 2016-12-07 | 2024-03-06 | Agenus Inc. | Anti-ctla-4 antibodies and methods of use thereof |
GB201621635D0 (en) | 2016-12-19 | 2017-02-01 | Ucb Biopharma Sprl | Crystal structure |
KR20240044544A (en) | 2017-03-03 | 2024-04-04 | 씨젠 인크. | Glycan-interacting compounds and methods of use |
JP7346300B2 (en) | 2017-03-23 | 2023-09-19 | アボット・ラボラトリーズ | Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in human subjects using the early biomarker ubiquitin carboxy-terminal hydrolase L1 |
AU2018248423A1 (en) | 2017-04-04 | 2019-10-17 | Loma Linda University | Biologic for the treatment of cancer |
MA50956A (en) | 2017-04-13 | 2020-10-14 | Agenus Inc | ANTI-CD137 ANTIBODIES AND RELATED METHODS OF USE |
JP7344797B2 (en) | 2017-04-15 | 2023-09-14 | アボット・ラボラトリーズ | Methods to aid in hyperacute diagnosis and determination of traumatic brain injury in human subjects using early biomarkers |
WO2018193427A1 (en) | 2017-04-21 | 2018-10-25 | Staten Biotechnology B.V. | Anti-apoc3 antibodies and methods of use thereof |
BR112019022476A2 (en) | 2017-04-28 | 2020-05-12 | Abbott Laboratories | METHODS FOR HYPERAGUDE DIAGNOSTIC AID AND DETERMINATION OF TRAUMATIC BRAIN INJURY USING INITIAL BIOMARKERS IN AT LEAST TWO SAMPLES FROM THE SAME HUMAN |
FI3618863T3 (en) | 2017-05-01 | 2023-09-01 | Agenus Inc | Anti-tigit antibodies and methods of use thereof |
US10865238B1 (en) | 2017-05-05 | 2020-12-15 | Duke University | Complement factor H antibodies |
JOP20190256A1 (en) | 2017-05-12 | 2019-10-28 | Icahn School Med Mount Sinai | Newcastle disease viruses and uses thereof |
CN110651190A (en) | 2017-05-25 | 2020-01-03 | 雅培实验室 | Method for using early biomarkers to help determine whether to perform imaging on a human subject who has suffered or may have suffered a head injury |
BR112019025387A2 (en) | 2017-05-30 | 2020-07-07 | Abbott Laboratories | methods to assist in the diagnosis and evaluation of a mild traumatic brain injury in a human subject using cardiac troponin i and early biomarkers |
KR20250036941A (en) | 2017-05-31 | 2025-03-14 | 주식회사 에스티큐브앤컴퍼니 | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
WO2018222685A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
JP2020522562A (en) | 2017-06-06 | 2020-07-30 | ストキューブ アンド シーオー., インコーポレイテッド | Methods of treating cancer with antibodies and molecules that bind to BTN1A1 or BTN1A1 ligand |
US11169159B2 (en) | 2017-07-03 | 2021-11-09 | Abbott Laboratories | Methods for measuring ubiquitin carboxy-terminal hydrolase L1 levels in blood |
SG11201913137VA (en) | 2017-07-11 | 2020-01-30 | Compass Therapeutics Llc | Agonist antibodies that bind human cd137 and uses thereof |
EP3684811A2 (en) | 2017-08-17 | 2020-07-29 | Massachusetts Institute of Technology | Multiple specificity binders of cxc chemokines and uses thereof |
CR20200138A (en) | 2017-08-25 | 2020-06-14 | Five Prime Therapeutics Inc | B7-h4 antibodies and methods of use thereof |
CN111630069B (en) | 2017-10-13 | 2024-05-31 | 勃林格殷格翰国际有限公司 | Human antibodies to Thomsen-non-velle (Tn) antigen |
AU2018361957B2 (en) | 2017-10-31 | 2023-05-25 | Staten Biotechnology B.V. | Anti-ApoC3 antibodies and methods of use thereof |
WO2019089594A1 (en) | 2017-10-31 | 2019-05-09 | Immunogen, Inc. | Combination treatment with antibody-drug conjugates and cytarabine |
US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
WO2019094595A2 (en) | 2017-11-09 | 2019-05-16 | Pinteon Therapeutics Inc. | Methods and compositions for the generation and use of humanized conformation-specific phosphorylated tau antibodies |
US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
CN111727075B (en) | 2017-11-27 | 2024-04-05 | 普渡制药公司 | Humanized antibodies targeting human tissue factor |
CA3067055A1 (en) | 2017-12-09 | 2019-06-13 | Abbott Laboratories | Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of gfap and uch-l1 |
CN111094983A (en) | 2017-12-09 | 2020-05-01 | 雅培实验室 | Methods of using Glial Fibrillary Acidic Protein (GFAP) and/or ubiquitin carboxy-terminal hydrolase L1(UCH-L1) to aid in the diagnosis and evaluation of patients who have suffered orthopedic injury and who have suffered or may have suffered a head injury such as mild Traumatic Brain Injury (TBI) |
GB201802486D0 (en) | 2018-02-15 | 2018-04-04 | Ucb Biopharma Sprl | Methods |
MX2020009037A (en) | 2018-03-02 | 2021-01-08 | Five Prime Therapeutics Inc | B7-h4 antibodies and methods of use thereof. |
RU2020129265A (en) | 2018-03-12 | 2022-04-12 | ЗОИТИС СЕРВИСЕЗ ЭлЭлСи | ANTIBODIES AGAINST NGF AND THEIR RELATED METHODS |
CN113754768B (en) | 2018-03-14 | 2023-01-06 | 表面肿瘤学公司 | Antibodies that bind to CD39 and uses thereof |
SG11202008707YA (en) | 2018-03-22 | 2020-10-29 | Surface Oncology Inc | Anti-il-27 antibodies and uses thereof |
SG11202009625WA (en) | 2018-04-02 | 2020-10-29 | Bristol Myers Squibb Co | Anti-trem-1 antibodies and uses thereof |
WO2019200357A1 (en) | 2018-04-12 | 2019-10-17 | Surface Oncology, Inc. | Biomarker for cd47 targeting therapeutics and uses therefor |
EP3784274A1 (en) | 2018-04-27 | 2021-03-03 | Fondazione Ebri Rita Levi-Montalcini | Antibody directed against a tau-derived neurotoxic peptide and uses thereof |
AU2019265888A1 (en) | 2018-05-10 | 2020-11-26 | Neuracle Science Co., Ltd. | Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof |
TW202003048A (en) | 2018-05-15 | 2020-01-16 | 美商伊繆諾金公司 | Combination treatment with antibody-drug conjugates and FLT3 inhibitors |
WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
CN112384534A (en) | 2018-05-21 | 2021-02-19 | 指南针制药有限责任公司 | Compositions and methods for enhancing killing of target cells by NK cells |
CN112533632A (en) | 2018-06-18 | 2021-03-19 | Ucb生物制药有限责任公司 | GREMLIN-1 antagonists for the prevention and treatment of cancer |
WO2019245817A1 (en) | 2018-06-19 | 2019-12-26 | Armo Biosciences, Inc. | Compositions and methods of use of il-10 agents in conjunction with chimeric antigen receptor cell therapy |
TW202016144A (en) | 2018-06-21 | 2020-05-01 | 日商第一三共股份有限公司 | Compositions including cd3 antigen binding fragments and uses thereof |
US12006357B2 (en) | 2018-06-26 | 2024-06-11 | Mor Research Applications Ltd. | Transthyretin antibodies and uses thereof |
BR112021000934A2 (en) | 2018-07-20 | 2021-04-27 | Pierre Fabre Medicament | receiver for sight |
EP3833443A1 (en) | 2018-08-09 | 2021-06-16 | Compass Therapeutics LLC | Antigen binding agents that bind cd277 and uses thereof |
WO2020033925A2 (en) | 2018-08-09 | 2020-02-13 | Compass Therapeutics Llc | Antibodies that bind cd277 and uses thereof |
US20210309746A1 (en) | 2018-08-09 | 2021-10-07 | Compass Therapeutics Llc | Antibodies that bind cd277 and uses thereof |
CA3114295A1 (en) | 2018-09-28 | 2020-04-02 | Kyowa Kirin Co., Ltd. | Il-36 antibodies and uses thereof |
KR20210070300A (en) | 2018-10-03 | 2021-06-14 | 스태튼 바이오테크놀로지 비.브이. | Antibodies specific for human and cynomolgus ApoC3 and methods of use thereof |
GB201817309D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
GB201817311D0 (en) | 2018-10-24 | 2018-12-05 | Ucb Biopharma Sprl | Antibodies |
TW202430572A (en) | 2018-11-13 | 2024-08-01 | 美商坎伯斯治療有限責任公司 | Multispecific binding constructs against checkpoint molecules and uses thereof |
CA3124356A1 (en) | 2018-12-20 | 2020-06-25 | Kyowa Kirin Co., Ltd. | Fn14 antibodies and uses thereof |
KR20210131312A (en) | 2019-01-16 | 2021-11-02 | 콤파스 테라퓨틱스 엘엘씨 | Formulations of antibodies that bind human CD137 and uses thereof |
GB201900732D0 (en) | 2019-01-18 | 2019-03-06 | Ucb Biopharma Sprl | Antibodies |
EP4378958A3 (en) | 2019-02-26 | 2024-09-04 | Inspirna, Inc. | High-affinity anti-mertk antibodies and uses thereof |
WO2020185763A1 (en) | 2019-03-11 | 2020-09-17 | Memorial Sloan Kettering Cancer Center | Cd22 antibodies and methods of using the same |
EP3947442A2 (en) | 2019-03-28 | 2022-02-09 | Danisco US Inc. | Engineered antibodies |
US12098366B2 (en) * | 2019-04-09 | 2024-09-24 | Massachusetts Institute Of Technology | Mutant subgenomic promoter library and uses thereof |
MX2022001882A (en) | 2019-08-12 | 2022-05-30 | Aptevo Res & Development Llc | 4-1BB AND OX40 BINDING PROTEINS AND RELATED COMPOSITIONS AND METHODS ANTIBODIES AGAINST 4-1BB, ANTIBODIES AGAINST OX40. |
CR20220076A (en) | 2019-08-30 | 2022-06-24 | Agenus Inc | ANTI-CD96 ANTIBODIES AND THEIR METHODS OF USE |
EP4025606A1 (en) | 2019-09-04 | 2022-07-13 | Y-Biologics Inc. | Anti-vsig4 antibody or antigen binding fragment and uses thereof |
WO2021055329A1 (en) | 2019-09-16 | 2021-03-25 | Surface Oncology, Inc. | Anti-cd39 antibody compositions and methods |
EP4034559A1 (en) | 2019-09-25 | 2022-08-03 | Surface Oncology, Inc. | Anti-il-27 antibodies and uses thereof |
EP4041767A1 (en) | 2019-09-26 | 2022-08-17 | StCube & Co. | Antibodies specific to glycosylated ctla-4 and methods of use thereof |
KR20220088438A (en) | 2019-10-09 | 2022-06-27 | 주식회사 에스티큐브앤컴퍼니 | Antibodies specific for glycosylated LAG3 and methods of use thereof |
US11459389B2 (en) | 2019-10-24 | 2022-10-04 | Massachusetts Institute Of Technology | Monoclonal antibodies that bind human CD161 |
GB201917480D0 (en) | 2019-11-29 | 2020-01-15 | Univ Oxford Innovation Ltd | Antibodies |
GB201919058D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Multi-specific antibodies |
GB201919062D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Antibody |
GB201919061D0 (en) | 2019-12-20 | 2020-02-05 | Ucb Biopharma Sprl | Multi-specific antibody |
BR112022012885A2 (en) | 2019-12-30 | 2022-09-06 | Seagen Inc | METHOD FOR TREATMENT OF A CANCER THAT EXPRESSES CD70 IN A SUBJECT, PHARMACEUTICAL COMPOSITION FOR THE TREATMENT OF A CANCER THAT EXPRESSES CD70, E, KIT |
NZ788662A (en) | 2020-01-06 | 2024-11-29 | Vaccinex Inc | Anti-ccr8 antibodies and uses thereof |
IL294388A (en) | 2020-01-14 | 2022-08-01 | Synthekine Inc | il2 orthologs and methods of use |
IL295387A (en) | 2020-02-05 | 2022-10-01 | Larimar Therapeutics Inc | Peptide-binding proteins and their uses |
WO2021160265A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd137 |
EP4103609A1 (en) | 2020-02-13 | 2022-12-21 | UCB Biopharma SRL | Bispecific antibodies against cd9 and cd7 |
US20230151109A1 (en) | 2020-02-13 | 2023-05-18 | UCB Biopharma SRL | Bispecific antibodies against cd9 |
ES2975410T3 (en) | 2020-02-13 | 2024-07-05 | UCB Biopharma SRL | Bispecific antibodies that bind to HVEM and CD9 |
WO2021160269A1 (en) | 2020-02-13 | 2021-08-19 | UCB Biopharma SRL | Anti cd44-ctla4 bispecific antibodies |
WO2021167964A1 (en) | 2020-02-18 | 2021-08-26 | Alector Llc | Pilra antibodies and methods of use thereof |
EP4114445A1 (en) | 2020-03-06 | 2023-01-11 | Ona Therapeutics S.L. | Anti-cd36 antibodies and their use to treat cancer |
CA3173981A1 (en) | 2020-03-10 | 2021-09-16 | Massachusetts Institute Of Technology | Compositions and methods for immunotherapy of npm1c-positive cancer |
AU2021242306A1 (en) | 2020-03-26 | 2022-11-17 | Vanderbilt University | Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
US20230203191A1 (en) | 2020-03-30 | 2023-06-29 | Danisco Us Inc | Engineered antibodies |
WO2021211331A1 (en) | 2020-04-13 | 2021-10-21 | Abbott Point Of Care Inc. | METHODS, COMPLEXES AND KITS FOR DETECTING OR DETERMINING AN AMOUNT OF A ß-CORONAVIRUS ANTIBODY IN A SAMPLE |
TW202208423A (en) | 2020-05-17 | 2022-03-01 | 英商阿斯特捷利康英國股份有限公司 | Sars-cov-2 antibodies and methods of selecting and using the same |
CN116507636A (en) | 2020-07-20 | 2023-07-28 | 阿斯利康(英国)有限公司 | SARS-CoV-2 proteins, anti-SARS-CoV-2 antibodies and methods of use thereof |
WO2022031804A1 (en) | 2020-08-04 | 2022-02-10 | Abbott Laboratories | Improved methods and kits for detecting sars-cov-2 protein in a sample |
MX2023002001A (en) | 2020-08-18 | 2023-03-21 | Cephalon Llc | Anti-par-2 antibodies and methods of use thereof. |
WO2022081436A1 (en) | 2020-10-15 | 2022-04-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibody specific for sars-cov-2 receptor binding domain and therapeutic methods |
MX2023004436A (en) | 2020-10-15 | 2023-05-08 | UCB Biopharma SRL | Binding molecules that multimerise cd45. |
WO2022087274A1 (en) | 2020-10-21 | 2022-04-28 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Antibodies that neutralize type-i interferon (ifn) activity |
WO2022119841A1 (en) | 2020-12-01 | 2022-06-09 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
MX2023006426A (en) | 2020-12-01 | 2023-07-17 | Aptevo Res & Development Llc | Heterodimeric psma and cd3-binding bispecific antibodies. |
WO2023102384A1 (en) | 2021-11-30 | 2023-06-08 | Abbott Laboratories | Use of one or more biomarkers to determine traumatic brain injury (tbi) in a subject having received a head computerized tomography scan that is negative for a tbi |
EP4271998A1 (en) | 2020-12-30 | 2023-11-08 | Abbott Laboratories | Methods for determining sars-cov-2 antigen and anti-sars-cov-2 antibody in a sample |
AU2022208361A1 (en) | 2021-01-13 | 2023-07-27 | Daiichi Sankyo Company, Limited | Anti-dll3 antibody-drug conjugate |
KR20230146521A (en) | 2021-01-13 | 2023-10-19 | 메모리얼 슬로안 케터링 캔서 센터 | Antibody-pyrrolobenzodiazepine derivative conjugate |
US20240158503A1 (en) | 2021-03-03 | 2024-05-16 | Pierre Fabre Medicament | Anti-vsig4 antibody or antigen binding fragment and uses thereof |
EP4067381A1 (en) | 2021-04-01 | 2022-10-05 | Julius-Maximilians-Universität Würzburg | Novel tnfr2 binding molecules |
JP2024516970A (en) | 2021-05-07 | 2024-04-18 | サーフィス オンコロジー, エルエルシー | Anti-IL-27 antibodies and uses thereof |
US20220381796A1 (en) | 2021-05-18 | 2022-12-01 | Abbott Laboratories | Methods of evaluating brain injury in a pediatric subject |
JP2024520497A (en) | 2021-05-28 | 2024-05-24 | アレクシオン ファーマシューティカルズ, インコーポレイテッド | Methods for detecting CM-TMA biomarkers |
AU2022293999A1 (en) | 2021-06-14 | 2023-11-30 | argenx BV | Anti-il-9 antibodies and methods of use thereof |
AU2022293389A1 (en) | 2021-06-14 | 2024-01-04 | Abbott Laboratories | Methods of diagnosing or aiding in diagnosis of brain injury caused by acoustic energy, electromagnetic energy, an over pressurization wave, and/or blast wind |
AU2022304582A1 (en) | 2021-06-29 | 2024-02-01 | Seagen Inc. | Methods of treating cancer with a combination of a nonfucosylated anti-cd70 antibody and a cd47 antagonist |
WO2023285878A1 (en) | 2021-07-13 | 2023-01-19 | Aviation-Ophthalmology | Methods for detecting, treating, and preventing gpr68-mediated ocular diseases, disorders, and conditions |
WO2023007472A1 (en) | 2021-07-30 | 2023-02-02 | ONA Therapeutics S.L. | Anti-cd36 antibodies and their use to treat cancer |
EP4396587A1 (en) | 2021-08-31 | 2024-07-10 | Abbott Laboratories | Methods and systems of diagnosing brain injury |
CN118715440A (en) | 2021-08-31 | 2024-09-27 | 雅培实验室 | Method and system for diagnosing brain injury |
JP2024538608A (en) | 2021-09-30 | 2024-10-23 | アボット・ラボラトリーズ | Method and system for diagnosing brain damage |
EP4177266A1 (en) | 2021-11-05 | 2023-05-10 | Katholieke Universiteit Leuven | Neutralizing anti-sars-cov-2 human antibodies |
JP2025503439A (en) | 2021-12-17 | 2025-02-04 | アボット・ラボラトリーズ | Systems and methods for determining UCH-L1, GFAP and other biomarkers in blood samples - Patents.com |
EP4473311A1 (en) | 2022-02-04 | 2024-12-11 | Abbott Laboratories | Lateral flow methods, assays, and devices for detecting the presence or measuring the amount of ubiquitin carboxy-terminal hydrolase l1 and/or glial fibrillary acidic protein in a sample |
TW202342510A (en) | 2022-02-18 | 2023-11-01 | 英商Rq生物科技有限公司 | Antibodies |
WO2023192436A1 (en) | 2022-03-31 | 2023-10-05 | Alexion Pharmaceuticals, Inc. | Singleplex or multiplexed assay for complement markers in fresh biological samples |
GB202205203D0 (en) | 2022-04-08 | 2022-05-25 | UCB Biopharma SRL | Combination with inhibitor |
GB202205200D0 (en) | 2022-04-08 | 2022-05-25 | Ucb Biopharma Sprl | Combination with chemotherapy |
AU2023262192A1 (en) | 2022-04-29 | 2024-12-05 | Astrazeneca Uk Limited | Sars-cov-2 antibodies and methods of using the same |
EP4536836A1 (en) | 2022-06-07 | 2025-04-16 | Regeneron Pharmaceuticals, Inc. | Pseudotyped viral particles for targeting tcr-expressing cells |
AU2023298134A1 (en) | 2022-06-29 | 2024-11-28 | Abbott Laboratories | Magnetic point-of-care systems and assays for determining gfap in biological samples |
WO2024015953A1 (en) | 2022-07-15 | 2024-01-18 | Danisco Us Inc. | Methods for producing monoclonal antibodies |
WO2024013727A1 (en) | 2022-07-15 | 2024-01-18 | Janssen Biotech, Inc. | Material and methods for improved bioengineered pairing of antigen-binding variable regions |
WO2024050354A1 (en) | 2022-08-31 | 2024-03-07 | Washington University | Alphavirus antigen binding antibodies and uses thereof |
AU2023334858A1 (en) | 2022-09-01 | 2025-03-20 | University Of Georgia Research Foundation, Inc. | Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death |
WO2024054436A1 (en) | 2022-09-06 | 2024-03-14 | Alexion Pharmaceuticals, Inc. | Diagnostic and prognostic biomarker profiles in patients with hematopoietic stem cell transplant-associated thrombotic microangiopathy (hsct-tma) |
WO2024059708A1 (en) | 2022-09-15 | 2024-03-21 | Abbott Laboratories | Biomarkers and methods for differentiating between mild and supermild traumatic brain injury |
WO2024194686A2 (en) | 2023-03-17 | 2024-09-26 | Oxitope Pharma B.V. | Anti-phosphocholine antibodies and methods of use thereof |
WO2024194685A2 (en) | 2023-03-17 | 2024-09-26 | Oxitope Pharma B.V. | Anti-phosphocholine antibodies and methods of use thereof |
WO2024211475A1 (en) | 2023-04-04 | 2024-10-10 | Abbott Laboratories | Use of biomarkers to determine whether a subject has sustained, may have sustained or is suspected of sustaining a subacute acquired brain injury (abi) |
WO2024226971A1 (en) | 2023-04-28 | 2024-10-31 | Abbott Point Of Care Inc. | Improved assays, cartridges, and kits for detection of biomarkers, including brain injury biomarkers |
WO2024243578A1 (en) | 2023-05-25 | 2024-11-28 | Dispatch Biotherapeutics, Inc. | Synthetic cancer antigens as targets for treating cancers |
EP4484445A1 (en) | 2023-06-26 | 2025-01-01 | Universität zu Köln | Hcmv neutralizing antibodies |
US20250109187A1 (en) | 2023-09-28 | 2025-04-03 | Novavax, Inc. | ANTI-SARS-CoV-2 SPIKE (S) ANTIBODIES AND THEIR USE IN TREATING COVID-19 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US5283173A (en) * | 1990-01-24 | 1994-02-01 | The Research Foundation Of State University Of New York | System to detect protein-protein interactions |
US5395750A (en) * | 1992-02-28 | 1995-03-07 | Hoffmann-La Roche Inc. | Methods for producing proteins which bind to predetermined antigens |
US5780225A (en) * | 1990-01-12 | 1998-07-14 | Stratagene | Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US6303313B1 (en) * | 1990-01-11 | 2001-10-16 | Stratagene | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
-
1991
- 1991-01-10 AU AU72471/91A patent/AU7247191A/en not_active Abandoned
- 1991-01-10 WO PCT/US1991/000209 patent/WO1991010737A1/en unknown
-
1999
- 1999-11-12 US US09/439,732 patent/US6303313B1/en not_active Expired - Fee Related
-
2001
- 2001-03-02 US US09/798,720 patent/US6635424B2/en not_active Expired - Fee Related
- 2001-03-05 US US09/800,229 patent/US6479243B1/en not_active Expired - Fee Related
-
2003
- 2003-10-20 US US10/690,396 patent/US20040096956A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) * | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US6303313B1 (en) * | 1990-01-11 | 2001-10-16 | Stratagene | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US6635424B2 (en) * | 1990-01-11 | 2003-10-21 | Stratagene | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US5780225A (en) * | 1990-01-12 | 1998-07-14 | Stratagene | Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules |
US5283173A (en) * | 1990-01-24 | 1994-02-01 | The Research Foundation Of State University Of New York | System to detect protein-protein interactions |
US5395750A (en) * | 1992-02-28 | 1995-03-07 | Hoffmann-La Roche Inc. | Methods for producing proteins which bind to predetermined antigens |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090318308A1 (en) * | 2006-05-30 | 2009-12-24 | Millegen | Highly diversified antibody libraries |
Also Published As
Publication number | Publication date |
---|---|
AU7247191A (en) | 1991-08-05 |
US6479243B1 (en) | 2002-11-12 |
US20030054001A1 (en) | 2003-03-20 |
WO1991010737A1 (en) | 1991-07-25 |
US6635424B2 (en) | 2003-10-21 |
US6303313B1 (en) | 2001-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6635424B2 (en) | Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules | |
US5780225A (en) | Method for generating libaries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules | |
Bakkus et al. | Evidence that the clonogenic cell in multiple myeloma originates from a pre‐switched but somatically mutated B cell | |
Weiner | Fully human therapeutic monoclonal antibodies | |
US6987171B1 (en) | Human CD28 specific monoclonal antibodies for antigen-non-specific activation of T-lymphocytes | |
EP0403156B1 (en) | Improved monoclonal antibodies against the human alpha/beta t-cell receptor, their production and use | |
AU658370B2 (en) | CD53 cell surface antigen and use thereof | |
US20030211553A1 (en) | Selectively-expressed epitope on the human CD38 molecule detected by a phage display library-derived human scFv antibody fragment | |
JPH05500312A (en) | CDR-grafted antibody | |
EP0330191A2 (en) | DNA encoding CD40 | |
CA2129445A1 (en) | Design, cloning and expression of humanized monoclonal antibodies against human interleukin-5 | |
RU2204602C2 (en) | Polypeptide able to formation of antigen-binding structure with specificity to rhesus-d-antigens, dna sequence, method for preparing polypeptide, method of polypeptide selection, complete anti- rhesus-d-antibody (variants), pharmaceutical composition, diagnostic agent for rhesus-d-typifying | |
JP2000506723A (en) | Antibody variant | |
EP0491878B1 (en) | Compositions for the inhibition of protein hormone formation and uses thereof | |
RU99101121A (en) | POLYEPEPTIDS ABLE TO FORM ANTIGEN-BINDING STRUCTURES SPECIFIC TO RES-D ANTIGENS, DNA ENCODING THEM, METHODS FOR PRODUCING AND APPLICATION | |
JP2002532066A (en) | Antibody production using polynucleotide vaccines in birds | |
Dighiero et al. | What is the CLL B-lymphocyte? | |
KR20030083698A (en) | Substances | |
JPH05502586A (en) | Chimeric immunoglobulin against CD4 receptor | |
EP1576154B8 (en) | In vivo affinity maturation scheme | |
Brokaw et al. | Conserved patterns of somatic mutation and secondary VH gene rearrangement create aberrant lg-encoding genes in Epstein-Barr virus-transformed and normal human B lymphocytes | |
Dunn | Monoclonal antibodies for diagnosis and treatment | |
KR100229113B1 (en) | Tlisa cell surface antigen and a recombinant dna encoding the same | |
JPWO2005110433A1 (en) | Non-human animals in which Bach2 expression is artificially suppressed and their use | |
US20060078561A1 (en) | Polyclonal antibody libraries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STRATAGENE, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WIGLER, MICHAEL H.;SORGE, JOSEPH A.;REEL/FRAME:014638/0057;SIGNING DATES FROM 19950406 TO 19950413 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CATALYST ASSETS LLC, WYOMING Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SORGE, JOSEPH A.;AGILENT TECHNOLOGIES, INC.;AGILENT TECHNOLOGIES RESEARCH CORP.;AND OTHERS;REEL/FRAME:028009/0112 Effective date: 20120322 |