US20040066881A1 - Methods and apparatus for detecting structural, perfusion, and functional abnormalities - Google Patents
Methods and apparatus for detecting structural, perfusion, and functional abnormalities Download PDFInfo
- Publication number
- US20040066881A1 US20040066881A1 US10/602,806 US60280603A US2004066881A1 US 20040066881 A1 US20040066881 A1 US 20040066881A1 US 60280603 A US60280603 A US 60280603A US 2004066881 A1 US2004066881 A1 US 2004066881A1
- Authority
- US
- United States
- Prior art keywords
- accordance
- computer
- data
- ventricle
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000010412 perfusion Effects 0.000 title claims description 18
- 230000005856 abnormality Effects 0.000 title description 15
- 230000002107 myocardial effect Effects 0.000 claims abstract description 29
- 230000000747 cardiac effect Effects 0.000 claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 238000003745 diagnosis Methods 0.000 claims abstract description 12
- 238000002591 computed tomography Methods 0.000 claims abstract description 7
- 238000004393 prognosis Methods 0.000 claims abstract description 7
- 210000001519 tissue Anatomy 0.000 claims description 38
- 210000004165 myocardium Anatomy 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 17
- 239000008280 blood Substances 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 13
- 210000000988 bone and bone Anatomy 0.000 claims description 13
- 238000001228 spectrum Methods 0.000 claims description 13
- 230000002861 ventricular Effects 0.000 claims description 12
- 239000002872 contrast media Substances 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 10
- 230000002159 abnormal effect Effects 0.000 claims description 9
- 230000007547 defect Effects 0.000 claims description 9
- 230000004217 heart function Effects 0.000 claims description 8
- 210000003484 anatomy Anatomy 0.000 claims description 5
- 210000004351 coronary vessel Anatomy 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 230000035899 viability Effects 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000007847 structural defect Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 description 9
- 208000031225 myocardial ischemia Diseases 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000013170 computed tomography imaging Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 208000028867 ischemia Diseases 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 210000005003 heart tissue Anatomy 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 208000019622 heart disease Diseases 0.000 description 4
- 208000002330 Congenital Heart Defects Diseases 0.000 description 3
- 206010047295 Ventricular hypertrophy Diseases 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 206010020871 hypertrophic cardiomyopathy Diseases 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 2
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 2
- 238000002083 X-ray spectrum Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 208000031229 Cardiomyopathies Diseases 0.000 description 1
- 201000000057 Coronary Stenosis Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/482—Diagnostic techniques involving multiple energy imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4241—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/48—Diagnostic techniques
- A61B6/481—Diagnostic techniques involving the use of contrast agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/503—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/504—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/507—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S378/00—X-ray or gamma ray systems or devices
- Y10S378/901—Computer tomography program or processor
Definitions
- This invention relates to computed tomographic (CT) imaging, and more particularly to methods and apparatus for the detection and diagnosis of abnormalities related to two forms of heart disease, namely, ischemic heart disease and abnormalities in the structure of the heart's muscle and valves.
- CT computed tomographic
- the second drawback of the conventional CT is the lack of material characterization.
- a highly attenuating material with low density can result in the same CT number in the image as a less attenuating material with high density.
- the methods and apparatus described herein address the detection and diagnosis of abnormalities related to ischemic heart disease and abnormalities in the structure of the heart's muscle and valves.
- a method for obtaining data includes scanning myocardial tissue of a patient with an Energy Discrimination Computed Tomography (EDCT) system to acquire data, and analyzing the acquired data for at least one of cardiac measurements, diagnosis, and prognosis after interventions.
- EDCT Energy Discrimination Computed Tomography
- an Energy Determination Computed Tomography (EDCT) System includes a radiation source, a radiation detector, and a computer coupled to the radiation source and the radiation detector.
- the computer is configured to acquire data regarding a first energy spectrum of a scan of myocardial tissue of the patient, acquire data regarding a second energy spectrum of the scan, and analyze the acquired data for at least one of cardiac measurements, diagnosis and prognosis after interventions.
- a computer readable medium encoded with a program is provided.
- the program is configured to instruct a computer to receive data regarding a first energy spectrum of a scan of myocardial tissue of the patient, receive data regarding a second energy spectrum of the scan, and analyze the acquired data for at least one of cardiac measurements, diagnosis and prognosis after interventions.
- FIG. 1 is a pictorial view of a CT imaging system.
- FIG. 2 is a block schematic diagram of the system illustrated in FIG. 1.
- FIG. 3 illustrates general principles of one embodiment of a method using differences in attenuation properties of multi-energy X-rays in CT imaging to detect the abnormality, and quantify the severity and duration of a plurality of cardiac diseases.
- FIG. 4 illustrates an image analysis process
- FIG. 5 illustrates the Multi-energy CT system shown in FIGS. 1 and 2 used to acquire a time-delayed series of cardiac images to identify defects.
- FIG. 6 illustrates that results of the analysis generate accurate measurements of the perfusion levels in different parts of the myocardium.
- FIG. 7 illustrates one method for cardiac function measurement using a plurality of multi-energy CT exams.
- FIG. 8 illustrates application of the multi-energy analysis outlined in FIGS. 3 and 4 to produce accurate delineation of the contrast-filled blood pool from the ventricular tissue.
- FIG. 9 illustrates examples of diagnoses.
- Ischemic heart disease is a result of lack of adequate blood flow to myocardial tissue, generally due to stenosis of the coronary arteries. However, it manifests in perfusion defects and impaired cardiac function, specifically, reduced pumping efficiency of the ventricles (lower ejection fraction). Ischemic heart disease, particularly acute ischemia, if untreated within hours, can lead to severe consequences, including death. Early detection of ischemia and appropriate triage is important in managing a cardiac patient.
- ischemic and infarcted tissue differentiation of healthy (normally perfused) tissue from ischemic and infarcted tissue is important to the survival of these patients. That is to quantify the levels of perfusion in different regions of the myocardium. Also of interest is to identify stunned (viable) myocardium that can be made revived by revascularization.
- At least some known diagnostic methods e.g., Nuclear/PET, CT
- ischemia in the form a perfusion map (Nuclear/PET or CT) or ST segment deviation (ECG). But, they do not provide direct association between the myocardial anatomy and the perfusion levels. Nor do they provide detailed information on the structure and/or viability of the myocardial tissue to help in optimal management of these patients.
- At least some known methods of measuring myocardial perfusion e.g., Radionuclide imaging
- the herein described methods and apparatus detect ventricular hypertrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and valvular defects, being the most common.
- High blood pressure is one cause of the structural abnormalities, particularly of ventricular hypertrophy and hypertrophic cardiomyopathy.
- These abnormalities manifest as structural changes in the myocardium at a molecular level. These structural changes reduce the effectiveness of the myocardium to contract and eject blood. They also affect the blood flow to the, myocardial tissue leading to further ischemia or infarction. Quantifying these structural changes is important for proper diagnosis of the conditions and effective management of the patients.
- an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as an “imaging plane”.
- the x-ray beam passes through an object being imaged, such as a patient.
- the beam after being attenuated by the object, impinges upon an array of radiation detectors.
- the intensity of the attenuated radiation beam received at the detector array is dependent upon the attenuation of an x-ray beam by the object.
- Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location.
- the attenuation measurements from all the detectors are acquired separately to produce a transmission profile.
- the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged such that the angle at which the x-ray beam intersects the object constantly changes.
- a group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”.
- a “scan” of the object comprises a set of views made at different gantry angles, or view angles, during one revolution of the x-ray source and detector.
- the projection data is processed to construct an image that corresponds to a two dimensional slice taken through the object.
- One method for reconstructing an image from a set of projection data is referred to in the art as the filtered back projection technique.
- the reconstructed images are represented by integers called “CT numbers” or “Hounsfield units” (HU), which are used to control the brightness of a corresponding pixel on a cathode ray tube display.
- a “helical” scan may be performed.
- the patient is moved while the data for the prescribed number of slices is acquired.
- Such a system generates a single helix from a one fan beam helical scan.
- the helix mapped out by the fan beam yields projection data from which images in each prescribed slice may be reconstructed.
- Reconstruction algorithms for helical scanning typically use helical weighing algorithms that weight the collected data as a function of view angle and detector channel index. Specifically, prior to a filtered backprojection process, the data is weighted according to a helical weighing factor, which is a function of both the gantry angle and detector angle. The helical weighting algorithms also scale the data according to a scaling factor, which is a function of the distance between the x-ray source and the object. The weighted data are then processed to construct an image that corresponds to a two dimensional slice taken through the object.
- the phrase “reconstructing an image” is not intended to exclude embodiments of the present invention in which data representing an image is generated but a viewable image is not. However, many embodiments generate (or are configured to generate) at least one viewable image.
- an Energy Discrimination multi-slice scanning imaging system for example, an Energy Discrimination computed tomography (CT) imaging system 10 , is shown as including a gantry 12 representative of a “third generation” CT imaging system.
- Gantry 12 has an x-ray source 14 that projects a beam of x-rays 16 toward a detector array 18 on the opposite side of gantry 12 .
- Detector array 18 is formed by a plurality of detector rows (not shown) including a plurality of detector elements 20 which together sense the projected x-rays that pass through an object, such as a medical patient 22 .
- Each detector element 20 produces an electrical signal that represents the intensity of an impinging x-ray beam and hence the attenuation of the beam as it passes through object or patient 22 .
- gantry 12 and the components mounted thereon rotate about a center of rotation 24 .
- FIG. 2 shows only a single row of detector elements 20 (i.e., a detector row).
- multi-slice detector array 18 includes a plurality of parallel detector rows of detector elements 20 such that projection data corresponding to a plurality of quasi-parallel or parallel slices can be acquired simultaneously during a scan.
- Control mechanism 26 includes an x-ray controller 28 that provides power and timing signals to x-ray source 14 and a gantry motor controller 30 that controls the rotational speed and position of gantry 12 .
- a data acquisition system (DAS) 32 in control mechanism 26 samples analog data from detector elements 20 and converts the data to digital signals for subsequent processing.
- An image reconstructor 34 receives sampled and digitized x-ray data from DAS 32 and performs high-speed image reconstruction. The reconstructed image is applied as an input to a computer 36 which stores the image in a mass storage device 38 .
- DAS data acquisition system
- Computer 36 also receives commands and scanning parameters from an operator via console 40 that has a keyboard.
- An associated cathode ray tube display 42 allows the operator to observe the reconstructed image and other data from computer 36 .
- the operator supplied commands and parameters are used by computer 36 to provide control signals and information to DAS 32 , x-ray controller 28 , and gantry motor controller 30 .
- computer 36 operates a table motor controller 44 which controls a motorized table 46 to position patient 22 in gantry 12 . Particularly, table 46 moves portions of patient 22 through gantry opening 48 .
- computer 36 includes a device 50 , for example, a floppy disk drive or CD-ROM drive, for reading instructions and/or data from a computer-readable medium 52 , such as a floppy disk or CD-ROM.
- computer 36 executes instructions stored in firmware (not shown).
- Computer 36 is programmed to perform functions described herein, and as used herein, the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein.
- CT imaging system 10 is an energy-discriminating (also known as multi-energy) computed tomographic (CT) system in that system 10 is configured to be responsive to different x-ray spectra.
- Energy Discrimination CT (EDCT) system 10 can lessen or eliminate the problems associated with conventional CT (lack of energy discrimination and material characterization) altogether.
- system 10 In the absence of object scatter, system 10 separately detects two regions of photon energy spectrum: the low-energy and the high-energy portions of the incident x-ray spectrum. The behavior at any other energy can be derived based on the signal from the two energy regions. This phenomenon is driven by the fundamental fact that in the energy region where medical CT is interested, two physical processes determine the x-ray attenuation (1) Compton scatter and (2) Photoelectric effect.
- In order to characterize the behavior of an object under x-ray attenuation one only need to measure two independent parameters.
- detected signals from two energy regions provide enough information to use to resolve the energy dependence of the object being imaged.
- the data analysis used in EDCT includes
- This method is based on the concept that the x-ray attenuation (in the energy region for medical CT) of any given material can be represented by a proper density mix of two other given materials. These two materials are called the Basis Materials.
- BMD two CT images can be obtained, each presenting the equivalent density of one of the basis materials. Since density is independent of x-ray photon energy, these images are naturally free of beam-hardening artifacts. Meanwhile, one has the choice of choosing the basis material to target to a certain material of interest, thus enhancing the image contrast.
- Attenuation characteristics of different molecular structures and tissue densities in healthy and diseased myocardial tissue vary with the energy level of X-rays.
- attenuation characteristics of the contrast agent, soft/vulnerable plaque, calcified plaque and the bone also differ with X-ray energy level and they are different from the cardiac tissue.
- using different energy levels and applying the analysis described here will enable us to differentiate abnormal regions from normal ones and delineate the contrast, soft/vulnerable plaque, calcified plaque and bone from the cardiac tissue.
- One method described herein exploits these differences in attenuation properties to multi-energy X-rays in CT imaging to detect the abnormality, and quantify the severity and duration of these cardiac diseases.
- General principles of one embodiment here are illustrated in FIG. 3. While an Image analysis process is further illustrated in FIG. 4.
- Reconstructed and processed multi-energy CT exams are calibrated with known tissues—normal and abnormal, contrast agents with different concentrations inside the cardiac tissue and bone segments. Calibrated images are decomposed into basis structures with known properties to partition them into normal and abnormal tissue. Same analysis is applied when separating bone, contrast agent, soft/vulnerable plaque and calcified plaque from cardiac tissue. These separated images are processed using tissue-specific filters. Results of these filters are further analyzed for characterization and diagnosis. They are also combined into suitable maps for visual presentation of the normal and abnormal regions. Representative examples of cardiac applications of energy discrimination on multi-energy CT systems are described below.
- ischemia lassion of oxygenated blood
- One common cause of myocardial ischemia is coronary stenosis.
- Localization of ischemia is the process of identifying of perfusion defects.
- Multi-energy CT system 10 is used to acquire a time-delayed series of cardiac images to identify such defects using a system 10 shown in FIG. 5.
- a plurality of images 70 are processed by energy discriminating system 10 illustrated in FIGS. 1 and 2 along with FIGS. 3 and 4. Results of the analysis would be accurate measurements of the perfusion levels in different parts of the myocardium as shown in FIG. 6.
- Cardiac function analyzes the pumping efficiency of the myocardial chambers, particularly of the ventricles. It includes measuring end-systolic and end-diastolic volumes in the ventricles, computing ejection fraction, stroke volume, and cardiac output. Another important aspect of the cardiac functional analysis is regional wall motion abnormality. All of these analyses rely upon the delineation (separation) of the contrast agent-filled blood from the ventricular myocardium.
- One method for cardiac function measurement using the multi-energy CT exams is outlined in FIG. 7.
- Application of the multi-energy analysis outlined in FIGS. 3 and 4 produce accurate delineation of the contrast-filled blood pool from the ventricular tissue as shown in FIG. 8. Once the ventricular mass is isolated at different phases of the cardiac cycle, detecting wall motion abnormality can be performed using any of the currently available methods.
- Myocardial tissue undergoes significant structural changes due to ventricular hypertrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and after myocardial infarction.
- the ventricular wall thickens and becomes dense with severity of hypertrophy.
- the molecular composition of the myocardial tissue also changes with severity and duration of the disease as in cardiomyopathy where abnormal cells proliferate in between normal myocardial tissue.
- myocardial infarction tissue becomes necrosed and fibrous and eventually becomes thin and stretched and looses its contractility.
- myocardial ischemia lack of oxygenated blood alters the properties of the cardiac tissue and decreases the contractility of the ventricles.
- multi-energy CT system 10 provides the ability to diagnose these conditions accurately. After the ventricular chambers are separated from the images of the rest of the anatomy as explained in FIGS. 7 and 8, further analysis is performed using energy discrimination system 10 to detect, and diagnose these and similar diseases that affect the structure of the myocardium and point out possible therapeutic options. Examples of such diagnoses are shown in FIG. 9.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
Abstract
Description
- This application claims the benefit of U.S. provisional application No. 60/398,151 filed Jul. 23, 2002, which is hereby incorporated by reference in its entirety.
- This invention relates to computed tomographic (CT) imaging, and more particularly to methods and apparatus for the detection and diagnosis of abnormalities related to two forms of heart disease, namely, ischemic heart disease and abnormalities in the structure of the heart's muscle and valves.
- In spite of recent advancements in CT technology (faster scanning speed, larger coverage with multiple detector rows), energy resolution is still a missing piece, namely, wide x-ray photon energy spectrum from the x-ray source and the lack of energy resolution from CT detection systems. X-ray attenuation through a given object is not a constant. It is strongly dependent on the x-ray photon energy. This physical phenomenon shows in the image as a beam-hardening artifact: such as non-uniformity, shading and streaking. Some of them can be corrected, but some are much tougher to remove. In general, the common methods to deal with such problems are (1) water calibration, where each CT machine is carefully calibrated to remove beam-hardening from materials similar to water (2) iterative bone correction: where bones are separated in the first-pass image, then beam-hardening from bones are corrected in the second-pass. However, beam-hardening from materials other than water and bone, such as metal and contrast agent, become very difficult to correct. Even with the correction, conventional CT does not provide quantitative image values, instead, same material at different locations often shows different CT numbers.
- The second drawback of the conventional CT is the lack of material characterization. For example, a highly attenuating material with low density can result in the same CT number in the image as a less attenuating material with high density. There is no insight into what the material is made of. Accordingly, the methods and apparatus described herein address the detection and diagnosis of abnormalities related to ischemic heart disease and abnormalities in the structure of the heart's muscle and valves.
- In one aspect, a method for obtaining data is provided. The method includes scanning myocardial tissue of a patient with an Energy Discrimination Computed Tomography (EDCT) system to acquire data, and analyzing the acquired data for at least one of cardiac measurements, diagnosis, and prognosis after interventions.
- In another aspect, an Energy Determination Computed Tomography (EDCT) System includes a radiation source, a radiation detector, and a computer coupled to the radiation source and the radiation detector. The computer is configured to acquire data regarding a first energy spectrum of a scan of myocardial tissue of the patient, acquire data regarding a second energy spectrum of the scan, and analyze the acquired data for at least one of cardiac measurements, diagnosis and prognosis after interventions.
- In yet another aspect, a computer readable medium encoded with a program is provided. The program is configured to instruct a computer to receive data regarding a first energy spectrum of a scan of myocardial tissue of the patient, receive data regarding a second energy spectrum of the scan, and analyze the acquired data for at least one of cardiac measurements, diagnosis and prognosis after interventions.
- FIG. 1 is a pictorial view of a CT imaging system.
- FIG. 2 is a block schematic diagram of the system illustrated in FIG. 1.
- FIG. 3 illustrates general principles of one embodiment of a method using differences in attenuation properties of multi-energy X-rays in CT imaging to detect the abnormality, and quantify the severity and duration of a plurality of cardiac diseases.
- FIG. 4 illustrates an image analysis process.
- FIG. 5 illustrates the Multi-energy CT system shown in FIGS. 1 and 2 used to acquire a time-delayed series of cardiac images to identify defects.
- FIG. 6 illustrates that results of the analysis generate accurate measurements of the perfusion levels in different parts of the myocardium.
- FIG. 7 illustrates one method for cardiac function measurement using a plurality of multi-energy CT exams.
- FIG. 8 illustrates application of the multi-energy analysis outlined in FIGS. 3 and 4 to produce accurate delineation of the contrast-filled blood pool from the ventricular tissue.
- FIG. 9 illustrates examples of diagnoses.
- The methods and apparatus described herein address the detection and diagnosis of abnormalities related to two forms of heart disease, namely, ischemic heart disease and abnormalities in the structure of the heart's muscle and valves. Ischemic heart disease is a result of lack of adequate blood flow to myocardial tissue, generally due to stenosis of the coronary arteries. However, it manifests in perfusion defects and impaired cardiac function, specifically, reduced pumping efficiency of the ventricles (lower ejection fraction). Ischemic heart disease, particularly acute ischemia, if untreated within hours, can lead to severe consequences, including death. Early detection of ischemia and appropriate triage is important in managing a cardiac patient. Therefore, differentiation of healthy (normally perfused) tissue from ischemic and infarcted tissue is important to the survival of these patients. That is to quantify the levels of perfusion in different regions of the myocardium. Also of interest is to identify stunned (viable) myocardium that can be made revived by revascularization. At least some known diagnostic methods (e.g., Nuclear/PET, CT) provide some diagnostic information on ischemia in the form a perfusion map (Nuclear/PET or CT) or ST segment deviation (ECG). But, they do not provide direct association between the myocardial anatomy and the perfusion levels. Nor do they provide detailed information on the structure and/or viability of the myocardial tissue to help in optimal management of these patients. At least some known methods of measuring myocardial perfusion (e.g., Radionuclide imaging) provide a gross picture of myocardial ischemia but fail to provide detailed distribution and anatomic correlates of the myocardium.
- Amongst the structural abnormalities the herein described methods and apparatus detect ventricular hypertrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and valvular defects, being the most common. High blood pressure is one cause of the structural abnormalities, particularly of ventricular hypertrophy and hypertrophic cardiomyopathy. These abnormalities manifest as structural changes in the myocardium at a molecular level. These structural changes reduce the effectiveness of the myocardium to contract and eject blood. They also affect the blood flow to the, myocardial tissue leading to further ischemia or infarction. Quantifying these structural changes is important for proper diagnosis of the conditions and effective management of the patients.
- In some known CT imaging system configurations, an x-ray source projects a fan-shaped beam which is collimated to lie within an X-Y plane of a Cartesian coordinate system and generally referred to as an “imaging plane”. The x-ray beam passes through an object being imaged, such as a patient. The beam, after being attenuated by the object, impinges upon an array of radiation detectors. The intensity of the attenuated radiation beam received at the detector array is dependent upon the attenuation of an x-ray beam by the object. Each detector element of the array produces a separate electrical signal that is a measurement of the beam attenuation at the detector location. The attenuation measurements from all the detectors are acquired separately to produce a transmission profile.
- In third generation CT systems, the x-ray source and the detector array are rotated with a gantry within the imaging plane and around the object to be imaged such that the angle at which the x-ray beam intersects the object constantly changes. A group of x-ray attenuation measurements, i.e., projection data, from the detector array at one gantry angle is referred to as a “view”. A “scan” of the object comprises a set of views made at different gantry angles, or view angles, during one revolution of the x-ray source and detector.
- In an axial scan, the projection data is processed to construct an image that corresponds to a two dimensional slice taken through the object. One method for reconstructing an image from a set of projection data is referred to in the art as the filtered back projection technique. Typically, the reconstructed images are represented by integers called “CT numbers” or “Hounsfield units” (HU), which are used to control the brightness of a corresponding pixel on a cathode ray tube display.
- To reduce the total scan time, a “helical” scan may be performed. To perform a “helical” scan, the patient is moved while the data for the prescribed number of slices is acquired. Such a system generates a single helix from a one fan beam helical scan. The helix mapped out by the fan beam yields projection data from which images in each prescribed slice may be reconstructed.
- Reconstruction algorithms for helical scanning typically use helical weighing algorithms that weight the collected data as a function of view angle and detector channel index. Specifically, prior to a filtered backprojection process, the data is weighted according to a helical weighing factor, which is a function of both the gantry angle and detector angle. The helical weighting algorithms also scale the data according to a scaling factor, which is a function of the distance between the x-ray source and the object. The weighted data are then processed to construct an image that corresponds to a two dimensional slice taken through the object.
- As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
- Also as used herein, the phrase “reconstructing an image” is not intended to exclude embodiments of the present invention in which data representing an image is generated but a viewable image is not. However, many embodiments generate (or are configured to generate) at least one viewable image.
- Referring to FIGS. 1 and 2, an Energy Discrimination multi-slice scanning imaging system, for example, an Energy Discrimination computed tomography (CT)
imaging system 10, is shown as including agantry 12 representative of a “third generation” CT imaging system.Gantry 12 has anx-ray source 14 that projects a beam ofx-rays 16 toward adetector array 18 on the opposite side ofgantry 12.Detector array 18 is formed by a plurality of detector rows (not shown) including a plurality ofdetector elements 20 which together sense the projected x-rays that pass through an object, such as amedical patient 22. Eachdetector element 20 produces an electrical signal that represents the intensity of an impinging x-ray beam and hence the attenuation of the beam as it passes through object orpatient 22. During a scan to acquire x-ray projection data,gantry 12 and the components mounted thereon rotate about a center ofrotation 24. FIG. 2 shows only a single row of detector elements 20 (i.e., a detector row). However,multi-slice detector array 18 includes a plurality of parallel detector rows ofdetector elements 20 such that projection data corresponding to a plurality of quasi-parallel or parallel slices can be acquired simultaneously during a scan. - Rotation of
gantry 12 and the operation ofx-ray source 14 are governed by acontrol mechanism 26 ofCT system 10.Control mechanism 26 includes anx-ray controller 28 that provides power and timing signals to x-raysource 14 and agantry motor controller 30 that controls the rotational speed and position ofgantry 12. A data acquisition system (DAS) 32 incontrol mechanism 26 samples analog data fromdetector elements 20 and converts the data to digital signals for subsequent processing. Animage reconstructor 34 receives sampled and digitized x-ray data fromDAS 32 and performs high-speed image reconstruction. The reconstructed image is applied as an input to acomputer 36 which stores the image in amass storage device 38. -
Computer 36 also receives commands and scanning parameters from an operator viaconsole 40 that has a keyboard. An associated cathoderay tube display 42 allows the operator to observe the reconstructed image and other data fromcomputer 36. The operator supplied commands and parameters are used bycomputer 36 to provide control signals and information toDAS 32,x-ray controller 28, andgantry motor controller 30. In addition,computer 36 operates atable motor controller 44 which controls a motorized table 46 to positionpatient 22 ingantry 12. Particularly, table 46 moves portions ofpatient 22 throughgantry opening 48. - In one embodiment,
computer 36 includes adevice 50, for example, a floppy disk drive or CD-ROM drive, for reading instructions and/or data from a computer-readable medium 52, such as a floppy disk or CD-ROM. In another embodiment,computer 36 executes instructions stored in firmware (not shown).Computer 36 is programmed to perform functions described herein, and as used herein, the term computer is not limited to just those integrated circuits referred to in the art as computers, but broadly refers to computers, processors, microcontrollers, microcomputers, programmable logic controllers, application specific integrated circuits, and other programmable circuits, and these terms are used interchangeably herein.CT imaging system 10 is an energy-discriminating (also known as multi-energy) computed tomographic (CT) system in thatsystem 10 is configured to be responsive to different x-ray spectra. - Herein is described methods and apparatus for detecting structural, perfusion and functional abnormalities in myocardial tissue using energy-discriminating (also known as multi-energy) computed tomography (CT) system. First described is energy discriminating (multi-energy)
CT system 10 and followed by cardiac applications of such asystem 10 for a) detecting myocardial perfusion and defects and tissue viability, b) determining cardiac function, c) separation of soft/vulnerable plaque and calcified plaque from contrast agent in coronary arteries, d) detecting structural defects in heart muscle, and e) performing automated bone segmentation. Although the following description is given for a few representative examples, this method is equally applicable for other cardiac diagnostic applications. - Energy Discrimination (Multi-Energy)
CT System 10 - Energy Discrimination CT (EDCT)
system 10 can lessen or eliminate the problems associated with conventional CT (lack of energy discrimination and material characterization) altogether. In the absence of object scatter,system 10 separately detects two regions of photon energy spectrum: the low-energy and the high-energy portions of the incident x-ray spectrum. The behavior at any other energy can be derived based on the signal from the two energy regions. This phenomenon is driven by the fundamental fact that in the energy region where medical CT is interested, two physical processes determine the x-ray attenuation (1) Compton scatter and (2) Photoelectric effect. In order to characterize the behavior of an object under x-ray attenuation, one only need to measure two independent parameters. Thus, detected signals from two energy regions provide enough information to use to resolve the energy dependence of the object being imaged. - The data analysis used in EDCT includes
- (1) Compton and Photoelectric Decomposition:
- Instead of obtaining an overall attenuation coefficient as in conventional CT images, a pair of images is obtained in
EDCT 10, separately presenting attenuations from Compton and photoelectric processes. Also, slight modifications can result in images representing effective Z and density. - (2) Basis Material Decomposition (BMD):
- This method is based on the concept that the x-ray attenuation (in the energy region for medical CT) of any given material can be represented by a proper density mix of two other given materials. These two materials are called the Basis Materials. Through BMD, two CT images can be obtained, each presenting the equivalent density of one of the basis materials. Since density is independent of x-ray photon energy, these images are naturally free of beam-hardening artifacts. Meanwhile, one has the choice of choosing the basis material to target to a certain material of interest, thus enhancing the image contrast.
- It should be noted that in order to optimize a dual energy CT system, the larger the spectra separation, the better the image quality. Also, the photon statistics in these two energy regions has to be close, otherwise, the poor statistical region will dominate the image noise.
- There are different methods to obtain dual energy measurements. (1) Scan with two distinctive energy spectra. (2) Detect photon energy according to penetration depth at the detector. (3) Photon-counting. Photon counting provides clean spectra separation and an adjustable energy separation point for balancing photon statistics.
- Cardiac Applications of Energy Discriminating Using
Multi-Energy CT System 10 - Attenuation characteristics of different molecular structures and tissue densities in healthy and diseased myocardial tissue vary with the energy level of X-rays. In addition, attenuation characteristics of the contrast agent, soft/vulnerable plaque, calcified plaque and the bone also differ with X-ray energy level and they are different from the cardiac tissue. As a result, using different energy levels and applying the analysis described here will enable us to differentiate abnormal regions from normal ones and delineate the contrast, soft/vulnerable plaque, calcified plaque and bone from the cardiac tissue. One method described herein exploits these differences in attenuation properties to multi-energy X-rays in CT imaging to detect the abnormality, and quantify the severity and duration of these cardiac diseases. General principles of one embodiment here are illustrated in FIG. 3. While an Image analysis process is further illustrated in FIG. 4.
- Reconstructed and processed multi-energy CT exams are calibrated with known tissues—normal and abnormal, contrast agents with different concentrations inside the cardiac tissue and bone segments. Calibrated images are decomposed into basis structures with known properties to partition them into normal and abnormal tissue. Same analysis is applied when separating bone, contrast agent, soft/vulnerable plaque and calcified plaque from cardiac tissue. These separated images are processed using tissue-specific filters. Results of these filters are further analyzed for characterization and diagnosis. They are also combined into suitable maps for visual presentation of the normal and abnormal regions. Representative examples of cardiac applications of energy discrimination on multi-energy CT systems are described below.
- Detection of Perfusion Defects in Myocardial Tissue
- When demand for blood by myocardial tissue exceeds the supply, the result is an ischemia (lack of oxygenated blood) of the myocardium. One common cause of myocardial ischemia is coronary stenosis. Localization of ischemia is the process of identifying of perfusion defects.
Multi-energy CT system 10 is used to acquire a time-delayed series of cardiac images to identify such defects using asystem 10 shown in FIG. 5. A plurality of images 70 are processed byenergy discriminating system 10 illustrated in FIGS. 1 and 2 along with FIGS. 3 and 4. Results of the analysis would be accurate measurements of the perfusion levels in different parts of the myocardium as shown in FIG. 6. - Accurate Analysis of Cardiac Function
- Cardiac function analyzes the pumping efficiency of the myocardial chambers, particularly of the ventricles. It includes measuring end-systolic and end-diastolic volumes in the ventricles, computing ejection fraction, stroke volume, and cardiac output. Another important aspect of the cardiac functional analysis is regional wall motion abnormality. All of these analyses rely upon the delineation (separation) of the contrast agent-filled blood from the ventricular myocardium. One method for cardiac function measurement using the multi-energy CT exams is outlined in FIG. 7. Application of the multi-energy analysis outlined in FIGS. 3 and 4 produce accurate delineation of the contrast-filled blood pool from the ventricular tissue as shown in FIG. 8. Once the ventricular mass is isolated at different phases of the cardiac cycle, detecting wall motion abnormality can be performed using any of the currently available methods.
- Detection of Structural Changes
- Myocardial tissue undergoes significant structural changes due to ventricular hypertrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy and after myocardial infarction. For example, the ventricular wall thickens and becomes dense with severity of hypertrophy. In addition, the molecular composition of the myocardial tissue also changes with severity and duration of the disease as in cardiomyopathy where abnormal cells proliferate in between normal myocardial tissue. In myocardial infarction, tissue becomes necrosed and fibrous and eventually becomes thin and stretched and looses its contractility. In myocardial ischemia, lack of oxygenated blood alters the properties of the cardiac tissue and decreases the contractility of the ventricles.
- As attenuation properties of the healthy myocardium and abnormal tissues (under abnormal conditions described above) for different X-ray energy levels are different,
multi-energy CT system 10 provides the ability to diagnose these conditions accurately. After the ventricular chambers are separated from the images of the rest of the anatomy as explained in FIGS. 7 and 8, further analysis is performed usingenergy discrimination system 10 to detect, and diagnose these and similar diseases that affect the structure of the myocardium and point out possible therapeutic options. Examples of such diagnoses are shown in FIG. 9. - While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/602,806 US6836528B2 (en) | 2002-07-23 | 2003-06-24 | Methods and apparatus for detecting structural, perfusion, and functional abnormalities |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39815102P | 2002-07-23 | 2002-07-23 | |
US10/602,806 US6836528B2 (en) | 2002-07-23 | 2003-06-24 | Methods and apparatus for detecting structural, perfusion, and functional abnormalities |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040066881A1 true US20040066881A1 (en) | 2004-04-08 |
US6836528B2 US6836528B2 (en) | 2004-12-28 |
Family
ID=32045186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/602,806 Expired - Lifetime US6836528B2 (en) | 2002-07-23 | 2003-06-24 | Methods and apparatus for detecting structural, perfusion, and functional abnormalities |
Country Status (1)
Country | Link |
---|---|
US (1) | US6836528B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060004274A1 (en) * | 2004-06-30 | 2006-01-05 | Hawman Eric G | Fusing nuclear medical images with a second imaging modality |
US20060072874A1 (en) * | 2004-10-01 | 2006-04-06 | University Of Washington | Configuration memory for a scanning beam device |
DE102004055460A1 (en) * | 2004-11-17 | 2006-04-20 | Siemens Ag | MRI process for visualization of coronary heart diseases particularly heart infarction losses, involves using computed tomography technology to form image of heart, and windowing measurement data obtained from myocardium area of heart |
US20060109953A1 (en) * | 2004-11-19 | 2006-05-25 | Deborah Walter | Ct colonography system |
US20060173297A1 (en) * | 2004-11-17 | 2006-08-03 | Stefan Popescu | Imaging method and apparatus for visualizing coronary heart diseases |
US20060203956A1 (en) * | 2005-02-25 | 2006-09-14 | Rainer Raupach | Method for an x-ray device and computer tomograph for reducing beam hardening artifacts from a generated image of an object |
US20070189443A1 (en) * | 2004-11-19 | 2007-08-16 | Walter Deborah J | Detection of thrombi in ct using energy discrimination |
US7352885B2 (en) | 2004-09-30 | 2008-04-01 | General Electric Company | Method and system for multi-energy tomosynthesis |
US20080144764A1 (en) * | 2006-12-18 | 2008-06-19 | Akihiko Nishide | X-ray computed tomography apparatus |
US20090060121A1 (en) * | 2006-03-16 | 2009-03-05 | Koninklijke Philips Electronics N. V. | Computed tomography data acquisition apparatus and method |
US20100158340A1 (en) * | 2005-04-05 | 2010-06-24 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-stage classifier |
US20100310036A1 (en) * | 2009-06-04 | 2010-12-09 | General Electric Company | Computed tomography method and apparatus |
JP2011110245A (en) * | 2009-11-27 | 2011-06-09 | Ge Medical Systems Global Technology Co Llc | Image display device, x-ray ct apparatus, and program |
US20220253992A1 (en) * | 2021-02-09 | 2022-08-11 | Elucid Bioimaging Inc. | Systems and methods for improving soft tissue contrast, multiscale modeling and spectral ct |
US20230337998A1 (en) * | 2022-04-20 | 2023-10-26 | National Cheng Kung University | Method for measuring muscle mass |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6987833B2 (en) * | 2003-10-16 | 2006-01-17 | General Electric Company | Methods and apparatus for identification and imaging of specific materials |
DE10352013B4 (en) * | 2003-11-07 | 2008-02-07 | Siemens Ag | Method and device for the spatially resolved determination of element concentrations in examination objects |
DE102004008367A1 (en) * | 2004-02-20 | 2005-09-22 | Siemens Ag | Method for taking two-dimensional images inside a blood-perfused vessel by means of optical coherence tomography |
US20070127789A1 (en) * | 2005-11-10 | 2007-06-07 | Hoppel Bernice E | Method for three dimensional multi-phase quantitative tissue evaluation |
WO2007100550A2 (en) * | 2006-02-24 | 2007-09-07 | Mayo Foundation For Medical Education And Research | Method for imaging plaque using dual energy ct |
US20070242863A1 (en) * | 2006-04-13 | 2007-10-18 | Bernice Eland Hoppel | Methods and Apparatus for Contouring at Least One Vessel |
US8626263B2 (en) * | 2006-04-13 | 2014-01-07 | General Electric Company | Methods and apparatus for relative perfusion and/or viability |
US8636670B2 (en) | 2008-05-13 | 2014-01-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US9717896B2 (en) | 2007-12-18 | 2017-08-01 | Gearbox, Llc | Treatment indications informed by a priori implant information |
US20090287120A1 (en) | 2007-12-18 | 2009-11-19 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US8786873B2 (en) | 2009-07-20 | 2014-07-22 | General Electric Company | Application server for use with a modular imaging system |
US7995702B2 (en) * | 2009-08-25 | 2011-08-09 | General Electric Company | System and method of data interpolation in fast kVp switching dual energy CT |
US8611627B2 (en) | 2009-12-23 | 2013-12-17 | General Electric Company | CT spectral calibration |
US8243882B2 (en) | 2010-05-07 | 2012-08-14 | General Electric Company | System and method for indicating association between autonomous detector and imaging subsystem |
US8855385B2 (en) * | 2012-07-06 | 2014-10-07 | General Electric Company | Apparatus and method for multi-energy tissue quantification |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033645A (en) * | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6231834B1 (en) * | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6299857B1 (en) * | 1995-12-28 | 2001-10-09 | The General Hospital Corporation | Cardiovascular and thrombus imaging agents, methods and kits |
US6358208B1 (en) * | 1998-11-21 | 2002-03-19 | Philipp Lang | Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid |
US6521211B1 (en) * | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US20030215120A1 (en) * | 2002-05-15 | 2003-11-20 | Renuka Uppaluri | Computer aided diagnosis of an image set |
US6671541B2 (en) * | 2000-12-01 | 2003-12-30 | Neomed Technologies, Inc. | Cardiovascular imaging and functional analysis system |
US20040101090A1 (en) * | 2002-11-27 | 2004-05-27 | Danielle Drummond | Methods and apparatus for acquiring perfusion data |
-
2003
- 2003-06-24 US US10/602,806 patent/US6836528B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6231834B1 (en) * | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6521211B1 (en) * | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US6299857B1 (en) * | 1995-12-28 | 2001-10-09 | The General Hospital Corporation | Cardiovascular and thrombus imaging agents, methods and kits |
US6033645A (en) * | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6358208B1 (en) * | 1998-11-21 | 2002-03-19 | Philipp Lang | Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid |
US6671541B2 (en) * | 2000-12-01 | 2003-12-30 | Neomed Technologies, Inc. | Cardiovascular imaging and functional analysis system |
US20030215120A1 (en) * | 2002-05-15 | 2003-11-20 | Renuka Uppaluri | Computer aided diagnosis of an image set |
US20040101090A1 (en) * | 2002-11-27 | 2004-05-27 | Danielle Drummond | Methods and apparatus for acquiring perfusion data |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060004274A1 (en) * | 2004-06-30 | 2006-01-05 | Hawman Eric G | Fusing nuclear medical images with a second imaging modality |
US7440603B2 (en) | 2004-09-30 | 2008-10-21 | General Electric Company | Method and system for multi-energy tomosynthesis |
US7352885B2 (en) | 2004-09-30 | 2008-04-01 | General Electric Company | Method and system for multi-energy tomosynthesis |
US20080144767A1 (en) * | 2004-09-30 | 2008-06-19 | General Electric Company | Method and System for Multi-Energy Tomosynthesis |
US20060072874A1 (en) * | 2004-10-01 | 2006-04-06 | University Of Washington | Configuration memory for a scanning beam device |
DE102004055460A1 (en) * | 2004-11-17 | 2006-04-20 | Siemens Ag | MRI process for visualization of coronary heart diseases particularly heart infarction losses, involves using computed tomography technology to form image of heart, and windowing measurement data obtained from myocardium area of heart |
US20060122500A1 (en) * | 2004-11-17 | 2006-06-08 | Bjoern Heismann | Imaging method and apparatus for visualizing coronary heart diseases, in particular instances of myocardial infarction damage |
US20060173297A1 (en) * | 2004-11-17 | 2006-08-03 | Stefan Popescu | Imaging method and apparatus for visualizing coronary heart diseases |
US20060109953A1 (en) * | 2004-11-19 | 2006-05-25 | Deborah Walter | Ct colonography system |
US7599465B2 (en) * | 2004-11-19 | 2009-10-06 | General Electric Company | Detection of thrombi in CT using energy discrimination |
US7209536B2 (en) * | 2004-11-19 | 2007-04-24 | General Electric Company | CT colonography system |
US20070189443A1 (en) * | 2004-11-19 | 2007-08-16 | Walter Deborah J | Detection of thrombi in ct using energy discrimination |
US20060203956A1 (en) * | 2005-02-25 | 2006-09-14 | Rainer Raupach | Method for an x-ray device and computer tomograph for reducing beam hardening artifacts from a generated image of an object |
US7315604B2 (en) * | 2005-02-25 | 2008-01-01 | Siemens Aktiengesellschaft | Method for an x-ray device and computer tomograph for reducing beam hardening artifacts from a generated image of an object |
US20100158340A1 (en) * | 2005-04-05 | 2010-06-24 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-stage classifier |
US7965876B2 (en) * | 2005-04-05 | 2011-06-21 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-stage classifier |
US20110211745A1 (en) * | 2005-04-05 | 2011-09-01 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-stage classifier |
US8175368B2 (en) | 2005-04-05 | 2012-05-08 | Scimed Life Systems, Inc. | Systems and methods for image segmentation with a multi-state classifier |
US20090060121A1 (en) * | 2006-03-16 | 2009-03-05 | Koninklijke Philips Electronics N. V. | Computed tomography data acquisition apparatus and method |
US20080144764A1 (en) * | 2006-12-18 | 2008-06-19 | Akihiko Nishide | X-ray computed tomography apparatus |
US7756240B2 (en) * | 2006-12-18 | 2010-07-13 | Ge Medical Systems Global Technology Company, Llc | X-ray computed tomography apparatus |
US20100310036A1 (en) * | 2009-06-04 | 2010-12-09 | General Electric Company | Computed tomography method and apparatus |
JP2011110245A (en) * | 2009-11-27 | 2011-06-09 | Ge Medical Systems Global Technology Co Llc | Image display device, x-ray ct apparatus, and program |
US20220253992A1 (en) * | 2021-02-09 | 2022-08-11 | Elucid Bioimaging Inc. | Systems and methods for improving soft tissue contrast, multiscale modeling and spectral ct |
US20220398706A1 (en) * | 2021-02-09 | 2022-12-15 | Elucid Biomaging Inc. | Systems and methods for improving soft tissue contrast, multiscale modeling and spectral ct |
US11593926B2 (en) * | 2021-02-09 | 2023-02-28 | Elucid Bioimaging Inc. | Systems and methods for improving soft tissue contrast, multiscale modeling and spectral CT |
US11657486B2 (en) | 2021-02-09 | 2023-05-23 | Elucid Bioimaging Inc. | Systems and methods for improving soft tissue contrast, multiscale modeling and spectral CT |
US11715187B2 (en) * | 2021-02-09 | 2023-08-01 | Elucid Bioimaging Inc. | Extended tissue types for increased granularity in cardiovascular disease phenotyping |
US20230289939A1 (en) * | 2021-02-09 | 2023-09-14 | Elucid Bioimaging Inc. | Progressive exploitation of multi-energy and photon counting modalities |
US12118694B2 (en) * | 2021-02-09 | 2024-10-15 | Elucid Bioimaging Inc. | Progressive exploitation of multi-energy and photon counting modalities |
US20230337998A1 (en) * | 2022-04-20 | 2023-10-26 | National Cheng Kung University | Method for measuring muscle mass |
US12207962B2 (en) * | 2022-04-20 | 2025-01-28 | National Cheng Kung University | Method for measuring muscle mass |
Also Published As
Publication number | Publication date |
---|---|
US6836528B2 (en) | 2004-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6836528B2 (en) | Methods and apparatus for detecting structural, perfusion, and functional abnormalities | |
US7031426B2 (en) | Methods and system for detecting components of plaque | |
US6999549B2 (en) | Method and apparatus for quantifying tissue fat content | |
US6891918B2 (en) | Methods and apparatus for acquiring perfusion data | |
JP4347672B2 (en) | Method and apparatus for detecting abnormalities related to structure, perfusion and function | |
JP5980486B2 (en) | System and method for visualization and quantification of vascular stenosis using spectral CT analysis | |
US7236559B2 (en) | Dual energy scanning protocols for motion mitigation and material differentiation | |
US6898263B2 (en) | Method and apparatus for soft-tissue volume visualization | |
JP4436658B2 (en) | Method and apparatus for calculating volume perfusion | |
JP4578675B2 (en) | Method and apparatus for evaluating cardiac motion using projection data | |
US7627078B2 (en) | Methods and apparatus for detecting structural, perfusion, and functional abnormalities | |
US7050529B2 (en) | Methods and apparatus for performing a computed tomography scan | |
US8086012B2 (en) | Methods and apparatus for determining body weight and fat content using computed tomography data | |
US20040101087A1 (en) | Methods and apparatus for generating CT scout images | |
CN1647767A (en) | Method for image data recording and analysis using tomography equipment | |
US9349199B2 (en) | System and method for generating image window view settings | |
US7822253B2 (en) | Methods and apparatus for BMD measuring | |
CN109416833B (en) | Determination of calcium content from spectral CT data | |
US11826190B2 (en) | System and method for quantitative blood volume imaging | |
US20040116796A1 (en) | Methods and apparatus for scoring a substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GE MEDICAL SYSTEMS GLOBAL TECHNOLOGY COMPANY, LLC, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REDDY, SHANKARA B.;AVINASH, GOPAL B.;WU, XIAOYE;REEL/FRAME:014094/0078 Effective date: 20030715 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |