+

US20040063631A1 - Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension - Google Patents

Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension Download PDF

Info

Publication number
US20040063631A1
US20040063631A1 US10/416,822 US41682203A US2004063631A1 US 20040063631 A1 US20040063631 A1 US 20040063631A1 US 41682203 A US41682203 A US 41682203A US 2004063631 A1 US2004063631 A1 US 2004063631A1
Authority
US
United States
Prior art keywords
lys
tyr
asp
arg
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/416,822
Inventor
Lutz-Henning Block
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Relief Therapeutics International SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to MONDOBIOTECH SA reassignment MONDOBIOTECH SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLOCK, LUTZ-HENNING
Publication of US20040063631A1 publication Critical patent/US20040063631A1/en
Assigned to MONDOBIOTECH LABORATORIES ANSTALT reassignment MONDOBIOTECH LABORATORIES ANSTALT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONDOBIOTECH S.A.
Assigned to MONDOBIOTECH LICENSING OUT AG reassignment MONDOBIOTECH LICENSING OUT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MONDOBIOTECH LABORATORIES ANSTALT
Priority to US12/005,516 priority Critical patent/US8153599B1/en
Priority to US12/005,479 priority patent/US20080221041A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57563Vasoactive intestinal peptide [VIP]; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to peptides which are highly biologically and pharmacologically active as therapeutic drug for the treatment of diseases related to hypertension, especially in medical interventions involving dilatation and remodeling of arterial blood vessels, either in the pulmonary or in the systemic circulation.
  • the peptides which can be used according to the invention for the treatment of said diseases comprise at least one specific highly conservative amino acid residue sequence which seem to play an important role in connection with pulmonary and arteriolar hypertension events.
  • VIP vasoactive intestinal peptide
  • PACAP pituitary adenylate cyclase-activating polypeptide
  • PPH Primary pulmonary hypertension
  • vasoconstriction a fatal disease causing progressive right heart failure within three years after diagnosis.
  • various pathophysiological changes associated with this disorder including vasoconstriction, vascular remodelling (i.e. proliferation of both media and intima of the pulmonary resistance vessels), and in situ thrombosis have been characterized (e.g.: D'Alonzo, G. E., Barst, R. J., Ayres, S. M. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann.Intern.Med . 115, 343-349. 1-9-1991; Palevsky, H. I., Schloo, B. L., Pietra, G. G.
  • Impairment of vascular and endothelial homeostasis is evidenced from a reduced synthesis of prostacyclin (PGI 2 ), increased thromboxane production, decreased formation of nitric oxide and increased synthesis of endothelin-1 (Giaid, A. and Saleh, D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N.Engl.J.Med 333, 214-221. 1995; Xue, C. and Johns, R. A. Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension [letter]. N.Engl.J.Med. 333, 1642-1644. 14-12-1995).
  • the intracellular free calcium concentration of VSMC of pulmonary arteries in PPH has been reported to be elevated.
  • the therapy of pulmonary hypertension is unsatisfactory.
  • Current therapy involves calcium cannel blockers and prostacyclins.
  • VIP or PACAP are effective in the treatment of pulmonary hypertension in humans.
  • the invention describes for the first time the clinical relevance of VIP, PACAP and compounds having the biological activity of VIP or PACAP for the treatment of primary pulmonary hypertension (PPH), secondary pulmonary hypertension (SPH), and arteriolar hypertension associated with PPH.
  • endothelial cells of the systemic circulation release both relaxing and contracting factors that modulate vascular smooth muscle tone and also participate in the pathophysiology of essential hypertension.
  • Endothelium-dependent vasodilation is regulated primarily by nitric oxide but also by an unidentified endothelium-derived hyperpolarizing factor and by prostacyclin.
  • Endothelium-derived contracting factors include endothelin-I, vasoconscrictor prostanoids, angiotensin II and superoxide anions. Under physiological conditions, there is a balanced release of relaxing and contracting factors.
  • the balance can be altered in cardiovascular diseases such as hypertension, atherosclerosis, diabetes and other conditions, thereby contributing to further progression of vascular and end-organ damage.
  • endothelial dysfunction leading to decreased bioavailability of nitric oxide impairs endothelium-dependent vasodilation in patients with essential hypertension and may also be a determinant for the premature development of atherosclerosis.
  • Different mechanisms of reduced nitric oxide activity have been shown both in hypertensive states and several cardiovascular diseases, and endothelial dysfunction is likely to occur prior to vascular dysfunction.
  • VIP and PACAP are synthesized in various components of the central nervous system, e.g. specific brain regions like hippocampus and cortex as well as in the pituitary gland and peripheral ganglia. VIP is furthermore secreted by immune cells and by some neoplastic cells (e.g. pancreatic cancer).
  • VEP Vasoactive Intestinal Peptide
  • VIP is a 28 amino acid peptide consisting of the following amino acid sequence (from N- to C-terminal): (SEQ ID No. 1) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg- Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn- Ser-Ile-Leu-Asn.
  • VIP is a widely distributed peptide hormone which mediates a variety of physiological responses including gastrointestinal secretion, relaxation of gastrointestinal vascular and respiratory smooth muscle, lipolysis in adipocytes, pituitary hormone secretion, and excitation and hyperthermia after injection into the central nervous system. Under physiologic conditions VIP acts as a neuroendocrine mediator. Some recent findings suggest that VIP also regulates growth and proliferation of normal as well as malignant cells (Hultgardh, Nilsson A., Nilsson, J., Jonzon, B. et al. Growth - inhibitory properties of vasoactive intestinal polypeptide. Regul.Pept . 22, 267-274. 1988).
  • VIP-R specific receptors located on the surface membrane of various cells
  • VIP may exert stimulating and trophic effects on neoplastic cells from neuroblastoma, breast, lung and colon cancer (e.g. Moody et al., Proc. Natl. Acad. Sci. USA , 90, 4345, 1993), inducing its own receptors by feedback mechanisms.
  • VIP produced dose-dependent stimulation of mitosis (Wollman et al., Brain Res ., 624, 339, 1993).
  • VIP and biologically functional analogues and derivatives thereof are shown to have vascular smooth muscle relaxant activity (Marunto, K., Absood, A., and Said, S. I. VIP inhibits basal and histamine - stimulated proliferation of human airway smooth muscle cells. Am.J.Physiol .
  • VIP receptor has been detected on airway epithelium of the trachea and the bronchioles. It is also expressed in macrophages surrounding capillaries, in connective tissue of trachea and bronchi, in alveolar walls, and in the subintima of pulmonary veins and pulmonary arteries.
  • Pepidergic nerve fibers are considered the source of VIP in the lungs (e.g.: Dey, R. D., Shannon-W A, Jr, and Said, S. I. Localization of VIP - immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell and Tissue Research 220, 231-238. 1981; Said, S. I. Vasoactive intestinal polypeptide ( VIP ) in asthma. Ann.N.Y.Acad.Sci . 629, 305-318. 1991). VIP decreases the resistance in the pulmonary vascular system (e.g.: Hamasaki, Y., Mojarad, M., and Said, S. I.
  • PACAP is a neuropeptide isolated from the ovine hypothalamus consisting of the following 38 amino acid residues containing sequence (from N- to C-terminal): (SEQ ID No. 2) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg- Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala- Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys- Asn-Lys.
  • PACAP-38 Two forms of the peptide have been identified: PACAP-38 and the C-terminally truncated PACAP-27.
  • PACAP-27 that shares 68 percent homology with VIP has the following sequence (from N- to C-terminal): (SEQ ID No. 3) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg- Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala- Ala-Val-Leu
  • PACAP is very potent in stimulating adenylate cyclase and thus increasing adenosine 3,5-cyclic monophosphate (cAMP) in various cells.
  • the compound functions as a hypothalamic hormone, neurotransmitter, neuromodulator, vasodilator, and neurotrophic factor.
  • the major regulatory role of PACAP in pituitary cells appears to be the regulation of gene expression of pituitary hormones and/or regulatory proteins that control growth and differentiation of the pituitary glandular cells. These effects appear to be exhibited directly and indirectly through a paracrine or autocrine action.
  • PACAP plays an important role in the endocrine system as a potent secretagogue for adrenaline from the adrenal medulla.
  • PACAP acts as a neurotransmitter or a neuromodulator. More important, PACAP is a neurotrophic factor that may play a significant role during the development of the brain. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damage resulting from various insults.
  • PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, and respiratory and urogenital tracts.
  • Two types of PACAP binding sites have been characterized. Type I binding sites exhibit a high affinity for PACAP (and a much lower affinity for VIP), whereas type II binding sites have similar affinity for PACAP and VIP.
  • Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes. These are the PACAP-specific PAC1 receptor, which is coupled to several transduction systems, and the two PACAP/VIP-indifferent VPAC1 and VPAC2 receptors, which are primarily coupled to adenylyl cyclase.
  • PAC1 receptors are particularly abundant in the brain and pituitary and adrenal glands whereas VPAC receptors are expressed mainly in the lung, liver, and testes.
  • the vascular tone is regulated by a complex network of vasoactive effector substances produced either locally in the endothelium, in vascular smooth muscle cells (VSMC), in extrinsic and intrinsic nerves, and by the vascular blood flow itself.
  • VSMC vascular smooth muscle cells
  • neuropeptides from the peripheral nervous system also appear to play an important role in the regulation of vascular tone.
  • One of the most important pathways for the regulation of vascular tone is the production of nitric oxide by the endothelial nitric oxide synthetase (ecnos, NOS III).
  • peptides or polypeptides comprising the highly conservative decapeptide sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu show highly efficacy when administered to patients suffering from hypertension symptoms and disorders.
  • Compounds comprising this sequence and having totally 10-60, preferably 10-38, more preferably 10-28 or 10-23 amino acid residues have very similar or identical biological function as VIP or PACAP which also comprise said highly conservative sequence.
  • VIP, PACUP and also its truncated forms, for example PACAP-27 are also highly active compounds for the prophylaxis and treatment of PPH, SPH, and hypertension of the systemic circulation by inhibition and/or regulation of cellular processes underlying the said diseases in humans.
  • VIP- and PACAP-like peptides and polypeptides can show the above-described therapeutic function and efficacy which have the following amino acid sequence:
  • A, B is any natural occurring amino acid residue, A and B are independently from each other; and n, m is an integer having values from 0-25; n and m being independently from each other.
  • the value of m is preferably 4-18, more preferably 5-15, and most preferably 10-15.
  • Polypeptides or peptides wherein (A) n (if n>2) comprises the tripeptide sequences His-Ser-Asp and/or Phe-Thr-Asp in N-terminal direction near by (1-10 amino acid residues) above-specified decapeptide sequence have an enhanced activity.
  • (A) n (if n>2) has the meaning of (X) 0 -Phe-Thr-Asp-(Y) p and
  • (X) o (if o>2) has the meaning of (X′) q -His-Ser-Asp-(X′′) r
  • X, Y, X′, X′′ is any natural occurring amino acid residue; and o, p, is an integer having values from 0-11, and r, q is an integer having values from 0-4, show especially improved efficacy .
  • Preferred values of o and p are 0-8, more preferably 1-5.
  • Preferred values of r are 0-2.
  • Preferred examples falling under the generic formula are His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg- Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn- Ser-Ile-Leu-Asn (VIP); His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg- Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala- Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys- Asn-Lys (PACAP-38) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Thr-Arg
  • A, B is any natural occurring amino acid residue, A and B are independently from each other; and n, m is an integer having values from 0-25, n and m being independently from each other, provided that VIP, PACAP and PACAP-27 (truncated PACAP) is excluded.
  • Preferred examples of these novel polypeptides are: (i) Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (ii) Phe-Thr-Asp-X 1 -X 2 -X 3 -X 4 -X 5 -Arg-Lys-Gln-Met- Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn (iii) Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu- Asn; (iv) Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala-Val-Ly
  • X 1 -X 22 is any naturally occurring amino acid residue.
  • a use and a method for treatment of a disease or a disorder correlated directly or indirectly with hypertension symptoms in human lung and/or arterial tissue comprising administering to a patient a compound having the biological activity of vasoactive intestinal peptide (VIP) or pituitary adenylate cyclase-activating polypeptide (PACAP); preferably these compounds are peptides or polypeptides comprising the highly conservative sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu, more preferably, they comprise additionally the sequences His-Ser-Asp and/or Phe-Thr-Asp.
  • VIP vasoactive intestinal peptide
  • PACAP pituitary adenylate cyclase-activating polypeptide
  • a use and a method for reducing the vessel tone of human pulmonary arterial rings comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP.
  • a use and a method for reducing the intracellular free calcium concentration in human vascular smooth muscle cells comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP.
  • a use and a method for reducing the proliferation of vascular smooth muscle cells (VSMC) of human pulmonary arterial vessels comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP.
  • VSMC vascular smooth muscle cells
  • PPH primary pulmonary hypertension
  • COPD chronic obstructive pulmonary disease
  • SPH secondary pulmonary hypertension
  • a use and method, wherein said disease is arteriolar hypertension.
  • a use and a method, wherein said disease is heart failure associated with PPH.
  • Suitable compounds which have the therapeutic effect according to the invention are compounds which have the same, but also reduced or enhanced, biological activity of VIP or PACAP.
  • Preferred compounds according to the invention have the same or an enhanced biological activity. All compounds falling under this group comprise the sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu.
  • the invention includes also derivatives of the disclosed peptides and polypeptides having the same biological activity.
  • allelic biological activity means the biological, physiological or therapeutic activity or functionality compared with the relevant properties of said peptides and polypeptides, preferably VIP or PACAP.
  • the term “derivative” means a peptide compound which derives more or less direct from the corresponding peptide, such as VIP or PACKUP as such, and is altered by some additions, deletions, mutations or modifications without altering the biological properties of the parent peptide.
  • Suitable VIP derivatives are, for example, disclosed in WO 8905857, WO 9106565, EP 0663406 and WO 9729126 (Fmoc protected VIP).
  • the term includes also conjugates of peptides and polypeptides according to the invention which consist of the parent peptide or polypeptide coupled to lipophilic entities, such as liposomes.
  • liposome products are, for example, disclosed in WO 9527496 or WO 9735561, and have improved properties with respect to bioavailability and proteolytic degradation. Furthermore, the term includes also fragments, slightly modified fragments including truncated forms.
  • analogue means a compound which may have a different structure and composition compared with the polypeptides and peptides according to the invention, preferably VIP, however without having altered biological properties.
  • VIP analogues may be natural or synthetic peptides but also non-peptides.
  • VIP analogues according to the invention are peptides. Examples for known VIP analogues are disclosed in EP 0325044 (cyclic peptides), EP 0225020 (linear peptides), EP 0536741 (cyclic VIP modifications), EP 0405242, EP 0184309 and EP 0613904.
  • the term includes also VIP or PACAP homologues, which are not VIP or PACAP but show great structural similarity to VIP.
  • VIP homologue is PACAP itself and its truncated form PACAP-27.
  • the term also includes such homologues which could form, like VIP, amphipathic helices.
  • Preferred VIP/PACAP homologues are peptides that comprise one or more consensus sequences. Examples are peptide histidine isoleucine (PHI), peptide histidine methionine (PHM), human growth hormone releasing factor (GRF), pituitary adenylate cyclase activating peptide (PACAP), secretin and glucagon.
  • stabilized form means a derivative or analogue wherein the parent peptide was altered in order get more stability and increased half-life in blood and serum. Such stabilized forms are preferred if the polypeptide is fragmented by enzyme activity.
  • Possible stabilized forms are cyclic peptides or polypeptides like cyclic VIP or Vyclic PACAP, fusion proteins, preferably Fc-fusion proteins or pegylated polypeptides, for example pegylated VIP or PACAP. Methods for manufacturing such polypeptides are well known in the art. Polypeptides and proteins may be protected against proteolysis by the attachment of chemical moieties. Such attachment may effectively block the proteolytic enzyme from physical contact with the protein backbone itself, and thus prevent degradation.
  • Polyethylene glycol is one such chemical moiety which has been shown to protect against proteolysis (Sada, et al., J. Fermentation Bioengineering 71: 137-139, 1991). In addition to protection against proteolytic cleavage, chemical modification of biologically active proteins has been found to provide additional advantages under certain circumstances, such as increasing the stability and circulation time of the therapeutic protein and decreasing immmunogenicity. (U.S. Pat. No. 4,179,337; Abuchowski et al., Enzymes as Drugs.; J. S. Holcerberg and J. Roberts, eds. pp. 367-383, 1981; Francis, Focus on Growth Factors 3: 4-10; EP 0 401 384).
  • the addition of polyethylene glycol increases stability of the peptides and polypeptides of this invention at physiological pH as compared to non-pegylated compounds. The pegylated polypeptide/protein is also stabilized with regard to salts.
  • fusion protein means a compound, especially a stabilized form, consisting of a polypeptide according to the invention, preferably VIP or a VIP derivative or analogue, such as PACAP, which is fused to another peptide or protein.
  • a protein is preferably an immunglobulin molecule, more preferably a fragment thereof, most preferably a Fc portion of an IgG molecule, preferably an IgG1.
  • a Fc-VIP fusion protein is described in WO 200024278 and shows an improved half-life in serum and blood.
  • a further example is Fc-PACAP and FC-PACAP-27.
  • the compound according to the invention can be used as medicament or as diagnostic means to evaluate pathological conditions in an individual.
  • the term “individual” preferably refers to mammals, especially humans.
  • the compound is used in a pharmaceutical composition and formulations, comprising, as a rule, a pharmaceutically acceptable carrier, excipient or diluents. Techniques for the formulation and administration of the compounds of the present invention may be found in “Remington's Pharmaceutical Sciences” Mack Publishing Co., Easton Pa.
  • the term “pharmaceutically acceptable carrier” means an inert, non toxic solid or liquid filler, diluent or encapsulating material, not reacting adversely with the active compound or with the patient, or any other formulation such as tablets, pills, dragees, capsules, gels, syrups, slurries, suspensions and the like.
  • Suitable, preferably liquid carriers are well known in the art such as sterile water, saline, aqueous dextrose, sugar solutions, ethanol, glycols and oils, including those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil and mineral oil.
  • formulations according to the invention may be administered as unit doses containing conventional non-toxic pharmaceutically acceptable carriers, diluents, adjuvants and vehicles which are typical for parenteral administration.
  • parenteral includes herein subcutaneous, intravenous, intra-articular and intratracheal injection and infusion techniques. Parenteral compositions and combinations are most preferably administered intravenously either in a bolus form or as a constant fusion according to known procedures.
  • Tablets and capsules for oral administration contain conventional excipients such as binding agents, fillers, diluents, tableting agents, lubricants, disintegrants, and wetting agents.
  • the tablets may be coated according to methods well known in the art.
  • the compound according to the invention is preferably brought in an aerosol form. Aerosols and techniques to make them are well known in the art. Aerosols applicable by inhalers containing a peptide or polypeptide of the invention, for example, VIP or PACAP are preferred if direct pulmonary symptoms have to be treated.
  • Unit doses according to the invention may contain daily required amounts of the compound according to the invention, or sub-multiples thereof to make up the desired dose.
  • the optimum therapeutically acceptable dosage and dose rate for a given patient depends on a variety of factors, such as the activity of the specific active material employed, the age, body weight, general health, sex, diet, time and route of administration, rate of clearance, enzyme activity, the object of the treatment, i. e., therapy or prophylaxis and the nature of the disease to be treated. Therefore, in compositions and combinations in a treated patient (in vivo) a pharmaceutical effective daily dose of the compound of this invention is between about 5 ng and 200 ⁇ g/kg body weight, preferably between 20 ng and 20 ⁇ g/kg body weight.
  • the compounds of the invention may be administered to a subject in need thereof, e.g. a human patient, by itself or in pharmaceutical compositions where they are mixed with suitable carriers or excepients at doses which are sufficient for at least the inhibition of the diseases' progression.
  • Therapeutically effective doses may be administered alone or as adjunctive therapy in combination with other pharmaceutically effective compounds, such as compounds with other vasodilator drugs, e.g. Epoprostenol, Iloprost, Uniprost; calcium channel-blocking agents, e.g. diltiazem; phosphodiesterase isoenzyme inhibitors, e.g. Sildenafil, immunosppressive drugs, e.g.
  • glucocorticosteroids e.g. prednisolone
  • antimicrobial agents e.g. antibiotics
  • inotropic and/or vasodilatory effective agents e.g. beta-adrenergic receptor blocking agents and angiotensin receptor antagonists or angiotensin converting enzyme-inhibitors, e.g. ramipril
  • lipid lowering and antiproliferative drugs e.g. atorvastatin
  • endothelin receptor antagonists e.g.
  • Bosentan Altrasentan, Sitaxsentan, Enrasentan, BMS 193884, Darusentan, TBC 3711, BSF 208075, BSF 302146, SPP 301, or other antiproliferative compounds, e.g. D-24851, Imatinib mesylate, guanyl hydrazone CNI-1493.
  • This invention also relates to the combination of the compounds described in the present invention with at least one of the above mentioned drugs.
  • FIG. 2 ( 2 a ):Immunohistochemical characterization of VIP protein (B) and VIP receptor (VIP-R1) (A) in lung tissue specimens of PPH patients (b) and control (a). Note the lack of VIP protein in PPH contrary to the immunostaining in normals (arrows). Reversely, VIP receptor expression is apparently upregulated in PPH compared controls.
  • FIG. 3 Transcription of VIP-R mRNA as evidenced from Northern blotting in VSMC prepared from the pulmonary arteries of PPH patients and controls.
  • FIG. 5 ( 5 a ): Dose-dependent amelioration of pulmonary hemodynamics by inhaled VIP of different doses in a patient with PPH (Y-axis: mean pulmonary arterial pressure (mPAP); ( 5 b ): Time dependant decrease of mean pulmonary arterial pressure (mPAP) of PPH in a patient after inhalation of VIP(100 ⁇ g in 3 ml NaCl 0.9%).
  • mPAP mean pulmonary arterial pressure
  • FIG. 6 Vasodilatory effect of VIP on human pulmonary arterial rings. Arteries of patients subjected to thorax surgery were surgically removed and tested in vitro under standardized procedures for their vascular tone. After an increase of vascular tone by addition of 80 mmol K + , the addition of VIP, at increasing concentrations, results in a continuous decrease of the vessel tone.
  • FIG. 7 The effect of VIP on systolic and diastolic blood pressure in a patient with essential hypertension after intravenous injection.
  • the patient received VIP at 20 ng/kg/b.w./min. Blood pressure was measured intraarterially.
  • Y-axis pressure (mmHg)
  • x-axis time (min).
  • FIG. 8 Nitric oxide synthetase (ecnos) expression in endothelial cells prepared from pulmonary arteries of control subjects after 96 hours of incubation. Cells were incubated with VIP (10 ⁇ 7 M) under normoxic ( ⁇ ) and hypoxic (+) conditions for various times. Western blots reveal constitutive expression under normoxic conditions without VIP. Under hypoxic conditions in the absence of VIP the expression of ecnos is completely downregulated. In contrary, the addition of VIP leads to increased expression of ecnos above constitutional level both under normoxic and hypoxic condition.
  • VIP Nitric oxide synthetase
  • FIG. 9 The effect of VIP on the interleukin1-b induced elevation of intracellular free calcium concentration in VSMC prepared from pulmonary arteries.
  • Ordinate-Ca2+ (nmol). 1-basal concentration; 2-interleukin1-b; 3-interleukin1-b plus VIP 250 ng/ml and 4-VIP 500 ng/ml intracellular calcium concentration during incubation with VIP; Ca2+ was determined by fura-2 method.
  • FIG. 10 The effect of VIP on the proliferation of VSMC from pulmonary arterial vessel. Ordinate-proliferation as percent of control. 1-without VIP; 2-10 ⁇ 12 M VIP; 3-10 ⁇ 11 M VIP; 4-10 ⁇ 10 M VIP; 5-10 ⁇ 9 M VIP.
  • FIG. 1 The serum concentration of VIP shows profound differences between PPH-patients, other patients or healthy controls (FIG. 1). Immunohistochemical analysis of the expression of VIP-R reveals the intimate connection between its expression and the state of the disease (FIGS. 2 a and 2 b ). While VIP-R mRNA accumulation is easily detectable PPH, only low levels of VIP-R mRNA accumulation can be detected in healthy controls (FIG. 3). Analogously an increased receptor binding activity for VIP is seen in primary cultures of pulmonary artery vascular smooth muscle cells (PaVSMC) prepared from pulmonary resistance vessels of PPH patients compared to healthy subjects (FIGS. 4 a and 4 b ). FIG.
  • PaVSMC pulmonary artery vascular smooth muscle cells
  • FIG. 8 shows the effect of VIP on the expression of ecnos (NOS III) in human endothelial cells of pulmonary arteries under normoxic and hypoxic conditions, a situation by which ecnos is usually decreased.
  • ecnos NOS III
  • nitric oxide induces vasodilatation by lowering the intracellular free calcium concentration of PaVSMC.
  • the molecular mechanism of VIP action apparently involves a decrease of the intracellular free calcium concentration in VSMC, as illustrated in FIG. 9.
  • VIP inhibits the proliferation of PaVSMC (FIG. 10).
  • the vasodilatory effect of VIP on arterial rings of human pulmonary arteries is shown in FIG. 6.
  • a patient with severe PPH was under therapy with diltiazem, furosemid and an anticoagulant.
  • Right heart catheterisation (Swan-Ganz, Baxter, Irvine, Calif., USA) was performed to measure mean pulmonary artery pressure (mpap), cardiac output (CO), mean arterial pressure (MAP), pulmonary capillary wedge pressure (PCWP) mixed venous oxygen saturation (SvO 2 %) and systemic arterial oxygen pressure (PaO 2 %).
  • mpap mean pulmonary artery pressure
  • CO cardiac output
  • MAP mean arterial pressure
  • PCWP pulmonary capillary wedge pressure
  • SvO 2 mixed venous oxygen saturation
  • PaO 2 systemic arterial oxygen pressure
  • VIP 100 ⁇ g in 3 ml NaCl 0.9%) was inhaled for 15 minutes via the MicroDrop Master Jet (MPV, Truma, Germany) using a particle size of 3 ⁇ m to provide alveolar deposition of the substance.
  • MPV MicroDrop Master Jet
  • a patient with severe PPH was under therapy with diltiazem, furosemid and an anticoagulant.
  • Right heart catheterisation (Swan-Ganz, Baxter, Irvine, Calif., USA) was performed to measure mean pulmonary artery pressure (mpap), cardiac output (CO), mean arterial pressure (mAP), pulmonary capillary wedge pressure (PCWP) mixed venous oxygen saturation (SvO 2 %) and systemic arterial oxygen pressure (PaO 2 %).
  • PACAP 100 ⁇ g in 3 ml NaCl 0.9%) was inhaled for 15 minutes via the MicroDrop Master Jet (MPV, Truma, Germany) using a particle size of 3 ⁇ m to provide alveolar deposition of the substance.
  • Pulmonary hemodynamics and gas exchange were measured before and 15 minutes after inhalation of PACAP.
  • Right heart catheterisation was performed in the intensive care unit.
  • the patient was monitored on-line electrocardiographically, invasive blood pressure and systemic arterial oxygen saturation (SaO 2 %) (Hewlett Packard, Böblingen, Germany) were measured. All hemodynamic and oxygen measurements were performed with a cardiac output computer (Explorer, Baxter) and a pressure monitoring kit (Baxter, Irvine, Calif., USA). Calculations were made according to the standard equations in a patient data management system (CareVue 9000, Hewlett Packard, Böblingen, Germany).
  • FIG. 5 b Blood gas analysis was performed by taking blood from the radial and pulmonary artery (Automatic blood gas system, AVL-995-Hb, Austria). Hemodynamic parameters of the PPH patient before and after the acute testing with PACAP are summarized in FIG. 5 b .
  • mPAP was 65 mmHg, CI 3.2 l ⁇ min ⁇ , PVR 13 woods, PCWP 10 mmHg, PaO 2 91% and SvO 2 59%.
  • Addition of 100 ⁇ g inhaled PACAP improved pulmonary hemodynamic parameters; mpap decreased to 45 mmHg and PVR to 8 woods. PaO 2 increased to 93% and SvO 2 to 62% compared to baseline.
  • a patient suffering from Chronic Obstructive Pulmonary Disease (COPD) with secondary pulmonary hypertension (SPH) (mPAP 32 mmHg) was tested for his response to inhaled VIP (200 ⁇ g in 3 ml NaCl 0.9%) The inhalation of VIP led to a decrease of mPAP from 32 mmHg to 25 mmHg. This effect was paralleled by increase of cardiac output from 4.1 l ⁇ min ⁇ to 4.8 l ⁇ min ⁇ 1 .
  • a patient with severe essential arteriolar hypertension is under treatment with nifedipine and enalapril.
  • Systolic and diastolic systemic arterial pressure were measured by intraarterial monitoring.
  • VIP (20 ng/kg/min) was injected i.v. via a portable pump system (CADD-1, Pharmacia-Upjohn, Vienna, Austria).
  • the blood pressure lowering effect of VIP is demonstrated in FIG. 7.
  • the systolic pressure (SAP) was 165 mmHg and the diastolic (DAP) was 110 mmHg.
  • the application of VIP resulted in a considerable fall of blood pressure, systolic to 145 mmHg and diastolic to 90 mmHg.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Pulmonology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to peptides which are highly biologically and pharmacologically active as therapeutic drug for the treatment of diseases related to hypertension, especially in medical interventions involving dilatation and remodelling of arterial blood vessels, either in the pulmonary or in the systemic circulation. The peptides which can be used according to the invention for the treatment of said diseases comprises at least one specific highly conservative amino acid residue sequence which seem to play an important role in connection with pulmonary and arteriolar hypertension events. It could be shown that the known naturally occurring peptides “vasoactive intestinal peptide (VIP)” and pituitary adenylate cyclaseactivating polypeptide (PACAP)”, having these specific sequences are potent drugs which can be successfully used for treatment of primary pulmonary hypertension (PPH), secondary pulmonary hypertension (SPH), and hypertension of the systemic circulation. Furthermore, the present invention discloses pharmaceutical compositions useful for treatment of PPH, SPH, and hypertension of the systemic circulation within said methods.

Description

  • The present invention relates to peptides which are highly biologically and pharmacologically active as therapeutic drug for the treatment of diseases related to hypertension, especially in medical interventions involving dilatation and remodeling of arterial blood vessels, either in the pulmonary or in the systemic circulation. The peptides which can be used according to the invention for the treatment of said diseases comprise at least one specific highly conservative amino acid residue sequence which seem to play an important role in connection with pulmonary and arteriolar hypertension events. It could be shown that especially the known naturally occurring peptides “vasoactive intestinal peptide (VIP)” and “pituitary adenylate cyclase-activating polypeptide (PACAP)”, having these specific sequences are potent drugs which can be successfully used for treatment of primary pulmonary hypertension (PPH), secondary pulmonary hypertension (SPH), and hypertension of the systemic circulation. Furthermore, the present invention discloses pharmaceutical compositions useful for treatment of PPH, SPH, and hypertension of the systemic circulation within said methods. [0001]
  • BACKGROUND OF THE INVENTION
  • Pulmonary Hypertension: [0002]
  • Primary pulmonary hypertension (PPH) is a fatal disease causing progressive right heart failure within three years after diagnosis. Recently, various pathophysiological changes associated with this disorder, including vasoconstriction, vascular remodelling (i.e. proliferation of both media and intima of the pulmonary resistance vessels), and in situ thrombosis have been characterized (e.g.: D'Alonzo, G. E., Barst, R. J., Ayres, S. M. et al. [0003] Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann.Intern.Med. 115, 343-349. 1-9-1991; Palevsky, H. I., Schloo, B. L., Pietra, G. G. et al. Primary pulmonary hypertension. Vascular structure, morphometry, and responsiveness to vasodilator agents. Circulation 80, 1207-1221. 1989; Rubin, L. J. Primary pulmonary hypertension. N.Engl.J.Med. 336, 111-117. 9-1-1997; Wagenvoort, C. A. and Wagenvoort, N. Primary pulmonary hypertension: a pathological study of the lung vessel in 156 clinically diagnosed cases. Circulation 42, 1163-1184. 1970; Wood, P. Pulmonary hypertension with special reference to the vasoconstrictive factor. Br.heart J. 20, 557-570. 1958). Impairment of vascular and endothelial homeostasis is evidenced from a reduced synthesis of prostacyclin (PGI2), increased thromboxane production, decreased formation of nitric oxide and increased synthesis of endothelin-1 (Giaid, A. and Saleh, D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N.Engl.J.Med 333, 214-221. 1995; Xue, C. and Johns, R. A. Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension [letter]. N.Engl.J.Med. 333, 1642-1644. 14-12-1995). The intracellular free calcium concentration of VSMC of pulmonary arteries in PPH has been reported to be elevated.
  • The therapy of pulmonary hypertension is unsatisfactory. Current therapy involves calcium cannel blockers and prostacyclins. Although the vasodilation in numerous tissues, heart and lung tissue included, there is no clinical evidence up to now that VIP or PACAP are effective in the treatment of pulmonary hypertension in humans. The invention describes for the first time the clinical relevance of VIP, PACAP and compounds having the biological activity of VIP or PACAP for the treatment of primary pulmonary hypertension (PPH), secondary pulmonary hypertension (SPH), and arteriolar hypertension associated with PPH. [0004]
  • Arterial Hypertension: [0005]
  • Comparable to the pulmonary circulation, endothelial cells of the systemic circulation release both relaxing and contracting factors that modulate vascular smooth muscle tone and also participate in the pathophysiology of essential hypertension. Endothelium-dependent vasodilation is regulated primarily by nitric oxide but also by an unidentified endothelium-derived hyperpolarizing factor and by prostacyclin. Endothelium-derived contracting factors include endothelin-I, vasoconscrictor prostanoids, angiotensin II and superoxide anions. Under physiological conditions, there is a balanced release of relaxing and contracting factors. The balance can be altered in cardiovascular diseases such as hypertension, atherosclerosis, diabetes and other conditions, thereby contributing to further progression of vascular and end-organ damage. In particular, endothelial dysfunction leading to decreased bioavailability of nitric oxide impairs endothelium-dependent vasodilation in patients with essential hypertension and may also be a determinant for the premature development of atherosclerosis. Different mechanisms of reduced nitric oxide activity have been shown both in hypertensive states and several cardiovascular diseases, and endothelial dysfunction is likely to occur prior to vascular dysfunction. [0006]
  • VIP and PACAP are synthesized in various components of the central nervous system, e.g. specific brain regions like hippocampus and cortex as well as in the pituitary gland and peripheral ganglia. VIP is furthermore secreted by immune cells and by some neoplastic cells (e.g. pancreatic cancer). [0007]
  • Vasoactive Intestinal Peptide (VIP): [0008]
  • VIP is a 28 amino acid peptide consisting of the following amino acid sequence (from N- to C-terminal): [0009]
    (SEQ ID No. 1)
    His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-
    Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-
    Ser-Ile-Leu-Asn.
  • Healthy individuals exhibit low concentration of VIP (<40 pg/ml serum). VIP is a widely distributed peptide hormone which mediates a variety of physiological responses including gastrointestinal secretion, relaxation of gastrointestinal vascular and respiratory smooth muscle, lipolysis in adipocytes, pituitary hormone secretion, and excitation and hyperthermia after injection into the central nervous system. Under physiologic conditions VIP acts as a neuroendocrine mediator. Some recent findings suggest that VIP also regulates growth and proliferation of normal as well as malignant cells (Hultgardh, Nilsson A., Nilsson, J., Jonzon, B. et al. [0010] Growth-inhibitory properties of vasoactive intestinal polypeptide. Regul.Pept. 22, 267-274. 1988). The biological effects are mediated via specific receptors (VIP-R) located on the surface membrane of various cells (Ishihara, T., Shigemoto, R., Mori, K. et al. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8, 811-819. 1992).VIP may exert stimulating and trophic effects on neoplastic cells from neuroblastoma, breast, lung and colon cancer (e.g. Moody et al., Proc. Natl. Acad. Sci. USA, 90, 4345, 1993), inducing its own receptors by feedback mechanisms. In some cases VIP produced dose-dependent stimulation of mitosis (Wollman et al., Brain Res., 624, 339, 1993). VIP and biologically functional analogues and derivatives thereof are shown to have vascular smooth muscle relaxant activity (Marunto, K., Absood, A., and Said, S. I. VIP inhibits basal and histamine-stimulated proliferation of human airway smooth muscle cells. Am.J.Physiol. 268, L1047-L1051, 1995), hair growth activity, apoptosis activity enhanced sustained bronchodilation activity without remarkable cardiovascular side effects, and are effective against disorders or diseases relating to bronchial spasms including asthma, some cases of hypertension, impotence, ischaemia, dry eye and mental disorders, such as Alzheimer's disease (see e.g. WO 9106565, EP 0536741, U.S. Pat. No. 3,880,826, EP 0204447, EP 0405242, WO 9527496, EP 0463450, EP 0613904, EP 0663406, WO 9735561, EP 0620008).
  • VIP receptor has been detected on airway epithelium of the trachea and the bronchioles. It is also expressed in macrophages surrounding capillaries, in connective tissue of trachea and bronchi, in alveolar walls, and in the subintima of pulmonary veins and pulmonary arteries. [0011]
  • Pepidergic nerve fibers are considered the source of VIP in the lungs (e.g.: Dey, R. D., Shannon-W A, Jr, and Said, S. I. [0012] Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs, cat, and human subjects. Cell and Tissue Research 220, 231-238. 1981; Said, S. I. Vasoactive intestinal polypeptide (VIP) in asthma. Ann.N.Y.Acad.Sci. 629, 305-318. 1991). VIP decreases the resistance in the pulmonary vascular system (e.g.: Hamasaki, Y., Mojarad, M., and Said, S. I. Relaxant action of VIP on cat pulmonary artery: comparison with acetylcholine, isoproterenol, and PGE1. J.Appl.Physiol. 54, 1607-1611. 1983; Iwabuchi, S., Onto, S., Tanita, T. et al. Vasoactive intestinal peptide causes nitric oxide-dependent pulmonary vasodilation in isolated rat lung. Respiration 64, 54-58. 1997; Saga, T. and Said, S. I. Vasoactive intestinal peptide relaxes isolated strips of human bronchus, pulmonary artery, and lung parenchyma. Trans.Assoc.Am.Physicians. 97, 304-310. 1984). Further studies show a high rate of VIP-R expression in the lung which is reflected in a high uptake of radiolabeled VIP in the lung of PPH patients who were injected 99mTc-VIP (e.g.: Raderer, M., Kurtaran, A., Hejna, M. et al. 123I-labelled vasoactive intestinal peptide receptor scintigraphy in patients with colorectal cancer. Br.J.Cancer 78, 1-5. 1998; Raderer, M., Kurtaran, A., Yang, Q. et al. Iodine-123-vasoactive intestinal peptide receptor scanning in patients with pancreatic cancer. J.Nucl.Med. 39, 1570-1575. 1998; Raderer, M., Kurtaran, A., Leimer, M. et al. Value of peptide receptor scintigraphy using (123)I-vasoactive intestinal peptide and (111)In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. J.Clin.Oncol. 18, 1331-1336. 2000; Virgolini, I., Kurtaran, A., Raderer, M. et al. Vasoactive intestinal peptide receptor scintigraphy. J.Nucl. Med. 36, 1732-1739. 1995).
  • Pituitary Adenylate Cyclase-activating Polypeptide (PACAP): [0013]
  • PACAP is a neuropeptide isolated from the ovine hypothalamus consisting of the following 38 amino acid residues containing sequence (from N- to C-terminal): [0014]
    (SEQ ID No. 2)
    His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-
    Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-
    Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-
    Asn-Lys.
  • Two forms of the peptide have been identified: PACAP-38 and the C-terminally truncated PACAP-27. PACAP-27 that shares 68 percent homology with VIP has the following sequence (from N- to C-terminal): [0015]
    (SEQ ID No. 3)
    His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-
    Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-
    Ala-Val-Leu
  • PACAP is very potent in stimulating adenylate cyclase and thus increasing [0016] adenosine 3,5-cyclic monophosphate (cAMP) in various cells. The compound functions as a hypothalamic hormone, neurotransmitter, neuromodulator, vasodilator, and neurotrophic factor. The major regulatory role of PACAP in pituitary cells appears to be the regulation of gene expression of pituitary hormones and/or regulatory proteins that control growth and differentiation of the pituitary glandular cells. These effects appear to be exhibited directly and indirectly through a paracrine or autocrine action. PACAP plays an important role in the endocrine system as a potent secretagogue for adrenaline from the adrenal medulla. The compound also stimulates the release of insulin. The stage-specific expression of PACAP in testicular germ cells during spermatogenesis suggests its regulatory role in the maturation of germ cells. In the ovary, PACAP is transiently expressed in the granulosa cells of the preovulatory follicles and appears to be involved in the LH-induced cellular events in the ovary, including prevention of follicular apoptosis. In the central nervous system, PACAP acts as a neurotransmitter or a neuromodulator. More important, PACAP is a neurotrophic factor that may play a significant role during the development of the brain. In the adult brain, PACAP appears to function as a neuroprotective factor that attenuates the neuronal damage resulting from various insults. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, and respiratory and urogenital tracts. Two types of PACAP binding sites have been characterized. Type I binding sites exhibit a high affinity for PACAP (and a much lower affinity for VIP), whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes. These are the PACAP-specific PAC1 receptor, which is coupled to several transduction systems, and the two PACAP/VIP-indifferent VPAC1 and VPAC2 receptors, which are primarily coupled to adenylyl cyclase. PAC1 receptors are particularly abundant in the brain and pituitary and adrenal glands whereas VPAC receptors are expressed mainly in the lung, liver, and testes.
  • Vascular Tone: [0017]
  • The vascular tone is regulated by a complex network of vasoactive effector substances produced either locally in the endothelium, in vascular smooth muscle cells (VSMC), in extrinsic and intrinsic nerves, and by the vascular blood flow itself. In addition to sympatic and parasympatic nervous pathways, neuropeptides from the peripheral nervous system also appear to play an important role in the regulation of vascular tone. One of the most important pathways for the regulation of vascular tone is the production of nitric oxide by the endothelial nitric oxide synthetase (ecnos, NOS III). [0018]
  • SUMMARY OF THE INVENTION
  • It is object of the present invention to provide novel use of known compounds as well as novel compounds, which are useful for the prevention and/or treatment of PPH, SPH, and hypertension of the systemic circulation and methods wherein said compounds are used. [0019]
  • Surprisingly it was found that peptides or polypeptides comprising the highly conservative decapeptide sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu show highly efficacy when administered to patients suffering from hypertension symptoms and disorders. Compounds comprising this sequence and having totally 10-60, preferably 10-38, more preferably 10-28 or 10-23 amino acid residues have very similar or identical biological function as VIP or PACAP which also comprise said highly conservative sequence. It is another result of the present invention that VIP, PACUP and also its truncated forms, for example PACAP-27, are also highly active compounds for the prophylaxis and treatment of PPH, SPH, and hypertension of the systemic circulation by inhibition and/or regulation of cellular processes underlying the said diseases in humans. [0020]
  • Generally, it was found that VIP- and PACAP-like peptides and polypeptides can show the above-described therapeutic function and efficacy which have the following amino acid sequence: [0021]
  • (A)[0022] n-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-(B)m
  • wherein A, B is any natural occurring amino acid residue, A and B are independently from each other; and n, m is an integer having values from 0-25; n and m being independently from each other. The value of m is preferably 4-18, more preferably 5-15, and most preferably 10-15. [0023]
  • Polypeptides or peptides, wherein (A)[0024] n (if n>2) comprises the tripeptide sequences His-Ser-Asp and/or Phe-Thr-Asp in N-terminal direction near by (1-10 amino acid residues) above-specified decapeptide sequence have an enhanced activity.
  • Thus polypeptides, wherein [0025]
  • (A)[0026] n (if n>2) has the meaning of (X)0-Phe-Thr-Asp-(Y)p and
  • (X)[0027] o (if o>2) has the meaning of (X′)q-His-Ser-Asp-(X″)r
  • wherein X, Y, X′, X″ is any natural occurring amino acid residue; and o, p, is an integer having values from 0-11, and r, q is an integer having values from 0-4, show especially improved efficacy . Preferred values of o and p are 0-8, more preferably 1-5. Preferred values of r are 0-2. [0028]
  • Preferred examples falling under the generic formula are [0029]
    His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-
    Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-
    Ser-Ile-Leu-Asn (VIP);
    His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-
    Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-
    Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-
    Asn-Lys (PACAP-38)
    His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-
    Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-
    Ala-Val-Leu (PACAP-27);
  • This invention discloses also novel compounds falling under the above-specified formula: [0030]
  • (A)[0031] n-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-(B)m
  • wherein A, B is any natural occurring amino acid residue, A and B are independently from each other; and n, m is an integer having values from 0-25, n and m being independently from each other, provided that VIP, PACAP and PACAP-27 (truncated PACAP) is excluded. [0032]
  • Preferred examples of these novel polypeptides are: [0033]
    (i) Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu;
    (ii) Phe-Thr-Asp-X1-X2-X3-X4-X5-Arg-Lys-Gln-Met-
    Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn
    (iii) Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-
    Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-
    Asn;
    (iv) Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln-
    Met-Ala-Val-Lys-Lys-Tyr-Leu;
    (v) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6-
    X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu;
    (vi) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-
    Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-
    Leu,
    (vi) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-
    Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-
    Leu
    (vii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6-
    X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-
    X8-X9-X10-X11(-X12);
    (viii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6-
    X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-
    X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-X18-
    X19-X20-X21-X22;
  • wherein X[0034] 1-X22 is any naturally occurring amino acid residue.
  • To sum up, it is an object of this invention to provide the following topics: [0035]
  • A use and a method for treatment of a disease or a disorder correlated directly or indirectly with hypertension symptoms in human lung and/or arterial tissue comprising administering to a patient a compound having the biological activity of vasoactive intestinal peptide (VIP) or pituitary adenylate cyclase-activating polypeptide (PACAP); preferably these compounds are peptides or polypeptides comprising the highly conservative sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu, more preferably, they comprise additionally the sequences His-Ser-Asp and/or Phe-Thr-Asp. [0036]
  • A use and a method for reducing the vessel tone of human pulmonary arterial rings comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP. [0037]
  • A use and a method for reducing the intracellular free calcium concentration in human vascular smooth muscle cells (VSMC) comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP. [0038]
  • A use and a method for reducing the proliferation of vascular smooth muscle cells (VSMC) of human pulmonary arterial vessels comprising administering to a patient a compound having the biological function of above-specified peptides or polypeptides, preferably VIP, PACKAP and truncated PACKUP. [0039]
  • A use and a method as defined above, wherein the disease is primary pulmonary hypertension (PPH). [0040]
  • A use and a method as defined above, wherein said disease is chronic obstructive pulmonary disease (COPD). [0041]
  • A use and a method as defined above, wherein the disease is secondary pulmonary hypertension (SPH). [0042]
  • A use and method, wherein said disease is arteriolar hypertension. [0043]
  • A use and method, wherein said arteriolar hypertension is associated with PPH. [0044]
  • A use and a method, wherein said disease is heart failure associated with PPH. [0045]
  • A corresponding use and method, wherein the pulmonary arterial pressure is reduced to more than 10%, preferably more than 20%, most preferably between 10 and 30%, after administration of said peptides and/or polypeptides. [0046]
  • A corresponding use and a method, wherein the diastolic blood pressure is reduced to 5-25%, preferably to 10-20%, and the systolic blood pressure is reduced to 10-30%, preferably to 10-25%, after administration of said compounds. [0047]
  • DETAILED DESCRIPTION
  • Suitable compounds which have the therapeutic effect according to the invention, are compounds which have the same, but also reduced or enhanced, biological activity of VIP or PACAP. Preferred compounds according to the invention have the same or an enhanced biological activity. All compounds falling under this group comprise the sequence Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu. [0048]
  • The invention includes also derivatives of the disclosed peptides and polypeptides having the same biological activity. [0049]
  • The term “same biological activity” means the biological, physiological or therapeutic activity or functionality compared with the relevant properties of said peptides and polypeptides, preferably VIP or PACAP. [0050]
  • The term “derivative” means a peptide compound which derives more or less direct from the corresponding peptide, such as VIP or PACKUP as such, and is altered by some additions, deletions, mutations or modifications without altering the biological properties of the parent peptide. Suitable VIP derivatives are, for example, disclosed in WO 8905857, WO 9106565, EP 0663406 and WO 9729126 (Fmoc protected VIP). The term includes also conjugates of peptides and polypeptides according to the invention which consist of the parent peptide or polypeptide coupled to lipophilic entities, such as liposomes. VIP—liposome products are, for example, disclosed in WO 9527496 or WO 9735561, and have improved properties with respect to bioavailability and proteolytic degradation. Furthermore, the term includes also fragments, slightly modified fragments including truncated forms. [0051]
  • The term “analogue” means a compound which may have a different structure and composition compared with the polypeptides and peptides according to the invention, preferably VIP, however without having altered biological properties. VIP analogues may be natural or synthetic peptides but also non-peptides. Preferably, VIP analogues according to the invention are peptides. Examples for known VIP analogues are disclosed in EP 0325044 (cyclic peptides), EP 0225020 (linear peptides), EP 0536741 (cyclic VIP modifications), EP 0405242, EP 0184309 and EP 0613904. The term includes also VIP or PACAP homologues, which are not VIP or PACAP but show great structural similarity to VIP. Such a VIP homologue according to the invention is PACAP itself and its truncated form PACAP-27. The term also includes such homologues which could form, like VIP, amphipathic helices. Preferred VIP/PACAP homologues are peptides that comprise one or more consensus sequences. Examples are peptide histidine isoleucine (PHI), peptide histidine methionine (PHM), human growth hormone releasing factor (GRF), pituitary adenylate cyclase activating peptide (PACAP), secretin and glucagon. [0052]
  • The term “stabilized form” means a derivative or analogue wherein the parent peptide was altered in order get more stability and increased half-life in blood and serum. Such stabilized forms are preferred if the polypeptide is fragmented by enzyme activity. Possible stabilized forms are cyclic peptides or polypeptides like cyclic VIP or Vyclic PACAP, fusion proteins, preferably Fc-fusion proteins or pegylated polypeptides, for example pegylated VIP or PACAP. Methods for manufacturing such polypeptides are well known in the art. Polypeptides and proteins may be protected against proteolysis by the attachment of chemical moieties. Such attachment may effectively block the proteolytic enzyme from physical contact with the protein backbone itself, and thus prevent degradation. Polyethylene glycol is one such chemical moiety which has been shown to protect against proteolysis (Sada, et al., J. Fermentation Bioengineering 71: 137-139, 1991). In addition to protection against proteolytic cleavage, chemical modification of biologically active proteins has been found to provide additional advantages under certain circumstances, such as increasing the stability and circulation time of the therapeutic protein and decreasing immmunogenicity. (U.S. Pat. No. 4,179,337; Abuchowski et al., Enzymes as Drugs.; J. S. Holcerberg and J. Roberts, eds. pp. 367-383, 1981; Francis, [0053] Focus on Growth Factors 3: 4-10; EP 0 401 384). The addition of polyethylene glycol increases stability of the peptides and polypeptides of this invention at physiological pH as compared to non-pegylated compounds. The pegylated polypeptide/protein is also stabilized with regard to salts.
  • The term “fusion protein” means a compound, especially a stabilized form, consisting of a polypeptide according to the invention, preferably VIP or a VIP derivative or analogue, such as PACAP, which is fused to another peptide or protein. Such a protein is preferably an immunglobulin molecule, more preferably a fragment thereof, most preferably a Fc portion of an IgG molecule, preferably an IgG1. A Fc-VIP fusion protein is described in WO 200024278 and shows an improved half-life in serum and blood. A further example is Fc-PACAP and FC-PACAP-27. [0054]
  • The compound according to the invention can be used as medicament or as diagnostic means to evaluate pathological conditions in an individual. [0055]
  • The term “individual” preferably refers to mammals, especially humans. The compound is used in a pharmaceutical composition and formulations, comprising, as a rule, a pharmaceutically acceptable carrier, excipient or diluents. Techniques for the formulation and administration of the compounds of the present invention may be found in “Remington's Pharmaceutical Sciences” Mack Publishing Co., Easton Pa. [0056]
  • As used herein, the term “pharmaceutically acceptable carrier” means an inert, non toxic solid or liquid filler, diluent or encapsulating material, not reacting adversely with the active compound or with the patient, or any other formulation such as tablets, pills, dragees, capsules, gels, syrups, slurries, suspensions and the like. Suitable, preferably liquid carriers are well known in the art such as sterile water, saline, aqueous dextrose, sugar solutions, ethanol, glycols and oils, including those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil and mineral oil. [0057]
  • The formulations according to the invention may be administered as unit doses containing conventional non-toxic pharmaceutically acceptable carriers, diluents, adjuvants and vehicles which are typical for parenteral administration. [0058]
  • The term “parenteral” includes herein subcutaneous, intravenous, intra-articular and intratracheal injection and infusion techniques. Parenteral compositions and combinations are most preferably administered intravenously either in a bolus form or as a constant fusion according to known procedures. [0059]
  • Also other administrations such as oral administration or administration by inhalation or nasal spray are suitable. [0060]
  • Tablets and capsules for oral administration contain conventional excipients such as binding agents, fillers, diluents, tableting agents, lubricants, disintegrants, and wetting agents. The tablets may be coated according to methods well known in the art. [0061]
  • For inhalations the compound according to the invention is preferably brought in an aerosol form. Aerosols and techniques to make them are well known in the art. Aerosols applicable by inhalers containing a peptide or polypeptide of the invention, for example, VIP or PACAP are preferred if direct pulmonary symptoms have to be treated. [0062]
  • Unit doses according to the invention may contain daily required amounts of the compound according to the invention, or sub-multiples thereof to make up the desired dose. The optimum therapeutically acceptable dosage and dose rate for a given patient (mammals, including humans) depends on a variety of factors, such as the activity of the specific active material employed, the age, body weight, general health, sex, diet, time and route of administration, rate of clearance, enzyme activity, the object of the treatment, i. e., therapy or prophylaxis and the nature of the disease to be treated. Therefore, in compositions and combinations in a treated patient (in vivo) a pharmaceutical effective daily dose of the compound of this invention is between about 5 ng and 200 μg/kg body weight, preferably between 20 ng and 20 μg/kg body weight. [0063]
  • Combination Therapy [0064]
  • The compounds of the invention may be administered to a subject in need thereof, e.g. a human patient, by itself or in pharmaceutical compositions where they are mixed with suitable carriers or excepients at doses which are sufficient for at least the inhibition of the diseases' progression. Therapeutically effective doses may be administered alone or as adjunctive therapy in combination with other pharmaceutically effective compounds, such as compounds with other vasodilator drugs, e.g. Epoprostenol, Iloprost, Uniprost; calcium channel-blocking agents, e.g. diltiazem; phosphodiesterase isoenzyme inhibitors, e.g. Sildenafil, immunosppressive drugs, e.g. glucocorticosteroids, e.g. prednisolone, antimicrobial agents, e.g. antibiotics, inotropic and/or vasodilatory effective agents, e.g. beta-adrenergic receptor blocking agents and angiotensin receptor antagonists or angiotensin converting enzyme-inhibitors, e.g. ramipril, lipid lowering and antiproliferative drugs, e.g. atorvastatin, endothelin receptor antagonists, e.g. Bosentan, Altrasentan, Sitaxsentan, Enrasentan, BMS 193884, Darusentan, TBC 3711, BSF 208075, BSF 302146, SPP 301, or other antiproliferative compounds, e.g. D-24851, Imatinib mesylate, guanyl hydrazone CNI-1493. This invention also relates to the combination of the compounds described in the present invention with at least one of the above mentioned drugs. [0065]
  • It is likely that the therapy with the compounds of the invention, alone or in combination with the above mentioned substances, may lower existing but undesired drug effects in a subject in need of those drugs. [0066]
  • Surprisingly, it was found that the peptides and polypeptides as defined above and in the claims, above all VIP and PACAP, have beneficial effects in the treatment of pulmonary and systemic hypertension as demonstrated in the following examples. These data show a dramatic improvement for the treatment of as yet not sufficiently treatable diseases. It is a benefit of this invention that all tested polypetides comprising the highly conservative decapeptide sequence as depicted in above are efficacious.[0067]
  • SHORT DESCRIPTION OF THE FIGURES
  • FIG. 1: VIP serum concentration of different patients as detected by radioimmunoassay. Column (a): healthy subjects (n=3), column (b): PPH (n=3). [0068]
  • FIG. 2: ([0069] 2 a):Immunohistochemical characterization of VIP protein (B) and VIP receptor (VIP-R1) (A) in lung tissue specimens of PPH patients (b) and control (a). Note the lack of VIP protein in PPH contrary to the immunostaining in normals (arrows). Reversely, VIP receptor expression is apparently upregulated in PPH compared controls. (2 b): VIP positive fibers per vessel (y-axis) in VIP-reactive fibers (A) and VIP-R on PVSMC (B). Controls(a), PPH patients (b).
  • FIG. 3: Transcription of VIP-R mRNA as evidenced from Northern blotting in VSMC prepared from the pulmonary arteries of PPH patients and controls. [0070]
  • FIG. 4: Binding of 99mTc-VIP to isolated VSMC prepared from pulmonary arteries of PPH patients ([0071] 4 b) and control patients (4 a). Note the increased specific binding (Bmax=0.9 pm per mg protein) and binding affinity in PPH (Kd=1,6 pM), vs. Bmax=0.6 pm per mg protein, Kd=42 pM of control.
  • FIG. 5: ([0072] 5 a): Dose-dependent amelioration of pulmonary hemodynamics by inhaled VIP of different doses in a patient with PPH (Y-axis: mean pulmonary arterial pressure (mPAP); (5 b): Time dependant decrease of mean pulmonary arterial pressure (mPAP) of PPH in a patient after inhalation of VIP(100 μg in 3 ml NaCl 0.9%).
  • FIG. 6: Vasodilatory effect of VIP on human pulmonary arterial rings. Arteries of patients subjected to thorax surgery were surgically removed and tested in vitro under standardized procedures for their vascular tone. After an increase of vascular tone by addition of 80 mmol K[0073] +, the addition of VIP, at increasing concentrations, results in a continuous decrease of the vessel tone.
  • FIG. 7: The effect of VIP on systolic and diastolic blood pressure in a patient with essential hypertension after intravenous injection. The patient received VIP at 20 ng/kg/b.w./min. Blood pressure was measured intraarterially. Y-axis: pressure (mmHg), x-axis: time (min). [0074]
  • FIG. 8: Nitric oxide synthetase (ecnos) expression in endothelial cells prepared from pulmonary arteries of control subjects after 96 hours of incubation. Cells were incubated with VIP (10[0075] −7 M) under normoxic (−) and hypoxic (+) conditions for various times. Western blots reveal constitutive expression under normoxic conditions without VIP. Under hypoxic conditions in the absence of VIP the expression of ecnos is completely downregulated. In contrary, the addition of VIP leads to increased expression of ecnos above constitutional level both under normoxic and hypoxic condition.
  • FIG. 9: The effect of VIP on the interleukin1-b induced elevation of intracellular free calcium concentration in VSMC prepared from pulmonary arteries. Ordinate-Ca2+ (nmol). 1-basal concentration; 2-interleukin1-b; 3-interleukin1-b plus VIP 250 ng/ml and 4-VIP 500 ng/ml intracellular calcium concentration during incubation with VIP; Ca2+ was determined by fura-2 method. [0076]
  • FIG. 10: The effect of VIP on the proliferation of VSMC from pulmonary arterial vessel. Ordinate-proliferation as percent of control. 1-without VIP; 2-10[0077] −12M VIP; 3-10−11M VIP; 4-10−10M VIP; 5-10−9M VIP.
  • IN VITRO EXPERIMENTAL DATA SUPPORTING CLINICAL FINDINGS
  • The serum concentration of VIP shows profound differences between PPH-patients, other patients or healthy controls (FIG. 1). Immunohistochemical analysis of the expression of VIP-R reveals the intimate connection between its expression and the state of the disease (FIGS. 2[0078] a and 2 b). While VIP-R mRNA accumulation is easily detectable PPH, only low levels of VIP-R mRNA accumulation can be detected in healthy controls (FIG. 3). Analogously an increased receptor binding activity for VIP is seen in primary cultures of pulmonary artery vascular smooth muscle cells (PaVSMC) prepared from pulmonary resistance vessels of PPH patients compared to healthy subjects (FIGS. 4a and 4 b). FIG. 8 shows the effect of VIP on the expression of ecnos (NOS III) in human endothelial cells of pulmonary arteries under normoxic and hypoxic conditions, a situation by which ecnos is usually decreased. Pharmacologically, nitric oxide induces vasodilatation by lowering the intracellular free calcium concentration of PaVSMC. Analogously, the molecular mechanism of VIP action apparently involves a decrease of the intracellular free calcium concentration in VSMC, as illustrated in FIG. 9. Moreover, VIP inhibits the proliferation of PaVSMC (FIG. 10). The vasodilatory effect of VIP on arterial rings of human pulmonary arteries is shown in FIG. 6.
  • EXAMPLE 1
  • A patient with severe PPH was under therapy with diltiazem, furosemid and an anticoagulant. Right heart catheterisation (Swan-Ganz, Baxter, Irvine, Calif., USA) was performed to measure mean pulmonary artery pressure (mpap), cardiac output (CO), mean arterial pressure (MAP), pulmonary capillary wedge pressure (PCWP) mixed venous oxygen saturation (SvO[0079] 2%) and systemic arterial oxygen pressure (PaO2%). VIP (100 μg in 3 ml NaCl 0.9%) was inhaled for 15 minutes via the MicroDrop Master Jet (MPV, Truma, Germany) using a particle size of 3 μm to provide alveolar deposition of the substance. Alternatively VIP was injected i.v. 20 (ng/kg.b.w./min) via portable pump system (CADD-1, Pharmacia-Upjohn, Vienna, Austria). Pulmonary homodynamic and gas exchange were measured before and 15 minutes after inhalation or i.v. injection of VIP. Right heart catheterisation was performed in the intensive care unit. The patient was monitored on-line electrocardiographically, invasive blood pressure and systemic arterial oxygen saturation (SaO2%) (Hewlett Packard, Böblingen, Germany) were measured. All hemodynamic and oxygen measurements were performed with a cardiac output computer (Explorer, Baxter) and a pressure monitoring kit (Baxter, Irvine, Calif., USA). Calculations were made according to the standard equations in a patient data management system (CareVue 9000, Hewlett Packard, Böblingen, Germany). Blood gas analysis was performed by taking blood from the radial and pulmonary artery (Automatic blood gas system, AVL-995-Hb, Austria). Hemodynamic parameters of the PPH patient before and after the acute testing with VIP are summarized in FIGS. 5 and 6, respectively. At baseline (before inhalation of VIP), mPAP was 63 mmHg, CI 3.6 l·min−1, PVR 12 woods, PCWP 9 mmHg, PaO2 91% and SvO2 61%. Addition of 100 μg inhaled VIP improved pulmonary hemodynamic parameters; mPAP decreased to 49 mmHg and PVR to 9 woods. PaO2 to 93% and SvO2 to 63% compared to baseline.
  • EXAMPLE 2
  • Increased doses of inhaled VIP in a patient suffering from PPH dose-dependently decrease mean pulmonary artery pressure (MPAP) showing maximum efficacy at a dose of 100 μg. [0080]
  • EXAMPLE 3
  • 100 μg of inhaled PACAP time-dependently decrease mean pulmonary artery pressure (mPAP) in a patient with PPH. [0081]
  • EXAMPLE 4
  • A patient with severe PPH was under therapy with diltiazem, furosemid and an anticoagulant. Right heart catheterisation (Swan-Ganz, Baxter, Irvine, Calif., USA) was performed to measure mean pulmonary artery pressure (mpap), cardiac output (CO), mean arterial pressure (mAP), pulmonary capillary wedge pressure (PCWP) mixed venous oxygen saturation (SvO[0082] 2%) and systemic arterial oxygen pressure (PaO2%). PACAP (100 μg in 3 ml NaCl 0.9%) was inhaled for 15 minutes via the MicroDrop Master Jet (MPV, Truma, Germany) using a particle size of 3 μm to provide alveolar deposition of the substance. Pulmonary hemodynamics and gas exchange were measured before and 15 minutes after inhalation of PACAP. Right heart catheterisation was performed in the intensive care unit. The patient was monitored on-line electrocardiographically, invasive blood pressure and systemic arterial oxygen saturation (SaO2%) (Hewlett Packard, Böblingen, Germany) were measured. All hemodynamic and oxygen measurements were performed with a cardiac output computer (Explorer, Baxter) and a pressure monitoring kit (Baxter, Irvine, Calif., USA). Calculations were made according to the standard equations in a patient data management system (CareVue 9000, Hewlett Packard, Böblingen, Germany). Blood gas analysis was performed by taking blood from the radial and pulmonary artery (Automatic blood gas system, AVL-995-Hb, Austria). Hemodynamic parameters of the PPH patient before and after the acute testing with PACAP are summarized in FIG. 5b. At baseline (before inhalation of PACAP), mPAP was 65 mmHg, CI 3.2 l·min, PVR 13 woods, PCWP 10 mmHg, PaO2 91% and SvO2 59%. Addition of 100 μg inhaled PACAP improved pulmonary hemodynamic parameters; mpap decreased to 45 mmHg and PVR to 8 woods. PaO2 increased to 93% and SvO2 to 62% compared to baseline.
    TABLE 1
    mPAP CI PVR PCWP mAP SvO2 PaO2
    before 57.1 2.7 906.4 8.6 84.5 60.0 66.8 mean
    9.3 1.1 438.9 3.1 10.9 7.9 7.6 SD
    after 44.4 3.2 544.1 8.5 81.0 62.5 69.3 mean
    11.8 1.1 213.1 2.6 6.3 7.0 11.5 SD
  • EXAMPLE 5
  • A patient suffering from Chronic Obstructive Pulmonary Disease (COPD) with secondary pulmonary hypertension (SPH) (mPAP 32 mmHg) was tested for his response to inhaled VIP (200 μg in 3 ml NaCl 0.9%) The inhalation of VIP led to a decrease of mPAP from 32 mmHg to 25 mmHg. This effect was paralleled by increase of cardiac output from 4.1 l·min[0083] to 4.8 l·min−1.
  • EXAMPLE 6
  • A patient with severe essential arteriolar hypertension is under treatment with nifedipine and enalapril. Systolic and diastolic systemic arterial pressure (SAP) were measured by intraarterial monitoring. VIP (20 ng/kg/min) was injected i.v. via a portable pump system (CADD-1, Pharmacia-Upjohn, Vienna, Austria). The blood pressure lowering effect of VIP is demonstrated in FIG. 7. Before injection of VIP, the systolic pressure (SAP) was 165 mmHg and the diastolic (DAP) was 110 mmHg. The application of VIP resulted in a considerable fall of blood pressure, systolic to 145 mmHg and diastolic to 90 mmHg. [0084]
  • 1 14 1 28 PRT Homo sapiens 1 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn 20 25 2 38 PRT Homo sapiens 2 His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu Gly Lys Arg Tyr Lys 20 25 30 Gln Arg Val Lys Asn Lys 35 3 27 PRT Homo sapiens 3 His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu 20 25 4 10 PRT Homo sapiens 4 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu 1 5 10 5 23 PRT Homo sapiens MISC_FEATURE (4)..(8) X is any naturally occuring amino acid residue 5 Phe Thr Asp Xaa Xaa Xaa Xaa Xaa Arg Lys Gln Met Ala Val Lys Lys 1 5 10 15 Tyr Leu Asn Ser Ile Leu Asn 20 6 23 PRT Homo sapiens 6 Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln Met Ala Val Lys Lys 1 5 10 15 Tyr Leu Asn Ser Ile Leu Asn 20 7 18 PRT Homo sapiens 7 Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln Met Ala Val Lys Lys 1 5 10 15 Tyr Leu 8 23 PRT Homo sapiens MISC_FEATURE (4)..(5) X is any naturally occuring amino acid residue 8 His Ser Asp Xaa Xaa Phe Thr Asp Xaa Xaa Xaa Xaa Xaa Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu 20 9 23 PRT Homo sapiens 9 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu 20 10 23 PRT Homo sapiens 10 His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu 20 11 28 PRT Homo sapiens MISC_FEATURE (4)..(5) X is any naturally occuring amino acid residue 11 His Ser Asp Xaa Xaa Phe Thr Asp Xaa Xaa Xaa Xaa Xaa Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu Xaa Xaa Xaa Xaa Xaa 20 25 12 38 PRT Homo sapiens MISC_FEATURE (4)..(5) X is any naturally occuring amino acid residue 12 His Ser Asp Xaa Xaa Phe Thr Asp Xaa Xaa Xaa Xaa Xaa Arg Lys Gln 1 5 10 15 Met Ala Val Lys Lys Tyr Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 30 Xaa Xaa Xaa Xaa Xaa Xaa 35 13 3 PRT Homo sapiens 13 Phe Thr Asp 1 14 3 PRT Homo sapiens 14 His Ser Asp 1

Claims (45)

1. A use of a compound for the manufacture of a medicament for the treatment of a patient suffering from a disease or a disorder correlated directly or indirectly with hypertension symptoms in human lung and/or heart tissue, wherein said compound is a peptide or a polypeptide comprising the following amino acid sequence:
Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu.
2. A use according to claim 1, wherein said peptide or a polypeptide further comprises at least one of the following amino acid sequences:
His-Ser-Asp; Phe-Thr-Asp.
3. A use according to claim 1, wherein said peptide or a polypeptide further comprises the amino acid sequences His-Ser-Asp and Phe-Thr-Asp.
4. A use according to claim 1, wherein said peptide or a polypeptide has the following amino acid sequence:
(A)n-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-(B)m
wherein
A, B is any natural occurring amino acid residue, A and B are independently from each other; and n, m is an integer having values from 0-25; n and m being independently from each other.
5. A use according to claim 4, wherein, if n>2, (A)n has the following sequence:
(X)o-Phe-Thr-Asp-(Y)p
wherein
X, Y is any natural occurring amino acid residue, X and Y are independently from each other; and o, p is an integer having values from 0-11, o and p being independently from each other.
6. A use according to claim 5, wherein, if o>2 (X)0 has the following sequence:
(X′)q-His-Ser-Asp-(X″)r
wherein X′, X″ is any natural occurring amino acid residue, X′ and X″ are independently from each other; and r, q is an integer having values from 0-4, r and q being independently from each other.
7. A use according to claim 4, wherein the sequence of said peptide or polypeptide is selected from the following group:
(i) Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (ii) Phe-Thr-Asp-X1-X2-X3-X4-X5-Arg-Lys-Gln-Met- Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn (iii) Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu- Asn; (iv) Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu; (v) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (vi) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr- Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu, (vi) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser- Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu; (vii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11(-X12); (viii) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr- Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu-Asn-Ser-Ile-Leu-Asn (VIP); (ix) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser- Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu-Ala-Ala-Val-Leu (PACAP-27); (x) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-X18- X19-X20-X21-X22; (xi) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser- Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu-Ala-Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln- Arg-Val-Lys-Asn-Lys (PACAP-38);
wherein X1-X22 is any naturally occurring amino acid residue.
8. A use according to any of the claims 1-7, wherein any of said peptides or polypeptides is an analogue or derivative having the same biological function.
9. A use according to claim 8, wherein any of said peptides or polypeptides is an a stabilized form.
10. A use according to any of the claims 1-9, wherein said disease or disorder is caused by an increased vessel tone of human pulmonary arterial rings.
11. A use according to any of the claims 1-9, wherein said disease or disorder is caused by an increased intracellular free calcium concentration in human vascular smooth muscle cells (VSMC).
12. A use according to any of the claims 1-9, wherein said disease or disorder is caused by an increased proliferation of human vascular smooth muscle cells (VSMC) of human pulmonary arterial vessels.
13. A use according to any of the claims 1-12, wherein said disease is primary pulmonary hypertension (PPH).
14. A use according to any of the claims 1-12, wherein said disease is chronic obstructive pulmonary disease (COPD).
15. A use according to claim 14, wherein said is chronic obstructive pulmonary disease is secondary pulmonary hypertension (SPH).
16. A use according any of the claims 1-9, wherein said disease is arteriolar hypertension.
17. A use according to claim 16, wherein said arteriolar hypertension is associated with PPH.
18. A use according to any of the claim 1-9, wherein said disease is heart failure associated with PPH.
19. A use according to claim 13, wherein the pulmonary arterial pressure is reduced to more than 20% after administration of any of said peptides or polypeptides.
20. A use according to claim 16 or 17, wherein the diastolic pressure is reduced to 5-25% and the systolic blood pressure is reduced to 10-30% after administration of any of said peptides or polypeptides.
21. A use according to claim 1 wherein said peptide or polypeptide has the biological function of, or is functionally similar to VIP or PACAP, or any biologically active derivative, truncated form, analogue or fusion protein thereof.
22. A peptide or a polypeptide having the following sequence
(A)n- Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-(B)m
wherein
A, B is any natural occurring amino acid residue, A and B are independently from each other; and
n, m is an integer having values from 0-25, n and m are independently from each other,
provided that VIP, PACAP and PACAP-27 (truncated PACAP) is excluded.
23. A peptide or a polypeptide according to claim 22, wherein, if n>2, (A)n has the following sequence:
(X)o-Phe-Thr-Asp-(Y)p
wherein
X, Y is any natural occurring amino acid residue, X and Y are independently from
each other; and
o, p is an integer having values from 0-11, o and p are independently from each other.
24. A peptide or a polypeptide according to claim 23, wherein, if o>2 (X)o has the following sequence:
(X′)q-His-Ser-Asp- (X″)r
wherein
X′, X″ is any natural occurring amino acid residue, X′ and X″ are independently from each other; and
r, q is an integer having values from 0-4, r and q are independently from each other.
25. A peptide or a polypeptide according to claim 22, wherein the sequence of said peptide or polypeptide is selected from the following group:
(i) Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (ii) Phe-Thr-Asp-X1-X2-X3-X4-X5-Arg-Lys-Gln-Met- Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn (iii) Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu- Asn; (iv) Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu; (v) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (vi) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr- Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu, (vi) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser- Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu; (vii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11(-X12); (viii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-X18- X19-X20-X21-X22;
wherein X1-X22 is any naturally occurring amino acid residue.
26. A pharmaceutical composition comprising a peptide or polypeptide as specified in any of the claims 22-25 together with pharmaceutically acceptable carrier diluent or excipient.
27. A method for treatment of a disease or a disorder correlated directly or indirectly with hypertension symptoms in human lung and/or heart tissue comprising administering to a patient a peptide or a polypeptide comprising the following amino acid sequence:
Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu.
28. A method according to claim 27, wherein said peptide or a polypeptide further comprises at least one of the following amino acid sequences:
His-Ser-Asp; Phe-Thr-Asp.
29. A method according to claim 27, wherein said peptide or a polypeptide has the following amino acid sequence:
(A)n-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-(B)m
wherein
A, B is any natural occurring amino acid residue, A and B are independently from each other; and
n, m is an integer having values from 0-25, n and m are independently from each other.
30. A method according to claim 29, wherein, if n>2, (A)n has the following sequence:
(X)o-Phe-Thr-Asp-(Y)p
wherein X, Y is any natural occurring amino acid residue, X and Y are independently from each other; and o, p is an integer having values from 0-11, o and p are independently from each other.
31. A method according to claim 30, wherein, if o>2, (X)o has the following sequence:
(X′)q-His-Ser-Asp-(X″)r
wherein X′, X″ is any natural occurring amino acid residue, X′ and X″ are independently from each other; and r, q is an integer having values from 0-4, r and q are independently from each other.
32. A method according to claim 29, wherein the sequence of said peptide or polypeptide is selected from the following group:
(i) Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (ii) Phe-Thr-Asp-X1-X2-X3-X4-X5-Arg-Lys-Gln-Met- Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn (iii) Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu- Asn; (iv) Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln- Met-Ala-Val-Lys-Lys-Tyr-Leu; (v) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu; (vi) His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr- Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu, (vi) His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser- Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr- Leu; (vii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11(-X12); (viii) His-Ser-Asp-X1-X2-Phe-Thr-Asp-X3-X4-X5-X6- X7-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu- X8-X9-X10-X11-X12-X13-X14-X15-X16-X17-X18- X19-X20-X21-X22;
wherein X1-X22 is any naturally occurring amino acid residue.
33. A method according to any of the claims 27-32, wherein any of said peptides or polypeptides is an analogue or derivative having the same biological function.
34. A method according to any of claim 33, wherein any of said peptides or polypeptides is an a stabilized form.
35. A method according to any of the claims 27-34 for reducing the vessel tone of human pulmonary arterial rings comprising administering to a patient said peptide or a polypeptide.
36. A method according to any of the claims 27-34 for reducing the intracellular free calcium concentration in human vascular smooth muscle cells (VSMC) comprising administering to a patient said peptide or a polypeptide.
37. A method according to any of the claims 27-34 for reducing the proliferation of vascular smooth muscle cells (VSMC) of human pulmonary arterial vessels comprising administering to a patient said peptide or a polypeptide.
38. A method of any of the claims 35-37, wherein the disease is primary pulmonary hypertension (PPH).
39. A method of any of the claims 35-37, wherein said disease is chronic obstructive pulmonary disease (COPD)
40. A method of claim 39, wherein said chronic obstructive pulmonary disease is secondary pulmonary hypertension (SPH).
41. A method of any of the claims 27-34, wherein said disease is arteriolar hypertension.
42. A method of claim 41, wherein said arteriolar hypertension is associated with PPH.
43. A method according to any of the claims 27-34, wherein said disease is heart failure associated with PPH.
44. A method according to any of the claims 38, wherein the pulmonary arterial pressure is reduced to more than 20% after administration of any of said peptides or polypeptides.
45. A method of claims 41 or 42, wherein the diastolic blood pressure is reduced to 5-25% and the systolic blood pressure is reduced to 10-30% after administration of any of said peptides or polypeptides.
US10/416,822 2000-11-28 2001-11-22 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension Abandoned US20040063631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/005,516 US8153599B1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
US12/005,479 US20080221041A1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00125935 2000-11-28
EP00125935.7 2000-11-28
PCT/EP2001/013590 WO2002043746A2 (en) 2000-11-28 2001-11-22 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/005,479 Continuation US20080221041A1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension

Publications (1)

Publication Number Publication Date
US20040063631A1 true US20040063631A1 (en) 2004-04-01

Family

ID=8170498

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/416,822 Abandoned US20040063631A1 (en) 2000-11-28 2001-11-22 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
US12/005,516 Expired - Lifetime US8153599B1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
US12/005,479 Abandoned US20080221041A1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/005,516 Expired - Lifetime US8153599B1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
US12/005,479 Abandoned US20080221041A1 (en) 2000-11-28 2007-12-27 Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension

Country Status (7)

Country Link
US (3) US20040063631A1 (en)
EP (2) EP1792915A3 (en)
JP (2) JP2004514697A (en)
CN (2) CN1487952A (en)
AU (4) AU2072002A (en)
CA (1) CA2428552A1 (en)
WO (1) WO2002043746A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100160358A1 (en) * 2005-09-12 2010-06-24 Christoph Schumacher Pyridylsulfonamidyl-Pyrimidines for the Prevention of Blood Vessel Graft Failure
US20110123487A1 (en) * 2005-12-20 2011-05-26 Ashutosh Chilkoti Therapeutic agents comprising elastic peptides
US20110152023A1 (en) * 2005-01-20 2011-06-23 Quintus James G Belt Tensioner
US20110178017A1 (en) * 2009-08-14 2011-07-21 Phasebio Pharmaceuticals, Inc. Modified vasoactive intestinal peptides
US20110185897A1 (en) * 2005-07-28 2011-08-04 Wright Allen B Removal of carbon dioxide from air
US8334257B2 (en) 2005-12-20 2012-12-18 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US9821036B2 (en) 2008-06-27 2017-11-21 Duke University Therapeutic agents comprising a GLP-2 peptide and elastin-like peptides
US10258700B2 (en) 2005-12-20 2019-04-16 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US10688156B2 (en) 2015-02-09 2020-06-23 Phasebio Pharmaceuticals, Inc. Methods and compositions for treating muscle disease and disorders
US10940182B2 (en) 2011-06-06 2021-03-09 Phasebio Pharmaceuticals, Inc. Use of modified vasoactive intestinal peptides in the treatment of hypertension
US11052132B2 (en) 2014-05-08 2021-07-06 Phasebio Pharmaceuticals, Inc. Methods and compositions for treating cystic fibrosis
CN114144195A (en) * 2019-05-07 2022-03-04 阿德维塔生命科学有限责任公司 Use of Vasoactive Intestinal Peptide (VIP) for the treatment of drug-induced pneumonia

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2391448A1 (en) 1999-11-12 2001-05-17 Leo Rubin Use of vasoactive intestinal peptides and kits therefor
EP1468021A2 (en) * 2002-01-26 2004-10-20 Mondobiotech Laboratories Anstalt Use of compounds having the biological activity of vasoactive intestinal peptide for the treatment of chronic obstructive pulmonary disease
US20060241028A1 (en) 2002-06-10 2006-10-26 Dorian Bevec Use of compounds having the biological activity of vasoactive intestinal peptide for the treatment of sarcoidosis
WO2004037261A1 (en) * 2002-10-25 2004-05-06 The Administrators Of The Tulane Educational Fund Use of n-‘5-‘4-(4-methylpiperaziomethyl)-benzoylamido!-2-methylphenyl!-4-(3-pyridyl)2-pyridine-amine for the treatment of pulmonary hypertension
US7468353B2 (en) 2003-07-14 2008-12-23 Mondobiotech Laboratories Anstalt Biologically active substance of a vasoactive intestinal peptide for treating interstitial lung diseases
WO2005014030A1 (en) * 2003-07-24 2005-02-17 Lutz-Henning Block Method for treating lung diseases associated with ventilation-perfusion mismatches
DK1768689T3 (en) * 2004-06-11 2014-12-01 Vectus Biosystems Ltd Compositions and methods for treating cardiovascular disease
WO2006121588A2 (en) * 2005-05-06 2006-11-16 Bayer Pharmaceuticals Corporation Pituitary adenylate cyclase activating peptide (pacap) receptor (vpac2) agonists and their pharmacological methods of use
CN103450345B (en) 2005-12-09 2016-04-20 伟克特斯生物系统有限公司 VIP fragment and methods for using them
EP2152741B1 (en) 2007-05-21 2011-09-21 Res International Sarl Peptides with improved properties having the biological activity of vasoactive intestinal peptide (vip) and their use for the treatment of lung diseases
US8729020B2 (en) * 2009-04-02 2014-05-20 Vectus Biosystems Pty Ltd Methods for the treatment of aortic fibrosis with VIP fragments
GB201209745D0 (en) 2012-05-31 2012-07-18 Convatec Technologies Inc Wound dressing
WO2018016596A1 (en) * 2016-07-20 2018-01-25 国立大学法人東北大学 Prophylactic or therapeutic agent for pulmonary hypertension which comprises pparα agonist
EP3737398A1 (en) * 2018-01-09 2020-11-18 Imagine Pharma, Llc Use of rps2 peptides for modulating endothelial cell dysfunction
CN110151973A (en) * 2019-04-25 2019-08-23 上海交通大学医学院附属瑞金医院 Application of a biologically active polypeptide PACAP

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898329A (en) * 1971-09-17 1975-08-05 Sami I Said Vasoactive intestinal peptide, composition and method
US4237046A (en) * 1979-04-27 1980-12-02 Miklos Bodanszky Polypeptides and methods of preparation
US5147855A (en) * 1988-07-08 1992-09-15 Yeda Research And Development Co. Ltd. Conjugates of vip and active fragments thereof with hydrophobic moieties and topical compositions for male impotence
US5688499A (en) * 1996-03-13 1997-11-18 Queen's University At Kingston Antagonism of endothelin actions
US6031002A (en) * 1998-05-01 2000-02-29 Michael Ebert Method for enhancing female sexual response and a composition therefor
US6630570B1 (en) * 1999-04-09 2003-10-07 Insitut für Diagnostikforschung GmbH Short-chain peptide-dye conjugates as contrast media for optical diagnosis

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880826A (en) 1971-09-17 1975-04-29 Sami I Said Vasoactive intestinal peptide
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
GB8427651D0 (en) 1984-11-01 1984-12-05 Beecham Group Plc Compounds
US4745100A (en) 1985-05-14 1988-05-17 Eye Research Institute Of Retina Foundation Stimulation of tear secretion
GB8525852D0 (en) 1985-10-19 1985-11-20 Beecham Group Plc Compounds
US4835252A (en) * 1987-02-26 1989-05-30 The Salk Institute Biotechnology/Industrial Associates, Inc. Vasoactive intestinal peptide analogs
GB8729802D0 (en) 1987-12-22 1988-02-03 Beecham Group Plc Novel compounds
SE8705139D0 (en) 1987-12-23 1987-12-23 Trion Forskning & Utveckling PROCEDURE FOR MANUFACTURING A LARGE NUMBER OF PEPTID ANALOGS AND NEW PEPTID ANALOGS
JP2989002B2 (en) 1988-12-22 1999-12-13 キリン―アムジエン・インコーポレーテツド Chemically modified granulocyte colony stimulating factor
US5141924A (en) 1989-06-30 1992-08-25 Hoffmann-La Roche, Inc. Synthetic vasoactive intestinal peptide analogs
JPH04193896A (en) 1989-10-26 1992-07-13 Meiji Seika Kaisha Ltd Active peptide
DE69101187T2 (en) 1990-06-26 1994-09-29 Sanwa Kagaku Kenkyusho Co VIP analogues and their use.
AU656230B2 (en) 1991-10-11 1995-01-27 F. Hoffmann-La Roche Ag Cyclic vasoactive peptides
JPH06220090A (en) 1993-01-22 1994-08-09 Sanwa Kagaku Kenkyusho Co Ltd Polypeptide
IL105061A (en) 1993-03-16 2000-11-21 Yeda Res & Dev Pharmaceutical compositions for the treatment of neurodegenerative diseases comprising VIP analogues and fragments thereof
JPH07173197A (en) 1993-12-20 1995-07-11 Sanwa Kagaku Kenkyusho Co Ltd Modified polypeptide compound and its use
JPH10502333A (en) 1994-04-07 1998-03-03 プロティーンニックス カンパニー Vasoactive Intestinal polypeptide
BR9707409A (en) 1996-02-09 1999-04-13 Waleed Danho Synthesis of vip analogue
EP0914094A4 (en) 1996-03-28 2000-03-01 Univ Illinois MATERIALS AND METHODS FOR THE PREPARATION OF IMPROVED LIPOSOME COMPOSITIONS
US6100071A (en) * 1996-05-07 2000-08-08 Genentech, Inc. Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production
PL345583A1 (en) * 1998-07-20 2001-12-17 Sod Conseils Rech Applic Peptide analogues of pacap
DE19917713A1 (en) 1999-04-09 2000-10-19 Diagnostikforschung Inst Short-chain peptide-dye conjugates as contrast agents for optical diagnostics
CA2391448A1 (en) * 1999-11-12 2001-05-17 Leo Rubin Use of vasoactive intestinal peptides and kits therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898329A (en) * 1971-09-17 1975-08-05 Sami I Said Vasoactive intestinal peptide, composition and method
US4237046A (en) * 1979-04-27 1980-12-02 Miklos Bodanszky Polypeptides and methods of preparation
US5147855A (en) * 1988-07-08 1992-09-15 Yeda Research And Development Co. Ltd. Conjugates of vip and active fragments thereof with hydrophobic moieties and topical compositions for male impotence
US5688499A (en) * 1996-03-13 1997-11-18 Queen's University At Kingston Antagonism of endothelin actions
US6031002A (en) * 1998-05-01 2000-02-29 Michael Ebert Method for enhancing female sexual response and a composition therefor
US6630570B1 (en) * 1999-04-09 2003-10-07 Insitut für Diagnostikforschung GmbH Short-chain peptide-dye conjugates as contrast media for optical diagnosis

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110152023A1 (en) * 2005-01-20 2011-06-23 Quintus James G Belt Tensioner
US20110185897A1 (en) * 2005-07-28 2011-08-04 Wright Allen B Removal of carbon dioxide from air
US20100160358A1 (en) * 2005-09-12 2010-06-24 Christoph Schumacher Pyridylsulfonamidyl-Pyrimidines for the Prevention of Blood Vessel Graft Failure
US9458218B2 (en) 2005-12-20 2016-10-04 Duke University Therapeutic agents comprising fusions of insulin and elastic peptides
US10258700B2 (en) 2005-12-20 2019-04-16 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US8334257B2 (en) 2005-12-20 2012-12-18 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US8729018B2 (en) 2005-12-20 2014-05-20 Duke University Therapeutic agents comprising elastic peptides
US8841255B2 (en) 2005-12-20 2014-09-23 Duke University Therapeutic agents comprising fusions of vasoactive intestinal peptide and elastic peptides
US9328154B2 (en) 2005-12-20 2016-05-03 Duke University Therapeutic agents comprising fusions of growth hormone and elastic peptides
US20110123487A1 (en) * 2005-12-20 2011-05-26 Ashutosh Chilkoti Therapeutic agents comprising elastic peptides
US11103558B2 (en) 2008-06-27 2021-08-31 Duke University Therapeutic agents comprising a BMP-9 peptide and eleastin-like peptides
US10596230B2 (en) 2008-06-27 2020-03-24 Duke University Methods of increasing nutrient absorption in the intestine using therapeutic agents comprising GLP-2 and elastin-like peptides
US9821036B2 (en) 2008-06-27 2017-11-21 Duke University Therapeutic agents comprising a GLP-2 peptide and elastin-like peptides
US9029505B2 (en) 2009-08-14 2015-05-12 Phasebio Pharmaceuticals, Inc. Modified vasoactive intestinal peptides
US20180008677A1 (en) * 2009-08-14 2018-01-11 Phasebio Pharmaceuticals, Inc. Modified vasoactive intestinal peptides
US9700598B2 (en) 2009-08-14 2017-07-11 Phasebio Pharmaceuticals, Inc. Modified vasoactive intestinal peptides
US20110178017A1 (en) * 2009-08-14 2011-07-21 Phasebio Pharmaceuticals, Inc. Modified vasoactive intestinal peptides
US10940182B2 (en) 2011-06-06 2021-03-09 Phasebio Pharmaceuticals, Inc. Use of modified vasoactive intestinal peptides in the treatment of hypertension
US11052132B2 (en) 2014-05-08 2021-07-06 Phasebio Pharmaceuticals, Inc. Methods and compositions for treating cystic fibrosis
US10688156B2 (en) 2015-02-09 2020-06-23 Phasebio Pharmaceuticals, Inc. Methods and compositions for treating muscle disease and disorders
US11266719B2 (en) 2015-02-09 2022-03-08 Phasebio Pharmaceuticals, Inc. Methods and compositions for treating muscle disease and disorders
CN114144195A (en) * 2019-05-07 2022-03-04 阿德维塔生命科学有限责任公司 Use of Vasoactive Intestinal Peptide (VIP) for the treatment of drug-induced pneumonia

Also Published As

Publication number Publication date
US8153599B1 (en) 2012-04-10
JP2007326873A (en) 2007-12-20
WO2002043746A2 (en) 2002-06-06
EP1337557A2 (en) 2003-08-27
JP2004514697A (en) 2004-05-20
AU2008207513A1 (en) 2008-09-18
AU2002220720B2 (en) 2006-09-14
US20080221041A1 (en) 2008-09-11
CN101229363A (en) 2008-07-30
AU2006203749A1 (en) 2006-09-14
WO2002043746A3 (en) 2002-08-08
AU2072002A (en) 2002-06-11
AU2006203749B2 (en) 2009-06-04
EP1792915A2 (en) 2007-06-06
CN1487952A (en) 2004-04-07
CA2428552A1 (en) 2002-06-06
EP1792915A3 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US8153599B1 (en) Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
AU2002220720A1 (en) Compounds with the biological activity of vasoactive intestinal peptide for the treatment of pulmonary and arteriolar hypertension
US7951778B2 (en) Use of compounds having the biological activity of vasoactive intestinal peptide for the treatment of sarcoidosis
JP2002523424A (en) New anti-diabetic peptide
WO1994022467A1 (en) Analogs of peptide yy and uses thereof
JP3588119B2 (en) Superactive VIP antagonist
US20050118109A1 (en) Method for treating lung diseases associated with ventilation-perfusion mismatches
US20070287665A1 (en) Urotensin-II agonists and antagonists
EP1053001B1 (en) Novel mixed amylin activity compounds
CA2472270A1 (en) Use of compounds having the biological activity of vasoactive intestinal peptide for the treatment of chronic obstructive pulmonary disease
US6936584B1 (en) Mixed amylin activity compounds
AU2003201287A1 (en) Use of compounds having the biological activity of vasoactive intestinal peptide for the treatment of chronic obstructive pulmonary disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONDOBIOTECH SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLOCK, LUTZ-HENNING;REEL/FRAME:014643/0417

Effective date: 20030625

AS Assignment

Owner name: MONDOBIOTECH LABORATORIES ANSTALT, LIECHTENSTEIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONDOBIOTECH S.A.;REEL/FRAME:017280/0050

Effective date: 20060202

AS Assignment

Owner name: MONDOBIOTECH LICENSING OUT AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MONDOBIOTECH LABORATORIES ANSTALT;REEL/FRAME:019634/0422

Effective date: 20061220

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载