US20040059474A1 - Apparatuses and methods for displaying autoflight information - Google Patents
Apparatuses and methods for displaying autoflight information Download PDFInfo
- Publication number
- US20040059474A1 US20040059474A1 US10/251,493 US25149302A US2004059474A1 US 20040059474 A1 US20040059474 A1 US 20040059474A1 US 25149302 A US25149302 A US 25149302A US 2004059474 A1 US2004059474 A1 US 2004059474A1
- Authority
- US
- United States
- Prior art keywords
- autoflight
- flight
- information related
- aircraft
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C23/00—Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
Definitions
- the following disclosure relates generally to aircraft autoflight systems and, more particularly, to apparatuses and methods for displaying autoflight information and controlling autoflight systems.
- Aircraft autoflight systems have evolved over the years from the traditional autopilots for basic flight path control to complex flight management systems capable of automatically flying aircraft over complicated routes without pilot intervention.
- Such flight management systems typically include an autopilot, an autothrottle, and a flight management computer (FMC) interfaced with the autopilot and autothrottle.
- Flight decks on aircraft utilizing such systems generally include a number of controls and displays allowing pilots to monitor the flight management system and change autoflight parameters if desired.
- these controls and displays have been positioned in different locations around the flight deck. Over time, these locations have become somewhat standardized within the transport aircraft industry.
- FIG. 1 illustrates a flight deck 100 of an aircraft having a flight management system in accordance with the prior art.
- the flight deck 100 includes a first pilot seat 102 and a second pilot seat 104 separated by a control pedestal 110 .
- First and second forward windows 108 and 109 are positioned forward of the first and second pilot seats 102 and 104 and provide a forward field of view for first and second pilots (not shown) seated in the first and second pilot seats 102 and 104 .
- a plurality of flight instruments 106 are positioned on a forward instrument panel 111 and the control pedestal 110 for access by the first and second pilots seated in the first and second pilot seats 102 and 104 .
- a glare shield 105 is positioned below the first and second forward windows 108 and 109 to reduce glare on the flight instruments 106 .
- the flight instruments 106 can include a number of conventional autoflight controls and displays, such as a first control display unit (CDU) 116 positioned on the control pedestal 110 adjacent to the first pilot seat 102 , and a second CDU 117 positioned on the control pedestal 110 adjacent to the second pilot seat 104 .
- the first and second CDU's 116 and 117 allow the pilots to make data entries into a flight management computer (FMC) for controlling the flight management system.
- FMC flight management computer
- These entries can include flight plan information such as strategic navigation and flight profile parameters.
- the flight instruments 106 can also include a first primary flight display (PFD) 114 positioned on the forward instrument panel 111 in front of the first pilot seat 102 , and a second PFD 115 positioned on the forward instrument panel 111 in front of the second pilot seat 104 .
- the first and second PFD's 114 and 115 display actual flight parameters of the aircraft, such as airspeed, altitude, attitude and heading.
- the first and second PFD's 114 and 115 can also display conventional flight mode annunciators (FMA's).
- FMA's are textual shorthand codes indicating the current modes of the autothrottle and autopilot.
- the flight deck 100 can further include a mode control panel (MCP) 112 incorporated into the glare shield 105 .
- the MCP 112 provides control input devices for the FMC, autothrottle, autopilot, flight director, and altitude alert systems.
- FIG. 2 is an enlarged view of portions of the flight deck 100 of FIG. 1 including the MCP 112 , the first PFD 114 , and the first CDU 116 that illustrates a shortcoming of the prior art flight deck 100 .
- the current autoflight guidance instructions are to climb to a cruise altitude of FL210 at an economy airspeed with an intermediate altitude constraint of FL190 at navigation waypoint “MARZY.”
- the pilot typically first looks at the first PFD 114 on the forward instrument panel 111 to determine an autoflight mode 209 and target airspeed 211 .
- the autoflight mode 209 of “VNAV SPD” indicates the aircraft is climbing “speed-on-elevator.”
- the target airspeed 211 of “320” indicates the aircraft is climbing at a target airspeed of 320 Kts.
- the pilot then typically looks at the MCP 112 on the glare shield 105 to determine an altitude 207 .
- the altitude 207 indicates the final cleared altitude is 21,000 ft. (i.e., FL210).
- the pilot typically looks at the first CDU 116 on the control pedestal 110 to see if there is any intermediate altitude constraint 213 or additional airspeed information 218 .
- the intermediate altitude constraint 213 indicates a constraint at FL190 at navigation waypoint MARZY.
- the additional airspeed information 218 indicates that 320 Kts represents an “economy” airspeed with a transition to Mach 0.98 if the climb were sustained.
- the configuration of the prior art flight deck 100 encourages the pilot to look in three different locations to determine the current autoflight guidance instructions.
- a flight deck for an aircraft having an autoflight system includes at least one pilot seat, at least one window positioned forward of the pilot seat, and at least one instrument panel positioned forward of the pilot seat.
- the forward window provides a forward field of view out of the aircraft for a pilot seated in the pilot seat.
- the flight deck further includes a display device configured to provide information related to one or more autoflight modes. The display device can be positioned at least approximately between the forward instrument panel and the forward window to provide the pilot with autoflight information at least proximate to the forward field of view.
- the display device can be configured to provide information related to one or more target flight parameters.
- the flight deck includes a glare shield positioned adjacent to the lower portion of the forward window to reduce glare on one or more flight instruments positioned on the forward instrument panel.
- the flight deck further includes a display device configured to provide information related to one or more autoflight modes. The display device can be positioned at least proximate to the glare shield to provide the pilot with autoflight information at least proximate to the forward field of view.
- a method for manufacturing a flight deck for an aircraft having an autoflight system includes situating at least one pilot seat on the flight deck, installing at least one window forward of the pilot seat to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat, and placing an instrument panel forward of the pilot seat.
- the method further includes providing a display device configured to provide information related to one or more autoflight modes, and positioning the display device at least approximately between the forward instrument panel and the forward window.
- providing the display device can include configuring the display device to include information related to one or more target flight parameters, and positioning the display device can include installing the display device at least proximate to the lower portion of the forward window.
- the method for manufacturing a flight deck includes positioning a glare shield adjacent to the lower portion of the forward window to reduce glare on one or more flight instruments positioned on the forward instrument panel.
- positioning the display device includes installing the display device at least proximate to the glare shield.
- the method includes positioning at least one PFD at least proximate to the forward instrument panel.
- positioning the display device includes installing the display device closer to the forward window than the PFD.
- FIG. 1 illustrates a flight deck of an aircraft having a flight management system in accordance with the prior art.
- FIG. 2 is an enlarged view of portions of the prior art flight deck of FIG. 1 showing a mode control panel (MCP), a first primary flight display (PFD), and a first control display unit (CDU).
- MCP mode control panel
- PFD primary flight display
- CDU first control display unit
- FIG. 3 is a schematic illustration of an aircraft having an autoflight system with a display device in accordance with an embodiment of the invention.
- FIG. 4 is a forward elevational view of a flight deck of the aircraft of FIG. 3 with the display device configured in accordance with an embodiment of the invention, taken along line 4 - 4 in FIG. 3.
- FIG. 5 is an enlarged view of the display device of FIG. 4 in accordance with an embodiment of the invention.
- FIGS. 6 A- 6 D illustrate a sequence for changing current or tactical autoflight guidance instructions in accordance with embodiments of the invention.
- FIG. 7 illustrates a table of naming conventions for flight modes or situations in accordance with embodiments of the invention.
- FIG. 8 is a forward elevational view of an autoflight performance selector of FIG. 4 in accordance with embodiments of the invention.
- FIG. 3 is a schematic illustration of an aircraft 330 having an autoflight system 320 with a display device 326 in accordance with an embodiment of the invention.
- the autoflight system 320 can include a flight management computer 322 linked to one or more controllers 334 , such as an engine controller or autothrottle 334 a , a roll controller 334 b , and a pitch controller 334 c .
- the engine controller 334 a can be operatively coupled to engines 331 of the aircraft 330 to automatically control engine functions, such as engine thrust.
- the roll controller 334 b can be operatively coupled to ailerons 332 of the aircraft 330
- the pitch controller 334 c can be operatively coupled to elevators 333 of the aircraft 330 .
- the roll controller 334 b and the pitch controller 334 c can form a portion of an integrated autopilot device.
- the roll controller 334 b and the pitch controller 334 c can be independent. In either embodiment, the controllers 334 a - c can automatically control the aircraft thrust, roll, and pitch.
- the flight management computer 322 can also be linked to the display device 326 to provide the display device 326 with information relating to the operation of the controllers 334 .
- the flight management computer 322 can also receive instructions for the autoflight system 320 via the display device 326 . Pilot inputs and/or external sources, such as telemetry from the ground, a satellite, a datalink or a gatelink, can provide these instructions.
- the display device 326 is centrally located in a forward field of view of a pilot (not shown) on a flight deck 300 of the aircraft 330 .
- the display device 326 can include one or more input devices configured to receive pilot instructions for controlling the autoflight system 320 .
- the display device 326 can include one or more display screens configured to provide the pilot with information about how the autoflight system 320 is flying the aircraft 330 , such as information related to one or more autoflight modes and/or one or more target flight parameters.
- autoflight mode can refer to the particular manner in which the autoflight system 320 is flying the aircraft 330 .
- autoflight modes can relate to airspeed (e.g., increasing, decreasing, or maintaining airspeed); vertical guidance (e.g., climbing, descending, or maintaining altitude); and/or lateral guidance (e.g., turning or maintaining a heading).
- these autoflight modes can be represented by conventional flight mode annunciators (FMA's).
- FMA's flight mode annunciators
- target flight parameter as used herein can refer to the particular values of airspeed, altitude, heading, tracks and/or course to which the autoflight system 320 is actually instructed to fly.
- the display device 326 can provide the following autoflight information: “DESCEND TO 14000 FT.”
- the autoflight mode “descend” indicates that the autoflight system 320 is instructed to cause the aircraft 330 to descend
- the target flight parameter “14000 FT” indicates that the autoflight system 320 is instructed to cause the aircraft 330 to descend to an altitude of 14000 feet.
- the display device 326 can provide the pilot with other types of autoflight system information. Accordingly, the display device 326 can enable the pilot to quickly obtain current autoflight information and, if desired, change autoflight instructions, without having to refer to multiple locations around the flight deck 300 .
- FIG. 4 is a forward elevational view of the flight deck 300 with the display device 326 configured in accordance with an embodiment of the invention, taken along line 4 - 4 in FIG. 3.
- the flight deck 300 includes first and second forward windows 408 and 410 providing a forward field of view out of the aircraft 330 (FIG. 3) for a first pilot (not shown) seated in a first pilot seat 402 , and a second pilot (also not shown) seated in a second pilot seat 404 .
- Each of the first and second forward windows 408 and 410 can include an upper portion 409 and a lower portion 413 .
- the first and second forward windows 408 and 410 can be replaced by one or more external vision screens that include a visual display of a forward field of view out of the aircraft 330 similar to a window. Accordingly, throughout this disclosure, the term “window” can include such external vision screens.
- a glare shield 405 is positioned adjacent to the lower portions 413 of the forward windows 408 and 410 to reduce glare on one or more flight instruments 406 positioned on a control pedestal 412 and a forward instrument panel 411 .
- the flight instruments 406 can include first and second PFD's 414 and 415 that are at least generally similar to the first and second PFD's 114 and 115 discussed above with reference to FIGS. 1 and 2.
- first and second PFD's 414 and 415 can be utilized in conjunction with the display device 326 to provide the pilot with actual flight parameter information.
- one or both of the first and second PFD's 414 and 415 can be omitted and other flight instruments can provide this information.
- the display device 326 is positioned at least adjacent to the first and second forward windows 408 and 410 .
- the display device 326 is positioned adjacent to the lower portions 413 of the first and second forward windows 408 and 410 between the first and second PFD's 414 and 415 and the first and second forward windows 408 and 410 .
- the display device 326 is positioned at least proximate to the glare shield 405 .
- the display device 326 can be positioned at other locations on the flight deck 300 .
- the display device 326 can be positioned above the first and second forward windows 408 and 410 .
- the display device 326 can be positioned at other locations on the flight deck 300 without departing from the spirit or scope of the present invention.
- the flight deck 300 can include a number of devices for entering flight guidance data into the flight management computer 322 (FIG. 3) in accordance with embodiments of the present invention.
- the flight deck 300 can include a first data entry device 460 , a second data entry device 462 , and an autoflight performance selector 450 .
- the first data entry device 460 can be accessibly positioned forward of the first pilot seat 402 and/or the second pilot seat 404 , and can include an alphanumeric keypad, a cursor control device (e.g., a track ball or touch screen), and/or a display screen for entry and/or manipulation of alphanumeric flight guidance data, such as strategic flight guidance data.
- the first data entry device 460 can be used to input at least a portion of a flight plan or other strategic guidance information into the flight management computer 322 and/or the display device 326 . In other embodiments, the first data entry device 460 can be used to input other types of flight guidance information, such as tactical guidance information, into the flight management computer 322 .
- the second data entry device 462 can be accessibly positioned adjacent to the display device 326 and can include a small alphanumeric keypad device having a touch screen and/or hard buttons for entry and/or manipulation of alphanumeric flight guidance data, such as tactical flight guidance information.
- the autoflight performance selector 450 can be used in conjunction with the display device 326 to set the level at which the autoflight system 320 (FIG. 3) will respond to autoflight control inputs.
- One feature of an embodiment shown in FIG. 4 is the placement of the display device 326 in the forward field of view.
- An advantage of this feature is that pilots can quickly ascertain autoflight guidance information without having to look at two or more places on the flight deck 300 outside the forward field of view.
- conventional flight decks on aircraft having flight management systems may require the pilot to refer to an MCP, a PFD, and a CDU to obtain current autoflight guidance information.
- FIG. 5 is an enlarged view of the display device 326 of FIG. 4 in accordance with an embodiment of the invention.
- the display device 326 can include one or more displays for providing autoflight guidance information, such as an airspeed or first display 570 , a vertical guidance or second display 580 , and a lateral guidance or third display 590 .
- the first, second, and third displays 570 , 580 , and 590 can collectively include an active situation line 528 and a next event line 529 .
- the active situation line 528 can extend across top portions of the displays 570 , 580 , and 590 and can provide guidance information describing the current manner in which the autoflight system 320 (FIG.
- the active situation line 528 can include one or more autoflight modes and/or one or more target flight parameters.
- the next event line 529 similarly extends across the displays 570 , 580 , and 590 just below the active situation line 528 , and can include information describing the next sequence of instructions for the autoflight system 320 .
- the display device 326 can include more or fewer displays configured to provide other types of autoflight guidance information without departing from the spirit or scope of the present invention.
- the portion of the active situation line 528 included in the first display 570 can include a target flight parameter and/or an autoflight mode relating to the current airspeed of the autoflight system 320 (FIG. 3).
- the guidance control from the autoflight system 320 to achieve and/or maintain this airspeed may include pitch changes (e.g., pitch up to slow down or pitch down to accelerate) as well as autothrottle changes (e.g., less thrust to slow down or more thrust to accelerate).
- the first display 570 can include other autoflight information in addition to, or in place of, the target airspeed information described above.
- the portion of the active situation line 528 presented in the second display 580 can include a target flight parameter and/or an autoflight mode relating to the current vertical guidance of the autoflight system 320 .
- the second display 580 can include information indicating whether the autoflight system 320 is providing guidance to the aircraft 330 (FIG. 3) causing the aircraft 330 to cruise in level flight, climb unrestricted, descend unrestricted, or descend on a geometric flight path.
- the second display 580 can include the current altitude target.
- the second display 580 can include other autoflight guidance information in addition to, or in place of, the information described above.
- the portion of the active situation line 528 included in the third display 590 can include a target flight parameter and/or an autoflight mode relating to the current lateral guidance of the autoflight system 320 .
- the third display 590 can include information indicating whether the autoflight system 320 is providing guidance to the aircraft 330 causing the aircraft 330 to proceed along a preplanned course to a navigation point, or to proceed along an unrestricted heading or track vector.
- the next event line 529 of the third display 590 can be blank, indicating that the vector in the active situation line 528 is not linked to a subsequent preplanned strategic lateral guidance plan.
- the next event line 529 of the third display 590 can show the point where the track vector joins the preplanned course.
- the third display 590 can include the current lateral guidance target.
- the third display 590 can include other autoflight guidance information in addition to, or in place of, the information described above.
- the current autoflight guidance information provided in the active situation line 528 can include conventional FMA's.
- the current autoflight guidance information can be provided using other naming conventions or symbology to describe the current autoflight “situation.”
- the first display 570 shows the current target airspeed of the autoflight system 320 (FIG. 3) is 310 knots.
- the second display 580 shows the current target altitude of the autoflight system 320 is 17,000 feet, and the current vertical autoflight mode is “climb.”
- the third display 590 shows the current target course of the autoflight system 320 is to maintain a course of 2500 to navigation waypoint LWT.
- the display device 326 can include an array of software-configurable controls for editing the active situation line 528 and/or the next event line 529 with new instructions (i.e., tactical data) for the autoflight system 320 (FIG. 3). These instructions can be received from the pilot and/or from a ground-based station, such as a telemetry uplink.
- the display device 326 can include a first set of selector buttons 574 and a first rotary knob 572 adjacent to the first display 570 for implementing changes to the current airspeed guidance.
- the display device 326 can include a second set of selector buttons 584 and a second rotary knob 582 adjacent to the second display 580 for implementing changes to the current vertical guidance.
- the display device 326 can include a third set of selector buttons 594 and a third rotary knob 592 adjacent to the third display 590 for implementing changes to the lateral guidance.
- the display device 326 can include other features for implementing changes to the current flight guidance instructions or, conversely, one or more of the features described above can be omitted, without departing from the spirit or scope of the present invention.
- the pilot can use the selector buttons 574 , 584 , and/or 594 to select a desired data entry function, and the pilot can then use the rotary knobs 572 , 582 , and/or 592 , and/or the second data entry device 462 , to enter actual alphanumeric guidance data on the displays 570 , 580 , and 590 .
- the second data entry device 462 can include a small alphanumeric keypad device having a touch screen and/or hard buttons for entry of such alphanumeric data.
- the pilot can use the secondary data entry device 462 to enter airspeeds on the first display 570 , altitudes on the second display 580 , and headings and/or track vectors on the third display 590 .
- the pilot can enter other alphanumeric guidance data (e.g., strategic data) on the displays 570 , 580 , and/or 590 via the first data entry device 460 (FIG. 4).
- FIGS. 6 A- 6 D illustrate a sequence for changing current or tactical autoflight guidance instructions in accordance with embodiments of the invention.
- the pilot changes the lateral guidance (as presented in the portion of the active situation line 528 shown in the third display 590 ) from “a course of 250° to navigation point LWT,” to “a constant track vector of 310°.
- the pilot can begin by selecting a TRK button 696 .
- selecting the TRK button 696 generates a “TRK” display in the next event line 529 .
- the pilot can enter a numeric value (e.g., “310”) for the new track instruction using either the first rotary knob 572 , the second data entry device 462 (FIGS. 4 and 5), and/or the first data entry device 460 (FIG. 4).
- a numeric value e.g., “310”
- the new track vector of “TRK 310°” is displayed in the next event line 529 , as shown in FIG. 6C.
- the pilot can confirm the track vector of 310° by selecting a confirm button 698 or, alternatively, the pilot can delete this entry by selecting a clear button 695 .
- FIG. 6D after the pilot selects the confirm button 698 , the track vector of 310° is entered in the active situation line 528 and becomes the current or active lateral guidance instruction.
- FIG. 7 illustrates a table 728 of naming conventions for various autoflight modes or “situations” that can be displayed in the active situation line 528 and the next event line 529 of FIGS. 5 and 6, in accordance with embodiments of the invention.
- the table 728 includes a situation column 729 , a first display column 770 , a second display column 780 , and a third display column 790 .
- the situation described in the situation column 729 corresponds to the set of naming conventions shown in the adjacent portions of the columns 770 , 780 , and 790 . For example, as shown in row 727 , if the first display 570 (FIG.
- the display device 326 (FIGS. 4 and 5) can utilize all or some of the naming conventions shown in FIG. 7 to describe one or more autoflight modes. In other embodiments, other naming conventions can be used to represent autoflight information via the display device 326 . For example, in one embodiment as explained above, conventional FMA's can be used to represent autoflight information in one or more of the first, second and third displays 570 , 580 , and/or 590 of FIG. 5.
- flight guidance data such as datalinked guidance data
- flight guidance data can be received via one or more ground-based stations and input into the flight management computer 322 via the display device 326 .
- an air traffic control station can send the guidance data to the flight deck.
- the first data entry device 460 can provide this information to the pilot.
- this guidance data can be displayed on the next event line 528 of the display device 326 .
- a CDU can provide this information to the pilot.
- the pilot can input it into the flight management computer 322 by transferring it to the display device 326 and selecting the confirm button 698 (FIG. 6), which promotes this data to the active situation line 528 (FIGS. 5 and 6).
- a ground-based station operated by an airline can send this flight guidance information to the flight deck. In other embodiments, this information can be transmitted to the flight deck in other ways without departing from the spirit or scope of the present invention.
- FIG. 8 is an elevation view of the autoflight performance selector 450 of FIG. 4 in accordance with an embodiment of the invention.
- the autoflight performance selector 450 includes a rotary selector knob 852 for controlling the overall performance of the autoflight system 320 (FIG. 3) in all axes (i.e., pitch, roll, and yaw).
- the autoflight performance selector can be used to control the performance of the autoflight system 320 in two or more axes (e.g., pitch and roll, pitch and yaw, or roll and yaw).
- the autoflight performance selector 450 can include other features for controlling performance of the autoflight system 320 along individual axes by controlling discrete elements of the autoflight system 320 .
- the autoflight performance selector 450 provides the pilot with a way to limit or otherwise control the dynamic response of the autoflight system 320 to autoflight guidance inputs.
- the “min” and “max” positions of the rotary knob 852 provide an adjustable setting that can, for example, limit the amount of roll and/or pitch that is permitted, and/or the amount of vertical speed change that is possible.
- selecting the “min” position limits the aircraft to gentle maneuvers to maximize passenger comfort.
- selecting the “max” position allows the aircraft to make more aggressive maneuvers.
- One advantage of controlling the performance of the autoflight system 320 in two or more axes is that the pilot can select a single response level that applies to all relevant axes without having to provide further control inputs.
- the autoflight performance selector 450 can be equipped with an override function for those situations where aggressive movement of the aircraft is necessary in response to, for example, Air Traffic Control or an emergency situation.
- the override function enables the autoflight system 320 to override the autoflight performance selector 450 in such situations and permit aggressive movement of the aircraft.
- the autoflight performance selector 450 of the embodiment described above is a rotary knob
- the autoflight performance selector can have other forms.
- the autoflight performance selector 450 can include a rocker switch having at least two positions, such as an “on” position and an “off” position.
- the autoflight performance selector 450 can include a display (e.g., a computer screen) and a cursor control device (e.g., a mouse).
- the display can include at least two selections (e.g., buttons, icons or sliders) that can be activated using the cursor control device (e.g., by “clicking” the mouse on a button or icon or by “dragging” the slider).
- the performance selector 450 configured in accordance with embodiments of the present invention can take many forms in addition to those described above.
- the display device 326 has been described here with three displays, in other embodiments, the display device 326 can have more or fewer displays depending on the particular application.
- the display device 326 is illustrated in FIG. 4 positioned at least proximate to the glare shield 405 , in other embodiments, the display device 326 can assume other positions within the flight deck 300 . Accordingly, the invention is not limited except as by the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
Apparatuses and methods for displaying autoflight information and controlling autoflight systems. In one embodiment, a flight deck for an aircraft having an autoflight system includes at least one pilot seat, at least one window positioned forward of the pilot seat, and a forward instrument panel positioned forward of the pilot seat. In one aspect of this embodiment, the forward window provides a forward field of view out of the aircraft for a pilot seated in the pilot seat. In another aspect of this embodiment, the flight deck further includes a display device configured to provide information related to one or more autoflight modes. The display device can be positioned at least approximately between the forward instrument panel and the forward window to provide the pilot with autoflight information at least proximate to the forward field of view. In a further aspect of this embodiment, the display device can be configured to provide information related to one or more target flight parameters.
Description
- The following disclosure relates generally to aircraft autoflight systems and, more particularly, to apparatuses and methods for displaying autoflight information and controlling autoflight systems.
- Aircraft autoflight systems have evolved over the years from the traditional autopilots for basic flight path control to complex flight management systems capable of automatically flying aircraft over complicated routes without pilot intervention. Such flight management systems typically include an autopilot, an autothrottle, and a flight management computer (FMC) interfaced with the autopilot and autothrottle. Flight decks on aircraft utilizing such systems generally include a number of controls and displays allowing pilots to monitor the flight management system and change autoflight parameters if desired. As flight management systems have evolved, these controls and displays have been positioned in different locations around the flight deck. Over time, these locations have become somewhat standardized within the transport aircraft industry.
- FIG. 1 illustrates a
flight deck 100 of an aircraft having a flight management system in accordance with the prior art. Theflight deck 100 includes afirst pilot seat 102 and asecond pilot seat 104 separated by acontrol pedestal 110. First and secondforward windows second pilot seats second pilot seats flight instruments 106 are positioned on aforward instrument panel 111 and thecontrol pedestal 110 for access by the first and second pilots seated in the first andsecond pilot seats glare shield 105 is positioned below the first and secondforward windows flight instruments 106. - The
flight instruments 106 can include a number of conventional autoflight controls and displays, such as a first control display unit (CDU) 116 positioned on thecontrol pedestal 110 adjacent to thefirst pilot seat 102, and a second CDU 117 positioned on thecontrol pedestal 110 adjacent to thesecond pilot seat 104. The first and second CDU's 116 and 117 allow the pilots to make data entries into a flight management computer (FMC) for controlling the flight management system. These entries can include flight plan information such as strategic navigation and flight profile parameters. Theflight instruments 106 can also include a first primary flight display (PFD) 114 positioned on theforward instrument panel 111 in front of thefirst pilot seat 102, and asecond PFD 115 positioned on theforward instrument panel 111 in front of thesecond pilot seat 104. The first and second PFD's 114 and 115 display actual flight parameters of the aircraft, such as airspeed, altitude, attitude and heading. In addition, the first and second PFD's 114 and 115 can also display conventional flight mode annunciators (FMA's). FMA's are textual shorthand codes indicating the current modes of the autothrottle and autopilot. Theflight deck 100 can further include a mode control panel (MCP) 112 incorporated into theglare shield 105. The MCP 112 provides control input devices for the FMC, autothrottle, autopilot, flight director, and altitude alert systems. - FIG. 2 is an enlarged view of portions of the
flight deck 100 of FIG. 1 including the MCP 112, the first PFD 114, and the first CDU 116 that illustrates a shortcoming of the priorart flight deck 100. Assume the current autoflight guidance instructions are to climb to a cruise altitude of FL210 at an economy airspeed with an intermediate altitude constraint of FL190 at navigation waypoint “MARZY.” For a pilot (not shown) to ascertain these instructions, the pilot typically first looks at the first PFD 114 on theforward instrument panel 111 to determine anautoflight mode 209 andtarget airspeed 211. Theautoflight mode 209 of “VNAV SPD” indicates the aircraft is climbing “speed-on-elevator.” Thetarget airspeed 211 of “320” indicates the aircraft is climbing at a target airspeed of 320 Kts. The pilot then typically looks at the MCP 112 on theglare shield 105 to determine analtitude 207. Thealtitude 207 indicates the final cleared altitude is 21,000 ft. (i.e., FL210). Next, the pilot typically looks at the first CDU 116 on thecontrol pedestal 110 to see if there is any intermediate altitude constraint 213 oradditional airspeed information 218. In this example, theintermediate altitude constraint 213 indicates a constraint at FL190 at navigation waypoint MARZY. Theadditional airspeed information 218 indicates that 320 Kts represents an “economy” airspeed with a transition to Mach 0.98 if the climb were sustained. As the foregoing example illustrates, the configuration of the priorart flight deck 100 encourages the pilot to look in three different locations to determine the current autoflight guidance instructions. - Embodiments of the present invention are directed to apparatuses and methods for displaying autoflight information and controlling autoflight systems. In one embodiment, a flight deck for an aircraft having an autoflight system includes at least one pilot seat, at least one window positioned forward of the pilot seat, and at least one instrument panel positioned forward of the pilot seat. In one aspect of this embodiment, the forward window provides a forward field of view out of the aircraft for a pilot seated in the pilot seat. In another aspect of this embodiment, the flight deck further includes a display device configured to provide information related to one or more autoflight modes. The display device can be positioned at least approximately between the forward instrument panel and the forward window to provide the pilot with autoflight information at least proximate to the forward field of view. In a further aspect of this embodiment, the display device can be configured to provide information related to one or more target flight parameters.
- In another embodiment, the flight deck includes a glare shield positioned adjacent to the lower portion of the forward window to reduce glare on one or more flight instruments positioned on the forward instrument panel. In another aspect of this embodiment, the flight deck further includes a display device configured to provide information related to one or more autoflight modes. The display device can be positioned at least proximate to the glare shield to provide the pilot with autoflight information at least proximate to the forward field of view.
- In a further embodiment, a method for manufacturing a flight deck for an aircraft having an autoflight system includes situating at least one pilot seat on the flight deck, installing at least one window forward of the pilot seat to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat, and placing an instrument panel forward of the pilot seat. In one aspect of this embodiment, the method further includes providing a display device configured to provide information related to one or more autoflight modes, and positioning the display device at least approximately between the forward instrument panel and the forward window. In another aspect of this embodiment, providing the display device can include configuring the display device to include information related to one or more target flight parameters, and positioning the display device can include installing the display device at least proximate to the lower portion of the forward window.
- In another embodiment, the method for manufacturing a flight deck includes positioning a glare shield adjacent to the lower portion of the forward window to reduce glare on one or more flight instruments positioned on the forward instrument panel. In one aspect of this embodiment, positioning the display device includes installing the display device at least proximate to the glare shield. In a further embodiment, the method includes positioning at least one PFD at least proximate to the forward instrument panel. In one aspect of this embodiment, positioning the display device includes installing the display device closer to the forward window than the PFD.
- FIG. 1 illustrates a flight deck of an aircraft having a flight management system in accordance with the prior art.
- FIG. 2 is an enlarged view of portions of the prior art flight deck of FIG. 1 showing a mode control panel (MCP), a first primary flight display (PFD), and a first control display unit (CDU).
- FIG. 3 is a schematic illustration of an aircraft having an autoflight system with a display device in accordance with an embodiment of the invention.
- FIG. 4 is a forward elevational view of a flight deck of the aircraft of FIG. 3 with the display device configured in accordance with an embodiment of the invention, taken along line4-4 in FIG. 3.
- FIG. 5 is an enlarged view of the display device of FIG. 4 in accordance with an embodiment of the invention.
- FIGS.6A-6D illustrate a sequence for changing current or tactical autoflight guidance instructions in accordance with embodiments of the invention.
- FIG. 7 illustrates a table of naming conventions for flight modes or situations in accordance with embodiments of the invention.
- FIG. 8 is a forward elevational view of an autoflight performance selector of FIG. 4 in accordance with embodiments of the invention.
- The following disclosure describes apparatuses and methods for displaying autoflight information and controlling autoflight systems. Certain specific details are set forth in the following description and in FIGS.3-8 to provide a thorough understanding of various embodiments of the invention. Well-known structures and systems often associated with aircraft autoflight systems have not been shown or described in detail below to avoid unnecessarily obscuring the description of the various embodiments of the invention. In addition, those of ordinary skill in the relevant art will understand that additional embodiments of the present invention may be practiced without several of the details described below.
- In the drawings, identical reference numbers identify identical or generally similar elements. To facilitate the discussion of any particular element, the most significant digit or digits in any reference number refer to the figure in which that element is first introduced. For example,
element 322 is first introduced and discussed in reference to FIG. 3. In addition, any dimensions, angles, and other specifications shown in the figures are merely illustrative of particular embodiments of the invention. Accordingly, other embodiments of the invention can have other dimensions, angles, and specifications without departing from the spirit or scope of the present invention. - FIG. 3 is a schematic illustration of an
aircraft 330 having anautoflight system 320 with adisplay device 326 in accordance with an embodiment of the invention. In one aspect of this embodiment, theautoflight system 320 can include aflight management computer 322 linked to one or more controllers 334, such as an engine controller orautothrottle 334 a, aroll controller 334 b, and apitch controller 334 c. Theengine controller 334 a can be operatively coupled toengines 331 of theaircraft 330 to automatically control engine functions, such as engine thrust. Theroll controller 334 b can be operatively coupled toailerons 332 of theaircraft 330, and thepitch controller 334 c can be operatively coupled toelevators 333 of theaircraft 330. In one embodiment, theroll controller 334 b and thepitch controller 334 c can form a portion of an integrated autopilot device. In another embodiment, theroll controller 334 b and thepitch controller 334 c can be independent. In either embodiment, the controllers 334 a-c can automatically control the aircraft thrust, roll, and pitch. - In a further aspect of this embodiment, the
flight management computer 322 can also be linked to thedisplay device 326 to provide thedisplay device 326 with information relating to the operation of the controllers 334. In addition, theflight management computer 322 can also receive instructions for theautoflight system 320 via thedisplay device 326. Pilot inputs and/or external sources, such as telemetry from the ground, a satellite, a datalink or a gatelink, can provide these instructions. - In another aspect of this embodiment, the
display device 326 is centrally located in a forward field of view of a pilot (not shown) on aflight deck 300 of theaircraft 330. As is described in greater detail below, thedisplay device 326 can include one or more input devices configured to receive pilot instructions for controlling theautoflight system 320. In addition, thedisplay device 326 can include one or more display screens configured to provide the pilot with information about how theautoflight system 320 is flying theaircraft 330, such as information related to one or more autoflight modes and/or one or more target flight parameters. - The term “autoflight mode” as used herein can refer to the particular manner in which the
autoflight system 320 is flying theaircraft 330. For example, in one embodiment, autoflight modes can relate to airspeed (e.g., increasing, decreasing, or maintaining airspeed); vertical guidance (e.g., climbing, descending, or maintaining altitude); and/or lateral guidance (e.g., turning or maintaining a heading). In one aspect of this embodiment, these autoflight modes can be represented by conventional flight mode annunciators (FMA's). In other embodiments, these autoflight modes can be represented by other symbology, including other textual shorthands. The term “target flight parameter” as used herein can refer to the particular values of airspeed, altitude, heading, tracks and/or course to which theautoflight system 320 is actually instructed to fly. - For example, in one embodiment, the
display device 326 can provide the following autoflight information: “DESCEND TO 14000 FT.” Here, the autoflight mode “descend” indicates that theautoflight system 320 is instructed to cause theaircraft 330 to descend, and the target flight parameter “14000 FT” indicates that theautoflight system 320 is instructed to cause theaircraft 330 to descend to an altitude of 14000 feet. In other embodiments, thedisplay device 326 can provide the pilot with other types of autoflight system information. Accordingly, thedisplay device 326 can enable the pilot to quickly obtain current autoflight information and, if desired, change autoflight instructions, without having to refer to multiple locations around theflight deck 300. - FIG. 4 is a forward elevational view of the
flight deck 300 with thedisplay device 326 configured in accordance with an embodiment of the invention, taken along line 4-4 in FIG. 3. In one aspect of this embodiment, theflight deck 300 includes first and secondforward windows first pilot seat 402, and a second pilot (also not shown) seated in asecond pilot seat 404. Each of the first and secondforward windows upper portion 409 and alower portion 413. In other embodiments, the first and secondforward windows aircraft 330 similar to a window. Accordingly, throughout this disclosure, the term “window” can include such external vision screens. In another aspect of this embodiment, aglare shield 405 is positioned adjacent to thelower portions 413 of theforward windows more flight instruments 406 positioned on acontrol pedestal 412 and aforward instrument panel 411. Theflight instruments 406 can include first and second PFD's 414 and 415 that are at least generally similar to the first and second PFD's 114 and 115 discussed above with reference to FIGS. 1 and 2. In a further aspect of this embodiment, the first and second PFD's 414 and 415 can be utilized in conjunction with thedisplay device 326 to provide the pilot with actual flight parameter information. In other embodiments, one or both of the first and second PFD's 414 and 415 can be omitted and other flight instruments can provide this information. - In one embodiment, the
display device 326 is positioned at least adjacent to the first and secondforward windows display device 326 is positioned adjacent to thelower portions 413 of the first and secondforward windows forward windows display device 326 is positioned at least proximate to theglare shield 405. In other embodiments, thedisplay device 326 can be positioned at other locations on theflight deck 300. For example, in another embodiment, thedisplay device 326 can be positioned above the first and secondforward windows display device 326 can be positioned at other locations on theflight deck 300 without departing from the spirit or scope of the present invention. - The
flight deck 300 can include a number of devices for entering flight guidance data into the flight management computer 322 (FIG. 3) in accordance with embodiments of the present invention. For example, in one embodiment, theflight deck 300 can include a firstdata entry device 460, a seconddata entry device 462, and anautoflight performance selector 450. In one aspect of this embodiment, the firstdata entry device 460 can be accessibly positioned forward of thefirst pilot seat 402 and/or thesecond pilot seat 404, and can include an alphanumeric keypad, a cursor control device (e.g., a track ball or touch screen), and/or a display screen for entry and/or manipulation of alphanumeric flight guidance data, such as strategic flight guidance data. In one embodiment, the firstdata entry device 460 can be used to input at least a portion of a flight plan or other strategic guidance information into theflight management computer 322 and/or thedisplay device 326. In other embodiments, the firstdata entry device 460 can be used to input other types of flight guidance information, such as tactical guidance information, into theflight management computer 322. - In another aspect of this embodiment described in greater detail below, the second
data entry device 462 can be accessibly positioned adjacent to thedisplay device 326 and can include a small alphanumeric keypad device having a touch screen and/or hard buttons for entry and/or manipulation of alphanumeric flight guidance data, such as tactical flight guidance information. In a further aspect of this embodiment that will also be described in greater detail below, theautoflight performance selector 450 can be used in conjunction with thedisplay device 326 to set the level at which the autoflight system 320 (FIG. 3) will respond to autoflight control inputs. - One feature of an embodiment shown in FIG. 4 is the placement of the
display device 326 in the forward field of view. An advantage of this feature is that pilots can quickly ascertain autoflight guidance information without having to look at two or more places on theflight deck 300 outside the forward field of view. In contrast, conventional flight decks on aircraft having flight management systems (such as that shown in FIGS. 1 and 2) may require the pilot to refer to an MCP, a PFD, and a CDU to obtain current autoflight guidance information. - FIG. 5 is an enlarged view of the
display device 326 of FIG. 4 in accordance with an embodiment of the invention. In one aspect of this embodiment, thedisplay device 326 can include one or more displays for providing autoflight guidance information, such as an airspeed orfirst display 570, a vertical guidance orsecond display 580, and a lateral guidance orthird display 590. In another aspect of this embodiment, the first, second, andthird displays active situation line 528 and anext event line 529. Theactive situation line 528 can extend across top portions of thedisplays active situation line 528 can include one or more autoflight modes and/or one or more target flight parameters. Thenext event line 529 similarly extends across thedisplays active situation line 528, and can include information describing the next sequence of instructions for theautoflight system 320. In other embodiments, thedisplay device 326 can include more or fewer displays configured to provide other types of autoflight guidance information without departing from the spirit or scope of the present invention. - In one embodiment, the portion of the
active situation line 528 included in thefirst display 570 can include a target flight parameter and/or an autoflight mode relating to the current airspeed of the autoflight system 320 (FIG. 3). The guidance control from theautoflight system 320 to achieve and/or maintain this airspeed may include pitch changes (e.g., pitch up to slow down or pitch down to accelerate) as well as autothrottle changes (e.g., less thrust to slow down or more thrust to accelerate). In other embodiments, thefirst display 570 can include other autoflight information in addition to, or in place of, the target airspeed information described above. - In another embodiment, the portion of the
active situation line 528 presented in thesecond display 580 can include a target flight parameter and/or an autoflight mode relating to the current vertical guidance of theautoflight system 320. For example, in one aspect of this embodiment, thesecond display 580 can include information indicating whether theautoflight system 320 is providing guidance to the aircraft 330 (FIG. 3) causing theaircraft 330 to cruise in level flight, climb unrestricted, descend unrestricted, or descend on a geometric flight path. In another aspect of this embodiment, thesecond display 580 can include the current altitude target. In other embodiments, thesecond display 580 can include other autoflight guidance information in addition to, or in place of, the information described above. - In a further embodiment, the portion of the
active situation line 528 included in thethird display 590 can include a target flight parameter and/or an autoflight mode relating to the current lateral guidance of theautoflight system 320. For example, in one aspect of this embodiment, thethird display 590 can include information indicating whether theautoflight system 320 is providing guidance to theaircraft 330 causing theaircraft 330 to proceed along a preplanned course to a navigation point, or to proceed along an unrestricted heading or track vector. In the case where the lateral guidance is along a heading or track vector, thenext event line 529 of thethird display 590 can be blank, indicating that the vector in theactive situation line 528 is not linked to a subsequent preplanned strategic lateral guidance plan. Conversely, in the case where the heading or track vector is linked to a subsequent preplanned course, thenext event line 529 of thethird display 590 can show the point where the track vector joins the preplanned course. In another aspect of this embodiment, thethird display 590 can include the current lateral guidance target. In other embodiments, thethird display 590 can include other autoflight guidance information in addition to, or in place of, the information described above. - In one embodiment, the current autoflight guidance information provided in the
active situation line 528 can include conventional FMA's. In other embodiments, the current autoflight guidance information can be provided using other naming conventions or symbology to describe the current autoflight “situation.” For example, in the illustrated embodiment, thefirst display 570 shows the current target airspeed of the autoflight system 320 (FIG. 3) is 310 knots. Thesecond display 580 shows the current target altitude of theautoflight system 320 is 17,000 feet, and the current vertical autoflight mode is “climb.” Thethird display 590 shows the current target course of theautoflight system 320 is to maintain a course of 2500 to navigation waypoint LWT. From the foregoing description, those of ordinary skill in the relevant art will appreciate that embodiments of the present invention can provide in a single location much of the autoflight guidance information traditionally provided on remotely positioned MCP's, PFD's, and/or CDU's. - In one embodiment, the
display device 326 can include an array of software-configurable controls for editing theactive situation line 528 and/or thenext event line 529 with new instructions (i.e., tactical data) for the autoflight system 320 (FIG. 3). These instructions can be received from the pilot and/or from a ground-based station, such as a telemetry uplink. For example, in one aspect of this embodiment, thedisplay device 326 can include a first set ofselector buttons 574 and a firstrotary knob 572 adjacent to thefirst display 570 for implementing changes to the current airspeed guidance. In another aspect of this embodiment, thedisplay device 326 can include a second set ofselector buttons 584 and a secondrotary knob 582 adjacent to thesecond display 580 for implementing changes to the current vertical guidance. In a further aspect of this embodiment, thedisplay device 326 can include a third set ofselector buttons 594 and a thirdrotary knob 592 adjacent to thethird display 590 for implementing changes to the lateral guidance. In other embodiments, thedisplay device 326 can include other features for implementing changes to the current flight guidance instructions or, conversely, one or more of the features described above can be omitted, without departing from the spirit or scope of the present invention. - In one embodiment described in greater detail below in reference to FIGS.6A-6D, the pilot can use the
selector buttons rotary knobs data entry device 462, to enter actual alphanumeric guidance data on thedisplays data entry device 462 can include a small alphanumeric keypad device having a touch screen and/or hard buttons for entry of such alphanumeric data. For example, in one embodiment, the pilot can use the secondarydata entry device 462 to enter airspeeds on thefirst display 570, altitudes on thesecond display 580, and headings and/or track vectors on thethird display 590. In another embodiment, the pilot can enter other alphanumeric guidance data (e.g., strategic data) on thedisplays - FIGS.6A-6D illustrate a sequence for changing current or tactical autoflight guidance instructions in accordance with embodiments of the invention. In this example, the pilot changes the lateral guidance (as presented in the portion of the
active situation line 528 shown in the third display 590) from “a course of 250° to navigation point LWT,” to “a constant track vector of 310°. Referring first to FIG. 6A, the pilot can begin by selecting aTRK button 696. Referring to FIG. 6B, selecting theTRK button 696 generates a “TRK” display in thenext event line 529. At this point in the sequence, the pilot can enter a numeric value (e.g., “310”) for the new track instruction using either the firstrotary knob 572, the second data entry device 462 (FIGS. 4 and 5), and/or the first data entry device 460 (FIG. 4). After doing so, the new track vector of “TRK 310°” is displayed in thenext event line 529, as shown in FIG. 6C. The pilot can confirm the track vector of 310° by selecting aconfirm button 698 or, alternatively, the pilot can delete this entry by selecting aclear button 695. Referring now to FIG. 6D, after the pilot selects theconfirm button 698, the track vector of 310° is entered in theactive situation line 528 and becomes the current or active lateral guidance instruction. - The sequence described above for inputting tactical guidance instructions into the flight management computer322 (FIG. 3) via the display device 326 (FIGS. 4 and 5) is merely one example of the various methods possible with the present invention. Accordingly, those of ordinary skill in the relevant art will appreciate that other methods and features for performing this function can be used. For example, in another embodiment, a data entry device at least generally similar to a conventional CDU can be used to input such autoflight guidance instructions.
- FIG. 7 illustrates a table728 of naming conventions for various autoflight modes or “situations” that can be displayed in the
active situation line 528 and thenext event line 529 of FIGS. 5 and 6, in accordance with embodiments of the invention. In one aspect of these embodiments, the table 728 includes asituation column 729, afirst display column 770, asecond display column 780, and athird display column 790. The situation described in thesituation column 729 corresponds to the set of naming conventions shown in the adjacent portions of thecolumns - In one embodiment, the display device326 (FIGS. 4 and 5) can utilize all or some of the naming conventions shown in FIG. 7 to describe one or more autoflight modes. In other embodiments, other naming conventions can be used to represent autoflight information via the
display device 326. For example, in one embodiment as explained above, conventional FMA's can be used to represent autoflight information in one or more of the first, second andthird displays - As discussed above, there are a number of methods for entering autoflight guidance instructions into the flight management computer322 (FIG. 3) via the
display device 326. Some embodiments include utilizing the first and seconddata entry devices 460 and 462 (FIG. 4). In other embodiments, flight guidance data, such as datalinked guidance data, can be received via one or more ground-based stations and input into theflight management computer 322 via thedisplay device 326. For example, in one embodiment, an air traffic control station can send the guidance data to the flight deck. In one aspect of this embodiment, the firstdata entry device 460 can provide this information to the pilot. In another embodiment, this guidance data can be displayed on thenext event line 528 of thedisplay device 326. In another embodiment, a CDU can provide this information to the pilot. In one aspect of this embodiment, after confirming the desirability of this guidance information, the pilot can input it into theflight management computer 322 by transferring it to thedisplay device 326 and selecting the confirm button 698 (FIG. 6), which promotes this data to the active situation line 528 (FIGS. 5 and 6). In another embodiment, a ground-based station operated by an airline can send this flight guidance information to the flight deck. In other embodiments, this information can be transmitted to the flight deck in other ways without departing from the spirit or scope of the present invention. - FIG. 8 is an elevation view of the
autoflight performance selector 450 of FIG. 4 in accordance with an embodiment of the invention. In one aspect of this embodiment, theautoflight performance selector 450 includes arotary selector knob 852 for controlling the overall performance of the autoflight system 320 (FIG. 3) in all axes (i.e., pitch, roll, and yaw). In another embodiment, the autoflight performance selector can be used to control the performance of theautoflight system 320 in two or more axes (e.g., pitch and roll, pitch and yaw, or roll and yaw). In other embodiments, theautoflight performance selector 450 can include other features for controlling performance of theautoflight system 320 along individual axes by controlling discrete elements of theautoflight system 320. - In another aspect of this embodiment, the
autoflight performance selector 450 provides the pilot with a way to limit or otherwise control the dynamic response of theautoflight system 320 to autoflight guidance inputs. The “min” and “max” positions of therotary knob 852 provide an adjustable setting that can, for example, limit the amount of roll and/or pitch that is permitted, and/or the amount of vertical speed change that is possible. In one aspect of this embodiment, selecting the “min” position limits the aircraft to gentle maneuvers to maximize passenger comfort. In another aspect of this embodiment, selecting the “max” position allows the aircraft to make more aggressive maneuvers. One advantage of controlling the performance of theautoflight system 320 in two or more axes is that the pilot can select a single response level that applies to all relevant axes without having to provide further control inputs. - In another embodiment, the
autoflight performance selector 450 can be equipped with an override function for those situations where aggressive movement of the aircraft is necessary in response to, for example, Air Traffic Control or an emergency situation. In one aspect of this embodiment, the override function enables theautoflight system 320 to override theautoflight performance selector 450 in such situations and permit aggressive movement of the aircraft. - Although the
autoflight performance selector 450 of the embodiment described above is a rotary knob, in other embodiments, the autoflight performance selector can have other forms. For example, in another embodiment, theautoflight performance selector 450 can include a rocker switch having at least two positions, such as an “on” position and an “off” position. In a further embodiment, theautoflight performance selector 450 can include a display (e.g., a computer screen) and a cursor control device (e.g., a mouse). The display can include at least two selections (e.g., buttons, icons or sliders) that can be activated using the cursor control device (e.g., by “clicking” the mouse on a button or icon or by “dragging” the slider). Accordingly, theperformance selector 450 configured in accordance with embodiments of the present invention can take many forms in addition to those described above. - From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit or scope of the invention. For example, while the
display device 326 has been described here with three displays, in other embodiments, thedisplay device 326 can have more or fewer displays depending on the particular application. In addition, although thedisplay device 326 is illustrated in FIG. 4 positioned at least proximate to theglare shield 405, in other embodiments, thedisplay device 326 can assume other positions within theflight deck 300. Accordingly, the invention is not limited except as by the appended claims.
Claims (101)
1. A flight deck for an aircraft having an autoflight system, the flight deck comprising:
at least one pilot seat;
at least one window positioned forward of the pilot seat, the forward window configured to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat;
at least one instrument panel positioned forward of the pilot seat; and
a display device positioned at least approximately between the forward instrument panel and the forward window, the display device configured to provide information related to one or more autoflight modes.
2. The flight deck of claim 1 , wherein the forward window has an upper portion and a lower portion, wherein the flight deck further comprises a glare shield positioned adjacent to the lower portion of the forward window, wherein the glare shield is configured to reduce glare on one or more flight instruments positioned on the forward instrument panel, and wherein the display device is positioned at least proximate to the glare shield.
3. The flight deck of claim 1 , wherein the forward window has an upper portion and a lower portion, wherein the flight deck further comprises a glare shield positioned adjacent to the lower portion of the forward window, wherein the glare shield is configured to reduce glare on one or more flight instruments positioned on the forward instrument panel, and wherein the display device is incorporated into the glare shield.
4. The flight deck of claim 1 , wherein the display device is configured to provide information related to one or more target flight parameters.
5. The flight deck of claim 1 , wherein the forward window has an upper portion and a lower portion, and wherein the display device is positioned at least proximate to the lower portion of the forward window.
6. The flight deck of claim 1 , further comprising at least one primary flight display (PFD) positioned at least proximate to the forward instrument panel, wherein the display device is positioned closer to the forward window than the PFD is to the forward window.
7. The flight deck of claim 1 , further comprising at least one primary flight display (PFD) positioned at least proximate to the forward instrument panel, wherein the display device is positioned closer to the forward field of view than the PFD is to the forward field of view.
8. The flight deck of claim 1 , further comprising at least one primary flight display (PFD) positioned at least approximately forward of the pilot seat, wherein the display device is positioned at least approximately between the forward window and the PFD.
9. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device being positioned at least approximately forward of the pilot seat.
10. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device including an alphanumeric keyboard and a cursor control device, the data entry device being positioned at least approximately forward of the pilot seat.
11. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device including a display screen, an alphanumeric keyboard and a cursor control device, the data entry device being positioned at least approximately forward of the pilot seat.
12. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device including a control display unit (CDU), the data entry device being positioned at least approximately forward of the pilot seat.
13. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, wherein the data entry device is positioned at least proximate to the display device.
14. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, wherein the data entry device includes a keypad and is positioned at least proximate to the display device.
15. The flight deck of claim 1 , further comprising a data entry device configured to receive input for controlling the autoflight system, wherein the data entry device includes a rotary knob and is positioned at least proximate to the display device.
16. The flight deck of claim 1 , further comprising a data entry device configured to receive digital data for controlling the autoflight system from a ground-based source, the data entry device being positioned at least approximately forward of the pilot seat.
17. The flight deck of claim 1 , further comprising a data entry device configured to receive digital data for controlling the autoflight system from an air traffic control station, the data entry device being positioned at least approximately forward of the pilot seat.
18. The flight deck of claim 1 , further comprising a data entry device configured to receive digital data for controlling the autoflight system from a ground-based source operated by an airline, the data entry device being positioned at least approximately forward of the pilot seat.
19. The flight deck of claim 1 , wherein the autoflight system includes at least an autothrottle and an autopilot, and wherein the display device is configured to provide information related to the autothrottle and the autopilot.
20. The flight deck of claim 1 , wherein the one or more autoflight modes are represented by a textual shorthand.
21. The flight deck of claim 1 , wherein the one or more autoflight modes are represented by a flight mode annunciator (FMA).
22. The flight deck of claim 1 , wherein the one or more autoflight modes are represented by clear text.
23. The flight deck of claim 1 , wherein the one or more autoflight modes are graphically represented.
24. The flight deck of claim 1 , wherein the one or more autoflight modes are related to one or more of airspeed, vertical guidance, and/or lateral guidance.
25. The flight deck of claim 1 , wherein the display device is configured to provide information related to one or more target flight parameters, and wherein the one or more target flight parameters are one or more of airspeed, altitude, heading, track, and/or course.
26. The flight deck of claim 1 , wherein the display device is configured to provide information related to one or more target flight parameters, wherein the one or more target flight parameters are one or more of airspeed, altitude, heading, track, and/or course, and wherein the one or more autoflight modes are related to one or more of airspeed, vertical guidance, and/or lateral guidance.
27. The flight deck of claim 1 , wherein the display device includes an airspeed display screen configured to provide information related to airspeed of the aircraft.
28. The flight deck of claim 1 , wherein the display device includes an airspeed display screen and at least one associated airspeed selector, wherein the airspeed display screen is configured to provide information related to the airspeed of the aircraft and the airspeed selector is configured for selecting an airspeed for the aircraft.
29. The flight deck of claim 1 , wherein the display device includes a vertical guidance display screen configured to provide information related to altitude of the aircraft.
30. The flight deck of claim 1 , wherein the display device includes a vertical guidance display screen and at least one associated vertical guidance selector, wherein the vertical guidance display screen is configured to provide information related to the altitude of the aircraft and the vertical guidance selector is configured for selecting an altitude for the aircraft.
31. The flight deck of claim 1 , wherein the display device includes a lateral guidance display screen configured to provide information related to lateral direction of the aircraft.
32. The flight deck of claim 1 , wherein the display device includes a lateral guidance display screen and at least one associated lateral guidance selector, wherein the lateral guidance display screen is configured to provide information related to the lateral direction of the aircraft and the lateral guidance selector is configured for selecting a lateral direction for the aircraft.
33. The flight deck of claim 1 , further comprising an autoflight performance selector positioned at least generally forward of the pilot seat, the autoflight performance selector configured to control the response of the autoflight system to autoflight guidance input.
34. A flight deck for an aircraft having an autoflight system, the flight deck comprising:
at least one pilot seat;
at least one window positioned forward of the pilot seat, the forward window configured to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat;
at least one instrument panel positioned forward of the pilot seat; and
a display device positioned at least approximately between the forward instrument panel and the forward window, the display device having a first display screen configured to provide autoflight mode information related to airspeed, a second display screen configured to provide autoflight mode information related to vertical guidance, and a third display screen configured to provide autoflight mode information related to lateral guidance.
35. The flight deck of claim 34 , wherein the forward window has an upper portion and a lower portion, wherein the flight deck further comprises a glare shield positioned adjacent to the lower portion of the forward window, wherein the glare shield is configured to reduce glare on one or more flight instruments positioned on the forward instrument panel, and wherein the display device is positioned at least proximate to the glare shield.
36. The flight deck of claim 34 , wherein the forward window has an upper portion and a lower portion, and wherein the display device is positioned at least proximate to the lower portion of the forward window.
37. The flight deck of claim 34 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device including a display screen, an alphanumeric keyboard and a cursor control device, the data entry device being positioned at least approximately forward of the pilot seat.
38. The flight deck of claim 34 , further comprising a data entry device configured to receive input for controlling the autoflight system, wherein the data entry device includes a keypad and is positioned at least proximate to the display device.
39. The flight deck of claim 34 , further comprising a data entry device configured to receive input for controlling the autoflight system, wherein the data entry device includes a rotary knob and is positioned at least proximate to the display device.
40. The flight deck of claim 34 , further comprising a data entry device configured to receive digital data for controlling the autoflight system from a ground-based source, the data entry device being positioned at least approximately forward of the pilot seat.
41. The flight deck of claim 34 , wherein the display device includes at least one airspeed selector, wherein the airspeed selector is configured for selecting an airspeed for the aircraft.
42. The flight deck of claim 34 , wherein the display device includes at least one vertical guidance selector, wherein the vertical guidance selector is configured for selecting an altitude for the aircraft.
43. The flight deck of claim 34 , wherein the display device includes at least one lateral guidance selector, wherein the lateral guidance selector is configured for selecting a lateral direction for the aircraft.
44. The flight deck of claim 34 , wherein the first display screen is configured to provide target flight parameter information related to airspeed, wherein the second display screen is configured to provide target flight parameter information related to altitude, and wherein the third display screen is configured to provide target flight parameter information related to lateral direction.
45. The flight deck of claim 34 , wherein the first, second, and third display screens are configured to collectively display an active situation line, wherein the active situation line includes information related to the manner in which the autoflight system is controlling the aircraft.
46. The flight deck of claim 34 , wherein the first, second, and third display screens are configured to collectively display a next event line, wherein the next event line includes information related to the manner in which the autoflight system will be controlling the aircraft.
47. The flight deck of claim 34 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
48. The flight deck of claim 34 , wherein the first, second, and third display screens are arranged in a horizontal line and are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
49. The flight deck of claim 34 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first autoflight mode and target flight parameter information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second autoflight mode and target flight parameter information related to the manner in which the autoflight system will be controlling the aircraft.
50. A display device for use with an aircraft having an autoflight system, the display device comprising:
a first display screen configured to provide autoflight mode information related to airspeed;
a second display screen positioned at least approximately adjacent to the first display screen, the second display screen configured to provide autoflight mode information related to vertical guidance; and
a third display screen positioned at least approximately adjacent to at least one of the first and second display screens, the third display screen configured to provide autoflight mode information related to lateral guidance.
51. The flight deck of claim 50 , wherein the first display screen is configured to provide target flight parameter information related to airspeed, wherein the second display screen is configured to provide target flight parameter information related to altitude, and wherein the third display screen is configured to provide target flight parameter information related to lateral direction.
52. The flight deck of claim 50 , further comprising a data entry device positioned at least proximate to at least one of the first, second, and third display screens, the data entry device configured to receive input for controlling the autoflight system.
53. The flight deck of claim 50 , further comprising a data entry device positioned at least proximate to at least one of the first, second, and third display screens, the data entry device including a keypad configured to receive input for controlling the autoflight system.
54. The flight deck of claim 50 , wherein the first, second, and third display screens are configured to collectively display a next event line, wherein the next event line includes information related to the manner in which the autoflight system will be controlling the aircraft.
55. The flight deck of claim 50 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
56. The flight deck of claim 50 , wherein the first, second, and third display screens are arranged in a horizontal line and are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
57. The flight deck of claim 50 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first autoflight mode and target flight parameter information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second autoflight mode and target flight parameter information related to the manner in which the autoflight system will be controlling the aircraft.
58. The flight deck of claim 50 , wherein the aircraft includes a flight management computer, and wherein the display device is operatively connected to the flight management computer and configured to exchange flight mode information with the flight management computer.
59. An autoflight system for use with an aircraft, the autoflight system comprising:
an autothrottle;
an autopilot;
a flight management computer configured to control the autothrottle and the autopilot; and
a display device operatively connected to the flight management computer and configured to exchange information with the flight management computer, the display device including:
a first display screen configured to provide autoflight mode information related to airspeed;
a second display screen positioned at least approximately adjacent to the first display screen, the second display screen configured to provide autoflight mode information related to vertical guidance; and
a third display screen positioned at least approximately adjacent to at least one of the first and second display screens, the third display screen configured to provide autoflight mode information related to lateral guidance.
60. The autoflight system of claim 59 , wherein the first display screen is configured to provide target flight parameter information related to airspeed, wherein the second display screen is configured to provide target flight parameter information related to altitude, and wherein the third display screen is configured to provide target flight parameter information related to lateral direction.
61. The autoflight system of claim 59 , further comprising a data entry device positioned at least proximate to at least one of the first, second, and third display screens, the data entry device configured to receive input for the flight management computer.
62. The autoflight system of claim 59 , further comprising a data entry device positioned at least proximate to at least one of the first, second, and third display screens, the data entry device configured to receive input for the flight management computer via a rotary knob.
63. The autoflight system of claim 59 , wherein the first, second, and third display screens are configured to collectively display an active situation line, wherein the active situation line includes information related to the manner in which the autoflight system is controlling the aircraft.
64. The autoflight system of claim 59 , wherein the first, second, and third display screens are configured to collectively display a next event line, wherein the next event line includes information related to the manner in which the autoflight system will be controlling the aircraft.
65. The autoflight system of claim 59 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is currently controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
66. The autoflight system of claim 59 , wherein the first, second, and third display screens are arranged in a horizontal line and are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second information related to the manner in which the autoflight system will be controlling the aircraft.
67. The autoflight system of claim 59 , wherein the first, second, and third display screens are configured to collectively display an active situation line and a next event line, wherein the active situation line includes first autoflight mode and target flight parameter information related to the manner in which the autoflight system is controlling the aircraft, and wherein the next event line includes second autoflight mode and target flight parameter information related to the manner in which the autoflight system will be controlling the aircraft.
68. An aircraft having an autoflight system, the aircraft comprising:
a flight deck;
at least one pilot seat positioned on the flight deck;
at least one forward window positioned forward of the pilot seat, the forward window configured to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat;
a forward instrument panel positioned forward of the pilot seat; and
a display device positioned at least approximately between the forward instrument panel and the forward window, the display device configured to provide information related to one or more autoflight modes.
69. The aircraft of claim 68 , wherein the forward window has an upper portion and a lower portion, and wherein the display device is positioned at least proximate to the lower portion of the forward window.
70. The aircraft of claim 68 , wherein the forward window has an upper portion and a lower portion, wherein the flight deck further comprises a glare shield positioned adjacent to the lower portion of the forward window, wherein the glare shield is configured to reduce glare on one or more flight instruments positioned on the forward instrument panel, and wherein the display device is positioned at least proximate to the glare shield.
71. The aircraft of claim 68 , further comprising a data entry device configured to receive input for controlling the autoflight system, the data entry device being positioned at least approximately forward of the pilot seat.
72. The aircraft of claim 68 , further comprising:
a flight management computer; and
a data entry device positioned at least approximately forward of the pilot seat, the data entry device configured to receive input for controlling the autoflight system and transmit the input to the flight management computer for controlling the autoflight system in response to the input.
73. The aircraft of claim 68 , further comprising:
an autothrottle; and
an autopilot, wherein the display device is configured to provide information related to the autothrottle and the autopilot.
74. An apparatus for use with an aircraft having an autoflight system capable of controlling the attitude of the aircraft in pitch, roll and yaw axes, the apparatus comprising:
an autoflight performance selector configured to limit the response of the autoflight system to flight guidance instructions in at least two of the pitch, roll and yaw axes, the autoflight performance selector having at least a first selection and a second selection different than the first selection, wherein selecting the first selection causes the response of the autoflight system to flight guidance instructions to not exceed a first level in the at least two axes, and wherein selecting the second selection causes the response of the autoflight system to the flight guidance instructions to not exceed a second level in the at least two axes different than the first level.
75. The apparatus of claim 74 , wherein the autoflight performance selector includes a rotary knob having at least a min position and a max position, wherein selecting the min position limits the autoflight system to gentle maneuvers in the pitch and roll axes, and wherein selecting the max position allows the autoflight system to engage in more aggressive maneuvers in the pitch and roll axes.
76. The apparatus of claim 74 , wherein the autoflight performance selector includes a rotary knob having at least a min position and a max position, wherein selecting the min position limits the autoflight system to a first angle about the pitch axis and a second angle about the roll axis, and wherein selecting the max position limits the autoflight system to a third angle about the pitch axis greater than the first angle, and a fourth angle about the roll axis greater than the second angle.
77. The apparatus of claim 74 , wherein the autoflight performance selector includes a rotary knob having at least a min position and a max position, wherein selecting the min position limits the autoflight system to a first rate of pitch change about the pitch axis and a second rate of roll about the roll axis, and wherein selecting the max position limits the autoflight system to a third rate of pitch change about the pitch axis greater than the first rate, and a fourth rate of roll about the roll axis greater than the second rate.
78. The apparatus of claim 74 wherein the aircraft includes a center of gravity and the autoflight performance selector is configured to limit acceleration of the center of gravity relative to a vertical axis.
79. The apparatus of claim 74 , further comprising an override capability selector, wherein activating the override capability selector disengages the autoflight performance selector.
80. The apparatus of claim 74 , wherein the autoflight performance selector includes display and a cursor control device, wherein the display presents the first and second selections, and wherein the first and second selections can be selected using the cursor control device.
81. The apparatus of claim 74 , wherein the autoflight performance selector includes a rocker switch having at least a first position and a second position, wherein selecting the first position limits the autoflight system to gentle maneuvers in the pitch and roll axes, and wherein selecting the second position allows the autoflight system to engage in more aggressive maneuvers in the pitch and roll axes.
82. A method for manufacturing a flight deck for an aircraft having an autoflight system, the method comprising:
situating at least one pilot seat on the flight deck;
installing at least one window forward of the pilot seat, the window configured to provide a forward field of view out of the aircraft for a pilot seated in the pilot seat;
placing an instrument panel forward of the pilot seat;
providing a display device configured to provide information related to one or more autoflight modes; and
positioning the display device at least approximately between the forward instrument panel and the forward window.
83. The method of claim 82 , wherein providing the display device includes configuring the display device to include information related to one or more target flight parameters.
84. The method of claim 82 , wherein the forward window has an upper portion and a lower portion, and wherein positioning the display device includes installing the display device at least proximate to the lower portion of the forward window.
85. The method of claim 82 , wherein the forward window has an upper portion and a lower portion, and wherein the method further comprises positioning a glare shield adjacent to the lower portion of the forward window, wherein the glare shield is configured to reduce glare on one or more flight instruments positioned on the forward instrument panel, and wherein positioning the display device includes installing the display device at least proximate to the glare shield.
86. The method of claim 82 , further comprising installing at least one primary flight display (PFD) at least proximate to the forward instrument panel, wherein positioning the display device includes installing the display device closer to the forward field of view than the PFD.
87. The method of claim 82 , further comprising installing at least one primary flight display (PFD) at least approximately forward of the pilot seat, wherein positioning the display device includes installing the display device closer to the forward window than the PFD.
88. The method of claim 82 , further comprising:
providing a data entry device configured to receive input for controlling the autoflight system; and
placing the data entry device at least approximately forward of the pilot seat.
89. The method of claim 82 , further comprising:
providing a data entry device configured to receive input for controlling the autoflight system, the data entry device including an alphanumeric keyboard and a cursor control device; and
placing the data entry device at least approximately forward of the pilot seat.
90. The method of claim 82 , further comprising:
providing a data entry device configured to receive digital data from a ground-based source for controlling the autoflight system; and
placing the data entry device at least approximately forward of the pilot seat.
91. The method of claim 82 , wherein the autoflight system includes at least an autothrottle and an autopilot, and wherein providing the display device includes configuring the display device to provide information related to the autothrottle and the autopilot.
92. The method of claim 82 , wherein providing a display device includes configuring the display device to provide the information related to the one or more autoflight modes in a textual shorthand.
93. The method of claim 82 wherein providing a display device includes configuring the display device to provide the information related to the one or more autoflight modes in a graphical representation.
94. The method of claim 82 , wherein providing a display device includes configuring the display device to provide autoflight mode information related to one or more of airspeed, vertical guidance, and/or lateral guidance.
95. The method of claim 82 , wherein providing a display device includes configuring the display device to provide information related to one or more target flight parameters, and wherein the one or more target flight parameters are one or more of airspeed, altitude, heading, track, and/or course.
96. The method of claim 82 , wherein providing a display device includes configuring the display device to provide autoflight mode information related to one or more of airspeed, vertical guidance, and/or lateral guidance, and one or more target flight parameters related to one or more of airspeed, altitude, heading, track, and/or course.
97. A method for providing autoflight information on the flight deck of an aircraft having an autoflight system, the flight deck providing a forward field of view through at least one forward window, the method comprising:
receiving an autoflight control input;
controlling the aircraft in response to the received autoflight control input; and
displaying information related to one or more autoflight modes at least proximate to the forward field of view.
98. The method of claim 97 , wherein the information related to one or more autoflight modes is first information, and wherein the method further comprises presenting second information related to one or more target flight parameters at least proximate to the forward field of view.
99. The method of claim 97 , wherein the flight deck has a glare shield positioned adjacent to the forward window, and wherein displaying the information related to one or more autoflight modes includes providing the information on a display screen positioned at least proximate to the glare shield.
100. The method of claim 97 , wherein the autoflight system includes at least an autothrottle and an autopilot, and wherein displaying the information related to one or more autoflight modes includes providing information related to the autothrottle and the autopilot.
101. The method of claim 98 , wherein the information related to one or more autoflight modes is first information, wherein the method further comprises presenting second information related to one or more target flight parameters at least proximate to the forward field of view, and wherein the one or more target flight parameters are one or more of airspeed, altitude, heading, track, and/or course.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/251,493 US20040059474A1 (en) | 2002-09-20 | 2002-09-20 | Apparatuses and methods for displaying autoflight information |
EP03077771A EP1400884A1 (en) | 2002-09-20 | 2003-09-02 | Apparatus and method for displaying autoflight information |
US12/414,559 US7970502B2 (en) | 2002-09-20 | 2009-03-30 | Apparatuses and systems for controlling autoflight systems |
US13/008,789 US8494691B2 (en) | 2002-09-20 | 2011-01-18 | Apparatuses and methods for displaying autoflight information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/251,493 US20040059474A1 (en) | 2002-09-20 | 2002-09-20 | Apparatuses and methods for displaying autoflight information |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/414,559 Division US7970502B2 (en) | 2002-09-20 | 2009-03-30 | Apparatuses and systems for controlling autoflight systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040059474A1 true US20040059474A1 (en) | 2004-03-25 |
Family
ID=31946476
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/251,493 Abandoned US20040059474A1 (en) | 2002-09-20 | 2002-09-20 | Apparatuses and methods for displaying autoflight information |
US12/414,559 Expired - Fee Related US7970502B2 (en) | 2002-09-20 | 2009-03-30 | Apparatuses and systems for controlling autoflight systems |
US13/008,789 Expired - Lifetime US8494691B2 (en) | 2002-09-20 | 2011-01-18 | Apparatuses and methods for displaying autoflight information |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/414,559 Expired - Fee Related US7970502B2 (en) | 2002-09-20 | 2009-03-30 | Apparatuses and systems for controlling autoflight systems |
US13/008,789 Expired - Lifetime US8494691B2 (en) | 2002-09-20 | 2011-01-18 | Apparatuses and methods for displaying autoflight information |
Country Status (2)
Country | Link |
---|---|
US (3) | US20040059474A1 (en) |
EP (1) | EP1400884A1 (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040004162A1 (en) * | 2002-07-02 | 2004-01-08 | Beyer Kevin W. | Method and apparatus for controlling airflow with a gapped trailing edge device having a flexible flow surface |
US20040210847A1 (en) * | 2003-04-17 | 2004-10-21 | Supersonic Aerospace International, Llc | System and method for customizing multiple windows of information on a display |
US20040245386A1 (en) * | 2003-06-03 | 2004-12-09 | Huynh Neal V. | Systems, apparatuses, and methods for moving aircraft control surfaces |
US20050007386A1 (en) * | 2003-07-08 | 2005-01-13 | Supersonic Aerospace International, Llc | System and method for providing out-the-window displays for a device |
US20050011994A1 (en) * | 2003-06-03 | 2005-01-20 | Seiya Sakurai | Multi-function trailing edge devices and associated methods |
US6859688B1 (en) * | 2002-10-18 | 2005-02-22 | Garmin International, Inc. | Data structures, and systems to configure avionic equipment with profile data |
US20050109876A1 (en) * | 2003-11-24 | 2005-05-26 | The Boeing Company | Aircraft control surface drive system and associated methods |
US20050143871A1 (en) * | 2003-12-24 | 2005-06-30 | Boorman Daniel J. | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20050171652A1 (en) * | 2004-02-02 | 2005-08-04 | Speer Thomas E. | Vehicle control systems and corresponding sizing methods |
US20050178903A1 (en) * | 2003-12-24 | 2005-08-18 | Boorman Daniel J. | Systems and methods for presenting and obtaining flight control information |
US20050192717A1 (en) * | 2004-02-26 | 2005-09-01 | Tafs William D. | Methods and systems for automatically tracking information during flight |
US20050222721A1 (en) * | 2004-03-31 | 2005-10-06 | Chen Sherwin S | Systems and methods for handling the display and receipt of aircraft control information |
US20050224662A1 (en) * | 2004-02-27 | 2005-10-13 | Lacy Douglas S | Aircraft leading edge device systems and corresponding sizing methods |
US20050228674A1 (en) * | 2004-03-31 | 2005-10-13 | Gunn Peter D | Methods and systems for displaying assistance messages to aircraft operators |
US20050231390A1 (en) * | 2004-03-31 | 2005-10-20 | Crane Jean M | Methods and systems for controlling the display of information at an aircraft flight deck |
US6978971B1 (en) | 2004-06-15 | 2005-12-27 | The Boeing Company | Methods and apparatuses for controlling airflow proximate to engine/airfoil systems |
US20060000952A1 (en) * | 2004-06-15 | 2006-01-05 | Rampton Scott N | Aircraft leading edge apparatuses and corresponding methods |
US20060004498A1 (en) * | 2004-06-30 | 2006-01-05 | Gunn Peter D | Methods and systems for displaying the source of aircraft control instructions |
US20060049308A1 (en) * | 2004-09-08 | 2006-03-09 | Good Mark S | Systems and methods for providing differential motion to wing high lift devices |
US20060102803A1 (en) * | 2004-09-30 | 2006-05-18 | Wheaton James M | Leading edge flap apparatuses and associated methods |
US20060169847A1 (en) * | 2005-01-31 | 2006-08-03 | Konings Christopher A | Aerospace vehicle leading edge slat devices and corresponding methods |
US20060175468A1 (en) * | 2005-02-04 | 2006-08-10 | Huynh Neal V | Systems and methods for controlling aircraft flaps and spoilers |
US20060184253A1 (en) * | 2005-02-03 | 2006-08-17 | International Business Machines Corporation | Intelligent method of organizing and presenting operational mode information on an instrument panel of a flight deck |
US20060220914A1 (en) * | 2003-06-06 | 2006-10-05 | Sikora Joseph A | Methods and systems for displaying aircraft engine characteristics |
US20060261217A1 (en) * | 2005-05-20 | 2006-11-23 | Nicolaas Voogt | Aerospace vehicle fairing systems and associated methods |
US7142131B2 (en) | 2002-07-03 | 2006-11-28 | The Boeing Company | Method and apparatus for displaying aircraft engine characteristics |
US20060284022A1 (en) * | 2005-06-21 | 2006-12-21 | Harrigan Jeffery S | Aerospace vehicle yaw generating systems and associated methods |
US7177731B2 (en) | 2004-03-10 | 2007-02-13 | The Boeing Company | Systems and methods for handling aircraft information received from an off-board source |
US20070034748A1 (en) * | 2005-08-10 | 2007-02-15 | The Boeing Company | Aerospace vehicle flow body systems and associated methods |
US20070060316A1 (en) * | 2003-04-09 | 2007-03-15 | Stargames Corporation Party Limited | Communal slot system and method for operating same |
US20070114329A1 (en) * | 2005-11-21 | 2007-05-24 | The Boeing Company | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
US20070114328A1 (en) * | 2005-11-21 | 2007-05-24 | The Boeing Company | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated mehtods |
US20070164877A1 (en) * | 2004-06-30 | 2007-07-19 | Mumaw Randall J | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
US20070180390A1 (en) * | 2006-01-31 | 2007-08-02 | Honeywell International, Inc. | Enhanced information display system and method |
US20070176051A1 (en) * | 2005-04-27 | 2007-08-02 | Good Mark S | Actuation device positioning systems and associated methods, including aircraft spoiler droop systems |
US20070252040A1 (en) * | 2005-09-07 | 2007-11-01 | Kordel Jan A | Seal assemblies for use with drooped spoilers and other control surfaces on aircraft |
US20080001036A1 (en) * | 2005-05-20 | 2008-01-03 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
US7363119B2 (en) | 2004-03-10 | 2008-04-22 | The Boeing Company | Methods and systems for automatically displaying information, including air traffic control instructions |
US20090055767A1 (en) * | 2007-08-20 | 2009-02-26 | Airbus France | Method and system for synchronizing a display context |
US20090072093A1 (en) * | 2006-06-14 | 2009-03-19 | The Boeing Company | Link mechanisms for gapped rigid krueger flaps, and associated systems and methods |
WO2009035757A2 (en) * | 2007-07-11 | 2009-03-19 | Sandel Avionics, Inc. | Flight management system having interactive flight plan selection arrangement |
US20090146016A1 (en) * | 2007-12-11 | 2009-06-11 | The Boeing Company | Trailing edge device catchers and associated systems and methods |
US20090150014A1 (en) * | 2007-12-07 | 2009-06-11 | Thales | Complex automated system and method of displaying automation aids |
US20090177339A1 (en) * | 2005-03-03 | 2009-07-09 | Chen Robert H | Optimization and Mechanization of Periodic Flight |
US7580235B2 (en) | 2004-10-12 | 2009-08-25 | The Boeing Company | Systems and methods for monitoring and controlling circuit breakers |
US20090306887A1 (en) * | 2008-06-04 | 2009-12-10 | The Boeing Company | System and Method for Taxi Route Entry Parsing |
US20100125403A1 (en) * | 2008-11-14 | 2010-05-20 | Clark Samuel T | Display of Taxi Route Control Point Information |
US20100131123A1 (en) * | 2008-11-24 | 2010-05-27 | Honeywell International Inc. | Input/steering mechanisms and aircraft control systems |
USRE41396E1 (en) | 2004-06-17 | 2010-06-22 | The Boeing Company | Method and system for entering and displaying ground taxi instructions |
US7783393B2 (en) | 2004-06-30 | 2010-08-24 | The Boeing Company | Enhanced vertical situation display |
US7813845B2 (en) | 2002-02-19 | 2010-10-12 | The Boeing Company | Airport taxiway navigation system |
US20110125347A1 (en) * | 2002-09-20 | 2011-05-26 | The Boeing Company | Apparatuses and methods for displaying autoflight information |
US7954769B2 (en) | 2007-12-10 | 2011-06-07 | The Boeing Company | Deployable aerodynamic devices with reduced actuator loads, and related systems and methods |
USRE44313E1 (en) | 1996-10-22 | 2013-06-25 | The Boeing Company | Airplane with unswept slotted cruise wing airfoil |
US9534922B1 (en) * | 2012-09-25 | 2017-01-03 | Rockwell Collins, Inc. | Aircraft recording system, device, and method responsive to a new command not stated in a flight plan |
DE102017104903A1 (en) * | 2016-03-08 | 2017-09-14 | Gulfstream Aerospace Corporation | Reconfigurable flight control panels for an aircraft of the transport category |
US20170355467A1 (en) * | 2016-06-14 | 2017-12-14 | Deutsches Zentrum Fuer Luft- Und Raumfahrt | Automatic flight controller, aircraft cockpit, method for operating and automatic flight controller and computer program |
US10228692B2 (en) * | 2017-03-27 | 2019-03-12 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US11769417B2 (en) | 2020-08-05 | 2023-09-26 | Honeywell International Inc. | Methods and systems for representing flight mode annunciation information on a cockpit display |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2882439B1 (en) * | 2005-02-18 | 2007-04-20 | Thales Sa | ONBOARD DEVICE FOR MANAGING DATA EXCHANGED BY AN AIRCRAFT WITH THE SOIL OR OTHER AIRCRAFT |
US8812223B2 (en) * | 2007-01-23 | 2014-08-19 | Honeywell International Inc. | Systems and methods for alerting aircraft crew members of a runway assignment for an aircraft takeoff sequence |
DK2500261T3 (en) | 2007-08-09 | 2017-07-17 | Lta Corp | Lens-shaped airship and associated control units |
US8894002B2 (en) | 2010-07-20 | 2014-11-25 | Lta Corporation | System and method for solar-powered airship |
US8694184B1 (en) * | 2010-09-21 | 2014-04-08 | The Boeing Company | Methods, systems, and apparatus for layered and multi-indexed flight management interface |
EP2691295B1 (en) | 2011-03-31 | 2015-02-18 | LTA Corporation | Airship including aerodynamic structures |
US9547929B1 (en) | 2011-04-25 | 2017-01-17 | Honeywell International Inc. | User interface device for adaptive systems |
US9424753B2 (en) * | 2011-07-08 | 2016-08-23 | General Electric Company | Simplified user interface for an aircraft |
US8761971B2 (en) | 2012-01-11 | 2014-06-24 | The Boeing Company | Auto-flight system pilot interface |
US8645009B2 (en) * | 2012-02-23 | 2014-02-04 | Ge Aviation Systems Llc | Method for flying an aircraft along a flight path |
US8886372B2 (en) * | 2012-09-07 | 2014-11-11 | The Boeing Company | Flight deck touch-sensitive hardware controls |
FR2997383B1 (en) * | 2012-10-25 | 2014-12-26 | Eurocopter France | GIRAVION EQUIPPED WITH A JOINT ASSEMBLY STRUCTURE OF A CONTROL PANEL AND AN AIRCRAFT BAY PRIORALLY EQUIPPED WITH A WIRELESS UNIT ASSEMBLY |
US20140267051A1 (en) * | 2013-03-14 | 2014-09-18 | Garmin International, Inc. | Hybrid aviation user interface |
US9126694B2 (en) | 2013-07-15 | 2015-09-08 | Honeywell International Inc. | Display systems and methods for providing displays having an integrated autopilot functionality |
EA201690928A1 (en) | 2013-11-04 | 2016-10-31 | ЭлТиЭй КОРПОРЕЙШН | CARGO DIRIJABL |
US9250629B2 (en) * | 2014-04-02 | 2016-02-02 | Sikorsky Aircraft Corporation | Terrain adaptive flight control |
USD750545S1 (en) * | 2014-09-23 | 2016-03-01 | Embraer S.A. | Aircraft guidance subpanel |
USD920215S1 (en) * | 2014-10-13 | 2021-05-25 | Gulfstream Aerospace Corporation | Instrument panel for aircraft |
US9536435B1 (en) | 2015-07-13 | 2017-01-03 | Double Black Aviation Technology L.L.C. | System and method for optimizing an aircraft trajectory |
US9530318B1 (en) * | 2015-07-28 | 2016-12-27 | Honeywell International Inc. | Touchscreen-enabled electronic devices, methods, and program products providing pilot handwriting interface for flight deck systems |
GB2541202B (en) * | 2015-08-11 | 2021-06-23 | Agilent Technologies Inc | Stacked layer-type member with integrated functional component |
FR3047631B1 (en) * | 2016-02-10 | 2018-04-20 | Airbus Operations (S.A.S.) | DEVICE FOR CONTROLLING AN AIRCRAFT COMMUNICATION SYSTEM |
US10214298B2 (en) | 2016-02-23 | 2019-02-26 | Sikorsky Aircraft Corporation | Station deselect and cueing system |
US10577082B2 (en) * | 2016-08-12 | 2020-03-03 | Sikorsky Aircraft Corporation | Cockpit control of a fixed wing aircraft |
Citations (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3967098A (en) * | 1975-04-14 | 1976-06-29 | Harnagel Gary L | Navigation instrument |
US4147056A (en) * | 1977-09-23 | 1979-04-03 | Sundstrand Data Control, Inc. | Multi-segment head-up display for aircraft |
US4196474A (en) * | 1974-02-11 | 1980-04-01 | The Johns Hopkins University | Information display method and apparatus for air traffic control |
US4212064A (en) * | 1977-04-05 | 1980-07-08 | Simmonds Precision Products, Inc. | Performance advisory system |
US4247843A (en) * | 1978-08-23 | 1981-01-27 | Sperry Corporation | Aircraft flight instrument display system |
US4274096A (en) * | 1979-07-09 | 1981-06-16 | Dennison Terry A | Aircraft proximity monitoring system |
US4325123A (en) * | 1978-07-28 | 1982-04-13 | The Boeing Company | Economy performance data avionic system |
US4471439A (en) * | 1982-09-20 | 1984-09-11 | The Boeing Company | Method and apparatus for aircraft pitch and thrust axes control |
US4536843A (en) * | 1982-09-30 | 1985-08-20 | The Boeing Company | Total energy based flight control system |
USH139H (en) * | 1985-01-10 | 1986-10-07 | The United States of America as reperesented by the Secretary of the Air Force | Removable cleanable antireflection shield |
US4729102A (en) * | 1984-10-24 | 1988-03-01 | Sundstrand Data Control, Inc. | Aircraft data acquisition and recording system |
US4746981A (en) * | 1986-06-16 | 1988-05-24 | Imtech International, Inc. | Multiple screen digital video display |
US4845495A (en) * | 1988-02-17 | 1989-07-04 | Allied-Signal Inc. | Integrated avionics control and display arrangement |
US4939661A (en) * | 1988-09-09 | 1990-07-03 | World Research Institute For Science And Technology | Apparatus for a video marine navigation plotter with electronic charting and methods for use therein |
US5243339A (en) * | 1988-06-07 | 1993-09-07 | The Boeing Company | Flight crew response monitor |
US5289185A (en) * | 1990-09-05 | 1994-02-22 | Aerospatiale Societe Nationale Industrielle | Process for displaying flying aid symbols on a screen on board an aircraft |
US5329277A (en) * | 1990-12-05 | 1994-07-12 | Smiths Industries Public Limited Company | Displays and display systems |
US5337982A (en) * | 1991-10-10 | 1994-08-16 | Honeywell Inc. | Apparatus and method for controlling the vertical profile of an aircraft |
US5416705A (en) * | 1993-04-19 | 1995-05-16 | Honeywell Inc. | Method and apparatus for use of alphanumeric display as data entry scratchpad |
US5420582A (en) * | 1989-09-15 | 1995-05-30 | Vdo Luftfahrtgerate Werk Gmbh | Method and apparatus for displaying flight-management information |
US5454074A (en) * | 1991-09-18 | 1995-09-26 | The Boeing Company | Electronic checklist system |
US5499025A (en) * | 1987-08-06 | 1996-03-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Airplane takeoff and landing performance monitoring system |
US5519392A (en) * | 1992-07-31 | 1996-05-21 | Sextant Avionique | Method and device for assisting navigation |
US5523949A (en) * | 1994-08-05 | 1996-06-04 | The Boeing Company | Method and apparatus for an improved autopilot system providing for late runway change |
US5668542A (en) * | 1995-07-03 | 1997-09-16 | The United States Of America As Represented By The Secretary Of The Air Force | Color cockpit display for aircraft systems |
US5739769A (en) * | 1992-02-20 | 1998-04-14 | Anita Trotter-Cox | Method of intelligence support of aircraft crew |
US5745054A (en) * | 1996-11-18 | 1998-04-28 | Honeywell Inc. | Method and apparatus for conformal runway alignment on a head up display |
US5790209A (en) * | 1994-11-10 | 1998-08-04 | Northrop Grumman Corporation | Canopy transmittal reflectance control and information display |
US5802492A (en) * | 1994-06-24 | 1998-09-01 | Delorme Publishing Company, Inc. | Computer aided routing and positioning system |
US5825306A (en) * | 1995-08-25 | 1998-10-20 | Aisin Aw Co., Ltd. | Navigation system for vehicles |
US5875998A (en) * | 1996-02-05 | 1999-03-02 | Daimler-Benz Aerospace Airbus Gmbh | Method and apparatus for optimizing the aerodynamic effect of an airfoil |
US5916297A (en) * | 1996-04-24 | 1999-06-29 | The Boeing Company | Method and apparatus for an improved flight management system providing for synchronization of control display units in an alternate navigation mode |
US5940013A (en) * | 1995-08-28 | 1999-08-17 | Anita Trotter-Cox | Method and system for intelligence support and information presentation to aircraft crew and air traffic controllers on in-flight emergency situations |
US5941930A (en) * | 1994-09-22 | 1999-08-24 | Aisin Aw Co., Ltd. | Navigation system |
US5971318A (en) * | 1997-02-14 | 1999-10-26 | Lustre; Tony | Safety system for visual flight references system |
US5978715A (en) * | 1997-10-15 | 1999-11-02 | Dassault Aviation | Apparatus and method for aircraft display and control |
US5983158A (en) * | 1995-09-08 | 1999-11-09 | Aisin Aw Co., Ltd. | Navigation system for vehicles |
US5995290A (en) * | 1998-09-17 | 1999-11-30 | Northrop Grumman Corporation | Replacement heads-up display system |
US6038498A (en) * | 1997-10-15 | 2000-03-14 | Dassault Aviation | Apparatus and mehod for aircraft monitoring and control including electronic check-list management |
US6057786A (en) * | 1997-10-15 | 2000-05-02 | Dassault Aviation | Apparatus and method for aircraft display and control including head up display |
US6067502A (en) * | 1996-08-21 | 2000-05-23 | Aisin Aw Co., Ltd. | Device for displaying map |
US6072473A (en) * | 1992-03-26 | 2000-06-06 | Aerospatiale-Societe Nationale Industrielle | Method and device for multimode and multifunction communication between an operator and one or more processors |
US6075315A (en) * | 1995-03-20 | 2000-06-13 | Nec Corporation | Field-emission cold cathode having improved insulating characteristic and manufacturing method of the same |
US6085129A (en) * | 1997-11-14 | 2000-07-04 | Rockwell Collins, Inc. | Integrated vertical profile display |
US6098014A (en) * | 1991-05-06 | 2000-08-01 | Kranz; Peter | Air traffic controller protection system |
US6112141A (en) * | 1997-10-15 | 2000-08-29 | Dassault Aviation | Apparatus and method for graphically oriented aircraft display and control |
US6121899A (en) * | 1999-04-16 | 2000-09-19 | Rockwell Collins, Inc. | Impending aircraft tail strike warning display symbology |
US6128553A (en) * | 1998-07-24 | 2000-10-03 | Rockwell Collins, Inc. | Menu control knob |
US6188937B1 (en) * | 1998-09-30 | 2001-02-13 | Honeywell International Inc. | Methods and apparatus for annunciation of vehicle operational modes |
US6246320B1 (en) * | 1999-02-25 | 2001-06-12 | David A. Monroe | Ground link with on-board security surveillance system for aircraft and other commercial vehicles |
US6262720B1 (en) * | 1998-07-24 | 2001-07-17 | The Boeing Company | Electronic checklist system with checklist inhibiting |
US6275172B1 (en) * | 1996-02-29 | 2001-08-14 | L-3 Communications Corporation | Method and apparatus for improving performance of aircraft display utilizing TCAS computer and mode S transponder |
US6278913B1 (en) * | 1999-03-12 | 2001-08-21 | Mil-Com Technologies Pte Ltd. | Automated flight data management system |
US6335694B1 (en) * | 2000-02-01 | 2002-01-01 | Rockwell Collins, Inc. | Airborne audio flight information system |
US20020004695A1 (en) * | 2000-02-03 | 2002-01-10 | Glenn Matthew H. | Event based aircraft image and data recording system |
US20020016654A1 (en) * | 2000-06-29 | 2002-02-07 | Ing Ng Chun | Method of monitoring and displaying health performance of an aircraft engine |
US6346892B1 (en) * | 1999-05-07 | 2002-02-12 | Honeywell International Inc. | Method and apparatus for aircraft systems management |
US20020033837A1 (en) * | 2000-01-10 | 2002-03-21 | Munro James A. | Multiple-image viewer |
US6362750B1 (en) * | 1997-10-06 | 2002-03-26 | Siemens Ag | Process and device for automatically supported guidance of aircraft to a parking position |
US6381519B1 (en) * | 2000-09-19 | 2002-04-30 | Honeywell International Inc. | Cursor management on a multiple display electronic flight instrumentation system |
US6381538B1 (en) * | 2000-05-26 | 2002-04-30 | Aerotech Research (U.S.A.), Inc. | Vehicle specific hazard estimation, presentation, and route planning based on meteorological and other environmental data |
US6405975B1 (en) * | 1995-12-19 | 2002-06-18 | The Boeing Company | Airplane ground maneuvering camera system |
US6443399B1 (en) * | 2000-07-14 | 2002-09-03 | Honeywell International Inc. | Flight control module merged into the integrated modular avionics |
US6449556B1 (en) * | 2000-04-19 | 2002-09-10 | Rockwell Collins, Inc. | Method and apparatus for designating waypoints on a navigational display |
US6466235B1 (en) * | 1999-09-08 | 2002-10-15 | Rockwell Collins, Inc. | Method and apparatus for interactively and automatically selecting, controlling and displaying parameters for an avionics electronic flight display system |
US6473675B2 (en) * | 2000-04-25 | 2002-10-29 | Honeywell International, Inc. | Aircraft communication frequency nomination |
US6512527B1 (en) * | 1999-09-08 | 2003-01-28 | Rockwell Collins, Inc. | Method and apparatus for interactively selecting display parameters for an avionices flight display |
US20030025719A1 (en) * | 1999-09-08 | 2003-02-06 | George W. Palmer | Method and apparatus for interactively selecting, controlling and displaying parameters for an avionics radio tuning unit |
US6542796B1 (en) * | 2000-11-18 | 2003-04-01 | Honeywell International Inc. | Methods and apparatus for integrating, organizing, and accessing flight planning and other data on multifunction cockpit displays |
US6614419B1 (en) * | 1999-09-08 | 2003-09-02 | Honeywell International Inc. | User interface for use in a multifunctional display (MFD) |
US6633810B1 (en) * | 2000-09-19 | 2003-10-14 | Honeywell International Inc. | Graphical system and method for defining pilot tasks, patterns and constraints |
US6633801B1 (en) * | 1999-10-20 | 2003-10-14 | Stanley H. Durlacher | Method and apparatus for providing information to pilots |
US6636786B2 (en) * | 2001-10-18 | 2003-10-21 | The Boeing Company | Aircraft energy systems management method |
US20040004557A1 (en) * | 2002-07-03 | 2004-01-08 | Sikora Joseph A. | Method and apparatus for displaying aircraft engine characteristics |
US6690299B1 (en) * | 1998-01-12 | 2004-02-10 | Rockwell Collins, Inc. | Primary flight display with tactical 3-D display including three view slices |
US6693559B1 (en) * | 2000-09-19 | 2004-02-17 | Honeywell International Inc. | System and method for flight mode annunciators |
US6697718B2 (en) * | 2001-02-26 | 2004-02-24 | Airbus France | Device for monitoring a plurality of systems of an aircraft, in particular of a transport aircraft |
US6696980B1 (en) * | 2002-02-28 | 2004-02-24 | Garmin International, Inc. | Cockpit instrument panel systems and methods of presenting cockpit instrument data |
US6707387B2 (en) * | 2001-05-17 | 2004-03-16 | Calsonic Kansei Corporation | Operating device for operating apparatus mounted on vehicle |
US20040064250A1 (en) * | 2001-01-11 | 2004-04-01 | Hideaki Hirano | Navigation device and route retrieving device |
US6720891B2 (en) * | 2001-12-26 | 2004-04-13 | The Boeing Company | Vertical situation display terrain/waypoint swath, range to target speed, and blended airplane reference |
US20040095466A1 (en) * | 2002-11-15 | 2004-05-20 | Franco Galasso | Method and system for acquiring and recording data relative to the movement of an aircraft |
US20040111192A1 (en) * | 1998-10-16 | 2004-06-10 | Naimer Hubert L. | Flight plan intent alert system and method |
US6753891B1 (en) * | 2000-10-25 | 2004-06-22 | Honeywell International Inc. | Aircraft electronic checklist system with hyperlinks |
US6784869B1 (en) * | 2000-11-15 | 2004-08-31 | The Boeing Company | Cursor and display management system for multi-function control and display system |
US20040183697A1 (en) * | 2003-03-22 | 2004-09-23 | Rogers Steven P. | Symbology for representing aircraft position |
US20040182528A1 (en) * | 2003-03-22 | 2004-09-23 | Franz-Wilhelm Rieder | Sectional door |
US6856864B1 (en) * | 2000-11-17 | 2005-02-15 | Honeywell International Inc. | Method and system for entering data within a flight plan entry field |
US6870490B2 (en) * | 2001-08-23 | 2005-03-22 | Honeywell International Inc. | Display of altitude and path capture trajectories |
US6871124B1 (en) * | 2003-06-06 | 2005-03-22 | Rockwell Collins | Method and system for guiding an aircraft along a preferred flight path having a random origin |
US6898492B2 (en) * | 2000-03-15 | 2005-05-24 | De Leon Hilary Laing | Self-contained flight data recorder with wireless data retrieval |
US20050178903A1 (en) * | 2003-12-24 | 2005-08-18 | Boorman Daniel J. | Systems and methods for presenting and obtaining flight control information |
US6934608B2 (en) * | 2003-07-09 | 2005-08-23 | Honeywell International Inc. | Integrated vertical situation display |
US6946976B1 (en) * | 2002-02-28 | 2005-09-20 | Garmin International, Inc. | Cockpit display systems and methods of presenting data on cockpit displays |
US20060004496A1 (en) * | 2004-06-30 | 2006-01-05 | The Boeing Company | Enhanced vertical situation display |
US6992596B2 (en) * | 2002-04-04 | 2006-01-31 | Megadata | Simplified flight track display system |
US7030892B1 (en) * | 2000-09-19 | 2006-04-18 | Honeywell International Inc. | Methods and apparatus for displaying information |
US7188007B2 (en) * | 2003-12-24 | 2007-03-06 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
Family Cites Families (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB853034A (en) * | 1957-09-17 | 1960-11-02 | Smith & Sons Ltd S | Improvements in or relating to visual indicators |
GB886136A (en) * | 1960-01-20 | 1962-01-03 | Smith & Sons Ltd S | Improvements in or relating to visual indicating devices for use in aircraft |
FR2604545B1 (en) | 1986-09-30 | 1989-06-09 | Dassault Electronique | FLIGHT RECORDING DEVICE WITH STATIC ELECTRONIC MEMORY |
US3577120A (en) | 1968-10-14 | 1971-05-04 | Boeing Co | Display system for use in vtol-type aircraft |
US3696671A (en) * | 1970-09-18 | 1972-10-10 | Hughes Aircraft Co | Aircraft horizontal situation navigation display system |
US3706969A (en) | 1971-03-17 | 1972-12-19 | Forney Eng Co | Airport ground aircraft automatic taxi route selecting and traffic control system |
US3784969A (en) | 1971-12-29 | 1974-01-08 | V Wilckens | Aircraft landing display apparatus |
US3848833A (en) * | 1972-07-14 | 1974-11-19 | Sperry Rand Corp | Aircraft automatic flight control system |
US4035705A (en) * | 1975-03-17 | 1977-07-12 | Sperry Rand Corporation | Fail-safe dual channel automatic pilot with maneuver limiting |
US4043526A (en) * | 1976-02-23 | 1977-08-23 | The United States Of America As Represented By The Secretary Of The Navy | Autopilot hardover failure protection system |
US4224669A (en) * | 1977-12-22 | 1980-09-23 | The Boeing Company | Minimum safe altitude monitoring, indication and warning system |
US4224569A (en) * | 1978-07-19 | 1980-09-23 | National Semiconductor Corporation | Display stabilization circuit |
US4424038A (en) * | 1980-01-31 | 1984-01-03 | Sanders Associates, Inc. | Inflight aircraft training system |
GB2091526B (en) | 1981-01-13 | 1985-10-02 | Harris Corp | Digital map generator and display system |
DE3315386A1 (en) | 1983-04-28 | 1984-10-31 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Display device for the pictorial representation of measurement values |
DE3468762D1 (en) | 1983-05-27 | 1988-02-18 | Vdo Schindling | Information input arrangement |
US4642775A (en) * | 1984-05-25 | 1987-02-10 | Sundstrand Data Control, Inc. | Airborne flight planning and information system |
US4642038A (en) * | 1985-11-25 | 1987-02-10 | Hughes Aircraft Company | Continuous in situ fiberization substrate material mechanism |
US4792906A (en) | 1986-08-29 | 1988-12-20 | The Boeing Company | Navigational apparatus and methods for displaying aircraft position with respect to a selected vertical flight path profile |
US4821216A (en) | 1987-04-10 | 1989-04-11 | Howell Instruments, Inc. | Multifunction meter for use in an aircraft |
US4860007A (en) * | 1988-01-15 | 1989-08-22 | The Boeing Company | Integrated primary flight display |
US5072218A (en) | 1988-02-24 | 1991-12-10 | Spero Robert E | Contact-analog headup display method and apparatus |
US5050081A (en) | 1988-11-14 | 1991-09-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and system for monitoring and displaying engine performance parameters |
GB8827345D0 (en) * | 1988-11-23 | 1988-12-29 | Smiths Industries Plc | Aircraft instrument systems |
US5070458A (en) | 1989-03-31 | 1991-12-03 | Honeywell Inc. | Method of analyzing and predicting both airplane and engine performance characteristics |
FR2648565B1 (en) * | 1989-06-16 | 1991-10-11 | Schlumberger Ind Sa | INPUT CIRCUIT FOR ELECTRICAL ENERGY METER |
US5200902A (en) * | 1990-10-09 | 1993-04-06 | Pilley Harold R | Airport control/management system |
US6195609B1 (en) * | 1993-09-07 | 2001-02-27 | Harold Robert Pilley | Method and system for the control and management of an airport |
JPH07115677B2 (en) * | 1990-10-30 | 1995-12-13 | 嘉三 藤本 | Flight information recording method and apparatus for aircraft |
US5222691A (en) * | 1991-08-28 | 1993-06-29 | United Technologies Corporation | Automatic turn coordination trim control for rotary wing aircraft |
US5238203A (en) * | 1991-08-28 | 1993-08-24 | United Technologies Corporation | High speed turn coordination for rotary wing aircraft |
DE4140406C2 (en) | 1991-12-07 | 1998-09-03 | Daimler Benz Aerospace Ag | Procedures for orienting, navigating, guiding and monitoring aircraft |
US5310136A (en) * | 1992-05-19 | 1994-05-10 | United Technologies Corporation | Helicopter integrated fire and flight control having constraint limiting control |
CA2099953C (en) | 1992-07-24 | 2006-11-14 | Engin Oder | Method and apparatus for assisting aerodyne piloting from a large volume of stored data |
US5343395A (en) * | 1992-08-26 | 1994-08-30 | Watts Alan B | Aircraft landing guidance system and method |
US5310135A (en) * | 1992-10-28 | 1994-05-10 | United Technologies Corporation | Helicopter integrated fire and flight control having coordinated area bombing control |
US5508928A (en) * | 1992-11-17 | 1996-04-16 | Honeywell, Inc. | Aircraft survivability system state management |
FR2702576B1 (en) * | 1993-03-12 | 1995-06-09 | Sextant Avionique | Terminal for a man / machine dialogue with a computer system involving a plurality of display elements. |
US6314366B1 (en) | 1993-05-14 | 2001-11-06 | Tom S. Farmakis | Satellite based collision avoidance system |
US5542086A (en) * | 1993-07-06 | 1996-07-30 | Novell, Inc. | Document type metamorphosis in an object-oriented operating system having a graphical user interface |
US5519618A (en) * | 1993-08-02 | 1996-05-21 | Massachusetts Institute Of Technology | Airport surface safety logic |
US5593114A (en) * | 1994-04-19 | 1997-01-14 | Mcdonnell Douglas Corporation | Synthetic vision automatic landing system |
FR2728374A1 (en) * | 1994-12-15 | 1996-06-21 | Aerospatiale | METHOD AND APPARATUS FOR PROVIDING INFORMATION, ALERT, OR ALARM FOR AN AIRCRAFT NEAR THE GROUND |
US5746392A (en) * | 1995-05-15 | 1998-05-05 | The Boeing Company | Autopilot/flight director underspeed protection system |
US5803408A (en) * | 1995-05-15 | 1998-09-08 | The Boeing Company | Autopilot/flight director stall protection system |
US5629691A (en) * | 1995-05-26 | 1997-05-13 | Hughes Electronics | Airport surface monitoring and runway incursion warning system |
US5712785A (en) | 1995-06-23 | 1998-01-27 | Northrop Grumman Corporation | Aircraft landing determination apparatus and method |
US6606034B1 (en) * | 1995-07-31 | 2003-08-12 | Honeywell International Inc. | Terrain awareness system |
US5715163A (en) | 1995-08-22 | 1998-02-03 | The Boeing Company | Cursor controlled navigation system for aircraft |
US5745866A (en) * | 1996-01-09 | 1998-04-28 | Trimble Navigation Limited | Cardinal-up graphic map display system |
FR2743892B1 (en) | 1996-01-19 | 1998-02-13 | Sextant Avionique | AIRCRAFT HANDLING ASSISTANCE SYSTEM USING A HEADSET VIEWER |
US5736955A (en) * | 1996-04-10 | 1998-04-07 | Roif; Henry I. | Aircraft landing/taxiing system using lack of reflected radar signals to determine landing/taxiing area |
AU4643297A (en) | 1996-06-03 | 1998-01-07 | Mcdonnell Douglas Helicopter Company | Portable flight guidance and tracking system |
US5901927A (en) * | 1996-07-18 | 1999-05-11 | Honeywell Inc. | Ground strike protection function for aircraft autopilot |
FR2752934B1 (en) * | 1996-08-30 | 1998-11-13 | Sextant Avionique | METHOD FOR ASSISTING THE PILOTAGE OF AN AERODYNE |
DE19635679A1 (en) * | 1996-09-03 | 1998-03-05 | Siemens Ag | Man-machine interface (MMI) for airports and air traffic purposes |
KR100233710B1 (en) * | 1996-09-25 | 1999-12-01 | 윤종용 | Method for synchronizing synchronous information of each base station in cordtess telephone system |
US5995901A (en) | 1996-09-30 | 1999-11-30 | Rockwell International Corporation | Automatic view adjusting flight plan display |
US5920321A (en) | 1996-09-30 | 1999-07-06 | Rockwell International Corporation | Flight management system with 3-dimensional flight path display |
US5844503A (en) | 1996-10-01 | 1998-12-01 | Honeywell Inc. | Method and apparatus for avionics management |
US6199015B1 (en) * | 1996-10-10 | 2001-03-06 | Ames Maps, L.L.C. | Map-based navigation system with overlays |
US5884219A (en) * | 1996-10-10 | 1999-03-16 | Ames Maps L.L.C. | Moving map navigation system |
CA2202409C (en) | 1997-04-11 | 1998-04-07 | Carl W. Millard | Howgozit airspeed indicator system |
JP3153496B2 (en) | 1997-05-21 | 2001-04-09 | 株式会社日立製作所 | Communication service providing method using artificial satellite with long stay time in zenith direction |
JPH1125426A (en) * | 1997-06-30 | 1999-01-29 | Toshiba Corp | Spin valve mr head and magnetic disk device having the same head |
US6389333B1 (en) | 1997-07-09 | 2002-05-14 | Massachusetts Institute Of Technology | Integrated flight information and control system |
JPH1165436A (en) | 1997-08-21 | 1999-03-05 | Toyota Motor Corp | Data selection support device, and map data processing system and processor including same support device |
US6542086B2 (en) * | 1997-09-22 | 2003-04-01 | Siemens Aktiengesellschaft | Docking system for airport terminals |
AU2652299A (en) * | 1998-01-09 | 1999-07-26 | Orincon Technologies, Inc. | System and method for classifying and tracking aircraft and vehicles on the grounds of an airport |
US6142421A (en) * | 1998-01-13 | 2000-11-07 | Science Applications International Corporation | Vehicle refueling system |
AU2559399A (en) | 1998-01-16 | 1999-08-02 | Thresholds Unlimited, Inc. | Head up display and vision system |
US6154151A (en) | 1998-06-16 | 2000-11-28 | Rockwell Collins, Inc. | Integrated vertical situation display for aircraft |
US7640083B2 (en) * | 2002-11-22 | 2009-12-29 | Monroe David A | Record and playback system for aircraft |
US6118385A (en) | 1998-09-09 | 2000-09-12 | Honeywell Inc. | Methods and apparatus for an improved control parameter value indicator |
JP2000098880A (en) * | 1998-09-28 | 2000-04-07 | Casio Comput Co Ltd | Position display control device, position display control method, and recording medium |
US6545601B1 (en) * | 1999-02-25 | 2003-04-08 | David A. Monroe | Ground based security surveillance system for aircraft and other commercial vehicles |
NL1013556C2 (en) * | 1999-07-26 | 2001-01-29 | Robertus Gerardus De Boer | Device for determining the position of vehicles at an airport. |
US6470224B1 (en) * | 1999-10-01 | 2002-10-22 | Hamilton Sundstrand Corporation | Configurable aircraft power system |
US6442394B1 (en) * | 1999-10-01 | 2002-08-27 | Ericsson Inc. | Systems and methods for providing vehicular traffic information to a mobile station (MS) through a wireless telecommunications network |
US6289277B1 (en) * | 1999-10-07 | 2001-09-11 | Honeywell International Inc. | Interfaces for planning vehicle routes |
US6314343B1 (en) | 1999-12-23 | 2001-11-06 | Sikorsky Aircraft Corp. | Aircraft flight mode selector system |
US6313759B1 (en) | 2000-03-16 | 2001-11-06 | Rockwell Collins | System and method of communication between an aircraft and a ground control station |
US6711475B2 (en) * | 2000-03-16 | 2004-03-23 | The Johns Hopkins University | Light detection and ranging (LIDAR) mapping system |
JP4244107B2 (en) | 2000-03-17 | 2009-03-25 | アルパイン株式会社 | Destination information retrieval method for navigation device and navigation device |
US6571166B1 (en) * | 2000-06-23 | 2003-05-27 | Rockwell Collins, Inc. | Airport surface operation advisory system |
US6507739B1 (en) | 2000-06-26 | 2003-01-14 | Motorola, Inc. | Apparatus and methods for controlling a cellular communications network having airborne transceivers |
JP2002013935A (en) | 2000-06-27 | 2002-01-18 | Nissan Motor Co Ltd | Navigation device |
US20030045994A1 (en) * | 2000-06-27 | 2003-03-06 | Stratton Richard L. | Airport ground-control system and method |
US6561463B1 (en) * | 2000-07-14 | 2003-05-13 | Honeywell International Inc. | Flight control module with integrated spoiler actuator control electronics |
US7181478B1 (en) * | 2000-08-11 | 2007-02-20 | General Electric Company | Method and system for exporting flight data for long term storage |
US6980198B1 (en) * | 2000-09-19 | 2005-12-27 | Honeywell International Inc. | Multifunction keyboard for advanced cursor driven avionic flight decks |
US6707475B1 (en) * | 2000-09-19 | 2004-03-16 | Honeywell International Inc. | System for selecting and displaying flight management system procedures |
US7724240B2 (en) | 2000-10-06 | 2010-05-25 | Honeywell International Inc. | Multifunction keyboard for advanced cursor driven avionic flight decks |
US6522958B1 (en) * | 2000-10-06 | 2003-02-18 | Honeywell International Inc. | Logic method and apparatus for textually displaying an original flight plan and a modified flight plan simultaneously |
US6922631B1 (en) | 2000-10-06 | 2005-07-26 | Honeywell International Inc. | System and method for textually displaying an original flight plan and a modified flight plan simultaneously |
US6683556B2 (en) * | 2000-10-10 | 2004-01-27 | Sandel Avionics, Inc. | Method and apparatus for predictive altitude display |
FR2817831B1 (en) | 2000-12-13 | 2003-05-30 | Eads Airbus Sa | STEERING INDICATOR FOR AN AIRCRAFT FOR PROVIDING THE ENGINE PRESSURE RATIO |
US7148815B2 (en) | 2000-12-22 | 2006-12-12 | Byron Scott Derringer | Apparatus and method for detecting objects located on an airport runway |
US7216069B2 (en) * | 2001-01-19 | 2007-05-08 | Honeywell International, Inc. | Simulated visual glideslope indicator on aircraft display |
US6553307B2 (en) * | 2001-02-07 | 2003-04-22 | Richard L Stratton | Airport ground-control system and method |
FR2821446B1 (en) | 2001-02-26 | 2003-06-13 | Eads Airbus Sa | AIRCRAFT DIALOGUE DEVICE FOR DIALOGUE WITH AN AIRCRAFT SYSTEM |
US6606563B2 (en) * | 2001-03-06 | 2003-08-12 | Honeywell International Inc. | Incursion alerting system |
WO2002095709A2 (en) * | 2001-05-18 | 2002-11-28 | Technology Planning Incorporated | Surface traffic movement system and method |
US6571155B2 (en) | 2001-07-02 | 2003-05-27 | The Boeing Company | Assembly, computer program product and method for displaying navigation performance based flight path deviation information |
US6812858B2 (en) | 2001-08-20 | 2004-11-02 | The Boeing Company | Integrated display for aircrafts |
US8024206B2 (en) * | 2001-08-30 | 2011-09-20 | Aol Inc. | Travel |
US6897790B2 (en) * | 2001-09-11 | 2005-05-24 | Kevin Orton | Aircraft flight security system and method |
US6892118B1 (en) * | 2001-09-13 | 2005-05-10 | Honeywell International Inc. | Pictographic mode awareness display for aircraft |
US20030132860A1 (en) | 2001-09-21 | 2003-07-17 | Honeywell International, Inc. | Interface for visual cueing and control for tactical flightpath management |
US6614397B2 (en) * | 2001-11-14 | 2003-09-02 | The Boeing Company | Wrong runway alert system and method |
US6789010B2 (en) * | 2001-12-04 | 2004-09-07 | Smiths Aerospace, Inc. | Airport map display system and data interchange method |
US6751545B2 (en) * | 2001-12-04 | 2004-06-15 | Smiths Aerospace, Inc. | Aircraft taxi planning system and method |
US6862519B2 (en) * | 2001-12-04 | 2005-03-01 | Smiths Aerospace, Inc. | Airport map system with compact feature data storage |
US6759946B2 (en) * | 2001-12-06 | 2004-07-06 | Mitsubishi Electric Research Laboratories, Inc. | Home appliances network |
US6694249B1 (en) * | 2002-01-11 | 2004-02-17 | Rockwell Collins | Integrated surface moving map advisory system |
US6735505B2 (en) * | 2002-01-17 | 2004-05-11 | Cubic Defense Systems, Inc. | Aircraft flight and voice data recorder system and method |
ATE487925T1 (en) * | 2002-02-19 | 2010-11-15 | Boeing Co | AIRPORT TOLLWAY NAVIGATION SYSTEM |
US6832138B1 (en) * | 2002-02-28 | 2004-12-14 | Garmin International, Inc. | Cockpit instrument panel systems and methods with redundant flight data display |
FR2837591B1 (en) * | 2002-03-20 | 2004-07-02 | Airbus France | AIRPORT VISUALIZATION DEVICE |
US20030225492A1 (en) | 2002-05-29 | 2003-12-04 | Cope Gary G. | Flight data transmission via satellite link and ground storage of data |
US6745113B2 (en) | 2002-06-07 | 2004-06-01 | The Boeing Company | Method and system for autoflight information display |
US7039505B1 (en) * | 2002-07-19 | 2006-05-02 | Avidyne Corporation | Method for digital transmission and display of weather imagery |
US20040059474A1 (en) | 2002-09-20 | 2004-03-25 | Boorman Daniel J. | Apparatuses and methods for displaying autoflight information |
US6928363B2 (en) * | 2002-09-20 | 2005-08-09 | The Boeing Company | Autotiller control system for aircraft |
FR2844893B1 (en) | 2002-09-20 | 2004-10-22 | Thales Sa | MAN-MACHINE INTERFACE FOR AUTOMATIC PILOT CONTROL FOR AERODYNE PILOT PROVIDED WITH AN ATN TRANSMISSION NETWORK TERMINAL. |
FR2848306B1 (en) | 2002-12-06 | 2005-03-04 | METHOD FOR VALIDATING A FLIGHT PLAN STRAIN | |
US6868320B1 (en) * | 2002-12-23 | 2005-03-15 | Garmin Ltd. | Methods, devices, and systems for automatic flight logs |
US7039509B2 (en) * | 2002-12-30 | 2006-05-02 | Lucent Technologies Inc. | Wireless supplement and/or substitute for aircraft flight recorders |
US6877645B2 (en) * | 2003-01-02 | 2005-04-12 | Six Continents Hotels, Inc. | Container for dispensing comestibles |
US7148814B2 (en) | 2003-06-06 | 2006-12-12 | The Boeing Company | Methods and systems for displaying aircraft engine characteristics |
US7093070B2 (en) * | 2003-07-01 | 2006-08-15 | Aviation Communication & Surveillance Systems, Llc | Method and system for selectively recording system information |
US7024287B2 (en) * | 2003-07-25 | 2006-04-04 | Honeywell International Inc. | Flight management computer lateral route recapture |
US6957130B1 (en) * | 2003-10-21 | 2005-10-18 | Garmin At, Inc. | Navigational instrument, method and computer program product for displaying ground traffic information |
US20050090969A1 (en) * | 2003-10-22 | 2005-04-28 | Arinc Incorporation | Systems and methods for managing airport operations |
EP1687590B1 (en) | 2003-11-25 | 2013-11-27 | Honeywell International Inc. | Perspective vertical situation display system and method |
US7577501B2 (en) * | 2004-02-26 | 2009-08-18 | The Boeing Company | Methods and systems for automatically tracking information during flight |
US7177731B2 (en) | 2004-03-10 | 2007-02-13 | The Boeing Company | Systems and methods for handling aircraft information received from an off-board source |
US7363119B2 (en) | 2004-03-10 | 2008-04-22 | The Boeing Company | Methods and systems for automatically displaying information, including air traffic control instructions |
US7751947B2 (en) | 2004-03-31 | 2010-07-06 | The Boeing Company | Methods and systems for displaying assistance messages to aircraft operators |
US7418319B2 (en) | 2004-03-31 | 2008-08-26 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US7321318B2 (en) | 2004-03-31 | 2008-01-22 | The Boeing Company | Methods and systems for controlling the display of information at an aircraft flight deck |
US7222017B2 (en) | 2004-06-17 | 2007-05-22 | The Boeing Company | Method and system for entering and displaying ground taxi instructions |
FR2871879B1 (en) | 2004-06-18 | 2006-09-01 | Thales Sa | METHOD OF EVALUATING AND SIGNALIZING SIDE MARGIN OF MANEUVER ON EITHER OF THE TRACK OF THE FLIGHT PLAN OF AN AIRCRAFT |
US7203577B2 (en) | 2004-06-30 | 2007-04-10 | The Boeing Company | Methods and systems for displaying the source of aircraft control instructions |
US7256710B2 (en) | 2004-06-30 | 2007-08-14 | The Boeing Company | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
US20060005147A1 (en) | 2004-06-30 | 2006-01-05 | Hammack Jason L | Methods and systems for controlling the display of maps aboard an aircraft |
US7580235B2 (en) * | 2004-10-12 | 2009-08-25 | The Boeing Company | Systems and methods for monitoring and controlling circuit breakers |
FR2876789B1 (en) | 2004-10-15 | 2007-01-26 | Thales Sa | METHOD FOR POSITIONING DIFFERENTLY EXECUTED ORDERS IN A FLIGHT TRACK OF AN AIRCRAFT |
DE102005032849B4 (en) | 2005-07-14 | 2009-09-03 | Eads Deutschland Gmbh | An apparatus and method for transferring an aircraft from an out of a permissible flight condition range to a flight condition within the allowable flight condition range |
CN101365624A (en) * | 2005-08-24 | 2009-02-11 | 莫尔纳里公司 | Ground air water craft |
FR2896872B1 (en) | 2006-01-27 | 2008-04-18 | Thales Sa | METHOD FOR TAKING INTO ACCOUNT AN UNFAVORABLE LOCAL WEATHER SITUATION NOT CONFORMING TO GENERAL WEATHER FORECAST. |
US20080065275A1 (en) | 2006-03-17 | 2008-03-13 | Mississippi State University | Method and system for controlling manned and unmanned aircraft using speech recognition tools |
FR2910679B1 (en) | 2006-12-21 | 2009-03-06 | Thales Sa | METHOD FOR IMPROVING ROAD FMS CALCULATION AND 4D PREDICTIONS FOR ATC TACTICAL INSTRUCTIONS |
US8112186B2 (en) | 2007-06-13 | 2012-02-07 | The Boeing Company | Method and apparatus for managing flight planning |
US8180562B2 (en) | 2008-06-04 | 2012-05-15 | The Boeing Company | System and method for taxi route entry parsing |
-
2002
- 2002-09-20 US US10/251,493 patent/US20040059474A1/en not_active Abandoned
-
2003
- 2003-09-02 EP EP03077771A patent/EP1400884A1/en not_active Ceased
-
2009
- 2009-03-30 US US12/414,559 patent/US7970502B2/en not_active Expired - Fee Related
-
2011
- 2011-01-18 US US13/008,789 patent/US8494691B2/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196474A (en) * | 1974-02-11 | 1980-04-01 | The Johns Hopkins University | Information display method and apparatus for air traffic control |
US3967098A (en) * | 1975-04-14 | 1976-06-29 | Harnagel Gary L | Navigation instrument |
US4212064A (en) * | 1977-04-05 | 1980-07-08 | Simmonds Precision Products, Inc. | Performance advisory system |
US4147056A (en) * | 1977-09-23 | 1979-04-03 | Sundstrand Data Control, Inc. | Multi-segment head-up display for aircraft |
US4325123A (en) * | 1978-07-28 | 1982-04-13 | The Boeing Company | Economy performance data avionic system |
US4247843A (en) * | 1978-08-23 | 1981-01-27 | Sperry Corporation | Aircraft flight instrument display system |
US4274096A (en) * | 1979-07-09 | 1981-06-16 | Dennison Terry A | Aircraft proximity monitoring system |
US4471439A (en) * | 1982-09-20 | 1984-09-11 | The Boeing Company | Method and apparatus for aircraft pitch and thrust axes control |
US4536843A (en) * | 1982-09-30 | 1985-08-20 | The Boeing Company | Total energy based flight control system |
US4729102A (en) * | 1984-10-24 | 1988-03-01 | Sundstrand Data Control, Inc. | Aircraft data acquisition and recording system |
USH139H (en) * | 1985-01-10 | 1986-10-07 | The United States of America as reperesented by the Secretary of the Air Force | Removable cleanable antireflection shield |
US4746981A (en) * | 1986-06-16 | 1988-05-24 | Imtech International, Inc. | Multiple screen digital video display |
US5499025A (en) * | 1987-08-06 | 1996-03-12 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Airplane takeoff and landing performance monitoring system |
US4845495A (en) * | 1988-02-17 | 1989-07-04 | Allied-Signal Inc. | Integrated avionics control and display arrangement |
US5243339A (en) * | 1988-06-07 | 1993-09-07 | The Boeing Company | Flight crew response monitor |
US4939661A (en) * | 1988-09-09 | 1990-07-03 | World Research Institute For Science And Technology | Apparatus for a video marine navigation plotter with electronic charting and methods for use therein |
US5420582A (en) * | 1989-09-15 | 1995-05-30 | Vdo Luftfahrtgerate Werk Gmbh | Method and apparatus for displaying flight-management information |
US5289185A (en) * | 1990-09-05 | 1994-02-22 | Aerospatiale Societe Nationale Industrielle | Process for displaying flying aid symbols on a screen on board an aircraft |
US5329277A (en) * | 1990-12-05 | 1994-07-12 | Smiths Industries Public Limited Company | Displays and display systems |
US6098014A (en) * | 1991-05-06 | 2000-08-01 | Kranz; Peter | Air traffic controller protection system |
US5454074A (en) * | 1991-09-18 | 1995-09-26 | The Boeing Company | Electronic checklist system |
US5337982A (en) * | 1991-10-10 | 1994-08-16 | Honeywell Inc. | Apparatus and method for controlling the vertical profile of an aircraft |
US5739769A (en) * | 1992-02-20 | 1998-04-14 | Anita Trotter-Cox | Method of intelligence support of aircraft crew |
US6072473A (en) * | 1992-03-26 | 2000-06-06 | Aerospatiale-Societe Nationale Industrielle | Method and device for multimode and multifunction communication between an operator and one or more processors |
US5519392A (en) * | 1992-07-31 | 1996-05-21 | Sextant Avionique | Method and device for assisting navigation |
US5416705A (en) * | 1993-04-19 | 1995-05-16 | Honeywell Inc. | Method and apparatus for use of alphanumeric display as data entry scratchpad |
US5802492A (en) * | 1994-06-24 | 1998-09-01 | Delorme Publishing Company, Inc. | Computer aided routing and positioning system |
US5523949A (en) * | 1994-08-05 | 1996-06-04 | The Boeing Company | Method and apparatus for an improved autopilot system providing for late runway change |
US5941930A (en) * | 1994-09-22 | 1999-08-24 | Aisin Aw Co., Ltd. | Navigation system |
US5790209A (en) * | 1994-11-10 | 1998-08-04 | Northrop Grumman Corporation | Canopy transmittal reflectance control and information display |
US6075315A (en) * | 1995-03-20 | 2000-06-13 | Nec Corporation | Field-emission cold cathode having improved insulating characteristic and manufacturing method of the same |
US5668542A (en) * | 1995-07-03 | 1997-09-16 | The United States Of America As Represented By The Secretary Of The Air Force | Color cockpit display for aircraft systems |
US5825306A (en) * | 1995-08-25 | 1998-10-20 | Aisin Aw Co., Ltd. | Navigation system for vehicles |
US5940013A (en) * | 1995-08-28 | 1999-08-17 | Anita Trotter-Cox | Method and system for intelligence support and information presentation to aircraft crew and air traffic controllers on in-flight emergency situations |
US5983158A (en) * | 1995-09-08 | 1999-11-09 | Aisin Aw Co., Ltd. | Navigation system for vehicles |
US6405975B1 (en) * | 1995-12-19 | 2002-06-18 | The Boeing Company | Airplane ground maneuvering camera system |
US5875998A (en) * | 1996-02-05 | 1999-03-02 | Daimler-Benz Aerospace Airbus Gmbh | Method and apparatus for optimizing the aerodynamic effect of an airfoil |
US6275172B1 (en) * | 1996-02-29 | 2001-08-14 | L-3 Communications Corporation | Method and apparatus for improving performance of aircraft display utilizing TCAS computer and mode S transponder |
US5916297A (en) * | 1996-04-24 | 1999-06-29 | The Boeing Company | Method and apparatus for an improved flight management system providing for synchronization of control display units in an alternate navigation mode |
US6067502A (en) * | 1996-08-21 | 2000-05-23 | Aisin Aw Co., Ltd. | Device for displaying map |
US5745054A (en) * | 1996-11-18 | 1998-04-28 | Honeywell Inc. | Method and apparatus for conformal runway alignment on a head up display |
US5971318A (en) * | 1997-02-14 | 1999-10-26 | Lustre; Tony | Safety system for visual flight references system |
US6362750B1 (en) * | 1997-10-06 | 2002-03-26 | Siemens Ag | Process and device for automatically supported guidance of aircraft to a parking position |
US5978715A (en) * | 1997-10-15 | 1999-11-02 | Dassault Aviation | Apparatus and method for aircraft display and control |
US6112141A (en) * | 1997-10-15 | 2000-08-29 | Dassault Aviation | Apparatus and method for graphically oriented aircraft display and control |
US6057786A (en) * | 1997-10-15 | 2000-05-02 | Dassault Aviation | Apparatus and method for aircraft display and control including head up display |
US6038498A (en) * | 1997-10-15 | 2000-03-14 | Dassault Aviation | Apparatus and mehod for aircraft monitoring and control including electronic check-list management |
US6085129A (en) * | 1997-11-14 | 2000-07-04 | Rockwell Collins, Inc. | Integrated vertical profile display |
US6690299B1 (en) * | 1998-01-12 | 2004-02-10 | Rockwell Collins, Inc. | Primary flight display with tactical 3-D display including three view slices |
US6128553A (en) * | 1998-07-24 | 2000-10-03 | Rockwell Collins, Inc. | Menu control knob |
US6262720B1 (en) * | 1998-07-24 | 2001-07-17 | The Boeing Company | Electronic checklist system with checklist inhibiting |
US5995290A (en) * | 1998-09-17 | 1999-11-30 | Northrop Grumman Corporation | Replacement heads-up display system |
US6188937B1 (en) * | 1998-09-30 | 2001-02-13 | Honeywell International Inc. | Methods and apparatus for annunciation of vehicle operational modes |
US20040111192A1 (en) * | 1998-10-16 | 2004-06-10 | Naimer Hubert L. | Flight plan intent alert system and method |
US6246320B1 (en) * | 1999-02-25 | 2001-06-12 | David A. Monroe | Ground link with on-board security surveillance system for aircraft and other commercial vehicles |
US6278913B1 (en) * | 1999-03-12 | 2001-08-21 | Mil-Com Technologies Pte Ltd. | Automated flight data management system |
US6121899A (en) * | 1999-04-16 | 2000-09-19 | Rockwell Collins, Inc. | Impending aircraft tail strike warning display symbology |
US6346892B1 (en) * | 1999-05-07 | 2002-02-12 | Honeywell International Inc. | Method and apparatus for aircraft systems management |
US6466235B1 (en) * | 1999-09-08 | 2002-10-15 | Rockwell Collins, Inc. | Method and apparatus for interactively and automatically selecting, controlling and displaying parameters for an avionics electronic flight display system |
US6614419B1 (en) * | 1999-09-08 | 2003-09-02 | Honeywell International Inc. | User interface for use in a multifunctional display (MFD) |
US6512527B1 (en) * | 1999-09-08 | 2003-01-28 | Rockwell Collins, Inc. | Method and apparatus for interactively selecting display parameters for an avionices flight display |
US20030025719A1 (en) * | 1999-09-08 | 2003-02-06 | George W. Palmer | Method and apparatus for interactively selecting, controlling and displaying parameters for an avionics radio tuning unit |
US6633801B1 (en) * | 1999-10-20 | 2003-10-14 | Stanley H. Durlacher | Method and apparatus for providing information to pilots |
US20020033837A1 (en) * | 2000-01-10 | 2002-03-21 | Munro James A. | Multiple-image viewer |
US6335694B1 (en) * | 2000-02-01 | 2002-01-01 | Rockwell Collins, Inc. | Airborne audio flight information system |
US20020004695A1 (en) * | 2000-02-03 | 2002-01-10 | Glenn Matthew H. | Event based aircraft image and data recording system |
US6898492B2 (en) * | 2000-03-15 | 2005-05-24 | De Leon Hilary Laing | Self-contained flight data recorder with wireless data retrieval |
US6449556B1 (en) * | 2000-04-19 | 2002-09-10 | Rockwell Collins, Inc. | Method and apparatus for designating waypoints on a navigational display |
US6473675B2 (en) * | 2000-04-25 | 2002-10-29 | Honeywell International, Inc. | Aircraft communication frequency nomination |
US6381538B1 (en) * | 2000-05-26 | 2002-04-30 | Aerotech Research (U.S.A.), Inc. | Vehicle specific hazard estimation, presentation, and route planning based on meteorological and other environmental data |
US20020016654A1 (en) * | 2000-06-29 | 2002-02-07 | Ing Ng Chun | Method of monitoring and displaying health performance of an aircraft engine |
US6556902B2 (en) * | 2000-06-29 | 2003-04-29 | Singapore Technologies Aerospace Ltd. | Method of monitoring and displaying health performance of an aircraft engine |
US6443399B1 (en) * | 2000-07-14 | 2002-09-03 | Honeywell International Inc. | Flight control module merged into the integrated modular avionics |
US6633810B1 (en) * | 2000-09-19 | 2003-10-14 | Honeywell International Inc. | Graphical system and method for defining pilot tasks, patterns and constraints |
US7030892B1 (en) * | 2000-09-19 | 2006-04-18 | Honeywell International Inc. | Methods and apparatus for displaying information |
US6693559B1 (en) * | 2000-09-19 | 2004-02-17 | Honeywell International Inc. | System and method for flight mode annunciators |
US6381519B1 (en) * | 2000-09-19 | 2002-04-30 | Honeywell International Inc. | Cursor management on a multiple display electronic flight instrumentation system |
US6753891B1 (en) * | 2000-10-25 | 2004-06-22 | Honeywell International Inc. | Aircraft electronic checklist system with hyperlinks |
US6784869B1 (en) * | 2000-11-15 | 2004-08-31 | The Boeing Company | Cursor and display management system for multi-function control and display system |
US6856864B1 (en) * | 2000-11-17 | 2005-02-15 | Honeywell International Inc. | Method and system for entering data within a flight plan entry field |
US6542796B1 (en) * | 2000-11-18 | 2003-04-01 | Honeywell International Inc. | Methods and apparatus for integrating, organizing, and accessing flight planning and other data on multifunction cockpit displays |
US20040064250A1 (en) * | 2001-01-11 | 2004-04-01 | Hideaki Hirano | Navigation device and route retrieving device |
US6697718B2 (en) * | 2001-02-26 | 2004-02-24 | Airbus France | Device for monitoring a plurality of systems of an aircraft, in particular of a transport aircraft |
US6707387B2 (en) * | 2001-05-17 | 2004-03-16 | Calsonic Kansei Corporation | Operating device for operating apparatus mounted on vehicle |
US6870490B2 (en) * | 2001-08-23 | 2005-03-22 | Honeywell International Inc. | Display of altitude and path capture trajectories |
US6636786B2 (en) * | 2001-10-18 | 2003-10-21 | The Boeing Company | Aircraft energy systems management method |
US6720891B2 (en) * | 2001-12-26 | 2004-04-13 | The Boeing Company | Vertical situation display terrain/waypoint swath, range to target speed, and blended airplane reference |
US6946976B1 (en) * | 2002-02-28 | 2005-09-20 | Garmin International, Inc. | Cockpit display systems and methods of presenting data on cockpit displays |
US6696980B1 (en) * | 2002-02-28 | 2004-02-24 | Garmin International, Inc. | Cockpit instrument panel systems and methods of presenting cockpit instrument data |
US6992596B2 (en) * | 2002-04-04 | 2006-01-31 | Megadata | Simplified flight track display system |
US20040004557A1 (en) * | 2002-07-03 | 2004-01-08 | Sikora Joseph A. | Method and apparatus for displaying aircraft engine characteristics |
US20040095466A1 (en) * | 2002-11-15 | 2004-05-20 | Franco Galasso | Method and system for acquiring and recording data relative to the movement of an aircraft |
US20040183697A1 (en) * | 2003-03-22 | 2004-09-23 | Rogers Steven P. | Symbology for representing aircraft position |
US20040182528A1 (en) * | 2003-03-22 | 2004-09-23 | Franz-Wilhelm Rieder | Sectional door |
US6871124B1 (en) * | 2003-06-06 | 2005-03-22 | Rockwell Collins | Method and system for guiding an aircraft along a preferred flight path having a random origin |
US6934608B2 (en) * | 2003-07-09 | 2005-08-23 | Honeywell International Inc. | Integrated vertical situation display |
US20050178903A1 (en) * | 2003-12-24 | 2005-08-18 | Boorman Daniel J. | Systems and methods for presenting and obtaining flight control information |
US7188007B2 (en) * | 2003-12-24 | 2007-03-06 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20060004496A1 (en) * | 2004-06-30 | 2006-01-05 | The Boeing Company | Enhanced vertical situation display |
Cited By (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE44313E1 (en) | 1996-10-22 | 2013-06-25 | The Boeing Company | Airplane with unswept slotted cruise wing airfoil |
US7813845B2 (en) | 2002-02-19 | 2010-10-12 | The Boeing Company | Airport taxiway navigation system |
US20040004162A1 (en) * | 2002-07-02 | 2004-01-08 | Beyer Kevin W. | Method and apparatus for controlling airflow with a gapped trailing edge device having a flexible flow surface |
US7142131B2 (en) | 2002-07-03 | 2006-11-28 | The Boeing Company | Method and apparatus for displaying aircraft engine characteristics |
US20110125347A1 (en) * | 2002-09-20 | 2011-05-26 | The Boeing Company | Apparatuses and methods for displaying autoflight information |
US8494691B2 (en) | 2002-09-20 | 2013-07-23 | The Boeing Company | Apparatuses and methods for displaying autoflight information |
US7970502B2 (en) | 2002-09-20 | 2011-06-28 | The Boeing Company | Apparatuses and systems for controlling autoflight systems |
US6859688B1 (en) * | 2002-10-18 | 2005-02-22 | Garmin International, Inc. | Data structures, and systems to configure avionic equipment with profile data |
US7386374B1 (en) | 2002-10-18 | 2008-06-10 | Garmin International, Inc. | Methods, data structures, and systems to configure avionic equipment with profile data |
US20090009363A1 (en) * | 2002-10-18 | 2009-01-08 | Garmin International Inc. | Methods, data structures, and systems to configure avionic equipment with profile data |
US20070060316A1 (en) * | 2003-04-09 | 2007-03-15 | Stargames Corporation Party Limited | Communal slot system and method for operating same |
US8484576B2 (en) | 2003-04-17 | 2013-07-09 | Supersonic Aerospace International, Llc | System and method for customizing multiple windows of information on a display |
US20040210847A1 (en) * | 2003-04-17 | 2004-10-21 | Supersonic Aerospace International, Llc | System and method for customizing multiple windows of information on a display |
US7243881B2 (en) | 2003-06-03 | 2007-07-17 | The Boeing Company | Multi-function trailing edge devices and associated methods |
US20050011994A1 (en) * | 2003-06-03 | 2005-01-20 | Seiya Sakurai | Multi-function trailing edge devices and associated methods |
US7059563B2 (en) | 2003-06-03 | 2006-06-13 | The Boeing Company | Systems, apparatuses, and methods for moving aircraft control surfaces |
US20040245386A1 (en) * | 2003-06-03 | 2004-12-09 | Huynh Neal V. | Systems, apparatuses, and methods for moving aircraft control surfaces |
US7148814B2 (en) | 2003-06-06 | 2006-12-12 | The Boeing Company | Methods and systems for displaying aircraft engine characteristics |
US20060220914A1 (en) * | 2003-06-06 | 2006-10-05 | Sikora Joseph A | Methods and systems for displaying aircraft engine characteristics |
US20050007386A1 (en) * | 2003-07-08 | 2005-01-13 | Supersonic Aerospace International, Llc | System and method for providing out-the-window displays for a device |
US7486291B2 (en) * | 2003-07-08 | 2009-02-03 | Berson Barry L | Systems and methods using enhanced vision to provide out-the-window displays for a device |
US7506842B2 (en) | 2003-11-24 | 2009-03-24 | The Boeing Company | Aircraft control surface drive system and associated methods |
US20050109876A1 (en) * | 2003-11-24 | 2005-05-26 | The Boeing Company | Aircraft control surface drive system and associated methods |
US7913955B2 (en) | 2003-11-24 | 2011-03-29 | The Boeing Company | Aircraft control surface drive system and associated methods |
US7751948B2 (en) | 2003-12-24 | 2010-07-06 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US7188007B2 (en) | 2003-12-24 | 2007-03-06 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20100076627A1 (en) * | 2003-12-24 | 2010-03-25 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US8364329B2 (en) | 2003-12-24 | 2013-01-29 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US8121745B2 (en) | 2003-12-24 | 2012-02-21 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20090062972A1 (en) * | 2003-12-24 | 2009-03-05 | The Boeing Company | Systems and Methods for Presenting and Obtaining Flight Control Information |
US7945354B2 (en) | 2003-12-24 | 2011-05-17 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US8135501B2 (en) | 2003-12-24 | 2012-03-13 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US8504223B2 (en) | 2003-12-24 | 2013-08-06 | The Boeing Company | Systems and methods for presenting and obtaining flight control information |
US20100262358A1 (en) * | 2003-12-24 | 2010-10-14 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US7460029B2 (en) | 2003-12-24 | 2008-12-02 | The Boeing Company | Systems and methods for presenting and obtaining flight control information |
US8005582B2 (en) | 2003-12-24 | 2011-08-23 | The Boeing Company | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20050178903A1 (en) * | 2003-12-24 | 2005-08-18 | Boorman Daniel J. | Systems and methods for presenting and obtaining flight control information |
US20050143871A1 (en) * | 2003-12-24 | 2005-06-30 | Boorman Daniel J. | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
US20050171652A1 (en) * | 2004-02-02 | 2005-08-04 | Speer Thomas E. | Vehicle control systems and corresponding sizing methods |
US7424350B2 (en) | 2004-02-02 | 2008-09-09 | The Boeing Company | Vehicle control systems and corresponding sizing methods |
US7577501B2 (en) | 2004-02-26 | 2009-08-18 | The Boeing Company | Methods and systems for automatically tracking information during flight |
US20050192717A1 (en) * | 2004-02-26 | 2005-09-01 | Tafs William D. | Methods and systems for automatically tracking information during flight |
US7357358B2 (en) | 2004-02-27 | 2008-04-15 | The Boeing Company | Aircraft leading edge device systems and corresponding sizing methods |
US20050224662A1 (en) * | 2004-02-27 | 2005-10-13 | Lacy Douglas S | Aircraft leading edge device systems and corresponding sizing methods |
US7177731B2 (en) | 2004-03-10 | 2007-02-13 | The Boeing Company | Systems and methods for handling aircraft information received from an off-board source |
US7363119B2 (en) | 2004-03-10 | 2008-04-22 | The Boeing Company | Methods and systems for automatically displaying information, including air traffic control instructions |
US8032270B2 (en) | 2004-03-31 | 2011-10-04 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US8082070B2 (en) | 2004-03-31 | 2011-12-20 | The Boeing Company | Methods and systems for displaying assistance messages to aircraft operators |
US20050222721A1 (en) * | 2004-03-31 | 2005-10-06 | Chen Sherwin S | Systems and methods for handling the display and receipt of aircraft control information |
US7751947B2 (en) | 2004-03-31 | 2010-07-06 | The Boeing Company | Methods and systems for displaying assistance messages to aircraft operators |
US20110060484A1 (en) * | 2004-03-31 | 2011-03-10 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US7844372B2 (en) | 2004-03-31 | 2010-11-30 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US20050228674A1 (en) * | 2004-03-31 | 2005-10-13 | Gunn Peter D | Methods and systems for displaying assistance messages to aircraft operators |
US20100262319A1 (en) * | 2004-03-31 | 2010-10-14 | The Boeing Company | Methods and systems for displaying assistance messages to aircraft operators |
US7321318B2 (en) | 2004-03-31 | 2008-01-22 | The Boeing Company | Methods and systems for controlling the display of information at an aircraft flight deck |
US8290643B2 (en) | 2004-03-31 | 2012-10-16 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US7418319B2 (en) | 2004-03-31 | 2008-08-26 | The Boeing Company | Systems and methods for handling the display and receipt of aircraft control information |
US20080316058A1 (en) * | 2004-03-31 | 2008-12-25 | The Boeing Company | Systems and Methods for Handling the Display and Receipt of Aircraft Control Information |
US20050231390A1 (en) * | 2004-03-31 | 2005-10-20 | Crane Jean M | Methods and systems for controlling the display of information at an aircraft flight deck |
US6978971B1 (en) | 2004-06-15 | 2005-12-27 | The Boeing Company | Methods and apparatuses for controlling airflow proximate to engine/airfoil systems |
US20060000952A1 (en) * | 2004-06-15 | 2006-01-05 | Rampton Scott N | Aircraft leading edge apparatuses and corresponding methods |
US7270305B2 (en) | 2004-06-15 | 2007-09-18 | The Boeing Company | Aircraft leading edge apparatuses and corresponding methods |
USRE41396E1 (en) | 2004-06-17 | 2010-06-22 | The Boeing Company | Method and system for entering and displaying ground taxi instructions |
US7203577B2 (en) | 2004-06-30 | 2007-04-10 | The Boeing Company | Methods and systems for displaying the source of aircraft control instructions |
US8843250B2 (en) | 2004-06-30 | 2014-09-23 | The Boeing Company | Enhanced vertical situation display |
US20060004498A1 (en) * | 2004-06-30 | 2006-01-05 | Gunn Peter D | Methods and systems for displaying the source of aircraft control instructions |
US20070164877A1 (en) * | 2004-06-30 | 2007-07-19 | Mumaw Randall J | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
US7256710B2 (en) | 2004-06-30 | 2007-08-14 | The Boeing Company | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
US7783393B2 (en) | 2004-06-30 | 2010-08-24 | The Boeing Company | Enhanced vertical situation display |
US20090206209A1 (en) * | 2004-09-08 | 2009-08-20 | The Boeing Company | Systems and methods for providing differential motion to wing high lift device |
US20060049308A1 (en) * | 2004-09-08 | 2006-03-09 | Good Mark S | Systems and methods for providing differential motion to wing high lift devices |
US7726610B2 (en) | 2004-09-08 | 2010-06-01 | The Boeing Company | Systems and methods for providing differential motion to wing high lift device |
US7494094B2 (en) | 2004-09-08 | 2009-02-24 | The Boeing Company | Aircraft wing systems for providing differential motion to deployable lift devices |
US20060102803A1 (en) * | 2004-09-30 | 2006-05-18 | Wheaton James M | Leading edge flap apparatuses and associated methods |
US7264206B2 (en) | 2004-09-30 | 2007-09-04 | The Boeing Company | Leading edge flap apparatuses and associated methods |
US20100025537A1 (en) * | 2004-09-30 | 2010-02-04 | The Boeing Company | Leading Edge Flap Apparatuses and Associated Methods |
US7828250B2 (en) | 2004-09-30 | 2010-11-09 | The Boeing Company | Leading edge flap apparatuses and associated methods |
US7580235B2 (en) | 2004-10-12 | 2009-08-25 | The Boeing Company | Systems and methods for monitoring and controlling circuit breakers |
US7322547B2 (en) | 2005-01-31 | 2008-01-29 | The Boeing Company | Aerospace vehicle leading edge slat devices and corresponding methods |
US20060169847A1 (en) * | 2005-01-31 | 2006-08-03 | Konings Christopher A | Aerospace vehicle leading edge slat devices and corresponding methods |
US20060184253A1 (en) * | 2005-02-03 | 2006-08-17 | International Business Machines Corporation | Intelligent method of organizing and presenting operational mode information on an instrument panel of a flight deck |
US20060175468A1 (en) * | 2005-02-04 | 2006-08-10 | Huynh Neal V | Systems and methods for controlling aircraft flaps and spoilers |
US7891611B2 (en) | 2005-02-04 | 2011-02-22 | The Boeing Company | Systems and methods for controlling aircraft flaps and spoilers |
US20100286849A1 (en) * | 2005-02-04 | 2010-11-11 | The Boeing Company | Systems and Methods for Controlling Aircraft Flaps and Spoilers |
US7338018B2 (en) | 2005-02-04 | 2008-03-04 | The Boeing Company | Systems and methods for controlling aircraft flaps and spoilers |
US20090177339A1 (en) * | 2005-03-03 | 2009-07-09 | Chen Robert H | Optimization and Mechanization of Periodic Flight |
US7309043B2 (en) | 2005-04-27 | 2007-12-18 | The Boeing Company | Actuation device positioning systems and associated methods, including aircraft spoiler droop systems |
US20070176051A1 (en) * | 2005-04-27 | 2007-08-02 | Good Mark S | Actuation device positioning systems and associated methods, including aircraft spoiler droop systems |
US7721999B2 (en) | 2005-05-20 | 2010-05-25 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
US20060261217A1 (en) * | 2005-05-20 | 2006-11-23 | Nicolaas Voogt | Aerospace vehicle fairing systems and associated methods |
US7300021B2 (en) | 2005-05-20 | 2007-11-27 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
US20080001036A1 (en) * | 2005-05-20 | 2008-01-03 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
US20060284022A1 (en) * | 2005-06-21 | 2006-12-21 | Harrigan Jeffery S | Aerospace vehicle yaw generating systems and associated methods |
US7367530B2 (en) | 2005-06-21 | 2008-05-06 | The Boeing Company | Aerospace vehicle yaw generating systems and associated methods |
US20070034748A1 (en) * | 2005-08-10 | 2007-02-15 | The Boeing Company | Aerospace vehicle flow body systems and associated methods |
US7500641B2 (en) | 2005-08-10 | 2009-03-10 | The Boeing Company | Aerospace vehicle flow body systems and associated methods |
US7611099B2 (en) | 2005-09-07 | 2009-11-03 | The Boeing Company | Seal assemblies for use with drooped spoilers and other control surfaces on aircraft |
US20070252040A1 (en) * | 2005-09-07 | 2007-11-01 | Kordel Jan A | Seal assemblies for use with drooped spoilers and other control surfaces on aircraft |
US8567726B2 (en) | 2005-11-21 | 2013-10-29 | The Boeing Company | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods |
US7475854B2 (en) | 2005-11-21 | 2009-01-13 | The Boeing Company | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
US7708231B2 (en) | 2005-11-21 | 2010-05-04 | The Boeing Company | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods |
US20070114328A1 (en) * | 2005-11-21 | 2007-05-24 | The Boeing Company | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated mehtods |
US7744040B2 (en) | 2005-11-21 | 2010-06-29 | The Boeing Company | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
US20070114329A1 (en) * | 2005-11-21 | 2007-05-24 | The Boeing Company | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
US20070180390A1 (en) * | 2006-01-31 | 2007-08-02 | Honeywell International, Inc. | Enhanced information display system and method |
US20090072093A1 (en) * | 2006-06-14 | 2009-03-19 | The Boeing Company | Link mechanisms for gapped rigid krueger flaps, and associated systems and methods |
US7578484B2 (en) | 2006-06-14 | 2009-08-25 | The Boeing Company | Link mechanisms for gapped rigid krueger flaps, and associated systems and methods |
WO2009035757A3 (en) * | 2007-07-11 | 2009-05-14 | Sandel Avionics Inc | Flight management system having interactive flight plan selection arrangement |
WO2009035757A2 (en) * | 2007-07-11 | 2009-03-19 | Sandel Avionics, Inc. | Flight management system having interactive flight plan selection arrangement |
US8020113B2 (en) * | 2007-08-20 | 2011-09-13 | Airbus Operations Sas | Method and system for synchronizing a display context |
US20090055767A1 (en) * | 2007-08-20 | 2009-02-26 | Airbus France | Method and system for synchronizing a display context |
US20090150014A1 (en) * | 2007-12-07 | 2009-06-11 | Thales | Complex automated system and method of displaying automation aids |
US7954769B2 (en) | 2007-12-10 | 2011-06-07 | The Boeing Company | Deployable aerodynamic devices with reduced actuator loads, and related systems and methods |
US20090146016A1 (en) * | 2007-12-11 | 2009-06-11 | The Boeing Company | Trailing edge device catchers and associated systems and methods |
US7766282B2 (en) | 2007-12-11 | 2010-08-03 | The Boeing Company | Trailing edge device catchers and associated systems and methods |
US8180562B2 (en) | 2008-06-04 | 2012-05-15 | The Boeing Company | System and method for taxi route entry parsing |
US20090306887A1 (en) * | 2008-06-04 | 2009-12-10 | The Boeing Company | System and Method for Taxi Route Entry Parsing |
US8386167B2 (en) | 2008-11-14 | 2013-02-26 | The Boeing Company | Display of taxi route control point information |
US20100125403A1 (en) * | 2008-11-14 | 2010-05-20 | Clark Samuel T | Display of Taxi Route Control Point Information |
US20100131123A1 (en) * | 2008-11-24 | 2010-05-27 | Honeywell International Inc. | Input/steering mechanisms and aircraft control systems |
US9534922B1 (en) * | 2012-09-25 | 2017-01-03 | Rockwell Collins, Inc. | Aircraft recording system, device, and method responsive to a new command not stated in a flight plan |
DE102017104903A1 (en) * | 2016-03-08 | 2017-09-14 | Gulfstream Aerospace Corporation | Reconfigurable flight control panels for an aircraft of the transport category |
US20170355467A1 (en) * | 2016-06-14 | 2017-12-14 | Deutsches Zentrum Fuer Luft- Und Raumfahrt | Automatic flight controller, aircraft cockpit, method for operating and automatic flight controller and computer program |
DE102016110863A1 (en) * | 2016-06-14 | 2017-12-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Automatic aircraft control device, aircraft cockpit, method for operating an automatic aircraft control device and computer program |
US10252814B2 (en) * | 2016-06-14 | 2019-04-09 | Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. | Automatic flight controller, aircraft cockpit, method for operating and automatic flight controller and computer program |
DE102016110863B4 (en) | 2016-06-14 | 2019-12-19 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Automatic aircraft control device, aircraft cockpit, method for operating an automatic aircraft control device and computer program |
US10228692B2 (en) * | 2017-03-27 | 2019-03-12 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US10930164B2 (en) * | 2017-03-27 | 2021-02-23 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US20210150918A1 (en) * | 2017-03-27 | 2021-05-20 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US11580865B2 (en) * | 2017-03-27 | 2023-02-14 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US20230154343A1 (en) * | 2017-03-27 | 2023-05-18 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US12033526B2 (en) * | 2017-03-27 | 2024-07-09 | Gulfstream Aerospace Corporation | Aircraft flight envelope protection and recovery autopilot |
US11769417B2 (en) | 2020-08-05 | 2023-09-26 | Honeywell International Inc. | Methods and systems for representing flight mode annunciation information on a cockpit display |
Also Published As
Publication number | Publication date |
---|---|
US7970502B2 (en) | 2011-06-28 |
US20110125347A1 (en) | 2011-05-26 |
US8494691B2 (en) | 2013-07-23 |
EP1400884A1 (en) | 2004-03-24 |
US20100076628A1 (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7970502B2 (en) | Apparatuses and systems for controlling autoflight systems | |
US7460029B2 (en) | Systems and methods for presenting and obtaining flight control information | |
US7945354B2 (en) | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information | |
JP6050040B2 (en) | Simplified user interface for aircraft | |
US9292159B2 (en) | Method for the temporal display of the mission of an aircraft | |
EP2827104B1 (en) | Display systems and methods for providing displays having an integrated autopilot functionality | |
US20170183105A1 (en) | Display of meteorological data in aircraft | |
EP2741053B1 (en) | Method for graphically generating an approach course | |
US8965601B1 (en) | System, module, and method for presenting a flight director-dependent hits pathway on an aircraft display unit | |
US9459120B2 (en) | Methods and systems for displaying flight information | |
US11268827B2 (en) | Vertical situation display with interactive speed profile bar | |
US20110130897A1 (en) | Advanced primary navigation displays for precision and non-precision approaches | |
US11043131B2 (en) | Systems and methods for generating a recapture path for an aircraft | |
US20200201528A1 (en) | Systems and methods for managing graphical user interfaces for vehicle guidance | |
US11733712B2 (en) | Systems and methods for generating displays for noise abatement departure procedures | |
CN119248006B (en) | Aircraft landing guidance method, display system and aircraft | |
EP3933808B1 (en) | Systems and methods for generating displays for noise abatement departure procedures | |
US20240383614A1 (en) | Computer-based systems and methods for facilitating aircraft approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOEING COMPANY, THE, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOORMAN, DANIEL J.;GUNN, PETER D.;GRIFFIN, JOHN C., III;REEL/FRAME:013317/0701 Effective date: 20020905 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |