US20030233677A1 - Modification of fatty acid metabolism in plants - Google Patents
Modification of fatty acid metabolism in plants Download PDFInfo
- Publication number
- US20030233677A1 US20030233677A1 US10/447,515 US44751503A US2003233677A1 US 20030233677 A1 US20030233677 A1 US 20030233677A1 US 44751503 A US44751503 A US 44751503A US 2003233677 A1 US2003233677 A1 US 2003233677A1
- Authority
- US
- United States
- Prior art keywords
- promoter
- plant
- fatty acid
- faoa
- coa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000004048 modification Effects 0.000 title abstract description 9
- 238000012986 modification Methods 0.000 title abstract description 9
- 230000004129 fatty acid metabolism Effects 0.000 title description 2
- 230000009261 transgenic effect Effects 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 69
- 102000004190 Enzymes Human genes 0.000 claims abstract description 66
- 108090000790 Enzymes Proteins 0.000 claims abstract description 66
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 66
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 57
- 229930195729 fatty acid Natural products 0.000 claims abstract description 57
- 239000000194 fatty acid Substances 0.000 claims abstract description 57
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 57
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 230000003647 oxidation Effects 0.000 claims abstract description 31
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims abstract description 24
- 108010023922 Enoyl-CoA hydratase Proteins 0.000 claims abstract description 6
- 102000011426 Enoyl-CoA hydratase Human genes 0.000 claims abstract description 6
- 241000196324 Embryophyta Species 0.000 claims description 234
- 108090000623 proteins and genes Proteins 0.000 claims description 165
- 230000000694 effects Effects 0.000 claims description 70
- 108020004414 DNA Proteins 0.000 claims description 39
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 claims description 32
- 210000004027 cell Anatomy 0.000 claims description 30
- 108010010718 poly(3-hydroxyalkanoic acid) synthase Proteins 0.000 claims description 21
- 235000010469 Glycine max Nutrition 0.000 claims description 19
- 230000001580 bacterial effect Effects 0.000 claims description 18
- 244000068988 Glycine max Species 0.000 claims description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 16
- 101710163504 Phaseolin Proteins 0.000 claims description 16
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 claims description 16
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 15
- 210000002706 plastid Anatomy 0.000 claims description 15
- 101710089395 Oleosin Proteins 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 12
- 210000000172 cytosol Anatomy 0.000 claims description 11
- 240000006240 Linum usitatissimum Species 0.000 claims description 10
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 10
- 235000011331 Brassica Nutrition 0.000 claims description 9
- 241000219198 Brassica Species 0.000 claims description 9
- 241000589776 Pseudomonas putida Species 0.000 claims description 9
- 108090000848 Ubiquitin Proteins 0.000 claims description 9
- 102000044159 Ubiquitin Human genes 0.000 claims description 9
- 210000002824 peroxisome Anatomy 0.000 claims description 9
- 241000589516 Pseudomonas Species 0.000 claims description 7
- 244000061176 Nicotiana tabacum Species 0.000 claims description 6
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 6
- 240000008042 Zea mays Species 0.000 claims description 6
- 210000003470 mitochondria Anatomy 0.000 claims description 6
- 244000020551 Helianthus annuus Species 0.000 claims description 5
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 5
- 240000004658 Medicago sativa Species 0.000 claims description 5
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 5
- 108091000039 acetoacetyl-CoA reductase Proteins 0.000 claims description 5
- 108020004999 messenger RNA Proteins 0.000 claims description 5
- 230000008488 polyadenylation Effects 0.000 claims description 5
- 244000060011 Cocos nucifera Species 0.000 claims description 4
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 4
- 101710202365 Napin Proteins 0.000 claims description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 4
- 101710168820 2S seed storage albumin protein Proteins 0.000 claims description 3
- 241000588986 Alcaligenes Species 0.000 claims description 3
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 3
- 244000105624 Arachis hypogaea Species 0.000 claims description 3
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 3
- 235000018262 Arachis monticola Nutrition 0.000 claims description 3
- 235000003351 Brassica cretica Nutrition 0.000 claims description 3
- 235000003343 Brassica rupestris Nutrition 0.000 claims description 3
- 241000219193 Brassicaceae Species 0.000 claims description 3
- 244000020518 Carthamus tinctorius Species 0.000 claims description 3
- 235000003255 Carthamus tinctorius Nutrition 0.000 claims description 3
- 108010087894 Fatty acid desaturases Proteins 0.000 claims description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 3
- 229920002494 Zein Polymers 0.000 claims description 3
- 235000012343 cottonseed oil Nutrition 0.000 claims description 3
- 235000009973 maize Nutrition 0.000 claims description 3
- 230000004060 metabolic process Effects 0.000 claims description 3
- 235000010460 mustard Nutrition 0.000 claims description 3
- 235000020232 peanut Nutrition 0.000 claims description 3
- 239000005019 zein Substances 0.000 claims description 3
- 229940093612 zein Drugs 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 241001133760 Acoelorraphe Species 0.000 claims 2
- 101710146995 Acyl carrier protein Proteins 0.000 claims 2
- 241000588722 Escherichia Species 0.000 claims 2
- 102000009114 Fatty acid desaturases Human genes 0.000 claims 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims 2
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 claims 2
- 101000911038 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Steroid 3-ketoacyl-CoA thiolase Proteins 0.000 claims 2
- 230000002538 fungal effect Effects 0.000 claims 2
- 230000014509 gene expression Effects 0.000 abstract description 52
- 229920000642 polymer Polymers 0.000 abstract description 20
- 239000002028 Biomass Substances 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract description 15
- 241000607516 Aeromonas caviae Species 0.000 abstract description 5
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- 230000001965 increasing effect Effects 0.000 abstract description 4
- 241001464837 Viridiplantae Species 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 239000013612 plasmid Substances 0.000 description 54
- 102000004169 proteins and genes Human genes 0.000 description 51
- 235000018102 proteins Nutrition 0.000 description 49
- 239000012634 fragment Substances 0.000 description 45
- 230000009466 transformation Effects 0.000 description 41
- 108090000765 processed proteins & peptides Proteins 0.000 description 40
- 102000004196 processed proteins & peptides Human genes 0.000 description 39
- 229920001184 polypeptide Polymers 0.000 description 37
- 108700019146 Transgenes Proteins 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 27
- 238000004458 analytical method Methods 0.000 description 26
- 239000000523 sample Substances 0.000 description 26
- 239000013598 vector Substances 0.000 description 25
- 238000003556 assay Methods 0.000 description 24
- 230000004927 fusion Effects 0.000 description 21
- 239000000758 substrate Substances 0.000 description 21
- 210000002257 embryonic structure Anatomy 0.000 description 20
- 240000002791 Brassica napus Species 0.000 description 19
- 108090000854 Oxidoreductases Proteins 0.000 description 19
- 101710088194 Dehydrogenase Proteins 0.000 description 18
- 208000037534 Progressive hemifacial atrophy Diseases 0.000 description 18
- 238000012017 passive hemagglutination assay Methods 0.000 description 18
- 239000013615 primer Substances 0.000 description 18
- 230000037361 pathway Effects 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 239000007836 KH2PO4 Substances 0.000 description 15
- 102000004316 Oxidoreductases Human genes 0.000 description 15
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 15
- 238000003752 polymerase chain reaction Methods 0.000 description 15
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 15
- 230000008685 targeting Effects 0.000 description 15
- 238000009396 hybridization Methods 0.000 description 14
- 238000001262 western blot Methods 0.000 description 14
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 13
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 150000007970 thio esters Chemical class 0.000 description 12
- 229930006000 Sucrose Natural products 0.000 description 11
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 11
- 108060008225 Thiolase Proteins 0.000 description 11
- OJFDKHTZOUZBOS-CITAKDKDSA-N acetoacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OJFDKHTZOUZBOS-CITAKDKDSA-N 0.000 description 11
- 239000005720 sucrose Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 108700021822 Arabidopsis oleosin Proteins 0.000 description 10
- 102000002932 Thiolase Human genes 0.000 description 10
- 239000000284 extract Substances 0.000 description 10
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 10
- 101150007867 rbfox2 gene Proteins 0.000 description 10
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 description 9
- 102000004879 Racemases and epimerases Human genes 0.000 description 9
- 108090001066 Racemases and epimerases Proteins 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 239000006228 supernatant Substances 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 8
- 238000000636 Northern blotting Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 239000006870 ms-medium Substances 0.000 description 8
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 7
- 235000011293 Brassica napus Nutrition 0.000 description 7
- 108700011203 Phaseolus vulgaris phaseolin Proteins 0.000 description 7
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 125000002252 acyl group Chemical group 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 210000000805 cytoplasm Anatomy 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 150000002632 lipids Chemical class 0.000 description 7
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 102000004195 Isomerases Human genes 0.000 description 6
- 108090000769 Isomerases Proteins 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 241000206602 Eukaryota Species 0.000 description 5
- 229920003266 Leaf® Polymers 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 108010047290 Multifunctional Enzymes Proteins 0.000 description 5
- 102000006833 Multifunctional Enzymes Human genes 0.000 description 5
- 230000009418 agronomic effect Effects 0.000 description 5
- KFWWCMJSYSSPSK-PAXLJYGASA-N crotonoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)/C=C/C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KFWWCMJSYSSPSK-PAXLJYGASA-N 0.000 description 5
- 230000008676 import Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- -1 stems Substances 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 241000252867 Cupriavidus metallidurans Species 0.000 description 4
- 206010021929 Infertility male Diseases 0.000 description 4
- 208000007466 Male Infertility Diseases 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 4
- 241000208317 Petroselinum Species 0.000 description 4
- 241000589538 Pseudomonas fragi Species 0.000 description 4
- 102000018120 Recombinases Human genes 0.000 description 4
- 108010091086 Recombinases Proteins 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000001086 cytosolic effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 230000004133 fatty acid degradation Effects 0.000 description 4
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 4
- 239000004459 forage Substances 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 210000003463 organelle Anatomy 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 235000011197 perejil Nutrition 0.000 description 4
- 230000000858 peroxisomal effect Effects 0.000 description 4
- 238000003976 plant breeding Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108010001058 Acyl-CoA Dehydrogenase Proteins 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 241000219194 Arabidopsis Species 0.000 description 3
- 0 C=N*CC1C2=CC=C12 Chemical compound C=N*CC1C2=CC=C12 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 108010025815 Kanamycin Kinase Proteins 0.000 description 3
- 108090001030 Lipoproteins Proteins 0.000 description 3
- 102000004895 Lipoproteins Human genes 0.000 description 3
- 229920001736 Metabolix Polymers 0.000 description 3
- 101000913652 Mus musculus Fibronectin type III domain-containing protein 5 Proteins 0.000 description 3
- 101100281518 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fox-2 gene Proteins 0.000 description 3
- 101100173179 Pseudomonas fragi fadA gene Proteins 0.000 description 3
- 241000589781 Pseudomonas oleovorans Species 0.000 description 3
- 101100297400 Rhizobium meliloti (strain 1021) phaAB gene Proteins 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 101100280476 Streptococcus pneumoniae (strain ATCC BAA-255 / R6) fabM gene Proteins 0.000 description 3
- 241000589153 Zoogloea ramigera Species 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000001851 biosynthetic effect Effects 0.000 description 3
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 3
- 229960002064 kanamycin sulfate Drugs 0.000 description 3
- 230000037356 lipid metabolism Effects 0.000 description 3
- 230000004660 morphological change Effects 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 101150110984 phaB gene Proteins 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 239000004460 silage Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- 239000007160 ty medium Substances 0.000 description 3
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 2
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 2
- 102000002735 Acyl-CoA Dehydrogenase Human genes 0.000 description 2
- 102000004539 Acyl-CoA Oxidase Human genes 0.000 description 2
- 108020001558 Acyl-CoA oxidase Proteins 0.000 description 2
- 241000190857 Allochromatium vinosum Species 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 108700003860 Bacterial Genes Proteins 0.000 description 2
- 108010077805 Bacterial Proteins Proteins 0.000 description 2
- 235000006463 Brassica alba Nutrition 0.000 description 2
- 244000140786 Brassica hirta Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241001390275 Carinata Species 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 229930182566 Gentamicin Natural products 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 241001509401 Gordonia rubripertincta Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000002568 Multienzyme Complexes Human genes 0.000 description 2
- 108010093369 Multienzyme Complexes Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 108700001094 Plant Genes Proteins 0.000 description 2
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 2
- 241000187563 Rhodococcus ruber Species 0.000 description 2
- 241000190984 Rhodospirillum rubrum Species 0.000 description 2
- 108010016634 Seed Storage Proteins Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 2
- 229960003669 carbenicillin Drugs 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 238000006345 epimerization reaction Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 150000002185 fatty acyl-CoAs Chemical class 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000012869 germination medium Substances 0.000 description 2
- IAJOBQBIJHVGMQ-BYPYZUCNSA-M glufosinate-P zwitterion(1-) Chemical compound CP([O-])(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-M 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- JTEDVYBZBROSJT-UHFFFAOYSA-N indole-3-butyric acid Chemical compound C1=CC=C2C(CCCC(=O)O)=CNC2=C1 JTEDVYBZBROSJT-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012492 regenerant Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000008117 seed development Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229940027257 timentin Drugs 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920001791 ((R)-3-Hydroxybutanoyl)(n-2) Polymers 0.000 description 1
- QHHKKMYHDBRONY-WZZMXTMRSA-N (R)-3-hydroxybutanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@H](O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QHHKKMYHDBRONY-WZZMXTMRSA-N 0.000 description 1
- WHBMMWSBFZVSSR-GSVOUGTGSA-N (R)-3-hydroxybutyric acid Chemical compound C[C@@H](O)CC(O)=O WHBMMWSBFZVSSR-GSVOUGTGSA-N 0.000 description 1
- VAAHKRMGOFIORX-RLVCGTLZSA-N (R)-3-hydroxyhexanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@H](O)CCC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VAAHKRMGOFIORX-RLVCGTLZSA-N 0.000 description 1
- YYGYPCRWZMLSGK-MXYRDGFCSA-N (R)-3-hydroxypentanoyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C[C@H](O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 YYGYPCRWZMLSGK-MXYRDGFCSA-N 0.000 description 1
- YZAZXIUFBCPZGB-QZOPMXJLSA-N (z)-octadec-9-enoic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O YZAZXIUFBCPZGB-QZOPMXJLSA-N 0.000 description 1
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 1
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 108700020831 3-Hydroxyacyl-CoA Dehydrogenase Proteins 0.000 description 1
- 102100021834 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 102100037768 Acetyl-CoA acetyltransferase, mitochondrial Human genes 0.000 description 1
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 description 1
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000002296 Acyl-CoA Dehydrogenases Human genes 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 241000133676 Aspergillus latus Species 0.000 description 1
- 241000589151 Azotobacter Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108010018763 Biotin carboxylase Proteins 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 102000005870 Coenzyme A Ligases Human genes 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 244000024469 Cucumis prophetarum Species 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 102100034543 Fatty acid desaturase 3 Human genes 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 101001083553 Homo sapiens Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 102100030358 Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial Human genes 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- 108010011449 Long-chain-fatty-acid-CoA ligase Proteins 0.000 description 1
- 241000589308 Methylobacterium extorquens Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000589597 Paracoccus denitrificans Species 0.000 description 1
- 108010085186 Peroxisomal Targeting Signals Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000927377 Pseudomonas acidophila Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 101100119698 Pseudomonas fragi fadB gene Proteins 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 108091007187 Reductases Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 241001148115 Rhizobium etli Species 0.000 description 1
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 1
- 241000190967 Rhodospirillum Species 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- FWPHMBHGUDAPRV-LYALRYAQSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (2R)-2-hydroxyhexanethioate Chemical group O[C@@H](C(=O)SCCNC(CCNC([C@@H](C(COP(OP(OC[C@@H]1[C@H]([C@H]([C@@H](O1)N1C=NC=2C(N)=NC=NC1=2)O)OP(=O)(O)O)(=O)O)(=O)O)(C)C)O)=O)=O)CCCC FWPHMBHGUDAPRV-LYALRYAQSA-N 0.000 description 1
- 241000589196 Sinorhizobium meliloti Species 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010039811 Starch synthase Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000192581 Synechocystis sp. Species 0.000 description 1
- 102000005488 Thioesterase Human genes 0.000 description 1
- 102100023870 YLP motif-containing protein 1 Human genes 0.000 description 1
- 101100012514 Yersinia enterocolitica serotype O:8 / biotype 1B (strain NCTC 13174 / 8081) fadJ gene Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940100228 acetyl coenzyme a Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000000211 autoradiogram Methods 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 102000046543 delta(3)-delta(2)-enoyl-CoA isomerase activity proteins Human genes 0.000 description 1
- 108700011235 delta(3)-delta(2)-enoyl-CoA isomerase activity proteins Proteins 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004136 fatty acid synthesis Effects 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 231100000502 fertility decrease Toxicity 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 101150114019 fox-1 gene Proteins 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KYYWBEYKBLQSFW-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCC(O)=O KYYWBEYKBLQSFW-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000008219 male gametogenesis Effects 0.000 description 1
- 108010083942 mannopine synthase Proteins 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000023409 microsporogenesis Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 239000006272 natural pesticide Substances 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- RQFLGKYCYMMRMC-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O RQFLGKYCYMMRMC-UHFFFAOYSA-N 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 101150113864 pat gene Proteins 0.000 description 1
- 101150048611 phaC gene Proteins 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 210000000745 plant chromosome Anatomy 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 230000008119 pollen development Effects 0.000 description 1
- 108010078304 poly-beta-hydroxybutyrate polymerase Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- QAQREVBBADEHPA-IEXPHMLFSA-N propionyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QAQREVBBADEHPA-IEXPHMLFSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 108020002982 thioesterase Proteins 0.000 description 1
- 238000007079 thiolysis reaction Methods 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
Definitions
- the present invention is generally in the field of transgenic plant systems for the production of polyhydroxyalkanoate materials, modification of triglycerides and fatty acids, and methods for altering seed production in plants.
- PHA polyhydroxyalkanoate
- PHAs are natural, thermoplastic polyesters and can be processed by traditional polymer techniques for use in an enormous variety of applications, including consumer packaging, disposable diaper linings and garbage bags, food and medical products.
- PHA biosynthetic enzymes Careful selection of the PHA biosynthetic enzymes on the basis of their substrate specificity allows for the production of PHA polymers of defined composition in transgenic systems (U.S. Pat. Nos. 5,229,279; 5,245,023; 5,250,430; 5,480,794; 5,512,669; 5,534,432; 5,661,026; and 5,663,063).
- each PHA group is produced by a specific pathway.
- three enzymes are involved: ⁇ -ketothiolase, acetoacetyl-CoA reductase, and PHA synthase.
- the homopolymer PHB for example, is produced by the condensation of two molecules of acetyl-coenzyme A to give acetoacetyl-coenzyme A. The latter then is reduced to the chiral intermediate R-3-hydroxybutyryl-coenzyme A by the reductase, and subsequently polymerized by the PHA synthase enzyme.
- the PHA synthase notably has a relatively wide substrate specificity which allows it to polymerize C3-C5 hydroxy acid monomers including both 4-hydroxy and 5-hydroxy acid units.
- This biosynthetic pathway is found in a number of bacteria such as Alcaligenes eutrophus, A. latus, Azotobacter vinlandii , and Zoogloea ramigera .
- Long pendant group PHAs are produced for example by many different Pseudomonas bacteria.
- Their biosynthesis involves the ⁇ -oxidation of fatty acids and fatty acid synthesis as routes to the hydroxyacyl-coenzyme A monomeric units. The latter then are converted by PHA synthases which have substrate specificities favoring the larger C6-C14 monomeric units (Peoples & Sinskey, 1990).
- PHA biosynthetic genes include: Aeronomas caviae (Fukui & Doi, 1997, J. Bacteriol. 179:4821-30); Alcaligenes eutrophus (U.S. Pat. Nos. 5,245,023; 5,250,430; 5,512,669; and 5,661,026; Peoples & Sinskey, J. Biol. Chem. 264:15298-03 (1989)); Acinetobacter (Schembri et. al., FEMS Microbiol. Lett.
- Rhizobium etli (Cevallos et. al., J. Bacteriol. 178:1646-54 (1996)); R. meliloti (Tombolini et. al., Microbiology 141:2553-59 (1995)); Rhodococcus ruber (Pieper-Furst & Steinbuchel, FEMS Microbiol. Lett. 75:73-79 (1992)); Rhodospirillum rubrum (Hustede et. al., FEMS Microbiol. Lett 93:285-90 (1992)); Rhodobacter sphaeroides (Hustede et. al., FEMS Microbiol. Rev.
- PHA synthases suitable for producing PHB-co-HH copolymers comprising from 1-99% HH monomers are encoded by the Rhodococcus ruber, Rhodospirillum rubrum, Thiocapsiae violacea , and Aeromonas caviae PHA synthase genes.
- a hydratase such as D-specific enoyl-CoA hydratase, for example, the hydratase obtained from Aeromonas caviae
- a ⁇ -oxidation enzyme system Some plants have a ⁇ -oxidation enzyme system which is sufficient to modify polymer synthesis when the plants are engineered to express the hydratase. Tissue specific and constitutive promoters were used to regulate and direct polymer production. Fusion constructs enhance polymer production.
- Examples demonstrate production of polymer by expression of these enzymes in transgenic plants. Examples also demonstrate that modifications in fatty acid biosynthesis can be used to alter plant phenotypes, decreasing or eliminating seed production and increasing green plant biomass, as well as producing PHAs. Use of the phaseolin promoter can be used to induce male sterility. Tissue specific promoters in fusion constructs were used to modify production within regions of the seeds.
- FIG. 1 is a schematic of fatty acid ⁇ -oxidation routes to produce polyhydroxyalkanoate monomers.
- FIG. 2 is a schematic showing plasmid constructs pSBS2024 and pSBS2025.
- FIGS. 3A and 3B are schematics showing plasmid constructs pCGmf124 and pCGmf125.
- FIGS. 4A and 4B are schematics showing plasmid constructs pmf1249 and pmf1254.
- FIGS. 5A and 5B are schematics showing plasmid constructs pCGmf224 and pCGmf225.
- FIGS. 6A and 6B are schematics showing plasmid constructs pCGmf1P2S and pCGmf2P1S.
- FIG. 7 is a schematic showing plasmid constructs pCGm1124, pCGmf125,pCGMI5028, pCGmf224, pCGmf225, pCGMI5038, pCGmf1P2S, pCGmf2P1S, pCGMI5006, pCGmf138, pCGmf1A2P, and pCGmf5034.
- Fatty acid oxidation systems typically comprise several enzyme activities including a ⁇ -ketothiolase enzyme activity which utilizes a broad range of ⁇ -ketoacyl-CoA substrates.
- the methods described herein include the subsequent incorporation of additional transgenes, in particular encoding additional enzymes involved in fatty acid oxidation or polyhydroxyalkanoate biosynthesis.
- the methods include the incorporation of transgenes encoding enzymes, such as NADH and/or NADPH acetoacetyl-CoenzymeA reductases, PHB synthases, PHA synthases, acetoacetyl-CoA thiolase, hydroxyacyl-CoA epimerases, delta3-cis-delta2-trans enoyl-CoA isomerases, acyl-CoA dehydrogenase, acyl-CoA oxidase and enoyl-CoA hydratases by subsequent transformation of the transgenic plants produced using the methods and DNA constructs described herein or by traditional plant breeding methods.
- the fatty acid oxidation transgenes are expressed from a seed specific promoter, and the proteins are expressed in the cytoplasm of the developing oilseed.
- fatty acid oxidation transgenes are expressed from a seed specific promoter and the expressed proteins are directed to the plastids using plastid targeting signals.
- the fatty acid oxidation transgenes are expressed directly from the plastid chromosome where they have been integrated by homologous recombination.
- the fatty acid oxidation transgenes may also be expressed throughout the entire plant tissue from a constitutive promoter.
- Combinations of tissue specific and constitutive promoters with the individual genes encoding the enzymes can also be varied to alter the amount and/or location of polymer production. It is also useful to be able to control the expression of these transgenes by using promoters that can be activated following the application of an agrochemical or other active ingredient to the crop in the field. Additional control of the expression of these genes encompassed by the methods described herein include the use of recombinase technologies for targeted insertion of the transgenes into specific chromosomal sites in the plant chromosome or to regulate the expression of the transgenes.
- the methods described herein involve a plant seed having a genome including (a) a promoter operably linked to a first DNA sequence and a 3′-untranslated region, wherein the first DNA sequence encodes a fatty acid oxidation polypeptide and optionally (b) a promoter operably linked to a second DNA sequence and a 3′-untranslated region, wherein the second DNA sequence encodes a fatty acid oxidation polypeptide.
- Expression of the two transgenes provides the plant with a functional fatty acid ⁇ -oxidation system having at least ⁇ -ketothiolase, dehydrogenase and hydratase activities in the cytoplasm or plastids other than peroxisomes or glyoxisomes.
- the first and/or second DNA sequence may be isolated from bacteria, yeast, fungi, algae, plants, or animals. It is preferable that at least one of the DNA sequences encodes a polypeptide with at least two, and preferably three, enzyme activities.
- DNA constructs useful in the methods described herein include transformation vectors capable of introducing transgenes into plants.
- plant transformation vector options are available, including those described in “Gene Transfer to Plants” (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); “Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins” (Owen, et al., eds.) John Wiley & Sons Ltd. England (1996); and “Methods in Plant Molecular Biology: A Laboratory Course Manual” (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995), which are incorporated herein by reference.
- Plant transformation vectors generally include one or more coding sequences of interest under the transcriptional control of 5′ and 3′ regulatory sequences, including a promoter, a transcription termination and/or polyadenylation signal, and a selectable or screenable marker gene.
- 5′ regulatory sequences include a promoter, a transcription termination and/or a polyadenylation signal.
- additional RNA processing signals and ribozyme sequences can be engineered into the construct (U.S. Pat. No. 5,519,164). This approach has the advantage of locating multiple transgenes in a single locus, which is advantageous in subsequent plant breeding efforts.
- Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley, Science 244:1293-99 (1989)).
- the 5′ end of the transgene may be engineered to include sequences encoding plastid or other subcellular organelle targeting peptides linked in-frame with the transgene.
- Suitable constitutive plant promoters include the cauliflower mosaic virus 35S promoter (CaMV) and enhanced CaMV promoters (Odell et.
- actin promoter McElroy et al., Plant Cell 2:163-71 (1990)
- AdhI promoter Fromm et. al., Bio/Technology 8:833-39 (1990); Kyozuka et al., Mol. Gen. Genet. 228:40-48 (1991)
- ubiquitin promoters the Figwort mosaic virus promoter, mannopine synthase promoter, nopaline synthase promoter and octopine synthase promoter.
- Useful regulatable promoter systems include spinach nitrate-inducible promoter, heat shock promoters, small subunit of ribulose biphosphate carboxylase promoters and chemically inducible promoters (U.S. Pat. No. 5,364,780 to Hershey et al.).
- the transgenes are expressed only in the developing seeds.
- Promoters suitable for this purpose include the napin gene promoter (U.S. Pat. Nos. 5,420,034 and 5,608,152), the acetyl-CoA carboxylase promoter (U.S. Pat. Nos. 5,420,034 and 5,608,152), 2S albumin promoter, seed storage protein promoter, phaseolin promoter (Slightom et. al., Proc. Natl. Acad. Sci. USA 80:1897-1901 (1983)), oleosin promoter (Plant et. al., Plant Mol. Biol.
- suitable agronomic plant hosts using these vectors can be accomplished with a variety of methods and plant tissues.
- Representative plants useful in the methods disclosed herein include the Brassica family including napus, rappa, sp. carinata andjuncea; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including Sinapis alba; and flax.
- Crops harvested as biomass, such as silage corn, alfalfa, or tobacco also are useful with the methods disclosed herein.
- Representative tissues for transformation using these vectors include protoplasts, cells, callus tissue, leaf discs, pollen, and meristems.
- Representative transformation procedures include Agrobacterium-mediated transformation, biolistics, microinjection, electroporation, polyethylene glycol-mediated protoplast transformation, liposome-mediated transformation, and silicon fiber-mediated transformation (U.S. Pat. No. 5,464,765; “Gene Transfer to Plants” (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); “Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins” (Owen, et al., eds.) John Wiley & Sons Ltd. England ( 1996); and “Methods in Plant Molecular Biology: A Laboratory Course Manual” (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995)).
- the following procedures can be used to obtain a transformed plant expressing the transgenes subsequent to transformation: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene at such that the level of desired polypeptide is obtained in the desired tissue and cellular location.
- Brassica napus can be transformed as described, for example, in U.S. Pat. Nos. 5,188,958 and 5,463,174.
- Other Brassica such as rappa, carinata and juncea as well as Sinapis alba can be transformed as described by Moloney et. al., Plant Cell Reports 8:238-42 (1989).
- Soybean can be transformed by a number of reported procedures (U.S. Pat. Nos. 5,015,580; 5,015,944; 5,024,944; 5,322,783; 5,416,011; and 5,169,770).
- Several transformation procedures have been reported for the production of transgenic maize plants including pollen transformation (U.S. Pat. No.
- Sunflower can be transformed using a combination of particle bombardment and Agrobacterium infection (EP 0 486 233 A2; U.S. Pat. No. 5,030,572). Flax can be transformed by either particle bombardment or Agrobacterium-mediated transformation.
- Recombinase technologies include the cre-lox, FLP/FRT, and Gin systems. Methods for utilizing these technologies are described for example in U.S. Pat. No. 5,527,695 to Hodges et al.; Dale & Ow, Proc. Natl. Acad. Sci. USA 88:10558-62 (1991); Medberry et. al., Nucleic Acids Res. 23:485-90 (1995).
- Selectable marker genes useful in practicing the methods described herein include the neomycin phosphotransferase gene nptll (U.S. Pat. Nos. 5,034,322 and 5,530,196), hygromycin resistance gene (U.S. Pat. No. 5,668,298), bar gene encoding resistance to phosphinothricin (U.S. Pat. No. 5,276,268).
- EP 0 530 129 Al describes a positive selection system which enables the transformed plants to outgrow the non-transformed lines by expressing a transgene encoding an enzyme that activates an inactive compound added to the growth media.
- Screenable marker genes useful in the methods herein include the ⁇ -glucuronidase gene (Jefferson et. al., EMBO J. 6:3901-07 (1987); U.S. Pat. No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et. al., Trends Biochem Sci. 20:448-55 (1995); Pang et. al., Plant Physiol. 112:893-900 (1996)).
- Some of these markers have the added advantage of introducing a trait, such as herbicide resistance, into the plant of interest, thereby providing an additional agronomic value on the input side.
- more than one gene product is expressed in the plant.
- This expression can be achieved via a number of different methods, including (1) introducing the encoding DNAs in a single transformation event where all necessary DNAs are on a single vector; (2) introducing the encoding DNAs in a co-transfonnation event where all necessary DNAs are on separate vectors but introduced into plant cells simultaneously; (3) introducing the encoding DNAs by independent transformation events successively into the plant cells i.e.
- transgenic plant cells expressing one or more of the encoding DNAs with additional DNA constructs; and (4) transformation of each of the required DNA constructs by separate transformation events, obtaining transgenic plants expressing the individual proteins and using traditional plant breeding methods to incorporate the entire pathway into a single plant.
- the ⁇ -oxidation pathways of bacteria and the peroxisomal pathway of higher eukaryotes degrade fatty acids to acetyl CoA via S-3-hydroxyacyl CoA (Schultz, “Oxidation of Fatty Acids” in Biochemistry ofLipids, Lipoproteins and Membranes (Vance et al., eds.) pp. 101-06 (Elsevier, Amsterdam 1991)).
- an epimerase activity encoded by the ⁇ -oxidation multifunctional enzyme complex is capable of converting S-3-hydroxyacyl CoA to R-3-hydroxyacyl CoA.
- Yeast possesses a peroxisomal localized fatty acid degradation pathway that proceeds via intermediate R-3-hydroxyacyl CoA (Hiltunen, et al. J. Biol. Chem. 267: 6646-53 (1992); Filppula, et al. J Biol. Chem. 270:27453-57 (1995)), such that no epimerase activity is required to produce PHAs.
- Plants like other higher eukaryotes, possesses a ⁇ -oxidation pathway for fatty acid degradation localized subcellularly in the peroxisomes (Gerhardt, “Catabolism of Fatty Acids [ ⁇ and ⁇ Oxidation]” in Lipid Metabolism in Plants (Moore, Jr., ed.) pp. 527-65 (CRC Press, Boca Raton, Fla. 1993)).
- Fatty acids are synthesized as saturated acyl-ACP thioesters in the plastids of plants (Hartwood, “Plant Lipid Metabolism” in Plant Biochemistry (Dey et al., eds.) pp. 237-72 (Academic Press, San Diego 1997)).
- acyl-ACP thioesters Prior to export from the plastid into the cytosol, the majority of fatty acids are desaturated via a ⁇ 9 desaturase.
- the pool of newly synthesized fatty acids in most oilseed crops consists predominantly of oleic acid (cis 9-octadecenoic acid), stearic acid (octadecanoic acid), and palmitic acid (hexadecanoic acid).
- the cytosolic conversion of the pool of newly synthesized acyl CoA thioesters via fatty acid degradation pathways and the conversion of intermediates from these series of reactions to R-3-hydroxyacyl-CoA substrates for PHA synthases can be achieved via the enzyme reactions outlined in FIG. 1.
- the PHA synthase substrates are C4-C16 R-3-hydroxyacyl CoAs.
- yeast system operates through this route and the Aeromonas caviae D-specific hydratase yields C4-C7 R-3-hydroxyacyl-CoAs), hydration of trans-2-enoyl-CoA to S-3-hydroxy acyl CoA (reaction 2b), and epimerization of S-3-hydroxyacyl CoA to R-3-hydroxyacyl CoA (reaction 5, e.g. cucumber tetrafunctional protein, bacterial systems).
- 3-hydroxyacyl CoA is not polymerized by PHA synthase forming PHA, it can proceed through the remainder of the ⁇ -oxidation pathway as follows: oxidation of 3-hydroxyacyl CoA to form ⁇ -keto acyl CoA (reaction 3) followed by thiolysis in the presence of CoA to yield acetyl CoA and a saturated acyl CoA thioester shorter by two carbon units (reaction 4).
- the acyl CoA thioester produced in reaction 4 is free to re-enter the ⁇ -oxidation pathway at reaction 1 and the acetyl-CoA produced can be converted to R-3-hydroxyacyl CoA by the action of ⁇ -ketothiolase (reaction 7) and NADH or NADPH acetoacetyl-CoA reductase (reaction 6). This latter route is useful for producing R-3-hydroxybutyryl-CoA, R-3-hydroxyvaleryl-CoA and R-3-hydroxyhexanoyl-CoA.
- the R-3-hydroxyacids of four to sixteen carbon atoms produced by this series of enzymatic reactions can be polymerized by PHA synthases expressed from a transgene, or transgenes in the case of the two subunit synthase enzymes, into PHA polymers.
- Acyl CoA thioesters also can be degraded to a ⁇ -keto acyl CoA and converted to R-3-hydroxyacyl CoA via a NADH or NADPH dependent reductase (reaction 6).
- Multifunctional enzymes that encode S-specific hydratase, S-specific dehydrogenase, ⁇ -ketothiolase, epimerase and ⁇ 3 -cis- ⁇ 2 -trans-enoyl CoA isomerase activities have been found in bacteria such as Escherichia coli (Spratt, et al., J Bacteriol. 158:535-42 (1984)) and Pseudomonas fragi (Immure, et al., J. Biochem. 107:184-89 (1990)).
- the multifunctional enzyme complexes consist of two copies of each of two subunits such that catalytically active protein forms a heterotetramer.
- the hydratase, dehydrogenase, epimerase, and ⁇ 3 -cis- ⁇ 2 -trans-enoyl CoA isomerase activities are located on one subunit, whereas the thiolase is located on another subunit.
- the genes encoding the enzymes from organisms such as E. coli (Spratt, et al., J. Bacteriol. 158:535-42 (1984); DiRusso, J. Bacteriol. 172:6459-68 (1990)) and P. fragi (Sato, et al., J. Biochem. 111:8-15 (1992)) have been isolated and sequenced and are suitable for practicing the methods described herein. Furthermore, the E. coli (Spratt, et al., J. Bacteriol. 158:535-42 (1984); DiRusso, J. Bacteriol. 172:6459-68 (1990)) and P. fragi (Sato, et al
- Mammals such as rat possess a trifunctional ⁇ -oxidation enzyme in their peroxisomes that contains hydratase, dehydrogenase, and ⁇ 3 -cis- ⁇ 2 -trans-enoyl CoA isomerase activities.
- the trifunctional enzyme from rat liver has been isolated and has been found to be monomeric with a molecular weight of 78 kDa (Palosaari, et al., J Biol. Chem. 265:2446-49 (1990)).
- thiolase activity is not part of the multienzyme protein (Schultz, “Oxidation of Fatty Acids” in Biochemistry of Lipids, Lipoproteins and Membranes (Vance et al., eds) p. 95 (Elsevier, Amsterdam (1991)).
- Epimerization in rat occurs by the combined activities of two distinct hydratases, one which converts R-3-hydroxyacyl CoA to trans-2-enoyl CoA, and another which converts trans-2-enoyl CoA to S-3-hydroxyacyl CoA (Smeland, et al., Biochemical and Biophysical Research Communications 160:988-92 (1989)).
- Mammals also possess ⁇ -oxidation pathways in their mitochondria that degrade fatty acids to acetyl CoA via intermediate S-3-hydroxyacyl CoA (Schultz, “Oxidation of Fatty Acids” in Biochemistry of Lipids, Lipoproteins and Membranes (Vance et al., eds) p. 96 (Elsevier, Amsterdam (1991)).
- Genes encoding mitochondrial ⁇ -oxidation activities have been isolated from several animals including a Rat mitochondrial long chain acyl CoA hydratase/3-hydroxy acyl CoA dehydrogenase (GENBANK Accession # D16478) and a Rat mitochondrial thiolase (GENBANK Accession #s DI 3921, D005 11).
- Yeast possesses a multifunctional enzyme, Fox2, that differs from the ⁇ -oxidation complexes of bacteria and higher eukaryotes in that it proceeds via a R-3-hydroxyacyl CoA intermediate instead of S-3-hydroxyacyl CoA (Hiltunen, et al., J Biol. Chem. 267:6646-53 (1992)). Fox2 possesses R-specific hydratase and R-specific dehydrogenase enzyme activities. This enzyme does not possess the ⁇ 3 -cis- ⁇ 2 -trans-enoyl CoA isomerase activity needed for degradation of ⁇ 9-cis-hydroxyacyl CoAs to form R-3-hydroxyacyl CoAs.
- the gene encoding fox2 from yeast has been isolated and sequenced and encodes a 900 amino acid protein. The DNA sequence of the structural gene and amino acid sequence of the encoded polypeptide is shown in SEQ ID NO:1 and SEQ ID NO:2.
- Plants have a tetrafunctional protein similar to the yeast Fox2, but also encoding a ⁇ 3 -cis- ⁇ 2 -trans-enoyl CoA isomerase activity (Muller et., al., J. Biol. Chem. 269:20475-81 (1994)).
- the DNA sequence of the cDNA and amino acid sequence of the encoded polypeptide is shown in SEQ ID NO:3 and SEQ ID NO:4.
- eukaryotic sources e.g., fatty acid oxidation enzymes from eukaryotic sources, such as yeast, fungi, plants, and mammals
- the removal or modification of subcellular targeting signals is required to direct the enzymes to the cytosol. It may be useful to add signals for directing proteins to the endoplasmic reticulum.
- Peptides useful in this process are well known in the art. The general approach is to modify the transgene by inserting a DNA sequence specifying an ER targeting peptide sequence to form a chimeric gene.
- Eukaryotic acyl CoA dehydrogenases are targeted to the mitochondria via leader peptides on the N-terminus of the protein that are usually 20-60 amino acids long (Horwich, Current Opinion in Cell Biology, 2:625-33 (1990)).
- leader peptides on the N-terminus of the protein that are usually 20-60 amino acids long (Horwich, Current Opinion in Cell Biology, 2:625-33 (1990)).
- mutagenesis of key residues in the leader sequence have been demonstrated to prevent the import of the mitochrondrial protein.
- Saccharomyces cerevisiae F1 -ATPase was prevented by mutagenesis of its leader sequence, resulting in the accumulation of the modified precursor protein in the cytoplasm (Bedwell, et al., Mol. Cell Biol. 9:1014-25 (1989))
- the targeting signals were localized to two regions of 118 amino acids in length, and neither of regions was found to contain the targeting signal S/A/C-K/H/R-L.
- a small number of peroxisomal proteins appear to contain an amino terminal leader sequence for import into peroxisomes (Brickner, et al., J Plant Physiol. 113:1213-21 (1997)).
- These targeting signals can be deleted or altered by site directed mutagenesis.
- the transgenic plants can be grown using standard cultivation techniques.
- the plant or plant part also can be harvested using standard equipment and methods.
- the PHAs can be recovered from the plant or plant part using known techniques such as solvent extraction in conjunction with traditional seed processing technologies, as described in PCT WO 97/15681, or can be used directly, for example, as animal feed, where it is unnecessary to extract the PHA from the plant biomass.
- Primer 1 Primer 1: 5′ gat ggg ccg ctc caa ggg tgg 3′ (SEQ ID NO:5)
- Primer 2 5′ caa ccc gaa ggt gcc gcc att 3′ (SEQ ID NO:6)
- a 1.1 kb DNA fragment was purified from the PCR reaction and used as a probe to screen a P. putida genomic library constructed in plasmid pBKCMV using the lambda ZAP expression system (Stratagene). Plasmid pMFX1 was selected from the positive clones and the DNA sequence of the insert containing thefaoAB genes and flanking sequences determined. This is shown in SEQ ID NO:7. A fragment containingfaoAB was subcloned with the native P. putida ribosome binding site intact into the expression vector pTRCN forming plasmid pMFX3 as follows. Plasmid pMFX1 was digested with BsrG I.
- the resulting protruding ends were filled in with Klenow. Digestion with Hind III yielded a 3.39 kb blunt ended/Hind III fragment encoding FaoAB.
- the expression vector pTRCN was digested with Sma I/Hind III and ligated with thefaoAB fragment forming the 7.57 kb plasmid pMFX3.
- Enzymes in the FaoAB multienzyme complex were assayed as follows. Hydratase activity was assayed by monitoring the conversion of NAD to NADH using the coupling enzyme L-p-hydroxyacyl CoA dehydrogenase as previously described, except that assays were run in the presence of CoA (Filppula, et al., J. Biol. Chem. 270:27453-57 (1995)). Severe product inhibitation of the coupling enzyme was observed in the absence of CoA.
- the assay contained (1 mL final volume) 60 ⁇ M crotonyl CoA, 50 ⁇ M Tris-CI, pH 9, 50 ⁇ g bovine serum albumin per mL, 50 mM KCl, 1 mM NAD, 7 ⁇ g L-specific ⁇ -hydroxyacyl CoA dehydrogenase from porcine heart per mL, and 0.25 mM CoA.
- the assay was initiated with the addition of FaoAB to the assay mixture.
- a control assay was perfonned without substrate to determine the rate of consumption of NAD in the absence of -the hydratase generated product, S-hydroxybutyryl CoA.
- Hydroxyacyl CoA dehydrogenase was assayed in the reverse direction with acetoacetyl CoA as the substrate by monitoring the conversion of NADH to NAD at 340 nm (Binstock, et al., Methods in Enzymology, 71:403 (1981)).
- the assay contained (1 mL final volume) 0.1 M KH 2 PO 4 , pH 7, 0.2 mg bovine serum albumin per mL, 0.1 mM NADH, and 33 ⁇ M acetoacetyl CoA. The assay was initiated with the addition of FaoAB to the assay mixture.
- HydroxyacylCoA dehydrogenase was assayed in the forward direction with crotonyl CoA as a substrate by monitoring the conversion of NAD to NADH at 340 nm (Binstock, et al., Methods in Enzymology, 71:403 (1981)).
- the assay mixture contained (1 mL final volume) 0.1 M KH 2 PO 4 , pH 8, 0.3 mg bovine serum albumin per mL, 2 mM ⁇ -mercaptoethanol, 0.25 mM CoA, 30 ⁇ M crotonyl CoA, and an aliquot of FaoAB.
- the reaction was preincubated for a couple of minutes to allow in situ formation of S-hydroxybutyryl CoA.
- the assay then was initiated by the addition of NAD (0.45 mM).
- a control assay was performed without substrate to detect the rate of consumption of NAD due to enzymes other than hydroxyacyl CoA dehydrogenase.
- Thiolase activity was determined by monitoring the decrease in absorption at 304 nm due to consumption of substrate acetoacetyl CoA as previously described with some modifications (Palmer, et al., J. Biol. Chem. 266:1-7 (1991)).
- the assay contained (final volume 1 mL) 62.4 mM Tris-Cl, pH 8.1, 4.8 mM MgCl 2 , 62.5 ⁇ M CoA, and 62.5 ⁇ M acetoacetyl CoA.
- the assay was initiated with the addition of FaoAB to the assay mixture.
- a control sample without enzyme was performed for each assay to detect the rate of substrate degradation of pH 8.1 in the absence of enzyme.
- Epimerase activity was assayed as previously described (Binstock, et al., Methods in Enzymology, 71:403 (1981)) except that R-3-hydroxyacyl CoA thioesters were utilized instead of D,L-3-hydroxyacyl CoA mixtures.
- the assay contained (final volume 1 mL) 30 ⁇ M R-3-hydroxyacyl CoA, 150 mM KH 2 PO 4 (pH 8), 0.3 mg/mL BSA, 0.5 mM NAD, 0.1 mM CoA, and 7 ⁇ g/mL L-specific ⁇ -hydroxyacyl CoA dehydrogenase from porcine heart.
- the assay was initiated with the addition of FaoAB.
- FaoAB FaoAB in DH5 ⁇ /pMFX3
- 2 ⁇ TY medium contains (per L) 16 g tryptone, 10 g yeast, and 5 g NaCl.
- a starter culture was grown overnight and used to inoculate (1% inoculum) fresh medium (100 mL in a 250 mL Erlenmeyer flask for small scale growths; 1.5 L in a 2.8 L flask for large scale growths).
- Cells were induced with 0.4 mM IPTG when the absorbance at 600 nm was in the range of 0.4 to 0.6. Cells were cultured an additional 4 h prior to harvest.
- FaoAB in DH5 ⁇ /pMFX3 contained dehydrogenase and thiolase activity values of 4.3 and 0.99 U/mg, respectively, which is significantly more than the 0.0074 and 0.0033 U/mg observed for dehydrogenase and thiolase, respectively, in control strain DH5 ⁇ /pTRCN.
- FaoAB was purified from DH5 ⁇ /pMFX3 using a modified procedure previously described for the purification of FaoAB from Pseudoinonas fragi (Imamura, et al., J. Biochem. 107:184-89 (1990)). Thiolase activity (assayed in the forward direction) and dehydrogenase activities (assayed in the reverse direction) were monitored throughout the purification. Three liters of DH5 ⁇ /pMFX3 cells (2 ⁇ 1.5 L aliquots in 2.8 L Erlenmeyer flasks) were grown in 2 ⁇ TY medium using the cell growth procedure previously described for preparing cells for enzyme activity analysis.
- the resulting supernatant was adjusted to 56% saturation with (NH 4 ) 2 SO 4 and the insoluble pellet was isolated by centrifugation and dissolved in 10 mM KH 2 PO 4 , pH 7.
- the sample was heated at 50° C. for 30 min. and the soluble proteins were isolated by centrifugation and dialyzed in a 6,000 to 8,000 molecular weight cut off membrane in 10 mM KH 2 PO 4 , pH 7 (2 ⁇ 3 L; 20 h).
- the sample was loaded on a Toyo Jozo DEAE FPLC column (3 cm x 14 cm) that previously had been equilibrated in 10 mM KH 2 PO 4 , pH 7.
- the protein was eluted with a linear gradient (100 mL by 100 mL; 0 to 500 mM NaCl in 10 KH 2 PO 4 , pH 7) at a flow of 3 mL/min. FaoAB eluted between 300 and 325 mM NaCl.
- the sample was dialyzed in a 50,000 molecular weight cut off membrane in 10 mM KH 2 PO 4 , pH 7 (1 ⁇ 2 L; 15h) prior to loading on a macro-prep hydroxylapatite 18/30 (Biorad) FPLC column (2 cm ⁇ 15 cm) that previously had been equilibrated in 10 mM KH 2 PO 4 , pH 7.
- the protein was eluted with a linear gradient (250 mL by 250 mL; 10 to 500 mM KH 2 PO 4 , pH 7) at a flow rate of 3 mL/min. FaoAB eluted between 70 and 130 mM KH 2 PO 4 .
- the fractions containing activity were concentrated to 9 mL using a MILLIPORETM 100,000 molecular weight cutoff concentrator.
- the buffer was exchanged 3 times with 10 mM KH 2 PO 4 , pH 7 containing 20% sucrose and frozen at ⁇ 70° C. Enzyme activities of the hydroxylapatite purified fraction were assayed with a range of substrates. The results are shown in Table 1 below.
- FaoAB protein Following purification of the FaoAB protein as described in Example 1, a sample was separated by SDS-PAGE. The protein band corresponding to the FaoA (SEQ ID NO:31) and FaoB (SEQ ID NO:26) was excised and used to immunize New Zealand white rabbits with complete Freunds adjuvant. Boosts were performed using incomplete Freunds at three week intervals. Antibodies were recovered from serum by affinity chromatography on Protein A columns (Pharmacia) and tested against the antigen by Western blotting procedures. Control extracts of Brassica seeds were used to test for cross reactivity to plant proteins. No cross reactivity was detected.
- Oligonucleotide primers GVR471 GVR471 5′- CGGTACC CATTGTACTCCCAGTATCAT -3′ and (SEQ ID NO:8) GVR472 5′- CATTTAAAT AGTAGAGTATTGAATATG -3′ (SEQ ID NO:9)
- the designated plasmid, pCPPI was cut with SalI and SwaI and ligated to a SalI/SwaI phaseolin terminator (SEQ ID NO:27).
- the bean phaseolin terminator sequence encompassing the polyadenylation signals was amplified using the following PCR primers: GVR396: GVR396: (SEQ ID NO:22) 5′-GATTTAAATGCAAGCTTAAATAAGTATGAACTAAAATGC-3′ and GVR397: (SEQ ID NO.23) 5′-CGGTACCTTAGTTGGTAGGGTGCTA-3′
- a soybean oleosin promoter fragment (SEQ ID NO:11; Rowley et al., 1997) was simplified with primers that flank the DNA sequence.
- Primer JA408 (SEQ ID NO:12) 5′- TCTAGA TACATCCATTTCTTAATATAATCCTCTTATTC -3′
- [0082] contains sequences that are complementary to the 5′ end (underlined).
- [0084] contains sequences homologous to the 3′ end (underlined) of the promoter fragment.
- the restriction sites Xbal (in italics) and Swal (in italics) were incorporated at the 5′ end of JA408 and np1, respectively, to facilitate cloning.
- the primers were used to amplify a 975 bp promoter fragment, which then was cloned into Sniall site ofpUC19 (see FIG. 2).
- the resulting plasmid, pCSPI was cut with SalI and SwaI and ligated to the soybean terminator (SEQ ID NO:28).
- the soybean oleosin terminator was amplified by PCR using the following primers:
- JA410 (SEQ ID NO:29) 5′-AAGCTTACGTGATGAGTATTAATGTGTTGTTATG-3′
- plasmid pSBS2025 (FIG. 6).
- np3 5′ ATTGCTT T CAGTTGAAGCGCTG -3′ SEQ ID NO:15
- promoter-coding sequence fusions were independently cloned into the binary vectors, pCGN1559 (McBride and Summerfelt, 1990) containing the CaMV 35S promoter driving the expression of NPTII gene (conferring resistance to the antibiotic kanamycin) and pSBS2004 containing a parsley ubiquitin promoter driving the PPT gene, which confers resistance to the herbicide phosphinothricine.
- Binary vectors suitable for this purpose with a variety of selectable markers can be obtained from several sources.
- the two expression cassettes containing the promoter-coding sequence fusions were assembled on the same binary vector as follows: Plasmid pmf124 containing the phaseolin-mf1 fusion was cut with BamHI and cloned into the BamHI site ofpCGN1559 to create pCGmfB124. This plasmid then was linearized with XbaI and ligated to the XbaI fragment of pmf225 containing the soybean-mf2 fusion. The final plasmid was designated pCGmf1P2S (FIGS. 6A and 6B). Plasmid pCGmf2P1S was assembled in similar manner.
- phaseolin-mf2 fusion was released from pmf224 by cutting with BamHI and cloned at the BamHI site ofpCGN1559.
- the resulting plasmid, pCGmfB224 was linearized with XbaI and ligated to the XbaI fragment of pmf125 containing the soybean-mf1 fusion (FIGS. 6A and 6B).
- Brassica seeds were surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive) for 30 min. with gentle shaking. The seeds were washed three times in sterile distilled water. Seeds were placed in germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% (w/v) sucrose and 0.7% (w/v) phytagar, pH 5.8 at a density of 20 per plate and maintained at 24° C. and a 16 h light/8 h dark photoperiod at a light intensity of 60-80 ⁇ m ⁇ 2 s ⁇ 1 for four to five days.
- MS Murashige-Skoog
- each of the constructs, pCGmf124, pCGmf125, pCGmf224, pCGmf1P2S, and pCGmf2P1S were introduced into Agrobacterium tumefacians strain EHA101 (Hood et al., J. Bacteriol. 168:1291-1301 (1986)) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHA101 harboring each construct were grown in 5 ml of minimal medium supplemented with 100 mg kanamycin per liter and 100 mg gentamycin per liter for 48 hr at 28° C. One milliliter of bacterial suspension was pelletized by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 ml minimal medium.
- cotyledons were excised from 4 day old, or in some cases 5 day old, seedlings, so that they included approximately 2 mm of petiole at the base.
- Individual cotyledons with the cut surface of their petioles were immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of approximately 2 mm in co-cultivation medium, MS medium with 3% (w/v) sucrose and 0.7% phytagar and enriched with 20 ⁇ M benzyladenine.
- the inoculated cotyledons were plated at a density of 10 per plate and incubated under the same growth conditions for 48 h.
- the cotyledons then were transferred to regeneration medium comprising MS medium supplemented with 3% sucrose, 20 ⁇ M benzyladenine, 0.7% (w/v) phytagar, pH 5.8, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter.
- regenerant shoots obtained were cut and maintained on “shoot elongation” medium (MS medium containing, 3% sucrose, 300 mg timentin per liter, 0.7% (w/v) phytagar, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter, pH 5.8) in Magenta jars.
- the elongated shoots were transferred to “rooting” medium comprising MS medium, 3% sucrose, 2 mg indole butyric acid per liter, 0.7% phytagar, and 500 mg carbenicillin per liter.
- plantlets were transferred to potting mix (Redi Earth, W.R. Grace and Co.).
- NPTII neomycin phosphotransferase
- Seeds from the FaoA and FaoB transgenic lines can be analyzed for expression of the fatty acid oxidation polypeptides by western blotting using the anti-FaoA and anti-FaoB antibodies.
- the FaoB polypeptide (SEQ ID NO:26) is not functional in the absence of the FaoA gene product; however, the FaoAB gene product has enzyme activity.
- Transgenic lines expressing the FaoA and FaoB complex are obtained by crossing the FaoA and FaoB transgenic lines expressing the individual polypeptides and seeds analyzed by western blotting and enzymes assays as described.
- each of the constructs, pCGmf124, pCGmf125, pCGmf224, pCGmf225, pCGmf1P2S, and pCGmf2P1S were introduced into Agrobacterium tumefaciens strain EHA101 (Hood et al. 1986) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHAIOI harboring each construct were grown in 5 mL of minimal medium supplemented with 100 mg kanamycin per liter, and 100 mg gentamycin per liter for 48 h at 28° C. One milliliter of bacterial suspension was pelletized by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 mL minimal medium.
- cotyledons were excised from four-day-old, or in some cases five-day-old, seedlings so that they included approximately 2 mm of petiole at the base.
- Individual cotyledons with the cut surface of their petioles were immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of approximately 2 mm in co-cultivation medium, MS medium with 3% sucrose and 0.7% phytagar, enriched with 20 ⁇ M benzyladenine.
- the inoculated cotyledons were plated at a density of 10 per plate and incubated under the same growth conditions for 48 h.
- the cotyledons then were transferred to regeneration medium, which comprised MS medium supplemented with 3% sucrose, 20 ⁇ M benzyladenine, 0.7% phytagar, pH 5.8, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter.
- NPT II neomycin phosphotransferase
- the fate of the transforming DNA was investigated for sixteen randomly selected transgenic lines. Southern DNA hybridization analysis showed that the FaoA and/or FaoB were integrated into the genomes of the transgenic lines tested.
- RNA from seeds from pmf224 lines containing the phaseolin promoter-FaoB constructs showed a signal indicative of the expected 1.2 kb transcript in all the samples tested except the control.
- Northern analysis on RNA from seeds from pmf125 lines containing the weak soybean oleolsin promoter-FaoA constructs revealed a transcript of the expected size of 2.1 kb.
- Western blotting on 300-500 ⁇ g of protein from approximately 80% of seeds of pmf125 plants where the FaoA gene is expressed from the relatively weak soybean oleosin promoter were inconclusive, although a weak signal was detected in one transgenic line.
- the fatty acid profile of the seeds from transgenic lines expressing the FaoA gene from the weak soybean oleosin promoter was analyzed. Seeds expressing only the FaoA gene or also expressing the FaoB gene from the bean phaseolin promoter were examined. The analysis was carried out as described in Millar et al., The Plant Cell 11:1889-902 (1998). Seed fatty acid methyl esters (FAMES) were prepared by placing ten seeds of B. napus in 15 x 45-mm screw capped glass tubes and heating at 80° C.
- Fatty acid profile analysis indicated the presence of an additional component or enhanced component in the lipid profile in all of the transgenic plants expressing the FaoA gene SEQ ID NO:24 which was absent from the control plants. This result again proves conclusively that the FaoA gene is being transcribed and translated and that the FaoA polypeptide SEQ ID NO:27 is catalytically active. This peak also was observed in eleven additional transgenic plants harboring SoyP-FaoA, PhaP-FaoA-SoyP-FaoB, SoyP-FaoA-PhaP-FaoB genes and a sterile (PhaP-FaoA) plant cross-pollinated with SoyP-FaoB.
- FaoA gene shows functional expression of the FaoA gene and that even the very low levels of expression are sufficient to change the lipid profile of the seed.
- Adapting the methods described herein one of skill in the art can express these genes at levels intermediate between that obtained with the phaseolin promoter and the soybean oleosin promoter using other promoters such as the Arabidopsis oleosin promoter, napin promoter, or cruciferin promoter, and can use inducible promoter systems or recombinase technologies to control when fatty acid oxidation transgenes are expressed.
- S. cerevisiae contains a ⁇ -oxidation pathway that proceeds via R-hydroxyacyl CoA rather than the S-3-hydroxyacyl CoA observed in bacteria and higher eukaryotes.
- the fox2 gene from yeast encodes a hydratase that produces R-3-hydroxyacyl CoA from trans-2-enoyl-CoA and a dehydrogenase that utilizes R-3-hydroxyacyl-CoA to produce ⁇ -keto acyl CoAs.
- the fox2 gene (sequence shown in SEQ ID NO:1) was isolated from S. cerevisiae genomic DNA by PCR in two pieces. Primers N-fox2b and N-bamfox2b were utilized to PCR a 1.1 kb SmaI/BamHI fragment encoding the N-terminal region of Fox2, and primers C-fox2 and C-bamfox2 were utilized to PCR a 1.6 kb BamHI/XbaI fragment encoding the C-terminal Fox2 region. The full fox2 gene was reconstructed via subcloning in vector pTRCN.
- N-fox2b fox2 tcc ccc ggg agg agg ttt tta tta tgc ctg gaa att tat cct tca aag ata gag tt (SEQ ID NO:18)
- N-bamfox2b fox2 aaggatccttgatgtcatttacaactacc (SEQ ID NO:19)
- C-bamfox2 fox2 tgacatcaaggatccttttt (SEQ ID NO:21)
- the fox1 gene does not possess a ⁇ -ketothiolase activity and this activity must be supplied by a second transgene.
- Representative sources of such a gene include algae, bacteria, yeast, plants, and mammals.
- the bacterium Alcaligenes eutrophus possesses a broad specificity ⁇ -ketothiolase gene suitable for use in the methods described herein. It can be readily isolated using the acetoacetyl-CoA thiolase gene as a hybridization probe, as described in U.S. Pat. No. 5,661,026 to Peoples et al. This enzyme also has been purified (Haywood et al., FEMS Micro. Lett. 52:91 (1988)), and the purified enzyme is useful for preparing antibodies or determining protein sequence information as a basis for the isolation of the gene.
- the DNA sequence of the cDNA encoding ⁇ -oxidation tetrafunctional protein can be isolated as described in Preisig-Muller et al., J. Biol. Chem. 269:20475-81 (1994).
- the equivalent gene can be isolated from other plant species including Arabidopsis, Brassica, soybean, sunflower, and corn using similar procedures or by screening genomic libraries, many of which are commercially available, for example from Clontech Laboratories Inc., Palo Alto, Calif., USA.
- a peroxisomal targeting sequence P-R-M was identified at the carboxy terminus of the protein.
- Constructs suitable for expressing in the plant cytosol can be prepared by PCR amplification of this gene using primers designed to delete this sequence.
- the Pseudomonas putida FaoA and FaoB genes were amplified from plasmid pMFX3, cloned into pUC19 and pBluescript respectively, and sequenced.
- Functional assays using the amplified FaoA (mf1) gene performed at Metabolix Inc. found the PCR fragment to contain coding sequence which specifies biological activities for hydratase, dehydrogenase and thiolase.
- FaoA and FaoB (mf2) PCR fragments were inserted into an expression cassette containing phaseolin (pSBS2024), soybean oleosin (pSBS2025) or Arabidopsis oleosin (pSBS2038) regulatory sequences shown.
- the seed-specific expression cassettes containing either the FaoA or FaoB genes were inserted into the plant transformation vectors pCGN1559 (see FIG. 7) and pSBS2004.
- pCGN1559 contains CaMV 35S promoter driving expression of the nptll gene (which confers resistance to the antibiotic, kanamycin) while pSBS2004 contains a parsley ubiquitin promoter driving the PAT gene which confers resistance to phosphinothricine.
- Plasmids, pCGmf1P2S, pCGmf2P1S and PCGmf1A2P contain both FaoA and FaoB in the same binary vector (see FIG. 7).
- a plasmid pTRCN c.v. phaB was used as a template in an amplification reaction to obtain a 790 bp fragment encoding the acetoacyl CoA reductase from Chromatium vinosum .
- the PCR fragment was cloned into pBluescript and sequence analysis confirmed identity to the original bacterial gene.
- the consumption of NADH measured at 340 nm in the presence of acetoacetyl CoA showed that the activity of the gene product of the amplified fragment pTRCNRBSH-Rd108 gave similar activity, within the error of the assay, as the starting construct pTRCN c.v. phaB.
- the reductase fragment was cloned into pSBS2038 under the control of the Arabidopsis oleosin promoter to obtain plasmid pM15006 shown below.
- the plasmid PMSXPB4C5Cat containing a fragment encoding a hybrid Pseudomonas oleovorans/Zoogloea ramigera synthase was used as a template to amplify a 1.79 kb fragment.
- the PCR fragment was cloned into pUC19 and sequenced. Functional analysis was performed at Metabolix Inc. by transforming the amplified fragment into an E. coli strain already expressing reductase and thiolase genes. This was grown in LB/glucose medium and was shown to make PHA. GC analysis of the whole E.
- coli cell pellet showed the presence of PHA whereas a control strain without the amplified fragment did not.
- the amplified fragment was inserted into the seed-specific promoter-terminator cassette pSBS2038 resulting in plasmid pMI5038 as shown.
- the amplified fragment was cloned into the plasmid pSBS2028 containing the parsley ubiquitin promoter-terninator regulatory sequences also shown above.
- the Arabidopsis oleosin promoter-synthase and ubiquitin promoter-synthase genes were subsequently cloned into the binary vector pCGN1559 to generate plasmids pCGM15038 and pCGMI5028 respectively (see FIG. 7) for transformation.
- Plasmid pM15034 contains both synthase and reductase coding sequences under the regulatory control of ubiquitin and oleosin promoters respectively.
- FaoA and FaoB genes are transcribed and translated in a plant
- GUS E. coli betaglucuronidase
- the full length amplified FaoA (mf1) gene was fused in frame to GUS and the resulting fragment was inserted into the expression cassette pSBS2038 which contained the Arabidopsis oleosin regulatory sequences.
- the final plasmid pGUSmf138 was used in biolistics experiments. To establish whether the FaoA gene would accumulate as a fusion protein in plants, the chimaeric Arabidopsis-FaoA fragment was cloned into the binary vector pCGN1559 and the resulting plasmid, pCGmfG138 was used to transform Brassica napus.
- Agrobacterium-based binary vectors were used to transform cotyledons of 4 to 5 day old seedlings of Brassica napus cv. Westar.
- Table 3 shows the various constructs used for transformation and the number of transformed plants generated. Each construct comprises a particular plant regulatory sequence and the bacterial coding sequences within the binary vector pCGN1559. The number of transforned plants are indicated. Maps of the various constructs are also indicated in FIG. 7.
- Surviving transgenic plants of pha-FaoA were all sterile and unable to set seeds.
- Six out of sixteen transgenic plants from the pha-FaoA/soy-FaoB construct and two of soy-FaoA/pha-FaoB plants were also sterile.
- transgenic plants showed nonnal development except pha-FaoA plants which were found to exhibit morphological changes. The plants were sterile and therefore unable to set seed. They showed vigorous growth and produced more biomass. Characterization of the transforming DNA by Southern blot showed that the FaoA gene had stably integrated into plant genome. Transient expression studies using a GUS reporter gene fused to FaoA demonstrated that the FaoA gene can be transcribed and translated in plants. Coexpression of both FaoA and FaoB in embryos also suggests the formation of a more stable complex. This is supported by transient expression studies where GUS activity in a GUS-FaoA fusion increased more than two fold when FaoB is coexpressed.
- FaoB Expression of FaoB was evident by the presence of the transcript and polypeptide in transgenic plants.
- the expression of FaoA in plants was further demonstrated by the detection of the transcript and polypeptide in plants transformed with a construct containing the Arabidopsis oleosin promoter regulating the FaoA gene. Changes in fatty acid profiles of total seed lipid content in addition to an alteration in morphology is evidence of functional expression of FaoA in transgenic plants.
- Northern and Western blot analysis also demonstrated transcription and translation of the reductase and synthase genes in transgenic plants.
- Transgenic plants carrying the pha-FaoA/soy-FaoB and soy-FaoA/pha-FaoB constructs on the other hand showed normal growth. It is therefore hypothesized that the accumulation of detrimental substrates resulting from the overexpression of functional FaoA may be converted to benign metabolites when active FaoB protein is present.
- transgenic plants that harbor both FaoA and FaoB genes under the control of phaseolin and soybean regulatory sequences
- three hybridizing fragments (0.9, 2.8, and 3.9 kb forpha-FaoA/soy-FaoB, and 2.1, 2.2, and 3.2 kb forsoy-FaoA/pha-FaoB plants) were expected with the probe.
- the probe shows some nonspecific hybridization at the stringency used, as some hybridization is also seen in the control (plant transformed with pCGN1559).
- Developing transgenic seeds were harvested at various stages and analyzed for the expression of the bacterial FaoA and FaoB genes using Northern and Western analysis.
- Northern blot analysis was performed on 30 ⁇ g of total seed RNA using radiolabelled DNA fragments representing the coding sequence of the bacterial genes.
- extracts of total seed protein were size-fractionated on 10-12% polyacrylamide-SDS gels and transferred to PVDF membrane.
- Antibodies raised in rabbits against the bacterial FaoA or FaoB protein, and goat anti-rabbit IgG conjugated to horseradish peroxidase were used to visualize the related polypeptides using chemiluminescence ECL immunodetection.
- the related-FaoB polypeptide is unable to accumulate as the protein is normally stabilized in vivo by the presence of the FaoA protein as demonstrated in bacterial systems.
- hybridizing transcripts were detected for FaoB but not FaoA.
- the related polypeptide could not be detected by Western blot analysis.
- the chromatogram shows an enhanced peak of a low molecular weight fatty acid (arrowed) which was absent in the control transgenic plant. This enhanced peak was also observed in a plant transformed with the pha-FaoA/soy-FaoB construct. The same peak was observed in eleven other transgenic plants including a male-sterile phas-FaoA plant fertilized with pollen from soy-FaoA plant. The results support the conclusion that the FaoA polypeptide is functional and perturbs an essential metabolic process.
- a GC-MS analysis identified the peak as pentanoic acid which would be an unusual cleavage product of a functional FaoA.
- phaseolin promoter as a regulatory sequence to express the FaoA gene proved lethal to the normal development of transgenic B. napus plants, which indicates expression of a functional FoaA. Furthermore, the soybean oleosin promoter was comparatively weaker in expressing either the FaoA or FaoB transgenes. In an effort to express the FaoA transgene in a seed-specific manner, a relatively strong Arabidopsis oleosin promoter was used. An Ara-FaoA construct was assembled in plasmid pCGNI 559 and used to transform B. napus. Plant transformation was also initiated with the Ara-Red, Ara-Syn, and ubiq-Syn constructs. The following analyses were conducted on some of the transgenic plants obtained.
- a Northern blot was prepared using 30 ⁇ g of total RNA extracted from transgenic seeds.
- a 32 P-labelled FaoA gene probe hybridized to the related transcript of expected size in transgenic plants. No hybridization was observed with RNA from the control plant.
- total seed protein extracts were size-fractionated on 10-12% polyacrylamide-SDS gels and transferred to PVDF membrane.
- AP alkaline phosphatase
- the cloned reductase coding sequence was radiolabelled and used as a probe in Northern blot hybridization. Autoradiography shows that the probe did not hybridize to RNA from the control plant. In contrast, mRNA from two of the three transgenic plants analyzed, hybridized to the reductase gene probe.
- a Western blot was prepared with 300 ⁇ g of protein extract in all four samples analyzed and the polypeptide co-migrated with the purified bacterial reductase protein standard. There was no immunodetection of a related polypeptide in the control plants. The extra nonspecific hybridizing band may represent accumulating oilbody protein in mature seeds. This result suggests that the bacterial reductase gene is transcribed and translated in B. napus plant.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Methods and systems to modify fatty acid biosynthesis and oxidation in plants to make new polymers are provided. Two enzymes are essential: a hydratase such as D-specific enoyl-CoA hydratase, for example, the hydratase obtained from Aeromonas caviae, and a β-oxidation enzyme system. Some plants have a β-oxidation enzyme system which is sufficient to modify polymer synthesis when the plants are engineered to express the hydratase. Examples demonstrate production of polymer by expression of these enzymes in transgenic plants. Examples also demonstrate that modifications in fatty acid biosynthesis can be used to alter plant phenotypes, decreasing or eliminating seed production and increasing green plant biomass, as well as producing polyhydroxyalkanoates.
Description
- Priority is claimed to U.S. application Ser. No. 09/263,406, filed Mar. 5, 1999, which claims priority to U.S. Provisional application Serial No. 60/077,107, filed Mar. 6, 1998.
- The present invention is generally in the field of transgenic plant systems for the production of polyhydroxyalkanoate materials, modification of triglycerides and fatty acids, and methods for altering seed production in plants.
- Methods for producing stable transgenic plants for agronomic crops have been developed over the last 15 years. Crops have been genetically modified for improvements in both input and output traits. In the former traits, tolerance to specific agrochemicals has been engineered into crops, and specific natural pesticides, such as theBacillus thuringenesis toxin, have been expressed directly in the plant. There also has been significant progress in developing male sterility systems for the production of hybrid plants. With respect to output traits, crops are being modified to increase the value of the product, generally the seed, grain, or fiber of the plant. Critical metabolic targets include the modification of starch, fatty acid, and oil biosynthetic pathways.
- There is considerable commercial interest in producing microbial polyhydroxyalkanoate (PHA) biopolymers in plant crops. See, for example, U.S. Pat. Nos. 5,245,023 and 5,250,430 to Peoples and Sinskey; U.S. Pat. No. 5,502,273 to Bright et al.; U.S. Pat. No. 5,534,432 to Peoples and Sinskey; U.S. Pat. No. 5,602,321 to John; U.S. Pat. No. 5,610,041 to Somerville et al.; PCT WO 91/00917; PCT WO 92/19747; PCT WO 93/02187; PCT WO 93/02194; PCT WO 94/12014; Poirier et al.,Science 256:520-23 (1992); van der Leij & Witholt, Can. J. Microbiol. 41(supplement):222-38 (1995); Nawrath & Poirier, The International Symposium on Bacterial Polyhydroxyalkanoates, (Eggink et al., eds.) Davos Switzerland (Aug. 18-23, 1996); Williams and Peoples, CHEMTECH 26: 38-44 (1996), and the recent excellent review by Madison, L. and G. Husiman, Microbiol. Mol. Biol. 21-53 (March 1999). PHAs are natural, thermoplastic polyesters and can be processed by traditional polymer techniques for use in an enormous variety of applications, including consumer packaging, disposable diaper linings and garbage bags, food and medical products.
- Early studies on the production of polyhydroxybutyrate in the chloroplasts of the experimental plant systemArabidopsis thaliana resulted in the accumulation of up to 14% of the leaf dry weight as PHB (Nawrath et al., 1993). Arabidopsis, however, has no agronomic value. Moreover, in order to economically produce PHAs in agronomic crops, it is desirable to produce the PHAs in the seeds, so that the current infrastructure for harvesting and processing seeds can be utilized. The options for recovery of the PHAs from plant seeds (PCT WO 97/15681) and the end use applications (Williams & Peoples, CHEMTECH 26:38-44 (1996)) are significantly affected by the polymer composition. Therefore, it would be advantageous to develop transgenic plant systems that produce PHA polymers having a well-defined composition, as well as produce PHA polymer in specific locations within the plants and/or seeds.
- Careful selection of the PHA biosynthetic enzymes on the basis of their substrate specificity allows for the production of PHA polymers of defined composition in transgenic systems (U.S. Pat. Nos. 5,229,279; 5,245,023; 5,250,430; 5,480,794; 5,512,669; 5,534,432; 5,661,026; and 5,663,063).
- In bacteria, each PHA group is produced by a specific pathway. In the case of the short pendant group PHAs, three enzymes are involved: β-ketothiolase, acetoacetyl-CoA reductase, and PHA synthase. The homopolymer PHB, for example, is produced by the condensation of two molecules of acetyl-coenzyme A to give acetoacetyl-coenzyme A. The latter then is reduced to the chiral intermediate R-3-hydroxybutyryl-coenzyme A by the reductase, and subsequently polymerized by the PHA synthase enzyme. The PHA synthase notably has a relatively wide substrate specificity which allows it to polymerize C3-C5 hydroxy acid monomers including both 4-hydroxy and 5-hydroxy acid units. This biosynthetic pathway is found in a number of bacteria such asAlcaligenes eutrophus, A. latus, Azotobacter vinlandii, and Zoogloea ramigera. Long pendant group PHAs are produced for example by many different Pseudomonas bacteria. Their biosynthesis involves the β-oxidation of fatty acids and fatty acid synthesis as routes to the hydroxyacyl-coenzyme A monomeric units. The latter then are converted by PHA synthases which have substrate specificities favoring the larger C6-C14 monomeric units (Peoples & Sinskey, 1990).
- In the case of the PHB-co-HX copolymers which usually are produced from cells grown on fatty acids, a combination of these routes can be responsible for the formation of the different monomeric units. Indeed, analysis of the DNA locus encoding the PHA synthase gene inAeromonas caviae, which produces the copolymer PHB-co-3-hydroxyhexanoate, was used to identify a gene encoding a D-specific enoyl-CoA hydratase responsible for the production of the D-β-hydroxybutyryl-CoA and D-β-hydroxyhexanoyl-CoA units (Fukui & Doi, J. Bacteriol. 179:4821-30 (1997); Fukui et. al., J. Bacteriol. 180:667-73 (1998)). Other sources of such hydratase genes and enzymes include Alcaligenes, Pseudomonas, and Rhodospirillum.
- The enzymes PHA synthase, acetoacetyl-CoA reductase, and β-ketothiolase, which produce the short pendant group PHAs inA. eutrophus, are coded by an operon comprising the phbC-phbA-phbB genes; Peoples et al., 1987; Peoples & Sinskey, 1989). In the Pseudomonas organisms, the PHA synthases responsible for production of the long pendant group PHAs have been found to be encoded on the pha locus, specifically by thephaA and phaC genes (U.S. Pat. Nos. 5,245,023 and 5,250,430; Huisman et. al., J. Biol. Chem. 266:2191-98 (1991)). Since these earlier studies, a range of PHA biosynthetic genes have been isolated and characterized or identified from genome sequencing projects. Known PHA biosynthetic genes include: Aeronomas caviae (Fukui & Doi, 1997, J. Bacteriol. 179:4821-30); Alcaligenes eutrophus (U.S. Pat. Nos. 5,245,023; 5,250,430; 5,512,669; and 5,661,026; Peoples & Sinskey, J. Biol. Chem. 264:15298-03 (1989)); Acinetobacter (Schembri et. al., FEMS Microbiol. Lett. 118:145-52 (1994)); Chromatium vinosum (Liebergesell & Steinbuchel, Eur. J. Biochem. 209:135-50 (1992)); Methylobacterium extorquens (Valentin & Steinbuchel, Appl. Microbiol. Biotechnol. 39:309-17 (1993)); Nocardia corallina (GENBANK Accession No. AF019964; Hall et. al., 1998, Can. J. Microbiol. 44:687-69); Paracoccus denitrificans (Ueda et al., J. Bacteriol. 178:774-79 (1996); Yabutani et. al., FEMS Microbiol. Lett. 133:85-90 (1995)); Pseudomonas acidophila (Umeda et. al., 1998, Applied Biochemistry and Biotechnology, 70-72:341-52); Pseudomonas sp. 61-3 (Matsusaki et al., 1998, J. Bacteriol. 180:6459-67); Nocardia corallina; Pseudomonas aeruginosa (Timm & Steinbuchel, Eur. J. Biochem. 209:15-30 (1992)); P. oleovorans (U.S. Pat. Nos. 5,245,023 and 5,250,430; Huisman et. al., J. Biol. Chem. 266(4):2191-98 (1991); Rhizobium etli (Cevallos et. al., J. Bacteriol. 178:1646-54 (1996)); R. meliloti (Tombolini et. al., Microbiology 141:2553-59 (1995)); Rhodococcus ruber (Pieper-Furst & Steinbuchel, FEMS Microbiol. Lett. 75:73-79 (1992)); Rhodospirillum rubrum (Hustede et. al., FEMS Microbiol. Lett 93:285-90 (1992)); Rhodobacter sphaeroides (Hustede et. al., FEMS Microbiol. Rev. 9:217-30 (1992); Biotechnol. Lett. 15:709-14 (1993); Synechocystis sp. (DNA Res. 3:109-36 (1996)); Thiocapsiae violacea (Appl. Microbiol. Biotechnol. 38:493-501 (1993)) and Zoogloea ramigera (Peoples et. al., J. Biol. Chem. 262:97-102 (1987); Peoples & Sinskey, Molecular Microbiology 3:349-57 (1989)). The availability of these genes or their published DNA sequences should provide a range of options for producing PHAs.
- PHA synthases suitable for producing PHB-co-HH copolymers comprising from 1-99% HH monomers are encoded by theRhodococcus ruber, Rhodospirillum rubrum, Thiocapsiae violacea, and Aeromonas caviae PHA synthase genes. PHA synthases useful for incorporating 3-hydroxyacids of 6-12 carbon atoms in addition to R-3-hydroxybutyrate i.e. for producing biological polymers equivalent to the chemically synthesized copolymers described in PCT WO 95/20614, PCT WO 95/20615, and PCT WO 95/20621 have been identified in a number of Pseudomonas and other bacteria (Steinbüchel & Wiese, Appl. Microbiol Biotechnol. 37:691-97 (1992); Valentin et al., Appl. Microbiol. Biotechnol. 36:507-14 (1992); Valentin et al., Appl. Microbiol. Biotechnol. 40:710-16 (1994); Lee et al., AppL Microbiol. Biotechnol. 42:901-09 (1995); Kato et al., Appl. Microbiol. Biotechnol. 45:363-70 (1996); Abe et al., Int. J. Biol. Macromol. 16:115-19 (1994); Valentin et al., Appl. Microbiol. Biotechnol. 46:261-67 (1996)) and can readily be isolated as described in U.S. Pat. Nos. 5,245,023 and 5,250,430. The PHA synthase from P. oleovorans (U.S. Pat. Nos. 5,245,023 and 5,250,430; Huisman et. al., J. Biol. Chem. 266(4): 2191-98 (1991)) is suitable for producing the long pendant group PHAs. Plant genes encoding β-ketothiolase also have been identified (Vollack & Bach, Plant Physiol. 111:1097-107 (1996)).
- Despite this ability to modify monomer composition by selection of the syntheses and substrates, it is desirable to modify other features of polymer biosynthesis, such as fatty acid metabolism.
- It is therefore an object of the present invention to provide a method and DNA constructs to introduce fatty acid oxidation enzyme systems for manipulating the cellular metabolism of plants.
- It is another object of the present invention to provide methods for enhancing the production of PHAs in plants, preferably in the oilseeds thereof.
- Methods and systems to modify fatty acid biosynthesis and oxidation in plants to make new polymers are described. Two enzymes are essential: a hydratase such as D-specific enoyl-CoA hydratase, for example, the hydratase obtained fromAeromonas caviae, and a β-oxidation enzyme system. Some plants have a β-oxidation enzyme system which is sufficient to modify polymer synthesis when the plants are engineered to express the hydratase. Tissue specific and constitutive promoters were used to regulate and direct polymer production. Fusion constructs enhance polymer production.
- Examples demonstrate production of polymer by expression of these enzymes in transgenic plants. Examples also demonstrate that modifications in fatty acid biosynthesis can be used to alter plant phenotypes, decreasing or eliminating seed production and increasing green plant biomass, as well as producing PHAs. Use of the phaseolin promoter can be used to induce male sterility. Tissue specific promoters in fusion constructs were used to modify production within regions of the seeds.
- FIG. 1 is a schematic of fatty acid β-oxidation routes to produce polyhydroxyalkanoate monomers.
- FIG. 2 is a schematic showing plasmid constructs pSBS2024 and pSBS2025.
- FIGS. 3A and 3B are schematics showing plasmid constructs pCGmf124 and pCGmf125.
- FIGS. 4A and 4B are schematics showing plasmid constructs pmf1249 and pmf1254.
- FIGS. 5A and 5B are schematics showing plasmid constructs pCGmf224 and pCGmf225.
- FIGS. 6A and 6B are schematics showing plasmid constructs pCGmf1P2S and pCGmf2P1S.
- FIG. 7 is a schematic showing plasmid constructs pCGm1124, pCGmf125,pCGMI5028, pCGmf224, pCGmf225, pCGMI5038, pCGmf1P2S, pCGmf2P1S, pCGMI5006, pCGmf138, pCGmf1A2P, and pCGmf5034.
- Methods and DNA constructs for manipulating the cellular metabolism of plants by introducing fatty acid oxidation enzyme systems into the cytoplasm or plastids of developing oilseeds or green tissue through the use of tissue specific and/or constitutive promoters, are provided. Fatty acid oxidation systems typically comprise several enzyme activities including a β-ketothiolase enzyme activity which utilizes a broad range of β-ketoacyl-CoA substrates.
- It surprisingly was found that expression of at least one of these transgenes from the bean phaseolin promoter results in male sterility. Interestingly, these plants did not set seed, but instead produced higher than normal levels of biomass (e.g., leafs, stems, stalks). Therefore the methods and constructs described herein also can be used to create male sterile plants, for example, for hybrid production or to increase the production of biomass of forage, such as alfalfa or tobacco. Plants generated using these methods and DNA constructs are useful for producing polyhydroxyalkanoate biopolymers or for producing novel oil compositions.
- The methods described herein include the subsequent incorporation of additional transgenes, in particular encoding additional enzymes involved in fatty acid oxidation or polyhydroxyalkanoate biosynthesis. For polyhydroxyalkanoate biosynthesis, the methods include the incorporation of transgenes encoding enzymes, such as NADH and/or NADPH acetoacetyl-CoenzymeA reductases, PHB synthases, PHA synthases, acetoacetyl-CoA thiolase, hydroxyacyl-CoA epimerases, delta3-cis-delta2-trans enoyl-CoA isomerases, acyl-CoA dehydrogenase, acyl-CoA oxidase and enoyl-CoA hydratases by subsequent transformation of the transgenic plants produced using the methods and DNA constructs described herein or by traditional plant breeding methods.
- I. Plant Expression Systems
- In a preferred embodiment, the fatty acid oxidation transgenes are expressed from a seed specific promoter, and the proteins are expressed in the cytoplasm of the developing oilseed. In an alternate preferred embodiment, fatty acid oxidation transgenes are expressed from a seed specific promoter and the expressed proteins are directed to the plastids using plastid targeting signals. In another preferred embodiment, the fatty acid oxidation transgenes are expressed directly from the plastid chromosome where they have been integrated by homologous recombination. The fatty acid oxidation transgenes may also be expressed throughout the entire plant tissue from a constitutive promoter. Combinations of tissue specific and constitutive promoters with the individual genes encoding the enzymes can also be varied to alter the amount and/or location of polymer production. It is also useful to be able to control the expression of these transgenes by using promoters that can be activated following the application of an agrochemical or other active ingredient to the crop in the field. Additional control of the expression of these genes encompassed by the methods described herein include the use of recombinase technologies for targeted insertion of the transgenes into specific chromosomal sites in the plant chromosome or to regulate the expression of the transgenes.
- The methods described herein involve a plant seed having a genome including (a) a promoter operably linked to a first DNA sequence and a 3′-untranslated region, wherein the first DNA sequence encodes a fatty acid oxidation polypeptide and optionally (b) a promoter operably linked to a second DNA sequence and a 3′-untranslated region, wherein the second DNA sequence encodes a fatty acid oxidation polypeptide. Expression of the two transgenes provides the plant with a functional fatty acid β-oxidation system having at least β-ketothiolase, dehydrogenase and hydratase activities in the cytoplasm or plastids other than peroxisomes or glyoxisomes. The first and/or second DNA sequence may be isolated from bacteria, yeast, fungi, algae, plants, or animals. It is preferable that at least one of the DNA sequences encodes a polypeptide with at least two, and preferably three, enzyme activities.
- Transformation Vectors
- DNA constructs useful in the methods described herein include transformation vectors capable of introducing transgenes into plants. Several plant transformation vector options are available, including those described in “Gene Transfer to Plants” (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); “Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins” (Owen, et al., eds.) John Wiley & Sons Ltd. England (1996); and “Methods in Plant Molecular Biology: A Laboratory Course Manual” (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995), which are incorporated herein by reference. Plant transformation vectors generally include one or more coding sequences of interest under the transcriptional control of 5′ and 3′ regulatory sequences, including a promoter, a transcription termination and/or polyadenylation signal, and a selectable or screenable marker gene. The usual requirements for 5′ regulatory sequences include a promoter, a transcription termination and/or a polyadenylation signal. For the expression of two or more polypeptides from a single transcript, additional RNA processing signals and ribozyme sequences can be engineered into the construct (U.S. Pat. No. 5,519,164). This approach has the advantage of locating multiple transgenes in a single locus, which is advantageous in subsequent plant breeding efforts. An additional approach is to use a vector to specifically transform the plant plastid chromosome by homologous recombination (U.S. Pat. No. 5,545,818), in which case it is possible to take advantage of the prokaryotic nature of the plastid genome and insert a number of transgenes as an operon.
- Promoters
- A large number of plant promoters are known and result in either constitutive, or environmentally or developmentally regulated expression of the gene of interest. Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley,Science 244:1293-99 (1989)). The 5′ end of the transgene may be engineered to include sequences encoding plastid or other subcellular organelle targeting peptides linked in-frame with the transgene. Suitable constitutive plant promoters include the
cauliflower mosaic virus 35S promoter (CaMV) and enhanced CaMV promoters (Odell et. al., Nature, 313: 810 (1985)), actin promoter (McElroy et al., Plant Cell 2:163-71 (1990)), AdhI promoter (Fromm et. al., Bio/Technology 8:833-39 (1990); Kyozuka et al., Mol. Gen. Genet. 228:40-48 (1991)), ubiquitin promoters, the Figwort mosaic virus promoter, mannopine synthase promoter, nopaline synthase promoter and octopine synthase promoter. Useful regulatable promoter systems include spinach nitrate-inducible promoter, heat shock promoters, small subunit of ribulose biphosphate carboxylase promoters and chemically inducible promoters (U.S. Pat. No. 5,364,780 to Hershey et al.). - In a preferred embodiment of the methods described herein, the transgenes are expressed only in the developing seeds. Promoters suitable for this purpose include the napin gene promoter (U.S. Pat. Nos. 5,420,034 and 5,608,152), the acetyl-CoA carboxylase promoter (U.S. Pat. Nos. 5,420,034 and 5,608,152), 2S albumin promoter, seed storage protein promoter, phaseolin promoter (Slightom et. al.,Proc. Natl. Acad. Sci. USA 80:1897-1901 (1983)), oleosin promoter (Plant et. al., Plant Mol. Biol. 25:193-205 (1994); Rowley et al., Biochim. Biophys. Acta. 1345:1-4 (1997); U.S. Pat. No. 5,650,554; and PCT WO 93/20216), zein promoter, glutelin promoter, starch synthase promoter, and starch branching enzyme promoter.
- The transformation of suitable agronomic plant hosts using these vectors can be accomplished with a variety of methods and plant tissues. Representative plants useful in the methods disclosed herein include the Brassica family including napus, rappa, sp. carinata andjuncea; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including Sinapis alba; and flax. Crops harvested as biomass, such as silage corn, alfalfa, or tobacco, also are useful with the methods disclosed herein. Representative tissues for transformation using these vectors include protoplasts, cells, callus tissue, leaf discs, pollen, and meristems. Representative transformation procedures include Agrobacterium-mediated transformation, biolistics, microinjection, electroporation, polyethylene glycol-mediated protoplast transformation, liposome-mediated transformation, and silicon fiber-mediated transformation (U.S. Pat. No. 5,464,765; “Gene Transfer to Plants” (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); “Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins” (Owen, et al.,eds.) John Wiley & Sons Ltd. England (1996); and “Methods in Plant Molecular Biology: A Laboratory Course Manual” (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995)).
- II. Methods for Making and Screening for Transgenic Plants
- In order to generate transgenic plants using the constructs described herein, the following procedures can be used to obtain a transformed plant expressing the transgenes subsequent to transformation: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene at such that the level of desired polypeptide is obtained in the desired tissue and cellular location.
- For the specific crops useful for practicing the described methods, transformation procedures have been established, as described for example, in “Gene Transfer to Plants” (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); “Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins” (Owen, et al., eds.) John Wiley & Sons Ltd. England (1996); and “Methods in Plant Molecular Biology: A Laboratory Course Manual” (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995).
-
- Selectable Marker Genes
- Selectable marker genes useful in practicing the methods described herein include the neomycin phosphotransferase gene nptll (U.S. Pat. Nos. 5,034,322 and 5,530,196), hygromycin resistance gene (U.S. Pat. No. 5,668,298), bar gene encoding resistance to phosphinothricin (U.S. Pat. No. 5,276,268). EP 0 530 129 Al describes a positive selection system which enables the transformed plants to outgrow the non-transformed lines by expressing a transgene encoding an enzyme that activates an inactive compound added to the growth media. Screenable marker genes useful in the methods herein include the β-glucuronidase gene (Jefferson et. al.,EMBO J. 6:3901-07 (1987); U.S. Pat. No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et. al., Trends Biochem Sci. 20:448-55 (1995); Pang et. al., Plant Physiol. 112:893-900 (1996)). Some of these markers have the added advantage of introducing a trait, such as herbicide resistance, into the plant of interest, thereby providing an additional agronomic value on the input side.
- In a preferred embodiment of the methods described herein, more than one gene product is expressed in the plant. This expression can be achieved via a number of different methods, including (1) introducing the encoding DNAs in a single transformation event where all necessary DNAs are on a single vector; (2) introducing the encoding DNAs in a co-transfonnation event where all necessary DNAs are on separate vectors but introduced into plant cells simultaneously; (3) introducing the encoding DNAs by independent transformation events successively into the plant cells i.e. transformation of transgenic plant cells expressing one or more of the encoding DNAs with additional DNA constructs; and (4) transformation of each of the required DNA constructs by separate transformation events, obtaining transgenic plants expressing the individual proteins and using traditional plant breeding methods to incorporate the entire pathway into a single plant.
- III. β-Oxidation Enzyme Pathways
- Production of PHAs in the cytosol of plants requires the cytosolic localization of enzymes that are able to produce R-3-hydroxyacyl CoA thioesters as substrates for PHA synthases. Both eukaryotes and prokaryotes possess a β-oxidation pathway for fatty acid degradation that consists of a series of enzymes that convert fatty acyl CoA thioesters to acetyl CoA. While these pathways proceed via intermediate 3-hydroxyacyl CoA, the stereochemistry of this intermediate varies among organisms. For example, the β-oxidation pathways of bacteria and the peroxisomal pathway of higher eukaryotes degrade fatty acids to acetyl CoA via S-3-hydroxyacyl CoA (Schultz, “Oxidation of Fatty Acids” inBiochemistry ofLipids, Lipoproteins and Membranes (Vance et al., eds.) pp. 101-06 (Elsevier, Amsterdam 1991)). In Escherichia coli, an epimerase activity encoded by the β-oxidation multifunctional enzyme complex is capable of converting S-3-hydroxyacyl CoA to R-3-hydroxyacyl CoA. Yeast possesses a peroxisomal localized fatty acid degradation pathway that proceeds via intermediate R-3-hydroxyacyl CoA (Hiltunen, et al. J. Biol. Chem. 267: 6646-53 (1992); Filppula, et al. J Biol. Chem. 270:27453-57 (1995)), such that no epimerase activity is required to produce PHAs.
- Plants, like other higher eukaryotes, possesses a β-oxidation pathway for fatty acid degradation localized subcellularly in the peroxisomes (Gerhardt, “Catabolism of Fatty Acids [α and β Oxidation]” inLipid Metabolism in Plants (Moore, Jr., ed.) pp. 527-65 (CRC Press, Boca Raton, Fla. 1993)). Production of PHAs in the cytosol of plants therefore necessitates the cytosolic expression of a β-oxidation pathway, for conversion of fatty acids to R-3-hydroxyacyl CoA thioesters of the correct chain length, as well as cytosolic expression of an appropriate PHA synthase, to polymerize R-3-hydroxyacyl CoA to polymer.
- Fatty acids are synthesized as saturated acyl-ACP thioesters in the plastids of plants (Hartwood, “Plant Lipid Metabolism” inPlant Biochemistry (Dey et al., eds.) pp. 237-72 (Academic Press, San Diego 1997)). Prior to export from the plastid into the cytosol, the majority of fatty acids are desaturated via a Δ9 desaturase. The pool of newly synthesized fatty acids in most oilseed crops consists predominantly of oleic acid (cis 9-octadecenoic acid), stearic acid (octadecanoic acid), and palmitic acid (hexadecanoic acid). However, some plants, such as coconut and palm kernel, synthesize shorter chain fatty acids (C8-14). The fatty acid is released from ACP via a thioesterase and subsequently converted to an acyl-CoA thioester via an acyl CoA synthetase located in the plastid membrane (Andrews, et al., “Fatty acid and lipid biosynthesis and degradation” in Plant Physiology, Biochemistry, and Molecular Biology (Dennis et al., eds.) pp. 345-46 (Longman Scientific & Technical, Essex, England 1990); Harwood, “Plant Lipid Metabolism” in Plant Biochemistry (Dey et al., eds) p. 246 (Academic Press, San Diego 1997)).
- The cytosolic conversion of the pool of newly synthesized acyl CoA thioesters via fatty acid degradation pathways and the conversion of intermediates from these series of reactions to R-3-hydroxyacyl-CoA substrates for PHA synthases can be achieved via the enzyme reactions outlined in FIG. 1. The PHA synthase substrates are C4-C16 R-3-hydroxyacyl CoAs. For saturated fatty acyl CoAs, conversion to R-3-hydroxyacyl CoA thioesters using fatty acids degradation pathways necessitates the following sequence of reactions: conversion of the acyl CoA thioester to trans-2-enoyl-CoA (reaction 1), hydration of trans-2-enoyl-CoA to R-3-hyddroxy acyl CoA (
reaction 2a, e.g. yeast system operates through this route and the Aeromonas caviae D-specific hydratase yields C4-C7 R-3-hydroxyacyl-CoAs), hydration of trans-2-enoyl-CoA to S-3-hydroxy acyl CoA (reaction 2b), and epimerization of S-3-hydroxyacyl CoA to R-3-hydroxyacyl CoA (reaction 5, e.g. cucumber tetrafunctional protein, bacterial systems). If 3-hydroxyacyl CoA is not polymerized by PHA synthase forming PHA, it can proceed through the remainder of the β-oxidation pathway as follows: oxidation of 3-hydroxyacyl CoA to form β-keto acyl CoA (reaction 3) followed by thiolysis in the presence of CoA to yield acetyl CoA and a saturated acyl CoA thioester shorter by two carbon units (reaction 4). The acyl CoA thioester produced inreaction 4 is free to re-enter the β-oxidation pathway atreaction 1 and the acetyl-CoA produced can be converted to R-3-hydroxyacyl CoA by the action of β-ketothiolase (reaction 7) and NADH or NADPH acetoacetyl-CoA reductase (reaction 6). This latter route is useful for producing R-3-hydroxybutyryl-CoA, R-3-hydroxyvaleryl-CoA and R-3-hydroxyhexanoyl-CoA. The R-3-hydroxyacids of four to sixteen carbon atoms produced by this series of enzymatic reactions can be polymerized by PHA synthases expressed from a transgene, or transgenes in the case of the two subunit synthase enzymes, into PHA polymers. - For Δ9 unsaturated fatty acyl CoAs, a variation of the reaction sequences described is required. Three cycles of β-oxidation, as detailed in FIG. 1, will remove six carbon units yielding an unsaturated acyl CoA thioester with a cis double bond at
position 3. Conversion of the cis double bond atposition 3 to a trans double bond at position 2, catalyzed by Δ3-cis-Δ2-trans-enoyl CoA isomerase will allow the β-oxidation reaction sequences outlined in FIG. 1 to proceed. This enzyme activity is present on the microbial β-oxidation complexes and the plant tetrafunctional protein, but not on the yeastfoxl. - Acyl CoA thioesters also can be degraded to a β-keto acyl CoA and converted to R-3-hydroxyacyl CoA via a NADH or NADPH dependent reductase (reaction 6).
- Multifunctional enzymes that encode S-specific hydratase, S-specific dehydrogenase, β-ketothiolase, epimerase and Δ3-cis-Δ2-trans-enoyl CoA isomerase activities have been found in bacteria such as Escherichia coli (Spratt, et al., J Bacteriol. 158:535-42 (1984)) and Pseudomonas fragi (Immure, et al., J. Biochem. 107:184-89 (1990)). The multifunctional enzyme complexes consist of two copies of each of two subunits such that catalytically active protein forms a heterotetramer. The hydratase, dehydrogenase, epimerase, and Δ3-cis-Δ2-trans-enoyl CoA isomerase activities are located on one subunit, whereas the thiolase is located on another subunit. The genes encoding the enzymes from organisms such as E. coli (Spratt, et al., J. Bacteriol. 158:535-42 (1984); DiRusso, J. Bacteriol. 172:6459-68 (1990)) and P. fragi (Sato, et al., J. Biochem. 111:8-15 (1992)) have been isolated and sequenced and are suitable for practicing the methods described herein. Furthermore, the E. coli enzyme system has been subjected to site-directed mutagenesis analysis to identify amino acid residues critical to the individual enzyme activities (He & Yang, Biochemistry 35:9625-30 (1996); Yang et. al., Biochemistry 34:6641-47 (1995); He & Yang, Biochemistry 36:11044-49 (1997); He et. al., Biochemistry 36:261-68 (1997); Yang & Elzinga, J. Biol. Chem. 268:6588-92 (1993)). These mutant genes also could be used in some embodiments of the methods described herein.
- Mammals, such as rat, possess a trifunctional β-oxidation enzyme in their peroxisomes that contains hydratase, dehydrogenase, and Δ3-cis-Δ2-trans-enoyl CoA isomerase activities. The trifunctional enzyme from rat liver has been isolated and has been found to be monomeric with a molecular weight of 78 kDa (Palosaari, et al., J Biol. Chem. 265:2446-49 (1990)). Unlike the bacterial system, thiolase activity is not part of the multienzyme protein (Schultz, “Oxidation of Fatty Acids” in Biochemistry of Lipids, Lipoproteins and Membranes (Vance et al., eds) p. 95 (Elsevier, Amsterdam (1991)). Epimerization in rat occurs by the combined activities of two distinct hydratases, one which converts R-3-hydroxyacyl CoA to trans-2-enoyl CoA, and another which converts trans-2-enoyl CoA to S-3-hydroxyacyl CoA (Smeland, et al., Biochemical and Biophysical Research Communications 160:988-92 (1989)). Mammals also possess β-oxidation pathways in their mitochondria that degrade fatty acids to acetyl CoA via intermediate S-3-hydroxyacyl CoA (Schultz, “Oxidation of Fatty Acids” in Biochemistry of Lipids, Lipoproteins and Membranes (Vance et al., eds) p. 96 (Elsevier, Amsterdam (1991)). Genes encoding mitochondrial β-oxidation activities have been isolated from several animals including a Rat mitochondrial long chain acyl CoA hydratase/3-hydroxy acyl CoA dehydrogenase (GENBANK Accession # D16478) and a Rat mitochondrial thiolase (GENBANK Accession #s DI 3921, D005 11).
- Yeast possesses a multifunctional enzyme, Fox2, that differs from the β-oxidation complexes of bacteria and higher eukaryotes in that it proceeds via a R-3-hydroxyacyl CoA intermediate instead of S-3-hydroxyacyl CoA (Hiltunen, et al.,J Biol. Chem. 267:6646-53 (1992)). Fox2 possesses R-specific hydratase and R-specific dehydrogenase enzyme activities. This enzyme does not possess the Δ3-cis-Δ2-trans-enoyl CoA isomerase activity needed for degradation of Δ9-cis-hydroxyacyl CoAs to form R-3-hydroxyacyl CoAs. The gene encoding fox2 from yeast has been isolated and sequenced and encodes a 900 amino acid protein. The DNA sequence of the structural gene and amino acid sequence of the encoded polypeptide is shown in SEQ ID NO:1 and SEQ ID NO:2.
- Plants have a tetrafunctional protein similar to the yeast Fox2, but also encoding a Δ3-cis-Δ2-trans-enoyl CoA isomerase activity (Muller et., al., J. Biol. Chem. 269:20475-81 (1994)). The DNA sequence of the cDNA and amino acid sequence of the encoded polypeptide is shown in SEQ ID NO:3 and SEQ ID NO:4.
- IV. Targeting of Enzymes to the Cytoplasm of Oil Seed Crops
- Engineering PHA production in the cytoplasm of plants requires directing the expression of β-oxidation to the cytosol of the plant. No targeting signals are present in the bacterial systems, such as faoAB. In fungi, yeast, plants, and mammals, β-oxidation occurs in subcellular organelles. Typically, the genes are expressed from the nuclear chromosome, and the polypeptides synthesized in the cytoplasm are directed to these organelles by the presence of specific amino acid sequences. To practice the methods described herein using genes isolated from eukaryotic sources, e.g., fatty acid oxidation enzymes from eukaryotic sources, such as yeast, fungi, plants, and mammals, the removal or modification of subcellular targeting signals is required to direct the enzymes to the cytosol. It may be useful to add signals for directing proteins to the endoplasmic reticulum. Peptides useful in this process are well known in the art. The general approach is to modify the transgene by inserting a DNA sequence specifying an ER targeting peptide sequence to form a chimeric gene.
- Eukaryotic acyl CoA dehydrogenases, as well as other mitrochondrial proteins, are targeted to the mitochondria via leader peptides on the N-terminus of the protein that are usually 20-60 amino acids long (Horwich,Current Opinion in Cell Biology, 2:625-33 (1990)). Despite the lack of an obvious consensus sequence for mitochondrial import leader peptides, mutagenesis of key residues in the leader sequence have been demonstrated to prevent the import of the mitochrondrial protein. For example, the import of Saccharomyces cerevisiae F1 -ATPase was prevented by mutagenesis of its leader sequence, resulting in the accumulation of the modified precursor protein in the cytoplasm (Bedwell, et al., Mol. Cell Biol. 9:1014-25 (1989))
- Three eukaryotic peroxisomal targeting signals have been reported (Gould, et al.,J Cell Biol. 108:1657-64 (1989); Brickner, et al., J. Plant Physiol. 113:1213-21 (1997)). The tripeptide targeting signal S/A/C-K/H/1R-L occurs at the C-terminal end of many peroxisomal proteins (Gould, et al., J. Cell Biol. 108:1657-64 (1989)). Mutagenesis of this sequence has been shown to prevent import of proteins into peroxisomes. Some peroxisomal proteins do not contain the tripeptide at the C-terminal end of the protein. For these proteins, it has been suggested that targeting occurs via the tripeptide in an internal position within the protein sequence (Gould, et al., J Cell Biol. 108:1657-64 (1989)) or via an unknown, unrelated sequence (Brickner, et al., J. Plant Physiol. 113:1213-21 (1997)). The results of in vitro peroxisomal targeting experiments with fragments of acyl CoA oxidase from Candida tropicalis appear to support the latter theory and suggest that there are two separate targeting signals within the internal amino acid sequence of the polypeptide (Small, et al., The EMBO Journal 7:1167-73 (1988)). In the aforementioned study, the targeting signals were localized to two regions of 118 amino acids in length, and neither of regions was found to contain the targeting signal S/A/C-K/H/R-L. A small number of peroxisomal proteins appear to contain an amino terminal leader sequence for import into peroxisomes (Brickner, et al., J Plant Physiol. 113:1213-21 (1997)). These targeting signals can be deleted or altered by site directed mutagenesis.
- V. Cultivation and Harvesting of Transgenic Plant
- The transgenic plants can be grown using standard cultivation techniques. The plant or plant part also can be harvested using standard equipment and methods. The PHAs can be recovered from the plant or plant part using known techniques such as solvent extraction in conjunction with traditional seed processing technologies, as described in PCT WO 97/15681, or can be used directly, for example, as animal feed, where it is unnecessary to extract the PHA from the plant biomass.
- Several lines which did not produce seed, produced much higher levels of biomass. This phenotype therefore may be useful as a means to increase the amount of green biomass produced per acre for silage, forage, or other biomass crops. End uses include the more cost effective production of forage crops for animal feed or as energy crops for electric power generation. Other uses include increasing biomass levels in crops, such as alfalfa or tobacco, for subsequent recovery of industrial products, such as PHAs by extraction.
- The compositions and methods of preparation and use thereof described herein are further described by the following non-limiting examples.
- Isolation and Characterization of thePseudomonas putida faoAB Genes and Fao Enzyme
- All DNA manipulations, including PCR, DNA sequencingE. coli transformation, and plasmids purification, were performed using standard procedures, as described, for example, by Sambrook et. al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York (1989)). The genes encoding faoAB from Pseudomonas putida were isolated using a probe generated from P. putida genomic DNA by PCR (polymerase chain reaction) using
primers 1 and 2 possessing homology to faoB from Pseudomonas fragi (Sato, et al., J. Biochem. 111:8-15 (1992)). - Primer 1:
Primer 1: 5′ gat ggg ccg ctc caa ggg tgg 3′(SEQ ID NO:5) Primer 2: 5′ caa ccc gaa ggt gcc gcc att 3′(SEQ ID NO:6) - A 1.1 kb DNA fragment was purified from the PCR reaction and used as a probe to screen a P. putida genomic library constructed in plasmid pBKCMV using the lambda ZAP expression system (Stratagene). Plasmid pMFX1 was selected from the positive clones and the DNA sequence of the insert containing thefaoAB genes and flanking sequences determined. This is shown in SEQ ID NO:7. A fragment containingfaoAB was subcloned with the nativeP. putida ribosome binding site intact into the expression vector pTRCN forming plasmid pMFX3 as follows. Plasmid pMFX1 was digested with BsrG I. The resulting protruding ends were filled in with Klenow. Digestion with Hind III yielded a 3.39 kb blunt ended/Hind III fragment encoding FaoAB. The expression vector pTRCN was digested with Sma I/Hind III and ligated with thefaoAB fragment forming the 7.57 kb plasmid pMFX3.
- Enzymes in the FaoAB multienzyme complex were assayed as follows. Hydratase activity was assayed by monitoring the conversion of NAD to NADH using the coupling enzyme L-p-hydroxyacyl CoA dehydrogenase as previously described, except that assays were run in the presence of CoA (Filppula, et al.,J. Biol. Chem. 270:27453-57 (1995)). Severe product inhibitation of the coupling enzyme was observed in the absence of CoA. The assay contained (1 mL final volume) 60 μM crotonyl CoA, 50 μM Tris-CI, pH 9, 50 μg bovine serum albumin per mL, 50 mM KCl, 1 mM NAD, 7 μg L-specific β-hydroxyacyl CoA dehydrogenase from porcine heart per mL, and 0.25 mM CoA. The assay was initiated with the addition of FaoAB to the assay mixture. A control assay was perfonned without substrate to determine the rate of consumption of NAD in the absence of -the hydratase generated product, S-hydroxybutyryl CoA. One unit of activity is defined as the consumption of one μMol of NAD per min (ε340=6220 M−1cm−1).
- Hydroxyacyl CoA dehydrogenase was assayed in the reverse direction with acetoacetyl CoA as the substrate by monitoring the conversion of NADH to NAD at 340 nm (Binstock, et al.,Methods in Enzymology, 71:403 (1981)). The assay contained (1 mL final volume) 0.1 M KH2PO4,
pH 7, 0.2 mg bovine serum albumin per mL, 0.1 mM NADH, and 33 μM acetoacetyl CoA. The assay was initiated with the addition of FaoAB to the assay mixture. When necessary, enzyme samples were diluted in 0.1 M KH2PO4,pH 7, containing 1 mg bovine serum albumin per mL. A control assay was performed without substrate acetoacetyl CoA to detect the rate of consumption of NADH in the crude due to enzymes other than hydroxyacyl CoA dehydrogenase. One unit of activity is defined as the consumption of one μMol of NADH per minute (ε340=6220 M−1cm−1). - HydroxyacylCoA dehydrogenase was assayed in the forward direction with crotonyl CoA as a substrate by monitoring the conversion of NAD to NADH at 340 nm (Binstock, et al.,Methods in Enzymology, 71:403 (1981)). The assay mixture contained (1 mL final volume) 0.1 M KH2PO4,
pH 8, 0.3 mg bovine serum albumin per mL, 2 mM β-mercaptoethanol, 0.25 mM CoA, 30 μM crotonyl CoA, and an aliquot of FaoAB. The reaction was preincubated for a couple of minutes to allow in situ formation of S-hydroxybutyryl CoA. The assay then was initiated by the addition of NAD (0.45 mM). A control assay was performed without substrate to detect the rate of consumption of NAD due to enzymes other than hydroxyacyl CoA dehydrogenase. One unit of activity is defined as the consumption of one μMol of NAD per minute (ε340=6220 M−1cm−1). - Thiolase activity was determined by monitoring the decrease in absorption at 304 nm due to consumption of substrate acetoacetyl CoA as previously described with some modifications (Palmer, et al.,J. Biol. Chem. 266:1-7 (1991)). The assay contained (
final volume 1 mL) 62.4 mM Tris-Cl, pH 8.1, 4.8 mM MgCl2, 62.5 μM CoA, and 62.5 μM acetoacetyl CoA. The assay was initiated with the addition of FaoAB to the assay mixture. A control sample without enzyme was performed for each assay to detect the rate of substrate degradation of pH 8.1 in the absence of enzyme. One unit of activity is defined as the consumption of one μMol of substrate acetoacetyl CoA per minute (ε340=16900 M−1cm−1). - Epimerase activity was assayed as previously described (Binstock, et al.,Methods in Enzymology, 71:403 (1981)) except that R-3-hydroxyacyl CoA thioesters were utilized instead of D,L-3-hydroxyacyl CoA mixtures. The assay contained (
final volume 1 mL) 30 μM R-3-hydroxyacyl CoA, 150 mM KH2PO4 (pH 8), 0.3 mg/mL BSA, 0.5 mM NAD, 0.1 mM CoA, and 7 μg/mL L-specific β-hydroxyacyl CoA dehydrogenase from porcine heart. The assay was initiated with the addition of FaoAB. - For expression of FaoAB in DH5α/pMFX3, cultures were grown in 2×TY medium at 30° C. 2×TY medium contains (per L) 16 g tryptone, 10 g yeast, and 5 g NaCl. A starter culture was grown overnight and used to inoculate (1% inoculum) fresh medium (100 mL in a 250 mL Erlenmeyer flask for small scale growths; 1.5 L in a 2.8 L flask for large scale growths). Cells were induced with 0.4 mM IPTG when the absorbance at 600 nm was in the range of 0.4 to 0.6. Cells were cultured an additional 4 h prior to harvest. Cells were lysed by sonication, and the insoluble matter was removed from the soluble proteins by centrifugation. Acyl CoA dehydrogenase activity was monitored in the reverse direction to ensure activity of the FaoA subunit (SEQ ID NO:31) and thiolase activity was assayed to determine activity of the Fao subunit. FaoAB in DH5α/pMFX3 contained dehydrogenase and thiolase activity values of 4.3 and 0.99 U/mg, respectively, which is significantly more than the 0.0074 and 0.0033 U/mg observed for dehydrogenase and thiolase, respectively, in control strain DH5α/pTRCN.
- FaoAB was purified from DH5α/pMFX3 using a modified procedure previously described for the purification of FaoAB fromPseudoinonas fragi (Imamura, et al., J. Biochem. 107:184-89 (1990)). Thiolase activity (assayed in the forward direction) and dehydrogenase activities (assayed in the reverse direction) were monitored throughout the purification. Three liters of DH5α/pMFX3 cells (2×1.5 L aliquots in 2.8 L Erlenmeyer flasks) were grown in 2×TY medium using the cell growth procedure previously described for preparing cells for enzyme activity analysis. Cells (15.8 g) were resuspended in 32 mL of 10 mM KH2PO4,
pH 7, and lysed by sonication. Soluble proteins were removed from insoluble cells debris by centrifugation (18,000 RPM, 30 min., 4° C.). The soluble extract was made 50% in acetone and the precipitated protein was isolated by centrifugation and redissolved in 10 mM KH2PO4,pH 7. The sample was adjusted to 33% saturation with (NH4)2SO4 and the soluble and insoluble proteins were separated by centrifugation. The resulting supernatant was adjusted to 56% saturation with (NH4)2SO4 and the insoluble pellet was isolated by centrifugation and dissolved in 10 mM KH2PO4,pH 7. The sample was heated at 50° C. for 30 min. and the soluble proteins were isolated by centrifugation and dialyzed in a 6,000 to 8,000 molecular weight cut off membrane in 10 mM KH2PO4, pH 7 (2×3 L; 20 h). The sample was loaded on a Toyo Jozo DEAE FPLC column (3 cm x 14 cm) that previously had been equilibrated in 10 mM KH2PO4,pH 7. The protein was eluted with a linear gradient (100 mL by 100 mL; 0 to 500 mM NaCl in 10 KH2PO4, pH 7) at a flow of 3 mL/min. FaoAB eluted between 300 and 325 mM NaCl. The sample was dialyzed in a 50,000 molecular weight cut off membrane in 10 mM KH2PO4, pH 7 (1×2 L; 15h) prior to loading on a macro-prep hydroxylapatite 18/30 (Biorad) FPLC column (2 cm×15 cm) that previously had been equilibrated in 10 mM KH2PO4,pH 7. The protein was eluted with a linear gradient (250 mL by 250 mL; 10 to 500 mM KH2PO4, pH 7) at a flow rate of 3 mL/min. FaoAB eluted between 70 and 130 mM KH2PO4. The fractions containing activity were concentrated to 9 mL using a MILLIPORE™ 100,000 molecular weight cutoff concentrator. The buffer was exchanged 3 times with 10 mM KH2PO4,pH 7 containing 20% sucrose and frozen at −70° C. Enzyme activities of the hydroxylapatite purified fraction were assayed with a range of substrates. The results are shown in Table 1 below.TABLE 1 Enzyme Substrates and Activities Enzyme Substrate Activity (U/mg) hydratase crotonyl CoA 8.8 dehydrogenase (forward) crotonyl CoA 0.46 dehydrogenase (reverse) acetoacetyl CoA 29 thiolase acetoacetyl CoA 9.9 epimerase R-3-hydroxyoctanyl CoA 0.022 epimerase R-3-hydroxyhexanyl CoA 0.0029 epimerase R-3-hydroxybutyryl CoA 0.000022 - Production of Antibodies to the FaoAB and FaoAB Polypeptides
- Following purification of the FaoAB protein as described in Example 1, a sample was separated by SDS-PAGE. The protein band corresponding to the FaoA (SEQ ID NO:31) and FaoB (SEQ ID NO:26) was excised and used to immunize New Zealand white rabbits with complete Freunds adjuvant. Boosts were performed using incomplete Freunds at three week intervals. Antibodies were recovered from serum by affinity chromatography on Protein A columns (Pharmacia) and tested against the antigen by Western blotting procedures. Control extracts of Brassica seeds were used to test for cross reactivity to plant proteins. No cross reactivity was detected.
- Construction of Plasmids for Expression of thePseudomonas putido fao AB Genes in Transgenic Oilseeds
- Construction of pSBS2024
- Oligonucleotide
primers GVR471 GVR471 5′-CGGTACC CATTGTACTCCCAGTATCAT-3′ and (SEQ ID NO:8) GVR472 5′-CATTTAAAT AGTAGAGTATTGAATATG-3′ (SEQ ID NO:9) - homologous to sequences flanking the 5′ and 3′ ends (underlined), respectively, of the bean phaseolin promoter (SEQ ID NO:10; Slightom et al., 1983) were designed with the addition of Kpizl (in italics, nucleotides 1-7 in SEQ ID NO:8) and SwaI (in italics, nucleotides 1-9 in SEQ ID NO:9) at the 5′ ends of GVR471 and GVR472, respectively. These restriction sites were incorporated to facilitate cloning. The primers were used to amplify a 1.4 kb phaseolin promoter, which was cloned at the SmaI site in pUC19 by blunt ended ligation. The designated plasmid, pCPPI (see FIG. 2) was cut with SalI and SwaI and ligated to a SalI/SwaI phaseolin terminator (SEQ ID NO:27). The bean phaseolin terminator sequence encompassing the polyadenylation signals was amplified using the following PCR primers: GVR396:
GVR396: (SEQ ID NO:22) 5′-GATTTAAATGCAAGCTTAAATAAGTATGAACTAAAATGC-3′ and GVR397: (SEQ ID NO.23) 5′-CGGTACCTTAGTTGGTAGGGTGCTA-3′ - and the 1.2Kb fragment (SEQ ID NO:27) cloned into Sall-Sal site of pCCP1 to obtain pSBS2024 (FIG. 2). The resulting plasmid which contains a unique HindIII site for cloning was called pSBS2024 (FIG. 2).
- Construction of pSBS2025
- A soybean oleosin promoter fragment (SEQ ID NO:11; Rowley et al., 1997) was simplified with primers that flank the DNA sequence.
- Primer JA408
(SEQ ID NO:12) 5′-TCTAGA TACATCCATTTCTTAATATAATCCTCTTATTC-3′ - contains sequences that are complementary to the 5′ end (underlined).
-
Primer np1 5′-CATTTAAT CGTTAAGGTGAAGGTAGGGCT-3′ (SEQ ID NO:13) - contains sequences homologous to the 3′ end (underlined) of the promoter fragment. The restriction sites Xbal (in italics) and Swal (in italics) were incorporated at the 5′ end of JA408 and np1, respectively, to facilitate cloning. The primers were used to amplify a 975 bp promoter fragment, which then was cloned into Sniall site ofpUC19 (see FIG. 2). The resulting plasmid, pCSPI, was cut with SalI and SwaI and ligated to the soybean terminator (SEQ ID NO:28). The soybean oleosin terminator was amplified by PCR using the following primers:
- JA410:
(SEQ ID NO:29) 5′-AAGCTTACGTGATGAGTATTAATGTGTTGTTATG-3′ - and
- JA411:
(SEQ ID NO:30) 5′-TCTAGACAATTCATCAAATACAAATCACATTGCC-3′ - and the 225 bp fragment cloned into the SalI-SwaI site of pCSP1 to obtain plasmid pSBS2025 (FIG. 6). The designated plasmid, pSBS2025, carried a unique HindIII site for cloning (FIG. 2).
- Construction of Promoter-coding Sequence Fusions
- Two oligonucleotide primers were synthesized:
- np2
5′AAGCTT AAA ATGATTTACGAAGGTAAAGCC-3′ (SEQ ID NO:14) - homologous to nucleotides 553 to 573 of the 5′ flanking sequences, and
- np3
5′ATTGCTTTCAGTTGAAGCGCTG-3′ (SEQ ID NO:15) - complementary to nucleotides 2700 to 2683 flanking the 3′ end of mf1 (faoA, SEQ ID NO:24) of plasmid pmfx3. A HindIII (in italics) site was introduced at the 5′ end of primers np2 and np3 to facilitate cloning. In addition, a 3 bp AAA sequence (bold) was incorporated to obtain a more favorable sequence surrounding the plant translational initiation codon. Primers np2 and np3 were used to amplify the fragment and cloned into SmaI site of pUC19. The resulting plasmid was called pCmf1 (FIGS. 3A and 3B). Plasmid pBmf2 was constructed in a similar process (FIGS. 5A and 5B). In order to generate a HindIII (in italics) at 5′ and 3′ ends of the mf2 (faoB) gene (SEQ ID NO:25) for cloning, a second set of synthetic primers were designed.
- Primers np4
5′-AAGCTTAAA ATGAGCCTGAATCCAAGAGAC-3′ (SEQ ID NO:16) - complementary to 5′ (nucleotides 2732-2752 bp) and
np5 5′-AAGCTT TCAGACGCGTTCGAAGACAGTG-3′ (SEQ ID NO:17) - homologous to 3′ (nucleotides 3907-3886 bp) sequences of mf2 (faoB, SEQ ID NO:25) of plasmid pmfx3 were used in a PCR reaction to amplify the 1.17 kb DNA fragment. The resulting PCR product was cloned into the EcoR V site of pBluescript. The plasmid was referred to as pBmf2.
- Both plasmids were individually cut with HindIII and their inserts cloned in plasmids pSBS2024 and pSBS2025, which had previously been linearized with the same restriction enzyme. As a result, the following plasmids were generated: pmf124 and pmf125 (FIGS. 3A and 3B) and pmf224 and pmf225 (FIGS. 5A and 5B) containing the Fao genes (mf1 and mf2) fused to either the phaseolin or soybean promoters. DNA sequence analysis confirmed the correct promoter-coding sequence-termination sequence fusions for pmf124, pmf125, pmf224, and pmf225.
- Assembly of Promoter-coding Sequence Fusions into Plant Transformation Vectors
- After obtaining plasmids pmf124, pmf125, pmf224, and pmf225, promoter-coding sequence fusions were independently cloned into the binary vectors, pCGN1559 (McBride and Summerfelt, 1990) containing the
CaMV 35S promoter driving the expression of NPTII gene (conferring resistance to the antibiotic kanamycin) and pSBS2004 containing a parsley ubiquitin promoter driving the PPT gene, which confers resistance to the herbicide phosphinothricine. Binary vectors suitable for this purpose with a variety of selectable markers can be obtained from several sources. - The phaseolin-mf21 fusion cassette was released from the parent plasmid with XbaI and ligated with pCGN1559, which had been linearized with the same restriction enzyme. The resulting plasmid was designated pCGmf124 (FIGS. 3A and 3B). Plasmid pCGmf125 containing the soybean-mf1 fusion was constructed in a similar way (FIGS. 3A and 3B), except that both pmf125 and pCGN1559 were cut with BamHI before ligation.
- Construction of pmf1249 an pmf1254
- The plasmid pSBS2004 was linearized with BamHI fragment containing the soybean-mf1 fusion. This plasmid was designated pmf1254 (FIGS. 4A and 4B). Similarly, the XbaI phaseolin-mfl fusion fragment was ligated to pSBS2004 which had been linearized with the same restriction enzyme. The resulting plasmid was designated pmf1249 (FIGS. 4A and 4B).
- Construction of pCGmf224 and pCGmf225
- The phaseolin-mf2 and soybean-mf2 fusions were constructed by excising the fusions from the vector by cutting with either BamHI or XbaI, and cloned into pCGN1559 which had been linearized with either restriction enzyme (FIGS. 5A and 5B).
- Construction of pCGmf1P2S and pCGmf2P1S
- The two expression cassettes containing the promoter-coding sequence fusions were assembled on the same binary vector as follows: Plasmid pmf124 containing the phaseolin-mf1 fusion was cut with BamHI and cloned into the BamHI site ofpCGN1559 to create pCGmfB124. This plasmid then was linearized with XbaI and ligated to the XbaI fragment of pmf225 containing the soybean-mf2 fusion. The final plasmid was designated pCGmf1P2S (FIGS. 6A and 6B). Plasmid pCGmf2P1S was assembled in similar manner. The phaseolin-mf2 fusion was released from pmf224 by cutting with BamHI and cloned at the BamHI site ofpCGN1559. The resulting plasmid, pCGmfB224, was linearized with XbaI and ligated to the XbaI fragment of pmf125 containing the soybean-mf1 fusion (FIGS. 6A and 6B).
- Transformation of Brassica
- Brassica seeds were surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive) for 30 min. with gentle shaking. The seeds were washed three times in sterile distilled water. Seeds were placed in germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% (w/v) sucrose and 0.7% (w/v) phytagar, pH 5.8 at a density of 20 per plate and maintained at 24° C. and a 16 h light/8 h dark photoperiod at a light intensity of 60-80 μm−2s−1 for four to five days.
- Each of the constructs, pCGmf124, pCGmf125, pCGmf224, pCGmf1P2S, and pCGmf2P1S were introduced into Agrobacterium tumefacians strain EHA101 (Hood et al.,J. Bacteriol. 168:1291-1301 (1986)) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHA101 harboring each construct were grown in 5 ml of minimal medium supplemented with 100 mg kanamycin per liter and 100 mg gentamycin per liter for 48 hr at 28° C. One milliliter of bacterial suspension was pelletized by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 ml minimal medium.
- For transformation, cotyledons were excised from 4 day old, or in some
cases 5 day old, seedlings, so that they included approximately 2 mm of petiole at the base. Individual cotyledons with the cut surface of their petioles were immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of approximately 2 mm in co-cultivation medium, MS medium with 3% (w/v) sucrose and 0.7% phytagar and enriched with 20 μM benzyladenine. The inoculated cotyledons were plated at a density of 10 per plate and incubated under the same growth conditions for 48 h. After co-cultivation, the cotyledons then were transferred to regeneration medium comprising MS medium supplemented with 3% sucrose, 20 μM benzyladenine, 0.7% (w/v) phytagar, pH 5.8, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter. - After two to three weeks, regenerant shoots obtained were cut and maintained on “shoot elongation” medium (MS medium containing, 3% sucrose, 300 mg timentin per liter, 0.7% (w/v) phytagar, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter, pH 5.8) in Magenta jars. The elongated shoots were transferred to “rooting” medium comprising MS medium, 3% sucrose, 2 mg indole butyric acid per liter, 0.7% phytagar, and 500 mg carbenicillin per liter. After roots emerged, plantlets were transferred to potting mix (Redi Earth, W.R. Grace and Co.). The plants were maintained in a misting chamber (75% relative humidity) under the same growth conditions. Two to three weeks after growth, leaf samples were taken for neomycin phosphotransferase (NPTII) assays (Moloney et al.,Plant Cell Reports 8:238-42 (1989)).
- Seeds from the FaoA and FaoB transgenic lines can be analyzed for expression of the fatty acid oxidation polypeptides by western blotting using the anti-FaoA and anti-FaoB antibodies. The FaoB polypeptide (SEQ ID NO:26) is not functional in the absence of the FaoA gene product; however, the FaoAB gene product has enzyme activity.
- Transgenic lines expressing the FaoA and FaoB complex are obtained by crossing the FaoA and FaoB transgenic lines expressing the individual polypeptides and seeds analyzed by western blotting and enzymes assays as described.
- Transformation ofB. napus cv. Westar and Analysis of Transgenic Lines
- Transformation
- The protocol used was adopted from a procedure described by Moloney et al. (1989). Seeds of Brassica napus cv. Westar were surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive Canada Inc.) for 30 min with gentle shaking. The seeds were washed three times in sterile distilled water. Seeds were placed on germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% sucrose and 0.7% phytagar, pH 5.8 at a density of 20 per plate and maintained at 24° C. in a 16 h light/8 h dark photoperiod at a light intensity of 60-80 μEm−2s−1 for four to five days.
- Each of the constructs, pCGmf124, pCGmf125, pCGmf224, pCGmf225, pCGmf1P2S, and pCGmf2P1S were introduced intoAgrobacterium tumefaciens strain EHA101 (Hood et al. 1986) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHAIOI harboring each construct were grown in 5 mL of minimal medium supplemented with 100 mg kanamycin per liter, and 100 mg gentamycin per liter for 48 h at 28° C. One milliliter of bacterial suspension was pelletized by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 mL minimal medium.
- For transformation, cotyledons were excised from four-day-old, or in some cases five-day-old, seedlings so that they included approximately 2 mm of petiole at the base. Individual cotyledons with the cut surface of their petioles were immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of approximately 2 mm in co-cultivation medium, MS medium with 3% sucrose and 0.7% phytagar, enriched with 20 μM benzyladenine. The inoculated cotyledons were plated at a density of 10 per plate and incubated under the same growth conditions for 48 h. After co-cultivation, the cotyledons then were transferred to regeneration medium, which comprised MS medium supplemented with 3% sucrose, 20 μM benzyladenine, 0.7% phytagar, pH 5.8, 300 mg timentinin per liter, and 20 mg kanamycin sulfate per liter.
- After two to three weeks, regenerant shoots were obtained, cut, and maintained on “shoot elongation” medium (MS medium containing 3% sucrose, 300mg timentin per liter, 0.7% phytagar, and 20 mg kanamycin per liter, pH 5.8) in Magenta jars. The elongated shoots then were transferred to “rooting” medium, which comprised MS medium, 3% sucrose, 2 mg indole butyric acid per liter, 0.7% phytagar and 500 mg carbenicillin per liter. After roots emerged, the plantlets were transferred to potting mix (Redi Earth, W.R. Grace and Co. Canada Ltd.). The plants were maintained in a misting chamber (75% RH) under the same growth conditions. Two to three weeks after growth, leaf samples were taken for neomycin phosphotransferase (NPT II) assays (Moloney et al. 1989). The results are shown in Table 2 below. The data show the number of plants that were confinned to be transformed.
TABLE 2 NPT II Activity in Transformed Plants No. of plants No. of NPTII NPTII confirmed Constructs plants assayed confirmed transformed 1pCGmf124 47 27 23 33 2pCGmf125 37 28 18 18 3pCGmf224 49 40 30 39 4pCGmf225 52 37 28 34 5pCGmf1P2S 27 27 21 21 6pCGmf2P1S - The fate of the transforming DNA was investigated for sixteen randomly selected transgenic lines. Southern DNA hybridization analysis showed that the FaoA and/or FaoB were integrated into the genomes of the transgenic lines tested.
- Approximately 80% of the pmf124 transgenic plants in which the FaoA gene is expressed from the strong bean phaseolin promoter were observed to be male sterile. Clearly high level expression of the FaoA gene from this promoter results in functional expression of the FaoA gene product which impairs seed and/or pollen development. This result was very unexpected, since it was not anticipated that the plant cells would be capable of carrying out the first step in the β-oxidation pathway in the cytosol. This result, however, provides additional applications for expressing β-oxidation genes in plants for male sterility for hybrid production or to prevent the production of seed. It was also note that in a side-by-side comparison with normal transgenic lines, the pmf124 lines produced much higher levels of biomass, presumably due to the elimination of seed development. This phenotype therefore may be useful as a means to increase the amount of green biomass produced per acre for silage, forage, or other biomass crops. Here, the use of an inducible promoter system or recombinase technology could be used to produce seed for planting. Seven of the sterile plants were successfully cross-pollinated with pollen from pmf225 transgenic lines and set seeds.
- Northern analysis on RNA from seeds from pmf224 lines containing the phaseolin promoter-FaoB constructs showed a signal indicative of the expected 1.2 kb transcript in all the samples tested except the control. Northern analysis on RNA from seeds from pmf125 lines containing the weak soybean oleolsin promoter-FaoA constructs revealed a transcript of the expected size of 2.1 kb. Western blotting on 300-500 μg of protein from approximately 80% of seeds of pmf125 plants where the FaoA gene is expressed from the relatively weak soybean oleosin promoter were inconclusive, although a weak signal was detected in one transgenic line.
- Fatty Acid Analysis
- Given the unexpected results indicating a strong metabolic effect of expressing the FaoA gene from the strong bean phaseolin promoter in seeds, the fatty acid profile of the seeds from transgenic lines expressing the FaoA gene from the weak soybean oleosin promoter was analyzed. Seeds expressing only the FaoA gene or also expressing the FaoB gene from the bean phaseolin promoter were examined. The analysis was carried out as described in Millar et al.,The Plant Cell 11:1889-902 (1998). Seed fatty acid methyl esters (FAMES) were prepared by placing ten seeds of B. napus in 15 x 45-mm screw capped glass tubes and heating at 80° C. in 0.75 mL of IN methanolic HCl reagent (Supelco, PA) and 10 μL of 1 mg 17:0 methyl ester (internal standard) per mL overnight. After cooling the samples, the FAMES were extracted with 0.3 mL hexane and 0.5 mL 0.9% NaCl by vortexing vigorously. The samples were allowed to stand to separate the phases, and 300 μL of the organic phase was drawn and analyzed on a Hewlett-Packard gas chromatograph.
- Fatty acid profile analysis indicated the presence of an additional component or enhanced component in the lipid profile in all of the transgenic plants expressing the FaoA gene SEQ ID NO:24 which was absent from the control plants. This result again proves conclusively that the FaoA gene is being transcribed and translated and that the FaoA polypeptide SEQ ID NO:27 is catalytically active. This peak also was observed in eleven additional transgenic plants harboring SoyP-FaoA, PhaP-FaoA-SoyP-FaoB, SoyP-FaoA-PhaP-FaoB genes and a sterile (PhaP-FaoA) plant cross-pollinated with SoyP-FaoB. These data clearly demonstrate functional expression of the FaoA gene and that even the very low levels of expression are sufficient to change the lipid profile of the seed. Adapting the methods described herein, one of skill in the art can express these genes at levels intermediate between that obtained with the phaseolin promoter and the soybean oleosin promoter using other promoters such as the Arabidopsis oleosin promoter, napin promoter, or cruciferin promoter, and can use inducible promoter systems or recombinase technologies to control when fatty acid oxidation transgenes are expressed.
- Yeast β-oxidation Multi-functional Enzyme Complex
-
- The fox2 gene (sequence shown in SEQ ID NO:1) was isolated fromS. cerevisiae genomic DNA by PCR in two pieces. Primers N-fox2b and N-bamfox2b were utilized to PCR a 1.1 kb SmaI/BamHI fragment encoding the N-terminal region of Fox2, and primers C-fox2 and C-bamfox2 were utilized to PCR a 1.6 kb BamHI/XbaI fragment encoding the C-terminal Fox2 region. The full fox2 gene was reconstructed via subcloning in vector pTRCN.
N-fox2b fox2 tcc ccc ggg agg agg ttt tta tta tgc ctg gaa att tat cct tca aag ata gag tt (SEQ ID NO:18) N-bamfox2b fox2 aaggatccttgatgtcatttacaactacc (SEQ ID NO:19) C-fox2 fox2 gct cta gat agg gaa aga tgt atg taa g (SEQ ID NO:20) C-bamfox2 fox2 tgacatcaaggatcctttt (SEQ ID NO:21) - The fox1 gene, however, does not possess a β-ketothiolase activity and this activity must be supplied by a second transgene. Representative sources of such a gene include algae, bacteria, yeast, plants, and mammals. The bacterium Alcaligenes eutrophus possesses a broad specificity β-ketothiolase gene suitable for use in the methods described herein. It can be readily isolated using the acetoacetyl-CoA thiolase gene as a hybridization probe, as described in U.S. Pat. No. 5,661,026 to Peoples et al. This enzyme also has been purified (Haywood et al.,FEMS Micro. Lett. 52:91 (1988)), and the purified enzyme is useful for preparing antibodies or determining protein sequence information as a basis for the isolation of the gene.
- Plant β-Oxidation Gene
- The DNA sequence of the cDNA encoding β-oxidation tetrafunctional protein, shown in SEQ ID NO:4, can be isolated as described in Preisig-Muller et al.,J. Biol. Chem. 269:20475-81 (1994). The equivalent gene can be isolated from other plant species including Arabidopsis, Brassica, soybean, sunflower, and corn using similar procedures or by screening genomic libraries, many of which are commercially available, for example from Clontech Laboratories Inc., Palo Alto, Calif., USA. A peroxisomal targeting sequence P-R-M was identified at the carboxy terminus of the protein. Constructs suitable for expressing in the plant cytosol can be prepared by PCR amplification of this gene using primers designed to delete this sequence.
- Expression of PHA Biosynthetic Pathways in Seeds ofBrassica napus.
- Synthesis of PHAs via β-oxidation requires a reductase for the reduction of acetoacetyl-CoA and a PHA synthase for subsequent polymerization of the resulting hydroxyacyl-CoA molecules. To express FaoA, FaoB, reductase and synthase in plants, the promoters from bean phaseolin (pha), soybean oleosin (soy) and Arabidopsis oleosin (Ara) were used to express the bacterial genes in a seed-specific manner. In addition, a constitutive parsley ubiquitin (ubiq) regulatory sequence was used to express the synthase gene.
- Seed-Specific-FaoA and FaoB Constructs
- For seed-specific expression of the bacterial FaoA, FaoB, reductase and synthase genes, and constitutive expression of the synthase gene, plant promoter-terminator cassettes were constructed. All the expression cassettes were constructed in pBluescript before subcloning in Agrobacterium-based plant transformation vector.
-
- The seed-specific expression cassettes containing either the FaoA or FaoB genes were inserted into the plant transformation vectors pCGN1559 (see FIG. 7) and pSBS2004. pCGN1559 contains
CaMV 35S promoter driving expression of the nptll gene (which confers resistance to the antibiotic, kanamycin) while pSBS2004 contains a parsley ubiquitin promoter driving the PAT gene which confers resistance to phosphinothricine. Plasmids, pCGmf1P2S, pCGmf2P1S and PCGmf1A2P contain both FaoA and FaoB in the same binary vector (see FIG. 7). - Seed-Specific Arabidopsis-Reductase Construct
-
- The seed-specific cassette for the expression of the reductase gene was cloned into the binary vector pCGN1559 to create plasmid pCGMI5006 for transformation intoB. napus (see FIG. 7).
Construct name Activity (U/mg) pTRCNRBSH-Rd108 3.79 +/− 0.29 pTRCN C.v. phaB 3.40 +/− 0.46 pTRCNRBSH 0.19 +/− 0.01 - Seed-Specific and Constitutive Synthase Constructs
-
- For the expression of the synthase gene in a constitutive manner, the amplified fragment was cloned into the plasmid pSBS2028 containing the parsley ubiquitin promoter-terninator regulatory sequences also shown above. The Arabidopsis oleosin promoter-synthase and ubiquitin promoter-synthase genes were subsequently cloned into the binary vector pCGN1559 to generate plasmids pCGM15038 and pCGMI5028 respectively (see FIG. 7) for transformation. Plasmid pM15034 contains both synthase and reductase coding sequences under the regulatory control of ubiquitin and oleosin promoters respectively.
- FaoA Fusion to GUS Reporter Construct
-
- The final plasmid pGUSmf138 was used in biolistics experiments. To establish whether the FaoA gene would accumulate as a fusion protein in plants, the chimaeric Arabidopsis-FaoA fragment was cloned into the binary vector pCGN1559 and the resulting plasmid, pCGmfG138 was used to transformBrassica napus.
- Plant Transformation
- Agrobacterium-based binary vectors were used to transform cotyledons of 4 to 5 day old seedlings of Brassica napus cv. Westar. Table 3 below shows the various constructs used for transformation and the number of transformed plants generated. Each construct comprises a particular plant regulatory sequence and the bacterial coding sequences within the binary vector pCGN1559. The number of transforned plants are indicated. Maps of the various constructs are also indicated in FIG. 7. Surviving transgenic plants of pha-FaoA were all sterile and unable to set seeds. Six out of sixteen transgenic plants from the pha-FaoA/soy-FaoB construct and two of soy-FaoA/pha-FaoB plants were also sterile.
TABLE 3 Transformation Constructs & Number of Transformed Plants Description Number of Construct name (promoter-bacterial gene) transformed plants pCGmf124 pha-FaoA 33 pCGmf125 soy-FaoA 18 pCGmf138 Ara- FaoA 6 pCGmf224 pha-FaoB 39 pCGmf225 soy-FaoB 34 pCGmf1P2S pha-FaoA-soy-FaoB 16 pCGmf2P1S soy-FaoA-pha-FaoB 9 pCGmf1A2P Ara-FaoA-pha-FaoB 9 PCGmfG138 Ara-FaoA- GUS 5 PCGMI5006 Ara-Red 10 PCGMI5028 ubiq-Syn 10 PCGMI5038 Ara- Syn 6 PCGMI5034 ubiq-Syn-Ara-Red 2 - Analysis of Transgenic Plants
- All the transgenic plants showed nonnal development except pha-FaoA plants which were found to exhibit morphological changes. The plants were sterile and therefore unable to set seed. They showed vigorous growth and produced more biomass. Characterization of the transforming DNA by Southern blot showed that the FaoA gene had stably integrated into plant genome. Transient expression studies using a GUS reporter gene fused to FaoA demonstrated that the FaoA gene can be transcribed and translated in plants. Coexpression of both FaoA and FaoB in embryos also suggests the formation of a more stable complex. This is supported by transient expression studies where GUS activity in a GUS-FaoA fusion increased more than two fold when FaoB is coexpressed. Expression of FaoB was evident by the presence of the transcript and polypeptide in transgenic plants. The expression of FaoA in plants was further demonstrated by the detection of the transcript and polypeptide in plants transformed with a construct containing the Arabidopsis oleosin promoter regulating the FaoA gene. Changes in fatty acid profiles of total seed lipid content in addition to an alteration in morphology is evidence of functional expression of FaoA in transgenic plants. Northern and Western blot analysis also demonstrated transcription and translation of the reductase and synthase genes in transgenic plants.
- Morphological Changes in FaoA- and FaoB-Expressing Plants
- Expression of the FaoA transgene under the control of the phaseolin promoter caused unexpected morphological changes in the transgenic plants. The plants developed normally until flowering where the FaoA-expressing plants were found to be male sterile. This suggests that the phaseolin promoter regulating the FaoA gene was active during male gametogenesis. It has been demonstrated that phaseolin promoter is active during microsporogenesis in transgenic tobacco (van der Geest, et al.,Plant Physiol. 109:1151-58 (1995)). The plants visibly showed vigorous growth with a bushy appearance and produced more biomass when compared with plants transformed with either the binary vector alone (pCGN1559 control) or containing soy-FaoA, pha-FaoB or soy-FaoB constructs. This altered morphology is presumably caused by reduced fertility as these plants were unable to set seed. It should be noted that seven of the male sterile plants were successfully crossed with pollen from soy-FaoB transgenic plants. It is likely that the functional over-expression of the FaoA gene product has caused an alteration in a fundamental process required for the normal development of the plant. Transgenic plants carrying the pha-FaoA/soy-FaoB and soy-FaoA/pha-FaoB constructs on the other hand showed normal growth. It is therefore hypothesized that the accumulation of detrimental substrates resulting from the overexpression of functional FaoA may be converted to benign metabolites when active FaoB protein is present.
- Analysis of the Transgene in the Plant Genome
- Successful gene transfer was confirmed by Southern blot analysis of total genomic isolated from leaves of the transgenic plants that had been digested with Pvu II restriction enzyme. The enzyme cuts once within the FaoA gene, the nptII gene and outside of the promoter sequence. Hybridization analysis using a radiolabelled FaoAB gene probe demonstrated the stable integration of the FaoA gene. In transgenicpha-FaoA plants (No. 15 and 44), the probe hybridized to the unexpected 2.4 and 2.8 kb fragments. The DNA containing soy-FaoA fragment in transgenic plants 69, 76, and 85 also appears to have inserted stably, generating 1.4 and 2.2 kb fragments. The hybridization pattern observed in plant number 82 seems to indicate that in this transformant, the DNA had integrated into more than one site. In transgenic plant 67, there appears to have been a rearrangement of the inserting DNA. Hybridization analysis of transgenic pha-FaoB plants (111 and 121) also showed stable integration of the sequence. The autoradiogram shows hybridization of the 32p_ labelled FaoAB gene probe to the expected 2.1 and 2.3 kb fragments. In transgenic plants that harbor both FaoA and FaoB genes under the control of phaseolin and soybean regulatory sequences, three hybridizing fragments (0.9, 2.8, and 3.9 kb forpha-FaoA/soy-FaoB, and 2.1, 2.2, and 3.2 kb forsoy-FaoA/pha-FaoB plants) were expected with the probe. The hybridizing bands in transgenic plant numbers 202 (pha-FaoA/soy/FaoB) and 252 (soy-FaoA/pha-FaoB) correctly indicated the expected DNA size fragments. The probe shows some nonspecific hybridization at the stringency used, as some hybridization is also seen in the control (plant transformed with pCGN1559).
- Analysis of MRNA and Protein Accumulation
- Developing transgenic seeds were harvested at various stages and analyzed for the expression of the bacterial FaoA and FaoB genes using Northern and Western analysis. Northern blot analysis was performed on 30 μg of total seed RNA using radiolabelled DNA fragments representing the coding sequence of the bacterial genes. For immunodetection, extracts of total seed protein were size-fractionated on 10-12% polyacrylamide-SDS gels and transferred to PVDF membrane. Antibodies raised in rabbits against the bacterial FaoA or FaoB protein, and goat anti-rabbit IgG conjugated to horseradish peroxidase were used to visualize the related polypeptides using chemiluminescence ECL immunodetection.
- Northern and Western blot analysis were performed on seed extracts from soy-FaoA transgenic plants which showed normal growth. A weak signal of the related transcript was detected in one of four transgenic plants analyzed. The presence of the encoded polypeptide was tested by Western immunoblot analysis. In the transgenic plants analyzed, the anti-FaoA antibody did not detect the polypeptide. The presence of mRNA transcript from seeds of pha-FaoB (Plant No. 101, 102, 103, 111, and 121) was also analyzed by Northern hybridization. An oleosin probe was used as an internal standard to hybridize to the blot before it was partially stripped and reprobed with the radiolabelled FaoAB gene fragment. Hybridizing transcripts of expected size were detected in five transgenic plants and absent from control plant as well as FaoA-expressing (No. 22 and 77) plants. Immunoblot analysis of FaoB-related polypeptide in plants showed that in the crude protein extract of a mf111 plant, the anti-FaoB antibody cross-reacted with a polypeptide of approximately 43 kD similar in molecular weight to the FaoB standard. The extra non-specific hybridizing band in all samples may represent seed oilbody protein. No polypeptide was detected in one-fifth of plants analyzed from the same transgenic line. In addition, the anti-FaoB antibody did not bind to related polypeptide in samples tested from the soy-FaoB plants. It is likely that the related-FaoB polypeptide is unable to accumulate as the protein is normally stabilized in vivo by the presence of the FaoA protein as demonstrated in bacterial systems. In some transgenic seeds of soy-FaoA/pha-FaoB analyzed, hybridizing transcripts were detected for FaoB but not FaoA. However, the related polypeptide could not be detected by Western blot analysis.
- GC Analysis
- Although the expression of the soy-FaoA fragment could not be detected by Northern and Western blot analysis, the morphological alteration of transgenic plants resulting from pha-FaoA expression was indirect evidence for the functional expression of an FaoA gene product. Since FaoA is a key component in oxidation of fatty acids, a profile of total seed lipid from soy-FaoA and control transgenic plants was analyzed. Fatty acid methyl esters were prepared according to Kunst, et al.,“Fatty acid elongation in developing seeds of Arabidopsis thaliana.” Plant Physiol. Biochem. 30:425-34 (1992) and analyzed by gas chromatography. The chromatogram shows an enhanced peak of a low molecular weight fatty acid (arrowed) which was absent in the control transgenic plant. This enhanced peak was also observed in a plant transformed with the pha-FaoA/soy-FaoB construct. The same peak was observed in eleven other transgenic plants including a male-sterile phas-FaoA plant fertilized with pollen from soy-FaoA plant. The results support the conclusion that the FaoA polypeptide is functional and perturbs an essential metabolic process. A GC-MS analysis identified the peak as pentanoic acid which would be an unusual cleavage product of a functional FaoA.
- Transient Assay of Expression of the FaoA and FaoB Genes in Embryos
- It is clear from the analysis presented that the pha-FaoB transcript accumulates and is translated into its polypeptide. However, in an effort to demonstrate unequivocally that FaoA is indeed transcribed and translated, a translational fusion with GUS at the C-terminus was made. The hypothesis was that if the reporter enzyme GUS accumulates, then the FaoA gene must have been transcribed and translated. From the literature, it is known that FaoA and FaoB can interact to form a stable complex in bacterial systems (Imamura, et al.,“Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system” J. Biochem. 107:184-89 (1990)). In order to test this hypothesis in plants, both FaoA and FaoB were expressed simultaneously in a transient manner. An Ara-FaoA-GUS construct was used in this study in addition to the pha-FaoB construct. The oilseed embryos used in this study were from Brassica napus L. cv Topas and Linum usitatissimum (flax) cv. MacGregor. Microspore embryos were obtained from B. napus while zygotic embryos were isolated from flax. Particle bombardment of embryos was essentially as described in Abenes, et al., “Transient expression and oil body targeting of an Arabidopsis oleosin-GUS reporter fusion protein in a range of oilseed embryos” Plant Cell Reports 17:1-7 (1997). Tables 4 and 5 show GUS fluorimetric activities in the different fractions of embryo extracts. The GUS activity of Ara-GUS (pGN1.1) in microspore-derived embryos was at least eight times the background (pSBS2105) while the activity of Ara-FaoA-GUS (pmfG138) was more than double the background activity (Table 4). When embryos were co-bombarded with pmfG138 (Ara-FaoA-GUS) and pmf224 (pha-FaoB) DNA in equal amounts, the specific activity of GUS was observed to be more than three times that of background activity. A comparison of the Ara-FaoA-GUS activity to Ara-FaoA-GUS.pha-FaoB showed that the latter value was almost double the former value when the background specific activity was subtracted. It appears that the co-expression of both FaoA and FaoB contributed to the increase in activity. This result was further confirmed when zygotic embryos were bombarded with the set of plasmids described in Table 4 using microspore embryos. The data describes not only the use of microspore and zygotic embryos to express FaoA and FaoB genes, but also stresses the importance of the expression of these genes in different plant species.
TABLE 4 GUS activity levels in total homogenate of microspore embryos from Brassica napus L. Cv. Topas. Construct GUS activity Specific activity name Description (pmol MU/min) (activity/mg prt) pSBS2105 pBluescript- 30.5 7.78 based plasmid pGN1.1 Ara-GUS 256.5 53.1 pmfG138 Ara-FaoA-GUS 69 17.7 pmfG138: Ara-FaoA-GUS: 85 29.1 pmf224 pha-FaoB - Table 5 shows the levels of GUS activity in oilbody and supernatant (OS) and supernatant (SN) fractions. The recorded activity in the OS fraction was double the activity in SN fraction. It appears that some amount of GUS is also associated with oilbodies. This is most likely due to the hydrophobic nature of GUS and not the FaoA or FaoB protein. In both fractions, there was an increase in GUS activity when the Ara-FaoA-GUS and pha-FaoB fragments were co-expressed in a ratio of 1:1 over the Ara-FaoA-GUS. The activity increases further when the ratio of plasmid pmfG138:pmf224 DNA used was 1:3 (Table 5). The results obtained from transient assays of zygotic flax embryos confirmed the observations noted in Table 4 when Brassica embryos were used. It is clear that the FaoA gene is transcribed and translated and that the product of FaoB gene expression increases the activity of the FaoA-GUS fusion protein. The effect of FaoB most likely occurs by forming a complex with FaoA and stabilizing the FaoA domain within the FaoA-Gus fusion protein.
TABLE 5 GUS activity levels in total homogenate (OS, oilbody fraction and supernatant) and supernatant (SN) of zygotic embryos from flax. GUS Specific activity activity Construct (pmol (activity/mg Fraction name Description MU/min) prt) OS pSBS2105 pBluescript- 7.40 1.36 based pGN1.1 Ara-GUS 656.92 113.20 pmfG138 Ara-FaoA-GUS 265.14 43.30 pmfG138: Ara-FaoA- 386.26 52.84 pmf224 GUS:pha-FaoB (1:1) pmfG138: Ara-FaoA- 440.21 78.98 pmf224 GUS:pha-FaoB (1:3) SN pSBS2105 pBluescript- 2.55 0.47 based pGN1.1 Ara-GUS 373.83 64.47 pmfG138 Ara-FaoA-GUS 132.38 21.62 pmfG138: Ara-FaoA- 174.54 23.88 pmf224 GUS:pha-FaoB (1:1) pmfG138: Ara-FaoA- 214.07 38.41 pmf224 GUS:pha-FaoB (1:3) - Comparison of Promoters.
- Using the phaseolin promoter as a regulatory sequence to express the FaoA gene proved lethal to the normal development of transgenicB. napus plants, which indicates expression of a functional FoaA. Furthermore, the soybean oleosin promoter was comparatively weaker in expressing either the FaoA or FaoB transgenes. In an effort to express the FaoA transgene in a seed-specific manner, a relatively strong Arabidopsis oleosin promoter was used. An Ara-FaoA construct was assembled in plasmid pCGNI 559 and used to transform B. napus. Plant transformation was also initiated with the Ara-Red, Ara-Syn, and ubiq-Syn constructs. The following analyses were conducted on some of the transgenic plants obtained.
- Analysis of Integration of Chimeric Arabidopsis-FaoA DNA Fragment
- A Southern blot was prepared from 30 μg of total plant genomic DNA digested with EcoR V. A radiolabelled coding sequence of the FaoA gene was used as a probe for hybridization. There was successful integration of the transgene into the plant genome in four of the samples analyzed. The number of hybridizing fragments indicate one or two copies of the insertion within the plant genome. The probe did not hybridize to DNA from the control plant.
- Analysis of Expression of the FaoA Transgene inB. napus
- A Northern blot was prepared using 30 μg of total RNA extracted from transgenic seeds. A32P-labelled FaoA gene probe hybridized to the related transcript of expected size in transgenic plants. No hybridization was observed with RNA from the control plant. For immunodetection, total seed protein extracts were size-fractionated on 10-12% polyacrylamide-SDS gels and transferred to PVDF membrane. Antibodies raised in rabbits against the bacterial FaoA, and FaoB protein, and goat anti-rabbit IgG conjugated to alkaline phosphatase (AP), were used to visualize the related polypeptides by using NBT and BCIP as AP substrates. Immunoblotting of 300 μg of total seed protein prepared from Ara-FaoA plants with an anti-FaoAB antibody showed that the FaoA gene was both transcribed and translated in B. napus. The cross-reacting polypeptide from the protein extract had the same molecular mass as the purified FaoA protein standard. No immunoreaction to a related polypeptide was detected in control plant extracts. Nonspecific hybridization of the antibody with seed storage proteins, present in high amounts in the later development stages of B. napus, account for the signal seen in all plants. The results clearly demonstrate that the Pseudomonas putida FaoA gene is expressed in B. napus plants when the Arabidopsis oleosin promoter is used to regulate expression.
- Analysis of FaoA/FaoB-Expressing Transgenic Plants
- Northern and Western blot analysis were also performed on transgenic seeds from plants transformed with a construct containing both FaoA and FaoB genes on the same binary vector. FaoA and FaoB were under the regulation of Arabidopsis oleosin and phaseolin promoters respectively. Autoradiography shows the respective transcripts in both genes from plant number 507; however, no transcripts were detected in control and three other plants. In Western blot analysis of total seed protein from plant number 504 and 507, only the FaoA polypeptide could be detected. Although, a transcript could be detected with the FaoB probe, the related polypeptide was not detected in the Western analysis using the anti-FaoAB antibody.
- Analysis of Expression of the Reductase Transgene inB. napus
- In order to determine if the reductase gene was expressed in transgenic plants, the cloned reductase coding sequence was radiolabelled and used as a probe in Northern blot hybridization. Autoradiography shows that the probe did not hybridize to RNA from the control plant. In contrast, mRNA from two of the three transgenic plants analyzed, hybridized to the reductase gene probe. To examine the translational product resulting from the transcription of the reductase gene, a Western blot was prepared with 300 μg of protein extract in all four samples analyzed and the polypeptide co-migrated with the purified bacterial reductase protein standard. There was no immunodetection of a related polypeptide in the control plants. The extra nonspecific hybridizing band may represent accumulating oilbody protein in mature seeds. This result suggests that the bacterial reductase gene is transcribed and translated inB. napus plant.
- Expression of the Synthase Gene in Transgenic Plants
- To examine the expression of the hybrid synthase in transgenic plants in a constitutive as well as seed-specific manner, total RNA was isolated from seeds. Thirty micrograms of RNA blotted onto nylon membrane was hybridized with a32P-labelled synthase gene. Related transcripts from two of the three ubiq-syn transgenic plants showed cross-hybridization with the complementary probe while no signal was observed in the control plant. Although the gene was transcribed as revealed by the Northern analysis, the related polypeptide could not be detected by Western blot analysis of protein extracts from leaves as well as seeds using the anti-synthase antibody. However, a similar transcript was detected on Northern blot of total RNA isolated from Ara-syn transgenic plants and the related polypeptide was immunodetected with the anti-synthase antibody. The related polypeptide co-migrated with the purified synthase and showed the same degradation products. In addition, a low molecular weight cleavage product was observed in the transgenic lines analyzed.
- Synthesis of Polymer in Embryos
- As previously demonstrated in this study, the β-oxidation enzymes FaoA and FaoB can be transcribed and translated in embryo cells. In an attempt to synthesize PHA via β-oxidation of fatty acids in a transient fashion, flax zygotic embryos were co-bombarded with the Ara-FaoA, pha-FaoB, Ara-Red, and Ara-Syn constructs. A further biolistic experiment was performed on another set of embryos with either the Ara-Syn or gold particles alone. Butanolysis of embryos using PHB as internal standard in the solvents ethanol, methanol, chloroform ,and hexane was performed at Metabolix Inc. GC analysis of the chromatograms from ethanol and methanol soluble fractions did not show any differences between samples. However, in the chloroform and hexane soluble fractions, enhanced peaks at about 16.5 min in samples 2 (Ara-Syn) and 3 (Ara-FaoA, pha-FaoB, Ara-Red and Ara-Syn) were observed. The peaks were not present in sample I which was bombarded with gold-coated particle alone. The GC analysis could not detect PHB which is extractable in chloroform in any of the samples. Some conclusions drawn from this analysis suggest that if there was PHB in the samples, it would be less than 0.3% of the total cell dry weight of the samples analyzed, because 0.24 mg of PHB standard could be detected on the GC. Secondly, the unidentified peaks are chloroform and hexane extractable and a medium chain-length polymer would be expected to be extractable in both solvents. GC-MS analysis can be performed to identify these compounds. It should be noted that these peaks could not be found in GC analysis of insoluble fractions or residual cell matter.
- Modifications and variations of the present invention will be obvious to those of skill in the art from the foregoing detailed description. Such modifications and variations are intended to come within the scope of the following claims.
Claims (24)
1. A method for manipulating the metabolism of a plant, comprising expressing heterologous genes encoding fatty acid oxidation enzymes in the cytosol or plastids other than the peroxisomes, glyoxisomes or mitochondria, of the plant.
2. The method of claim 1 wherein the fatty acid β-oxidation enzymes are expressed from genes from selected from the group consisting of bacterial, yeast, fungal, plant, and mammalian genes.
3. The method of claim 2 wherein the fatty acid oxidation enzymes are expressed from genes from bacteria selected from the group consisting of Escherichia, Pseudomonas, Alcaligenes, and Coryneform.
4. The method claim 3 wherein the genes are Pseudomonas putida faoAB.
5. The method of claim 1 further comprising
expressing genes encoding enzymes selected from the group consisting of polyhydroxyalkanoate synthases, acetoacetyl-CoA reductases, β-ketoacyl-CoA thiolases, and enoyl-CoA hydratases.
6. A DNA construct for use in a method of manipulating the metabolism of a plant cell comprising, in phase,
(a) a promoter region functional in a plant;
(b) a structural DNA sequence encoding at least one fatty acid oxidation enzyme activity; and
(c) a 3′ nontranslated region of a gene naturally expressed in a plant, wherein the nontranslated region encodes a signal sequence for polyadenylation of mRNA.
7. The DNA construct of claim 6 wherein the promoter is a seed specific promoter.
8. The DNA construct of claim 7 wherein the seed specific promoter is selected from the group consisting of napin promoter, phaseolin promoter, oleosin promoter, 2S albumin promoter, zein promoter, β-conglycinin promoter, acyl-carrier protein promoter, and fatty acid desaturase promoter.
9. The DNA construct of claim 6 wherein the promoter is a constitutive promoter.
10. The DNA construct of claim 6 wherein the promoter is selected from the group consisting of CaMV 35S promoter, enhanced CaMV 35S promoter, and ubiquitin promoter.
11. A method for enhancing the biological production of polyhydroxyalkanoates in a transgenic plant, comprising expressing genes encoding heterologous fatty acid oxidation enzymes in cytosol or plastids other than the peroxisomes, glyoxisomes or mitochondria, of the plant.
12. The method of claim 11 wherein the transgenic plant is selected from the group consisting of Brassica, maize, soybean, cottonseed, sunflower, palm, coconut, safflower, peanut, mustards, flax, tobacco, and alfalfa.
13. A transgenic plant or part thereof comprising heterologous genes encoding fatty acid oxidation enzymes in cytosol or plastids other than the peroxisomes, glyoxisomes or mitochondria of the plant.
14. The plant or part thereof of claim 13 wherein the fatty acid β-oxidation enzymes are expressed from genes selected from the group consisting of bacterial, yeast, fungal, plant, and mammalian.
15. The plant or part thereof of claim 14 wherein the fatty acid oxidation enzymes are expressed from genes from bacteria selected from the group consisting of Escherichia, Pseudomonas, Alcaligenes, and Coryneform.
16. The plant or part thereof of claim 15 wherein the genes are Pseudomonas putida faoAB.
17. The plant or part thereof of claim 13 further comprising genes encoding enzymes selected from the group consisting of polyhydroxyalkanoate synthases, acetoacetyl-CoA reductases, β-ketoacyl-CoA thiolases, and enoyl-CoA hydratases.
18. The plant or part thereof of claim 13 wherein the plant is selected from the group consisting of Brassica, maize, soybean, cottonseed, sunflower, palm, coconut, safflower, peanut, mustards, flax, tobacco, and alfalfa.
19. The plant or part thereof of claim 13 comprising a DNA construct comprising, in phase,
(a) a promoter region functional in a plant;
(b) a structural DNA sequence encoding at least one fatty acid oxidation enzyme activity; and
(c) a 3′ nontranslated region of a gene naturally expressed in a plant, wherein the nontranslated region encodes a signal sequence for polyadenylation of mRNA.
20. The plant or part thereof of claim 19 wherein the promoter is a seed specific promoter.
21. The plant or part thereof of claim 20 wherein the seed specific promoter is selected from the group consisting of napin promoter, phaseolin promoter, oleosin promoter, 2S albumin promoter, zein promoter, β-conglycinin promoter, acyl-carrier protein promoter, and fatty acid desaturase promoter.
22. The plant or part thereof of claim 19 wherein the promoter is a constitutive promoter.
23. The plant or part thereof of claim 19 wherein the promoter is selected from the group consisting of CaMV 35S promoter, enhanced CaMV 35S promoter, and ubiquitin promoter.
24. A method of preventing or suppressing seed production in a plant, comprising
expressing heterologous genes encoding fatty acid oxidation enzymes in cytosol or plastids other than the peroxisomes, glyoxisomes or mitochondria, of the plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/447,515 US20030233677A1 (en) | 1998-03-06 | 2003-05-28 | Modification of fatty acid metabolism in plants |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7710798P | 1998-03-06 | 1998-03-06 | |
US26340699A | 1999-03-05 | 1999-03-05 | |
US09/389,395 US6586658B1 (en) | 1998-03-06 | 1999-09-03 | Modification of fatty acid metabolism in plants |
US10/447,515 US20030233677A1 (en) | 1998-03-06 | 2003-05-28 | Modification of fatty acid metabolism in plants |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/389,395 Continuation US6586658B1 (en) | 1998-03-06 | 1999-09-03 | Modification of fatty acid metabolism in plants |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030233677A1 true US20030233677A1 (en) | 2003-12-18 |
Family
ID=26758892
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/389,395 Expired - Fee Related US6586658B1 (en) | 1998-03-06 | 1999-09-03 | Modification of fatty acid metabolism in plants |
US10/447,515 Abandoned US20030233677A1 (en) | 1998-03-06 | 2003-05-28 | Modification of fatty acid metabolism in plants |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/389,395 Expired - Fee Related US6586658B1 (en) | 1998-03-06 | 1999-09-03 | Modification of fatty acid metabolism in plants |
Country Status (1)
Country | Link |
---|---|
US (2) | US6586658B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011034945A1 (en) * | 2009-09-15 | 2011-03-24 | Metabolix, Inc. | Generation of high polyhydroxybutrate producing oilseeds |
EP2338328A2 (en) | 2004-10-08 | 2011-06-29 | Dow AgroSciences LLC | Certain plants with no saturate or reduced saturate levels of fatty acids in seeds, and oil derived from the seeds |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7455999B2 (en) * | 1998-01-22 | 2008-11-25 | Metabolix, Inc. | Transgenic systems for the manufacture of poly (3-hydroxy-butyrate-co-3-hydroxyhexanoate) |
JP3990880B2 (en) * | 2001-07-10 | 2007-10-17 | キヤノン株式会社 | Method for producing polyhydroxyalkanoate-coated liposome |
ATE521710T1 (en) * | 2005-03-16 | 2011-09-15 | Metabolix Inc | CHEMICALLY INDUCABLE EXPRESSION OF BIOSYNTHESIS PATHWAYS |
AP2007004262A0 (en) | 2005-07-01 | 2007-12-31 | Cornell Res Foundation Inc | Oleosin genes and promoters from coffee |
WO2010102220A1 (en) * | 2009-03-05 | 2010-09-10 | Metabolix, Inc. | Propagation of transgenic plants |
NZ750840A (en) * | 2016-08-22 | 2022-05-27 | Suntory Holdings Ltd | Coffee beans with high fatty acid methyl ester content |
WO2024072953A1 (en) * | 2022-09-30 | 2024-04-04 | Kimberly-Clark Worldwide, Inc. | In vitro bioproduction of specific chain length poly(hydroxyalkanoate) monomers |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004863A (en) * | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
US5015944A (en) * | 1986-12-10 | 1991-05-14 | Bubash James E | Current indicating device |
US5015580A (en) * | 1987-07-29 | 1991-05-14 | Agracetus | Particle-mediated transformation of soybean plants and lines |
US5024944A (en) * | 1986-08-04 | 1991-06-18 | Lubrizol Genetics, Inc. | Transformation, somatic embryogenesis and whole plant regeneration method for Glycine species |
US5030572A (en) * | 1987-04-01 | 1991-07-09 | Lubrizol Genetics, Inc. | Sunflower regeneration from cotyledons |
US5034322A (en) * | 1983-01-17 | 1991-07-23 | Monsanto Company | Chimeric genes suitable for expression in plant cells |
US5169770A (en) * | 1987-12-21 | 1992-12-08 | The University Of Toledo | Agrobacterium mediated transformation of germinating plant seeds |
US5188958A (en) * | 1986-05-29 | 1993-02-23 | Calgene, Inc. | Transformation and foreign gene expression in brassica species |
US5229279A (en) * | 1987-06-29 | 1993-07-20 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US5231019A (en) * | 1984-05-11 | 1993-07-27 | Ciba-Geigy Corporation | Transformation of hereditary material of plants |
US5245023A (en) * | 1987-06-29 | 1993-09-14 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US5250430A (en) * | 1987-06-29 | 1993-10-05 | Massachusetts Institute Of Technology | Polyhydroxyalkanoate polymerase |
US5268463A (en) * | 1986-11-11 | 1993-12-07 | Jefferson Richard A | Plant promoter α-glucuronidase gene construct |
US5276268A (en) * | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5322783A (en) * | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
US5364780A (en) * | 1989-03-17 | 1994-11-15 | E. I. Du Pont De Nemours And Company | External regulation of gene expression by inducible promoters |
US5384253A (en) * | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5416011A (en) * | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5420034A (en) * | 1986-07-31 | 1995-05-30 | Calgene, Inc. | Seed-specific transcriptional regulation |
US5464765A (en) * | 1989-06-21 | 1995-11-07 | Zeneca Limited | Transformation of plant cells |
US5480794A (en) * | 1987-06-29 | 1996-01-02 | Massachusetts Institute Of Technology And Metabolix, Inc. | Overproduction and purification of soluble PHA synthase |
US5502273A (en) * | 1991-04-24 | 1996-03-26 | Zeneca Limited | Production of polyhydroxy alkanoate in plants |
US5519164A (en) * | 1990-02-01 | 1996-05-21 | Hoechst Aktiengesellschaft | Expression of a multigene RNA having self-splicing activity |
US5527695A (en) * | 1993-01-29 | 1996-06-18 | Purdue Research Foundation | Controlled modification of eukaryotic genomes |
US5530196A (en) * | 1983-01-17 | 1996-06-25 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US5538880A (en) * | 1990-01-22 | 1996-07-23 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US5545818A (en) * | 1994-03-11 | 1996-08-13 | Calgene Inc. | Expression of Bacillus thuringiensis cry proteins in plant plastids |
US5602321A (en) * | 1992-11-20 | 1997-02-11 | Monsanto Company | Transgenic cotton plants producing heterologous polyhydroxy(e) butyrate bioplastic |
US5610041A (en) * | 1991-07-19 | 1997-03-11 | Board Of Trustees Operating Michigan State University | Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants |
US5629183A (en) * | 1989-05-08 | 1997-05-13 | The United States Of America As Represented By The Secretary Of Agriculture | Plant transformation by gene transfer into pollen |
US5650554A (en) * | 1991-02-22 | 1997-07-22 | Sembiosys Genetics Inc. | Oil-body proteins as carriers of high-value peptides in plants |
US5668298A (en) * | 1984-12-24 | 1997-09-16 | Eli Lilly And Company | Selectable marker for development of vectors and transformation systems in plants |
US6091002A (en) * | 1996-03-13 | 2000-07-18 | Monsanto Company | Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE870837T1 (en) | 1989-07-10 | 1999-09-16 | Massachusetts Institute Of Technology, Cambridge | Process for the production of polyester biopolymers |
NZ239977A (en) | 1990-11-14 | 1993-08-26 | Pioneer Hi Bred Int | Transforming plants by the use of agrobacterium |
WO1993020216A1 (en) | 1991-02-22 | 1993-10-14 | University Technologies International, Inc. | Oil-body protein cis-elements as regulatory signals |
GB9115245D0 (en) | 1991-07-16 | 1991-08-28 | Ici Plc | Production of polyalkanoate |
CZ10894A3 (en) | 1991-07-19 | 1994-12-15 | Univ Michigan State | Transgenic plants producing polyhydroxyalkanoates |
DK152291D0 (en) | 1991-08-28 | 1991-08-28 | Danisco | PROCEDURE AND CHEMICAL RELATIONS |
US5591616A (en) | 1992-07-07 | 1997-01-07 | Japan Tobacco, Inc. | Method for transforming monocotyledons |
GB9306490D0 (en) | 1993-03-29 | 1993-05-19 | Zeneca Ltd | Plant gene specifying acetyl,coenzyme a carboxylase and transformed plants containing same |
BR9506664A (en) | 1994-01-28 | 1997-09-16 | Procter & Gamble | Biodegradable copolymers and plastic articles comprising biodegradable copolymers of 3-hydroxyhexanoate |
ID23491A (en) | 1994-01-28 | 1995-09-07 | Procter & Gamble | COOPOLYMERS WHICH CAN BE DIODODEGRADED AND PLASTIC MATERIALS CONTAINED FROM CO-COLLIMERS WHICH CAN BE DIBIODEGRADED |
SG49096A1 (en) | 1994-01-28 | 1998-05-18 | Procter & Gamble | Biodegradable 3-polyhydtoxybuyrate/3- polyhydroxyhexanoate copolymer films |
DE19531678C2 (en) | 1995-08-29 | 1997-10-02 | Ahmed Dr Sheriff | Process for preventing or preventing the formation of breathing plant tissue, in particular for producing seedless plants by means of additional cystosolic pyruvate, phosphate dikinase |
CA2232623A1 (en) | 1995-09-21 | 1997-03-27 | John Anthony Browse | Conditionally male-fertile plants and methods and compositions for restoring the fertility thereof |
US6083729A (en) | 1995-10-26 | 2000-07-04 | Metabolix, Inc. | Methods for isolating polyhydroxyalkanoates from plants |
US5958745A (en) | 1996-03-13 | 1999-09-28 | Monsanto Company | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants |
EP0918849A1 (en) | 1996-08-08 | 1999-06-02 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Transgenic plant cells and plants with modified acetyl-coa formation |
US5750848A (en) | 1996-08-13 | 1998-05-12 | Monsanto Company | DNA sequence useful for the production of polyhydroxyalkanoates |
EP0894864A1 (en) | 1997-07-29 | 1999-02-03 | Axel Dr. Brennicke | Genes encoding enzymes of the ACDH-family in plants and methods for producing transgenic seeds or plants with enhanced content or altered compsition of fatty acids and/or amino acids |
-
1999
- 1999-09-03 US US09/389,395 patent/US6586658B1/en not_active Expired - Fee Related
-
2003
- 2003-05-28 US US10/447,515 patent/US20030233677A1/en not_active Abandoned
Patent Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530196A (en) * | 1983-01-17 | 1996-06-25 | Monsanto Company | Chimeric genes for transforming plant cells using viral promoters |
US5034322A (en) * | 1983-01-17 | 1991-07-23 | Monsanto Company | Chimeric genes suitable for expression in plant cells |
US5231019A (en) * | 1984-05-11 | 1993-07-27 | Ciba-Geigy Corporation | Transformation of hereditary material of plants |
US5668298A (en) * | 1984-12-24 | 1997-09-16 | Eli Lilly And Company | Selectable marker for development of vectors and transformation systems in plants |
US5463174A (en) * | 1986-05-29 | 1995-10-31 | Calgene Inc. | Transformation and foreign gene expression in Brassica species |
US5188958A (en) * | 1986-05-29 | 1993-02-23 | Calgene, Inc. | Transformation and foreign gene expression in brassica species |
US5420034A (en) * | 1986-07-31 | 1995-05-30 | Calgene, Inc. | Seed-specific transcriptional regulation |
US5608152A (en) * | 1986-07-31 | 1997-03-04 | Calgene, Inc. | Seed-specific transcriptional regulation |
US5024944A (en) * | 1986-08-04 | 1991-06-18 | Lubrizol Genetics, Inc. | Transformation, somatic embryogenesis and whole plant regeneration method for Glycine species |
US5276268A (en) * | 1986-08-23 | 1994-01-04 | Hoechst Aktiengesellschaft | Phosphinothricin-resistance gene, and its use |
US5268463A (en) * | 1986-11-11 | 1993-12-07 | Jefferson Richard A | Plant promoter α-glucuronidase gene construct |
US5004863B2 (en) * | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5004863A (en) * | 1986-12-03 | 1991-04-02 | Agracetus | Genetic engineering of cotton plants and lines |
US5004863B1 (en) * | 1986-12-03 | 1992-12-08 | Agracetus | |
US5159135A (en) * | 1986-12-03 | 1992-10-27 | Agracetus | Genetic engineering of cotton plants and lines |
US5159135B1 (en) * | 1986-12-03 | 2000-10-24 | Agracetus | Genetic engineering of cotton plants and lines |
US5015944A (en) * | 1986-12-10 | 1991-05-14 | Bubash James E | Current indicating device |
US5030572A (en) * | 1987-04-01 | 1991-07-09 | Lubrizol Genetics, Inc. | Sunflower regeneration from cotyledons |
US5480794A (en) * | 1987-06-29 | 1996-01-02 | Massachusetts Institute Of Technology And Metabolix, Inc. | Overproduction and purification of soluble PHA synthase |
US5229279A (en) * | 1987-06-29 | 1993-07-20 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US5250430A (en) * | 1987-06-29 | 1993-10-05 | Massachusetts Institute Of Technology | Polyhydroxyalkanoate polymerase |
US5663063A (en) * | 1987-06-29 | 1997-09-02 | Massachusetts Institute Of Technology | Method for producing polyester biopolymers |
US5512669A (en) * | 1987-06-29 | 1996-04-30 | Massachusetts Institute Of Technology | Gene encoding bacterial acetoacetyl-COA reductase |
US5661026A (en) * | 1987-06-29 | 1997-08-26 | Massachusetts Institute Of Technology | Gene encoding bacterial beta-ketothiolase |
US5245023A (en) * | 1987-06-29 | 1993-09-14 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US5534432A (en) * | 1987-06-29 | 1996-07-09 | Massachusetts Institute Of Technology | Polyhydroxybutyrate polymerase |
US5015580A (en) * | 1987-07-29 | 1991-05-14 | Agracetus | Particle-mediated transformation of soybean plants and lines |
US5169770A (en) * | 1987-12-21 | 1992-12-08 | The University Of Toledo | Agrobacterium mediated transformation of germinating plant seeds |
US5416011A (en) * | 1988-07-22 | 1995-05-16 | Monsanto Company | Method for soybean transformation and regeneration |
US5364780A (en) * | 1989-03-17 | 1994-11-15 | E. I. Du Pont De Nemours And Company | External regulation of gene expression by inducible promoters |
US5629183A (en) * | 1989-05-08 | 1997-05-13 | The United States Of America As Represented By The Secretary Of Agriculture | Plant transformation by gene transfer into pollen |
US5464765A (en) * | 1989-06-21 | 1995-11-07 | Zeneca Limited | Transformation of plant cells |
US5322783A (en) * | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
US5538877A (en) * | 1990-01-22 | 1996-07-23 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US5538880A (en) * | 1990-01-22 | 1996-07-23 | Dekalb Genetics Corporation | Method for preparing fertile transgenic corn plants |
US5519164A (en) * | 1990-02-01 | 1996-05-21 | Hoechst Aktiengesellschaft | Expression of a multigene RNA having self-splicing activity |
US5472869A (en) * | 1990-12-28 | 1995-12-05 | Dekalb Genetics Corporation | Stable transformation of maize cells by electroporation |
US5384253A (en) * | 1990-12-28 | 1995-01-24 | Dekalb Genetics Corporation | Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes |
US5650554A (en) * | 1991-02-22 | 1997-07-22 | Sembiosys Genetics Inc. | Oil-body proteins as carriers of high-value peptides in plants |
US5502273A (en) * | 1991-04-24 | 1996-03-26 | Zeneca Limited | Production of polyhydroxy alkanoate in plants |
US5610041A (en) * | 1991-07-19 | 1997-03-11 | Board Of Trustees Operating Michigan State University | Processes for producing polyhydroxybutyrate and related polyhydroxyalkanoates in the plastids of higher plants |
US5602321A (en) * | 1992-11-20 | 1997-02-11 | Monsanto Company | Transgenic cotton plants producing heterologous polyhydroxy(e) butyrate bioplastic |
US5527695A (en) * | 1993-01-29 | 1996-06-18 | Purdue Research Foundation | Controlled modification of eukaryotic genomes |
US5545818A (en) * | 1994-03-11 | 1996-08-13 | Calgene Inc. | Expression of Bacillus thuringiensis cry proteins in plant plastids |
US6091002A (en) * | 1996-03-13 | 2000-07-18 | Monsanto Company | Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2338328A2 (en) | 2004-10-08 | 2011-06-29 | Dow AgroSciences LLC | Certain plants with no saturate or reduced saturate levels of fatty acids in seeds, and oil derived from the seeds |
EP3318121A1 (en) | 2004-10-08 | 2018-05-09 | Dow AgroSciences LLC | Certain plants with "no saturate" or reduced saturate levels of fatty acids in seeds, and oil derived from the seeds |
WO2011034945A1 (en) * | 2009-09-15 | 2011-03-24 | Metabolix, Inc. | Generation of high polyhydroxybutrate producing oilseeds |
Also Published As
Publication number | Publication date |
---|---|
US6586658B1 (en) | 2003-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5958745A (en) | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants | |
US5942660A (en) | Methods of optimizing substrate pools and biosynthesis of poly-β-hydroxybutyrate-co-poly-β-hydroxyvalerate in bacteria and plants | |
US6091002A (en) | Polyhydroxyalkanoates of narrow molecular weight distribution prepared in transgenic plants | |
US6946588B2 (en) | Nucleic acid encoding a modified threonine deaminase and methods of use | |
JP4121541B2 (en) | Production of intermediate chain length polyhydroxyalkanoates from fatty acid biosynthetic pathways | |
JP4755109B2 (en) | Transgenic plant with reduced level of saturated fatty acid and method for producing the same | |
AU763296B2 (en) | Limanthes oil genes | |
JP2009291204A (en) | Modification of fatty acid metabolism in plant | |
AU5499100A (en) | Plant multi-gene expression constructs | |
US20090138992A1 (en) | Limnanthes oil genes | |
US6586658B1 (en) | Modification of fatty acid metabolism in plants | |
EP1044278A1 (en) | Biosynthesis of medium chain length polyhydroxyalkanoates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: METABOLIX, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PEOPLES, OLIVER P.;MOLONEY, MAURICE;PATTERSON, NII;AND OTHERS;REEL/FRAME:018513/0022;SIGNING DATES FROM 19991025 TO 19991027 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |