+

US20030229438A1 - Vehicle stability control - Google Patents

Vehicle stability control Download PDF

Info

Publication number
US20030229438A1
US20030229438A1 US10/164,264 US16426402A US2003229438A1 US 20030229438 A1 US20030229438 A1 US 20030229438A1 US 16426402 A US16426402 A US 16426402A US 2003229438 A1 US2003229438 A1 US 2003229438A1
Authority
US
United States
Prior art keywords
coefficient
lateral acceleration
vehicle
determined
ydl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/164,264
Other versions
US6658342B1 (en
Inventor
Aleksander Hac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BWI Co Ltd SA
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to US10/164,264 priority Critical patent/US6658342B1/en
Assigned to DELPHI TECHNOLOGIES INC. reassignment DELPHI TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALEKSANDER B. HAC
Application granted granted Critical
Publication of US6658342B1 publication Critical patent/US6658342B1/en
Publication of US20030229438A1 publication Critical patent/US20030229438A1/en
Assigned to BWI COMPANY LIMITED S.A. reassignment BWI COMPANY LIMITED S.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELPHI AUTOMOTIVE SYSTEMS, LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/86Optimizing braking by using ESP vehicle or tyre model

Definitions

  • the present invention relates generally to vehicular stability control. More particularly, the invention relates to a method for enhancing vehicle stability control.
  • VSE vehicle stability enhancement
  • a significant effort during vehicle tuning may be devoted to the process of characterizing vehicle response in the yaw plane to the steering inputs. This may be accomplished by building look up tables that give steady state values of vehicle yaw rate, and sometimes lateral velocity for various steering angles and vehicle speeds. Since several values of speeds and steering angles have to be considered, the tables involve more than a hundred numbers, each of which has to be determined experimentally. This usually involves several days of testing, which has to be performed on a dry surface, thus being dependent on the weather conditions.
  • look up tables Another drawback of the look up tables is that linear interpolation is used between any two points defined in the table. This may lead to errors when the function approximated by piecewise linear segments is strongly nonlinear. Accordingly, it would be desirable to provide a relatively simple strategy that would permit one to determine the desired values from analytical expressions using vehicle parameter data, which are usually supplied by the vehicle manufacturer. In this way the desired values (of yaw rate and lateral velocity) could be continuously computed, or the look up table values could be determined by running a utility file on a computer. Only limited testing may be needed to verify the correctness of the model.
  • a rear axle cornering stiffness coefficient in a linear handling range is determined.
  • a first understeer coefficient in a linear handling range is determined.
  • a desired lateral acceleration is determined based on the first understeer coefficient.
  • a second understeer coefficient is determined based on a limited magnitude of the desired lateral acceleration.
  • a desired yaw rate is determined based on the second understeer coefficient.
  • a desired lateral velocity is determined based on the desired yaw rate and the rear axle cornering stiffness coefficient.
  • the rear axle cornering stiffness coefficient may be determined based on a cross-over lateral velocity.
  • a front axle cornering stiffness coefficient in a linear handling range may be determined.
  • the determined desired yaw rate, desired lateral velocity, and desired lateral acceleration may be transmitted to a vehicle control system.
  • Another aspect of the invention provides a computer usable medium, including a program, for vehicle stability control.
  • the invention provides computer readable program code for performing the method steps described above.
  • FIG. 1 is a graph of understeer coefficients as functions of lateral acceleration for two sets of suspension parameters
  • FIG. 2 is a graph of desired lateral acceleration and yaw rates determined from a linear model with saturation
  • FIG. 3 is a graph of understeer coefficient from test data and a model according to the present invention.
  • FIG. 4 is a flow chart of a vehicle stability control algorithm made in accordance with the present invention.
  • FIG. 5 is a graph of vehicle yaw rate from test data and a model according to the present invention.
  • the present invention may provide a simple method for determining a desired yaw rate and lateral velocity of vehicle in steady-state as functions of the steering angle, vehicle speed, and several vehicle parameters that are generally known. This could potentially eliminate, or at least greatly simplify, a costly and time-consuming process of experimentally determining the desired values of yaw rate and lateral velocity during vehicle tuning. In some applications, customer handling specifications in terms of the desired understeer coefficient under specific lateral accelerations could be directly translated into the desired values.
  • understeer coefficients in the provided example increase with lateral acceleration.
  • understeer coefficients may be significantly affected by suspension tuning, since both curves were determined for vehicle with the same tires but different suspension parameters.
  • the cornering stiffness coefficients of the front and rear axles may be determined from simple tests, thus representing the entire vehicle influence, including the effects of suspension design;
  • the cornering stiffness coefficients and the understeer coefficient are functions of the desired lateral acceleration, which is a function of steering angle and vehicle speed.
  • the desired yaw rate and side-slip velocity may be in principle determined from the well-known linear bicycle model, with additional saturation at the limit of adhesion.
  • the linear model yields the following equations for the vehicle yaw rate, ⁇ d , lateral acceleration, a yd , and lateral velocity, v yd :
  • v x is vehicle speed
  • is the steering angle of the front wheels (which may be computed by multiplying the measured steering wheel angle by the steer gear ratio)
  • L is vehicle wheelbase
  • K u0 is the understeer coefficient in the linear range of handling
  • b is the distance of the vehicle center of gravity to the rear axle
  • a is the distance of the vehicle center of gravity to the front axle
  • M is vehicle mass
  • C r0 is the cornering stiffness of the rear axle (both tires) in the linear range of handling
  • the superscript “l” refers to the (steady-state) values obtained from the linear model.
  • ⁇ dl_lim ⁇ v x * ⁇ ⁇ / ( L + K u0 * ⁇ v x 2 ) when ⁇
  • the cornering stiffness values used in the bicycle model should reflect suspension properties.
  • the proposed approach of the present invention can overcome both problems.
  • the cornering stiffness values and the understeer coefficient may be determined as functions of desired lateral acceleration.
  • the cornering stiffness values in the linear range of handling may be determined from simple vehicle tests, thus reflecting the effects of suspension.
  • the understeer coefficient may be determined from the following equation:
  • a and b are distances of front and rear axle to the vehicle center of gravity
  • C f0 and C r0 are the cornering stiffness of front and rear axle
  • M f M*b/L
  • the cornering stiffness values are assumed to be constant. In reality, they depend on the normal load transfer during cornering, which is primarily a function of lateral acceleration. This dependency is the result of the fact that the cornering stiffness per tire depends on the normal tire load.
  • a simple and generally accepted model reflecting this relationship is as follows (Gillespie, 1992; Dixon, 1996):
  • C y and C y0 are cornering stiffness of one tire at an actual normal load, N, and at a nominal normal load, N 0 , respectively.
  • the actual normal load, N is the sum of N 0 and ⁇ N wherein ⁇ N is the normal load transfer.
  • the constant, k which may have a typical value of 0.5, is the cornering stiffness sensitivity to normal load. If the load transfer of the left tire of a given axle is ⁇ N, then load transfer of the right tire is ⁇ N.
  • a simple manipulation shows that the cornering stiffness for the given (e.g. front) axle is:
  • ⁇ N/N 0 (2 *h roll /t w )*( a y /g ) (6)
  • h roll is the height of vehicle center of gravity above the roll axis
  • t w is the track width
  • g is acceleration of gravity
  • the understeer coefficient may be represented as a polynomial in the lateral acceleration, a y .
  • the understeer coefficient may be represented as a polynomial in lateral acceleration and a good fit to the data may be obtained.
  • the lateral stiffness values for front and rear axles in the linear range of handling, C f0 and C r0 may be determined as follows.
  • the understeer coefficient in the linear range of handling, K u0 may be determined experimentally. Usually, this value is provided by a vehicle manufacturer. This supplies the first equation, (3).
  • the second equation may be obtained by experimentally determining the velocity at which vehicle side slip velocity is zero regardless of the steering angle (provided that vehicle remains in the linear range of handling). According to equation (1c), this characteristic velocity is:
  • C f0 and C r0 M f * ⁇ v x0 2 / ( b + K u0 * ⁇ v x0 2 ) ( 11 )
  • the desired values of yaw rate and lateral velocity may now be computed from the equations (1a) and (1c), in which the understeer coefficient and rear cornering stiffness for the linear handling range, K u0 and C r0 , are replaced by the nonlinear functions given by equations (8) and (9), respectively. It may be desirable, however, that the desired values of yaw rate and lateral velocity be dependent only on steering angle, ⁇ , and vehicle speed, v x . This may be achieved when the actual lateral acceleration is replaced by the desired lateral acceleration obtained from the linear equation (1b), subjected to the suitable limitation. As a result, the understeer coefficient and the cornering stiffness become functions of steering angle and speed, but not of lateral acceleration.
  • the coefficient B 2 in equations (8) and (9) may be reduced somewhat when a y is replaced by a ydl — lim (the desired lateral acceleration obtained from the linear model, equation 1b, but with the magnitude limited to a ymax ). Good results may be obtained by neglecting the 4-th order term in calculation of K u using a ydl — lim .
  • the desired values of yaw rate, ⁇ d , and lateral velocity, v yd may be obtained.
  • These desired values are the steady-state values, which describe vehicle response when both vehicle speed and the steering angle are constant or slowly-varying functions of time. For some vehicle stability enhancement systems, these values can be used as desired values. In other systems, there may be a need to represent vehicle dynamic response more accurately to better characterize the desired vehicle response during quick transient maneuvers; the process of obtaining the desired values from the steering angle and speed is sometimes referred to as a driver command interpreter.
  • Vehicle response in the yaw plane may be modeled as a velocity-dependent second order system, characterized by an undampened natural frequency and damping ratio. Both of these parameters are functions of vehicle speed.
  • the parameters also (according to the linear handling model) directly depend on vehicle parameters, such as distances, mass, moment of inertia (about yaw axis), and cornering stiffness coefficients.
  • vehicle dynamic response may be obtained from the steady state values.
  • ⁇ d_dyn ⁇ ( s ) ⁇ d * ⁇ ( 1 + T ⁇ ⁇ s ) / [ 1 + ( 2 * ⁇ ⁇ / ⁇ n ) * ⁇ s + ( 1 / ⁇ n 2 ) * ⁇ s 2 ] ( 12 ⁇ a )
  • v yd_dyn ⁇ ( s ) v y ⁇ ⁇ d * ⁇ ( 1 + T v ⁇ ⁇ y ⁇ s / [ 1 + ( 2 * ⁇ ⁇ / ⁇ n ) * ⁇ s + ( 1 / ⁇ n 2 ) * ⁇ s 2 ] ( 12 ⁇ b )
  • a yddyn s * ⁇ v yd_d
  • ⁇ n is the undampened natural frequency
  • is the damping ratio
  • s is the Laplace operand.
  • the above equations may be written in a time domain as differential or difference equations and implemented in a microprocessor (in a manner known to those skilled in art) to generate the dynamic values from the steady state values.
  • the parameters of the dynamic filters used in a driver command interpreter may now be determined as functions of the nonlinear cornering stiffness parameters.
  • a system for implementing the method and computer usable medium according to the present invention may include a variety of commercially available vehicle components.
  • commercially available sensors may provide vehicle velocity, steering angle (front and rear), and other pertinent information.
  • the vehicle manufacturer may provide such information as vehicle mass, wheelbase, understeer coefficient in the linear range of handling, and the like.
  • Hydraulic or electrical drives may actuate parameters for braking control, suspension control, steering of front and rear wheels, and other stability control (sub)systems.
  • the methods and determinations (e.g., calculations), including those based on equations, may be performed by a device such as a microprocessor.
  • the microprocessor may receive input, perform calculations, and transmit output to a vehicle control system for controlling the drive(s) and, consequently, for enhancing vehicle stability.
  • computer usable medium including programs, equations, and associated values may be programmed in a microprocessor memory portion (e.g., ROM, RAM, and the like) for executing functions associated with the present invention.
  • FIG. 4 is a flow chart of a vehicle stability control algorithm made in accordance with the present invention.
  • the algorithm may begin by determining a cornering stiffness of the rear axle in a linear handling range (step 100 ).
  • the rear axle cornering stiffness, C r0 may be calculated from the following equation (equation 11):
  • a first understeer coefficient in the linear handling is determined (step 101 ).
  • the first understeer coefficient, K u0 is usually provided by the manufacturer; if not, it may be determined experimentally as known in the art.
  • a cornering stiffness of the front axle may be determined (step 102 ).
  • the front axle cornering stiffness, C f0 may be calculated from the equation (equation 11):
  • C f0 M f * ⁇ v x0 2 / ( b + K u0 * ⁇ v x0 2 )
  • M f is a front mass of vehicle and K u0 is the first understeer coefficient in the linear range of handling.
  • a desired lateral acceleration is determined based on the first understeer coefficient (step 103 ).
  • v x is vehicle speed
  • is steering angle at the front wheels
  • L is vehicle wheelbase
  • a ydl The value of the desired lateral acceleration, a ydl , may then be limited to the maximum lateral accelertion that the vehicle can develop on dry surface, a ymax (step 104 ). This yields a ydl — lim .
  • a second understeer coefficient is determined based on the limited desired lateral acceleration (step 105 ).
  • k is the sensitivity coefficient of tire lateral stiffness to normal load
  • h roll is height of vehicle center of gravity above the roll axis
  • t w is track width
  • g gravitational acceleration
  • a desired yaw rate is determined based on the second understeer coefficient (step 106 ).
  • the lateral acceleration value, ⁇ a y may be an incremental value of about 1 m/s 2 .
  • a desired lateral velocity is determined based on the desired yaw rate and the rear axle cornering stiffness coefficient (step 107 ).
  • the desired lateral velocity, v yd may be calculated from the equation:
  • v yd ⁇ d *[b ⁇ M*v x 2 /( C r *L )]
  • C r C r0 *(1 ⁇ B 2 *a ydl — lim 2 ).
  • M is the total mass of vehicle.
  • the parameters of the dynamic filters may be determined if desired from equations (13) and (14).
  • the desired yaw rate determined using the disclosed method is compared to the measured yaw rate.
  • the differences are within 2 deg/s, which is within measurement errors.
  • the described method may permit analytical determination of the desired values from known parameters with minimal effort.
  • the model may capture major nonlinearities in vehicle handling. Additional testing may be reduced to a minimum to verify the results.
  • the method may also be applied to vehicles with active rear steer; in this case the front steering angle, ⁇ , in steps 103 and 106 (see FIG. 4) may be replaced by the difference ( ⁇ f ⁇ r ), where ⁇ f is the steer angle of the front wheels and ⁇ r of the rear wheels.
  • Determining the desired yaw rate and lateral velocity/acceleration according to the present invention may provide enhanced vehicle stability control.
  • the determined desired yaw rate and lateral velocity/acceleration may be calculated by the microprocessor and then transmitted to the vehicle control system.
  • a look up table may be generated by a utility file based on the described algorithm and implemented on a computer. The vehicle control system may access the look up table as necessary.
  • the vehicle control system may use the values determined by the microprocessor and/or look up tables to manage stability control.
  • the vehicle control system may actuate brake control, rear steering angle, suspension characteristics, and the like to achieve enhanced stability.
  • the vehicle control system may use the determined yaw rate and lateral velocity/acceleration information to actuate hydraulic or electrical drives thereby controlling rear wheel steering.
  • the determinations may be achieved without the need for value tables. As such, linear interpolation need not be used between any two points defined in the table. This may avoid any errors for when the function approximated by piecewise linear segments is strongly nonlinear. In addition, the determinations could potentially eliminate, or at least greatly simplify, the process of experimentally determining the desired values of yaw rate and lateral velocity during vehicle tuning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention provides a method and computer usable medium, including a program, for vehicle stability control. A rear axle cornering stiffness coefficient in a linear handling range is determined. A first understeer coefficient in a linear handling range is determined. A desired lateral acceleration is determined based on the first understeer coefficient. A second understeer coefficient is determined based on a limited magnitude of the desired lateral acceleration. A desired yaw rate is determined based on the second understeer coefficient. A desired lateral velocity is determined based on the desired yaw rate and the rear axle cornering stiffness coefficient.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates generally to vehicular stability control. More particularly, the invention relates to a method for enhancing vehicle stability control. [0001]
  • BACKGROUND OF THE INVENTION
  • In vehicle stability enhancement (VSE) systems, and some other chassis control systems, a significant effort during vehicle tuning may be devoted to the process of characterizing vehicle response in the yaw plane to the steering inputs. This may be accomplished by building look up tables that give steady state values of vehicle yaw rate, and sometimes lateral velocity for various steering angles and vehicle speeds. Since several values of speeds and steering angles have to be considered, the tables involve more than a hundred numbers, each of which has to be determined experimentally. This usually involves several days of testing, which has to be performed on a dry surface, thus being dependent on the weather conditions. [0002]
  • Another drawback of the look up tables is that linear interpolation is used between any two points defined in the table. This may lead to errors when the function approximated by piecewise linear segments is strongly nonlinear. Accordingly, it would be desirable to provide a relatively simple strategy that would permit one to determine the desired values from analytical expressions using vehicle parameter data, which are usually supplied by the vehicle manufacturer. In this way the desired values (of yaw rate and lateral velocity) could be continuously computed, or the look up table values could be determined by running a utility file on a computer. Only limited testing may be needed to verify the correctness of the model. [0003]
  • Therefore, it would be desirable to provide a strategy for enhancing vehicle stability control that overcomes the aforementioned and other disadvantages. [0004]
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention provides a method of vehicle stability control. A rear axle cornering stiffness coefficient in a linear handling range is determined. A first understeer coefficient in a linear handling range is determined. A desired lateral acceleration is determined based on the first understeer coefficient. A second understeer coefficient is determined based on a limited magnitude of the desired lateral acceleration. A desired yaw rate is determined based on the second understeer coefficient. A desired lateral velocity is determined based on the desired yaw rate and the rear axle cornering stiffness coefficient. The rear axle cornering stiffness coefficient may be determined based on a cross-over lateral velocity. A front axle cornering stiffness coefficient in a linear handling range may be determined. The determined desired yaw rate, desired lateral velocity, and desired lateral acceleration may be transmitted to a vehicle control system. [0005]
  • Another aspect of the invention provides a computer usable medium, including a program, for vehicle stability control. The invention provides computer readable program code for performing the method steps described above. [0006]
  • The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention, rather than limiting the scope of the invention being defined by the appended claims and equivalents thereof. [0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph of understeer coefficients as functions of lateral acceleration for two sets of suspension parameters; [0008]
  • FIG. 2 is a graph of desired lateral acceleration and yaw rates determined from a linear model with saturation; [0009]
  • FIG. 3 is a graph of understeer coefficient from test data and a model according to the present invention; [0010]
  • FIG. 4 is a flow chart of a vehicle stability control algorithm made in accordance with the present invention; and [0011]
  • FIG. 5 is a graph of vehicle yaw rate from test data and a model according to the present invention.[0012]
  • DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
  • The present invention may provide a simple method for determining a desired yaw rate and lateral velocity of vehicle in steady-state as functions of the steering angle, vehicle speed, and several vehicle parameters that are generally known. This could potentially eliminate, or at least greatly simplify, a costly and time-consuming process of experimentally determining the desired values of yaw rate and lateral velocity during vehicle tuning. In some applications, customer handling specifications in terms of the desired understeer coefficient under specific lateral accelerations could be directly translated into the desired values. [0013]
  • An example of customer specification in terms of understeer coefficient is provided in FIG. 1. Note that the understeer coefficients in the provided example increase with lateral acceleration. Note also that the understeer coefficients may be significantly affected by suspension tuning, since both curves were determined for vehicle with the same tires but different suspension parameters. [0014]
  • Two principle ideas provided in the following description are: (1) the cornering stiffness coefficients of the front and rear axles may be determined from simple tests, thus representing the entire vehicle influence, including the effects of suspension design; (2) the cornering stiffness coefficients and the understeer coefficient are functions of the desired lateral acceleration, which is a function of steering angle and vehicle speed. [0015]
  • The desired yaw rate and side-slip velocity may be in principle determined from the well-known linear bicycle model, with additional saturation at the limit of adhesion. The linear model yields the following equations for the vehicle yaw rate, Ω[0016] d, lateral acceleration, ayd, and lateral velocity, vyd:
  • Ωdl =v x*δ/(L+K u0 *v x 2)  (1a)
  • a ydl =v x 2*δ/(L+K u0 *v x 2)=v xdl  (1b)
  • v ydldl *[b−M*a*v x 2/(C r0 *L)]  (1c)
  • where v[0017] x is vehicle speed, δ is the steering angle of the front wheels (which may be computed by multiplying the measured steering wheel angle by the steer gear ratio), L is vehicle wheelbase, Ku0 is the understeer coefficient in the linear range of handling, b is the distance of the vehicle center of gravity to the rear axle, a is the distance of the vehicle center of gravity to the front axle, M is vehicle mass, and Cr0 is the cornering stiffness of the rear axle (both tires) in the linear range of handling; the superscript “l” refers to the (steady-state) values obtained from the linear model. Note that according to equation (1c) a vehicle speed vx exists such that the lateral velocity vy is identically equal to zero regardless of the steering angle. In order to account for the saturation of the tire forces at the limit of adhesion, the desired values should be saturated at the level corresponding to the maximum lateral acceleration that the vehicle can develop on dry surface, aymax. This yields the following: Ω dl_lim = { v x * δ / ( L + K u0 * v x 2 ) when | a ydl | < a y max a y max * sign ( δ ) / v x when | a ydl | a y max ( 2 a )
    Figure US20030229438A1-20031211-M00001
  • v ydl limdl lim *[b−M*a*v x 2/(C r0 *L)]  (2b)
  • The desired values of lateral acceleration and yaw rate obtained from the above equations are plotted against the measured values in FIG. 2. The linear model predicts vehicle response very well up to lateral acceleration corresponding to about 0.6*a[0018] ymax, while the saturation function is quite accurate at the limit of adhesion. In the intermediate range, however, the model may not be accurate.
  • There are at least two causes for the desired yaw response determined from this simple analytical model to be inaccurate in the nonlinear range of handling. First, it is assumed in the model that both the cornering stiffness of each axle and the understeer coefficient are constants. In reality, the cornering stiffness values and the understeer coefficient may depend on the normal load transfer during cornering, which depends on the lateral acceleration. Thus they are primary functions of lateral acceleration. Secondly, the cornering stiffness values used by the model are often derived from the tire data and the known nominal load. [0019]
  • To improve the accuracy of the model, the cornering stiffness values used in the bicycle model should reflect suspension properties. The proposed approach of the present invention can overcome both problems. The cornering stiffness values and the understeer coefficient may be determined as functions of desired lateral acceleration. The cornering stiffness values in the linear range of handling may be determined from simple vehicle tests, thus reflecting the effects of suspension. [0020]
  • For the linear vehicle model, the understeer coefficient may be determined from the following equation: [0021]
  • K u0 =M*(b/C f0 −a/C r0)/L=M f /C f0 −M r /C r0   (3)
  • where a and b are distances of front and rear axle to the vehicle center of gravity, C[0022] f0 and Cr0 are the cornering stiffness of front and rear axle, Mf=M*b/L and Mr=M*a/L are the front and rear mass of vehicle. In the linear model, the cornering stiffness values are assumed to be constant. In reality, they depend on the normal load transfer during cornering, which is primarily a function of lateral acceleration. This dependency is the result of the fact that the cornering stiffness per tire depends on the normal tire load. A simple and generally accepted model reflecting this relationship is as follows (Gillespie, 1992; Dixon, 1996):
  • C y =C y0*(N/N 0)*[1−k*(ΔN/N 0)]  (4)
  • where C[0023] y and Cy0 are cornering stiffness of one tire at an actual normal load, N, and at a nominal normal load, N0, respectively. The actual normal load, N, is the sum of N0 and ΔN wherein ΔN is the normal load transfer. The constant, k, which may have a typical value of 0.5, is the cornering stiffness sensitivity to normal load. If the load transfer of the left tire of a given axle is ΔN, then load transfer of the right tire is −ΔN. A simple manipulation shows that the cornering stiffness for the given (e.g. front) axle is:
  • C f=2*C y0*[1−k*(ΔN/N 0)2]  (5)
  • Thus it is a quadratic function of the normal load transfer (a higher order polynomial may be used if more accuracy is desired). Assuming further that the roll moment distribution between front and rear axle is approximately proportional to the mass distribution, the lateral load transfer may be expressed as a function of lateral acceleration: [0024]
  • ΔN/N 0=(2*h roll /t w)*(a y /g)  (6)
  • where h[0025] roll is the height of vehicle center of gravity above the roll axis, tw is the track width and g is acceleration of gravity. Consequently, the cornering stiffness of the front axle may be expressed as the following function of lateral acceleration:
  • C f =C f0*(1−B 2 *a y 2)  (7)
  • Where B[0026] 2=k*[(2*hroll)/(tw*g)]2. Similarly,
  • C r =C r0*(1−B 2 *a y 2)  (8)
  • If the roll moment distribution is significantly different from the mass distribution, the coefficient B[0027] 2 will be somewhat different for the front and rear axle. Substituting equations (7) and (8) into equation (3) yields the following equation after simple manipulation: K u = K u0 * [ 1 + B 2 * a y 2 / ( 1 - B 2 * a y 2 ) ] K u0 * [ 1 + B 2 * a y 2 + B 2 2 * a y 4 ] ( 9 )
    Figure US20030229438A1-20031211-M00002
  • with K[0028] u0 given by equation (3). The last equality follows from a Taylor expansion of 1/(1−B2*ay 2) under the assumption that B2*ay 2 is significantly less than 1. Thus the understeer coefficient may be represented as a polynomial in the lateral acceleration, ay. An example of the understeer coefficient determined from the vehicle test data supplied by OEM, along with the one computed from equation (9) is shown in FIG. 3. The understeer coefficient may be represented as a polynomial in lateral acceleration and a good fit to the data may be obtained.
  • The lateral stiffness values for front and rear axles in the linear range of handling, C[0029] f0 and Cr0, may be determined as follows. First, the understeer coefficient in the linear range of handling, Ku0, may be determined experimentally. Usually, this value is provided by a vehicle manufacturer. This supplies the first equation, (3). The second equation may be obtained by experimentally determining the velocity at which vehicle side slip velocity is zero regardless of the steering angle (provided that vehicle remains in the linear range of handling). According to equation (1c), this characteristic velocity is:
  • v 0 2 =b*C r0 /M r  (10)
  • M[0030] r=M*a/L is as defined previously (M is the total vehicle mass, a is the distance from center of gravity to the front axle, and L is the wheelbase). Solving equations (3) and (10) for the cornering stiffness coefficients, Cf0 and Cr0, yields: C r0 = M r * v x0 2 / b ; C f0 = M f * v x0 2 / ( b + K u0 * v x0 2 ) ( 11 )
    Figure US20030229438A1-20031211-M00003
  • The desired values of yaw rate and lateral velocity may now be computed from the equations (1a) and (1c), in which the understeer coefficient and rear cornering stiffness for the linear handling range, K[0031] u0 and Cr0, are replaced by the nonlinear functions given by equations (8) and (9), respectively. It may be desirable, however, that the desired values of yaw rate and lateral velocity be dependent only on steering angle, δ, and vehicle speed, vx. This may be achieved when the actual lateral acceleration is replaced by the desired lateral acceleration obtained from the linear equation (1b), subjected to the suitable limitation. As a result, the understeer coefficient and the cornering stiffness become functions of steering angle and speed, but not of lateral acceleration. Since the desired lateral acceleration is larger than the actual value in the nonlinear range of handling, the coefficient B2 in equations (8) and (9) may be reduced somewhat when ay is replaced by aydl lim (the desired lateral acceleration obtained from the linear model, equation 1b, but with the magnitude limited to aymax). Good results may be obtained by neglecting the 4-th order term in calculation of Ku using aydl lim.
  • By substituting the understeer coefficient, K[0032] u, and the rear axle cornering stiffness coefficient, Cr (both coefficients being functions of steering angle δ and speed vx) in place of Ku0 and Cr0 (which are constant) in equations (2a) and (2b), the desired values of yaw rate, Ωd, and lateral velocity, vyd, may be obtained. These desired values are the steady-state values, which describe vehicle response when both vehicle speed and the steering angle are constant or slowly-varying functions of time. For some vehicle stability enhancement systems, these values can be used as desired values. In other systems, there may be a need to represent vehicle dynamic response more accurately to better characterize the desired vehicle response during quick transient maneuvers; the process of obtaining the desired values from the steering angle and speed is sometimes referred to as a driver command interpreter.
  • Vehicle response in the yaw plane may be modeled as a velocity-dependent second order system, characterized by an undampened natural frequency and damping ratio. Both of these parameters are functions of vehicle speed. The parameters also (according to the linear handling model) directly depend on vehicle parameters, such as distances, mass, moment of inertia (about yaw axis), and cornering stiffness coefficients. Using the second order model, vehicle dynamic response may be obtained from the steady state values. For example, the relationship between the steady-state values and the dynamic values of yaw rate, lateral velocity, and lateral acceleration and the corresponding dynamic values in the Laplace domain may be described as follows: [0033] Ω d_dyn ( s ) = Ω d * ( 1 + T Ω s ) / [ 1 + ( 2 * ζ / ω n ) * s + ( 1 / ω n 2 ) * s 2 ] ( 12 a ) v yd_dyn ( s ) = v y d * ( 1 + T v y s ) / [ 1 + ( 2 * ζ / ω n ) * s + ( 1 / ω n 2 ) * s 2 ] ( 12 b ) a yddyn = s * v yd_dyn ( s ) + v x * Ω d_dyn ( s ) ( 12 c )
    Figure US20030229438A1-20031211-M00004
  • where ω[0034] n is the undampened natural frequency, ζ is the damping ratio, and s is the Laplace operand. The above equations may be written in a time domain as differential or difference equations and implemented in a microprocessor (in a manner known to those skilled in art) to generate the dynamic values from the steady state values.
  • The parameters of the dynamic filters used in a driver command interpreter may now be determined as functions of the nonlinear cornering stiffness parameters. The undampened natural frequency, ω[0035] n, and the damping ratio, ζ, of the second order filter reflecting vehicle dynamics in the yaw plane may be expressed as follows: ω n 2 = ( C f * C r * L 2 ) / ( M * l zz * v x 2 ) + ( C r * b - C f * a ) / l zz ( 13 ) ζ = [ ( C f + C r ) / M + ( C f * a 2 + C r * b 2 ) / l zz ] / ( 2 * v x 2 * ω n 2 ) ( 14 )
    Figure US20030229438A1-20031211-M00005
  • where l[0036] zz is the moment of vehicle inertia about the yaw (vertical) axis passing through the center of gravity and Cf and Cr are computed from equations (8) with ay replaced by aydl lim.
  • A system for implementing the method and computer usable medium according to the present invention may include a variety of commercially available vehicle components. As recognized in the art, commercially available sensors may provide vehicle velocity, steering angle (front and rear), and other pertinent information. The vehicle manufacturer may provide such information as vehicle mass, wheelbase, understeer coefficient in the linear range of handling, and the like. Hydraulic or electrical drives may actuate parameters for braking control, suspension control, steering of front and rear wheels, and other stability control (sub)systems. The methods and determinations (e.g., calculations), including those based on equations, may be performed by a device such as a microprocessor. The microprocessor may receive input, perform calculations, and transmit output to a vehicle control system for controlling the drive(s) and, consequently, for enhancing vehicle stability. Furthermore, computer usable medium including programs, equations, and associated values may be programmed in a microprocessor memory portion (e.g., ROM, RAM, and the like) for executing functions associated with the present invention. [0037]
  • FIG. 4 is a flow chart of a vehicle stability control algorithm made in accordance with the present invention. The algorithm may begin by determining a cornering stiffness of the rear axle in a linear handling range (step [0038] 100). The rear axle cornering stiffness, Cr0, may be calculated from the following equation (equation 11):
  • C r0 =M r*vx0 2 /b
  • where M[0039] r is a rear vehicle mass (Mr=M*a/L, where M is total vehicle mass, a is distance of front axle to center of gravity, L is wheelbase), b is a distance of vehicle center of gravity to the rear axle, and vx0 is a cross-over lateral velocity at which the side slip velocity is zero regardless of the steering angle (in the linear range of handling).
  • A first understeer coefficient in the linear handling is determined (step [0040] 101). The first understeer coefficient, Ku0, is usually provided by the manufacturer; if not, it may be determined experimentally as known in the art.
  • A cornering stiffness of the front axle may be determined (step [0041] 102). The front axle cornering stiffness, Cf0, may be calculated from the equation (equation 11): C f0 = M f * v x0 2 / ( b + K u0 * v x0 2 )
    Figure US20030229438A1-20031211-M00006
  • where M[0042] f is a front mass of vehicle and Ku0 is the first understeer coefficient in the linear range of handling.
  • A desired lateral acceleration is determined based on the first understeer coefficient (step [0043] 103). The desired lateral acceleration, aydl, may be calculated from the following simplified equation (equation 1b): a ydl = v x 2 * δ / ( L + K u0 * v x 2 )
    Figure US20030229438A1-20031211-M00007
  • where v[0044] x is vehicle speed, δ is steering angle at the front wheels, and L is vehicle wheelbase.
  • The value of the desired lateral acceleration, a[0045] ydl, may then be limited to the maximum lateral accelertion that the vehicle can develop on dry surface, aymax (step 104). This yields aydl lim.
  • A second understeer coefficient is determined based on the limited desired lateral acceleration (step [0046] 105). The understeer coefficient, Ku, may be calculated from the equation: K u = K u0 * ( 1 + B 2 * a ydl_lim 2 )
    Figure US20030229438A1-20031211-M00008
  • The polynomial coefficient, B[0047] 2, may be determined by the equation: B 2 = k * [ ( 2 * h roll ) / ( t w * g ) ] 2
    Figure US20030229438A1-20031211-M00009
  • where k is the sensitivity coefficient of tire lateral stiffness to normal load, h[0048] roll is height of vehicle center of gravity above the roll axis, tw is track width, and g is gravitational acceleration.
  • A desired yaw rate is determined based on the second understeer coefficient (step [0049] 106). The desired yaw rate, Ωd, may be calculated from the equation: Ω d = { v x * δ / ( L + K u * v x 2 ) when | a ydl_lim | < a y max + Δ a y a y max * sign ( δ ) / v x when | a ydl_lim | a y max + Δ a y
    Figure US20030229438A1-20031211-M00010
  • where the lateral acceleration value, Δa[0050] y, may be an incremental value of about 1 m/s2.
  • A desired lateral velocity is determined based on the desired yaw rate and the rear axle cornering stiffness coefficient (step [0051] 107). The desired lateral velocity, vyd, may be calculated from the equation:
  • v ydd *[b−M*v x 2/(C r *L)]
  • where C[0052] r=Cr0*(1−B 2*aydl lim 2). M is the total mass of vehicle.
  • As an additional step, the parameters of the dynamic filters may be determined if desired from equations (13) and (14). [0053]
  • In FIG. 5, the desired yaw rate determined using the disclosed method is compared to the measured yaw rate. The differences are within 2 deg/s, which is within measurement errors. The described method may permit analytical determination of the desired values from known parameters with minimal effort. The model may capture major nonlinearities in vehicle handling. Additional testing may be reduced to a minimum to verify the results. The method may also be applied to vehicles with active rear steer; in this case the front steering angle, δ, in [0054] steps 103 and 106 (see FIG. 4) may be replaced by the difference (δf−δr), where δf is the steer angle of the front wheels and δr of the rear wheels.
  • Determining the desired yaw rate and lateral velocity/acceleration according to the present invention may provide enhanced vehicle stability control. In one embodiment, the determined desired yaw rate and lateral velocity/acceleration may be calculated by the microprocessor and then transmitted to the vehicle control system. In another embodiment, a look up table may be generated by a utility file based on the described algorithm and implemented on a computer. The vehicle control system may access the look up table as necessary. The vehicle control system may use the values determined by the microprocessor and/or look up tables to manage stability control. The vehicle control system may actuate brake control, rear steering angle, suspension characteristics, and the like to achieve enhanced stability. For example, the vehicle control system may use the determined yaw rate and lateral velocity/acceleration information to actuate hydraulic or electrical drives thereby controlling rear wheel steering. [0055]
  • The determinations may be achieved without the need for value tables. As such, linear interpolation need not be used between any two points defined in the table. This may avoid any errors for when the function approximated by piecewise linear segments is strongly nonlinear. In addition, the determinations could potentially eliminate, or at least greatly simplify, the process of experimentally determining the desired values of yaw rate and lateral velocity during vehicle tuning. [0056]
  • While the embodiments of the invention disclosed herein are presently considered to be preferred, various changes and modifications may be made without departing from the spirit and scope of the invention. For example, the described algorithm and calculations are not limited to any particular method sequence or equation. Specifically, values may be determined by a variety of strategies or equations. The disclosed equations may be exemplary of only a subset of equations useful for such determinations. Upon reading the specification and reviewing the drawings hereof, it will become immediately obvious to those skilled in the art that myriad other embodiments of the present invention are possible, and that such embodiments are contemplated and fall within the scope of the presently claimed invention. The scope of the invention is indicated in the appended claims, and all changes that come within the meaning and range of equivalents are intended to be embraced therein. [0057]

Claims (20)

1. A method of vehicle stability control, comprising;
determining a rear axle cornering stiffness coefficient in a linear handling range;
determining a first understeer coefficient in a linear handling range;
determining a desired lateral acceleration based on the first understeer coefficient;
determining a second understeer coefficient based on a limited magnitude of the desired lateral acceleration;
determining a desired yaw rate based on the second understeer coefficient; and
determining a desired lateral velocity based on the desired yaw rate and the rear axle cornering stiffness coefficient.
2. The method of claim 1 wherein the rear axle cornering stiffness coefficient is determined based on a cross-over lateral velocity.
3. The method of claim 1 wherein the second understeer coefficient is determined in accordance with the equation:
K u =K u0*(1+b 2 *a ydl lim 2)
where Ku0 is the first understeer coefficient in the linear handling range, B2 is a polynomial coefficient, and aydl lim is the desired lateral acceleration limited to maximum lateral acceleration:
4. The method of claim 3 wherein the polynomial coefficient, B2, is determined in accordance with the equation:
B 2 =k*[(2*h roll)/(t w *g)]2
where k is a tire sensitivity coefficient to a normal load, hroll is a height of vehicle center of gravity above a roll axis, tw is a track width value, and g is a gravitational acceleration constant.
5. The method of claim 1 wherein the desired yaw rate is determined in accordance with the equation:
Ω d = { v x * δ / ( L + K u * v x 2 ) when a ydl_lim < a y max + Δ a y a y max * sign ( δ ) / v x when a ydl_lim a y max + Δ a y
Figure US20030229438A1-20031211-M00011
where vx is a vehicle speed, δ is a front wheel steering angle, L is a vehicle wheelbase, Ku is the second understeer coefficient, aydl lim is the desired lateral acceleration limited to maximum lateral acceleration, aymax is a maximum lateral acceleration of the vehicle on a dry surface, and Δay is lateral acceleration value.
6. The method of claim 5 wherein the lateral acceleration value, Δay, is an incremental value of about 1 m/s2.
7. The method of claim 1 wherein the desired lateral velocity is determined in accordance with the equation:
v y d = Ω d * [ b - M * v x 2 / ( C r * L ) ]
Figure US20030229438A1-20031211-M00012
where {fourth root}d is the desired yaw rate, b is a distance of vehicle center of gravity to the rear axle, M is a vehicle mass, vx is a vehicle speed, Cr is a calculated rear axle cornering stiffness, and L is a vehicle wheelbase.
8. The method of claim 7 wherein the calculated rear axle cornering stiffness, Cr, is determined in accordance with the equation:
C r = C r0 * ( 1 - B 2 * a ydl_lim 2 )
Figure US20030229438A1-20031211-M00013
where Cr0 is the rear axle cornering stiffness in the linear handling range, B2 is a polynomial coefficient, and aydl lim is the desired lateral acceleration limited to maximum lateral acceleration.
9. The method of claim 1 further comprising determining a front axle cornering stiffness coefficient in a linear handling range.
10. The method of claim 1 further comprising transmitting at least one of the determined desired yaw rate, desired lateral velocity, and desired lateral acceleration to a vehicle control system.
11. A computer usable medium including a program for vehicle stability control, comprising;
computer readable program code for determining a rear axle cornering stiffness coefficient in a linear handling range;
computer readable program code for determining a first understeer coefficient in a linear handling range;
computer readable program code for determining a desired lateral acceleration based on the first understeer coefficient;
computer readable program code for determining a second understeer coefficient based on a limited magnitude of the desired lateral acceleration;
computer readable program code for determining a desired yaw rate based on the second understeer coefficient; and
computer readable program code for determining a desired lateral velocity based on the desired yaw rate and the rear axle cornering stiffness coefficient.
12. The computer usable medium of claim 11 wherein the rear axle cornering stiffness coefficient is determined based on a cross-over lateral velocity.
13. The computer usable medium of claim 11 wherein the second understeer coefficient is determined in accordance with the equation:
K u = K u0 * ( 1 + B 2 * a ydl_lim 2 )
Figure US20030229438A1-20031211-M00014
where Ku0 is the first understeer coefficient in the linear handling range, B2 is a polynomial coefficient, and aydl lim is the desired lateral acceleration limited to maximum lateral acceleration.
14. The computer usable medium of claim 13 wherein the polynomial coefficient, B2, is determined in accordance with the equation:
B 2 = k * [ ( 2 * h roll ) / ( t w * g ) ] 2
Figure US20030229438A1-20031211-M00015
where k is a tire sensitivity coefficient to a normal load, hroll is a height of vehicle center of gravity above a roll axis, tw is a track width value, and g is a gravitational acceleration constant.
15. The computer usable medium of claim 11 wherein the desired yaw rate is determined in accordance with the equation:
Ω d = { v x * δ / ( L + K u * v x 2 ) when a ydl_lim < a y max + Δ a y a y max * sign ( δ ) / v x when a ydl_lim a y max + Δ a y
Figure US20030229438A1-20031211-M00016
where vx is a vehicle speed, δ is a front wheel steering angle, L is a vehicle wheelbase, Ku is the second understeer coefficient, aydl lim is the desired lateral acceleration limited to maximum lateral acceleration, aymax is a maximum lateral acceleration of the vehicle on a dry surface, and Δay is lateral acceleration value.
16. The computer usable medium of claim 15 wherein the lateral acceleration value, Δay, is an incremental value of about 1 m/s2.
17. The computer usable medium of claim 11 wherein the desired lateral velocity is determined in accordance with the equation:
v y d = Ω d * [ b - M * v x 2 / ( C r * L ) ]
Figure US20030229438A1-20031211-M00017
where Ωd is the desired yaw rate, b is a distance of vehicle center of gravity to the rear axle, M is a vehicle mass, vx is a vehicle speed, Cr is a calculated rear axle cornering stiffness, and L is a vehicle wheelbase.
18. The computer usable medium of claim 17 wherein the calculated rear axle cornering stiffness, Cr, is determined in accordance with the equation:
C r = C r0 * ( 1 - B 2 * a ydl_lim 2 )
Figure US20030229438A1-20031211-M00018
where Cr0 is the rear axle cornering stiffness in the linear handling range, B2 is a polynomial coefficient, and aydl lim is the desired lateral acceleration limited to maximum lateral acceleration.
19. The computer usable medium of claim 11 further comprising determining a front axle cornering stiffness coefficient in a linear handling range.
20. The computer usable medium of claim 11 further comprising transmitting at least one of the determined desired yaw rate, desired lateral velocity, and desired lateral acceleration to a vehicle control system.
US10/164,264 2002-06-05 2002-06-05 Vehicle stability control Expired - Lifetime US6658342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/164,264 US6658342B1 (en) 2002-06-05 2002-06-05 Vehicle stability control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/164,264 US6658342B1 (en) 2002-06-05 2002-06-05 Vehicle stability control

Publications (2)

Publication Number Publication Date
US6658342B1 US6658342B1 (en) 2003-12-02
US20030229438A1 true US20030229438A1 (en) 2003-12-11

Family

ID=29549339

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/164,264 Expired - Lifetime US6658342B1 (en) 2002-06-05 2002-06-05 Vehicle stability control

Country Status (1)

Country Link
US (1) US6658342B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081902A1 (en) 2005-02-03 2006-08-10 Robert Bosch Gmbh Triggering method for activating a lateral speed estimation for passenger protection devices
US20090105900A1 (en) * 2007-10-18 2009-04-23 Gm Global Technology Operations, Inc. Reconfigurable Structure Method of Estimating Vehicle Lateral Velocity
US11351830B2 (en) * 2018-08-23 2022-06-07 Tenneco Automotive Operating Company Inc. Method of anti-roll moment distribution
WO2023287913A1 (en) * 2021-07-13 2023-01-19 Canoo Technologies Inc. System and method in data-driven vehicle dynamic modeling for path-planning and control
US11845428B2 (en) 2021-07-13 2023-12-19 Canoo Technologies Inc. System and method for lane departure warning with ego motion and vision
US11891059B2 (en) 2021-07-13 2024-02-06 Canoo Technologies Inc. System and methods of integrating vehicle kinematics and dynamics for lateral control feature at autonomous driving
US11891060B2 (en) 2021-07-13 2024-02-06 Canoo Technologies Inc. System and method in lane departure warning with full nonlinear kinematics and curvature
US11908200B2 (en) 2021-07-13 2024-02-20 Canoo Technologies Inc. System and method in the prediction of target vehicle behavior based on image frame and normalization
US12017661B2 (en) 2021-07-13 2024-06-25 Canoo Technologies Inc. System and method in vehicle path prediction based on full nonlinear kinematics

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030151302A1 (en) * 2002-02-08 2003-08-14 Sohel Anwar Slip regulation algorithm for an automotive vehicle using a normal force estimate and a predetermined peak wheel slip
DE10226683A1 (en) * 2002-06-15 2003-12-24 Bosch Gmbh Robert Driving stability management through a vehicle controller network
US6856885B2 (en) * 2003-04-01 2005-02-15 General Motors Corporation Vehicle stability enhancement control
US6856886B1 (en) * 2004-03-23 2005-02-15 General Motors Corporation Vehicle stability enhancement control and method
US6901319B1 (en) * 2004-07-06 2005-05-31 Deere & Company System and method for controlling a ground vehicle
JP4558395B2 (en) * 2004-07-12 2010-10-06 富士重工業株式会社 Wheel contact state determination device, wheel contact state determination method, and vehicle motion control device
US7239952B2 (en) * 2004-12-08 2007-07-03 Continental Teves, Inc. Reduced order parameter identification for vehicle rollover control system
US7557697B2 (en) * 2005-02-22 2009-07-07 Continental Teves, Inc. System to measure wheel liftoff
US7873459B2 (en) * 2005-07-29 2011-01-18 Ford Global Technologies, Llc Load transfer adaptive traction control system
US7558661B2 (en) * 2006-05-02 2009-07-07 Delphi Technologies, Inc. Adaptive maneuver based diagnostics for vehicle dynamics
JP4827629B2 (en) * 2006-06-21 2011-11-30 本田技研工業株式会社 Fault detection device for lateral acceleration sensor
JP2010516556A (en) * 2007-01-25 2010-05-20 本田技研工業株式会社 Vehicle system control method for improving vehicle stability
DE102013004665B4 (en) * 2013-03-18 2021-09-16 Stefan Karle SOFTBOX
US10407034B2 (en) 2017-06-05 2019-09-10 GM Global Technology Operations LLC Combined slip-based driver command interpreter
US11529948B2 (en) * 2019-04-23 2022-12-20 GM Global Technology Operations LLC Architecture and methodology of limit handling intended driver command interpreter to achieve maximum lateral grip
US11097743B2 (en) 2019-04-25 2021-08-24 GM Global Technology Operations LLC Method and system for controlling a vehicle by determining a location of an optimum perceived yaw center
US11175667B2 (en) * 2020-02-19 2021-11-16 GM Global Technology Operations LLC System and method for vehicle integrated stability control using perceived yaw center
US12179781B2 (en) * 2022-12-01 2024-12-31 GM Global Technology Operations LLC Driver command interpreter system determining achievable target vehicle state during steady-state and transient driving conditions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258912A (en) * 1991-06-24 1993-11-02 General Motors Corporation Wheel understeer speed control
US6035251A (en) * 1997-11-10 2000-03-07 General Motors Corporation Brake system control method employing yaw rate and ship angle control

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081902A1 (en) 2005-02-03 2006-08-10 Robert Bosch Gmbh Triggering method for activating a lateral speed estimation for passenger protection devices
US20100042294A1 (en) * 2005-02-03 2010-02-18 Thomas Lich Triggering Method for Activating a Lateral Velocity Estimating System for Occupant Protection Devices
US9085286B2 (en) 2005-02-03 2015-07-21 Robert Bosch Gmbh Triggering method for activating a lateral velocity estimating system for occupant protection devices
US20090105900A1 (en) * 2007-10-18 2009-04-23 Gm Global Technology Operations, Inc. Reconfigurable Structure Method of Estimating Vehicle Lateral Velocity
US8041491B2 (en) * 2007-10-18 2011-10-18 GM Global Technology Operations LLC Reconfigurable structure method of estimating vehicle lateral velocity
US11351830B2 (en) * 2018-08-23 2022-06-07 Tenneco Automotive Operating Company Inc. Method of anti-roll moment distribution
WO2023287913A1 (en) * 2021-07-13 2023-01-19 Canoo Technologies Inc. System and method in data-driven vehicle dynamic modeling for path-planning and control
US20230021802A1 (en) * 2021-07-13 2023-01-26 Canoo Technologies Inc. System and method in data-driven vehicle dynamic modeling for path-planning and control
US11840147B2 (en) * 2021-07-13 2023-12-12 Canoo Technologies Inc. System and method in data-driven vehicle dynamic modeling for path-planning and control
US11845428B2 (en) 2021-07-13 2023-12-19 Canoo Technologies Inc. System and method for lane departure warning with ego motion and vision
US11891059B2 (en) 2021-07-13 2024-02-06 Canoo Technologies Inc. System and methods of integrating vehicle kinematics and dynamics for lateral control feature at autonomous driving
US11891060B2 (en) 2021-07-13 2024-02-06 Canoo Technologies Inc. System and method in lane departure warning with full nonlinear kinematics and curvature
US11908200B2 (en) 2021-07-13 2024-02-20 Canoo Technologies Inc. System and method in the prediction of target vehicle behavior based on image frame and normalization
US12017661B2 (en) 2021-07-13 2024-06-25 Canoo Technologies Inc. System and method in vehicle path prediction based on full nonlinear kinematics

Also Published As

Publication number Publication date
US6658342B1 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US6658342B1 (en) Vehicle stability control
CN110562263B (en) Wheel hub motor driven vehicle speed estimation method based on multi-model fusion
US5557520A (en) Method for determining variables characterizing vehicle handling
US6804594B1 (en) Active steering for handling/stability enhancement
US20090177346A1 (en) Dynamic estimation of vehicle inertial parameters and tire forces from tire sensors
Liu et al. Road friction coefficient estimation for vehicle path prediction
EP3600985B1 (en) System and method for calibrating tire of vehicle
US6816799B2 (en) Vehicle operating parameter determination system and method
US7184868B2 (en) Vehicle dynamics behavior reproduction system
US6161905A (en) Active brake control including estimation of yaw rate and slip angle
US7826949B2 (en) Method for determining the steering ratio of a vehicle
CN109606378B (en) A Vehicle Driving State Estimation Method for Non-Gaussian Noise Environment
EP1811308B1 (en) Apparatus and method for estimating a sideslip angle
JPH1035443A (en) Apparatus for presuming car body speed and coefficient of friction on road surface
Lenzo et al. On the handling performance of a vehicle with different front-to-rear wheel torque distributions
EP3822137A1 (en) Vehicle control method and device
Mazzilli et al. On the benefit of smart tyre technology on vehicle state estimation
EP0982206B1 (en) Method of estimating vehicle yaw rate
US20240208516A1 (en) Vehicle status parameter estimation method and apparatus
Liu et al. Vehicle state and parameter estimation based on double cubature Kalman filter algorithm
Hou et al. A novel rollover warning approach for commercial vehicles using unscented kalman filter
US6216061B1 (en) Method for determining a reference magnitude
KR20240117666A (en) Data-driven based apparatus and method of improving accuracy for vehicle lateral model
Do et al. Real-time estimation of longitudinal tire stiffness considering dynamic characteristics of tire
WO2020261584A1 (en) Ground load estimation device, control device, and ground load estimation method

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI TECHNOLOGIES INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALEKSANDER B. HAC;REEL/FRAME:012995/0822

Effective date: 20020530

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BWI COMPANY LIMITED S.A., LUXEMBOURG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI AUTOMOTIVE SYSTEMS, LLC;REEL/FRAME:024892/0813

Effective date: 20091101

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载