US20030220657A1 - Endoluminal fundoplication device and related method - Google Patents
Endoluminal fundoplication device and related method Download PDFInfo
- Publication number
- US20030220657A1 US20030220657A1 US09/863,666 US86366601A US2003220657A1 US 20030220657 A1 US20030220657 A1 US 20030220657A1 US 86366601 A US86366601 A US 86366601A US 2003220657 A1 US2003220657 A1 US 2003220657A1
- Authority
- US
- United States
- Prior art keywords
- arms
- closing mechanism
- assembly
- distal
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/10—Surgical instruments, devices or methods for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00174—Optical arrangements characterised by the viewing angles
- A61B1/00179—Optical arrangements characterised by the viewing angles for off-axis viewing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
- A61B1/0051—Flexible endoscopes with controlled bending of insertion part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/05—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B17/0643—Surgical staples, i.e. penetrating the tissue with separate closing member, e.g. for interlocking with staple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/128—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for applying or removing clamps or clips
- A61B17/1285—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for applying or removing clamps or clips for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00353—Surgical instruments, devices or methods for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00818—Treatment of the gastro-intestinal system
- A61B2017/00827—Treatment of gastro-esophageal reflux
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B2017/0647—Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2901—Details of shaft
- A61B2017/2905—Details of shaft flexible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
- A61B2017/2932—Transmission of forces to jaw members
- A61B2017/2933—Transmission of forces to jaw members camming or guiding means
- A61B2017/2934—Transmission of forces to jaw members camming or guiding means arcuate shaped guiding means
Definitions
- the invention relates to an endoscopic surgical instrument. More particularly, the invention relates to a flexible instrument for transoral invagination and fundoplication of the stomach to the esophagus.
- Gastroesophageal reflux occurs when stomach acid enters the esophagus. This reflux of acid into the esophagus occurs naturally in healthy individuals, but also may become a pathological condition in others. Effects from gastroesophageal reflux range from mild to severe. Mild effects include heartburn, a burning sensation experienced behind the breastbone. More severe effects include a variety of complications, such as esophageal erosion, esophageal ulcers, esophageal stricture, abnormal epithelium (e.g., Barrett's esophagus), and/or pulmonary aspiration. These various clinical conditions and changes in tissue structure that result from reflux of stomach acid into the esophagus are referred to generally as Gastro-esophageal Reflux Disease (GERD).
- GSD Gastro-esophageal Reflux Disease
- LES lower esophageal sphincter
- the LES is a ring of smooth muscle and increased annular thickness existing in the last four centimeters of the esophagus.
- the LES creates a region of high pressure (approximately 15-30 mm Hg above intragastric pressure) at the opening of the esophagus into the stomach. This pressure essentially closes the esophagus contents of the stomach cannot pass back into the esophagus.
- the LES opens in response to swallowing and peristaltic motion in the esophagus, allowing food to pass into the stomach. After opening, however, a properly functioning LES should return to the resting, or closed state. Transient relaxations of the LES do occur in healthy individuals, typically resulting in occasional bouts of heartburn.
- the physical interaction occurring between the gastric fundus and the esophagus also prevents gastroesophageal reflux.
- the gastric fundus is a lobe of the stomach situated at the top of the stomach distal to the esophagus.
- the fundus presses against the opening of the esophagus when the stomach is full of food and/or gas. This effectively closes off the esophageal opening to the stomach and helps to prevent acid reflux back into the esophagus.
- the food bolus is immersed in gastric acid, it releases gas which causes the fundus of the stomach to expand and thereby put pressure on the distal esophagus causing it to collapse.
- the collapse of the esophagus lumen reduces the space for the stomach acid to splash past the closed esophagus lumen and thereby protect the proximal esophagus from its destructive contact.
- a surgical procedure has been developed to prevent acid reflux in patients whose normal LES functioning has been impaired.
- This procedure a Nissen fundoplication, involves bringing the fundus into closer proximity to the esophagus and suturing the fundus thereto, to help close off the esophageal opening into the stomach.
- this procedure has been performed as an open surgery, but also has been performed laparoscopically.
- a laparoscopic procedure may involve performing laparotomies for trocar ports (penetrations of the abdominal wall) percutaneous endoscopic gastronomies (incisions through the skin into the stomach) and the installation of ports through which, for example, a stapler, an endoscope, and an esophageal manipulator (invagination device) are inserted.
- the esophageal manipulator is used to pull the interior of the esophagus into the stomach.
- the stapler is moved into position around the lower end of the esophagus and the plicated fundus is stapled to the esophagus.
- the process may be repeated at different axial and rotary positions until the desired fundoplication is achieved.
- This procedure is still relatively invasive requiring incisions through the stomach, which has a risk of infection.
- the location of the incision in the abdominal wall presents a risk of other negative effects, such as sepsis which can be caused by leakage of septic fluid contained in the stomach.
- Less invasive treatments of gastroesophageal reflux disease may utilize a remotely operable invagination device and a remotely operable surgical stapler, both of which are inserted transorally through the esophagus.
- the invagination device may be inserted first and used to clamp the gastroesophageal junction.
- the device is then moved distally, pulling the clamped gastroesophageal junction into the stomach, thereby invaginating the junction and involuting the surrounding fundic wall.
- the stapler then may be inserted transorally and delivered to the invaginated junction where it is used to staple the fundic wall.
- the stapling device must apply sufficient force to pierce the tissue that is to be fastened.
- a distal assembly of an endoscopic surgical device having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm.
- a closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The closing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together.
- An actuation member is also attached to the closing mechanism and is actuable to cause the closing mechanism to move in relation to the first and second arms.
- a tissue fastening tool is utilized with an endoscope.
- the endoscope is provided with a stop mechanism to come in contact with the distal assembly and stop the distal assembly at a predetermined location along the endoscope.
- an endoscope may be provided with a housing that contains two light and imaging systems, one facing in a distal direction and the other facing in a proximal direction opposite the distal direction.
- Another aspect of the invention includes a method for fasting tissue that includes guiding a tissue fastening tool along an endoscope until the tissue fastening tool contacts a stop mechanism so as to position the tissue fastening tool relative to the endoscope.
- the tissue fastening tool has a pair of arms and each of the arms holds a part of a two-part fastener. The operator then positions the pair of arms about the tissue to be fastened and the arms are then closed to deploy the two-part fastener and fasten the tissue.
- the invention includes a method for fastening tissue that includes guiding a tissue fastening tool through a body lumen to tissue to be fastened.
- the tissue fasting tool includes a pair of arms, each arm holding a part of a two-part fastener.
- the pair of arms is then positioned about the tissue to be fastened.
- a closing mechanism is then actuated to close over at least one of the arms to cause the arms to come together and the parts of the two-part fastener to mate and fasten the tissue.
- FIG. 1 is a plan view of a distal end of a fastener application tool according to an embodiment of the present invention.
- FIG. 2 is a view of the fastener application tool of FIG. 1 affixed to a sleeve and in place over an endoscope.
- FIG. 2A is a cross-sectional view along line A-A of the fastener application tool of FIG. 2 that has been rotated 90° from the orientation shown in FIG. 2.
- FIG. 3 is a view of the fastener application tool of FIG. 1 in place over an endoscope and having a stop ring to accurately position the tool for performing the surgical procedure.
- FIG. 4 is a view showing the fastener application tool and endoscope of FIG. 2, with the tool in a deployed position inserting a fastener through the tissue.
- FIG. 5 is a plan view of a distal end of an endoscope according to an embodiment of the present invention.
- FIG. 6 is an end view of the fastener application tool in place on a sleeve showing the dovetailed connection between the sleeve and tool.
- FIG. 1 shows a distal end of a tissue fastener application tool 10 according to an embodiment of the present invention.
- tool 10 is in an intermediate position between a fully open position and a deployed position where the tool deploys a fastener to secure a tissue fold.
- Tool 10 preferably is used endoscopically, by insertion transorally through the esophagus, to fasten the fundic wall with a tissue fastener.
- Tool 10 includes a pair of pivot arms 12 , 14 configured to pivot about a pivot point 16 located at a proximal end of arms 12 , 14 .
- Beneath arm 12 is located flange 11 .
- Flange 11 is preferably shaped to fit into a groove located within sleeve 30 (shown in FIG. 2). This flange and groove is depicted in FIG. 2A as a dove-tail joint, but may be any other mating configuration known in the art.
- a holding mechanism for holding a female part 40 of a two-part tissue fastener.
- a holding mechanism to hold a male part 42 of the two-part tissue fastener.
- the female and male fastener parts 40 , 42 could be located on either pivot arm and are not intended to be limited to the configuration disclosed in the drawings.
- the two-part tissue fastener and its holding mechanisms may take the form of any suitable tissue fastener and holding mechanism known in the art, including, for example, holding mechanisms that include storage for housing multiple fastener parts
- Tool 10 further includes a closing tube 18 positioned over the proximal end of pivot arms 12 , 14 where the arms intersect at pivot point 16 .
- a spring device may be located at pivot point 16 to supply a spring force to normally hold arms 12 , 14 in an open position when closing tube 18 is in a retracted position, such as that shown in FIG. 2.
- Arm 12 preferably is in a fixed position relative to tube 18 and arm 14 rotates from an open position (FIG. 2) to a closed position (FIG. 3) relative to arm 12 .
- Tube 18 is hollow to accommodate arms 12 , 14 and the full span of rotation of arm 14 .
- Closing tube 18 is connected to an elongate actuator, such as a cable 20 , which connects to a proximal actuator (not shown) of any suitable type well known in the art, so that a user may pull a proximal end of cable 20 that is outside the patient, or actuate a proximal actuator to do so, to pull tube 18 toward the distal ends of pivot arms 12 , 14 and thus over arms 12 , 14 .
- This causes arm 14 to pivot at point 16 and towards arm 12 to cause fastener parts 40 , 42 to mate and secure a tissue fold.
- Arm 12 is provided with a channel 13 into which the base of closing tube 18 rests. This channel, along with a matching protrusion 15 (FIG. 2A) provided at the base of closing tube 18 provides a path along which closing tube may move to facilitate the closing action that brings arms 12 and 14 together to deploy fastener parts 40 and 42 .
- Pivot arm 14 is preferably curved as depicted in the drawings so as to allow tube 18 to close more easily and apply sufficient force to the fastener parts.
- the inside of closing tube 18 may be provided with a cam surface 19 that is substantially the same shape as arm 14 to act as a cam and provide an even greater closing force to be applied to arms 12 and 14 .
- Arm 14 may be straight or have any other suitable configuration.
- arm 12 may be arranged so that it pivots toward arm 14 when tube 18 is closed. The arrangement of the distal end of the tool 10 provides a high mechanical advantage on the arms to produce a sufficient closing force.
- Tissue fastener application tool 10 preferably is used in combination with an endoscope, such as an endoscope 2 according to an embodiment of the present invention and shown in FIGS. 2 and 3.
- Endoscope 2 preferably is a small diameter endoscope that incorporates features needed for the surgical procedure, for example visualization (including imaging and a light source), insufflation, and/or steerability. Additional endoscope features, such as working channels for a biopsy device, may be eliminated so that the endoscope size is reduced, permitting the tissue fastener application tool to pass adjacent the endoscope within the lumen of the esophagus.
- Endoscope 2 may be approximately 3 mm in diameter, for example and include a light source 3 at its distal end that is capable of illuminating the upper gastrointestinal region. Endoscope 2 may also include an appropriate steering mechanism so that the distal end of the endoscope may be turned 180 degrees upon entry into the stomach, as shown in FIGS. 2 and 3.
- endoscope 2 may include alternative light and imaging/camera assembly 60 .
- endoscope 2 could have light and imaging/camera assembly 60 , in the form of a housing, at the distal end that allows both forward viewing as endoscope 2 is inserted into the stomach as well as rearward viewing to allow the operator to see the procedure once endoscope 2 is in the proper position.
- Assembly 60 may include a standard camera and light source 62 pointing away from the distal end of assembly 60 and also a second camera and light source 64 that branches off of endoscope 2 and points rearward (or proximally) toward the tool to be used in the procedure.
- a user may switch imaging and light through a suitable switch at the proximal end outside the patient between these forward and rearward views.
- This configuration allows for a streamlined endoscope and does not require the operator to change the position of the distal end of endoscope 2 to bring it from a forward pointing position during insertion to a rearward pointing position during the procedure.
- endoscope 2 may be used as a guide, like a guide wire, for the insertion of the tissue fastener application tool, as will be explained.
- Endoscope 2 also may include a stop, such as that shown in FIGS. 2 and 3, in the form of, for example, a ring 6 configured to set the position of tool 10 relative to endoscope 2 .
- endoscope 2 is inserted transorally, through the esophagus, and into the stomach.
- Endoscope 2 is manipulated so that the imaging and light source is in a position to view the esophagus and upper portions of the stomach, as shown in FIGS. 2 and 3. If an endoscope having a distal assembly as shown in FIG. 4 is used, camera and light source 64 is switched on to view those portions of the gastrointestinal tract.
- the tissue fastener application tool 10 then is inserted into the esophagus along endoscope 2 .
- arms 12 , 14 preferably are in a closed position.
- Tool 10 is inserted until a portion of the distal end of sleeve 30 abuts against stop ring 6 of endoscope 2 so that tool 10 is at an appropriate position relative to endoscope 2 and its imaging and light assembly.
- tube 18 is moved over arms 12 , 14 and towards the proximal ends of arms 12 , 14 to rotate arm 14 to an open position away from arm 12 .
- Endoscope 2 and tool 10 can then be moved proximally as a unit so that arms 12 , 14 are opened about a tissue fold 50 that is to be fastened together, as shown in FIG. 2.
- tube 18 may include an alternative assembly for closing arms 12 , 14 .
- cable 20 may be replaced with a flexible shaft having a threaded distal end that is inserted into a threaded hole in tube 18 .
- the flexible shaft is rotated in one direction to cause the threaded portions of both the shaft and closing tube 18 to work together to draw closing tube 18 toward the distal ends of pivot arms 12 , 14 to cause fastener parts 40 , 42 to mate.
- Cable 20 may then be rotated in the opposite direction to move closing tube 18 distally away from arms 12 , 14 , thus allowing arms 12 , 14 to move apart again.
- Tube 18 may include any other suitable alternative actuation mechanism that moves tube 18 over arms 12 , 14 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Endoscopes (AREA)
- Surgical Instruments (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
- 1. Field of the Invention
- The invention relates to an endoscopic surgical instrument. More particularly, the invention relates to a flexible instrument for transoral invagination and fundoplication of the stomach to the esophagus.
- 2. Background of the Invention
- Gastroesophageal reflux occurs when stomach acid enters the esophagus. This reflux of acid into the esophagus occurs naturally in healthy individuals, but also may become a pathological condition in others. Effects from gastroesophageal reflux range from mild to severe. Mild effects include heartburn, a burning sensation experienced behind the breastbone. More severe effects include a variety of complications, such as esophageal erosion, esophageal ulcers, esophageal stricture, abnormal epithelium (e.g., Barrett's esophagus), and/or pulmonary aspiration. These various clinical conditions and changes in tissue structure that result from reflux of stomach acid into the esophagus are referred to generally as Gastro-esophageal Reflux Disease (GERD).
- Many mechanisms contribute to prevent gastroesophageal reflux in healthy individuals. One such mechanism is the functioning of the lower esophageal sphincter (LES). The LES is a ring of smooth muscle and increased annular thickness existing in the last four centimeters of the esophagus. In its resting state, the LES creates a region of high pressure (approximately 15-30 mm Hg above intragastric pressure) at the opening of the esophagus into the stomach. This pressure essentially closes the esophagus contents of the stomach cannot pass back into the esophagus. The LES opens in response to swallowing and peristaltic motion in the esophagus, allowing food to pass into the stomach. After opening, however, a properly functioning LES should return to the resting, or closed state. Transient relaxations of the LES do occur in healthy individuals, typically resulting in occasional bouts of heartburn.
- The physical interaction occurring between the gastric fundus and the esophagus also prevents gastroesophageal reflux. The gastric fundus is a lobe of the stomach situated at the top of the stomach distal to the esophagus. In asymptomatic individuals, the fundus presses against the opening of the esophagus when the stomach is full of food and/or gas. This effectively closes off the esophageal opening to the stomach and helps to prevent acid reflux back into the esophagus. More specifically, as the food bolus is immersed in gastric acid, it releases gas which causes the fundus of the stomach to expand and thereby put pressure on the distal esophagus causing it to collapse. The collapse of the esophagus lumen reduces the space for the stomach acid to splash past the closed esophagus lumen and thereby protect the proximal esophagus from its destructive contact.
- In individuals with GERD, the LES functions abnormally, either due to an increase in transient LES relaxations, decreased muscle tone of the LES during resting, or an inability of the esophageal tissue to resist injury or repair itself after injury. These conditions often are exacerbated by overeating, intake of caffeine, chocolate or fatty foods, smoking, and/or hiatal hernia. Avoiding these exacerbating mechanisms helps curb the negative side effects associated with GERD, but does not change the underlying disease mechanism.
- A surgical procedure has been developed to prevent acid reflux in patients whose normal LES functioning has been impaired. This procedure, a Nissen fundoplication, involves bringing the fundus into closer proximity to the esophagus and suturing the fundus thereto, to help close off the esophageal opening into the stomach. Traditionally, this procedure has been performed as an open surgery, but also has been performed laparoscopically.
- As with any surgery, the attendant risks are great. The Nissen fundoplication is a very difficult procedure to complete and thus the patient is anesthitized for a long time. Due to relatively large incisions necessary in the performance of open surgery, relatively large amounts of blood are lost, the risk of infection increases and the potential for post-operative hernias is high.
- A laparoscopic procedure may involve performing laparotomies for trocar ports (penetrations of the abdominal wall) percutaneous endoscopic gastronomies (incisions through the skin into the stomach) and the installation of ports through which, for example, a stapler, an endoscope, and an esophageal manipulator (invagination device) are inserted. Under view of the endoscope, the esophageal manipulator is used to pull the interior of the esophagus into the stomach. When the esophagus is in position, with the fundus of the stomach plicated, the stapler is moved into position around the lower end of the esophagus and the plicated fundus is stapled to the esophagus. The process may be repeated at different axial and rotary positions until the desired fundoplication is achieved. This procedure is still relatively invasive requiring incisions through the stomach, which has a risk of infection. The location of the incision in the abdominal wall presents a risk of other negative effects, such as sepsis which can be caused by leakage of septic fluid contained in the stomach.
- Less invasive treatments of gastroesophageal reflux disease may utilize a remotely operable invagination device and a remotely operable surgical stapler, both of which are inserted transorally through the esophagus. The invagination device may be inserted first and used to clamp the gastroesophageal junction. The device is then moved distally, pulling the clamped gastroesophageal junction into the stomach, thereby invaginating the junction and involuting the surrounding fundic wall. The stapler then may be inserted transorally and delivered to the invaginated junction where it is used to staple the fundic wall. The stapling device must apply sufficient force to pierce the tissue that is to be fastened.
- In accordance with one aspect of the invention, a distal assembly of an endoscopic surgical device is provided having a first arm and a second arm pivotal relative to the first arm. Each arm is configured to hold a part of a two-part fastener at a distal end of the arm. A closing mechanism is positioned proximate a proximal end of each of the first and second arms opposite the distal end of each of the first and second arms. The closing mechanism is configured to move in relation to the first and second arms so as to close over at least one of the first and second arms to cause the distal ends of the arms to come together. An actuation member is also attached to the closing mechanism and is actuable to cause the closing mechanism to move in relation to the first and second arms.
- According to another aspect of the invention, a tissue fastening tool is utilized with an endoscope. The endoscope is provided with a stop mechanism to come in contact with the distal assembly and stop the distal assembly at a predetermined location along the endoscope.
- According to yet another aspect of the invention, an endoscope may be provided with a housing that contains two light and imaging systems, one facing in a distal direction and the other facing in a proximal direction opposite the distal direction.
- Another aspect of the invention includes a method for fasting tissue that includes guiding a tissue fastening tool along an endoscope until the tissue fastening tool contacts a stop mechanism so as to position the tissue fastening tool relative to the endoscope. The tissue fastening tool has a pair of arms and each of the arms holds a part of a two-part fastener. The operator then positions the pair of arms about the tissue to be fastened and the arms are then closed to deploy the two-part fastener and fasten the tissue.
- According to another aspect, the invention includes a method for fastening tissue that includes guiding a tissue fastening tool through a body lumen to tissue to be fastened. The tissue fasting tool includes a pair of arms, each arm holding a part of a two-part fastener. The pair of arms is then positioned about the tissue to be fastened. A closing mechanism is then actuated to close over at least one of the arms to cause the arms to come together and the parts of the two-part fastener to mate and fasten the tissue.
- Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
- FIG. 1 is a plan view of a distal end of a fastener application tool according to an embodiment of the present invention.
- FIG. 2 is a view of the fastener application tool of FIG. 1 affixed to a sleeve and in place over an endoscope.
- FIG. 2A is a cross-sectional view along line A-A of the fastener application tool of FIG. 2 that has been rotated 90° from the orientation shown in FIG. 2.
- FIG. 3 is a view of the fastener application tool of FIG. 1 in place over an endoscope and having a stop ring to accurately position the tool for performing the surgical procedure.
- FIG. 4 is a view showing the fastener application tool and endoscope of FIG. 2, with the tool in a deployed position inserting a fastener through the tissue.
- FIG. 5 is a plan view of a distal end of an endoscope according to an embodiment of the present invention.
- FIG. 6 is an end view of the fastener application tool in place on a sleeve showing the dovetailed connection between the sleeve and tool.
- Reference will now be made in detail to the present preferred and exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- FIG. 1 shows a distal end of a tissue
fastener application tool 10 according to an embodiment of the present invention. In this figure,tool 10 is in an intermediate position between a fully open position and a deployed position where the tool deploys a fastener to secure a tissue fold.Tool 10 preferably is used endoscopically, by insertion transorally through the esophagus, to fasten the fundic wall with a tissue fastener.Tool 10 includes a pair ofpivot arms pivot point 16 located at a proximal end ofarms arm 12 is locatedflange 11.Flange 11 is preferably shaped to fit into a groove located within sleeve 30 (shown in FIG. 2). This flange and groove is depicted in FIG. 2A as a dove-tail joint, but may be any other mating configuration known in the art. At a distal end ofarm 12 is a holding mechanism for holding afemale part 40 of a two-part tissue fastener. Likewise, at the distal end ofarm 14 is a holding mechanism to hold amale part 42 of the two-part tissue fastener. The female andmale fastener parts -
Tool 10 further includes a closingtube 18 positioned over the proximal end ofpivot arms pivot point 16. A spring device may be located atpivot point 16 to supply a spring force to normally holdarms tube 18 is in a retracted position, such as that shown in FIG. 2.Arm 12 preferably is in a fixed position relative totube 18 andarm 14 rotates from an open position (FIG. 2) to a closed position (FIG. 3) relative toarm 12.Tube 18 is hollow to accommodatearms arm 14. - Closing
tube 18 is connected to an elongate actuator, such as acable 20, which connects to a proximal actuator (not shown) of any suitable type well known in the art, so that a user may pull a proximal end ofcable 20 that is outside the patient, or actuate a proximal actuator to do so, to pulltube 18 toward the distal ends ofpivot arms arms arm 14 to pivot atpoint 16 and towardsarm 12 to causefastener parts Arm 12 is provided with achannel 13 into which the base of closingtube 18 rests. This channel, along with a matching protrusion 15 (FIG. 2A) provided at the base of closingtube 18 provides a path along which closing tube may move to facilitate the closing action that bringsarms fastener parts -
Pivot arm 14 is preferably curved as depicted in the drawings so as to allowtube 18 to close more easily and apply sufficient force to the fastener parts. Also, the inside of closingtube 18 may be provided with acam surface 19 that is substantially the same shape asarm 14 to act as a cam and provide an even greater closing force to be applied toarms Arm 14, however, may be straight or have any other suitable configuration. In addition,arm 12 may be arranged so that it pivots towardarm 14 whentube 18 is closed. The arrangement of the distal end of thetool 10 provides a high mechanical advantage on the arms to produce a sufficient closing force. - Tissue
fastener application tool 10 preferably is used in combination with an endoscope, such as anendoscope 2 according to an embodiment of the present invention and shown in FIGS. 2 and 3.Endoscope 2 preferably is a small diameter endoscope that incorporates features needed for the surgical procedure, for example visualization (including imaging and a light source), insufflation, and/or steerability. Additional endoscope features, such as working channels for a biopsy device, may be eliminated so that the endoscope size is reduced, permitting the tissue fastener application tool to pass adjacent the endoscope within the lumen of the esophagus.Endoscope 2 may be approximately 3 mm in diameter, for example and include alight source 3 at its distal end that is capable of illuminating the upper gastrointestinal region.Endoscope 2 may also include an appropriate steering mechanism so that the distal end of the endoscope may be turned 180 degrees upon entry into the stomach, as shown in FIGS. 2 and 3. - In another embodiment shown in FIG. 4,
endoscope 2 may include alternative light and imaging/camera assembly 60. Rather than requiring the endoscope to curve around at the distal end through use of a steering mechanism,endoscope 2 could have light and imaging/camera assembly 60, in the form of a housing, at the distal end that allows both forward viewing asendoscope 2 is inserted into the stomach as well as rearward viewing to allow the operator to see the procedure onceendoscope 2 is in the proper position.Assembly 60 may include a standard camera andlight source 62 pointing away from the distal end ofassembly 60 and also a second camera andlight source 64 that branches off ofendoscope 2 and points rearward (or proximally) toward the tool to be used in the procedure. A user may switch imaging and light through a suitable switch at the proximal end outside the patient between these forward and rearward views. This configuration allows for a streamlined endoscope and does not require the operator to change the position of the distal end ofendoscope 2 to bring it from a forward pointing position during insertion to a rearward pointing position during the procedure. - In an embodiment,
endoscope 2 may be used as a guide, like a guide wire, for the insertion of the tissue fastener application tool, as will be explained.Endoscope 2 also may include a stop, such as that shown in FIGS. 2 and 3, in the form of, for example, aring 6 configured to set the position oftool 10 relative toendoscope 2. - In operation, and according to an embodiment of a method of the present invention,
endoscope 2 is inserted transorally, through the esophagus, and into the stomach.Endoscope 2 is manipulated so that the imaging and light source is in a position to view the esophagus and upper portions of the stomach, as shown in FIGS. 2 and 3. If an endoscope having a distal assembly as shown in FIG. 4 is used, camera andlight source 64 is switched on to view those portions of the gastrointestinal tract. The tissuefastener application tool 10 then is inserted into the esophagus alongendoscope 2. - As
tool 10 is inserted through the esophagus and into the stomach,arms Tool 10 is inserted until a portion of the distal end ofsleeve 30 abuts againststop ring 6 ofendoscope 2 so thattool 10 is at an appropriate position relative toendoscope 2 and its imaging and light assembly. Oncetool 10 is in position,tube 18 is moved overarms arms arm 14 to an open position away fromarm 12.Endoscope 2 andtool 10 can then be moved proximally as a unit so thatarms tissue fold 50 that is to be fastened together, as shown in FIG. 2. - During insertion,
cable 20 is actuated to keeptube 18 overarms tool 10 is preferably in a closed position during insertion, a spring may be provided inchannel 13 that would biastube 18 into an open position oncecable 20 is released. Once the tool is in position, the operator may releasecable 20, thus causing closingtube 18 to move toward the distal ends ofarms tube 18 moves closer to the distal ends ofarms fastener parts tube 18 is actuated by pullingcable 20, it will counteract the force of the spring atpivot 16 and bringpivot arms fastener parts - According to an embodiment of the this invention,
tube 18 may include an alternative assembly for closingarms cable 20 being used to pull closingtube 18 to causepivot arms cable 20 may be replaced with a flexible shaft having a threaded distal end that is inserted into a threaded hole intube 18. In this configuration, the flexible shaft is rotated in one direction to cause the threaded portions of both the shaft and closingtube 18 to work together to draw closingtube 18 toward the distal ends ofpivot arms fastener parts Cable 20 may then be rotated in the opposite direction to move closingtube 18 distally away fromarms arms Tube 18 may include any other suitable alternative actuation mechanism that movestube 18 overarms - Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples are exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (36)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/863,666 US6916332B2 (en) | 2001-05-23 | 2001-05-23 | Endoluminal fundoplication device and related method for installing tissue fastener |
CA2447382A CA2447382C (en) | 2001-05-23 | 2002-05-22 | Apparatus adapted to assist in performing endoluminal fundoplication |
EP02728777A EP1389065B1 (en) | 2001-05-23 | 2002-05-22 | Apparatus for use in a method of endoluminal fundoplication |
DE60203899T DE60203899T2 (en) | 2001-05-23 | 2002-05-22 | DEVICE FOR USING A PROCESS OF ENDOLUMINARY FUNDOPLICATION |
JP2002590830A JP4300033B2 (en) | 2001-05-23 | 2002-05-22 | Intraluminal fundoplication device and related method |
AT02728777T ATE293920T1 (en) | 2001-05-23 | 2002-05-22 | DEVICE FOR USING AN ENDOLUMINAL FUNDOPLICATION PROCESS |
PCT/US2002/011904 WO2002094105A2 (en) | 2001-05-23 | 2002-05-22 | Method for performing endoluminal fundoplication and apparatus for use in the method |
US11/133,866 US8043310B2 (en) | 2001-05-23 | 2005-05-23 | Endoluminal fundoplication device and related method |
US13/240,285 US8915935B2 (en) | 2001-05-23 | 2011-09-22 | Endoluminal fundoplication device and related method |
US14/553,658 US9668738B2 (en) | 2001-05-23 | 2014-11-25 | Endoluminal fundoplication device and related method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/863,666 US6916332B2 (en) | 2001-05-23 | 2001-05-23 | Endoluminal fundoplication device and related method for installing tissue fastener |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/133,866 Continuation US8043310B2 (en) | 2001-05-23 | 2005-05-23 | Endoluminal fundoplication device and related method |
Publications (3)
Publication Number | Publication Date |
---|---|
US20030220657A1 true US20030220657A1 (en) | 2003-11-27 |
US20040162567A9 US20040162567A9 (en) | 2004-08-19 |
US6916332B2 US6916332B2 (en) | 2005-07-12 |
Family
ID=25341535
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/863,666 Expired - Lifetime US6916332B2 (en) | 2001-05-23 | 2001-05-23 | Endoluminal fundoplication device and related method for installing tissue fastener |
US11/133,866 Expired - Fee Related US8043310B2 (en) | 2001-05-23 | 2005-05-23 | Endoluminal fundoplication device and related method |
US13/240,285 Expired - Fee Related US8915935B2 (en) | 2001-05-23 | 2011-09-22 | Endoluminal fundoplication device and related method |
US14/553,658 Expired - Lifetime US9668738B2 (en) | 2001-05-23 | 2014-11-25 | Endoluminal fundoplication device and related method |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/133,866 Expired - Fee Related US8043310B2 (en) | 2001-05-23 | 2005-05-23 | Endoluminal fundoplication device and related method |
US13/240,285 Expired - Fee Related US8915935B2 (en) | 2001-05-23 | 2011-09-22 | Endoluminal fundoplication device and related method |
US14/553,658 Expired - Lifetime US9668738B2 (en) | 2001-05-23 | 2014-11-25 | Endoluminal fundoplication device and related method |
Country Status (7)
Country | Link |
---|---|
US (4) | US6916332B2 (en) |
EP (1) | EP1389065B1 (en) |
JP (1) | JP4300033B2 (en) |
AT (1) | ATE293920T1 (en) |
CA (1) | CA2447382C (en) |
DE (1) | DE60203899T2 (en) |
WO (1) | WO2002094105A2 (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030065340A1 (en) * | 2000-05-10 | 2003-04-03 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
US20030163029A1 (en) * | 2000-09-21 | 2003-08-28 | Elazar Sonnenschein | Multiple view endoscopes |
US20030216754A1 (en) * | 2002-05-17 | 2003-11-20 | Scout Medical Technologies, Llc | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20040133238A1 (en) * | 1999-06-22 | 2004-07-08 | Cerier Jeffrey C. | Tissue fixation devices and methods of fixing tissue |
US6821285B2 (en) | 1999-06-22 | 2004-11-23 | Ndo Surgical, Inc. | Tissue reconfiguration |
US6835200B2 (en) | 1999-06-22 | 2004-12-28 | Ndo Surgical. Inc. | Method and devices for tissue reconfiguration |
US20050085829A1 (en) * | 2002-05-17 | 2005-04-21 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20050187565A1 (en) * | 2004-02-20 | 2005-08-25 | Baker Steve G. | Tissue fixation devices and a transoral endoscopic gastroesophageal flap valve restoration device and assembly using same |
US20050187567A1 (en) * | 2004-02-20 | 2005-08-25 | Esophyx, Inc. | Tissue fixation devices and assemblies for deploying the same |
US20070005082A1 (en) * | 2005-06-29 | 2007-01-04 | Esophyx, Inc. | Apparatus and method for manipulating stomach tissue and treating gastroesophageal reflux disease |
US20070167963A1 (en) * | 2001-05-30 | 2007-07-19 | Deem Mark E | Obesity treatment tools and methods |
WO2009097585A1 (en) * | 2008-02-01 | 2009-08-06 | Endometabolic Solutions, Inc. | Methods and devices for performing gastroplasty |
US7736373B2 (en) | 1999-06-22 | 2010-06-15 | Ndo Surical, Inc. | Methods and devices for tissue reconfiguration |
US20100262169A1 (en) * | 2005-01-25 | 2010-10-14 | Baker Steve G | Slitted tissue fixation devices and assemblies for deploying the same |
US8287554B2 (en) | 1999-06-22 | 2012-10-16 | Ethicon Endo-Surgery, Inc. | Method and devices for tissue reconfiguration |
US20130066337A1 (en) * | 2011-09-09 | 2013-03-14 | Richard Romley | Methods and devices for manipulating and fastening tissue |
US20130144401A1 (en) * | 2005-11-15 | 2013-06-06 | Endogastric Solutions, Inc. | Apparatus including multiple invaginators for restoring a gastroesophageal flap valve and method |
US8486091B2 (en) | 2008-08-29 | 2013-07-16 | Covidien Lp | Endoscopic surgical clip applier |
US20130267968A1 (en) * | 2010-09-09 | 2013-10-10 | Arnold Louis Ferlin | Surgical Treatment System and Method for Performing an Anastomosis Between Two Hollow Ducts in a Patient, in Particular Between the Bladder and the Urethra |
US20130304094A1 (en) * | 2007-07-18 | 2013-11-14 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US8845659B2 (en) | 2010-02-25 | 2014-09-30 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8852216B2 (en) | 2007-03-23 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Tissue approximation methods |
US8961542B2 (en) | 2010-07-28 | 2015-02-24 | Covidien Lp | Articulating clip applier cartridge |
US9011465B2 (en) | 2004-10-08 | 2015-04-21 | Covidien Lp | Endoscopic surgical clip applier |
US9113893B2 (en) | 2008-08-29 | 2015-08-25 | Covidien Lp | Endoscopic surgical clip applier with clip retention |
US9113892B2 (en) | 2013-01-08 | 2015-08-25 | Covidien Lp | Surgical clip applier |
WO2015063609A3 (en) * | 2013-11-04 | 2015-12-03 | Simcha Milo | Surgical stapler |
US9364239B2 (en) | 2011-12-19 | 2016-06-14 | Covidien Lp | Jaw closure mechanism for a surgical clip applier |
US9364216B2 (en) | 2011-12-29 | 2016-06-14 | Covidien Lp | Surgical clip applier with integrated clip counter |
US9398917B2 (en) | 2007-03-26 | 2016-07-26 | Covidien Lp | Endoscopic surgical clip applier |
US9408610B2 (en) | 2012-05-04 | 2016-08-09 | Covidien Lp | Surgical clip applier with dissector |
US9414844B2 (en) | 2008-08-25 | 2016-08-16 | Covidien Lp | Surgical clip appliers |
US9414832B2 (en) | 2005-08-12 | 2016-08-16 | Endogastric Solutions, Inc. | Apparatus and method for securing the stomach to the diaphragm for use, for example, in treating hiatal hernias and gastroesophageal reflux disease |
US9421006B2 (en) | 2007-01-08 | 2016-08-23 | Endogastric Solutions, Inc. | Connected fasteners, delivery device and method |
US9480477B2 (en) | 2006-10-17 | 2016-11-01 | Covidien Lp | Apparatus for applying surgical clips |
US9498227B2 (en) | 2007-04-11 | 2016-11-22 | Covidien Lp | Surgical clip applier |
US9526500B2 (en) | 2004-11-30 | 2016-12-27 | Endogastric Solutions, Inc. | Flexible transoral endoscopic gastroesophageal flap valve restoration device and method |
US9526501B2 (en) | 2009-12-15 | 2016-12-27 | Covidien Lp | Surgical clip applier |
US9532787B2 (en) | 2012-05-31 | 2017-01-03 | Covidien Lp | Endoscopic clip applier |
US9549741B2 (en) | 2008-08-25 | 2017-01-24 | Covidien Lp | Surgical clip applier and method of assembly |
US9572571B2 (en) | 2011-09-09 | 2017-02-21 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US9642627B2 (en) | 2010-11-02 | 2017-05-09 | Covidien Lp | Self-centering clip and jaw |
US9675360B2 (en) | 2005-10-18 | 2017-06-13 | Endogastric Solutions, Inc. | Invaginator for gastroesophageal flap valve restoration device |
US9687247B2 (en) | 2004-10-08 | 2017-06-27 | Covidien Lp | Apparatus for applying surgical clips |
US9737310B2 (en) | 2010-07-28 | 2017-08-22 | Covidien Lp | Articulating clip applier |
US9750500B2 (en) | 2013-01-18 | 2017-09-05 | Covidien Lp | Surgical clip applier |
US9763668B2 (en) | 2004-10-08 | 2017-09-19 | Covidien Lp | Endoscopic surgical clip applier |
US9775623B2 (en) | 2011-04-29 | 2017-10-03 | Covidien Lp | Surgical clip applier including clip relief feature |
US9775624B2 (en) | 2013-08-27 | 2017-10-03 | Covidien Lp | Surgical clip applier |
US9931124B2 (en) | 2015-01-07 | 2018-04-03 | Covidien Lp | Reposable clip applier |
US9955957B2 (en) | 2011-09-09 | 2018-05-01 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US9968362B2 (en) | 2013-01-08 | 2018-05-15 | Covidien Lp | Surgical clip applier |
US9987118B2 (en) | 2005-12-01 | 2018-06-05 | Endogastric Solutions, Inc. | Apparatus and method for concurrently forming a gastroesophageal valve and tightening the lower esophageal sphincter |
US10004502B2 (en) | 2009-12-09 | 2018-06-26 | Covidien Lp | Surgical clip applier |
US10159491B2 (en) | 2015-03-10 | 2018-12-25 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10231738B2 (en) | 2008-08-29 | 2019-03-19 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US10292712B2 (en) | 2015-01-28 | 2019-05-21 | Covidien Lp | Surgical clip applier with integrated cutter |
US10357250B2 (en) | 2011-01-31 | 2019-07-23 | Covidien Lp | Locking cam driver and jaw assembly for clip applier |
US10390831B2 (en) | 2015-11-10 | 2019-08-27 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10433838B2 (en) | 2009-03-18 | 2019-10-08 | Endogastric Solutions, Inc. | Methods and devices for forming a tissue fold |
US10470757B2 (en) | 2016-03-02 | 2019-11-12 | Stryker Corporation | Suture passing instruments and methods |
US10582931B2 (en) | 2016-02-24 | 2020-03-10 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10702278B2 (en) | 2014-12-02 | 2020-07-07 | Covidien Lp | Laparoscopic surgical ligation clip applier |
Families Citing this family (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6551328B2 (en) * | 1997-11-03 | 2003-04-22 | Symbiosis Corporation | Surgical instrument for invagination and fundoplication |
US7416554B2 (en) | 2002-12-11 | 2008-08-26 | Usgi Medical Inc | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7618426B2 (en) | 2002-12-11 | 2009-11-17 | Usgi Medical, Inc. | Apparatus and methods for forming gastrointestinal tissue approximations |
US7955340B2 (en) | 1999-06-25 | 2011-06-07 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
WO2001066018A1 (en) | 2000-03-03 | 2001-09-13 | C. R. Bard, Inc. | Endoscopic tissue apposition device with multiple suction ports |
US7220266B2 (en) | 2000-05-19 | 2007-05-22 | C. R. Bard, Inc. | Tissue capturing and suturing device and method |
EP1307218B1 (en) | 2000-08-11 | 2011-01-05 | Temple University - Of The Commonwealth System of Higher Education | Treatment of obesity |
US7737109B2 (en) | 2000-08-11 | 2010-06-15 | Temple University Of The Commonwealth System Of Higher Education | Obesity controlling method |
US7097665B2 (en) | 2003-01-16 | 2006-08-29 | Synecor, Llc | Positioning tools and methods for implanting medical devices |
US6675809B2 (en) | 2001-08-27 | 2004-01-13 | Richard S. Stack | Satiation devices and methods |
US6845776B2 (en) | 2001-08-27 | 2005-01-25 | Richard S. Stack | Satiation devices and methods |
CN101810521B (en) | 2001-08-27 | 2015-05-13 | 辛尼科有限责任公司 | Satiation devices and methods |
US7146984B2 (en) | 2002-04-08 | 2006-12-12 | Synecor, Llc | Method and apparatus for modifying the exit orifice of a satiation pouch |
US7214233B2 (en) | 2002-08-30 | 2007-05-08 | Satiety, Inc. | Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach |
US7678122B2 (en) | 2002-09-20 | 2010-03-16 | Id, Llc | Method of performing a treatment for gastroesophagheal reflux disease (GERD) |
US8454628B2 (en) | 2002-09-20 | 2013-06-04 | Syntheon, Llc | Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease |
US7033378B2 (en) | 2002-09-20 | 2006-04-25 | Id, Llc | Surgical fastener, particularly for the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US6966919B2 (en) | 2002-09-20 | 2005-11-22 | Id, Llc | Instrument for applying a surgical fastener particularly for the transoral treatment of gastroesophageal reflux disease (GERD) |
US7220237B2 (en) | 2002-10-23 | 2007-05-22 | Satiety, Inc. | Method and device for use in endoscopic organ procedures |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US7942898B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Delivery systems and methods for gastric reduction |
US7942884B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Methods for reduction of a gastric lumen |
US20040143342A1 (en) | 2003-01-16 | 2004-07-22 | Stack Richard S. | Satiation pouches and methods of use |
US7175638B2 (en) | 2003-04-16 | 2007-02-13 | Satiety, Inc. | Method and devices for modifying the function of a body organ |
CN1822794B (en) | 2003-05-16 | 2010-05-26 | C.R.巴德有限公司 | Single intubation, multi-stitch endoscopic suturing system |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US20050247320A1 (en) | 2003-10-10 | 2005-11-10 | Stack Richard S | Devices and methods for retaining a gastro-esophageal implant |
US8206456B2 (en) | 2003-10-10 | 2012-06-26 | Barosense, Inc. | Restrictive and/or obstructive implant system for inducing weight loss |
US7361180B2 (en) | 2004-05-07 | 2008-04-22 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
EP1699366A4 (en) * | 2003-12-12 | 2011-01-26 | Usgi Medical Inc | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7347863B2 (en) | 2004-05-07 | 2008-03-25 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US20050251189A1 (en) | 2004-05-07 | 2005-11-10 | Usgi Medical Inc. | Multi-position tissue manipulation assembly |
US20050177176A1 (en) | 2004-02-05 | 2005-08-11 | Craig Gerbi | Single-fold system for tissue approximation and fixation |
EP1714409A1 (en) * | 2004-02-12 | 2006-10-25 | Northrop Grumman Corporation | Photonic rf distribution system |
CA2556228C (en) | 2004-02-13 | 2014-05-13 | Satiety, Inc. | Methods for reducing hollow organ volume |
US7708684B2 (en) | 2004-02-27 | 2010-05-04 | Satiety, Inc. | Methods and devices for reducing hollow organ volume |
US7703459B2 (en) | 2004-03-09 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for mapping out endoluminal gastrointestinal surgery |
US8252009B2 (en) | 2004-03-09 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US9028511B2 (en) * | 2004-03-09 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8449560B2 (en) | 2004-03-09 | 2013-05-28 | Satiety, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8628547B2 (en) * | 2004-03-09 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Devices and methods for placement of partitions within a hollow body organ |
US8425539B2 (en) | 2004-04-12 | 2013-04-23 | Xlumena, Inc. | Luminal structure anchoring devices and methods |
US20050228413A1 (en) * | 2004-04-12 | 2005-10-13 | Binmoeller Kenneth F | Automated transluminal tissue targeting and anchoring devices and methods |
WO2005105003A1 (en) | 2004-04-26 | 2005-11-10 | Synecor, Llc | Restrictive and/or obstructive implant for inducing weight loss |
US7918869B2 (en) | 2004-05-07 | 2011-04-05 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal gastroplasty |
EP1750595A4 (en) | 2004-05-07 | 2008-10-22 | Valentx Inc | Devices and methods for attaching an endolumenal gastrointestinal implant |
US8057511B2 (en) | 2004-05-07 | 2011-11-15 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US7520884B2 (en) | 2004-05-07 | 2009-04-21 | Usgi Medical Inc. | Methods for performing gastroplasty |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7390329B2 (en) | 2004-05-07 | 2008-06-24 | Usgi Medical, Inc. | Methods for grasping and cinching tissue anchors |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US7695493B2 (en) | 2004-06-09 | 2010-04-13 | Usgi Medical, Inc. | System for optimizing anchoring force |
US7736379B2 (en) | 2004-06-09 | 2010-06-15 | Usgi Medical, Inc. | Compressible tissue anchor assemblies |
US8206417B2 (en) | 2004-06-09 | 2012-06-26 | Usgi Medical Inc. | Apparatus and methods for optimizing anchoring force |
US7931661B2 (en) | 2004-06-14 | 2011-04-26 | Usgi Medical, Inc. | Apparatus and methods for performing transluminal gastrointestinal procedures |
US7210609B2 (en) * | 2004-07-30 | 2007-05-01 | Tools For Surgery, Llc | Stapling apparatus having a curved anvil and driver |
US8172857B2 (en) | 2004-08-27 | 2012-05-08 | Davol, Inc. | Endoscopic tissue apposition device and method of use |
US8585584B2 (en) * | 2004-10-11 | 2013-11-19 | Nitesh Ratnakar | Dual view endoscope |
US20090023998A1 (en) * | 2007-07-17 | 2009-01-22 | Nitesh Ratnakar | Rear view endoscope sheath |
PL2684579T3 (en) | 2004-10-15 | 2016-12-30 | Bariatric device | |
US20060106288A1 (en) | 2004-11-17 | 2006-05-18 | Roth Alex T | Remote tissue retraction device |
EP3511047B1 (en) | 2004-12-08 | 2024-03-13 | Boston Scientific Scimed, Inc. | Apparatus for performing needle guided interventions |
WO2006068970A2 (en) * | 2004-12-21 | 2006-06-29 | Mitchell Roslin | Anastomotic outlet revision |
US8182422B2 (en) | 2005-12-13 | 2012-05-22 | Avantis Medical Systems, Inc. | Endoscope having detachable imaging device and method of using |
US8872906B2 (en) | 2005-01-05 | 2014-10-28 | Avantis Medical Systems, Inc. | Endoscope assembly with a polarizing filter |
US8235887B2 (en) | 2006-01-23 | 2012-08-07 | Avantis Medical Systems, Inc. | Endoscope assembly with retroscope |
US20060237023A1 (en) * | 2005-04-26 | 2006-10-26 | Usgi Medical Inc. | Transgastric tubal ligation |
US8663236B2 (en) * | 2005-04-26 | 2014-03-04 | Usgi Medical Inc. | Transgastric abdominal access |
US8777967B2 (en) | 2005-06-09 | 2014-07-15 | Xlumena, Inc. | Methods and devices for anchoring to tissue |
US8784437B2 (en) | 2005-06-09 | 2014-07-22 | Xlumena, Inc. | Methods and devices for endosonography-guided fundoplexy |
US9055942B2 (en) | 2005-10-03 | 2015-06-16 | Boston Scienctific Scimed, Inc. | Endoscopic plication devices and methods |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
US7881797B2 (en) | 2006-04-25 | 2011-02-01 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
WO2007131110A2 (en) | 2006-05-03 | 2007-11-15 | Raptor Ridge, Llc | Systems and methods of tissue closure |
US7927271B2 (en) | 2006-05-17 | 2011-04-19 | C.R. Bard, Inc. | Endoscope tool coupling |
US8870916B2 (en) | 2006-07-07 | 2014-10-28 | USGI Medical, Inc | Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use |
ES2527923T3 (en) | 2006-09-02 | 2015-02-02 | Barosense, Inc. | Intestinal sleeves and associated deployment systems and methods |
EP2068719B1 (en) | 2006-09-15 | 2017-10-25 | Boston Scientific Scimed, Inc. | System for anchoring stomach implant |
US8529431B2 (en) | 2007-02-14 | 2013-09-10 | Bfkw, Llc | Bariatric device and method |
US8372087B2 (en) * | 2007-02-14 | 2013-02-12 | Bfkw, Llc | Medical device fixation tool and method of fixation of a medical device |
WO2008100984A2 (en) | 2007-02-14 | 2008-08-21 | Sentinel Group, Llc | Mucosal capture fixation of medical device |
US8064666B2 (en) | 2007-04-10 | 2011-11-22 | Avantis Medical Systems, Inc. | Method and device for examining or imaging an interior surface of a cavity |
US8052698B2 (en) * | 2007-05-30 | 2011-11-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
EP2164558A4 (en) | 2007-06-08 | 2010-08-04 | Valentx Inc | Methods and devices for intragastric support of functional or prosthetic gastrointestinal devices |
US20090030284A1 (en) | 2007-07-18 | 2009-01-29 | David Cole | Overtube introducer for use in endoscopic bariatric surgery |
EP2211683A2 (en) * | 2007-10-11 | 2010-08-04 | Avantis Medical Systems, Inc. | Endoscope assembly comprising retrograde viewing imaging device and instrument channel |
US8512362B2 (en) | 2007-11-05 | 2013-08-20 | Usgi Medical Inc. | Endoscopic ligation |
US20090171383A1 (en) | 2007-12-31 | 2009-07-02 | David Cole | Gastric space occupier systems and methods of use |
US8020741B2 (en) | 2008-03-18 | 2011-09-20 | Barosense, Inc. | Endoscopic stapling devices and methods |
US8454632B2 (en) | 2008-05-12 | 2013-06-04 | Xlumena, Inc. | Tissue anchor for securing tissue layers |
US8727967B2 (en) | 2008-07-18 | 2014-05-20 | Boston Scientific Scimed, Inc. | Endoscope with guide |
US7934631B2 (en) | 2008-11-10 | 2011-05-03 | Barosense, Inc. | Multi-fire stapling systems and methods for delivering arrays of staples |
US8292154B2 (en) * | 2009-04-16 | 2012-10-23 | Tyco Healthcare Group Lp | Surgical apparatus for applying tissue fasteners |
US9364259B2 (en) | 2009-04-21 | 2016-06-14 | Xlumena, Inc. | System and method for delivering expanding trocar through a sheath |
US20110137394A1 (en) * | 2009-05-29 | 2011-06-09 | Xlumena, Inc. | Methods and systems for penetrating adjacent tissue layers |
EP2434961B1 (en) | 2009-05-29 | 2015-01-14 | Xlumena, Inc. | Apparatus and method for deploying stent across adjacent tissue layers |
CA2799774A1 (en) | 2010-05-21 | 2011-11-24 | Barosense, Inc. | Tissue-acquisition and fastening devices and methods |
US9375338B2 (en) | 2011-05-20 | 2016-06-28 | Bfkw, Llc | Intraluminal device and method with enhanced anti-migration |
US20130131697A1 (en) | 2011-11-21 | 2013-05-23 | Covidien Lp | Surgical clip applier |
WO2013134227A1 (en) | 2012-03-06 | 2013-09-12 | Bfkw, Llc | Intraluminal device delivery technique |
DE202013012853U1 (en) | 2012-05-17 | 2020-08-31 | Boston Scientific Scimed, Inc. | Devices for access over adjacent tissue layers |
US9050168B2 (en) | 2012-05-31 | 2015-06-09 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9681975B2 (en) | 2012-05-31 | 2017-06-20 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
WO2014130850A1 (en) | 2013-02-21 | 2014-08-28 | Xlumena, Inc. | Devices and methods for forming an anastomosis |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
WO2015077356A1 (en) | 2013-11-19 | 2015-05-28 | Wheeler William K | Fastener applicator with interlock |
US11013629B2 (en) | 2014-12-29 | 2021-05-25 | Bfkw, Llc | Fixation of intraluminal device |
US11020213B2 (en) | 2014-12-29 | 2021-06-01 | Bfkw, Llc | Fixation of intraluminal device |
AU2015374326B2 (en) | 2014-12-29 | 2020-05-21 | Bfkw, Llc | Fixation of intraluminal device |
EP3244810B1 (en) | 2015-01-15 | 2020-03-18 | Covidien LP | Endoscopic reposable surgical clip applier |
CA2998890A1 (en) | 2015-11-03 | 2017-05-11 | Covidien Lp | Endoscopic surgical clip applier |
ES2880951T3 (en) | 2015-11-10 | 2021-11-26 | Covidien Lp | Endoscopic Surgical Staple Applicator with Limited Number of Uses |
AU2015414615A1 (en) | 2015-11-10 | 2018-04-12 | Covidien Lp | Endoscopic reposable surgical clip applier |
CN108472044B (en) | 2016-01-11 | 2021-04-16 | 柯惠有限合伙公司 | endoscope-reserved surgical clip applier |
EP3405116B1 (en) | 2016-01-18 | 2022-04-20 | Covidien LP | Endoscopic surgical clip applier |
WO2018027788A1 (en) | 2016-08-11 | 2018-02-15 | Covidien Lp | Endoscopic surgical clip applier and clip applying systems |
AU2016420481A1 (en) | 2016-08-25 | 2019-01-17 | Covidien Lp | Endoscopic surgical clip applier and clip applying systems |
US10660651B2 (en) | 2016-10-31 | 2020-05-26 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10639044B2 (en) | 2016-10-31 | 2020-05-05 | Covidien Lp | Ligation clip module and clip applier |
US10492795B2 (en) | 2016-11-01 | 2019-12-03 | Covidien Lp | Endoscopic surgical clip applier |
US10426489B2 (en) | 2016-11-01 | 2019-10-01 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10610236B2 (en) | 2016-11-01 | 2020-04-07 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10709455B2 (en) | 2017-02-02 | 2020-07-14 | Covidien Lp | Endoscopic surgical clip applier |
US10758244B2 (en) | 2017-02-06 | 2020-09-01 | Covidien Lp | Endoscopic surgical clip applier |
US11116514B2 (en) | 2017-02-06 | 2021-09-14 | Covidien Lp | Surgical clip applier with user feedback feature |
US10660725B2 (en) | 2017-02-14 | 2020-05-26 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10603038B2 (en) | 2017-02-22 | 2020-03-31 | Covidien Lp | Surgical clip applier including inserts for jaw assembly |
US10548602B2 (en) | 2017-02-23 | 2020-02-04 | Covidien Lp | Endoscopic surgical clip applier |
US11583291B2 (en) | 2017-02-23 | 2023-02-21 | Covidien Lp | Endoscopic surgical clip applier |
US10675043B2 (en) | 2017-05-04 | 2020-06-09 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10722235B2 (en) | 2017-05-11 | 2020-07-28 | Covidien Lp | Spring-release surgical clip |
US10660723B2 (en) | 2017-06-30 | 2020-05-26 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10639032B2 (en) | 2017-06-30 | 2020-05-05 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10675112B2 (en) | 2017-08-07 | 2020-06-09 | Covidien Lp | Endoscopic surgical clip applier including counter assembly |
US10932790B2 (en) | 2017-08-08 | 2021-03-02 | Covidien Lp | Geared actuation mechanism and surgical clip applier including the same |
US10786262B2 (en) | 2017-08-09 | 2020-09-29 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10786263B2 (en) | 2017-08-15 | 2020-09-29 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10835341B2 (en) | 2017-09-12 | 2020-11-17 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10835260B2 (en) | 2017-09-13 | 2020-11-17 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10653429B2 (en) | 2017-09-13 | 2020-05-19 | Covidien Lp | Endoscopic surgical clip applier |
US10758245B2 (en) | 2017-09-13 | 2020-09-01 | Covidien Lp | Clip counting mechanism for surgical clip applier |
US11116513B2 (en) | 2017-11-03 | 2021-09-14 | Covidien Lp | Modular surgical clip cartridge |
US11376015B2 (en) | 2017-11-03 | 2022-07-05 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10945734B2 (en) | 2017-11-03 | 2021-03-16 | Covidien Lp | Rotation knob assemblies and surgical instruments including the same |
US10932791B2 (en) | 2017-11-03 | 2021-03-02 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10828036B2 (en) | 2017-11-03 | 2020-11-10 | Covidien Lp | Endoscopic surgical clip applier and handle assemblies for use therewith |
US10722236B2 (en) | 2017-12-12 | 2020-07-28 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10959737B2 (en) | 2017-12-13 | 2021-03-30 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10743887B2 (en) | 2017-12-13 | 2020-08-18 | Covidien Lp | Reposable multi-fire surgical clip applier |
US10849630B2 (en) | 2017-12-13 | 2020-12-01 | Covidien Lp | Reposable multi-fire surgical clip applier |
US11051827B2 (en) | 2018-01-16 | 2021-07-06 | Covidien Lp | Endoscopic surgical instrument and handle assemblies for use therewith |
AU2019243731B2 (en) | 2018-03-28 | 2024-12-12 | Datascope Corp. | Device for atrial appendage exclusion |
US10993721B2 (en) | 2018-04-25 | 2021-05-04 | Covidien Lp | Surgical clip applier |
US10786273B2 (en) | 2018-07-13 | 2020-09-29 | Covidien Lp | Rotation knob assemblies for handle assemblies |
US11051828B2 (en) | 2018-08-13 | 2021-07-06 | Covidien Lp | Rotation knob assemblies and surgical instruments including same |
US11278267B2 (en) | 2018-08-13 | 2022-03-22 | Covidien Lp | Latch assemblies and surgical instruments including the same |
US11344316B2 (en) | 2018-08-13 | 2022-05-31 | Covidien Lp | Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same |
US11246601B2 (en) | 2018-08-13 | 2022-02-15 | Covidien Lp | Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same |
US11219463B2 (en) | 2018-08-13 | 2022-01-11 | Covidien Lp | Bilateral spring for surgical instruments and surgical instruments including the same |
US11147566B2 (en) | 2018-10-01 | 2021-10-19 | Covidien Lp | Endoscopic surgical clip applier |
WO2020183399A1 (en) | 2019-03-11 | 2020-09-17 | Bfkw, Llc | Single member intraluminal device and method of fixation |
US11524398B2 (en) | 2019-03-19 | 2022-12-13 | Covidien Lp | Gear drive mechanisms for surgical instruments |
US12127958B2 (en) | 2019-03-25 | 2024-10-29 | Bfkw, Llc | Intraluminal device and method with anti-migration |
US11717301B2 (en) | 2019-09-25 | 2023-08-08 | Lsi Solutions, Inc. | Minimally invasive occlusion device and methods thereof |
US11779340B2 (en) | 2020-01-02 | 2023-10-10 | Covidien Lp | Ligation clip loading device |
US11723669B2 (en) | 2020-01-08 | 2023-08-15 | Covidien Lp | Clip applier with clip cartridge interface |
US12114866B2 (en) | 2020-03-26 | 2024-10-15 | Covidien Lp | Interoperative clip loading device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5166787A (en) * | 1989-06-28 | 1992-11-24 | Karl Storz Gmbh & Co. | Endoscope having provision for repositioning a video sensor to a location which does not provide the same cross-sectionally viewed relationship with the distal end |
US5549621A (en) * | 1993-05-14 | 1996-08-27 | Byron C. Sutherland | Apparatus and method for performing vertical banded gastroplasty |
US5554169A (en) * | 1989-05-26 | 1996-09-10 | United States Surgical Corporation | Method for placing staples in laparoscopic or endoscopic procedures |
US5571116A (en) * | 1994-10-02 | 1996-11-05 | United States Surgical Corporation | Non-invasive treatment of gastroesophageal reflux disease |
US5906625A (en) * | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US6086600A (en) * | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
USRE37814E1 (en) * | 1996-09-12 | 2002-08-06 | Dean Allgeyer, M.D., Inc. | Staple and staple applicator for use in skin fixation of catheters |
US6461363B1 (en) * | 1997-03-10 | 2002-10-08 | Donald L. Gadberry | Surgical clips and clamps |
US6743239B1 (en) * | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4245624A (en) * | 1977-01-20 | 1981-01-20 | Olympus Optical Co., Ltd. | Endoscope with flexible tip control |
US4407273A (en) * | 1981-02-25 | 1983-10-04 | Kabushiki Kaisha Medos Kenkyusho | Raising means for guiding an implement of an endoscope |
US4759348A (en) * | 1981-09-28 | 1988-07-26 | Cawood Charles David | Endoscope assembly and surgical instrument for use therewith |
US4890626A (en) * | 1986-08-19 | 1990-01-02 | Wang Ko P | Removable locking device for use with syringes |
DE3923851C1 (en) * | 1989-07-19 | 1990-08-16 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
US5569157A (en) * | 1993-05-07 | 1996-10-29 | Olympus Optical Co., Ltd. | Endoscope |
US5582617A (en) * | 1993-07-21 | 1996-12-10 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
US5868760A (en) * | 1994-12-07 | 1999-02-09 | Mcguckin, Jr.; James F. | Method and apparatus for endolumenally resectioning tissue |
US6139563A (en) * | 1997-09-25 | 2000-10-31 | Allegiance Corporation | Surgical device with malleable shaft |
US6165183A (en) * | 1998-07-15 | 2000-12-26 | St. Jude Medical, Inc. | Mitral and tricuspid valve repair |
US6394949B1 (en) * | 1998-10-05 | 2002-05-28 | Scimed Life Systems, Inc. | Large area thermal ablation |
JP3490933B2 (en) * | 1999-06-07 | 2004-01-26 | ペンタックス株式会社 | Swallowable endoscope device |
US6494888B1 (en) | 1999-06-22 | 2002-12-17 | Ndo Surgical, Inc. | Tissue reconfiguration |
US6280432B1 (en) * | 1999-08-04 | 2001-08-28 | Embol-X, Inc. | Clip-on access port and methods of use |
US6592596B1 (en) * | 2000-05-10 | 2003-07-15 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
US6544271B1 (en) * | 2000-07-18 | 2003-04-08 | Scimed Life Systems, Inc. | Device for full-thickness resectioning of an organ |
US6736828B1 (en) | 2000-09-29 | 2004-05-18 | Scimed Life Systems, Inc. | Method for performing endoluminal fundoplication and apparatus for use in the method |
-
2001
- 2001-05-23 US US09/863,666 patent/US6916332B2/en not_active Expired - Lifetime
-
2002
- 2002-05-22 JP JP2002590830A patent/JP4300033B2/en not_active Expired - Fee Related
- 2002-05-22 CA CA2447382A patent/CA2447382C/en not_active Expired - Fee Related
- 2002-05-22 AT AT02728777T patent/ATE293920T1/en not_active IP Right Cessation
- 2002-05-22 DE DE60203899T patent/DE60203899T2/en not_active Expired - Lifetime
- 2002-05-22 WO PCT/US2002/011904 patent/WO2002094105A2/en active IP Right Grant
- 2002-05-22 EP EP02728777A patent/EP1389065B1/en not_active Expired - Lifetime
-
2005
- 2005-05-23 US US11/133,866 patent/US8043310B2/en not_active Expired - Fee Related
-
2011
- 2011-09-22 US US13/240,285 patent/US8915935B2/en not_active Expired - Fee Related
-
2014
- 2014-11-25 US US14/553,658 patent/US9668738B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5554169A (en) * | 1989-05-26 | 1996-09-10 | United States Surgical Corporation | Method for placing staples in laparoscopic or endoscopic procedures |
US5166787A (en) * | 1989-06-28 | 1992-11-24 | Karl Storz Gmbh & Co. | Endoscope having provision for repositioning a video sensor to a location which does not provide the same cross-sectionally viewed relationship with the distal end |
US5906625A (en) * | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US5549621A (en) * | 1993-05-14 | 1996-08-27 | Byron C. Sutherland | Apparatus and method for performing vertical banded gastroplasty |
US5571116A (en) * | 1994-10-02 | 1996-11-05 | United States Surgical Corporation | Non-invasive treatment of gastroesophageal reflux disease |
US5897562A (en) * | 1994-10-02 | 1999-04-27 | United States Surgical Corporation | Non-invasive apparatus for treatment of gastroesophageal reflux disease |
USRE37814E1 (en) * | 1996-09-12 | 2002-08-06 | Dean Allgeyer, M.D., Inc. | Staple and staple applicator for use in skin fixation of catheters |
US6461363B1 (en) * | 1997-03-10 | 2002-10-08 | Donald L. Gadberry | Surgical clips and clamps |
US6086600A (en) * | 1997-11-03 | 2000-07-11 | Symbiosis Corporation | Flexible endoscopic surgical instrument for invagination and fundoplication |
US6743239B1 (en) * | 2000-05-25 | 2004-06-01 | St. Jude Medical, Inc. | Devices with a bendable tip for medical procedures |
Cited By (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277468B2 (en) | 1999-06-22 | 2012-10-02 | Ethicon Endo-Surgery, Inc. | Tissue reconfiguration |
US7846180B2 (en) | 1999-06-22 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Tissue fixation devices and methods of fixing tissue |
US7722633B2 (en) | 1999-06-22 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Tissue reconfiguration |
US7736373B2 (en) | 1999-06-22 | 2010-06-15 | Ndo Surical, Inc. | Methods and devices for tissue reconfiguration |
US20040133238A1 (en) * | 1999-06-22 | 2004-07-08 | Cerier Jeffrey C. | Tissue fixation devices and methods of fixing tissue |
US7776057B2 (en) | 1999-06-22 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Methods and devices for tissue reconfiguration |
US6821285B2 (en) | 1999-06-22 | 2004-11-23 | Ndo Surgical, Inc. | Tissue reconfiguration |
US8057494B2 (en) | 1999-06-22 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Methods and devices for tissue reconfiguration |
US6835200B2 (en) | 1999-06-22 | 2004-12-28 | Ndo Surgical. Inc. | Method and devices for tissue reconfiguration |
US7857823B2 (en) | 1999-06-22 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Tissue reconfiguration |
US8287554B2 (en) | 1999-06-22 | 2012-10-16 | Ethicon Endo-Surgery, Inc. | Method and devices for tissue reconfiguration |
US7896893B2 (en) | 1999-06-22 | 2011-03-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for tissue reconfiguration |
US7713277B2 (en) | 1999-06-22 | 2010-05-11 | Ethicon Endo-Surgery, Inc. | Tissue reconfiguration |
US8888793B2 (en) | 2000-05-10 | 2014-11-18 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US20110213389A1 (en) * | 2000-05-10 | 2011-09-01 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US7204842B2 (en) | 2000-05-10 | 2007-04-17 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US7918866B2 (en) | 2000-05-10 | 2011-04-05 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US6926722B2 (en) * | 2000-05-10 | 2005-08-09 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
US20070162073A1 (en) * | 2000-05-10 | 2007-07-12 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US8361087B2 (en) | 2000-05-10 | 2013-01-29 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US9675345B2 (en) | 2000-05-10 | 2017-06-13 | Boston Scientific Scimed, Inc. | Devices and related methods for securing a tissue fold |
US20030065340A1 (en) * | 2000-05-10 | 2003-04-03 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
US20030181929A1 (en) * | 2000-05-10 | 2003-09-25 | Scimed Life Systems, Inc. | Devices and related methods for securing a tissue fold |
US20030163029A1 (en) * | 2000-09-21 | 2003-08-28 | Elazar Sonnenschein | Multiple view endoscopes |
US6997871B2 (en) * | 2000-09-21 | 2006-02-14 | Medigus Ltd. | Multiple view endoscopes |
US8075577B2 (en) | 2001-05-30 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8794243B2 (en) | 2001-05-30 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8419755B2 (en) | 2001-05-30 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US20070282349A1 (en) * | 2001-05-30 | 2007-12-06 | Deem Mark E | Obesity treatment tools and methods |
US7288101B2 (en) * | 2001-05-30 | 2007-10-30 | Satiety, Inc. | Obesity treatment tools and methods |
US20070250083A1 (en) * | 2001-05-30 | 2007-10-25 | Satiety, Inc. | Obesity treatment tools and methods |
US8613749B2 (en) | 2001-05-30 | 2013-12-24 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8137367B2 (en) | 2001-05-30 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US20070167963A1 (en) * | 2001-05-30 | 2007-07-19 | Deem Mark E | Obesity treatment tools and methods |
US8137366B2 (en) | 2001-05-30 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8123765B2 (en) | 2001-05-30 | 2012-02-28 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8080025B2 (en) | 2001-05-30 | 2011-12-20 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US8080022B2 (en) | 2001-05-30 | 2011-12-20 | Ethicon Endo-Surgery, Inc. | Obesity treatment tools and methods |
US6790214B2 (en) | 2002-05-17 | 2004-09-14 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20110213390A1 (en) * | 2002-05-17 | 2011-09-01 | Kraemer Stefan J M | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US8702734B2 (en) | 2002-05-17 | 2014-04-22 | Endogastric Solutions, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20040243223A1 (en) * | 2002-05-17 | 2004-12-02 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US7942887B2 (en) | 2002-05-17 | 2011-05-17 | Endogastric Solutions, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20070162057A1 (en) * | 2002-05-17 | 2007-07-12 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, stystem and method |
US20070162058A1 (en) * | 2002-05-17 | 2007-07-12 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20070167961A1 (en) * | 2002-05-17 | 2007-07-19 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20050085829A1 (en) * | 2002-05-17 | 2005-04-21 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20050154405A1 (en) * | 2002-05-17 | 2005-07-14 | Esophyx, Inc. | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US20030216754A1 (en) * | 2002-05-17 | 2003-11-20 | Scout Medical Technologies, Llc | Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method |
US10357245B2 (en) | 2004-02-20 | 2019-07-23 | Endogastric Solutions, Inc. | Tissue fixation devices and assemblies for deploying the same |
US20050187565A1 (en) * | 2004-02-20 | 2005-08-25 | Baker Steve G. | Tissue fixation devices and a transoral endoscopic gastroesophageal flap valve restoration device and assembly using same |
US9700308B2 (en) | 2004-02-20 | 2017-07-11 | Endogastric Solutions, Inc. | Tissue fixation devices and assemblies for deploying the same |
US10064615B2 (en) | 2004-02-20 | 2018-09-04 | Endogastric Solutions, Inc. | Tissue fixation devices and a transoral endoscopic gastroesophageal flap valve restoration device and assembly using same |
US7632287B2 (en) | 2004-02-20 | 2009-12-15 | Endogastric Solutions, Inc. | Tissue fixation devices and assemblies for deploying the same |
US20050187567A1 (en) * | 2004-02-20 | 2005-08-25 | Esophyx, Inc. | Tissue fixation devices and assemblies for deploying the same |
US9687247B2 (en) | 2004-10-08 | 2017-06-27 | Covidien Lp | Apparatus for applying surgical clips |
US9763668B2 (en) | 2004-10-08 | 2017-09-19 | Covidien Lp | Endoscopic surgical clip applier |
US10349950B2 (en) | 2004-10-08 | 2019-07-16 | Covidien Lp | Apparatus for applying surgical clips |
US9011465B2 (en) | 2004-10-08 | 2015-04-21 | Covidien Lp | Endoscopic surgical clip applier |
US9526500B2 (en) | 2004-11-30 | 2016-12-27 | Endogastric Solutions, Inc. | Flexible transoral endoscopic gastroesophageal flap valve restoration device and method |
US10299814B2 (en) | 2004-11-30 | 2019-05-28 | Endogastric Solutions, Inc. | Flexible transoral endoscopic gastroesophageal flap valve restoration device and method |
US9572578B2 (en) | 2005-01-25 | 2017-02-21 | Endogastric Solutions, Inc. | Slitted tissue fixation devices and assemblies for deploying the same |
US20100262169A1 (en) * | 2005-01-25 | 2010-10-14 | Baker Steve G | Slitted tissue fixation devices and assemblies for deploying the same |
US8337514B2 (en) | 2005-01-25 | 2012-12-25 | Endogastric Solutions, Inc. | Slitted tissue fixation devices and assemblies for deploying the same |
US9358007B2 (en) | 2005-01-25 | 2016-06-07 | Endogastric Solutions, Inc. | Slitted tissue fixation devices and assemblies for deploying the same |
US20070005082A1 (en) * | 2005-06-29 | 2007-01-04 | Esophyx, Inc. | Apparatus and method for manipulating stomach tissue and treating gastroesophageal reflux disease |
US10327793B2 (en) | 2005-06-29 | 2019-06-25 | Endogastric Solutions, Inc. | Apparatus and method for manipulating stomach tissue and treating gastroesophageal reflux disease |
US10772624B2 (en) | 2005-08-12 | 2020-09-15 | Endogastric Solutions, Inc. | Apparatus and method for securing the stomach to the diaphragm for use, for example, in treating hiatal hernias and gastroesophageal reflux disease |
US9414832B2 (en) | 2005-08-12 | 2016-08-16 | Endogastric Solutions, Inc. | Apparatus and method for securing the stomach to the diaphragm for use, for example, in treating hiatal hernias and gastroesophageal reflux disease |
US9675360B2 (en) | 2005-10-18 | 2017-06-13 | Endogastric Solutions, Inc. | Invaginator for gastroesophageal flap valve restoration device |
US20130144401A1 (en) * | 2005-11-15 | 2013-06-06 | Endogastric Solutions, Inc. | Apparatus including multiple invaginators for restoring a gastroesophageal flap valve and method |
US9987118B2 (en) | 2005-12-01 | 2018-06-05 | Endogastric Solutions, Inc. | Apparatus and method for concurrently forming a gastroesophageal valve and tightening the lower esophageal sphincter |
US10166027B2 (en) | 2006-10-17 | 2019-01-01 | Covidien Lp | Apparatus for applying surgical clips |
US9480477B2 (en) | 2006-10-17 | 2016-11-01 | Covidien Lp | Apparatus for applying surgical clips |
US9421006B2 (en) | 2007-01-08 | 2016-08-23 | Endogastric Solutions, Inc. | Connected fasteners, delivery device and method |
US9788829B2 (en) | 2007-01-08 | 2017-10-17 | Endogastric Solutions, Inc. | Connected fasteners, delivery device and method |
US8852216B2 (en) | 2007-03-23 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Tissue approximation methods |
US9398917B2 (en) | 2007-03-26 | 2016-07-26 | Covidien Lp | Endoscopic surgical clip applier |
US10363045B2 (en) | 2007-03-26 | 2019-07-30 | Covidien Lp | Endoscopic surgical clip applier |
US9498227B2 (en) | 2007-04-11 | 2016-11-22 | Covidien Lp | Surgical clip applier |
US10258346B2 (en) | 2007-04-11 | 2019-04-16 | Covidien Lp | Surgical clip applier |
US9456825B2 (en) * | 2007-07-18 | 2016-10-04 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US10537456B2 (en) | 2007-07-18 | 2020-01-21 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US20130304094A1 (en) * | 2007-07-18 | 2013-11-14 | Boston Scientific Scimed, Inc. | Endoscopic implant system and method |
US20230040585A1 (en) * | 2008-02-01 | 2023-02-09 | Ballast Medical Inc. | Activable bougie for performing gastroplasty |
WO2009097585A1 (en) * | 2008-02-01 | 2009-08-06 | Endometabolic Solutions, Inc. | Methods and devices for performing gastroplasty |
US11510799B2 (en) | 2008-02-01 | 2022-11-29 | Ballast Medical Inc. | Activable bougie for performing gastroplasty |
US9549737B2 (en) | 2008-02-01 | 2017-01-24 | Michel Gagner | Methods and devices for performing gastroplasty |
US12178728B2 (en) * | 2008-02-01 | 2024-12-31 | Ballast Medical Inc. | Activable bougie for performing gastroplasty |
US10433997B2 (en) | 2008-02-01 | 2019-10-08 | Ballast Medical Inc. | Bougie including a light source for performing gastroplasty |
US9414844B2 (en) | 2008-08-25 | 2016-08-16 | Covidien Lp | Surgical clip appliers |
US9549741B2 (en) | 2008-08-25 | 2017-01-24 | Covidien Lp | Surgical clip applier and method of assembly |
US11510682B2 (en) | 2008-08-25 | 2022-11-29 | Covidien Lp | Surgical clip applier and method of assembly |
US10542999B2 (en) | 2008-08-25 | 2020-01-28 | Covidien Lp | Surgical clip applier and method of assembly |
US11213298B2 (en) | 2008-08-29 | 2022-01-04 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US9545254B2 (en) | 2008-08-29 | 2017-01-17 | Covidien Lp | Endoscopic surgical clip applier with connector plate |
US9358011B2 (en) | 2008-08-29 | 2016-06-07 | Covidien Lp | Endoscopic surgical clip applier with connector plate |
US9113893B2 (en) | 2008-08-29 | 2015-08-25 | Covidien Lp | Endoscopic surgical clip applier with clip retention |
US10159484B2 (en) | 2008-08-29 | 2018-12-25 | Covidien Lp | Endoscopic surgical clip applier with connector plate |
US8486091B2 (en) | 2008-08-29 | 2013-07-16 | Covidien Lp | Endoscopic surgical clip applier |
US10231735B2 (en) | 2008-08-29 | 2019-03-19 | Covidien Lp | Endoscopic surgical clip applier |
US9439654B2 (en) | 2008-08-29 | 2016-09-13 | Covidien Lp | Endoscopic surgical clip applier |
US11806021B2 (en) | 2008-08-29 | 2023-11-07 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US10231738B2 (en) | 2008-08-29 | 2019-03-19 | Covidien Lp | Endoscopic surgical clip applier with wedge plate |
US10682135B2 (en) | 2008-08-29 | 2020-06-16 | Covidien Lp | Endoscopic surgical clip applier |
US10433838B2 (en) | 2009-03-18 | 2019-10-08 | Endogastric Solutions, Inc. | Methods and devices for forming a tissue fold |
US10758234B2 (en) | 2009-12-09 | 2020-09-01 | Covidien Lp | Surgical clip applier |
US10004502B2 (en) | 2009-12-09 | 2018-06-26 | Covidien Lp | Surgical clip applier |
US9526501B2 (en) | 2009-12-15 | 2016-12-27 | Covidien Lp | Surgical clip applier |
US10470765B2 (en) | 2009-12-15 | 2019-11-12 | Covidien Lp | Surgical clip applier |
US10271854B2 (en) | 2010-02-25 | 2019-04-30 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8845659B2 (en) | 2010-02-25 | 2014-09-30 | Covidien Lp | Articulating endoscopic surgical clip applier |
US9393024B2 (en) | 2010-02-25 | 2016-07-19 | Covidien Lp | Articulating endoscopic surgical clip applier |
US11213299B2 (en) | 2010-02-25 | 2022-01-04 | Covidien Lp | Articulating endoscopic surgical clip applier |
US11517322B2 (en) | 2010-07-28 | 2022-12-06 | Covidien Lp | Articulating clip applier |
US10568635B2 (en) | 2010-07-28 | 2020-02-25 | Covidien Lp | Articulating clip applier |
US8961542B2 (en) | 2010-07-28 | 2015-02-24 | Covidien Lp | Articulating clip applier cartridge |
US9717505B2 (en) | 2010-07-28 | 2017-08-01 | Covidien Lp | Articulating clip applier cartridge |
US9737310B2 (en) | 2010-07-28 | 2017-08-22 | Covidien Lp | Articulating clip applier |
US9211117B2 (en) * | 2010-09-09 | 2015-12-15 | Arnold Louis Ferlin | Surgical treatment system and method for performing an anastomosis between two hollow ducts in a patient, in particular between the bladder and the urethra |
US20130267968A1 (en) * | 2010-09-09 | 2013-10-10 | Arnold Louis Ferlin | Surgical Treatment System and Method for Performing an Anastomosis Between Two Hollow Ducts in a Patient, in Particular Between the Bladder and the Urethra |
US9642627B2 (en) | 2010-11-02 | 2017-05-09 | Covidien Lp | Self-centering clip and jaw |
US10357250B2 (en) | 2011-01-31 | 2019-07-23 | Covidien Lp | Locking cam driver and jaw assembly for clip applier |
US9775623B2 (en) | 2011-04-29 | 2017-10-03 | Covidien Lp | Surgical clip applier including clip relief feature |
US9861360B2 (en) | 2011-09-09 | 2018-01-09 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US9572571B2 (en) | 2011-09-09 | 2017-02-21 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US10010319B2 (en) | 2011-09-09 | 2018-07-03 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US8915929B2 (en) * | 2011-09-09 | 2014-12-23 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US20130066337A1 (en) * | 2011-09-09 | 2013-03-14 | Richard Romley | Methods and devices for manipulating and fastening tissue |
US9955957B2 (en) | 2011-09-09 | 2018-05-01 | Endogastric Solutions, Inc. | Methods and devices for manipulating and fastening tissue |
US9855043B2 (en) | 2011-12-19 | 2018-01-02 | Covidien Lp | Jaw closure mechanism for a surgical clip applier |
US9364239B2 (en) | 2011-12-19 | 2016-06-14 | Covidien Lp | Jaw closure mechanism for a surgical clip applier |
US11278287B2 (en) | 2011-12-29 | 2022-03-22 | Covidien Lp | Surgical clip applier with integrated clip counter |
US9364216B2 (en) | 2011-12-29 | 2016-06-14 | Covidien Lp | Surgical clip applier with integrated clip counter |
US10349936B2 (en) | 2011-12-29 | 2019-07-16 | Covidien Lp | Surgical clip applier with integrated clip counter |
US10660639B2 (en) | 2012-05-04 | 2020-05-26 | Covidien Lp | Surgical clip applier with dissector |
US9408610B2 (en) | 2012-05-04 | 2016-08-09 | Covidien Lp | Surgical clip applier with dissector |
US9532787B2 (en) | 2012-05-31 | 2017-01-03 | Covidien Lp | Endoscopic clip applier |
US10159492B2 (en) | 2012-05-31 | 2018-12-25 | Covidien Lp | Endoscopic clip applier |
US11026696B2 (en) | 2012-05-31 | 2021-06-08 | Covidien Lp | Endoscopic clip applier |
US9968362B2 (en) | 2013-01-08 | 2018-05-15 | Covidien Lp | Surgical clip applier |
US9848886B2 (en) | 2013-01-08 | 2017-12-26 | Covidien Lp | Surgical clip applier |
US9113892B2 (en) | 2013-01-08 | 2015-08-25 | Covidien Lp | Surgical clip applier |
US10743886B2 (en) | 2013-01-08 | 2020-08-18 | Covidien Lp | Surgical clip applier |
US10537329B2 (en) | 2013-01-18 | 2020-01-21 | Covidien Lp | Surgical clip applier |
US9750500B2 (en) | 2013-01-18 | 2017-09-05 | Covidien Lp | Surgical clip applier |
US9775624B2 (en) | 2013-08-27 | 2017-10-03 | Covidien Lp | Surgical clip applier |
US10682146B2 (en) | 2013-08-27 | 2020-06-16 | Covidien Lp | Surgical clip applier |
CN106794018A (en) * | 2013-11-04 | 2017-05-31 | 快克灵医疗技术有限公司 | Surgical stapling device |
WO2015063609A3 (en) * | 2013-11-04 | 2015-12-03 | Simcha Milo | Surgical stapler |
US10278695B2 (en) | 2013-11-04 | 2019-05-07 | Quickring Medical Technologies Ltd. | Surgical stapler |
US10702278B2 (en) | 2014-12-02 | 2020-07-07 | Covidien Lp | Laparoscopic surgical ligation clip applier |
US9931124B2 (en) | 2015-01-07 | 2018-04-03 | Covidien Lp | Reposable clip applier |
US10765435B2 (en) | 2015-01-07 | 2020-09-08 | Covidien Lp | Reposable clip applier |
US10292712B2 (en) | 2015-01-28 | 2019-05-21 | Covidien Lp | Surgical clip applier with integrated cutter |
US11134956B2 (en) | 2015-01-28 | 2021-10-05 | Covidien Lp | Surgical clip applier with integrated cutter |
US10159491B2 (en) | 2015-03-10 | 2018-12-25 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10828044B2 (en) | 2015-03-10 | 2020-11-10 | Covidien Lp | Endoscopic reposable surgical clip applier |
US11298135B2 (en) | 2015-11-10 | 2022-04-12 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10390831B2 (en) | 2015-11-10 | 2019-08-27 | Covidien Lp | Endoscopic reposable surgical clip applier |
US11478252B2 (en) | 2016-02-24 | 2022-10-25 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10582931B2 (en) | 2016-02-24 | 2020-03-10 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10470757B2 (en) | 2016-03-02 | 2019-11-12 | Stryker Corporation | Suture passing instruments and methods |
Also Published As
Publication number | Publication date |
---|---|
US8043310B2 (en) | 2011-10-25 |
US8915935B2 (en) | 2014-12-23 |
ATE293920T1 (en) | 2005-05-15 |
EP1389065B1 (en) | 2005-04-27 |
JP4300033B2 (en) | 2009-07-22 |
CA2447382C (en) | 2012-07-03 |
CA2447382A1 (en) | 2002-11-28 |
US20040162567A9 (en) | 2004-08-19 |
US20150080913A1 (en) | 2015-03-19 |
US20120078271A1 (en) | 2012-03-29 |
WO2002094105A3 (en) | 2003-02-20 |
JP2004527329A (en) | 2004-09-09 |
US6916332B2 (en) | 2005-07-12 |
US20050222492A1 (en) | 2005-10-06 |
WO2002094105A2 (en) | 2002-11-28 |
DE60203899D1 (en) | 2005-06-02 |
EP1389065A2 (en) | 2004-02-18 |
DE60203899T2 (en) | 2006-01-19 |
US9668738B2 (en) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9668738B2 (en) | Endoluminal fundoplication device and related method | |
US9931112B2 (en) | Methods for fastening tissue | |
US8728104B2 (en) | Devices and methods for fastening tissue layers | |
US8888793B2 (en) | Devices and related methods for securing a tissue fold | |
AU2002258810B2 (en) | Method for performing endoluminal fundoplication and apparatus for use in the method | |
AU2002258810A1 (en) | Method for performing endoluminal fundoplication and apparatus for use in the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAMS, RONALD;REEL/FRAME:012152/0372 Effective date: 20010515 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |