US20030214633A1 - Method and apparatus for increasing color gamut of a display - Google Patents
Method and apparatus for increasing color gamut of a display Download PDFInfo
- Publication number
- US20030214633A1 US20030214633A1 US10/151,742 US15174202A US2003214633A1 US 20030214633 A1 US20030214633 A1 US 20030214633A1 US 15174202 A US15174202 A US 15174202A US 2003214633 A1 US2003214633 A1 US 2003214633A1
- Authority
- US
- United States
- Prior art keywords
- color
- projection system
- modulated
- light source
- green
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3158—Modulator illumination systems for controlling the spectrum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3161—Modulator illumination systems using laser light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3167—Modulator illumination systems for polarizing the light beam
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/74—Projection arrangements for image reproduction, e.g. using eidophor
- H04N5/7416—Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
- H04N5/7441—Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells
Definitions
- This invention generally relates to imaging apparatus for display of images from digital data and more particularly relates to an apparatus and method for improving the color gamut of projected high-resolution motion picture images.
- FIG. 1 shows a familiar color gamut representation using CIE 1976 L*u*v* conventions, with the perceived eye-brain color gamut in u′-v′ coordinate space represented as a visible gamut 100 .
- Pure, saturated spectral colors are mapped to the “horseshoe” shaped periphery of visible gamut curve 100 .
- the interior of the “horseshoe” contains all mappings of mixtures of colors, such as spectral red with added blue, which becomes magenta, for example.
- the interior of the horseshoe can also contain mixtures of pure colors with white, such as spectral red with added white, which becomes pink, for example.
- the overall color area defined by the “horseshoe” curve of visible gamut 100 is the full range of color perceptible to the human visual system. It is desirable to represent as much as possible of this area in a color display to come as close as possible to representing the original scene as we would perceive it if we were actually viewing it.
- the component colors used for conventional motion picture film employ red, green, and blue dyes (or their complementary counterparts cyan, magenta, and yellow).
- Component colors for conventional color television CRTs employ red, green, and blue phosphors. Although initially limited in the colors that they could represent, apparatus using these dyes and phosphors have been steadily improved. However, as is clear from the gamut mapping represented in FIG. 1, there is still room for improvement in approximating visible gamut 100 in both motion picture and TV environments.
- a spatial light modulator can be considered essentially as a two-dimensional array of light-valve elements, each element corresponding to an image pixel. Each array element is separately addressable and digitally controlled to modulate transmitted or reflected light from a light source.
- DMDs digital micromirror devices
- LCDs liquid crystal devices
- Texas Instruments has demonstrated prototype projectors using one or more DMDs.
- DMD devices are described in a number of patents, for example U.S. Pat. No. 4,441,791; 5,535,047; and 5,600,383 (all to Hornbeck); and U.S. Pat. No. 5,719,695 (Heimbuch).
- Optical designs for projection apparatus employing DMDs are disclosed in U.S. Pat. Nos. 5,914,818 (Tejada et al.); U.S. Pat. No. 5,930,050 (Dewald); U.S. Pat. No. 6,008,951 (Anderson); and U.S. Pat. No. 6,089,717 (Iwai).
- LCD devices are described, in part, in U.S. Pat. Nos. 5,570,213 (Ruiz et al.) and U.S. Pat. No. 5,620,755 (Smith, Jr. et al.).
- EP 0 586 139 discloses a method for expanding the conventional color gamut using the four-color CMYK space to a color space using five or more colors.
- the color gamut is essentially defined by a polygon, wherein each vertex corresponds to a substantially pure color source used as a component color.
- the area of the polygon corresponds to the size of the color gamut.
- To expand the color gamut requires moving one or more of these vertices closer to the outline of visible gamut 100 .
- addition of a color that is inside the polygon defining the color gamut does not expand the color gamut.
- U.S. Pat. No. 5,982,992 (Waldron) discloses using an added “intra-gamut” colorant in a printing application.
- this method does not expand the color gamut itself, but can be used for other purposes, such as to provide improved representation of pastels or other colors that are otherwise within the gamut but may be difficult to represent using conventional colorants.
- Conventional tristimulus color models represent each individual color as a point in a three-dimensional color space, typically using three independent characteristics such as hue, saturation, and brightness, that can be represented in a three-dimensional coordinate space.
- Color data such as conventional image data for a pixel displayed on a color CRT, is typically expressed with three color components (for example R, G, B).
- Conventional color projection film provides images using three photosensitized emulsion layers, sensitive to red, blue, and green illumination. Because of these conventional practices and image representation formats, developers of digital projection systems understandably adhere to a tristimulus or three-color model.
- Pat. No. 6,220,710 discloses the addition of a white light channel to standard R, G, B light channels in a projection apparatus.
- the addition of white light may provide added luminosity, but constricts the color gamut.
- U.S. Pat. No. 6,191,826 discloses a projector apparatus that uses four colors derived from a single white light source, where the addition of a fourth color, orange, compensates for unwanted effects of spectral distribution that affect the primary green color path.
- the specific white light source used happens to contain a distinctive, undesirable orange spectral component.
- filtering is used to attenuate undesirable orange spectral content from the green light component in order to obtain a green light having improved spectral purity. Then, with the motive of compensating for the resulting loss of brightness, a separate orange light is added as a fourth color.
- U.S. Pat. No. 6,147,720 (Guerinot et al.) discloses a six-color projection system having an expanded color gamut.
- the method disclosed in U.S. Pat. No. 6,147,720 has a number of disadvantages.
- This system requires a complex spinning color filter wheel that alternately transmits and reflects, with lamps switching on and off at very fast rates to provide source illumination without flicker. It would be difficult to obtain a good extinction ratio when using lamps switched on and off at the necessary rates.
- Even with multiple light sources such an approach has inherent inefficiencies due to dead time from color wheel transitions. As a result, any resulting brightness gains are mitigated by timing constraints.
- U.S. Pat. No. 6,280,034 (Brennesholtz) discloses an imaging system using a white light source and selective polarization components to provide both conventional RGB colors and complementary cyan, magenta, and yellow (CMY) source illumination.
- CMY complementary cyan, magenta, and yellow
- the addition of these intra-gamut complementary CMY colors may not appreciably broaden the gamut, but helps to augment colors already within gamut and to improve luminance over white-light-added RGB solutions.
- PCT Patent Application WO 01/95544 A2 (Ben-David et al.) discloses a display device and method for color gamut expansion using four or more substantially saturated colors.
- application WO 01/95544 teaches the use of a color wheel for providing each of the four or more component colors to a single spatial light modulator.
- this application teaches splitting light from a single light source into four or more component colors and the deployment of a dedicated spatial light modulator for each component color.
- teaching of application WO 01/95544 may show devices that provide improved color gamut, there are several drawbacks to the conventional design solutions disclosed therein.
- the spatial light modulator employed must provide very high-speed refresh performance, with high-speed support components in the data processing path. Parallel processing of image data would very likely be required in order to load pixel data to the spatial light modulator at the rates required for maintaining flicker-free motion picture display. It must also be noted that the settling time for conventional LCD modulators, typically in the range of 10-20 msec for each color, further shortens the available projection time and thus constrains brightness. Moreover, the use of a filter wheel for providing the successive component colors at a sufficiently high rate of speed has further disadvantages.
- a color projection system comprises:
- a feature of the present invention is the use of light sources having a high degree of spectral purity in order to provide the fullest possible color gamut. Lasers, because they are inherently color saturated, are the light sources used in the preferred embodiment.
- FIG. 1 is a graph showing conventional color gamut representation for NTSC TV and conventional motion picture film
- FIG. 2 is a graph showing an expanded color gamut using the method of the present invention
- FIG. 3 is a graph showing the cone sensitivity of the human eye relative to wavelength
- FIG. 4 a shows the color gamut using only three lasers
- FIG. 4 b shows the gamut increase that results from selecting orange as the fourth color laser
- FIG. 4 c shows the gamut increase that results from selecting yellow-green as the fourth color laser
- FIG. 4 d shows the gamut increase that results from selecting blue-green as the fourth color laser
- FIG. 5 is a schematic block diagram showing a four-color projection system using four spatial light modulators
- FIG. 6 is a schematic block diagram showing a four-color projection system using sequential-color modulation of a single spatial light modulator
- FIG. 7 is a schematic block diagram showing a four-color laser projection system with Acousto-Optical Modulators (AOMs), wherein the resultant modulated beams are raster scanned using a polygon scanner and galvanometer;
- AOMs Acousto-Optical Modulators
- FIGS. 8 a and 8 b are graphs showing the transmittance of an X-cube color combiner.
- FIG. 9 is a schematic block diagram showing an alternate embodiment using DMD spatial light modulators.
- a basic strategy for expanding the gamut of a display is to pick color sources that are on or close to the horseshoe periphery.
- Lasers because they provide spectrally pure, saturated sources, are advantageous for this purpose and are the spectrally pure light sources of the preferred embodiment.
- Laser colors can be mapped directly to points lying on the horseshoe curve of visible gamut 100 .
- RGB LEDs can be used alternately as light sources that are substantially spectrally pure, however, LEDs are generally inferior to lasers with respect to both actual spectral quality and brightness.
- FIG. 2 there is shown visible gamut 100 with a four-source gamut 106 , as provided using the apparatus of the present invention.
- the present invention allows a considerable portion of visible gamut 100 to be represented, as shown.
- the four vertices of four-source gamut 106 are provided by the following gas lasers, with the corresponding vertex indicated in FIG. 2:
- Vertex 108 Helium-Cadmium at 442 nm
- Vertex 116 Krypton at 647 nm
- the selection of optimal light source wavelengths depends upon which portions of visible gamut 100 need to be within the range of the projection apparatus.
- a key factor in this consideration is human-eye response.
- FIG. 3 there is shown the normalized sensitivity of the three types of color receptors (cones) in the retina. Blue response is indicated by a blue sensitivity curve 118 b ; red response by a red sensitivity curve 118 r ; and green response by a green sensitivity curve 118 g .
- Dotted vertical lines indicate the four laser wavelengths noted above for vertices 108 , 112 , 114 , and 116 in FIG. 2.
- the blue response is reasonably well separated, while there is considerable overlap of the red and green receptors, allowing considerable discrimination of colors in this region, based on the proportions of green and red.
- the goal in color projection is to elicit an eye-brain color response that is as nearly identical to that caused by the original scene content as possible.
- the original scene object may include bluish-green seawater, which reflects colors within the solar spectrum. Projection provides the same eye-brain response of the scene content, as closely as possible. While this can be accomplished using an appropriate combination of blue and green sources, the green source can unintentionally stimulate the eye's red receptor, as is suggested in FIG. 3. For this reason, alternate use of a blue-green light source may be preferable for such scene content.
- FIGS. 4 a - 4 d indicate, using a chromaticity diagram, how a fourth laser color might be selected to provide optimal improvement in color gamut. The goal is to increase the area bounded by the color gamut polygon as much as possible.
- FIG. 4 a shows the extent of color gamut available using three lasers at nominal wavelengths of 440 nm, 520 nm, and 660 nm to approximate visible gamut 100 using an RGB laser gamut 96 .
- FIG. 4 b shows what happens with the addition of an orange laser at 600 nm.
- the green wavelength for the examples of FIGS. 4 a - 4 d was arbitrarily picked at 520 nm. If this wavelength were more yellow-green, such as at 540 nm or 550 nm for example, the best choice for the fourth blue-green color might be closer to 500 nm to optimize the area of blue-green enhanced gamut 99 . Similarly, further addition of a fifth laser at 460 nm could expand the gamut even further. Using this technique, a blue-green enhanced gamut 99 could be successively improved by the selective addition of more spectrally pure colors.
- FIG. 5 there is shown one embodiment of a projection system 10 of the present invention, having a modulation path for each of four component colors.
- the color of each modulation path is indicated with an appended letter where necessary, as follows: r for components in the red modulation path, g for components in the green path, b for components in the blue path, and bg for components in the blue-green or other modulation path.
- the appended letter is omitted, except where necessary to distinguish activity distinctive to a particular color path.
- spatial light modulator 20 is a reflective LCD.
- each light modulation path can be most easily traced by following light in the blue or red modulation paths.
- Light source 12 provides the source illumination that is modulated.
- Uniformizing optics 14 and a telecentric condenser lens 16 which may be an individual lens but is more likely a set of lenses, provide essentially telecentric light to a polarizing beamsplitter 18 .
- Polarizing beamsplitter 18 transmits light having an unwanted polarization state and directs light of the intended polarization state as incident light to spatial light modulator 20 .
- Spatial light modulator 20 using selective, variable rotation of light polarization for each individual pixel, as is well known in the imaging arts, modulates the incident light to provide a modulated color beam.
- Polarizing beamsplitter 18 could be a standard prism-based beamsplitter or could be a wire grid beamsplitter, as disclosed in U.S. Pat. No. 6,122,103 (Perkins et al.).
- An X-cube 86 acts as a dichroic combiner, combining light from three input axes to provide modulated multicolor light as output along a common axis O to a projection lens 110 , which projects the image formed by projection system 10 onto a display surface 140 .
- X-cube 86 accepts s-polarized red and blue light, but can pass either s- or p-polarized light in the green and blue-green colors.
- Blue-green light source 12 bg is s-polarized with respect to polarization beamsplitter 18 g .
- Dichroic mirror 87 and polarization beamsplitter 18 g reflect the s-polarized light as incident light to spatial light modulator 20 bg .
- Modulated blue-green light from spatial light modulator 20 bg becomes p-polarized and is then transmitted through polarization beamsplitter 18 g to X-cube 86 for recombination and projection.
- light source 12 g emits light that is p-polarized with respect to polarization beamsplitter 18 g .
- the incident unmodulated light beam from light source 12 g is transmitted through dichroic mirror 87 and enters polarization beamsplitter 18 g .
- Polarization beamsplitter 18 g transmits the p-polarized light as incident light to spatial light modulator 20 g .
- Modulated light from spatial light modulator 20 g is now s-polarized and is then reflected by polarization beamsplitter 18 g to X-cube 86 for recombination and projection.
- spatial light modulators 20 g and 20 bg are at alternate sides of polarization beamsplitter 18 g , taking advantage of orthogonally polarized green and blue-green beams.
- X-cube 86 transmits both colors, green and blue-green, having orthogonal polarizations, to projection lens 87 .
- a typical x-cube 86 must have s-polarized light in the red and blue channels but will accept either polarization in the “green” channel. In this case, the “green” channel is designed to pass both green and blue-green beams which are orthogonally polarized.
- FIG. 8 a there is shown a plot of the efficiency of X-cube 86 for near-normal incidence light that is s-polarized.
- the wavelength of interest is blue-green light at approximately 490 nm.
- X-cube 86 is less than 50% efficient at 490 nm, whereas at the wavelength of green light, approximately 515-530 nm, X-cube 86 is nearly 90% efficient. Compare this behavior with the performance of X-cube 86 for p-polarized light as shown in FIG. 8 b .
- Lasers are typically plane polarized and monochromatic. This inherent polarization results in a large efficiency boost over lamp sources that require a dichroic filter and a polarizer in order to be used. Dichroic filters are typically 80 to 85% transmitting and polarizers are typically only 35 to 40% transmitting. Therefore, when providing polarized light, a lamp based projector is about 3.5 times as lossy as a laser projector. Furthermore, monochromaticity means that the primaries are saturated colors and lie directly on the “horseshoe” periphery, providing the largest possible color gamut.
- light source 12 is preferably a laser. Available lasers at convenient wavelengths include gas lasers, dye lasers, and diode pumped solid state lasers (DPSS). Other types of light sources could be used, such as LED s, for example.
- light source 12 For use with an LCD spatial light modulator 20 , light source 12 must have a high degree of spectral purity, high brightness level, and correct polarization state.
- Uniformizing optics can include any of a variety of lens let arrays, integrating bar, or other optical components suitable for providing illumination over a sufficiently wide field for spatial light modulator 20 .
- Polarization beamsplitters can be standard McNeille prisms, wire-grid polarization beamsplitters, or other suitable devices.
- DMD or other spatial light modulator devices such as transmissive LCDs could be employed as spatial light modulator 20 , with the necessary changes to illumination and support components, using techniques well known in the imaging arts.
- Projection lens 110 and display surface 140 are selected to work together for optimal projection results.
- FIG. 9 there is shown an embodiment of projection system 10 using four modulation devices: a DMD spatial light modulator, red light path 32 r , a DMD spatial light modulator, green light path 32 g , a DMD spatial light modulator, blue light path 32 b , and a DMD spatial light modulator, blue-green light path 32 bg .
- the green and blue-green modulated light are directed onto a single axis for transmission through X-cube 86 .
- a projection system 10 using transmissive LCDs would use a similar arrangement for directing green and blue-green modulated light onto a common axis for transmission through X-cube 86 .
- FIG. 6 there is shown an alternate embodiment in which sequential imaging is used for each of four colors.
- parallel organization of components is used, with appended r, g, b, or bg for components specific to each color path.
- light source 12 provides the source illumination beam for modulation.
- each light source 12 is s-polarized with respect to polarization beamsplitter 18 .
- a lens 27 in cooperation with an output lens 36 , acts as a beam expander.
- a fast shutter 26 is provided for control of the light beam from each light source 12 .
- shutter 26 is an acousto-optic modulator having a high extinction ratio, in excess of 1000:1.
- shutters 26 r , 26 g , 26 b , and 26 bg There are four shutters shown in FIG. 6, one for each color: a shutter, red light path 26 r ; a shutter, green light path 26 g ; a shutter, blue light path 26 b and a shutter, blue-green light path 26 bg .
- the timing and sequencing of shutters 26 r , 26 g , 26 b , and 26 bg are controlled by a control logic processor (not shown).
- a dichroic combiner 35 directs the beam from any light source 12 on its individual axis into common optical axis O.
- Output lens 36 directs the illumination beam, which is conditioned by uniformizing optics 14 , typically a lenslet array or integrator bar, to provide a uniform illumination field.
- a telecentric condenser lens 69 directs the uniformized illumination beam to polarizing beamsplitter 18 and to spatial light modulator 20 .
- Spatial light modulator 20 an LCD in the preferred embodiment, modulates the illumination beam to provide a modulated light beam that is then projected onto display surface 140 by projection lens 110 .
- Sequential imaging of each of the component colors is required for an embodiment using fewer spatial light modulators 20 than there are light sources 12 , as is shown in FIG. 6.
- individual modulated color images are sequentially projected at a high enough rate for perception of full color images.
- the refresh rate for sequential imaging must exceed the perceptible range of visible flicker. Typically, speeds of sixty images per second or greater are used.
- Shutters 26 are fast, high extinction ratio shutters. This allows them to be turned on independently. Shutters 26 help to eliminate color crosstalk effects that plague designs using the conventional lamp and filter wheel approach. This crosstalk occurs, for example, during transitions between color filters, before the full set of data is provided for the next color. In the conventional approach, shutters having the necessary fast rise and fall time and large extinction ratio for minimizing color crosstalk would be difficult and costly to design.
- Shutters 26 r , 26 g , 26 b , and 26 bg are controlled such that each shutter 26 r , 26 g , 26 b , and 26 bg is open during a separate time interval, so that only one color at a time is incident at spatial light modulator 20 .
- FIG. 7 there is shown another alternate embodiment employing a scanning polygon mirror 41 .
- Light sources 12 r , 12 g , 12 b , and 12 bg are disposed in a similar arrangement to that shown in FIG. 6.
- light source 12 directs light through lens 27 for providing an illumination beam.
- Modulation of each light source is performed by a modulator 32 r , 32 g , 32 b , or 32 bg respectively, which may be an acousto-optic modulator, electro-optical modulator, or other suitable device for modulating transmitted light.
- dichroic combiner 35 combines the modulated light from each light path to provide composite color modulated light on common axis O.
- Output lens 36 then directs the composite color modulated light through beam-shaping optics 38 , which provide the composite color modulated light as a focused modulated light beam to a polygon mirror 41 .
- a motor 42 spins polygon mirror 41 to provide a high-speed horizontal scan that deflects the focused modulated light beam to form a scanned raster beam.
- a galvanometer-driven mirror 43 driven by a galvanometer actuator 44 , provides vertical deflection for the scanned raster beam.
- Projection lens 110 directs the scanned raster beam to display surface 140 .
- the embodiments described above with reference to FIGS. 5, 6, and 7 are directed primarily to large-scale projection applications, such as movie theater environments, for example.
- Such large-scale applications require light sources 12 to provide high brightness levels with highly saturated color.
- lasers provide a suitable solution for light sources 12 .
- the present invention admits other types of light source 12 , particularly where high power is not a requirement.
- LEDs may provide a suitable solution for light source 12 .
- LEDs would not provide the spectral purity of narrow-band lasers and therefore would not be capable of providing as large a color gamut.
- narrow-band LEDs can provide substantially monochromatic color such that corresponding vertices in a gamut mapping such as is shown in FIG. 2 could closely approximate the positions on visible gamut 100 curve that are achievable using lasers.
- a logic component might analyze scene content data to determine when to switch blue-green spatial light modulator 20 bg into or out of the scene.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Video Image Reproduction Devices For Color Tv Systems (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
- This invention generally relates to imaging apparatus for display of images from digital data and more particularly relates to an apparatus and method for improving the color gamut of projected high-resolution motion picture images.
- A number of different color spaces have been used to describe the human visual system. In one attempt to define a workable color space, Commission Internationale de l'Eclairage (International Commission on Illumination) developed the CIE Chromaticity Diagram, published in 1931. The CIE color model employed the tristimulus values X, Y, Z based on a standard human observer. The diagram in x and y was later modified to a u′ and v′ diagram in which equal distances on the diagram represent equal perceived color shifts. Useful background discussion of color perception and color models can be found in Billmeyer and Saltzmann'sPrinciples of Color Technology, Third Edition, Wiley and Sons, and in Dr. R. W. G. Hunt's The Reproduction of Color, Fifth Edition, Fountain Press, England.
- FIG. 1 shows a familiar color gamut representation using CIE 1976 L*u*v* conventions, with the perceived eye-brain color gamut in u′-v′ coordinate space represented as a
visible gamut 100. Pure, saturated spectral colors are mapped to the “horseshoe” shaped periphery ofvisible gamut curve 100. The interior of the “horseshoe” contains all mappings of mixtures of colors, such as spectral red with added blue, which becomes magenta, for example. The interior of the horseshoe can also contain mixtures of pure colors with white, such as spectral red with added white, which becomes pink, for example. The overall color area defined by the “horseshoe” curve ofvisible gamut 100 is the full range of color perceptible to the human visual system. It is desirable to represent as much as possible of this area in a color display to come as close as possible to representing the original scene as we would perceive it if we were actually viewing it. - Conventional motion picture display, whether for large-scale commercial color projection from film or for color television cathode ray tubes (CRTs), operates within a fairly well-established color gamut. Referring again to the mapping of FIG. 1, observe that
visible gamut 100 shows the full extent of human-perceivable color that, in theory, could be represented for motion picture display. A motionpicture film gamut 102 is mapped out withinvisible gamut 100, showing the reduced extent of color representation achievable with conventional film media. AnNTSC TV gamut 104 shows the further restriction placed on achievable colors using conventional color CRT phosphors. It is instructive to note that, because the colors of the CRT phosphors forNTSC TV gamut 104 are not typically saturated, the points defining the color of each phosphor do not lie on the periphery ofvisible gamut 100. Hence, for example, colors such as turquoise and neon orange can be perceived by the eye in the actual scene but are beyond the color capability of a CRT phosphor system. As is clear from FIG. 1, the range of colors that can be represented using conventional film or TV media falls far short of the full perceivable range ofvisible gamut 100. - The component colors used for conventional motion picture film employ red, green, and blue dyes (or their complementary counterparts cyan, magenta, and yellow). Component colors for conventional color television CRTs employ red, green, and blue phosphors. Although initially limited in the colors that they could represent, apparatus using these dyes and phosphors have been steadily improved. However, as is clear from the gamut mapping represented in FIG. 1, there is still room for improvement in approximating
visible gamut 100 in both motion picture and TV environments. - With the advent of digital technology and the demonstration of all-digital projection systems, there is renewed interest in increasing the range or gamut of colors that can be displayed in order to provide a more realistic, more vivid image than is possible with the gamut limitations of film dyes or phosphors. The most promising solutions for digital cinema projection employ, as image forming devices, one of two types of spatial light modulators (SLMs). A spatial light modulator can be considered essentially as a two-dimensional array of light-valve elements, each element corresponding to an image pixel. Each array element is separately addressable and digitally controlled to modulate transmitted or reflected light from a light source. There are two salient types of spatial light modulators that are conventionally employed for forming images in digital projection and printing apparatus: digital micromirror devices (DMDs) and liquid crystal devices (LCDs).
- Texas Instruments has demonstrated prototype projectors using one or more DMDs. DMD devices are described in a number of patents, for example U.S. Pat. No. 4,441,791; 5,535,047; and 5,600,383 (all to Hornbeck); and U.S. Pat. No. 5,719,695 (Heimbuch). Optical designs for projection apparatus employing DMDs are disclosed in U.S. Pat. Nos. 5,914,818 (Tejada et al.); U.S. Pat. No. 5,930,050 (Dewald); U.S. Pat. No. 6,008,951 (Anderson); and U.S. Pat. No. 6,089,717 (Iwai). LCD devices are described, in part, in U.S. Pat. Nos. 5,570,213 (Ruiz et al.) and U.S. Pat. No. 5,620,755 (Smith, Jr. et al.).
- While there has been some success with respect to color representation using spatial light modulators, there is a long-felt need for a further broadening of the projection color gamut that will enhance special effects and heighten the viewing experience.
- Faced with a similar problem of insufficient color gamut, the printing industry has used a number of strategies for broadening the relatively narrow gamut of pigments used in process color printing. Because conventional color printing uses light reflected from essentially white paper, the color representation methods for print employ a subtractive color system. Conventionally, the process colors cyan (blue+green), magenta (red+blue), and yellow (red+green) are used for representing a broad range of colors. However, due to the lack of spectral purity of the pigment, combinations of cyan, magenta, and yellow are unable to yield black, but instead provide a dark brown hue. To improve the appearance of shadow areas, black is added as a fourth pigment. As is well known in the printing arts, further refined techniques, such as under-color removal could then be used to take advantage of less expensive black pigments in full-color synthesis. Hence, today's conventional color printing uses the four color CMYK (cyan, magenta, yellow, and black) method described above.
- However, even with the addition of black, the range of colors that can be represented by printing pigments is limited. There remain specialized colors such as metallic gold or silver, or specific colors such as those used for corporate identity in logos and packaging, for example, that cannot be adequately reproduced using the CMYK “process color” system. To meet this need, a fifth pigment can be added to a selected print run in order to provide “spot color” over specific areas of an image. Using this technique, for example, many companies use special color inks linked to a product or corporate identity and use these colors in packaging, advertising, logos, and the like, so that the consumer recognizes a specific product, in part, by this special color. This type of solution, while not increasing the overall color gamut of a printing process, at least allows the reproduction of one or more out-of-gamut colors.
- Colors in addition to the conventional CMYK process color set have been employed to extend the overall color gamut in printing applications. For example, EP 0 586 139 (Litvak) discloses a method for expanding the conventional color gamut using the four-color CMYK space to a color space using five or more colors.
- Referring back to FIG. 1, it is instructive to note that the color gamut is essentially defined by a polygon, wherein each vertex corresponds to a substantially pure color source used as a component color. The area of the polygon corresponds to the size of the color gamut. To expand the color gamut requires moving one or more of these vertices closer to the outline of
visible gamut 100. Thus, for example, addition of a color that is inside the polygon defining the color gamut does not expand the color gamut. For example, U.S. Pat. No. 5,982,992 (Waldron) discloses using an added “intra-gamut” colorant in a printing application. However, as noted in the specification of U.S. Pat. No. 5,982,992, this method does not expand the color gamut itself, but can be used for other purposes, such as to provide improved representation of pastels or other colors that are otherwise within the gamut but may be difficult to represent using conventional colorants. - Conventional tristimulus color models, such as the CIE LUW model noted above, represent each individual color as a point in a three-dimensional color space, typically using three independent characteristics such as hue, saturation, and brightness, that can be represented in a three-dimensional coordinate space. Color data, such as conventional image data for a pixel displayed on a color CRT, is typically expressed with three color components (for example R, G, B). Conventional color projection film provides images using three photosensitized emulsion layers, sensitive to red, blue, and green illumination. Because of these conventional practices and image representation formats, developers of digital projection systems understandably adhere to a tristimulus or three-color model. Conforming with conventional practices, designers use various solutions for providing color source illumination, such as filtering a bright white light source through dichroic optics to obtain red, green, and blue component colors for full color image projection. For example, U.S. Pat. No. 6,053,615 (Peterson et al.); U.S. Pat. No. 6,220,713 (Tadic-Galeb et al.); and U.S. Pat. No. 6,254,237 (Booth) are just a few examples of projector designs using this approach.
- Some projection solutions employing more than three color light sources have been proposed. However, most of the proposed designs have not targeted color gamut expansion. Disclosures of projectors using more than three color sources include U.S. Pat. No. 6,256,073 (Pettit) discloses a projection apparatus using a filter wheel arrangement that provides four colors in order to maintain brightness and white point purity. However, the fourth color added in this configuration is not spectrally pure, but is white in order to add brightness to the display and to minimize any objectionable color tint. It must be noted that white is analogous to the “intra-gamut” color addition noted in the printing application of U.S. Pat. No. 5,982,992; in terms of color theory, adding white actually reduces the color gamut. Similarly, U.S. Pat. No. 6,220,710 (Raj et al.) discloses the addition of a white light channel to standard R, G, B light channels in a projection apparatus. As noted above, the addition of white light may provide added luminosity, but constricts the color gamut.
- U.S. Pat. No. 6,191,826 (Murakami et al.) discloses a projector apparatus that uses four colors derived from a single white light source, where the addition of a fourth color, orange, compensates for unwanted effects of spectral distribution that affect the primary green color path. In the apparatus of U.S. Pat. No. 6,191,826, the specific white light source used happens to contain a distinctive, undesirable orange spectral component. To compensate for this, filtering is used to attenuate undesirable orange spectral content from the green light component in order to obtain a green light having improved spectral purity. Then, with the motive of compensating for the resulting loss of brightness, a separate orange light is added as a fourth color. The disclosure indicates that some expansion of color range is experienced as a side effect. However, with respect to color gamut, it is significant to observe that the solution disclosed in U.S. Pat. No. 6,191,826 does not appreciably expand the color gamut of a projection apparatus. In terms of the color gamut polygon described above with reference to FIG. 1, addition of an orange light may add a fourth vertex, however, any added orange vertex would be very close to the line already formed between red and green vertices. Thus, the newly formed gamut polygon will, at best, exhibit only a very slight increase in area over the triangle formed using three component colors. Moreover, unless a pure wavelength orange is provided, with no appreciable leakage of light having other colors, there could even be a small decrease in color gamut using the methods disclosed in U.S. Pat. No. 6,191,826.
- U.S. Pat. No. 6,147,720 (Guerinot et al.) discloses a six-color projection system having an expanded color gamut. However, the method disclosed in U.S. Pat. No. 6,147,720 has a number of disadvantages. This system requires a complex spinning color filter wheel that alternately transmits and reflects, with lamps switching on and off at very fast rates to provide source illumination without flicker. It would be difficult to obtain a good extinction ratio when using lamps switched on and off at the necessary rates. Even with multiple light sources, such an approach has inherent inefficiencies due to dead time from color wheel transitions. As a result, any resulting brightness gains are mitigated by timing constraints.
- U.S. Pat. No. 6,280,034 (Brennesholtz) discloses an imaging system using a white light source and selective polarization components to provide both conventional RGB colors and complementary cyan, magenta, and yellow (CMY) source illumination. However, as is shown in the disclosure of U.S. Pat. No. 6,280,034, the addition of these intra-gamut complementary CMY colors may not appreciably broaden the gamut, but helps to augment colors already within gamut and to improve luminance over white-light-added RGB solutions.
- Thus, it can be seen that, with respect to projection apparatus, there have been solutions using more than three colors, however, these solutions illustrate the difficulty of obtaining both an expanded color gamut and the necessary brightness for large-scale projection. As is seen with many of the solutions listed above, there can even be some loss of color gamut with the addition of a fourth color.
- In contrast to the above patent disclosures, PCT Patent Application WO 01/95544 A2 (Ben-David et al.) discloses a display device and method for color gamut expansion using four or more substantially saturated colors. In one embodiment, application WO 01/95544 teaches the use of a color wheel for providing each of the four or more component colors to a single spatial light modulator. In an alternate embodiment, this application teaches splitting light from a single light source into four or more component colors and the deployment of a dedicated spatial light modulator for each component color. However, while the teaching of application WO 01/95544 may show devices that provide improved color gamut, there are several drawbacks to the conventional design solutions disclosed therein. When multiplexing a single spatial light modulator to handle more than three colors, a significant concern relates to the timing of display data. The spatial light modulator employed must provide very high-speed refresh performance, with high-speed support components in the data processing path. Parallel processing of image data would very likely be required in order to load pixel data to the spatial light modulator at the rates required for maintaining flicker-free motion picture display. It must also be noted that the settling time for conventional LCD modulators, typically in the range of 10-20 msec for each color, further shortens the available projection time and thus constrains brightness. Moreover, the use of a filter wheel for providing the successive component colors at a sufficiently high rate of speed has further disadvantages. Such a filter wheel must be rotated at very high speeds, requiring a precision control feedback loop in order to maintain precision synchronization with data loading and device modulation timing. The additional “dead time” during filter color transitions, already substantial in devices using three-color filter wheels, would further reduce brightness and complicate timing synchronization. Coupling the filter wheel with a neutral density filter, also rotating in the light path, introduces additional cost and complexity. Such practical concerns raise doubts as to the feasibility and practicality of the filter wheel design approach taught in application WO 01/95544. Alternative solutions using a spatial light modulator dedicated to each color introduce other concerns, including proper alignment for component colors. The disclosure of application WO 01/95544 teaches the deployment of a separate projection system for each color, which would be costly and require separate alignment procedures for each display screen size and distance. Providing illumination from a single light source results in reduced brightness and contrast. Thus, while the disclosure of application WO 01/95544 teaches gamut expansion in theory, in practice there are a number of significant drawbacks to the design solutions proposed. Problems that were difficult to solve for three-color projection, such as timing synchronization, color alignment, and maintaining brightness and contrast, are even more challenging when attempting to use four or more component colors. Moreover, conventional color-combining devices such as X-cubes, X-prisms, or Philips prisms, having input axes for only three source colors, cannot be readily used in an apparatus using more than three colors.
- Referring back to FIG. 1, it is instructive to note that the broadest possible gamut is achieved when component colors, that is, colors represented by the vertices of the color gamut polygon, are spectrally pure colors. In terms of the gamut mapping of FIG. 1, a spectrally pure color would be represented as a single point lying on the boundary of the curve representing
visible gamut 100. As is well known in the optical arts, lasers inherently provide light sources that exhibit spectral purity. For this reason, lasers are considered as suitable light sources for digital color projection. In some conventional designs, laser beams are modulated and combined and then raster scanned using electromechanical high speed vertical and low speed horizontal scanners. These scanners typically comprise spinning polygons for high speed scanning and galvanometer driven mirrors for low speed deflection. Vector scan devices that write “cartoon character” outlines with two galvanometer scanners have long been on the market for large area outdoor laser displays, for example. Lasers have also been used with spatial light modulators for digital projection. As one example, U.S. Pat. No. 5,537,258 (Yamazaki et al.) discloses a laser projection system with red, green, and blue dye lasers providing the primary colors for forming an image using a single shared spatial light modulator. - There have been proposed solutions using more than three lasers within a projector where the additional laser serves a special purpose other than color projection. For example, U.S. Pat. No. 6,020,937 (Bardmesser) discloses a TV display system using as many as four color lasers, however, the fourth laser provides an additional source for achieving increased scan speed and is not a fourth color source. The use of a fourth pump laser is noted in U.S. Pat. No. 5,537,258 cited above and in U.S. Pat. No. 5,828,424 (Wallenstein), which discloses a color projection system that uses a pump laser source with frequency multipliers to excite projection lasers having the conventional R, G, B colors. Again, this use of a fourth laser does not add a fourth projection color.
- In summary, it can be seen that, with respect to projection apparatus, while there have been solutions proposed for using more than three colors, only the teaching of application WO 01/95544 is directed to expanding the color gamut. Other approaches that add color tend to narrow the available color gamut. Moreover, with a projection apparatus having more than three colors, conventional design approaches do not appear to be feasible, practical, or economical.
- In order for digital color projection to compete with conventional film projection technology, it would be advantageous to provide a digital projection apparatus that provides a color gamut having a wider range of colors than can presently be represented, without sacrificing brightness and contrast. It is desirable to increase the gamut of colors displayed to approximate, even more closely than with existing projection apparatus, the color gamut of the human eye.
- It is an object of the present invention to provide an apparatus and method for digital projection having an expanded color gamut. Briefly, according to one aspect of the present invention a color projection system comprises:
- (a) a first light source for providing a first color beam;
- (b) a first spatial light modulator for modulating the first color beam to provide a first modulated color beam on a first optical axis;
- (c) a second light source for providing a second color beam;
- (d) a second spatial light modulator for modulating the second color beam to provide a second modulated color beam on a second optical axis;
- (e) a third light source for providing a third color beam for transmission through a first color combiner;
- (f) a third spatial light modulator for modulating the third color beam to provide a third modulated color beam;
- (g) a fourth light source for providing a fourth color beam for reflection by said first color combiner;
- (h) a fourth spatial light modulator for modulating the fourth color beam to provide a fourth modulated color beam;
- (i) a polarizing beamsplitter for combining the third and fourth modulated color beams onto a third optical axis;
- (j) a second color combiner for combining the light on the first, second, and third optical axes to form a multicolor modulated beam; and
- (k) a projection system for projecting the multicolor modulated beam toward a display surface.
- A feature of the present invention is the use of light sources having a high degree of spectral purity in order to provide the fullest possible color gamut. Lasers, because they are inherently color saturated, are the light sources used in the preferred embodiment.
- It is an advantage of the present invention that it provides an apparatus capable of achieving wider color gamut for displaying digital motion pictures when compared with conventional three-color laser and arc lamp based equipment. This allows the display of colors that were not possible with previous systems.
- It is an advantage of the present invention that it employs laser light, which is inherently polarized. Thus, there is no need for filtering or polarization of the laser light when directed toward an LCD spatial light modulator, and no consequent filter losses. In addition, because lasers provide a high degree of spectral purity, a wider color gamut can be obtained.
- These and other objects, features, and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there is shown and described an illustrative embodiment of the invention.
- While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention will be better understood from the following description when taken in conjunction with the accompanying drawings, wherein:
- FIG. 1 is a graph showing conventional color gamut representation for NTSC TV and conventional motion picture film;
- FIG. 2 is a graph showing an expanded color gamut using the method of the present invention;
- FIG. 3 is a graph showing the cone sensitivity of the human eye relative to wavelength;
- FIG. 4a shows the color gamut using only three lasers;
- FIG. 4b shows the gamut increase that results from selecting orange as the fourth color laser;
- FIG. 4c shows the gamut increase that results from selecting yellow-green as the fourth color laser;
- FIG. 4d shows the gamut increase that results from selecting blue-green as the fourth color laser;
- FIG. 5 is a schematic block diagram showing a four-color projection system using four spatial light modulators;
- FIG. 6 is a schematic block diagram showing a four-color projection system using sequential-color modulation of a single spatial light modulator;
- FIG. 7 is a schematic block diagram showing a four-color laser projection system with Acousto-Optical Modulators (AOMs), wherein the resultant modulated beams are raster scanned using a polygon scanner and galvanometer;
- FIGS. 8a and 8 b are graphs showing the transmittance of an X-cube color combiner; and
- FIG. 9 is a schematic block diagram showing an alternate embodiment using DMD spatial light modulators.
- The present description is directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
- Theoretical Background for Expanding Color Gamut
- Referring back to the gamut mapping arrangement shown in FIG. 1, it is instructive to mention that a basic strategy for expanding the gamut of a display is to pick color sources that are on or close to the horseshoe periphery. Lasers, because they provide spectrally pure, saturated sources, are advantageous for this purpose and are the spectrally pure light sources of the preferred embodiment. Laser colors can be mapped directly to points lying on the horseshoe curve of
visible gamut 100. Note that RGB LEDs can be used alternately as light sources that are substantially spectrally pure, however, LEDs are generally inferior to lasers with respect to both actual spectral quality and brightness. - Referring to FIG. 2, there is shown
visible gamut 100 with a four-source gamut 106, as provided using the apparatus of the present invention. With the use of four lasers, the present invention allows a considerable portion ofvisible gamut 100 to be represented, as shown. In a preferred embodiment, the four vertices of four-source gamut 106 are provided by the following gas lasers, with the corresponding vertex indicated in FIG. 2: -
Vertex 108—Helium-Cadmium at 442 nm -
Vertex 112—Argon at 488 nm -
Vertex 114—Argon at 515 nm -
Vertex 116—Krypton at 647 nm - Of course, different lasers or other spectrally pure and bright light sources having different wavelengths could be selected, with appropriate shifting of one or more of
vertices source gamut 106. - The selection of optimal light source wavelengths depends upon which portions of
visible gamut 100 need to be within the range of the projection apparatus. A key factor in this consideration is human-eye response. Referring to FIG. 3, there is shown the normalized sensitivity of the three types of color receptors (cones) in the retina. Blue response is indicated by a blue sensitivity curve 118 b; red response by ared sensitivity curve 118 r; and green response by agreen sensitivity curve 118 g. Dotted vertical lines indicate the four laser wavelengths noted above forvertices - FIGS. 4a-4 d indicate, using a chromaticity diagram, how a fourth laser color might be selected to provide optimal improvement in color gamut. The goal is to increase the area bounded by the color gamut polygon as much as possible. FIG. 4a shows the extent of color gamut available using three lasers at nominal wavelengths of 440 nm, 520 nm, and 660 nm to approximate
visible gamut 100 using anRGB laser gamut 96. In comparison with phosphor-basedNTSC TV gamut 104 in FIG. 1, there is a considerable increase in gamut with the use of spectrally pure lasers. FIG. 4b shows what happens with the addition of an orange laser at 600 nm. There is barely any improvement in an orange-enhancedgamut 97 when compared withRGB laser gamut 96 since the red-green line of orange-enhancedgamut 97 lies almost coincident withvisible gamut 100 in this region. Likewise, adding a fourth laser color as yellow-green at 560 nm as shown in FIG. 4c provides minimal increase in a yellow-greenenhanced gamut 98 overRGB laser gamut 96 in FIG. 4a. In contrast, placing the fourth laser wavelength at 490 nm in the blue-green region, as is shown in FIG. 4d, provides a significant increase in a blue-greenenhanced gamut 99 overRGB laser gamut 96 in FIG. 4a.RGB laser gamut 96 lacks blue-green. Therefore, use of an additional color in the blue green region has the most substantial impact on gamut. The green wavelength for the examples of FIGS. 4a-4 d was arbitrarily picked at 520 nm. If this wavelength were more yellow-green, such as at 540 nm or 550 nm for example, the best choice for the fourth blue-green color might be closer to 500 nm to optimize the area of blue-greenenhanced gamut 99. Similarly, further addition of a fifth laser at 460 nm could expand the gamut even further. Using this technique, a blue-greenenhanced gamut 99 could be successively improved by the selective addition of more spectrally pure colors. However, it must also be observed that as more and more colors are added, the increased complexity and cost of the system may outweigh the advantages of an expanded color gamut. Moreover, color differences may be less and less striking when continuing such a process gives diminishing returns. Some practical limitations must be acknowledged. - Preferred Embodiment for
Projection System 10 - Referring to FIG. 5, there is shown one embodiment of a
projection system 10 of the present invention, having a modulation path for each of four component colors. In FIG. 5, the color of each modulation path is indicated with an appended letter where necessary, as follows: r for components in the red modulation path, g for components in the green path, b for components in the blue path, and bg for components in the blue-green or other modulation path. For the purpose of the following description, however, the appended letter is omitted, except where necessary to distinguish activity distinctive to a particular color path. To represent the polarization orientation, the standard method is used where a double headed arrow means “in the plane of the paper” and a dot symbolizes “perpendicular to the plane of the paper.” Each color path has a separate spatiallight modulator 20 and a separate light source 12, with additional light conditioning and polarization handling components, as necessary. In the preferred embodiment, spatiallight modulator 20 is a reflective LCD. - The basic operation of each light modulation path can be most easily traced by following light in the blue or red modulation paths. Light source12 provides the source illumination that is modulated.
Uniformizing optics 14 and a telecentric condenser lens 16, which may be an individual lens but is more likely a set of lenses, provide essentially telecentric light to apolarizing beamsplitter 18. Polarizingbeamsplitter 18 transmits light having an unwanted polarization state and directs light of the intended polarization state as incident light to spatiallight modulator 20. Spatiallight modulator 20, using selective, variable rotation of light polarization for each individual pixel, as is well known in the imaging arts, modulates the incident light to provide a modulated color beam. In the red and blue paths, an additional half waveplate 22 provides a necessary polarization rotation for compatibility with modulated light from other color paths. Polarizingbeamsplitter 18 could be a standard prism-based beamsplitter or could be a wire grid beamsplitter, as disclosed in U.S. Pat. No. 6,122,103 (Perkins et al.). - An X-cube86 acts as a dichroic combiner, combining light from three input axes to provide modulated multicolor light as output along a common axis O to a
projection lens 110, which projects the image formed byprojection system 10 onto adisplay surface 140. In a preferred embodiment,X-cube 86 accepts s-polarized red and blue light, but can pass either s- or p-polarized light in the green and blue-green colors. - Still referring to FIG. 5, there are some notable differences in light handling in the modulation paths for green and blue-green color. Blue-green light source12 bg is s-polarized with respect to
polarization beamsplitter 18 g.Dichroic mirror 87 andpolarization beamsplitter 18 g reflect the s-polarized light as incident light to spatiallight modulator 20 bg. Modulated blue-green light from spatiallight modulator 20 bg becomes p-polarized and is then transmitted throughpolarization beamsplitter 18 g to X-cube 86 for recombination and projection. - In the green color modulation path,
light source 12 g emits light that is p-polarized with respect topolarization beamsplitter 18 g. The incident unmodulated light beam fromlight source 12 g is transmitted throughdichroic mirror 87 and enterspolarization beamsplitter 18 g.Polarization beamsplitter 18 g transmits the p-polarized light as incident light to spatiallight modulator 20 g. Modulated light from spatiallight modulator 20 g is now s-polarized and is then reflected bypolarization beamsplitter 18 g to X-cube 86 for recombination and projection. Note that spatiallight modulators polarization beamsplitter 18 g, taking advantage of orthogonally polarized green and blue-green beams. X-cube 86 transmits both colors, green and blue-green, having orthogonal polarizations, toprojection lens 87. Atypical x-cube 86 must have s-polarized light in the red and blue channels but will accept either polarization in the “green” channel. In this case, the “green” channel is designed to pass both green and blue-green beams which are orthogonally polarized. - Referring to the graph of FIG. 8a, there is shown a plot of the efficiency of X-cube 86 for near-normal incidence light that is s-polarized. The wavelength of interest is blue-green light at approximately 490 nm. Note from FIG. 8a that, for s-polarized light,
X-cube 86 is less than 50% efficient at 490 nm, whereas at the wavelength of green light, approximately 515-530 nm,X-cube 86 is nearly 90% efficient. Compare this behavior with the performance of X-cube 86 for p-polarized light as shown in FIG. 8b. For p-polarized blue-green light at 490 nm,X-cube 86 is nearly 90% efficient; for p-polarized green light,X-cube 86 is nearly 95% efficient. Therefore, from the perspective of light efficiency, there is clearly an advantage to the arrangement of FIG. 5, where modulated blue-green light has p-polarization and modulated green light has polarization. - Lasers are typically plane polarized and monochromatic. This inherent polarization results in a large efficiency boost over lamp sources that require a dichroic filter and a polarizer in order to be used. Dichroic filters are typically 80 to 85% transmitting and polarizers are typically only 35 to 40% transmitting. Therefore, when providing polarized light, a lamp based projector is about 3.5 times as lossy as a laser projector. Furthermore, monochromaticity means that the primaries are saturated colors and lie directly on the “horseshoe” periphery, providing the largest possible color gamut.
- The preferred embodiment of FIG. 5 admits a number of alternative types of components for performing the various light conditioning, modulation, and polarization handling functions. As stated above, light source12 is preferably a laser. Available lasers at convenient wavelengths include gas lasers, dye lasers, and diode pumped solid state lasers (DPSS). Other types of light sources could be used, such as LED s, for example. For use with an LCD spatial
light modulator 20, light source 12 must have a high degree of spectral purity, high brightness level, and correct polarization state. - Uniformizing optics can include any of a variety of lens let arrays, integrating bar, or other optical components suitable for providing illumination over a sufficiently wide field for spatial
light modulator 20. Polarization beamsplitters can be standard McNeille prisms, wire-grid polarization beamsplitters, or other suitable devices. - DMD or other spatial light modulator devices such as transmissive LCDs could be employed as spatial
light modulator 20, with the necessary changes to illumination and support components, using techniques well known in the imaging arts.Projection lens 110 anddisplay surface 140 are selected to work together for optimal projection results. - Referring to FIG. 9, there is shown an embodiment of
projection system 10 using four modulation devices: a DMD spatial light modulator,red light path 32 r, a DMD spatial light modulator,green light path 32 g, a DMD spatial light modulator, bluelight path 32 b, and a DMD spatial light modulator, blue-green light path 32 bg. Here again, the green and blue-green modulated light are directed onto a single axis for transmission throughX-cube 86. Aprojection system 10 using transmissive LCDs would use a similar arrangement for directing green and blue-green modulated light onto a common axis for transmission throughX-cube 86. - It would also be possible to omit
X-cube 86 or other color-combining component and to project each modulated colored light beam ontodisplay surface 140 through a separate projection lens. However, such an arrangement can be considerably more cumbersome and costly. - Alternate Embodiment Using Sequential Color
- Referring to FIG. 6, there is shown an alternate embodiment in which sequential imaging is used for each of four colors. As in FIG. 5, parallel organization of components is used, with appended r, g, b, or bg for components specific to each color path. In each color path, light source12 provides the source illumination beam for modulation. In a preferred embodiment, each light source 12 is s-polarized with respect to
polarization beamsplitter 18. A lens 27, in cooperation with anoutput lens 36, acts as a beam expander. A fast shutter 26 is provided for control of the light beam from each light source 12. In a preferred embodiment, shutter 26 is an acousto-optic modulator having a high extinction ratio, in excess of 1000:1. There are four shutters shown in FIG. 6, one for each color: a shutter,red light path 26 r; a shutter,green light path 26 g; a shutter, bluelight path 26 b and a shutter, blue-green light path 26 bg. The timing and sequencing ofshutters dichroic combiner 35 directs the beam from any light source 12 on its individual axis into common optical axisO. Output lens 36 directs the illumination beam, which is conditioned by uniformizingoptics 14, typically a lenslet array or integrator bar, to provide a uniform illumination field. Atelecentric condenser lens 69 directs the uniformized illumination beam topolarizing beamsplitter 18 and to spatiallight modulator 20. Spatiallight modulator 20, an LCD in the preferred embodiment, modulates the illumination beam to provide a modulated light beam that is then projected ontodisplay surface 140 byprojection lens 110. - Sequential imaging of each of the component colors is required for an embodiment using fewer spatial
light modulators 20 than there are light sources 12, as is shown in FIG. 6. Using techniques well known in the digital imaging arts, individual modulated color images are sequentially projected at a high enough rate for perception of full color images. The refresh rate for sequential imaging must exceed the perceptible range of visible flicker. Typically, speeds of sixty images per second or greater are used. - Shutters26 are fast, high extinction ratio shutters. This allows them to be turned on independently. Shutters 26 help to eliminate color crosstalk effects that plague designs using the conventional lamp and filter wheel approach. This crosstalk occurs, for example, during transitions between color filters, before the full set of data is provided for the next color. In the conventional approach, shutters having the necessary fast rise and fall time and large extinction ratio for minimizing color crosstalk would be difficult and costly to design.
-
Shutters shutter light modulator 20. With this arrangement, it may also be desirable to disable one or more colors, depending on scene color content for example. - Alternate Embodiment Using Scanned Raster Beam
- Referring to FIG. 7, there is shown another alternate embodiment employing a
scanning polygon mirror 41.Light sources modulator dichroic combiner 35 combines the modulated light from each light path to provide composite color modulated light on common axisO. Output lens 36 then directs the composite color modulated light through beam-shapingoptics 38, which provide the composite color modulated light as a focused modulated light beam to apolygon mirror 41. Using scanning techniques well known in the laser scanner arts, amotor 42 spinspolygon mirror 41 to provide a high-speed horizontal scan that deflects the focused modulated light beam to form a scanned raster beam. A galvanometer-drivenmirror 43, driven by agalvanometer actuator 44, provides vertical deflection for the scanned raster beam.Projection lens 110 directs the scanned raster beam to displaysurface 140. - Alternate Embodiments
- The embodiments described above with reference to FIGS. 5, 6, and7 are directed primarily to large-scale projection applications, such as movie theater environments, for example. Such large-scale applications require light sources 12 to provide high brightness levels with highly saturated color. For such applications, lasers provide a suitable solution for light sources 12. However, the present invention admits other types of light source 12, particularly where high power is not a requirement. For example, in smaller projector or TV applications, LEDs may provide a suitable solution for light source 12. Referring back to FIG. 2, LEDs would not provide the spectral purity of narrow-band lasers and therefore would not be capable of providing as large a color gamut. However, narrow-band LEDs can provide substantially monochromatic color such that corresponding vertices in a gamut mapping such as is shown in FIG. 2 could closely approximate the positions on
visible gamut 100 curve that are achievable using lasers. - It is worthwhile to note that, while the preferred and alternate embodiments described above show the use of four colors, the present invention can be extended to use five, six, or more light sources12. However, it can be appreciated that such arrangements would not only require compact packaging of optical components, but also would require considerable computational complexity in determining how to represent any specific color in the color gamut thus obtained.
- It should also be noted that there might be imaging conditions where fewer than four colors are needed for a specific scene or image. With reference to FIG. 5, for example, it may be beneficial to temporarily disable blue-green spatial
light modulator 20 bg for some types of scenes. A logic component (not shown) might analyze scene content data to determine when to switch blue-green spatiallight modulator 20 bg into or out of the scene. - The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention as described above, and as noted in the appended claims, by a person of ordinary skill in the art without departing from the scope of the invention. Thus, what is provided is an apparatus and method for projection of high-resolution motion-picture images from digital data, wherein an improved color gamut can be obtained.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Claims (46)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/151,742 US6648475B1 (en) | 2002-05-20 | 2002-05-20 | Method and apparatus for increasing color gamut of a display |
DE60321856T DE60321856D1 (en) | 2002-05-20 | 2003-05-08 | Method and apparatus for extending the color gamut of a display device |
EP03076366A EP1365598B1 (en) | 2002-05-20 | 2003-05-08 | Method and apparatus for increasing color gamut of a display |
JP2003140980A JP4274851B2 (en) | 2002-05-20 | 2003-05-19 | Method and apparatus for increasing the color gamut of a display |
CNB031367437A CN100474100C (en) | 2002-05-20 | 2003-05-20 | Method and apparatus for increasing colour gamut of display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/151,742 US6648475B1 (en) | 2002-05-20 | 2002-05-20 | Method and apparatus for increasing color gamut of a display |
Publications (2)
Publication Number | Publication Date |
---|---|
US6648475B1 US6648475B1 (en) | 2003-11-18 |
US20030214633A1 true US20030214633A1 (en) | 2003-11-20 |
Family
ID=29400511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/151,742 Expired - Lifetime US6648475B1 (en) | 2002-05-20 | 2002-05-20 | Method and apparatus for increasing color gamut of a display |
Country Status (5)
Country | Link |
---|---|
US (1) | US6648475B1 (en) |
EP (1) | EP1365598B1 (en) |
JP (1) | JP4274851B2 (en) |
CN (1) | CN100474100C (en) |
DE (1) | DE60321856D1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248022A1 (en) * | 2003-04-23 | 2004-12-09 | Seiko Epson Corporation | Display device and light adjusting method thereof |
US20040263500A1 (en) * | 2003-04-21 | 2004-12-30 | Seiko Epson Corporation | Display device, lighting device and projector |
US20050110959A1 (en) * | 2003-10-15 | 2005-05-26 | Seiko Epson Corporation | Multi-projection display |
US20050117126A1 (en) * | 2003-12-01 | 2005-06-02 | Seiko Epson Corporation | Front projection type multi-projection display |
US20050146644A1 (en) * | 2003-11-06 | 2005-07-07 | Seiko Epson Corporation | Rear projection type multi-projection display |
US20050205884A1 (en) * | 2004-03-19 | 2005-09-22 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices including in-plane light emitting layers |
US20050224826A1 (en) * | 2004-03-19 | 2005-10-13 | Lumileds Lighting, U.S., Llc | Optical system for light emitting diodes |
US20050248733A1 (en) * | 2004-05-07 | 2005-11-10 | Seiko Epson Corporation | Light source and projector |
US20050254127A1 (en) * | 2004-05-12 | 2005-11-17 | Allan Evans | Time-sequential colour projection |
US20060023164A1 (en) * | 2004-07-30 | 2006-02-02 | Ryuichi Sakaguchi | Displaying optical system and image projection apparatus |
US20060158668A1 (en) * | 2005-01-20 | 2006-07-20 | Eastman Kodak Company | Method and apparatus for increasing color gamut of a three color primary additive display device |
US20060238660A1 (en) * | 2005-04-21 | 2006-10-26 | Seiko Epson Corporation | Light scanning device and image display device |
US20070081131A1 (en) * | 2003-12-16 | 2007-04-12 | Koninklijke Philips Electronics, N.V. | Rotatable projection lens for rear-projection applications |
US20070115435A1 (en) * | 2003-12-15 | 2007-05-24 | Koninklojke Philips Electronics N.V. | Projector and method of projecting an image having multiple image sizes |
US20070165184A1 (en) * | 2003-12-22 | 2007-07-19 | Kasazumi Ken Ichi | Two-dimensional image display device |
US20070195549A1 (en) * | 2004-06-30 | 2007-08-23 | 3M Innovative Properties Company | Phosphor Based Illumination System Having a Plurality of Light Guides and a Display Using Same |
US20070258050A1 (en) * | 2006-05-02 | 2007-11-08 | Samsung Electronics Co.; Ltd | Laser projector |
US20080144139A1 (en) * | 2006-12-18 | 2008-06-19 | Samsung Electro-Mechanics Co., Ltd. | Scanning display apparatus and method for controlling output time of light sources |
US20080212035A1 (en) * | 2006-12-12 | 2008-09-04 | Christensen Robert R | System and method for aligning RGB light in a single modulator projector |
US20080252854A1 (en) * | 2007-04-16 | 2008-10-16 | Young Optics Inc. | Illumination system |
US20080272379A1 (en) * | 2007-05-01 | 2008-11-06 | Exalos Ag | Display apparatus, method and light source |
US20080297593A1 (en) * | 2007-04-17 | 2008-12-04 | University Of Southern California | Rendering for an Interactive 360 Degree Light Field Display |
US20090009720A1 (en) * | 2007-07-06 | 2009-01-08 | Young Optics Inc. | Optical engine |
US7517091B2 (en) | 2005-05-12 | 2009-04-14 | Bose Corporation | Color gamut improvement in presence of ambient light |
US20090195707A1 (en) * | 2005-09-01 | 2009-08-06 | Matsushita Electric Industrial Co., Ltd. | Laser picture formation device and color picture formation method |
US20090268168A1 (en) * | 2007-10-09 | 2009-10-29 | Coretronic Corporation | Projector |
US20100149496A1 (en) * | 2008-12-17 | 2010-06-17 | Casio Computer Co., Ltd. | Light source apparatus, light source control method, and projector apparatus |
US8077378B1 (en) | 2008-11-12 | 2011-12-13 | Evans & Sutherland Computer Corporation | Calibration system and method for light modulation device |
US8358317B2 (en) | 2008-05-23 | 2013-01-22 | Evans & Sutherland Computer Corporation | System and method for displaying a planar image on a curved surface |
US20130038837A1 (en) * | 2011-08-10 | 2013-02-14 | Microvision, Inc. | Mixed Polarization Imaging System for Three-Dimensional Projection and Corresponding Methods |
US20130169659A1 (en) * | 2011-12-29 | 2013-07-04 | Christie Ditigal Systems Usa, Inc. | High efficiency dynamic color control management system |
US8702248B1 (en) | 2008-06-11 | 2014-04-22 | Evans & Sutherland Computer Corporation | Projection method for reducing interpixel gaps on a viewing surface |
US20140160364A1 (en) * | 2011-07-28 | 2014-06-12 | Atsushi Katou | Liquid-crystal projector |
CN103886807A (en) * | 2014-03-26 | 2014-06-25 | 河北工业大学 | Five-color laser color gamut expanded display device and color display method thereof |
US9641826B1 (en) | 2011-10-06 | 2017-05-02 | Evans & Sutherland Computer Corporation | System and method for displaying distant 3-D stereo on a dome surface |
US9829777B2 (en) | 2013-10-23 | 2017-11-28 | Canon Kabushiki Kaisha | Light source unit and projection type display apparatus |
Families Citing this family (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040052076A1 (en) * | 1997-08-26 | 2004-03-18 | Mueller George G. | Controlled lighting methods and apparatus |
US7567384B2 (en) * | 2001-06-08 | 2009-07-28 | Infocus Corporation | Method and apparatus for combining light paths of like-colored light sources |
US7520624B2 (en) * | 2001-12-21 | 2009-04-21 | Bose Corporation | Light enhancing |
US7515336B2 (en) * | 2001-12-21 | 2009-04-07 | Bose Corporation | Selective reflecting |
US6847483B2 (en) | 2001-12-21 | 2005-01-25 | Bose Corporation | Selective reflecting |
CA2477490A1 (en) * | 2002-02-26 | 2003-09-04 | Martin G. Selbrede | Enhancements to optical flat panel displays |
US6769772B2 (en) * | 2002-10-11 | 2004-08-03 | Eastman Kodak Company | Six color display apparatus having increased color gamut |
US6802613B2 (en) * | 2002-10-16 | 2004-10-12 | Eastman Kodak Company | Broad gamut color display apparatus using an electromechanical grating device |
US7048382B2 (en) * | 2002-10-26 | 2006-05-23 | Hewlett-Packard Development Company, L.P. | Recording length(s) of time high-temperature component operates in accordance with high-temperature policy |
US7113335B2 (en) * | 2002-12-30 | 2006-09-26 | Sales Tasso R | Grid polarizer with suppressed reflectivity |
KR100519348B1 (en) * | 2003-01-27 | 2005-10-07 | 엘지전자 주식회사 | Laser display Device |
US20050069376A1 (en) * | 2003-09-25 | 2005-03-31 | Eastman Kodak Company | Compound coupling |
US20050073655A1 (en) * | 2003-10-03 | 2005-04-07 | Arthur Berman | Four color channel kernel |
US7212344B2 (en) * | 2004-02-27 | 2007-05-01 | Philips Lumileds Lighting Company, Llc | Illumination system with aligned LEDs |
KR100601678B1 (en) | 2004-05-22 | 2006-07-14 | 삼성전자주식회사 | Image Projection Device |
KR100601679B1 (en) | 2004-05-22 | 2006-07-14 | 삼성전자주식회사 | Image Projection Device |
KR20050120958A (en) * | 2004-06-21 | 2005-12-26 | 삼성전자주식회사 | Color signal processing method for wide color gamut reproducing device and apparatus of using the same |
US7255469B2 (en) * | 2004-06-30 | 2007-08-14 | 3M Innovative Properties Company | Phosphor based illumination system having a light guide and an interference reflector |
EP1805555A1 (en) * | 2004-10-22 | 2007-07-11 | Koninklijke Philips Electronics N.V. | Projector system |
JP4510090B2 (en) * | 2004-10-29 | 2010-07-21 | グラフィック パッケージング インターナショナル インコーポレイテッド | Carton with opening feature |
EP1834320B1 (en) | 2004-12-23 | 2017-08-30 | Dolby Laboratories Licensing Corporation | Wide color gamut displays |
US7362336B2 (en) * | 2005-01-12 | 2008-04-22 | Eastman Kodak Company | Four color digital cinema system with extended color gamut and copy protection |
US7422330B2 (en) * | 2005-03-30 | 2008-09-09 | 3M Innovative Properties Company | Illumination system and projection system using same |
EP2046066A1 (en) * | 2005-03-31 | 2009-04-08 | Sony Deutschland Gmbh | Image generation unit with four primary colors |
CN100363778C (en) * | 2005-04-21 | 2008-01-23 | 精工爱普生株式会社 | Optical scanning device and image display device |
JP4548268B2 (en) * | 2005-08-08 | 2010-09-22 | 岩崎電気株式会社 | Projector device |
US8057046B2 (en) | 2005-05-10 | 2011-11-15 | Iwasaki Electric Co., Ltd. | Projector device having assembly of reflection type light emitting diodes |
US20070116405A1 (en) * | 2005-05-11 | 2007-05-24 | Kane David M | Optical-radiation projection |
US7445340B2 (en) * | 2005-05-19 | 2008-11-04 | 3M Innovative Properties Company | Polarized, LED-based illumination source |
US7410261B2 (en) * | 2005-05-20 | 2008-08-12 | 3M Innovative Properties Company | Multicolor illuminator system |
WO2006130724A2 (en) * | 2005-05-31 | 2006-12-07 | Infocus Corporation | Illumination arrangements for colored light sources |
WO2007032422A1 (en) * | 2005-09-14 | 2007-03-22 | Matsushita Electric Industrial Co., Ltd. | Laser image formation device |
KR100851070B1 (en) | 2005-11-03 | 2008-08-12 | 삼성전기주식회사 | Scanning color display apparatus and method using four color, and recording medium for controlling color image |
EP1954974A2 (en) * | 2005-11-22 | 2008-08-13 | Koninklijke Philips Electronics N.V. | Light emitting module and manufacturing method |
US7641350B2 (en) * | 2005-11-28 | 2010-01-05 | Jds Uniphase Corporation | Front surface mirror for providing white color uniformity for polarized systems with a large range of incidence angles |
US7540616B2 (en) * | 2005-12-23 | 2009-06-02 | 3M Innovative Properties Company | Polarized, multicolor LED-based illumination source |
TWI311682B (en) * | 2006-06-21 | 2009-07-01 | Coretronic Corporatio | Illumination system |
KR20080021426A (en) * | 2006-09-04 | 2008-03-07 | 삼성테크윈 주식회사 | Micro projector |
CN101191987B (en) * | 2006-10-31 | 2010-08-04 | 三洋电机株式会社 | Illumination device and projection type image display device |
JP4286306B2 (en) * | 2006-10-31 | 2009-06-24 | 三洋電機株式会社 | Illumination device and projection display device |
US8068255B2 (en) | 2006-11-17 | 2011-11-29 | Microsoft Corporation | Gamut mapping spectral content to reduce perceptible differences in color appearance |
US7905605B2 (en) * | 2006-12-13 | 2011-03-15 | Koninklijke Philips Electronics N.V. | Multi-primary LED projection system |
US7766490B2 (en) * | 2006-12-13 | 2010-08-03 | Philips Lumileds Lighting Company, Llc | Multi-color primary light generation in a projection system using LEDs |
WO2008076104A1 (en) * | 2006-12-18 | 2008-06-26 | Thomson Licensing | Wide color gamut projector |
WO2008076103A1 (en) * | 2006-12-18 | 2008-06-26 | Thomson Licensing | 2d/3d projector with rotating translucent cylinder for alternating light polarisation |
US8334935B2 (en) * | 2006-12-19 | 2012-12-18 | Thomson Licensing | High resolution DMD projection system |
WO2008076113A1 (en) * | 2006-12-19 | 2008-06-26 | Thomson Licensing | Wide color gamut high resolution dmd projection system |
US20080204366A1 (en) * | 2007-02-26 | 2008-08-28 | Kane Paul J | Broad color gamut display |
EP1971156A1 (en) * | 2007-03-13 | 2008-09-17 | Thomson Licensing | A method to display images using metamerism to prevent illegal copy |
US7928999B2 (en) * | 2007-04-03 | 2011-04-19 | Texas Instruments Incorporated | Pulse width modulation algorithm |
US7876340B2 (en) * | 2007-04-03 | 2011-01-25 | Texas Instruments Incorporated | Pulse width modulation algorithm |
US20080246705A1 (en) * | 2007-04-03 | 2008-10-09 | Texas Instruments Incorporated | Off-state light recapturing in display systems employing spatial light modulators |
US7956878B2 (en) * | 2007-04-03 | 2011-06-07 | Texas Instruments Incorporated | Pulse width modulation algorithm |
TWM324170U (en) * | 2007-04-04 | 2007-12-21 | Young Optics Inc | Illumination system |
WO2008133611A1 (en) | 2007-04-25 | 2008-11-06 | Thomson Licensing | High resolution 3d projection system |
KR20100024955A (en) * | 2007-06-25 | 2010-03-08 | 톰슨 라이센싱 | Video recording prevention system |
JP2009086366A (en) * | 2007-09-28 | 2009-04-23 | Brother Ind Ltd | Optical scanning device, optical scanning image display device, and retinal scanning image display device |
CN101581436B (en) * | 2008-05-15 | 2011-06-29 | 北京中视中科光电技术有限公司 | LED lighting system and lighting method |
US7952806B2 (en) * | 2008-06-02 | 2011-05-31 | Coherent, Inc. | Multicolor diode-laser module |
EP2134089A1 (en) | 2008-06-11 | 2009-12-16 | THOMSON Licensing | Method to display colors using five primaries that allow colors to be metameric for most of the viewers |
US7926951B2 (en) * | 2008-07-11 | 2011-04-19 | Eastman Kodak Company | Laser illuminated micro-mirror projector |
KR20100010137A (en) * | 2008-07-22 | 2010-02-01 | 삼성전기주식회사 | Projection display apparatus |
CN101750860B (en) * | 2008-12-11 | 2011-10-26 | 中强光电股份有限公司 | Light source module for projection device |
US8899754B2 (en) * | 2009-04-09 | 2014-12-02 | Nec Corporation | Projection type image display apparatus and control method therefor |
JP5359483B2 (en) * | 2009-04-10 | 2013-12-04 | 住友電気工業株式会社 | Optical multiplexer and image projection apparatus using the same |
JP2010249966A (en) * | 2009-04-14 | 2010-11-04 | Hitachi Ltd | Optical engine |
US7813033B1 (en) * | 2009-04-15 | 2010-10-12 | Corning Incorporated | Connecting structures comprising heated flexures and optical packages incorporating the same |
US8330870B2 (en) * | 2009-12-08 | 2012-12-11 | Eastman Kodak Company | Dynamic illumination control for laser projection display |
WO2011092842A1 (en) | 2010-01-29 | 2011-08-04 | Necディスプレイソリューションズ株式会社 | Illuminating optical system and projector using same |
JP2011248272A (en) * | 2010-05-31 | 2011-12-08 | Sanyo Electric Co Ltd | Light source device and projection type video display device |
US9094656B2 (en) | 2010-09-13 | 2015-07-28 | Thomson Licensing | Method for sequentially displaying a colour image |
CN106324855B (en) * | 2010-11-24 | 2019-08-16 | 青岛海信电器股份有限公司 | Light source of projector and projector |
JP5633695B2 (en) | 2010-11-29 | 2014-12-03 | ソニー株式会社 | Illumination device, projection display device, and direct view display device |
EP2472875A1 (en) | 2010-12-28 | 2012-07-04 | Thomson Licensing | Control of a multiprimary display device for observers having different visual characteristics |
US9485480B2 (en) * | 2011-05-02 | 2016-11-01 | The Research Foundation Of The City University Of New York | Laser based projection display system |
JP6024289B2 (en) * | 2012-08-27 | 2016-11-16 | コニカミノルタ株式会社 | Projection display |
CN103857096A (en) * | 2012-11-28 | 2014-06-11 | 胡能忠 | Best Visual Lighting Apparatus and Method |
CN103190878A (en) * | 2013-03-22 | 2013-07-10 | 浙江大学 | Multifunctional medical LED (Light Emitting Diode) lighting system |
JP5928383B2 (en) * | 2013-03-22 | 2016-06-01 | ソニー株式会社 | Light source device and display device |
US11402629B2 (en) * | 2013-11-27 | 2022-08-02 | Magic Leap, Inc. | Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same |
US9910347B2 (en) | 2014-06-11 | 2018-03-06 | Sony Corporation | Image display apparatus and image generation method |
KR20160092717A (en) * | 2015-01-28 | 2016-08-05 | 한국전자통신연구원 | Table-top type hologram projection apparatus using aspheric mirror |
DE102015105107B4 (en) | 2015-04-02 | 2020-11-12 | Sypro Optics Gmbh | Projector with a beam splitter device having a polarization beam splitter |
KR20240142601A (en) | 2015-05-04 | 2024-09-30 | 매직 립, 인코포레이티드 | Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same |
US9799243B2 (en) | 2015-07-07 | 2017-10-24 | CI Holdings C.V. | Lighting devices including solid state emitter groups for illuminating printed material with enhanced vibrancy |
WO2017011188A1 (en) * | 2015-07-13 | 2017-01-19 | Applied Materials, Inc. | Quarter wave light splitting |
JP2017054067A (en) * | 2015-09-11 | 2017-03-16 | 株式会社Jvcケンウッド | Image display device |
CN108693687B (en) * | 2017-04-06 | 2021-03-05 | 深圳光峰科技股份有限公司 | Display system |
CN108810497B (en) * | 2017-05-02 | 2021-07-23 | 深圳光峰科技股份有限公司 | Projection system, projection method and image data processing method |
CN110278423B (en) * | 2018-03-16 | 2021-10-12 | 深圳光峰科技股份有限公司 | Display device |
EP3976807A1 (en) | 2019-05-28 | 2022-04-06 | Tekniska Verken I Linköping AB | Method for the production of biogas |
CN113946092A (en) * | 2021-08-02 | 2022-01-18 | 合肥全色光显科技有限公司 | Projection system |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4368963A (en) * | 1978-06-29 | 1983-01-18 | Michael Stolov | Multicolor image or picture projecting system using electronically controlled slides |
US4441791A (en) | 1980-09-02 | 1984-04-10 | Texas Instruments Incorporated | Deformable mirror light modulator |
US5083857A (en) | 1990-06-29 | 1992-01-28 | Texas Instruments Incorporated | Multi-level deformable mirror device |
EP0518333B1 (en) | 1991-06-14 | 2002-08-28 | Hughes Aircraft Company | Method for inducing tilted perpendicular alignment in liquid crystals |
KR0125452B1 (en) | 1991-11-20 | 1997-12-19 | 순페이 야마자끼 | Image display method and image display apparatus |
IL102994A (en) | 1992-08-30 | 1998-12-27 | Scitex Corp Ltd | Seven colour printing method and apparatus |
JPH08502833A (en) | 1992-10-20 | 1996-03-26 | ヒューズ−ジェイヴィーシー・テクノロジー・コーポレーション | Liquid crystal light valve with minimal double reflection |
JP4006478B2 (en) * | 1994-08-04 | 2007-11-14 | テキサス インスツルメンツ インコーポレイテッド | Display system |
DE4432029C2 (en) | 1994-09-08 | 1997-08-21 | Ldt Gmbh & Co | Laser color image display and projection device |
JP3417757B2 (en) * | 1995-02-28 | 2003-06-16 | ペンタックス株式会社 | Liquid crystal display device and light beam separating method thereof |
US5719695A (en) | 1995-03-31 | 1998-02-17 | Texas Instruments Incorporated | Spatial light modulator with superstructure light shield |
US5535047A (en) | 1995-04-18 | 1996-07-09 | Texas Instruments Incorporated | Active yoke hidden hinge digital micromirror device |
US6147720A (en) | 1995-12-27 | 2000-11-14 | Philips Electronics North America Corporation | Two lamp, single light valve projection system |
JP3721641B2 (en) * | 1996-07-10 | 2005-11-30 | ソニー株式会社 | Video projection device |
US6053615A (en) | 1996-08-02 | 2000-04-25 | In Focus Systems, Inc. | Image projector with polarization conversion system |
JP3557317B2 (en) | 1996-09-02 | 2004-08-25 | テキサス インスツルメンツ インコーポレイテツド | Projector device and color separation / synthesis device |
WO1998020475A1 (en) * | 1996-11-01 | 1998-05-14 | Laser Power Corporation | Projection display with gradation levels obtained by modulation of beamlets |
JPH10148885A (en) | 1996-11-19 | 1998-06-02 | Sony Corp | Projector |
US5914818A (en) | 1996-11-29 | 1999-06-22 | Texas Instruments Incorporated | Offset projection lens for use with reflective spatial light modulators |
US6008951A (en) | 1996-12-31 | 1999-12-28 | Texas Instruments Incorporated | Offset projection zoom lens with fixed rear group for reflective spatial light modulators |
US6020937A (en) | 1997-05-12 | 2000-02-01 | Sony Corporation | High resolution digital projection TV with dynamically adjustable resolution utilizing a system of rotating mirrors |
US6392717B1 (en) * | 1997-05-30 | 2002-05-21 | Texas Instruments Incorporated | High brightness digital display system |
US5982992A (en) | 1997-09-05 | 1999-11-09 | Xerox Corporation | Error diffusion in color printing where an intra-gamut colorant is available |
US5930050A (en) | 1997-10-21 | 1999-07-27 | Texas Instruments Incorporated | Anamorphic lens for providing wide-screen images generated by a spatial light modulator |
US6256073B1 (en) | 1997-11-26 | 2001-07-03 | Texas Instruments Incorporated | Color source selection for improved brightness |
US6220713B1 (en) | 1998-10-23 | 2001-04-24 | Compaq Computer Corporation | Projection lens and system |
US6254237B1 (en) | 1999-04-30 | 2001-07-03 | David K. Booth | Multi-pixel microlens illumination in electronic display projector |
US6220710B1 (en) | 1999-05-18 | 2001-04-24 | Intel Corporation | Electro-optic projection display with luminosity channel |
US6191893B1 (en) * | 1999-06-04 | 2001-02-20 | Philips Electronics North America Corporation | Color projection display system with improved hue variation |
US6567134B1 (en) * | 1999-06-08 | 2003-05-20 | Texas Instruments Incorporated | Secondary color boost in sequential color systems |
US6122103A (en) | 1999-06-22 | 2000-09-19 | Moxtech | Broadband wire grid polarizer for the visible spectrum |
US6280034B1 (en) | 1999-07-30 | 2001-08-28 | Philips Electronics North America Corporation | Efficient two-panel projection system employing complementary illumination |
US6870523B1 (en) | 2000-06-07 | 2005-03-22 | Genoa Color Technologies | Device, system and method for electronic true color display |
US6568811B2 (en) * | 2000-06-12 | 2003-05-27 | Matsushita Electric Industrial Co., Ltd. | Color image display device and projection-type image display apparatus |
US6411425B1 (en) * | 2000-09-27 | 2002-06-25 | Eastman Kodak Company | Electromechanical grating display system with spatially separated light beams |
-
2002
- 2002-05-20 US US10/151,742 patent/US6648475B1/en not_active Expired - Lifetime
-
2003
- 2003-05-08 EP EP03076366A patent/EP1365598B1/en not_active Expired - Lifetime
- 2003-05-08 DE DE60321856T patent/DE60321856D1/en not_active Expired - Lifetime
- 2003-05-19 JP JP2003140980A patent/JP4274851B2/en not_active Expired - Fee Related
- 2003-05-20 CN CNB031367437A patent/CN100474100C/en not_active Expired - Fee Related
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7270427B2 (en) | 2003-04-21 | 2007-09-18 | Seiko Epson Corporation | Display device, lighting device and projector |
US20040263500A1 (en) * | 2003-04-21 | 2004-12-30 | Seiko Epson Corporation | Display device, lighting device and projector |
US7325932B2 (en) | 2003-04-21 | 2008-02-05 | Seiko Epson Corporation | Display device, lighting device and projector |
US20070070305A1 (en) * | 2003-04-21 | 2007-03-29 | Seiko Epson Corporation | Display device, lighting device and projector |
US20070070304A1 (en) * | 2003-04-21 | 2007-03-29 | Seiko Epson Corporation | Display device, lighting device and projector |
US7159987B2 (en) * | 2003-04-21 | 2007-01-09 | Seiko Epson Corporation | Display device, lighting device and projector |
US20040248022A1 (en) * | 2003-04-23 | 2004-12-09 | Seiko Epson Corporation | Display device and light adjusting method thereof |
US7639220B2 (en) * | 2003-04-23 | 2009-12-29 | Seiko Epson Corporation | Display device and light adjusting method thereof |
US20100060556A1 (en) * | 2003-04-23 | 2010-03-11 | Seiko Epson Corporation | Display Device and Light Adjusting Method Thereof |
US20090279001A1 (en) * | 2003-10-15 | 2009-11-12 | Seiko Epson Corporation | Multi-projection display |
US7926957B2 (en) | 2003-10-15 | 2011-04-19 | Seiko Epson Corporation | Multi-projection display |
US20050110959A1 (en) * | 2003-10-15 | 2005-05-26 | Seiko Epson Corporation | Multi-projection display |
US7410263B2 (en) * | 2003-11-06 | 2008-08-12 | Seiko Epson Corporation | Rear projection type multi-projection display |
US20050146644A1 (en) * | 2003-11-06 | 2005-07-07 | Seiko Epson Corporation | Rear projection type multi-projection display |
US7338175B2 (en) * | 2003-12-01 | 2008-03-04 | Seiko Epson Corporation | Front projection type multi-projection display |
US20050117126A1 (en) * | 2003-12-01 | 2005-06-02 | Seiko Epson Corporation | Front projection type multi-projection display |
US20070115435A1 (en) * | 2003-12-15 | 2007-05-24 | Koninklojke Philips Electronics N.V. | Projector and method of projecting an image having multiple image sizes |
US20070081131A1 (en) * | 2003-12-16 | 2007-04-12 | Koninklijke Philips Electronics, N.V. | Rotatable projection lens for rear-projection applications |
KR101170570B1 (en) * | 2003-12-22 | 2012-08-01 | 파나소닉 주식회사 | Two-dimensional image display device |
US20070165184A1 (en) * | 2003-12-22 | 2007-07-19 | Kasazumi Ken Ichi | Two-dimensional image display device |
US7562988B2 (en) * | 2003-12-22 | 2009-07-21 | Panasonic Corporation | Two-dimensional image display device |
US20080265263A1 (en) * | 2004-03-19 | 2008-10-30 | Philips Lumileds Lighting Company, Llc | Polarized Semiconductor Light Emitting Device |
US7808011B2 (en) | 2004-03-19 | 2010-10-05 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting devices including in-plane light emitting layers |
US20050205884A1 (en) * | 2004-03-19 | 2005-09-22 | Lumileds Lighting U.S., Llc | Semiconductor light emitting devices including in-plane light emitting layers |
US20050224826A1 (en) * | 2004-03-19 | 2005-10-13 | Lumileds Lighting, U.S., Llc | Optical system for light emitting diodes |
US7408201B2 (en) * | 2004-03-19 | 2008-08-05 | Philips Lumileds Lighting Company, Llc | Polarized semiconductor light emitting device |
US20100226404A1 (en) * | 2004-03-19 | 2010-09-09 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting devices including in-plane light emitting layers |
US7293880B2 (en) * | 2004-05-07 | 2007-11-13 | Seiko Epson Corporation | Light source including multiple light emitting devices driven by a control device, and projector |
US20050248733A1 (en) * | 2004-05-07 | 2005-11-10 | Seiko Epson Corporation | Light source and projector |
US7404644B2 (en) * | 2004-05-12 | 2008-07-29 | Sharp Kabushiki Kaisha | Time-sequential colour projection |
US20050254127A1 (en) * | 2004-05-12 | 2005-11-17 | Allan Evans | Time-sequential colour projection |
US20070195549A1 (en) * | 2004-06-30 | 2007-08-23 | 3M Innovative Properties Company | Phosphor Based Illumination System Having a Plurality of Light Guides and a Display Using Same |
US7407313B2 (en) | 2004-06-30 | 2008-08-05 | 3M Innovative Properties Company | Phosphor based illumination system having a plurality of light guides and a display using same |
US7370973B2 (en) * | 2004-07-30 | 2008-05-13 | Canon Kabushiki Kaisha | Displaying optical system and image projection apparatus |
US20060023164A1 (en) * | 2004-07-30 | 2006-02-02 | Ryuichi Sakaguchi | Displaying optical system and image projection apparatus |
US20060158668A1 (en) * | 2005-01-20 | 2006-07-20 | Eastman Kodak Company | Method and apparatus for increasing color gamut of a three color primary additive display device |
US20060238660A1 (en) * | 2005-04-21 | 2006-10-26 | Seiko Epson Corporation | Light scanning device and image display device |
US7475993B2 (en) * | 2005-04-21 | 2009-01-13 | Seiko Epson Corporation | Light scanning device and image display device |
US7517091B2 (en) | 2005-05-12 | 2009-04-14 | Bose Corporation | Color gamut improvement in presence of ambient light |
US7938541B2 (en) | 2005-09-01 | 2011-05-10 | Panasonic Corporation | Laser picture formation device and color picture formation method |
US20090195707A1 (en) * | 2005-09-01 | 2009-08-06 | Matsushita Electric Industrial Co., Ltd. | Laser picture formation device and color picture formation method |
US20070258050A1 (en) * | 2006-05-02 | 2007-11-08 | Samsung Electronics Co.; Ltd | Laser projector |
US7891818B2 (en) * | 2006-12-12 | 2011-02-22 | Evans & Sutherland Computer Corporation | System and method for aligning RGB light in a single modulator projector |
US20080212035A1 (en) * | 2006-12-12 | 2008-09-04 | Christensen Robert R | System and method for aligning RGB light in a single modulator projector |
US20080144139A1 (en) * | 2006-12-18 | 2008-06-19 | Samsung Electro-Mechanics Co., Ltd. | Scanning display apparatus and method for controlling output time of light sources |
US7857456B2 (en) * | 2007-04-16 | 2010-12-28 | Young Optics Inc. | Illumination system |
US20080252854A1 (en) * | 2007-04-16 | 2008-10-16 | Young Optics Inc. | Illumination system |
WO2009011946A1 (en) * | 2007-04-17 | 2009-01-22 | University Of Southern California | Rendering for an interactive 360 degree light field display |
US8432436B2 (en) * | 2007-04-17 | 2013-04-30 | University Of Southern California | Rendering for an interactive 360 degree light field display |
US20080297593A1 (en) * | 2007-04-17 | 2008-12-04 | University Of Southern California | Rendering for an Interactive 360 Degree Light Field Display |
US20080272379A1 (en) * | 2007-05-01 | 2008-11-06 | Exalos Ag | Display apparatus, method and light source |
US8427731B2 (en) * | 2007-05-01 | 2013-04-23 | Exalos Ag | Display apparatus, method and light source |
US7600893B2 (en) * | 2007-05-01 | 2009-10-13 | Exalos Ag | Display apparatus, method and light source |
US20100195184A1 (en) * | 2007-05-01 | 2010-08-05 | Exalos Ag | Display apparatus, method and light source |
US20090009720A1 (en) * | 2007-07-06 | 2009-01-08 | Young Optics Inc. | Optical engine |
US7980706B2 (en) * | 2007-10-09 | 2011-07-19 | Coretronic Corporation | Projector |
US20090268168A1 (en) * | 2007-10-09 | 2009-10-29 | Coretronic Corporation | Projector |
US8358317B2 (en) | 2008-05-23 | 2013-01-22 | Evans & Sutherland Computer Corporation | System and method for displaying a planar image on a curved surface |
US8702248B1 (en) | 2008-06-11 | 2014-04-22 | Evans & Sutherland Computer Corporation | Projection method for reducing interpixel gaps on a viewing surface |
US8077378B1 (en) | 2008-11-12 | 2011-12-13 | Evans & Sutherland Computer Corporation | Calibration system and method for light modulation device |
US8038299B2 (en) * | 2008-12-17 | 2011-10-18 | Casio Computer Co., Ltd. | Light source apparatus, light source control method, and projector apparatus |
US20100149496A1 (en) * | 2008-12-17 | 2010-06-17 | Casio Computer Co., Ltd. | Light source apparatus, light source control method, and projector apparatus |
US20140160364A1 (en) * | 2011-07-28 | 2014-06-12 | Atsushi Katou | Liquid-crystal projector |
US9140913B2 (en) * | 2011-07-28 | 2015-09-22 | Nec Display Solutions, Ltd. | Liquid-crystal projector |
US20130038837A1 (en) * | 2011-08-10 | 2013-02-14 | Microvision, Inc. | Mixed Polarization Imaging System for Three-Dimensional Projection and Corresponding Methods |
US8870381B2 (en) * | 2011-08-10 | 2014-10-28 | Microvision, Inc. | Mixed polarization imaging system for three-dimensional projection and corresponding methods |
US9641826B1 (en) | 2011-10-06 | 2017-05-02 | Evans & Sutherland Computer Corporation | System and method for displaying distant 3-D stereo on a dome surface |
US10110876B1 (en) | 2011-10-06 | 2018-10-23 | Evans & Sutherland Computer Corporation | System and method for displaying images in 3-D stereo |
US20130169659A1 (en) * | 2011-12-29 | 2013-07-04 | Christie Ditigal Systems Usa, Inc. | High efficiency dynamic color control management system |
US9462241B2 (en) * | 2011-12-29 | 2016-10-04 | Christie Digital Systems Usa, Inc. | High efficiency dynamic color control management system |
US9829777B2 (en) | 2013-10-23 | 2017-11-28 | Canon Kabushiki Kaisha | Light source unit and projection type display apparatus |
CN103886807A (en) * | 2014-03-26 | 2014-06-25 | 河北工业大学 | Five-color laser color gamut expanded display device and color display method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP1365598A2 (en) | 2003-11-26 |
US6648475B1 (en) | 2003-11-18 |
JP4274851B2 (en) | 2009-06-10 |
CN1459661A (en) | 2003-12-03 |
EP1365598B1 (en) | 2008-07-02 |
EP1365598A3 (en) | 2005-03-16 |
JP2004029770A (en) | 2004-01-29 |
DE60321856D1 (en) | 2008-08-14 |
CN100474100C (en) | 2009-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6648475B1 (en) | Method and apparatus for increasing color gamut of a display | |
US6857748B2 (en) | Apparatus for displaying a color image from digital data | |
US6736514B2 (en) | Imaging apparatus for increased color gamut using dual spatial light modulators | |
US6802613B2 (en) | Broad gamut color display apparatus using an electromechanical grating device | |
JP4235533B2 (en) | Display device for forming a color image including a plurality of superimposed images | |
US7916939B2 (en) | High brightness wide gamut display | |
EP0843487A1 (en) | Projector apparatus | |
US6762785B2 (en) | Four color film writer | |
US7812300B2 (en) | Methods and systems for imaging having an illumination splitting means with a dynamic selecting means and a static selecting means | |
JP4281385B2 (en) | Projection display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODDY, JAMES E.;ZOLLA, ROBERT J.;MARKIS, WILLIAM R.;REEL/FRAME:012923/0614 Effective date: 20020520 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, MINNESOTA Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 |
|
AS | Assignment |
Owner name: BANK OF AMERICA N.A., AS AGENT, MASSACHUSETTS Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (ABL);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031162/0117 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YO Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:037809/0296 Effective date: 20160204 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:037809/0285 Effective date: 20160204 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A.;REEL/FRAME:037809/0278 Effective date: 20160204 |
|
AS | Assignment |
Owner name: IMAX CORPORATION, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:037790/0724 Effective date: 20151223 |
|
AS | Assignment |
Owner name: IMAX EMEA LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMAX CORPORATION;REEL/FRAME:039082/0825 Effective date: 20160127 Owner name: IMAX THEATRES INTERNATIONAL LIMITED, IRELAND Free format text: CHANGE OF NAME;ASSIGNOR:IMAX EMEA LIMITED;REEL/FRAME:039083/0221 Effective date: 20160226 |
|
AS | Assignment |
Owner name: CREO MANUFACTURING AMERICA LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: QUALEX, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: NPEC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK REALTY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FPC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK IMAGING NETWORK, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 |
|
AS | Assignment |
Owner name: KODAK (NEAR EAST) INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK REALTY INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: QUALEX INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FPC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK AMERICAS LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK PHILIPPINES LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: NPEC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT, COLORADO Free format text: SECURITY INTEREST;ASSIGNOR:IMAX THEATRES INTERNATIONAL LIMITED;REEL/FRAME:059824/0318 Effective date: 20220428 |
|
AS | Assignment |
Owner name: IMAX CORPORATION, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IMAX THEATRES INTERNATIONAL LIMITED;REEL/FRAME:068552/0817 Effective date: 20240624 |